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Chapter 1
Preliminaries

This chapter presents elements of the lecture course PROBABILITY THEORY [ along the lines
of the textbook Klenke [2008], where far more details, examples and further discussions can be
found.

1.1 Basic measure theory

In the following, let €2 # () be a nonempty set and let o7 C 2% (power set, set of all subsets
of Q) be a class of subsets of €. Later, {2 will be interpreted as the space of elementary events
and .7 will be the system of observable events.

§1.1.1 Definition. (a) A pair (€2, /) consisting of a nonempty set {2 and a o-algebra <7 is
called a measurable space. The sets A € o/ are called measurable sets. If ) is at most
countably infinite and if .27 = 2%, then the measurable space (€2, 2%) is called discrete.

(b) A triple (€2, o7, p) is called a measure space if (€2, o7) is a measurable space and if . is a
measure on .7 .

(c) A measure space (€2, <7, P) is called a probability space, if in addition P(2) = 1. In this
case, the sets A € &7 are called events. m

§1.1.2 Remark. Let .o/ C 2% and let it : &/ — [0, 0c] be a set function. We say that y is
(a) monotone, if u(A) < u(B) for any two sets A, B € o/ with A C B.

(b) additive, if pu( U Aj) = Z w(A;) for any choice of finitely many mutually disjoints sets

Ay, o A, € Jz% with U A € /. The disjoint union of sets is denoted by the symbol
¢ Wthh only stresses the fact that the sets involved are mutually disjoint.

(c) o-additive, if p( U A;) = Z 1 (A;) for any choice of countably many mutually disjoints

sets Ay, Ay, ... E%Wlthu A e .

o/ is called an algebra if (i) Q € o, (ii) &/ is closed under complements, and (iii) .7 is
closed under intersections. Note that, if o/ is closed under complements, then we have the
equivalences between (i) .o/ is closed under (countable) unions and (ii) 7 is closed under
(countable) intersections. An algebra <7 is called o-algebra, if it is closed under countable
intersections. If <7 is an algebra and 1 : &7 — [0, 00| is a set function with () = 0, then p is
called a

(d) content, if p is additive,
(e) premeasure, if 11 is o-additive,

(f) measure, if u is a premeasure and .27 is a o-Algebra.

Probability Theory 11 1



Chapter 1 Preliminaries 1.2 Random variables

A content x4 on an algebra o7 is called
(2) finite, if u(A) < oo for every A € o7,

(h) o-finite, if there is a sequence €21, {2,... € < such that Q) = UZO:1 Q),, and such that
1(€2,) < oo forallm € N. O

§1.1.3 Examples. (a) For any nonempty set €2, the classes &7 = {(), Q} and .« = 2% are the
trivial examples of o-algebras.

(b) Let & C 2%. The smallest o-algebra o(£) = ({&/ : & is o-algebraand £ C o/} with
E C o(&) is called the o-algebra generated by £ and £ is called a generator of o(E).

(c) Let (€2, 7) be a topological space with class of open sets 7 C 2%, The o-algebra %((2) that
is generated by the open sets is called the Borel-o-algebra on . The elements B € %(12)
are called Borel sets or Borel measurable sets. We write 8 := B(R), BT := B(R™)
and A" = Z(R"™) for the Borel-o-algebra on R, R™ := [0, 00) and R", respectively,
equipped with the usual Euclidean distance.

(d) Denote by 1 4(x) the indicator function on a set A which takes the value one if z € A and
zero otherwise. Let w € 2 and 6,(A) = 14(w). Then 4, is a probability measure on any
o-algebra o7 C 2. 6, is called the Dirac measure on the point w.

(e) Let € be an (at most) countable nonempty set and let &/ = 2. Further let (Pw)wen be
non-negative numbers. Then A — ji(A) := > o pudu(A) defines a o-finite measure. If
p, = 1 for every w € (), then p is called counting measure on €). If € is finite, then so is

L. O

§1.1.4 Theorem (Carathéodory). Let o/ C 2% be an algebra and let i be a o-finite premeasure
on /. There exists a unique measure [i on o(</) such that ji(A) = p(A) forall A € .
Furthermore, [i is o-finite.

Proof of Theorem §1.1.4. We refer to Klenke [2008], Theorem 1.41. O

§1.1.5 Remark. If 4 is a finite content on an algebra 7, then o-continuity at (), that is,
wu(A,) = 0= pu() asn — oo for any sequence (A, )nen in o7 with p(A,) < oo for some (and
then eventually all) n € Nand A,, | 0 (i.e., Ay D Ay D A3 D ... and N2, A, = (), implies
o-additivity. O

§1.1.6 Example. A probability measure P on the measurable space (R", %") is uniquely de-
termined by the values P((—o0, b]) (where (—o0, b] = X ;(—00,b;],b € R™). In particular, a
probability measure P on R is uniquely determined by its distribution function F : R — [0, 1],
x = P((—o00, z]). O

1.2 Random variables

In this section (2, &), (S,.”) and (S;,.7;), @ € Z, denote measurable spaces where 7 is an
arbitrary index set.

§1.2.1 Definition. Let {2 be a nonempty set and let X : {2 — & be a map.
(a) X is called &/-.%-measurable (or, briefly, measurable) if X~!(.7) := {X7}(S) : S €
S} C o, thatis, if X71(S) € o forany S € .. A measurable map X : (2, &) —
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1.2 Random variables Chapter 1 Preliminaries

(S,.7) is called a random variable (r.v.) with values in (S,.7). If (S,.¥) = (R, %) or
(S,7) = (RT, %), then X is called a real or positive random variable, respectively.

(b) The preimage X ~1(.) is the smallest o-algebra on §2 with respect to which X is measur-
able. We say that 0(X) := X ~1(.¥) is the o-algebra on () that is generated by X.

(c) Forany,i € Z,let X; : Q — S; be an arbitrary map. Then 0(X;,7 € I) := \/,.; 0(X;) :=
o( Uier 0(Xi)) = o( Uiez X; '(F)) is called the o-algebra on () that is generated by
(X;,7 € 7). This is the the smallest o-algebra with respect to which all X; are measurable.

O

§1.2.2 Properties. Let T be an arbitrary index set. Consider S; € 2°, i € I, and a map
X :Q— 8. Then

(1) X N (UiezSi) = Uiez X 1(Si), X~ H(MiezSi) = Niez X 1(S5)
(b) X ) isao-algebraon Qand {S € S : X~ '(S) € &/} is a o-algebra on S.
If € is a class of sets in 25, then oq(X1(E)) = X (05(E)). O

§1.2.3 Examples. (a) The identity map 1d : €2 — €1 is o7~/ -measurable.
(b) If o = 2% and . = {0, S}, then any map X : Q — S is &/-.%-measurable.

(c) Let A C Q. The indicator function 1 : Q — {0,1} is .o7-2{%'}-measurable, if and only
if Ae . O

For 2,y € R we agree on the following notations |z | := max{k € Z : k < x} (integer part),
zVy = max(z,y) (maximum), x Ay = min(z, y) (minimum), z* = max(x, 0) (positive part),
r~ = max(—=x,0) (negative part) and |z| = 2~ + =T (modulus).Var

§1.2.4 Properties. (a) If X,Y arereal r.v.’s, then so are X+ := max(X,0), X~ := max(—X,0),
IX|=XT+ X, X+Y, X-VY, X -Yand X/Y withz/0 := 0 forallz € R. In
particular, X and | X | is o/ -B*- and of -22-measurable, respectively.

by If X1, X5,... —are real rv.’s, then so are sup,.; X, inf, > X,
lim sup X, := infy>; sup,,»;, Xy, and lim inf X, := sup;., inf, > X,
n—00 n—00

(c) Let Xy,..., X, : Q@ = R be maps and define X := (X1,...,X,) : Q@ = R™ Then X
is a real rv. (ie., of -B"-measurable), if and only if each X; is a real r.v. (i.e., o/ -%B-
measurable).

(d) Let & = {A; € 2%,i € T, mutually disjoint and \),.; A; = Q} be a partition of Q. A
map X : Q — R is 0(E)-PB-measurable, if there exist numbers x; € R, i € Z, such that

X = Zz‘elxiﬂAi' O

§1.2.5 Definition. (a) Arealr.v. X is called simple if there is an n € N and mutually disjoint
measurable sets A;,..., A, € < as well as numbers a1,...,a, € R, such that X =
2im illa.

(b) Assume that X, X;, X,,... are maps Q@ — R := R U {—00, +0o} such that X;(w) <
Xo(w) < ... and lim,, o X, (w) = X(w) for any w € €. Then we write X,, T X
and say that (X,,),en increases (point-wise) to X. Analogously, we write X,, | X if
(=Xp) T (=X). .
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§1.2.6 Example. Let us briefly consider the approximation of a positive r.v. by means of simple
r.v.’s. Let X : Q — RT be a &/-Z " -measurable. Define X,, = (27"[2"X |) A n. Then X, is a
simple r.v. and clearly, X, 1 X uniformly on each interval {X < c}. O

§1.2.7 Property. Let X : (Q, /) — (S,.)andY : (Q, ) — (R, B) be rv.’s. The real r.v.
Y is 0(X)-ZB-measurable if and only if there exists a .-9B-measurable map f : S — R such
thatY = f(X). O

§1.2.8 Definition. Let X : (2,./) — (S,.%) be ar.v..
(a) For S € ., we denote {X € S} := X (S). In particular, we let {X > 0} :=
X71([0,00)) and define {X < b} similarly and so on.

(b) Let P be a probability measure on ({2, o7). The image probability measure Px of P under
the map X is the probability measure Py := P o X! on (S,.%) that is defined by
Px(S) :=P(X € 5) :=P(X(S)) foreach S € .. Py is called the distribution of X.
We write X ~ Q if Q = Px and say X has distribution Q.

(¢) A family (X;)iez of r.v.’s is called identically distributed (i.d.) if Px, = Px, for all

1,7 € Z. We write X Lyif Px = Py (d for distribution). |

1.3 Independence

In the sequel, (€2, o7, IP) is a probability space, the sets A € & are the events and Z is an
arbitrary index set.

§1.3.1 Definition. (a) Let (A;);c7 be an arbitrary family of events. The family (A;);c7 is
called independent if for any finite subset J C Z the product formula holds: P(N,c7A4,) =

Hjej P(AJ )
(b) Let & C of foralli € Z. The family (&;);c7 is called independent if, for any finite subset
J C 7 and any choice of E; € &;, j € J, the product formula holds: P(Njc7E;) =

HjeJ P(Ej)' O
§1.3.2 Lemma (Borel-Cantelli). Let A, Ay, ... be events and define A* := lim sup,,_, ., A,.
(a) If Y07 | P(A,) < oo, then P(A*) = 0.
(b) If (Ay)nen is independent and Y>> | P(A,) = oo, then P(A*) = 1.
Proof of Lemma §1.3.2. We refer to Klenke [2008], Theorem 2.7. O

§1.3.3 Corollary (Borel’s 0-1 criterion). Let Ay, As, ... be independent events and define
A* .= lim sup A, then

(a) >0 | P(A,) < oo ifand only if P(A*) =0,
(b) >0°  P(A,) = oo if and only if P(A*) = 1. O

For each i € Z, let (S;,.7;) be a measurable space and let X; : (Q, &) —)(S;,-7;) be ar.v.
with generated o-algebra o(X;) = X~ 1(.7).

§1.3.4 Definition. (a) The family (X;);cz of r.v.’s is called independent if the family (o (X;))icz
of o-algebras is independent.
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1.4 Expectation Chapter 1 Preliminaries

(b) Let & C of foralli € Z. The family (&;);c7 is called independent if, for any finite subset
J C 7 and any choice of E; € &;, j € J, the product formula holds: P(N;c/7E;) =

Hjej ]P(E])

§1.3.5 Property. Let IC be an arbitrary set and Iy, k € K, arbitrary mutually disjoint index
sets. Define T = UgexZIy. If the family (X;)iez of rv.’s is independent, then the family of
o-algebras (0(X;,j € Ij))kex is independent. O

§1.3.6 Definition. Let Xy, Xy,... be r.v.’s. The o-algebra [, ., o(X;,i > n) is called the tail
o-algebra and its elements are called rail events. O

§1.3.7 Example. {w: > -, X,(w) is convergent} is an tail event. O

§1.3.8 Theorem (Kolmogorov’s 0-1 law). The tail events of a sequence (X,,)nen of independent
r.v.’s have probability O or 1.

Proof of Theorem §1.3.5. We refer to Klenke [2008], Theorem 2.37. O

1.4 Expectation

§1.4.1 Definition. We denote by M := M (2, o) the set of all real r.v.’s defined on the mea-
surable space (£2,.7) and by M := MT(Q, &) C M the subset of all positive r.v.’s. Given
a probability measure P on (2, .27) the expectation is the unique functional E : Mt — [0, oc]
satisfying

(a) E(aX; + X3) = aE(X;) + E(X,) forall X;, X, € MT and a € RT;

(b) Assume X, X1, X5,... € M7 such that X,, 1 X then EX,, 1 EX;

(c) E14, =P(A) forall A € «/.
The expectation of X € M is defined by E(X) := E(XT) — E(X), if E(XT) < oo or
E(X™) < oo. Given || X||, := (E(|X\p))1/p,p € [1,00),and || X||_ :=inf{c: P(X > ¢) =0}
for p € [1,00] set £,(Q, o, P) := {X € M(Q, o) : | X[, < oo} and L, := L,(Q, &, P) :=
{[X]: X € £,(2,2,P)} where [X] :={Y e M(Q, &) :P(X =Y) =1}. O

§1.4.2 Remark. L, is the domain of definition of the expectation E, that is, E : L; — R. The
vector space L, equipped with the norm ||-||,, is a Banach space and in case p = 2 it is a Hilbert
space with norm ||-||o induced by the inner product (X, Y ), := E(XY). O

§1.4.3 Properties. (a) Forrv.’s X,Y € Ly we have the equivalences between (1) E(X14) <
E(Y1,) forall A € of and (i1) P(X < Y) = 1. In particular, E(X14) = E(Y14) holds
forall A € o ifand only ifP(X =Y) = 1.

(b) (Fatou’s lemma) Assume X1, X, ... € M™, then E(lim inf X,,) < lim inf E(X,).
n—oo n—oo
(¢c) (Dominated convergence) Assume X, X1, Xa, ... € M such thatlim,,_,, | X, (w)—X (w)| =

Oforallw € Q. Ifthere exists Y € Ly withsup,,., | X,| <Y, then we have lim,,_, E| X, —
X| = 0 which in turn implies X € Ly and lim,,_,, |[EX,, — EX| = 0.

(d) (Holder’s inequality) For X,Y € M holds B|XY| < || X||, [|Y||, withp™ +¢7' =L

(e) (Cauchy-Schwarz inequality) For X,Y € M holds E|XY| < /E(X?2)/E(Y?) and
| Cov(X,Y)| < y/Var(X)/Var(Y). O

Probability theory II 5



Chapter 1 Preliminaries 1.5 Convergence of random variables

1.5 Convergence of random variables

In the sequel we assume r.v.’s X1, Xy, ... € M(€,.o/) and a probability measure P on
(Q, o).

§1.5.1 Definition. (a) Let C := {w € Q : lim,,_,», X,,(w) exists and is finite}. The sequence
(X )1 converges almost surely (a.s.), if P(C') = 1. We write X,, =3 X a.s., or briefly,

X, =5 X.
(b) The sequence (X,,),>1 converges in probability, if lim,, P(|Xn - X| > 5) = 0 for all

€ > 0. We write X, X X in P, or briefly, X, E> X.
(c) The sequence (X, ),en converges in distribution, if E(f(X,)) — E(f(X)) for any
continuous and bounded function f : R — R. We write X, X X in distribution, or
briefly, X,, & X.
(d) The sequence (X, )nen converges in Ly, if lim,_,. E|X,, — X|? = 0. We write X, s

X in Ly, or briefly, X,, —% X. 0

§1.5.2 Remark. In (a) the set C' = [, U,>1 Nisg {[Xnti(w) — Xpn(w)| < 1/k} is measur-
able. Moreover, if P(C') = 1 then there exists ar.v. X € M such that P(lim, ,, X, = X) =1

where X = lim sup X, noting that X (w) = lim,,_,o X, (w) forw € C. O
n—oo
§1.5.3 Properties. (a) We have X,, =% X if and only if sup,,on | Xm — Xl X0 in P

n—,oo

if and only if sup,.,, |X; — X| == 0 in P if and only if Ve,6 > 0, 3N(g,9) € N,
Vn > N(e, ), P(ﬂj%{\Xj - X| < 6}) >1-0.

() If X 255 X, then X, > X.

(©) If X, &% X, then g(X,,) == g(X) for any continuous function g.

(d) X, 5 X if and only if lim,, oo sup;.,, P(|X; — X,,| > ¢) = 0 for all € > 0 if and only if
any sub-sequence of (X, )nen contains a sub-sequence converging to X a.s..

(e) If X, 5 X, then 9(Xyn) RN g(X) for any continuous function g.

O X, S X=X, B X=X, 2 Xand X, B X = X, & X .

1.6 Conditional expectation
In the sequel (€2, o7, IP) is a probability space and .% is a sub-c-algebra of <.

§1.6.1 Theorem. If X € MT(Q, &) or X € L,(Q, o/, P) then there exists Y € MT(Q, F)
orY € L(Q, #,P), respectively, such that E(X1p) = E(Y1p) forall F € F, moreover Y
is unique up to equality a.s..

Proof of Theorem §1.6.1. We refer to Klenke [2008], Theorem 8.12. O

§1.6.2 Definition. For X € M™(Q,4) or X € Ly(Q,o/,P) each version Y as in Theo-
rem §1.6.1 is called conditional expectation (bedingte Erwartung) of X given .%, symbolically

6 Probability theory 11



1.6 Conditional expectation Chapter 1 Preliminaries

E(X|#) =Y. For A € o, P(A|.F#) := E(14].%) is called a conditional probability of A
given the o-algebra .%. Givenr.v.’s X;, i € Z, we set E(X |(X})iez) := E(X|o(X;,i €7)). ©

§1.6.3 Remark. Employing Proposition §1.2.7 there exists a #-%-measurable function f such
that E(Y|X) = f(X) a.s.. Therewith, we write E(Y|X = z) := f(z) (conditional expected
value, bedingter Erwartungswert). Since conditional expectations are defined only up to equal-
ity a.s., all (in)equalities with conditional expectations are understood as (in)equalities a.s., even

if we do not say so explicitly. O

§1.6.4 Properties. LetY C .F C o/ be o-algebras and let X, Y € L1(Q, o/, P). Then:
(a) (Linearity) EAX + Y |.7) = \E(X|.Z) + E(Y|Z).
(b) (Monotonicity) If X > Y a.s., then E(X|F) > E(Y|.7).

(c) IfE(|XY]) < oo and Y is measurable with respect to ¥, then E(XY|.F) = YE(X|.%)
and E(Y|.Z)=EYY) =Y.

(d) (Tower property) E(E(X|.7)|¥9) = E(E(X|¥)|.Z7) = E(X|9).

(¢) (Triangle inequality) E(| X || .%) > |[E(X|.%).

(f) (Independence) If 0(X) and .F are independent, then E(X |7 ) = E(X).

(2) IfP(A) € {0,1} forany A € Z, then E(X|.%) = E(X).

(h) (Jensen’s inequality) Let ¢ : R — R be convex and let o(Y') be an element of L1(2, <7, P).
Then p(E(Y 7)) < E(p(Y)|.7).

(i) Assume X, X1, Xo,... € M" such that X,, T X then sup,,.y E[X,|Z] = E[X|Z].

() (Dominated convergence) Assume Y € L1(P), Y > 0 and (X,,)nen is a sequence of r:v.’s
with | X,,| <Y forn € N and such that X,, =% X. Then lim,,_,. E(X,,|.#) = E(X|.%)
a.s. and in Li(P). O

§1.6.5 Proposition. Let (H, (-, -)u) be a Hilbert space equipped with induced norm ||-||g and
let U be a closed linear subspace of H. For each x € H there exists a unique element u, € U
with ||z — uy ||y = infuey |2 — vy m

§1.6.6 Definition. For a closed subspace U of the Hilbert space (H, (-, -)u) the orthogonal
projection 11, : H — U is defined by II,(z) = w, with u, as in Proposition §1.6.5. O

§1.6.7 Properties. Let U be the orthogonal complement of U in H. Then:
(a) (projection property) 11, o Iy = 11y,
(b) (orthogonality) x — Ilyx € Ut for each x € H;

(c) each x € H can be decomposed uniquely as x = 1z + (x — Ilyx) in the orthogonal sum
of an element of U and an element of U~;

(d) Ty is selfadjoint: (Nyx,y)m = (z, Uyy)m;
(e) Iy, is linear. O

§1.6.8 Lemma. Let % be a sub-c-algebra of </. Then Ly(Q), % P) is embedded as closed
linear subspace in the Hilbert space Ly(S2, o7 | IP). m

Probability theory II 7



Chapter 1 Preliminaries 1.6 Conditional expectation

§1.6.9 Corollary. Let . C < be a sub-o-algebra and let X € Lo(S2, o/, P) be a rv.. Then
E(X|.%) is the orthogonal projection of X on Ly(Q, F,P). That is, for any Y € Lo(Q2, F,P),
IX = Y5 = E[(X —Y)’] > E[(X — E(X|9))’] = | X —E(X|#)|; with equality if and
only if Y = E(X|.%). O

§1.6.10 Example. Let X,Y € L;(P) be independent. Then E(X + Y|Y) = E(X|Y) +
EY|Y)=E(X)+Y. O

§1.6.11 Theorem. Let p € [1,00] and % C o/ be a sub-c-algebra. Then the linear map
Ly(Q, o, P) — Ly(Q,F,P), X = E(X|F), is a contraction (that is, |E(X|F)||, <
| X1l,,) and thus bounded and continuous. Hence, for X, X1, Xo,... € Ly(Q, o/, P) with

n—o0 n—oo

| X, — X[, = 0we have |E(X,|.#) — E(X|.Z)|, — 0. 0

§1.6.12 Definition. A family (X;);cz of r.v.’s in L(2, .o/, P) with arbitrary index set Z is
called uniformly integrable if inf,c(o oo) SUP;ez E(1{|x,|>0}1|X3|) = O which is satisfied in case
that sup, .7 | Xi||, € L1(Q2, 7, P). O

§1.6.13 Corollary. Let (X;);cz be uniformly integrable in L,(S2, o7, IP) and let (¥;,j € J)
be a family of sub-c-algebras of o/. Define X;; = E(X;|.%;). Then (X, )icz e is uni-
formly integrable in L1(Y, &7, P). In particular, for X € L,(Q, .o/, P) the family {E(X|.Z) :
F is sub-c-algebra of &'} of rv.’s in L1(), <7, P) is uniformly integrable. O

§1.6.14 Lemma. Every uniformly integrable sequence (X, )nen of real r.v.’s which converges
a.s. also converges in L.

Proof of Lemma §1.6.14 is given in the lecture. O
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Chapter 2

Stochastic processes

2.1 Motivating examples

2.1.1 The Poisson process

§2.1.1 Definition. Let (S;)ren be positive r.v.’s on a probability space (£2,.e7,P) with 0 <
Si(w) < S(w) < ... forany w € Q. The family N = (Vy);>o of N,-valued r.v.’s given
by N, == > po; Lys,<p. t = 0, is called counting process (Zihlprozess) with jump times
(Sprungzeiten) (Sk)gen- O

§2.1.2 Definition. A counting process (N;):>¢ is called Poisson process of intensity A > 0 if
(i) P(Nyyn — Ny =1)=Ah+o(h)ash | 0;
(i1) P(Nggp — Ny =0)=1—Ah+o(h)ash | 0;
(iii) (independent increments) (Ny, — Ny,_,)!, are independent for any numbers 0 = ¢, <

th1<...<t,inR";

(iv) (stationary increments) Ny — Ny 2 N,_, for all numberst > s > 0in R™. O

§2.1.3 Theorem. For a counting process N = (Ny);>o with jump times (Si)ren we have the
equivalences between:

(a) N is a Poisson process;

(b) N satisfies the conditions (iii), (iv) in the Definition §2.1.2 of a Poisson (*Y3oi) process and
N; ~ Boi(At) holds for all t > 0;

(¢) (waiting times) The rv.’s Ty :== Sy and T}, := Sy, — Sp_1, k = 2,3, ..., are independent
and identically Exp(\)-distributed;

(d) Ny ~ Boi(At) holds for all t > 0 and the conditional distribution of (Si,...,S,) given
{N; = n} has the density

n!
floe,. .. 2n) = t_n]l{0<x1<...<:cn<t}- 2.1)

(e) N satisfies the condition (iii) in the Definition §2.1.2 of a Poisson process, B(N;) = A
and (2.1) is the conditional density of (S, ..., S,) given {N; = n}.

Proof of Theorem §2.1.3 is given in the lecture. O

§2.1.4 Remark. Let (U;)?_, be independent and identically $A([0, ¢])-distributed r.v.’s and let
(U())7; be their order statistics where U(;y = min{U;}7_, and U(y41) = min{Ui}Ll\{U(i)}f:l,
k =2,...,n. Then the joint density of (U(; )i, is given exactly by (2.1). The characterisations
give rise to three simple methods to simulate a Poisson process: the definition §2.1.2 gives an
approximation for small h (forgetting the o(h)-term), part (iii) in §2.1.3 just uses exponentially
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distributed inter-arrival times 7}, and part (iv) uses the value at a specified right-end point and
then uses the uniform order statistics as jump times in-between (write down the details!). O

2.1.2 Markov chains

§2.1.5 Definition. Let T = N, (discrete time) or T = [0, 00) (continuous time), let S be
a (at most) countable nonempty set (state space) and let ¥ = 25. A family (X;);er of S-
valued r.v.’s forms a Markov chain if foralln € N,y all t; < t, < ... < t, < tin T and
all s1,...,8,,sin S with P(X;, = s1,..., Xy, = s,) > 0 the Markov property is satisfied:
P(X; = s| Xy, = s1,..., Xy, = $n) = P(X;y = s| X, = s,). For a Markov chain (X;)cr and
t1 <ty in'T, 4,5 € S the transition probability to reach state j at time ¢, from state ¢ at time t;
is defined by p;;(t1,t2) := P(X,, = j|X;, = i) (or arbitrary if not well-defined). The transition
matrix is given by P(t,t5) = (pij (t1, tg))m. s+ The transition matrix and the Markov chain

are called time-homogeneous if P(t1,t3) = P(0,ty — t1) =: P(to — t1) holds for all t; < t5. O

§2.1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov equation, that
is, for any t; <ty < t3in'T, P(ty,t3) = P(ty,ts) P(ta, t3) (matrix multiplication). In the time-
homogeneous case this gives the semigroup property P(t; +1ts) = P(t1)P(t3) forallt,,t; € T,
and in particular P(n) = P(1)" forn € N.

Proof of Proposition §2.1.6 is given in the lecture. O

2.1.3 Brownian motion
§2.1.7 Definition. A family (W)~ of real r.v.’s is called a Brownian motion if
(a) Wy =0a.s.;
(b) (independent increments) (W;, — W,,_, )", are independent for any numbers 0 = ¢, <
t1<...<t,inRT;
(¢c) (stationary increments) W; — W, 4 Wi_s ~ N(0,t — s) for all numbers 0 < s < tinR*;

(d) t — W; is continuous a.s.. |

§2.1.8 Remark. Questions:
(1) Existence?
(it) W := (W,)s>0 r.v. on which space?
(iii) For which functions fis f(W)arv.? (e.g. f(W) = supyc,<; We)
Importance of the Brownian motion:

» If X, Xo, ... are iid. with E(X;) = 0 and Var(X;) = 0? < oo then W is a “limit” of
Sp=_1_% <i<nt Xi (Donsker’s theorem).

[oRVAL

» W is a central element in stochastic differential equations X, = f(f o(Xs)dW,s+ fot b(X,)ds.
How to define the first integral? (“Ito integral™) O

2.2 Definition of stochastic processes

§2.2.1 Definition. A family X = (X)cr of r.v.’s on a common probability space (€2, <7, P)
is called stochastic process. We call X time-discrete if T C Z and time-continuous if (a,b) C
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2.2 Definition of stochastic processes Chapter 2 Stochastic processes

T C R for some real numbers a < b. If all X, take values in (S,.¥), then (S,.¥) is called the
state space (Zustandsraum) of X . For each fixed w € (2 the map ¢ — X;(w) is called sample
path (Pfad), trajectory (Trajektorie) or realisation (Realisierung) of X. If T = Ny or T = R*
the law of X, is called initial distribution. O

§2.2.2 Remark. We are particularly interested in the “random functions” ¢ — X, rather than
in a single r.v. X,. For this reason, we identify X = (X;),cr as a r.v. with values in ST which

forces us to specify a o-algebra on S™. O

§2.2.3 Definition. Let (S;,.7;), i € Z, be an arbitrary family of measurable spaces.
(a) The set X;ez S; of maps (s;)ier : T — U;erS; such that s; € S; for all i € Z is called
product space. For J C T, let S7 := X;c 7 S;. If, in particular, all the S; are equal, say
S, = S, then we write X,c7 S; = ST.

(b)yIfj € Z, then I1; : S — S;, (Si)iez — s; denotes the jth coordinate map. More
generally, for J C K C Z, the restricted map 1% : S — Sz, (si)rex — (8;)jes are
called canonical projection. In particular, we write 11 7 := Hg.

(¢) The product-o-algebra .77 := ), -7; is the smallest o-algebra on the product space Sz
such that for every j € 7 the coordinate map II; : Sz — &; is measurable with respect
to S}, thatis, 7 = Q,cr-% = o(Il;,i € I) := \/,.; 17 (7). For J C I, let
L7 =Qjes L5 M (Si, 7)) = (S,) foralli € Z, then we also write Q). -7 = /.

m

§2.2.4 Lemma. For a stochastic process X = (X;)ier with state space (S,.) the mapping
X:0—8" v (Xi(w))er is a (ST, ") -valued r.v.

Proof of Lemma §2.2.4 is given in the lecture. O

§2.2.5 Remark. Later on, we shall also consider smaller function spaces than ST, e.g. C(R")
instead of RE". O

§2.2.6 Definition. The distribution Py = Po X ! of a stochastic process X = (X;)ser defined
on (Q, o/, P) with values in (ST,.7®7T) is the image probability measure of P under the map
X. O

§2.2.7 Remark. The distribution of a stochastic process is often complicate and generally there
does not exists an explicit formula. Therefore, we are interested in a characterisation exploiting
the distributions of the r.v.’s X;. m

§2.2.8 Definition. Let X = (X;);cr be a stochastic process with distribution Py. For any
finite 7 C T let P% := Py x be the distribution of the r.v. (X;);e7 = Il7 o X. The family
{P%,T C T finite} is called family of the finite-dimensional distributions of X or Py. m

§2.2.9 Definition. A family {P;, 7 C Z finite} of probability measures is called consistent
on (Sz,.77) if for any finite J C K C Z the canonical projection H§ as in §2.2.3 (c) and
the probability measure P; and P on (S7,.%7) and (S, %), respectively, satisfy P, =
P o (1K)~ o

§2.2.10 Remark. Let Px be the distribution of a stochastic process X on (ST,.#®7) then its
family {P%,7 C T finite} of finite-dimensional distributions is consistent. Indeed, for J C
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Chapter 2 Stochastic processes 2.3 Probability measures on Polish spaces

K C I finite, P{ = Py oll}' = Pyo(Ilollc) ™! = Pxo(Ilc) to(Il5) ™t = PXo(IIK) 1. o

§2.2.11 Definition. Two processes (X;)ier, (Y;)ieT on (€2, o7, P) are called
(a) indistinguishable (ununterscheidbar) if P(Vt € T : X, =Y;) = 1,

(b) versions or modifications (Versionen, Modifikationen) of each other, if P(X; = Y;) = 1
forallt € T. O

§2.2.12 Remark. (a) Obviously, indistinguishable processes are versions of each other. The
converse is in general false.

(b) If X 1is a version of Y, then X and Y share the same finite-dimensional distributions.
Processes with the same finite-dimensional distributions need not even be defined on the
same probability space and will in general not be versions of each other.

(c) Suppose (X;)ier+ and (Yy)cr+ are real-valued stochastic processes with right-continuous
sample paths. Then they are indistinguishable already if they are versions of each other. O

§2.2.13 Definition. A stochastic processes (X;);cr+ is called continuous if all sample paths

are continuous. It is called stochastically continuous, if t, -y always implies X; — X,
(convergence in probability). m

§2.2.14 Remark. Every continuous stochastic process is stochastically continuous since a.s.
convergence implies convergence in probability. On the other hand, the Poisson process is
obviously not continuous but stochastically continuous, since lim,, ,,P(|N; — Ny,| > ¢) =
limy, (1 — e Mt=tl) = 0 forall e € (0, 1). o

2.3 Probability measures on Polish spaces

§2.3.1 Definition. A metric space (S, d) is called Polish space if it is separable and complete.
More generally, a separable completely metrisable topological space is called Polish. Canoni-
cally, it is equipped with its Borel-o-algebra #(S) generated by the open sets. O

§2.3.2 Remark. Let (€2, 7) be a topological space. For A C 2 we denote by A the closure of
A, by A° the interior and by OA the boundary of A. A set A C Q is called dense if A = Q. A
set A C Q is called compact if each open cover U C 7 of A (thatis, A C U{U;U € U}) has
a finite subcover; that is, a finite ' C U with A C U{U;U € U’'}. Compact sets are closed.
A C Qis called relatively compact if A is compact. On the other hand, A is called sequentially
compact (respectively relatively sequentially compact) if any sequence (w,,),en With values in
A has a subsequence (w,,, )ren that converges to some w € A (respectively w € A).

(Q,7) is called metrisable if there exists a metric d on €2 such that 7 is induced by the
open balls B.(z) = {w € Q : d(z,w) < €}. In metrisable spaces, the notions compact and
sequentially compact coincide. A metric d on (2 is called complete if any Cauchy sequence with
respect to d converges in ). (£2,7) is called completely metrisable if there exists a complete
metric on € that induces 7. A metrisable space (€2, 7) is called separable if there exists a
countable dense subset of (). Separability in metrisable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set/ C 7 with A = | J{U;U C A,U € U}
forall A € 7. A compact metric space is always separable (simply choose the union of finite
covers comprising balls of radius 1/n).
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2.3 Probability measures on Polish spaces Chapter 2 Stochastic processes

Two measurable spaces (€2, %), (2, %,) with Borel-c-algebra %B;, A, respectively, are
called Borel-isomorphic, if there exists a bijective map g : Q; — {2y, such that g and ¢! are
measurable. In particular, each Polish space is Borel-isomorphic to a Borel subset of [0, 1].

Two topological spaces (€21, 71) (€22, 72) are called homeomorphic if there exists a bijective
map g : € — €, such that g and g~ are continuous. Therewith, each Polish space is homeo-
morphic to a subset of [0, 1]V, equipped with its product topology. O

§2.3.3 Examples. R, R", ¢, C RN and L,([0, 1]) equipped with their usual distance are Polish
spaces. O

§2.3.4 Definition. Let (S;,d;), i € Z C N, be a finite or countable family of metric spaces. The

product space X7 S; is canonically equipped with the product metric d((s;)icz, (8))iez) =

> ier 27'(di(si, s5) A 1) generating the product topology on X;cz S; in which a vector/sequence
n—oo n—o0

converges if and only if all coordinates converge, that is, (s, s) "3 0 < di(sgn), si) — 0
forall: € 7. O

§2.3.5 Lemma. Let (S,,d,), n € N, be a family of Polish spaces, then the Borel-o-Algebra
B(Xnen Sy) on the product space X,cn S, equals the product Borel-c-algebra Q),, . B(S,,).
Proof of Lemma §2.3.5 1is given in the lecture. O

§2.3.6 Remark. The D-relation holds for all topological spaces and products of any cardinality
with the same proof. The C-property can already fail for the product of two topological (non-
Polish) spaces. O

§2.3.7 Definition. Let (S, d) be a metric space equipped with its Borel-o-algebra Z(S). A
probability measure P on (S, #(S)) is called

(a) tight (straff) if for all € > 0 there is a compact set K such that P(K) > 1 — &,
(b) regular (reguldr) if B € #(S) and £ > 0 then there exist a compact set K and an open
set O such that K C B C O and P(O\K) < e.

A family P of probability measures on (S, %4(S)) is called (uniformly) tight, if for all ¢ > 0
there is a compact set K such that P(K) > 1 — e forall P € P. m

§2.3.8 Remark. Considering a probability measure [P on a metric space S we have the equiva-
lences between (i) IP is tight and (ii) P(B) = sup{P(K) : K C B compact} for all B € #(S),
and on the other hand between (i) P is regular and (ii) sup{P(K) : K C B compact} =
P(B) = inf{P(O) : O O B open} for all B € #4(S). O

§2.3.9 Proposition (Ulam (1939)). Every probability measure on a Polish space is tight.
Proof of Proposition §2.3.9 is given in the lecture. O

§2.3.10 Theorem. Every probability measure on a Polish space is regular.
Proof of Theorem §2.3.10 is given in the lecture. O

§2.3.11 Theorem (Kolmogorov’s consistency theorem). Let Z be an arbitrary index set and let
(Si, B;) be Polish spaces, i € I. Let {P7,J C T finite} be a consistent family of probability
measures on the product space (St, Br) as in §2.2.9. Then there exists a unique probability
measure P on (Sz, Br) having {P7, J C T finite} as family of finite dimensional distributions,
thatis, Py =P o H}l for any J C 1 finite.
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Proof of Theorem §2.3.11 1s given in the lecture. O

§2.3.12 Corollary. LetT be an arbitrary index set and let (S, %) be Polish space. Let {P7,J C
T finite} be a consistent family of probability measures on the product space (S, %) as in
§2.2.9. Then there exists a stochastic process (X;)icr whose family of finite dimensional distri-
butions is given by {P 7, J C T finite}, that is, (X;)ieg ~ Py for any J C T finite.

Proof of Corollary §2.3.12 is given in the lecture. O

§2.3.13 Corollary. Let T be an arbitrary index set and let (S, %) be Polish space. Let (P;);cr
be a family of probability measures on (S, #). Then there exists the product measure Q),.; IP;
on the product space (ST, %%7). In particular, there exists a family X = (X;);cz of independent
rv.’s admitting the image probability measure Px = @, 1 P;.

Proof of Corollary §2.3.13 is given in the lecture. m

§2.3.14 Remark. Kolmogorov’s consistency theorem does not hold for general measure spaces
(S,.7). The Ionescu-Tulcea Theorem, however, shows the existence of the probability measure
on general measure spaces under a Markovian dependence structure, see e.g. Klenke [2008],
Theorem 14.32. O

2.4 Adapted stochastic process and stopping times

In the sequel, the index set T is a subset of R, X = (X;),r is a stochastic process on
a probability space (€2, <7, P) with state space (S,.”) and image probability measure Py on
(ST, 7°7).

§2.4.1 Definition. A family .# = (.%,);cr of o-algebras with #, C &/, t € T, is called a
filtration if #, C Z, forall s,t € T with s < t. (Q, o/, P,.%) is called filtered probability
space. O

§2.4.2 Definition. A stochastic process X = (X;);er is called adapted to the filtration .7 =
(F)er if Xy is F-measurable for all ¢ € T. If %, = o(X,,s < t) forall t € T, then we
denote by FX = o(X) the natural filtration generated by X. O

§2.4.3 Remark. Clearly, a stochastic process is always adapted to the natural filtration it gen-
erates. The natural filtration is the smallest filtration to which the process is adapted. Moreover,
F oo = Vier - U

§2.4.4 Definition. A stochastic process X = (X,,)nen, is called predictable (or previsible) with
respect to a filtration . = (.%,,)nen, if Xo is constant (i.e. .%;-measurable) and if, for every
n € N, X, is .%,,_1-measurable. X is called an increasing process if it is a predictable process
of finite r.v.’s such that 0 = Xy < X; < Xy < ... a.s. on L. O

§2.4.5 Remark. It is important to note that for a predictable process and in particular for an
increasing process, not only, (X,,)nen, but also the sequence (X, 11)nen, is adapted to the
filtration (.%,,)nen,- O
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2.4 Adapted stochastic process and stopping times Chapter 2 Stochastic processes

§2.4.6 Definition. A r.v. 7 with values in T U {sup{T}} is called a stopping time (with respect
to the filtration .%) if for any ¢t € T, {7 <t} € %, that is, if the process X; := L« is
adapted. O

§2.4.7 Proposition. Let T be countable, T is a stopping time if and only if {T =t} € %, for

allt € T.

Proof of Proposition §2.4.7 is left as an exercise. O

§2.4.8 Examples. (a) Lett, € T, then 7 = t, (constant) is a stopping time where o(7) =
{0,0}.

(b) Let X = (X,)nen, be a stochastic process adapted to a filtration .# = (%, )nen,. For
S € . we call hitting time the first time that X is in S, that is,

ro(w) = inf{n € Ny : X, (w) € S}, ifw € U,ep, X1(9),
ST o0, otherwise

Then 7g is a stopping time with respect to .%. Note that 7y = oo and 75 = 0. m|

§2.4.9 Lemma. Let T and o be stopping times. Then

(a) 7V oand T N\ o are stopping times.

(b) If 7,0 = 0, then T + o is also a stopping time.

(c) If s € RT, then T + s is a stopping time. However, in general, T — s is not.
Proof of Lemma §2.4.9 1is left as an exercise. O
§2.4.10 Remark. We note that (a) and (c) are properties we would expect of stopping times.
With (a), the interpretation is clear. For (c), note that 7 — s peeks into the future by s time units

(in fact, {7 —s < t} € F;, ), while 7+ s looks back s time units. For stopping times, however,
only retrospection is allowed. O

§2.4.11 Example. Let X = (X,,),en, be a stochastic process adapted to a filtration (.%,,),en, -
For 51,5, € .7 let 75, and 7g, be hitting times as in §2.4.8 (b), then 75, > 75, whenever
Sy C Sy. In particular, it follows that 75, A 7g, = Ts,us, and Tg,ns, = Ts, V Ts,. O

§2.4.12 Definition. Let 7 be a stopping time. Then

Fr={Aed  An{r <t} € F foranyt € T}
is called the o-algebra of T-past. O
§2.4.13 Example. If 7 = ¢, is a constant stopping time at t, € T, then .7, = F,. m

§2.4.14 Lemma. If T and o are stopping times then (1) %, N{oc < 17} C Frpy = Fr N F,,
(i) F, = Fron{r =t} forallt € T and (1) Fryoe = F, NV F,. In particular, we see from
(i) that {o < 7} € F, N F,, that F, = F, on {0 = 7}, and that F, C F, whenever T < 0.

Proof of Lemma §2.4.14 1is given in the lecture. O

§2.4.15 Definition. For a stopping time 7 define X (w) := X;((w) forall w € {7 < oo} or
equivalently X, := X, on {r =t} forallt € T. O
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§2.4.16 Lemma. Let T be countable, let X be adapted and let T be a stopping time. Then X,
is measurable with respect to #... In particular, T is .F..-measurable.

Proof of Lemma §2.4.16 1is given in the lecture. O

§2.4.17 Remark. For uncountable T and for fixed w, in general, the map T — S, t — X;(w)
is not measurable; hence neither is the composition X, always measurable. Here one needs
assumptions on the regularity of the paths ¢ — X;(w); for example, right continuity (cf. Kallen-
berg [2002], Lemma 7.5, p.122). O

§2.4.18 Corollary. Let T be countable, let X be adapted and let (T;)ic1 be a family of stopping
times with 7, < 7, < 00, s,t € T, t < s. Then the process (X, )ier is adapted to the filtration
(Z:, )ier- In particular, (X p¢)ier is adapted to both filtration (F,a)ier and (Fy)er -

Proof of Corollary §2.4.18 is given in the lecture. m
§2.4.19 Definition. Let T be countable, let (X;);cT be adapted and let 7 be a stopping time.

We define the stopped process X™ = (X[ )ier by X7 = X, for any ¢ € T which is adapted to
both filtration .#7 = (F] )ier = (Frnt)ter and F = (F)ser. O
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Chapter 3
Martingale theory

3.1 Positive {super}martingales

In the following, let T C R be an index set, let .# = (.%;)cr be a filtration and let
(Q,o7,P,.F) be a filtered probability space. For a,b € R, a < b, we denote by [a,b] =
[a, b] N Z the set of all integers contained in the closed interval [a, b].

§3.1.1 Definition. Let X = (X);cr be a positive adapted stochastic process on a filtered prob-
ability space (2, &7, P, .%). X is called (with respect to .%) a
positive supermartingale if X, > E(X;|.%;) forall s, € T with ¢ > s,

positive martingale if X, = E(X;|.%,) forall s, € T with ¢t > s.
A R?-valued adapted stochastic process X = ((X},..., X?))ier on (Q, o7, P,.F) is called a
positive {superjmartingale if each coordinate process X* = (XF)ier is a positive
{super}martingale. m|

§3.1.2 Remark. (a) Clearly, for a supermartingale, we have E(X,|.%;) > E(X;|.%;) for all
s < r <t ie., (E(X¢|.Z;))s decreases (point-wise), the map ¢ — E[X}] is monotone
decreasing and for martingales it is constant.

(b)) f T =N, T = NyorT = Z, then it is enough to consider at each instant s only ¢t =
s+ 1. In fact, by the tower property of the conditional expectation, we get E( X, |- ;) >
E(E(Xsi1|-Zs41)|Zs) = E(Xs41|-Z5). Thus, if the defining inequality (or equality) holds
for any time step of size one, by induction it holds for all times.

(c) If we do not explicitly mention the filtration .7, we tacitly assume that .# = o(X) is the
natural filtration generated by X.

(d) Let .# and %" be filtrations with .%, C .%, for all ¢, and let X be a positive .% -
{super}martingale that is adapted to .#. Then X is also a positive {super}martingale
with respect to the smaller filtration .%. Indeed, for s < ¢ and for the case of a super-
martingale, E(X;|.%,) = E(E(X|.Z,)|Z.) < E(X,|.#,) = X,. In particular, a positive
7 -{super}martingale X is always a {super}martingale with respect to its own natural
filtration o (X). O

§3.1.3 Theorem. (a) Let X and Y be positive {super}martingales and a,b > 0. Then (a X +
bY') is a positive {super}martingale.
(b) Let X and Y be positive supermartingales. Then Z == X NY = (min(Xy, Y}))ier is a
positive supermartingale.
(¢) If (Xy)nen is a positive supermartingale, E(X}) = E(X,) for some k € N, then (X,)nepi i)
is a positive martingale. If there exists a sequence k,, 1 oo with E(X, ) > E(X;), n € N,
then X is a positive martingale.
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(d) Let (X,)nen and (Y, )nen be positive supermartingales and let T be a stopping time such
that X;(w) > Y;(w) forall w € {1 < oo}. Then Z = (X, 1inery + Yoliren) )nen, is a
positive supermartingale.

Proof of Theorem §3.1.3 is given in the lecture. O

§3.1.4 Proposition (Maximal inequality). Let (X,)nen be a positive supermartingale. Then
SUP,en Xn IS a.s. finite on the set { X, < oo} and satisfies for any number a > 0:

P(sug X 2 a|F1) = E[Lsup, , Xoza} | Z1] < min(Xy/a,1).
ne
Proof of Proposition §3.1.4 is given in the lecture. O

§3.1.5 Remark. The last results still holds true when replacing the constant a by a positive,
F1-measurable r.v. A, that is, P(sup,cy X, = A[%;) < min (£2,1) on the set {A > 0}.
Consequently:
(a) For any positive supermartingale (X, ),ecn, any positive .%;-measurable r.v. A such that
A < sup,ey X, it follows that 1 = P(sup,ey X, > A|#1) < min (2L, 1) and, hence
A < X;. In other words, X is the largest .7, -measurable lower bound of sup,,cy X.

(b) More generally: sup,cp; ) Xn» k € N, is the largest .#;-measurable lower bound of
SUP,eny Xn- Indeed, (Sup,,eq1 4 Xn» Xi+1, Xito, - - - ) is a supermartingale adapted to the
filtration (%, %41, ... ) and, hence by employing Proposition §3.1.4 any positive .%-
measurable r.v. A such that A < sup,,cy X, satisfies A < sup,,epy ) Xon- O

§3.1.6 Definition. Let (z,),cn be a sequence in R := R U {co}. For a,b € R witha < b
defining inductively the integers 7o := 1, 0y, := inf{n > 7, : z,, < a} and 741 := inf{n >
Op i Tp = b}, k=0,1,2,..., the number of upcrossing (aufsteigende Uberquerungen) of the
interval [a, b] by the sequence (x,,)en is denoted by (3, := sup{k > 1 : 7, < co}. O

§3.1.7 Remark. Clearly, if lim inf,_, z, < a < b < lim sup,,_,, =, then 3, = 0o which in
turn implies lim inf,, o ¥, < @ < b < lim sup,,_,, 5. In other words, the sequence (Zn)nen
in R is convergent if and only if 3,;, < oo forall a < bin R (or in Q). O

§3.1.8 Lemma. For any sequence of real r.v.’s (X, )nen and any a < b in R (or Q) the upcross-
ing numbers [3, ,(w) associated with each sequence (X, (w))nen define a r.v..
Proof of Lemma §3.1.8 1s left as an exercise. O

§3.1.9 Remark. Note that 75, (and oy) as in §3.1.6 defines for each £k = 0,1, ... a stopping
time since {7, = n} (and {0y = n}) depends only on {X,,, m < n} and, hence belongs to .%,,.
In addition, 75, < 7341, kK € N. o

§3.1.10 Lemma. A sequence of real rv.’s (X,,)nen converges a.s. if and only if the upcrossing
numbers [3,; are finite a.s. for any a < bin R (or Q).
Proof of Lemma §3.1.10 is left as an exercise. O

§3.1.11 Lemma (Dubin’s inequality). Let (X,)nen be a positive supermartingale. For any
k € N and any numbers 0 < a < b < oo the associated upcrossing numbers [, satisfy the
inequality

P(6ha > 1) < (/)" min (311)
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The rv.’s B, are hence a.s. finite.

Proof of Lemma §3.1.11 is given in the lecture. O

§3.1.12 Remark. Note that, if (X,),.c7 is a positive supermartingale, then P (@;,b > k:|ﬁ1) <
(a/b)k min (M, 1).

0

§3.1.13 Theorem. Every positive supermartingale (X,,)nen converges a.s., i.e., X, 2% X
Furthermore, the a.s. limit X, satisfies E[X |- %#,] < X,, for alln € N.

Proof of Theorem §3.1.13 is given in the lecture. O

§3.1.14 Remark. (a) Since E[X|-%,] < X,, holds for all n € N it follows that X, < oo
a.s. on the complement of the event N,en{X,, = co}. Indeed, for all n, X, is integrable
oneach event {E[X |.%,] < a}, a € R, and hence finite on the event {E[ X |.%,] < co}.

(b) If (X, )nen is an integrable positive supermartingale, that is, X,, € L; for all n € N,
then E[X.|-%#,] < X, implies X, € L;. However, in general, an integrable positive
supermartingale does not converge to X, in L.

(¢) If (X,)nen is a positive martingale, that is, X,, = E[X,,,|-%,] a.s. for all n € N, then by
Theorem §3.1.13 X,, =% X and E[X|.%,] < X,, for all n € N, where the inequality
does generally not become an equality. The next proposition provides a situation in which
this phenomena not arrives. O

§3.1.15 Proposition. Let p € [1,00). Forall Z € L; = L, N M the stochastic process
(Z)nen given by Z,, := E[Z|.%,], n € N, is a positive martingale which converges a.s. and in
L, to Z, = E[Z|F | with . :=\/, .n F

neN < n-
Proof of Proposition §3.1.15 is given in the lecture. O

§3.1.16 Remark. (a) A positive martingale (Z,,),en as in §3.1.15 and its a.s.-limit Z, ver-
ify the equality 7, = E[Z,|.%,] a.s. for all n € N by employing that E[Z,|.%,| =
E[E[Z|Z.)| %] = E[Z|.%,] = Z,.

(b) Let (X, )nen be a positive martingale which converges in L,, i.e., X, i Xo. Then,
the equality X,, = E[X,,|.%,] a.s. for all m > n and the continuity of the conditional
expectation on L, imply together that X,, = E[X,|.%#,] a.s. for all n € N. Thereby,
Proposition §3.1.15 implies that the martingales of the form (E[Z|.%,])nen With Z € LF
are exactly the positive martingales in L, which converge in L, as n — oco. A positive
martingale (X, ),en is called closable (abschlieBbar) in L,, if there exists an X € L; with
X, =E[X|#,], foralln € N.

(c) Considering Z = Z* — Z~ allows to extend immediately the last proposition to a r.v.
Z € L. O
§3.1.17 Corollary. For any positive r.v. Z we have E[Z|.Z,] %% E[Z|.F ] on the complement
of the event N, en{E[Z|.Z,] = oo}
Proof of Corollary §3.1.17 is left as an exercise. O

§3.1.18 Remark. Note that in the preceding corollary integrability is not assumed. However,
the result cannot be improved. In Neveu [1975], p.31, for example, a r.v. Z is constructed
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which is .%,-measurable and a.s. finite such that E[Z|.%,] = oo a.s. for all n € N. In this case,

E[Z|Z.] EZN E[Z|Z] = Z holds only on a negligible set. O

§3.1.19 Lemma. For any positive {super}martingale (X,,)nen and for any stopping time T, the
stopped process X™ = (X, an)nen IS a positive {super}martingale.
Proof of Lemma §3.1.19 1is left as an exercise. O

§3.1.20 Theorem (Optional stopping). Let (X,,)nen be a positive supermartingale and X , its
a.s.-limit. Then, for any stopping times T and o we have

X, 2 E[X,|%,| a.s. ontheevent {1 <o}.
Proof of Theorem §3.1.20 1is given in the lecture. O

§3.1.21 Remark. If (X,,),cn is a positive martingale, then the inequality X, > E[X,|.%,] does
generally not become an equality. O

3.2 Integrable {super/sub}martingales

§3.2.1 Definition. Let X = (X;);cr be an adapted stochastic process on a filtered probability
space (2, o7, P, F) with X; € L1(Q, o/ ,P) forall t € T. X is called (with respect to .%) a
(integrable) supermartingale if X, > E(X,|.%;) forall s,t € T with ¢t > s,
(X¢|.Z5) forall s,t € T with t > s,
(integrable) martingale if X, = E(X,|.%,) forall s,t € T witht > s.

An Rvalued adapted stochastic process X = ((X},..., X%))er is called an (integrable)
{super/sub}martingale if each coordinate process X* = (X¥),cr is an (integrable) {super/sub}
martingale. O

E
(integrable) submartingale if X, < E

§3.2.2 Remark. (a) The integrability assumption is often replaced by the weaker assumption
E(X,") < oo for all t € T. This generalisation is only helpful in case of a negative
submartingale (by changing the sign a positive supermartingale).

(b) The a.s. convergence of an integrable submartingale is essentially a corollary of The-
orem §3.1.13 which establishes the convergence for positive supermartingales with the
only difference, that any positive supermartingale converges a.s. but not every integrable
submartingale converges a.s.. O

§3.2.3 Lemma. Let M be a R%valued integrable martingale and consider a convex function
f: RY — R such that X = f(M) is integrable. Then X is a submartingale. The statement
remains true for any real-valued integrable submartingale M, provided that f is also non-
decreasing.

Proof of Lemma §3.2.3 is left as an exercise. O

§3.2.4 Remark. The last result is often applied with f(z) = [|z|]?, for some p > 1 or, for
d =1, with f(z) = z™. O

§3.2.5 Theorem. Every integrable submartingale (X,,)nen satisfying sup, .y E(X;F) < oo
converges a.s., i.e., X, — X.. Furthermore, the a.s. limit X, is integrable. In case of an
integrable martingale the condition sup,,.y E(X,;I) < oo is equivalent to sup,,cy || X, ||, < oo.
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Proof of Theorem §3.2.5 is given in the lecture. O

§3.2.6 Remark. The decomposition X,, = M, — A,, n € N, into a positive integrable mar-
tingale (M,,)nen and a positive integrable supermartingale (A,,),cn obtained in the proof of
Theorem §3.2.5 is called Krickeberg decomposition. O

§3.2.7 Lemma. Let (X,,),en be an integrable martingale and let T be a bounded stopping time,
that is, T < K for some K € N. Then X, = E[Xk|-Z#.] and in, particular E(X;) = E(X;).
Assume that, more generally, (X,,)nen is only adapted and integrable. Then (X, )nen is an
integrable martingale if and only if E(X,) = E(X) for any bounded stopping time .

Proof of Lemma §3.2.7 is given in the lecture. O

§3.2.8 Definition. Let (X,,),en, be an adapted real-valued process and let (H,,),cn be a real-
valued predictable process as defined in §2.4.4. The discrete stochastic integral of H with
respect to X is the adapted stochastic process He X = ((HeX),,)nen, defined by (HeX )y := 0
and (H ® X),, := Y ,_, Hy(X), — Xj_1) for n € N. If X is a martingale, then H e X is also
called the martingale transform of X. O

§3.2.9 Example. Let X be a (possibly unfair) game where X,, — X,,_; is the gain per euro
in the nth round. We interpret /{,, as the number of euros we bet in the nth game. H is then
a gambling strategy. Clearly, the value of H,, has to be decided at time n — 1; that is, before
the result of X, is known. In other words, H must be predictable. Now assume that X is a
fair game (that is, a martingale) and H 1is locally bounded (that is, each H,, is bounded). From
E[X,1—X,|Z,] = 0follows that E[( He X ), 1|-%,| = E[(HeX),+H, 1(Xn11—X,)|Fn] =
(He X),+ H,1E[X, 11 — X,|#,] = (H e X),. Thus H e X is a martingale. The next result
says that the converse also holds; that is, X is a martingale if, for sufficiently many predictable
processes, the stochastic integral is a martingale. O

§3.2.10 Proposition. Let (X, )nen, be an adapted, real-valued process with Xy € L.
(a) X is an integrable martingale if and only if, for any locally bounded predictable process
H, the stochastic integral H e X is an integrable martingale.

(b) X is an integrable submartingale (supermartingale) if and only if H e X is an integrable
submartingale (supermartingale) for any locally bounded positive predictable process H.

Proof of Proposition §3.2.10 1is given in the lecture. O

§3.2.11 Remark. The preceding proposition says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to non-negative
gambling strategies, as we are in real life, a supermartingale) into a submartingale. Quite the
contrary is suggested by the many invitations to play all kinds of “sure winning systems” in
lotteries. O

3.3 Regular integrable martingale

§3.3.1 Proposition. For every integrable martingale (X,,)nen on a filtered probability space
(Q, o P, F) the following conditions are equivalent

() The sequence (X, )nen converges in Ly as n — oo,
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(i1) sup,en || Xnll; < 0o and the a.s. limit Xo, = lim,,_,o X,, of the martingale which exists
in Ly due to Theorem §3.2.5 satisfies the equalities X,, = E[X|%#,] for alln € N;

(i11) The martingale is closable, that is, there exists a rv. X € Li(, .o/, P) such that X,, =
E[X|.#,] for alln € N;

(iv) The sequence (X, )nen is uniformly integrable in Ly(2, o/ ,IP), that is,
lim o0 SUPLen E(1q1x, 50} | Xn|) = O which is satisfied whenever sup,,cy || Xx ||, € L1.

The integrable martingale (X,,)nen will be called regular if it satisfies one of these equivalent
conditions.

Proof of Proposition §3.3.1 is given in the lecture. O
§3.3.2 Corollary. Let (X,,)nen be a regular integrable martingale. (i) For every stopping
time T, the rv. X, is integrable. (i) The family {X,; T is a finite stopping time} is uniformly

integrable. (i11) For every pair of stopping times 7,0 such that T < o a.s., the “martingale
equality” X, = E[X,|.Z,] is also satisfied.

Proof of Corollary §3.3.2 is given in the lecture. O
§3.3.3 Remark. For aregular integrable martingale the limit X, = lim,,_,,, X,, exists a.s. and
the r.v. X, (resp. X,) by definition equals X, on {7 = 0o} (resp. {o = o0}). Since T Ao < o

a.s. the corollary implies X, = E[X,|.-ZA,|. Furthermore E[X,|.Z.] = E[X, ]/MU] and
hence, for any stopping time 7, o we have X, = E[X,|.Z.]. Indeed, for all A € .%, we have

E[E[X,| %] 14] = E[X, 14l = ElXo1 4 1y 7 < o)) + BT 1y £ 5 )]
(2 [S72

= ]E[E[XO'LQTT/\O’:I]]-AH{TQU}] + E[XT/\U]]-AD{T>U}]

=E {]E[Xa|g7'/\a]ﬂ-{'r§a} + X’T‘/\O':H'{T>O'}}:H-A

Thereby, E[X,|-Z, ] E[X, |JT/\0—]]1{T<U} + Xrrolfrsoy 8 Frpo-measurable, which in turn
implies, E[X,|.%,] = E[E[X,|.%;]| % o] = E[X,|.Z;1,] by employing that Z,,, C Z,. O

§3.3.4 Proposition. Every martingale (X,,)nen which is bounded in L, for some p > 1 in the
sense that sup,cy || X, ||, < oo, is regular. Furthermore, the martingale converges in Ly, to an
a.s. limit X .

Proof of Proposition §3.3.4 is given in the lecture. O
§3.3.5 Remark. The last proposition is false for p = 1. O

§3.3.6 Lemma. Every positive and integrable submartingale (X,,),cn satisfies the inequalities
alP (Sup, e o) Xm > @) < E(ﬂ{supme[[l,n]] Xm>a}Xn) foralln € Nandall a > 0.
Proof of Lemma §3.3.6 1is given in the lecture. O
§3.3.7 Proposition. For every martingale (X,,)nen which is bounded in L, for some p > 1 the
rv. sup,,en|Xn| belongs to L, and satisfies [|sup,en| Xnlll, < 525 suppen [ Xall,-

Proof of Proposition §3.3.7 is given in the lecture. O

22 Probability theory II



3.4 Regular stopping times for an integrable martingale Chapter 3 Martingale theory

§3.3.8 Remark. The last proposition is false for p = 1. However, for every martingale (X, ),en
satisfying the condition sup,,.y E [|X,,| (log | X, |) JJ < 00, the r.v. sup,, .| Xy, | is integrable and
the martingale (X,,),cn is therefore regular (c.f. Neveu [1975], Proposition IV-2-10, p.70). ©

The concepts of filtration and martingale do not require the index set T (interpreted as time)
to be a subset of [0, o0). Hence we can consider the case T = —N,.

§3.3.9 Definition. Let (.%,,),c_n, be a filtration where .#_,,_; C Z%_,, n € Ny and let
(Xn)ne—n, be an integrable martingale with respect to (%, )nec_n,, thatis, X_,, € L;, X_,
is #_,-measurable and E[X _,,|.%_, 1] = X_,,_; hold for all n € Ny. Then X = (X_,)nen,
is called an (integrable) backwards martingale. O

§3.3.10 Remark. A backwards martingale is always uniformly integrable and hence regular.
This follows from Corollary §1.6.13 and the fact that X_,, = E[Xo|.#_,] forany n € Ny. O

§3.3.11 Proposition. Let (X_,),en, be a backward martingale with respect to (F_,,)nen,-
Then there exists X o, = lim, oo X_,, a.s. and in Ly. Furthermore, X ., = E[Xo|.7_]
where F_ o, = N2 .F_,, is called terminal or tail o-algebra.

Proof of Proposition §3.3.11 is given in the lecture. O

§3.3.12 Example (Kolmogorov’s strong law of large numbers). Let (X, ),en be a sequence of
n—oQ

i.id. real-valued r.v.’s in Ly, then n™* Y 7| X;, — E(X;) a.s. and in L;. O

3.4 Regular stopping times for an integrable martingale

§3.4.1 Lemma. Let (X,,).en be an integrable {super/subjmartingale. For every stopping time
7, the stopped process X = (X] )neny with X[ := X for any n € N is again an integrable
{super/sub}martingale.

Proof of Lemma §3.4.1 1is left as an exercise. O

§3.4.2 Definition. A stopping time 7 is called regular for an integrable martingale (X, ),en if
the stopped process X™ = (X ),en is regular. m

§3.4.3 Proposition. For every integrable martingale (X,,)nen on a filtered probability space
(Q, o7, P, .F) and for every stopping time T the following conditions are equivalent

(a) the stopping time is regular;

(b) the stopping time satisfies the following conditions: (1) the limit X, = lim,,_,, X,, exists
a.s. on {T = oo}, (i) the rv. X, which is defined a.s., is integrable and (iii) X, 5, =
E[X,|-Z#,] a.s. for alln € N.

(c) the stopping time satisfies the following conditions: (i) (X, L{r>n})nen is a uniformly
integrable sequence and (ii) E(1 ;<o | X7|) < 00.

Proof of Proposition §3.4.3 is given in the lecture. O
§3.4.4 Remark. Condition (c) (ii) is automatically satisfied by every martingale (X,,),en such

that sup,,.y E|X,,| < oo, in particular by every positive integrable martingale (E|X,,| = EX,, =
]EXl) O
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§3.4.5 Proposition. Let 7 be a regular stopping time. For every pair oy, 09 of stopping times
such that o1 < 0y < 7, for such such a pair the rv.’s X,, and X,, both exist, are integrable,
and satisfy the “martingale identity” X,, = E[X,,|-%,,] a.s..

Proof of Proposition §3.4.5 is given in the lecture. O

§3.4.6 Corollary. Let T and o be two stopping times such that T < o a.s.. For a given martin-
gale (X,,)nen the stopping time T is regular whenever the stopping time o is regular.

Proof of Corollary §3.4.6 is given in the lecture. O

§3.4.7 Remark. Corollary §3.4.6 shows in particular that for a regular martingale, every stop-
ping time is regular (take 0 = 400). On the other hand, for an integrable martingale every
constant stopping time is regular, and hence, by Corollary §3.4.6 every bounded stopping time
is regular too. O

§3.4.8 Corollary. For every martingale (X,,)nen such that sup, .y E|X,,| < oo, in particular
for every positive and integrable martingale, the hitting time 1, defined by 7, = inf{n € N :
| X,| > a} is regular for all a > 0.

Proof of Corollary §3.4.8 is given in the lecture. O

§3.4.9 Proposition. Let (X,,)nen be an integrable martingale. In order that the stopping time
T be regular for this martingale and that also lim,,_,, X,, = 0 a.s. on {T = o0}, it is neces-
sary and sufficient that the following two conditions be satisfied: (i) El{;.o0}|X-| < 0o and
(11) limn_,oo E]l{.r>n}|Xn| =0.

Proof of Proposition §3.4.9 is given in the lecture. O

§3.4.10 Example (Wald identity). Let (X,,)nen be a sequence of i.i.d. real-valued r.v.’s defined
on a filtered probability space (2, o7, P, %) with natural filtration .# % . Assuming further that
X1 € Ly the processes (S, — nNEX7) ey With S, :=>"" | X;, n € N, and ((S,, — nEX;)? —
n Var Xi),en are integrable martingales which are not regular since they diverge a.s. when
n — oo. However, every stopping time 7 such that E(7) < oo is regular for each of the
two martingales (S,, — nEX}),ey and ((S,, — nEX;)? — n Var X ),en. Such a stopping time
satisfies the Wald identities (1) E(S,) = E(7)E(X;) and (ii) E[S, —TE(X;)]? = E(7) Var(X;).
Moreover, if in addition E(7?) < oo then Var(S,) = Var(7)(EX;)? + E(7) Var(X;). O

3.5 Regularity of integrable submartingales

The study of integrable martingales can be very easily extended to integrable submartingales
by using the Krickeberg decomposition of such submartingales.

§3.5.1 Proposition. For every integrable submartingale (X,,)nen, the following conditions are
equivalent:

(a) The sequence (X} )nen converges in Ly;

(b) sup,ey EX,F < 00 and the a.s. limit X = lim,_,o X,, of the submartingale (X,,)nen
which exists and is integrable by Theorem §3.2.5, satisfies the inequalities X,, < E[X|.%,]
a.s. foralln € N;

(c) There exists an integrable rv. Y such that X, < E[Y|Z,] for all n € N;
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(d) The sequence (X.),en satisfies the uniform integrability condition

lim Sup]E]l{X7J{>a}X;_ =0

a— 00 neN

which holds particularly if Esup,,.y X, < 00.)

The integrable submartingale (X,,)nen is said to be regular if it satisfies the preceding equiva-
lent conditions.

Proof of Proposition §3.5.1 is given in the lecture. O

§3.5.2 Remark. For a negative integrable submartingale (i.e., for a positive integrable super-
martingale with its sign changed), the conditions of the proposition hold trivially. Observe that
such a submartingale does not converge in mean, although it always converge a.s., and the con-
dition (a) of the preceding proposition is strictly less restrictive than the convergence of the
submartingale in ;. On the other hand it is clear that for a positive submartingale condition (a)
gives Li-convergence of the submartingale. O

§3.5.3 Corollary. For every regular submartingale (X, ),en and for every stopping time T,
the rv. X, is integrable; for every pair 11, 7o of stopping times such that 7y < 7o a.s., the
submartingale inequality X,, < E[X,,|-%,,| remains true a.s..

Proof of Corollary §3.5.3 1is given in the lecture. O

§3.5.4 Remark. Finally, it is straightforward to extend the regularity of stopping times as given
in Proposition §3.4.3 and §3.4.5 to integrable submartingales. The only changes required in the
statement of this proposition consist in replacing the word “martingales” by “submartingales”
and writing the inequalities X, < E[X,|.%,] and X,, < E[X,,|-%,,] instead of the corre-
sponding equalities. O

3.6 Doob decomposition and square variation

The introduction of the notion of predictable and increasing process as defined in §2.4.4
allows to effect decompositions of {super/sub}martingales. As before, we take once and for all
a filtered probability space ({2, &, P, % ). Let X = (X,,)nen, be an adapted integrable process.
We will decompose X into a sum consisting of an integrable martingale and a predictable
process. To this end, define My := Xo, Ag := 0, M,, := Xo+ > _p_, (X — E[X}[.#;_1]) and
Ay =31 (B[Xy|.#y1] — Xi—1) for n € N. Evidently, X,, = M, + A,. By construction,
Mn — Mn—l = Xn — E[Xn|9n_1] and An — An—l = E[X,an_l] — Xn—l, forn € N, and,
hence A is predictable with Ay = 0, and M is a martingale since E[M,, — M, _+|.%, 1] =
E[X, — E[Xu|Fp]| Fna] = 0.

§3.6.1 Proposition (Doob decomposition). Let X = (X,,)nen, be an adapted integrable pro-
cess. Then there exists a unique decomposition X = M + A, where A is predictable with
Aog = 0 and M is a martingale. This representation of X is called the Doob decomposition. X
is a submartingale if and only if A is an increasing process.

Proof of Proposition §3.6.1 is given in the lecture. O

§3.6.2 Proposition. Let X := (X,,)nen, be an integrable submartingale and let X = M + A
be its Doob decomposition.
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(a) The condition sup,,cy, EX; < oo (which suffices to ensure a.s. convergence of the sub-
martingale) is equivalent to the conjunction of the two conditions (i) Ay, € L and
(i1) sup,,en, E(|M,|) < oc.

(b) The convergence in L, of the submartingale X is equivalent to the conjunction of the two
conditions (1) M is a regular martingale and (i1) A, € L.

(c) For every stopping time T regular for the martingale M, the rv. X, is integrable if and
only if EA, < oo, and then EX, = EM, + EA,.

Proof of Proposition §3.6.2 is given in the lecture. O

§3.6.3 Example. Let (X,,),cn, be a square integrable .% -martingale, i.e., X, € Ly(Q2, &7, P)
foralln € Ny. By Lemma §3.2.3, (X?2),,cn, is a submartingale. Furthermore, E[X; | X;|.7; 1] =
X 1E[X;|Z;_1] = X2, hence considering the Doob decomposition of (X?2),cn, we find
Ayp =0andforn € N,

n

Ap = Z (E[XP|Zi] — X7))
=1

= (E[(X; — Xi1)?|Fica] — 2X7 1 + 2E[X, 1 X, Fi1))

i=1

= SE[(X - X’ Fi]. ©

=1

§3.6.4 Definition. Let (X,,),cn, be a square integrable .% -martingale. The unique increasing
process A for which (X? — A,),en, becomes a martingale is called square variation process of
X and is denoted by (X) := ((X)n)nen, = A. O

§3.6.5 Proposition. Let X be as in Definition §3.6.4. Then, forn € N, (X), = > | E[(X; —
Xi_l)Q‘ﬁi_l] and E<X>n = Var(Xn — XO)

Proof of Proposition §3.6.5 is given in the lecture. O

§3.6.6 Example. Let X;, X5, ... be independent, square integrable r.v.’s. If E(.X,,) = 0, for all
n € N, then S,, := > | X, defines a square integrable martingale with respect to the filtration
(0(X1,..., Xn))nen and we find (S),, = D" | E[XZ|o(X,...,Xi1)] = Y i, E[X?]. Note
that in order for (S) to have this simple form, it is not enough for the r.v.’s X, X5,... to be
uncorrelated. On the other hand, if E(X,,) = 1, for all n € N, then P, := [[\_, X; defines
a square integrable martingale with respect to the natural filtration .# = ¢(P) and E[(P, —
Pn—1)2|g;n—1] = E[(Xn_1)2P3—1|yn—l] = Var(Xn)Pg—l- Hence, (P),, = Z?:l Var(Xi)Pf—l
which is a truly random process. O

§3.6.7 Lemma. Let X = (X, )nen, be a square integrable martingale with square variation
process (X), and let T be a stopping time. Then the stopped process X7 has square variation
process (X7) = (X)7 = ({(X)ran)neno-

Proof of Lemma §3.6.7 is given in the lecture. O

§3.6.8 Proposition. Let X := (X,,)nen, be a square integrable martingale with Xy = 0.

26 Probability theory II



3.6 Doob decomposition and square variation Chapter 3 Martingale theory

(a) If E(X)s < 00, then the martingale X converges in Ly and, hence X is regular; further,
E(sup,,en, X7) < 4E(X) o < 0.

(b) A stopping time T is regular for the martingale X whenever E\/(X), < oo and then
Esup,,eqo,- [Xn| < 3E{/(X), < 0.
(c) in every case the martingale X converges a.s. to a finite limit on the event {(X )., < 00}.

Proof of Proposition §3.6.8 is given in the lecture. O

§3.6.9 Corollary. Let X := (X,,)nen, be a square integrable martingale with square variation
process (X). Then the following four statements are equivalent: (i) sup,cy, E(X?) < oo,
(i) lim,, 0o E((X),,) < 00, (ii1) X converges in Loy, and (iv) X converges almost surely and in
Lo.

Proof of Corollary §3.6.9 1is given in the lecture. O
§3.6.10 Proposition. If X is a square integrable martingale, then for any o > 1/2,

(Xn — X0) /(X)) =30 as.  on{{X)s = o0}

Proof of Proposition §3.6.10 is given in the lecture. O

§3.6.11 Example. Let X7, X5, ... be independent, square integrable r.v.’s. Consider Sy := 0
and S, ==Y " | (X;—EX;),n € N, then (S),, = >, Var(X;) and by Proposition §3.6.10 for
any o > 1/2 we have S,/ (31, Var(X;))* =% 0 whenever Y _>°, Var(X;) = co. In particu-
lar, if (X,,)nen is a sequence of i.i.d. square integrable r.v.’s, then S, /n® <> 0. On the other
hand, if (a, ).ey is an increasing and diverging sequence in R, then for any sequence (¥, ),en in
R such that 3°°° | v, /a,, < oo by Kronecker’s Lemma holds a;' 37" y; "3 0. Thereby, if
Yoo, Var(X;)/a? < oo, then by Corollary §3.6.9 the martingale (3" (X; — E(X;))/a:)nen
converges a.s. to a finite limit and, hence due to Kronecker’s Lemma a;;' Y1 | (X; —EX;) =
0. In case of i.i.d. r.v.’s we find n™' Y1 (X; — EX;) =5 0. O
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Chapter 4

Markov chains

4.1 Time-homogeneous Markov chain

In this chapter X = (X, ),en, denotes a time-homogeneous Markov chain with at most
countable state space (S,.#) and transition matrix P = (P;); jes as introduced in Section
2.1.2. Considering the transition matrix P and an initial (discrete) probability measure 1 on

(S,)

P[[O:n]]<BO X X Bn) = Z ;L({j()}) Z PjOyjl e Z Pjn—hjn’ for BOva .eSs

Jo€Bo J1€B1 Jn€Bn

defines a consistent family {PP7, 7 C Ny finite} of probability measures on the product space
(SNo . #®No) which determines by Kolmogorov’s consistency theorem §2.3.11 a probability
measure P, on (8", #®No) The Markov chain X = (X,,)nen, realised as a coordinate pro-
cess, i.e, X, = I, : SN = S, (m)meny = n((Jm)men,) = Jn as defined in §2.2.3,
admits then as image probability measure P, that is, for By, By, ... in .¥ we have P, (X, €
By,..., X, € By) = Ppo(Bo x -+ x By) and evidently P,(Xy, € By) = pu(By). When
p = 0, a point mass at j € S, we use P; as an abbreviation for 5, where for every initial
probability measure p and for every A € .M holds P, (A) = Y ies Pi(A)u{s})

§4.1.1 Definition. A stochastic process X = (X,,)nen, With values in an at most countable state
space (S,.7) is called a time-homogeneous Markov chain with family of probability measures
(Pj)jGS on (SNO, Y‘X’NO), if

(i) Forevery j € S, (X,)nen, is a stochastic process on the probability space (SN0, #®No P )
with P;(X, =j) = 1.

(i) The map k : & x N — [0,1], (j, A) — P,;(A) is a stochastic kernel (a regular
conditional distribution). For every n € Ny, the map x, : S x . — [0,1], (5, B) —
k(4,II,}(B)) = Pj(X,, € B) is a stochastic kernel and the n-step transition matrix

(Pj})ijes of X is given by Pfj = n(i, {j}) = Pi(Xn = j).

(i) X = (X, )nen, has w.r.t. the natural filtration .# = (.%,,),en, With %, = 0(Xo, ..., X,)
the time-homogeneous Markov property: For every 7,7 € S and all m,n € Ny we have
Pi[Xonim = j|Fm] = kn(Xin, {5}) = Px,, (X = j) = P)T}mj’ P;-a.s..

We write E; for expectation with respect to P;, £,;(X) = P;, £;(X|o/) = P;[X € o|/] for
a regular conditional distribution of X given ./ and E;[f(X)|</] for a conditional expectation
of f(X) given o/. In particular, we use the notation Py, = x(X, ), that is, we understand
X}, as the initial value of a second Markov chain with the same family of probability measures

(Pj)je& O

§4.1.2 Remark. The existence of the family (&, )nen, Of stochastic kernels implies the exis-
tence of the kernel « (cf. Klenke [2008], Theorem 17.8, p.347). Thus, a time-homogeneous
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Markov chain is simply a stochastic process with the Markov property and for which the tran-
sition probabilities are time-homogeneous. O

§4.1.3 Definition. Let T C R be a set that is closed under addition (for example, T = Nj). The
shift operator 9 : ST — ST is given by (z)ier = I((¢)ter) := (Ti41)ier and, for s € T,
oA ST — ST is giVen by (xt)te]‘ —> ’198((1't)te’]1‘) = (xt—i-s)te'ﬂ' . |

§4.1.4 Property (Klenke [2008], Theorem 17.9, p.348, Corollary 17.10, p.349). A stochastic
process X = (X, )nen, is a time-homogeneous Markov chain if and only if for every n € Ny and
JjeS L;[v(X)|Z,] = Lx,(X) = Px, if and only if there exists a stochastic kernel r : S X
SN0 10, 1] such that, for every bounded . *™° measurable function f: SN — R and for
everyn € Noand j € S, we have E;[f(V"(X))|Z,] = Ex, [f = Jgro 5(Xp, dz) f(z). O

§4.1.5 Definition. A time-homogeneous Markov chain X = (X,,),en, With family of prob-
ability measures (IP;);es has the strong Markov property if, for every a.s. finite stopping
time 7, and every j € S, L;[V7(X)|#;| = Lx, (X) := k(X,,e) or equivalently for every
bounded .#*No-measurable function f : SN — R we have E;[f (97 (X))|Z,] = Ex,[f(X)] :=
Jsvo £(Xr, dzx) f(z). O

§4.1.6 Lemma. Every time-homogeneous Markov chain X = (X,,)nen, has the strong Markov
property.
Proof of Lemma §4.1.6 is given in the lecture. O

4.2 Markov chains: recurrence and transience

§4.2.1 Definition. For i,j € S, k € N introduce the k-th time of return to j recursively by

8 :=inf {n > 7'7'|X,, = j} and 70 := 0. We set further 7; := 7} and p;; := P;(7; < 00). O

§4.2.2 Remark. Note that p;; = P;(thereis an & > 1 with X, = j) is the probability of ever
going from i to j. In particular, if p;; > O then there exists a & € N such that P;( X}, = j) =
Pz’; > 0. Moreover, pj; is the return probability (after the first jump) from j to j. Note that
7; > 0 even if we start the chain at X, = j. O

§4.2.3 Definition. A state j € S is called (i) recurrent if p;; = 1, (ii) positive recurrent if
E;(1j) < oo, (iii) null recurrent if j is recurrent but not positive recurrent, (iv) transient if
pii < 1, and (v) absorbing, if P;; = 1. The Markov chain X is called {positive/null} recurrent
if every state j € S is {positive/null} recurrent and is called transient if every recurrent state is
absorbing. m

§4.2.4 Remark. Clearly, we have: “absorbing” = “positive recurrent” = “recurrent”. O

§4.2.5 Lemma. Fork € Nandi,j € S we have ]P’i(Tf < o0) = pijp;?j_l.

Proof of Lemma §4.2.5 is given in the lecture. O

§4.2.6 Definition. For i, j € S denote by N; := 3 ° ' 1x,—; the total number of visits of X
to state j and by Gy; = E;[N;] = > (Pi(X,, = j) = >~ P} the Green function of X. O

§4.2.7 Lemma. (i) A state j € S is recurrent if and only if Gj; = oo;
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(i) Ifa state j € S is transient then for all i € S, G;; < oo with

pZ] . . . N
Gij = l_fjj’ le f] — P + L=y
= V=T 1= pij

Proof of Lemma §4.2.7 1is given in the lecture. O

§4.2.8 Proposition. If a state i € S is recurrent and p;; > 0, j € S, then the state j is
recurrent, and p;; = pj; = 1.

Proof of Proposition §4.2.5 is given in the lecture. O
§4.2.9 Definition. A subset B C S of states is closed if p;; = 0 holds for all © € B and

j € B® = S\B. Asubset B C S is irreducible if p;; > 0 holds for all ¢, j € B. If the state
space S is irreducible then the Markov chain is called irreducible. O

§4.2.10 Corollary. A irreducible Markov chain is either recurrent or transient. If |S| > 2, then
there is no absorbing state.

Proof of Corollary §4.2.10 The result is an immediate consequence of Proposition §4.2.8. 0O
§4.2.11 Proposition. For an irreducible Markov chain on a finite state space S all states are
recurrent.

Proof of Proposition §4.2.11 is given in the lecture. O

4.3 Invariant distributions

In the following, let P = (P,;); jes be a transition matrix on a countable state space S and
let (X,,)nen, be a corresponding Markov chain.

§4.3.1 Definition. If 1 is a measure on (S,.%) and f : S — R is a map, then we write
pP{i}) = X ics w{i}) Py and Pf(i) = 3,5 Pi; f(j) if the sums converge. O

§4.3.2 Definition. (i) A o-finite measure i on (S,.) is called an invariant measure if pP =
(. A probability measure that is an invariant measure is called an invariant distribution.
Denote by 7 the set of invariant distributions.

(i1) A function f : & — R is called subharmonic if Pf exists and if f < Pf. f is called
superharmonic if f > P f and harmonic if f = Pf. m|

§4.3.3 Remark. In the terminology of linear algebra, an invariant measure is a left eigenvector
of P corresponding to the eigenvalue 1. A harmonic function is a right eigenvector correspond-
ing to the eigenvalue 1. O

§4.3.4 Lemma. If f is bounded and {sub/super}harmonic, then (f(X,,))nen, is a {sub/super}
martingale with respect to the natural filtration F = o(X) generated by X.

Proof of Lemma §4.3.4 1is given in the lecture. O

§4.3.5 Proposition. If X is transient, then an invariant distribution does not exist.

Proof of Proposition §4.3.5 is given in the lecture. O
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§4.3.6 Theorem. Let j be a recurrent state and let 7; = inf{n > 0:X, = j}. Then one
invariant measure [i; is defined by

Tj—l o0
pi({ih) =B (D Lixa=gy) = > _P(X, = i;75 > n).
n=0 n=0
Proof of Theorem §4.3.6 is given in the lecture. O
§4.3.7 Corollary. If X is positive recurrent, then w := 11;[E;(7;)| ™" is an invariant distribution

forany j € S.
Proof of Corollary §4.3.7 1is given in the lecture. O

§4.3.8 Theorem. If X is irreducible, then X has at most one invariant distribution.

Proof of Theorem §4.3.8 is given in the lecture. O
§4.3.9 Remark. One could in fact show that if X is irreducible and recurrent, then an invariant
measure of X is unique up to a multiplicative factor (see Durrett [1996], Theorem 5.4.4). On the

other hand, for transient X, there can be more than one invariant measure (see Klenke [2008],
Remark 17.50). O

Recall that 7 is the set of invariant distributions of X.
§4.3.10 Theorem. Let X be irreducible. X is positive recurrent if and only if T # (. In this
case, T = {m} withm({j}) = [Ej(Tj)rl >0 forall j €8.
Proof of Theorem §4.3.10 1is given in the lecture. O
§4.3.11 Corollary. If X isirreducible, then the following statements are equivalent: (i) There

exists a positive recurrent state. (i1) There exists a invariant distribution. (iii) All states are
positive recurrent.

Proof of Corollary §4.3.11 is given in the lecture. O
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Chapter 5
Ergodic theory

5.1 Stationary and ergodic processes

Ergodic theory is the study of laws of large numbers for possibly dependent, but stationary,
random variables.

§5.1.1 Definition. Let T C R be a set that is closed under addition (e.g., T € {Ny, Z,R",R})
and 9 be the shift operator as defined in §4.1.3. A stochastic process X = (X;)ser is called
stationary if Py:(x) = Px forall t € T. 0

§5.1.2 Remark. If T = N then Py»(x) = Px for all n € N is equivalent to Py(x) = Px. O

§5.1.3 Example. (i) If X = (X})ser is i.i.d., then X is stationary. Dismissing the indepen-
dence assumption, i.e., Px, = Px, holds for every ¢ € T, in general X is not stationary.
For example, consider T = Ny and X; = X, = X3 = ... but Xy # X;. Then X is not
stationary.

(i1) Let X be a Markov chain with invariant distribution 7. If 7 is the initial probability
measure, i.e., P is the distribution of X, then X is stationary.

(iii) Let X = (X,)nez be ii.d. real r.v.’s and let ¢p,...,cx € R. Then Y,, := Zle aXn_i,
n € Z, defines a stationary process Y that is called the moving average with weights
c1,...,c,. Infact, Y is stationary if only X is stationary. O

In the sequel, assume that (2, o7, P) is a probability space and 7" : {2 — () is a measurable
map.

§5.1.4 Definition. T is called measure preserving (maBerhaltend) if Pr(A) = P(T!(4)) =
P(A) holds for all A € <. In this case (€2, &7, P, T') is called a (measure preserving) dynamical
system. m

§5.1.5 Example. Let (S, %4(S)) be a Polish space equipped with its Borel-o-algebra.
(i) For a S-valued r.v. Y and a measure preserving map 7" on a probability space (€2, <7, IP)
the process X, (w) := Y (T"(w)), n € Ny, is stationary.
(ii) Let X = (X,,)nen, be the coordinate process on (2, o7, P) = (SN, B(S)*No P). If ¢
is the shift operator as defined in §4.1.3, then X,,(w) = Xo(¥"(w)). X is stationary if

and only if (€2, <7, P, ¥) is a dynamical system. Moreover, if X is stationary and Y is a
S-valued r.v. on (2, o7, P), then Y,, = Y (9"(X)) is stationary. O

§5.1.6 Definition. An event A € & is called strictly invariant ift T~'(A) = A and (almost)
invariant if 1p-14) = 14 P-ass., that is P(T"'(A)AA) = 0. The o-algebra of all (almost)
invariant events is denoted by .. O
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Recall that a o-algebra o is called P-trivial if P(A) € {0, 1} for every A € &

§5.1.7 Definition. If 7" is measure preserving and the o-algebra . of (almost) invariant events
is P-trivial, then (92, o7, P, T') is called ergodic. O

§5.1.8 Remark. For every (almost) invariant event A € . there exists a strictly invariant
event A* such that P(AAA*) = 0. Thereby, if the o-algebra .#} of all strictly invariant events
is P-trivial, then (€2, o/, [P, T') is ergodic. O

§5.1.9 Lemma. (i) A measurable map [ : (0, o) — (R, A) is Ir-measurable if and only
ffol =/
(ii) (Q, o, P, T) is ergodic if and only if any Ir-measurable f : (0, Ir) — (R, B) is P-a.s.
constant.

Proof of Lemma §5.1.9 is given in the lecture. O

§5.1.10 Definition. If (S™°, 2(S)®No P, 49) is ergodic, then the coordinate process (X, )nen,
(as in Example §5.1.5 (i1)) is called ergodic. O

§5.1.11 Example. Consider X = (X,,)nen, and Y = (Y, ),en, as in Example §5.1.5 (ii).
(i) If X is ergodic, then Y is ergodic.

(i1) Let (X,)nen, beiid. If A € Fy, then, A = (9") 71 (A) = {w : ¥ (w) € A} € o(V"(X)) =
0(Xn, Xpi1,...) forevery n € Ny. Hence, if we let . := N ,0(9"(X)) be the tail o-
algebra of (X,,)nen then S C 7. By Kolmogorov’s 0-1 law (Theorem §1.3.8), 7 is
P-trivial. Hence, .#r is also [P-trivial and therefore (X,,),cn, is ergodic. O

5.2 Ergodic theorems

In this section, (€2, .o/, P, T') always denotes a measure preserving dynamical system. Further
let f : 2 — R be measurable and

Xp(w) = foT™(w) foralln e Ny.

Hence X = (X,,)nen, is a stationary real-valued stochastic process. Let

denote the nth partial sum. Ergodic theorems are laws of large numbers for (.S,,),cn. We start
with a preliminary lemma.

§5.2.1 Lemma (Hopf’s maximal-ergodic lemma). Let f = X, € Li(P). Define M, =
max {5k, k € [0,n]}, n € N, and M, := sup {Sk, k € No}. Then E(Xol{u,>01) = 0 for
every n € N and by dominated convergence E(Xo1L{y >0y) = 0.

Proof of Lemma §5.2.1 is given in the lecture. O
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§5.2.2 Theorem (Birkhoff’s ergodic theorem). Let Xy € Ly(IP). Then

n—1 n—1
1 1 n—oo
=D X, == TF "2 R X,|.S| P-as..

In particular, if T is ergodic, then * STe X X E[X) P-as..

Proof of Theorem §5.2.2 is given in the lecture. O

§5.2.3 Lemma. Let p > 1 and let (X,,)nen, be identically distributed, real r.v.’s with
E(|Xo|P) < co. Define Y, := |% Z;(l) Xk‘pfor n € N. Then (Y, )nen is uniformly integrable.

Proof of Lemma §5.2.3 1is given in the lecture. O

§5.2.4 Theorem (von Neumann'’s ergodic theorem). Let (2, o7, P, T') be a measure preserving
dynamical system, p > 1, Xy € L,(P) and X,, = X o T™. Then

n—1
1 oo .
- > X I E[Xo|lSr]  in Ly(P).

k=0

n—oo

In particular, if T is ergodic, then %Zz;é X — E[Xo] in L,(P).

Proof of Theorem §5.2.4 is given in the lecture. O

§5.2.5 Theorem. Let X be a positive recurrent, irreducible Markov chain on a countable state
space S. Let  be the invariant distribution of X given in Theorem §4.3.10. If 7 is the initial
probability measure of X, then the Markov chain is ergodic.

Proof of Theorem §5.2.5 is given in the lecture. O

§5.2.6 Remark. By Corollary §4.3.11 for a irreducible Markov chain are equivalent: (i) There
exists a positive recurrent state. (ii) There exists a invariant distribution 7. (iii) All states are
positive recurrent. Thereby, an irreducible Markov chain with some positive-recurrent state j
is ergodic under the invariant initial distribution 7 or, if an irreducible Markov chain has an
invariant distribution, then it is ergodic. O
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Chapter 6

Weak convergence

6.1 Fundamental properties

In the sequel, (S, Z(S)) denotes a metric space (S, d) equipped with Borel o-algebra %(S).
The space of all bounded continuous and real-valued functions on S is denoted by Cy(S). If i
is a measure on (S, Z(S)) and f € Li(S, A(S), u) we write uf = [ fdp.

§6.1.1 Definition. LetP,P;,P,,. .. be probability measures on (S, #(S)). We say that (P,,),en
converges weakly to P, if lim,,_,o, P, f = Pf for all f € Cy(S), and we write formally P, > P
or P = w-limP,,. O
n—oo
§6.1.2 Remark. Weak convergence induces on the space of finite measures on (S, %(S)) the
weak topology (or weak*-topology in functional analysis). This is the coarsest topology such
that for all f € C,(S), the map p — pf is continuous. If S is separable, then it can be shown
that the weak topology is metrisable; for example, by virtue of the so-called Prohorov metric
(see, for example, Billingsley [1999], Appendix III). O

§6.1.3 Example. Let 2,21, x5, ... be elements of S such that d(z,,, ) == 0. Consider P, :=
0z, n € Nand P := §,. Then by definition P, % P since f(z,) — f(z) forall f € Cy(S).
For open O € #(S) with z,, € O, n € N, and x € 9O we have lim,,_,,, P,(O) = 1 while
P(O) = 0. For events B € %(S) withz ¢ 0B and z € B" it follows z,, € B® forall n > n,
and thus lim,, o, P,(B) =1 = P(B). O

For measurable g : S — R, let U, be the set of points of discontinuity of g where U, is Borel
measurable.

§6.1.4 Theorem (Portemanteau). For probability measures P,IP1, P, ... on (S, B(S)) the fol-
lowing are equivalent:

(1) P =w-limP,;

(ii) 7}1_)1210 IE:: f°°: P f for all bounded Lipschitz continuous f;

(iii) nh_)rglo P,.f = Pf for all bounded measurable f with P(Uy) = 0;
(iv) h}zggf P.(U) > P(U) forallopen U C S;

(v) lim supP,,(F') < P(F) for all closed F C S;

n—oo

(vi) lim,, o Pn(B) = P(B) for all measurable B with P(0B) = 0.

Proof of Theorem §6.1.4 is given in the lecture. O
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§6.1.5 Definition. Let X, X, X5, ... ber.v.’s with values in S. We say that (X,),cn converges

in distribution to X, formally X, d—> Xor X, d—> Py, if the distributions converge weakly, and

hence if Px = w-lim Py, . O
n—oo

§6.1.6 Theorem (Slutzky’s theorem). Let X, X1, Xo,... and Y1,Ys, ... be rv.’s with values in
S. Assume X, 4 X and d(X,,Y,) L0, Then Y, NS¢

Proof of Theorem §6.1.6 is given in the lecture. O

§6.1.7 Corollary. If X, END'S , then X, %5 X. The converse is false in general.

Proof of Corollary §6.1.7 is given in the lecture. O

§6.1.8 Example. If X, X, Xo,... are i.i.d. (with nontrivial distribution), then trivially X, d—)
XbutnotXngX. O

§6.1.9 Definition. Let I Fy, I3, ... be distribution functions of probability measures on R.
We say that (F),),en converges weakly to F', formally F,, 4 For F = w-lim F,, if F(z) =
n—oo

lim,, ., F,,(x) for all points of continuity z of F. m

§6.1.10 Example. If F is the distribution function of a probability measure on R and F},(x) :=
F(z +n) for z € R, then (F,,),en converges pointwise to 1. However, this is not a distribution
function, as 1 does not converge to 0 for x — —oo. On the other hand, if G,,(z) := F(x — n),
then (G,,)nen converges pointwise to G = 0. However, G(c0) = 0 < lim sup G,,(c0) = 1;

n—00

hence we do not have weak convergence here either. Indeed, in each case, there is a mass defect
in the limit (in the case of the F;, on the left and in the case of the (z,, on the right). However, the
definition of weak convergence of distribution functions is constructed so that no mass defect
occurs in the limit. O

§6.1.11 Theorem (Helly-Bray). Let P, Py, Ps, ... probability measures on R with correspond-

ing distribution functions F,Fy,Fy,.... The following are equivalent: (i) P, = P and
(i) F, & F.
Proof of Theorem §6.1.11 is given in the lecture. O

§6.1.12 Corollary. Let X, X1, X5, ... be real rv.’s with distribution functions F, I, F5, . ...
Then the following are equivalent: (i) X, 45 X; (i) E[f(X,)] =3 E[f(X)]forall f € Cy(R)
and (iii) F, % F. o

§6.1.13 Theorem (Continuous mapping theorem). Let (S1,d;) and (Sy, dy) be metric spaces
and let ¢ : Sy — Sy be measurable. Denote by U,, the set of points of discontinuity of .

(i) If PPy, Py, ... be probability measures on S with P(U,) = 0 and P, % P, then P, o

ot LPo oL
(1) If X, X1, Xy, ... are Sy-valued r.v.’s withP(X € U,) = 0 and X, 4, X, then p(X,,) 4,
P(X).
Proof of Theorem §6.1.13 1is given in the lecture. O
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6.2 Prohorov’s theorem Chapter 6 Weak convergence

6.2 Prohorov’s theorem

§6.2.1 Example. Let (C(]0, 1]), ||-||sup) denote the metric space of continuous and real-valued
functions on [0, 1] equipped with the topology of uniform convergence using the metric d(f, g) =
R*, f — (f(t1),..., f(tx)) are continuous and thus measurable. Moreover, any probability
measure on (C([0, 1]), Z(C([0,1]))) is uniquely determined by its finite dimensional distribu-
tions. However, weak converges of the finite dimensional distributions does generally not im-
ply weak convergence in (C([0,1]), Z(C([0,1]))). For example, let P, := d,,, n € N, with
Ty(t) = ntly/m + (2 — nt)Llpmam, t € [0,1], and P := 0,, with o = 0. Obviously,
(P,)nen would converges weakly to P, if P,f = f(z,) converges to Pf = f(xg) for all
f € Cy(C(]0,1])). Consider f(x) := min(||z||,, ,1) then f(z,) = 1,n € N, and f(zy) = 0,

n—oo

hence (PP, ),en does not converge weakly to P. On the other hand, x,,(t) — 0 = x(¢) for all
t € [0, 1] and, thus the finite dimensional distributions converge weakly. O

sup ’

§6.2.2 Definition. Let (S, d) be a metric space equipped with its Borel-o-algebra #(S) and
let P(S) denote the space of all probability measures on (S, Z(S)). A family F C P(S) of
probability measures is called

(a) weakly relatively sequentially compact if each sequence (IP,,),cn in F has a weakly con-
vergent subsequence with limit in P(S):

(b) weakly sequentially compact if each sequence (P,),cn in F has a weakly convergent
subsequence with limit in F. O

§6.2.3 Remark. If (S, d) is separable, then the weak topology is metrisable (Remark §6.1.2),
and thus the notions compact and sequentially compact coincide (Remark §2.3.2). O

§6.2.4 Proposition. Let S be a compact metric space. Then the set P(S) is weakly (sequen-
tially) compact.
Proof of Proposition $§6.2.4 is given in the lecture. O

§6.2.5 Theorem. Let (S,d) be Polish and let | be a measure on the Borel-o-algebra J(S).
Then there is a compact metric space (S*,d*) and a measure ;i* on B(S*) satisfying

(i) S is a subset of S*;
(i1) AB(S) is a subset of B(S*) and p(B) = p*(B) for all B € A(S);
(i) u*(S*\S) = 0.
In particular, S is G (a countable intersection of open sets in %(S*)) and hence S is B(S*)-
measurable.

Proof of Theorem §6.2.5 An outline of the proof is given in the lecture. O
§6.2.6 Definition. A family F C P(S) of probability measures on (S, %Z(S)) is called (uni-

formly) tight (straff) if, for any € > 0, there exists a compact set K. C S suchthat P(K,) > 1—¢
forall P € F. O

§6.2.7 Remark. If S is Polish, then by Proposition §2.3.9, every singleton, {P} with P €
P(S), is tight and thus so is every finite family. O
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§6.2.8 Theorem (Prohorov’s theorem). Let (S, d) be a metric space and let F C P(S) be a
family of probability measures on (S, Z(S)).
(1) If F is tight then F is weakly relatively sequentially compact.

(i1) If S is Polish, then also the converse holds: If F is weakly relatively sequentially compact
then F is tight.

Proof of Theorem §6.2.8 In the lecture a proof of (i) and (i) is given assuming S is Polish.
In case S is not Polish the proof of (i) is far more involved and we refer to Billingsley [1999]
(Theorem 6.1 and 6.2) or Klenke [2008] (Theorem 13.29). O

Let X and (X"),en be r.v.’s with values in (C([0,1]), ||||sup) equipped with its Borel-o-
algebra (C([0, 1])) (i.e., continuous stochastic processes) with distributions Py and (Pxn),en.

§6.2.9 Definition. We say that the finite-dimensional distributions of (X™) converge to those
of X if, forevery k € Nand t1, ..., t; € [0,1], we have (X7, ..., (X)) & (Xi,,..., (Xy,). In

. . dd dd
this case, we write X" f—> X orPyn f—> Py. O

§6.2.10 Remark. The finite dimensional distributions determine uniquely a probability mea-
sure on (C([0, 1]), Z(C([0,1]))). Consequently, P, J44. 1 and P, fdd, Q imply P = Q. O

§6.2.11 Proposition. Weak convergence implies convergence of the finite-dimensional distri-
. W . fdd

butions: P, — P implies P,, — P.
Proof of Proposition §6.2.11 is given in the lecture. O
§6.2.12 Theorem. Let (P,),en and P be probability measures on (C([0,1]), B(C([0,1]))).
Then the following are equivalent:

(1) P, 19 b and (P).)nen is (uniformly) tight.

(i) P, = P.
Proof of Theorem §6.2.12 is given in the lecture. O

§6.2.13 Definition. For § > 0 and f € C([0,1]) the modulus of continuity is defined by
wy(8) = sup {LF() — F($)] : |t — 5] < 64,5 € [0, 1]}. -

§6.2.14 Remark. Since any f € C([0, 1]) is uniformly continuous, it follows lim;s_,o w(d) = 0
and moreover |w(6) — wy(d)| < 2| f — gll,,- Thereby, for fixed 4, w.(d) is continuous on
(C([0,1]), II|lsup) and thus Z(C([0, 1]))-measurable. O

§6.2.15 Theorem (Arzela-Ascoli). Let (K, d) be a compact metric space and let (C(K), ||||sup)
be the metric space of continuous and real-valued functions on K. A subset B C C(K) is
relatively compact if and only if the following two conditions hold.

(i) There exists x € K and ¢ > 0 such that |f(z)| < ¢ < oo forall f € B.
(i) We have limgs o sup {ws(f) : f € B} =0.
Proof of Theorem $6.2.5 We refer to, e.g., Dudley [2002] (Theorem 2.4.7). |

§6.2.16 Remark. Due to (ii) the condition (i) can be replaced by: B is bounded in (C(K), ||*||sup)s
that is, there is ¢ > 0, f”sup <c<ooforall f € B. O
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§6.2.17 Theorem. A sequence (IP,,) of probability measures on C(|0, 1]) is (uniformly) tight if
and only if the following two conditions hold.

(i) Foreveryn > 0, there is a > 0 such that sup, . P, ({f : |f(0)] = a}) < 7.
(ii) Foralle,n > 0thereis § € (0,1) such that sup,,cx P, ({f : ws(d) = €}) <.
Thereby, a sequence of r.v.’s (X, )nen with values in C([0, 1)) is (uniformly) tight, if the sequence
(X (0)n)nen is (uniformly) tight and
(i) Forall e,n > 0 there is 6 € (0, 1) such that ]P’( SUD}_s|<s | X (s) — X, (t)] > 8) < n for
alln € N.

Proof of Theorem $6.2.17 1is given in the lecture. O
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