Univ. Heidelberg
Statistics Group   Institute for Mathematics   Faculty of Mathematics and Computer Science   University Heidelberg
Ruprecht-Karls-Universität Heidelberg Institute for Mathematics Statistics of inverse problems Research Group
german english french



Publications
Cooperations
Research projects
Events
Teaching
Completed theses
People
Contact


Last edited on
Oct 17, 2024 by JJ
.
Thesis:
Bachelor in Mathematics

Author:
Lars Kutschinski

Title:
Testen von Hypothesen im funktionalen linearen Modell

Supervisor:
Jan JOHANNES

Abstract:
This thesis studies the problem of how to perform a hypothesis test for the parameter function in a functional linear model with scalar response. Given a random function X and a scalar response variable Y, the model is given by Y = int ψ(t)X(t)dt + ε, where ψ is a function in L2([0,1]) and the noise ε is independent of X. We will define two different test statistics for the problem of testing H0 : ψ = 0 against H1 : ψ ̸= 0. Testing for the nullity of ψ is often used to check for a relationship between X and Y. The test statistics rely on the asymptotic distribution of the empirical covariance operator of X and Y. While the first statistic is based on a chi-squared distribution, the second statistics follows a standard gaussian distribution. Further Simulations show that the test statistics perform quite well in estimating the level and power of the test.

References:
H. Cardot, F. Ferraty, A. Mas et P. Sarda. Testing hypotheses in the functional linear model, Scandinavian Journal of Statistics, 30(1):241–255, 2003.