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Chapter 1

Preliminaries

This chapter presents elements of the lecture course PROBABILITY THEORY I along the lines
of the textbook Klenke [2008], where far more details, examples and further discussions can be
found.

1.1 Basic measure theory

In the following, let Ω 6= ∅ be a nonempty set and let A ⊂ 2Ω (power set, set of all subsets
of Ω) be a class of subsets of Ω. Later, Ω will be interpreted as the space of elementary events
and A will be the system of observable events.

§1.1.1 Definition. (a) A pair (Ω,A ) consisting of a nonempty set Ω and a σ-algebra A is
called a measurable space. The sets A ∈ A are called measurable sets. If Ω is at most
countably infinite and if A = 2Ω, then the measurable space (Ω, 2Ω) is called discrete.

(b) A triple (Ω,A , µ) is called a measure space if (Ω,A ) is a measurable space and if µ is a
measure on A .

(c) A measure space (Ω,A ,P) is called a probability space, if in addition P(Ω) = 1. In this
case, the sets A ∈ A are called events.

§1.1.2 Remark. Let A ⊂ 2Ω and let µ : A → [0,∞] be a set function. We say that µ is
(a) monotone, if µ(A) 6 µ(B) for any two sets A,B ∈ A with A ⊂ B.

(b) additive, if µ
( n⊎
i=1

Ai
)

=
n∑
i=1

µ(Ai) for any choice of finitely many mutually disjoints sets

A1, . . . , An ∈ A with ∪ni=1Ai ∈ A . The disjoint union of sets is denoted by the symbol⊎
which only stresses the fact that the sets involved are mutually disjoint.

(c) σ-additive, if µ(
∞⊎
i=1

Ai) =
∞∑
i=1

µ(Ai) for any choice of countably many mutually disjoints

sets A1, A2, . . . ∈ A with ∪∞i=1Ai ∈ A .
A is called an algebra if (i) Ω ∈ A , (ii) A is closed under complements, and (iii) A is
closed under intersections. Note that, if A is closed under complements, then we have the
equivalences between (i) A is closed under (countable) unions and (ii) A is closed under
(countable) intersections. An algebra A is called σ-algebra, if it is closed under countable
intersections. If A is an algebra and µ : A → [0,∞] is a set function with µ(∅) = 0, then µ is
called a

(d) content, if µ is additive,

(e) premeasure, if µ is σ-additive,

(f) measure, if µ is a premeasure and A is a σ-Algebra.
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Chapter 1 Preliminaries 1.2 Random variables

A content µ on an algebra A is called
(g) finite, if µ(A) <∞ for every A ∈ A ,

(h) σ-finite, if there is a sequence Ω1,Ω2, . . . ∈ A such that Ω =
⋃∞
n=1 Ωn and such that

µ(Ωn) <∞ for all n ∈ N.

§1.1.3 Examples. (a) For any nonempty set Ω, the classes A = {∅,Ω} and A = 2Ω are the
trivial examples of σ-algebras.

(b) Let E ⊂ 2Ω. The smallest σ-algebra σ(E) =
⋂
{A : A is σ-algebra and E ⊂ A } with

E ⊂ σ(E) is called the σ-algebra generated by E and E is called a generator of σ(E).

(c) Let (Ω, τ) be a topological space with class of open sets τ ⊂ 2Ω. The σ-algebra B(Ω) that
is generated by the open sets is called the Borel-σ-algebra on Ω. The elementsB ∈ B(Ω)
are called Borel sets or Borel measurable sets. We write B := B(R), B+ := B(R+)
and Bn := B(Rn) for the Borel-σ-algebra on R, R+ := [0,∞) and Rn, respectively,
equipped with the usual Euclidean distance.

(d) Denote by 1A(x) the indicator function on a set A which takes the value one if x ∈ A and
zero otherwise. Let ω ∈ Ω and δω(A) = 1A(ω). Then δω is a probability measure on any
σ-algebra A ⊂ 2Ω. δω is called the Dirac measure on the point ω.

(e) Let Ω be an (at most) countable nonempty set and let A = 2Ω. Further let (pω)ω∈Ω be
non-negative numbers. Then A 7→ µ(A) :=

∑
ω∈Ω pωδω(A) defines a σ-finite measure. If

pω = 1 for every ω ∈ Ω, then µ is called counting measure on Ω. If Ω is finite, then so is
µ.

§1.1.4 Theorem (Carathéodory). Let A ⊂ 2Ω be an algebra and let µ be a σ-finite premeasure
on A . There exists a unique measure µ̃ on σ(A ) such that µ̃(A) = µ(A) for all A ∈ A .
Furthermore, µ̃ is σ-finite.

Proof of Theorem §1.1.4. We refer to Klenke [2008], Theorem 1.41.

§1.1.5 Remark. If µ is a finite content on an algebra A , then σ-continuity at ∅, that is,
µ(An)→ 0 = µ(∅) as n→∞ for any sequence (An)n∈N in A with µ(An) <∞ for some (and
then eventually all) n ∈ N and An ↓ ∅ (i.e., A1 ⊃ A2 ⊃ A3 ⊃ . . . and ∩∞n=1An = ∅), implies
σ-additivity.

§1.1.6 Example. A probability measure P on the measurable space (Rn,Bn) is uniquely de-
termined by the values P((−∞, b]) (where (−∞, b] = ×ni=1(−∞, bi], b ∈ Rn). In particular, a
probability measure P on R is uniquely determined by its distribution function F : R→ [0, 1],
x 7→ P((−∞, x]).

1.2 Random variables

In this section (Ω,A ), (S,S ) and (Si,Si), i ∈ I, denote measurable spaces where I is an
arbitrary index set.

§1.2.1 Definition. Let Ω be a nonempty set and let X : Ω→ S be a map.
(a) X is called A -S -measurable (or, briefly, measurable) if X−1(S ) := {X−1(S) : S ∈

S } ⊂ A , that is, if X−1(S) ∈ A for any S ∈ S . A measurable map X : (Ω,A ) →
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1.2 Random variables Chapter 1 Preliminaries

(S,S ) is called a random variable (r.v.) with values in (S,S ). If (S,S ) = (R,B) or
(S,S ) = (R+,B+), then X is called a real or positive random variable, respectively.

(b) The preimage X−1(S ) is the smallest σ-algebra on Ω with respect to which X is measur-
able. We say that σ(X) := X−1(S ) is the σ-algebra on Ω that is generated by X .

(c) For any, i ∈ I, letXi : Ω→ Si be an arbitrary map. Then σ(Xi, i ∈ I) :=
∨
i∈I σ(Xi) :=

σ
(
∪i∈I σ(Xi)

)
= σ

(
∪i∈I X−1

i (Si)
)

is called the σ-algebra on Ω that is generated by
(Xi, i ∈ I). This is the the smallest σ-algebra with respect to which allXi are measurable.

§1.2.2 Properties. Let I be an arbitrary index set. Consider Si ∈ 2S , i ∈ I, and a map
X : Ω→ S. Then

(a) X−1(∪i∈ISi) = ∪i∈IX−1(Si), X−1(∩i∈ISi) = ∩i∈IX−1(Si) ,

(b) X−1(S ) is a σ-algebra on Ω and {S ∈ S : X−1(S) ∈ A } is a σ-algebra on S.
If E is a class of sets in 2S , then σΩ(X−1(E)) = X−1(σS(E)).

§1.2.3 Examples. (a) The identity map Id : Ω→ Ω is A -A -measurable.

(b) If A = 2Ω and S = {∅,S}, then any map X : Ω→ S is A -S -measurable.

(c) Let A ⊂ Ω. The indicator function 1A : Ω → {0, 1} is A -2{0,1}-measurable, if and only
if A ∈ A .

For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x} (integer part),
x∨y = max(x, y) (maximum), x∧y = min(x, y) (minimum), x+ = max(x, 0) (positive part),
x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).Var

§1.2.4 Properties. (a) IfX, Y are real r.v.’s, then so areX+ := max(X, 0),X− := max(−X, 0),
|X| = X+ + X−, X + Y , X − Y , X · Y and X/Y with x/0 := 0 for all x ∈ R. In
particular, X+ and bXc is A -B+- and A -2Z-measurable, respectively.

(b) If X1, X2, . . . are real r.v.’s, then so are supn>1Xn, infn>1Xn,
lim sup
n→∞

Xn := infk>1 supn>kXn and lim inf
n→∞

Xn := supk>1 infn>kXn.

(c) Let X1, . . . , Xn : Ω → R be maps and define X := (X1, . . . , Xn) : Ω → Rn. Then X
is a real r.v. (i.e., A -Bn-measurable), if and only if each Xi is a real r.v. (i.e., A -B-
measurable).

(d) Let E = {Ai ∈ 2Ω, i ∈ I, mutually disjoint and
⊎
i∈I Ai = Ω} be a partition of Ω. A

map X : Ω → R is σ(E)-B-measurable, if there exist numbers xi ∈ R, i ∈ I, such that
X =

∑
i∈I xi1Ai .

§1.2.5 Definition. (a) A real r.v. X is called simple if there is an n ∈ N and mutually disjoint
measurable sets Ai, . . . , An ∈ A as well as numbers α1, . . . , αn ∈ R, such that X =∑n

i=1 αi1Ai .

(b) Assume that X,X1, X2, . . . are maps Ω → R := R ∪ {−∞,+∞} such that X1(ω) 6
X2(ω) 6 . . . and limn→∞Xn(ω) = X(ω) for any ω ∈ Ω. Then we write Xn ↑ X
and say that (Xn)n∈N increases (point-wise) to X . Analogously, we write Xn ↓ X if
(−Xn) ↑ (−X).
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§1.2.6 Example. Let us briefly consider the approximation of a positive r.v. by means of simple
r.v.’s. Let X : Ω→ R+ be a A -B+-measurable. Define Xn = (2−nb2nXc) ∧ n. Then Xn is a
simple r.v. and clearly, Xn ↑ X uniformly on each interval {X 6 c}.

§1.2.7 Property. Let X : (Ω,A ) → (S,S ) and Y : (Ω,A ) → (R,B) be r.v.’s. The real r.v.
Y is σ(X)-B-measurable if and only if there exists a S -B-measurable map f : S → R such
that Y = f(X).

§1.2.8 Definition. Let X : (Ω,A )→ (S,S ) be a r.v..
(a) For S ∈ S , we denote {X ∈ S} := X−1(S). In particular, we let {X > 0} :=

X−1([0,∞)) and define {X 6 b} similarly and so on.

(b) Let P be a probability measure on (Ω,A ). The image probability measure PX of P under
the map X is the probability measure PX := P ◦ X−1 on (S,S ) that is defined by
PX(S) := P(X ∈ S) := P(X−1(S)) for each S ∈ S . PX is called the distribution of X .
We write X ∼ Q if Q = PX and say X has distribution Q.

(c) A family (Xi)i∈I of r.v.’s is called identically distributed (i.d.) if PXi = PXj for all

i, j ∈ I. We write X d
= Y if PX = PY (d for distribution).

1.3 Independence

In the sequel, (Ω,A ,P) is a probability space, the sets A ∈ A are the events and I is an
arbitrary index set.

§1.3.1 Definition. (a) Let (Ai)i∈I be an arbitrary family of events. The family (Ai)i∈I is
called independent if for any finite subsetJ ⊂ I the product formula holds: P(∩j∈JAj) =∏

j∈J P(Aj).

(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.2 Lemma (Borel-Cantelli). Let A1, A2, . . . be events and define A∗ := lim supn→∞An.
(a) If

∑∞
n=1 P(An) <∞, then P(A∗) = 0.

(b) If (An)n∈N is independent and
∑∞

n=1 P(An) =∞, then P(A∗) = 1.

Proof of Lemma §1.3.2. We refer to Klenke [2008], Theorem 2.7.

§1.3.3 Corollary (Borel’s 0-1 criterion). Let A1, A2, . . . be independent events and define
A∗ := lim sup

n→∞
An, then

(a)
∑∞

n=1 P(An) <∞ if and only if P(A∗) = 0,

(b)
∑∞

n=1 P(An) =∞ if and only if P(A∗) = 1.

For each i ∈ I, let (Si,Si) be a measurable space and let Xi : (Ω,A ) →)(Si,Si) be a r.v.
with generated σ-algebra σ(Xi) = X−1(Si).

§1.3.4 Definition. (a) The family (Xi)i∈I of r.v.’s is called independent if the family (σ(Xi))i∈I
of σ-algebras is independent.
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(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.5 Property. Let K be an arbitrary set and Ik, k ∈ K, arbitrary mutually disjoint index
sets. Define I = ∪k∈KIk. If the family (Xi)i∈I of r.v.’s is independent, then the family of
σ-algebras (σ(Xj, j ∈ Ik))k∈K is independent.

§1.3.6 Definition. Let X1, X2, . . . be r.v.’s. The σ-algebra
⋂
n>1 σ(Xi, i > n) is called the tail

σ-algebra and its elements are called tail events.

§1.3.7 Example. {ω :
∑

n>1Xn(ω) is convergent} is an tail event.

§1.3.8 Theorem (Kolmogorov’s 0-1 law). The tail events of a sequence (Xn)n∈N of independent
r.v.’s have probability 0 or 1.
Proof of Theorem §1.3.8. We refer to Klenke [2008], Theorem 2.37.

1.4 Expectation

§1.4.1 Definition. We denote byM :=M(Ω,A ) the set of all real r.v.’s defined on the mea-
surable space (Ω,A ) and byM+ := M+(Ω,A ) ⊂ M the subset of all positive r.v.’s. Given
a probability measure P on (Ω,A ) the expectation is the unique functional E :M+ → [0,∞]
satisfying

(a) E(aX1 +X2) = aE(X1) + E(X2) for all X1, X2 ∈M+ and a ∈ R+;

(b) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then EXn ↑ EX;

(c) E1A = P(A) for all A ∈ A .
The expectation of X ∈ M is defined by E(X) := E(X+) − E(X−), if E(X+) < ∞ or
E(X−) <∞. Given ‖X‖p :=

(
E(|X|p)

)1/p, p ∈ [1,∞), and ‖X‖∞ := inf{c : P(X > c) = 0}
for p ∈ [1,∞] set Lp(Ω,A , P ) := {X ∈ M(Ω,A ) : ‖X‖p <∞} and Lp := Lp(Ω,A , P ) :=
{[X] : X ∈ Lp(Ω,A ,P)} where [X] := {Y ∈M(Ω,A ) : P(X = Y ) = 1}.

§1.4.2 Remark. L1 is the domain of definition of the expectation E, that is, E : L1 → R. The
vector space Lp equipped with the norm ‖·‖p is a Banach space and in case p = 2 it is a Hilbert
space with norm ‖·‖2 induced by the inner product 〈X, Y 〉2 := E(XY ).

§1.4.3 Properties. (a) For r.v.’sX, Y ∈ L1 we have the equivalences between (i) E(X1A) 6
E(Y 1A) for all A ∈ A and (ii) P(X 6 Y ) = 1. In particular, E(X1A) = E(Y 1A) holds
for all A ∈ A if and only if P(X = Y ) = 1.

(b) (Fatou’s lemma) Assume X1, X2, . . . ∈M+, then E(lim inf
n→∞

Xn) 6 lim inf
n→∞

E(Xn).

(c) (Dominated convergence) AssumeX,X1, X2, . . . ∈M such that limn→∞ |Xn(ω)−X(ω)| =
0 for all ω ∈ Ω. If there exists Y ∈ L1 with supn>1 |Xn| 6 Y , then we have limn→∞ E|Xn−
X| = 0 which in turn implies X ∈ L1 and limn→∞ |EXn − EX| = 0.

(d) (Hölder’s inequality) For X, Y ∈M holds E|XY | 6 ‖X‖p ‖Y ‖q with p−1 + q−1 = 1.

(e) (Cauchy-Schwarz inequality) For X, Y ∈ M holds E|XY | 6
√

E(X2)
√
E(Y 2) and

|Cov(X, Y )| 6
√

Var(X)
√
Var(Y ).
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1.5 Convergence of random variables

In the sequel we assume r.v.’s X1, X2, . . . ∈ M(Ω,A ) and a probability measure P on
(Ω,A ).

§1.5.1 Definition. (a) Let C := {ω ∈ Ω : limn→∞Xn(ω) exists and is finite}. The sequence
(Xn)n>1 converges almost surely (a.s.), if P(C) = 1. We writeXn

n→∞−→ X a.s., or briefly,
Xn

a.s.−→ X .

(b) The sequence (Xn)n>1 converges in probability, if limn→∞ P
(
|Xn −X| > ε

)
= 0 for all

ε > 0. We write Xn
n→∞−→ X in P, or briefly, Xn

P→ X .

(c) The sequence (Xn)n∈N converges in distribution, if E
(
f(Xn)

) n→∞−→ E
(
f(X)

)
for any

continuous and bounded function f : R → R. We write Xn
n→∞−→ X in distribution, or

briefly, Xn
d→ X .

(d) The sequence (Xn)n∈N converges in Lp, if limn→∞ E|Xn −X|p = 0. We write Xn
n→∞−→

X in Lp, or briefly, Xn
Lp−→ X .

§1.5.2 Remark. In (a) the set C =
⋂
k>1

⋃
n>1

⋂
i>1 {|Xn+i(ω)−Xn(ω)| < 1/k} is measur-

able. Moreover, if P(C) = 1 then there exists a r.v. X ∈M such that P(limn→∞Xn = X) = 1
where X = lim sup

n→∞
Xn noting that X(ω) = limn→∞Xn(ω) for ω ∈ C.

§1.5.3 Properties. (a) We have Xn
a.s.−→ X if and only if supm>n |Xm − Xn|

n→∞−→ 0 in P
if and only if supj>n |Xj − X| n→∞−→ 0 in P if and only if ∀ε, δ > 0, ∃N(ε, δ) ∈ N,
∀n > N(ε, δ), P

(⋂
j>n {|Xj −X| 6 ε}

)
> 1− δ.

(b) If Xn
a.s.−→ X , then Xn

P→ X .

(c) If Xn
a.s.−→ X , then g(Xn)

a.s.−→ g(X) for any continuous function g.

(d) Xn
P→ X if and only if limn→∞ supj>n P(|Xj −Xn| > ε) = 0 for all ε > 0 if and only if

any sub-sequence of (Xn)n∈N contains a sub-sequence converging to X a.s..

(e) If Xn
P→ X , then g(Xn)

P→ g(X) for any continuous function g.

(f) Xn
a.s.−→ X ⇒ Xn

P→ X ⇐ Xn
Lp−→ X and Xn

P→ X ⇒ Xn
d→ X

1.6 Conditional expectation

In the sequel (Ω,A ,P) is a probability space and F is a sub-σ-algebra of A .

§1.6.1 Theorem. If X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) then there exists Y ∈ M+(Ω,F )
or Y ∈ L1(Ω,F ,P), respectively, such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover Y
is unique up to equality a.s..

Proof of Theorem §1.6.1. We refer to Klenke [2008], Theorem 8.12.

§1.6.2 Definition. For X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) each version Y as in Theo-
rem §1.6.1 is called conditional expectation (bedingte Erwartung) of X given F , symbolically
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1.6 Conditional expectation Chapter 1 Preliminaries

E(X|F ) := Y . For A ∈ A , P(A|F ) := E(1A|F ) is called a conditional probability of A
given the σ-algebra F . Given r.v.’s Xi, i ∈ I, we set E(X|(Xi)i∈I) := E(X|σ(Xi, i ∈ I)).

§1.6.3 Remark. Employing Proposition §1.2.7 there exists a B-B-measurable function f such
that E(Y |X) = f(X) a.s.. Therewith, we write E(Y |X = x) := f(x) (conditional expected
value, bedingter Erwartungswert). Since conditional expectations are defined only up to equal-
ity a.s., all (in)equalities with conditional expectations are understood as (in)equalities a.s., even
if we do not say so explicitly.

§1.6.4 Properties. Let G ⊂ F ⊂ A be σ-algebras and let X, Y ∈ L1(Ω,A ,P). Then:
(a) (Linearity) E(λX + Y |F ) = λE(X|F ) + E(Y |F ).

(b) (Monotonicity) If X > Y a.s., then E(X|F ) > E(Y |F ).

(c) If E(|XY |) < ∞ and Y is measurable with respect to F , then E(XY |F ) = Y E(X|F )
and E(Y |F ) = E(Y |Y ) = Y .

(d) (Tower property) E(E(X|F )|G ) = E(E(X|G )|F ) = E(X|G ).

(e) (Triangle inequality) E(|X| |F ) > |E(X|F )|.
(f) (Independence) If σ(X) and F are independent, then E(X|F ) = E(X).

(g) If P(A) ∈ {0, 1} for any A ∈ F , then E(X|F ) = E(X).

(h) (Jensen’s inequality) Letϕ : R→ R be convex and letϕ(Y ) be an element ofL1(Ω,A ,P).
Then ϕ(E(Y |F )) 6 E(ϕ(Y )|F ).

(i) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then supn∈N E[Xn|F ] = E[X|F ].

(j) (Dominated convergence) Assume Y ∈ L1(P), Y > 0 and (Xn)n∈N is a sequence of r.v.’s
with |Xn| 6 Y for n ∈ N and such that Xn

a.s.−→ X . Then limn→∞ E(Xn|F ) = E(X|F )
a.s. and in L1(P).

§1.6.5 Proposition. Let (H, 〈·, ·〉H) be a Hilbert space equipped with induced norm ‖·‖H and
let U be a closed linear subspace of H. For each x ∈ H there exists a unique element ux ∈ U
with ‖x− ux‖H = infu∈U ‖x− u‖H.

§1.6.6 Definition. For a closed subspace U of the Hilbert space (H, 〈·, ·〉H) the orthogonal
projection ΠU : H→ U is defined by ΠU(x) = ux with ux as in Proposition §1.6.5.

§1.6.7 Properties. Let U⊥ be the orthogonal complement of U in H. Then:
(a) (projection property) ΠU ◦ ΠU = ΠU ;

(b) (orthogonality) x− ΠUx ∈ U⊥ for each x ∈ H;

(c) each x ∈ H can be decomposed uniquely as x = ΠUx+ (x−ΠUx) in the orthogonal sum
of an element of U and an element of U⊥;

(d) ΠU is selfadjoint: 〈ΠUx, y〉H = 〈x,ΠUy〉H;

(e) ΠU is linear.

§1.6.8 Lemma. Let F be a sub-σ-algebra of A . Then L2(Ω,F ,P) is embedded as closed
linear subspace in the Hilbert space L2(Ω,A ,P).
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§1.6.9 Corollary. Let F ⊂ A be a sub-σ-algebra and let X ∈ L2(Ω,A ,P) be a r.v.. Then
E(X|F ) is the orthogonal projection of X on L2(Ω,F ,P). That is, for any Y ∈ L2(Ω,F ,P),
‖X − Y ‖2

2 = E[(X − Y )2] > E[(X − E(X|F ))2] = ‖X − E(X|F )‖2
2 with equality if and

only if Y = E(X|F ).

§1.6.10 Example. Let X, Y ∈ L1(P) be independent. Then E(X + Y |Y ) = E(X|Y ) +
E(Y |Y ) = E(X) + Y .

§1.6.11 Theorem. Let p ∈ [1,∞] and F ⊂ A be a sub-σ-algebra. Then the linear map
Lp(Ω,A ,P) → Lp(Ω,F ,P), X 7→ E(X|F ), is a contraction (that is, ‖E(X|F )‖p 6
‖X‖p) and thus bounded and continuous. Hence, for X,X1, X2, . . . ∈ Lp(Ω,A ,P) with
‖Xn −X‖p

n→∞−→ 0 we have ‖E(Xn|F )− E(X|F )‖p
n→∞−→ 0.

§1.6.12 Definition. A family (Xi)i∈I of r.v.’s in L1(Ω,A ,P) with arbitrary index set I is
called uniformly integrable if infa∈[0,∞) supi∈I E(1{|Xi|>a}|Xi|) = 0 which is satisfied in case
that supi∈I ‖Xi‖1 ∈ L1(Ω,A ,P).

§1.6.13 Corollary. Let (Xi)i∈I be uniformly integrable in L1(Ω,A ,P) and let (Fj, j ∈ J )
be a family of sub-σ-algebras of A . Define Xi,j := E(Xi|Fj). Then (Xi,j)i∈I,j∈J is uni-
formly integrable in L1(Ω,A ,P). In particular, for X ∈ L1(Ω,A ,P) the family {E(X|F ) :
F is sub-σ-algebra of A } of r.v.’s in L1(Ω,A ,P) is uniformly integrable.

§1.6.14 Lemma. Every uniformly integrable sequence (Xn)n∈N of real r.v.’s which converges
a.s. also converges in L1.

Proof of Lemma §1.6.14 is given in the lecture.
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Chapter 2

Stochastic processes

2.1 Motivating examples

2.1.1 The Poisson process

§2.1.1 Definition. Let (Sk)k∈N be positive r.v.’s on a probability space (Ω,A ,P) with 0 6
S1(ω) 6 S2(ω) 6 . . . for any ω ∈ Ω. The family N = (Nt)t>0 of No-valued r.v.’s given
by Nt :=

∑∞
k=1 1{Sk6t}, t > 0, is called counting process (Zählprozess) with jump times

(Sprungzeiten) (Sk)k∈N.

§2.1.2 Definition. A counting process (Nt)t>0 is called Poisson process of intensity λ > 0 if
(i) P(Nt+h −Nt = 1) = λh+ o(h) as h ↓ 0;

(ii) P(Nt+h −Nt = 0) = 1− λh+ o(h) as h ↓ 0;

(iii) (independent increments) (Nti − Nti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(iv) (stationary increments) Nt −Ns
d
= Nt−s for all numbers t > s > 0 in R+.

§2.1.3 Theorem. For a counting process N = (Nt)t>0 with jump times (Sk)k∈N we have the
equivalences between:

(a) N is a Poisson process;

(b) N satisfies the conditions (iii), (iv) in the Definition §2.1.2 of a Poisson (Poi) process and
Nt ∼ Poi(λt) holds for all t > 0;

(c) (waiting times) The r.v.’s T1 := S1 and Tk := Sk − Sk−1, k = 2, 3, . . . , are independent
and identically Exp(λ)-distributed;

(d) Nt ∼ Poi(λt) holds for all t > 0 and the conditional distribution of (S1, . . . , Sn) given
{Nt = n} has the density

f(x1, . . . , xn) =
n!

tn
1{06x16...6xn6t}. (2.1)

(e) N satisfies the condition (iii) in the Definition §2.1.2 of a Poisson process, E(N1) = λ
and (2.1) is the conditional density of (S1, . . . , Sn) given {Nt = n}.

Proof of Theorem §2.1.3 is given in the lecture.

§2.1.4 Remark. Let (Ui)
n
i=1 be independent and identically U([0, t])-distributed r.v.’s and let

(U(i))
n
i=1 be their order statistics whereU(1) = min{Ui}ni=1 andU(k+1) = min{Ui}ni=1\{U(i)}ki=1,

k = 2, . . . , n. Then the joint density of (U(i))
n
i=1 is given exactly by (2.1). The characterisations

give rise to three simple methods to simulate a Poisson process: the definition §2.1.2 gives an
approximation for small h (forgetting the o(h)-term), part (iii) in §2.1.3 just uses exponentially
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distributed inter-arrival times Tk and part (iv) uses the value at a specified right-end point and
then uses the uniform order statistics as jump times in-between (write down the details!).

2.1.2 Markov chains

§2.1.5 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time), let S be
a (at most) countable nonempty set (state space) and let S = 2S . A family (Xt)t∈T of S-
valued r.v.’s forms a Markov chain if for all n ∈ N, all t1 < t2 < . . . < tn < t in T and
all s1, . . . , sn, s in S with P(Xt1 = s1, . . . , Xtn = sn) > 0 the Markov property is satisfied:
P(Xt = s|Xt1 = s1, . . . , Xtn = sn) = P(Xt = s|Xtn = sn). For a Markov chain (Xt)t∈T and
t1 6 t2 in T, i, j ∈ S the transition probability to reach state j at time t2 from state i at time t1
is defined by pij(t1, t2) := P(Xt2 = j|Xt1 = i) (or arbitrary if not well-defined). The transition
matrix is given by P (t1, t2) :=

(
pij(t1, t2)

)
i,j∈S . The transition matrix and the Markov chain

are called time-homogeneous ifP (t1, t2) = P (0, t2 − t1) =: P (t2 − t1) holds for all t1 6 t2.

§2.1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov equation, that
is, for any t1 6 t2 6 t3 in T, P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplication). In the time-
homogeneous case this gives the semigroup property P (t1 + t2) = P (t1)P (t2) for all t1, t2 ∈ T,
and in particular P (n) = P (1)n for n ∈ N.

Proof of Proposition §2.1.6 is given in the lecture.

2.1.3 Brownian motion

§2.1.7 Definition. A family (Wt)t>0 of real r.v.’s is called a Brownian motion if
(a) W0 = 0 a.s.;

(b) (independent increments) (Wti −Wti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(c) (stationary increments) Wt−Ws
d
= Wt−s ∼ N(0, t− s) for all numbers 0 6 s < t in R+;

(d) t 7→ Wt is continuous a.s..

§2.1.8 Remark. Questions:
(i) Existence?

(ii) W := (Wt)t>0 r.v. on which space?

(iii) For which functions f is f(W ) a r.v.? (e.g. f(W ) = sup06t61Wt)
Importance of the Brownian motion:

I If X1, X2, . . . are i.i.d. with E(Xi) = 0 and Var(Xi) = σ2 < ∞ then W is a “limit” of
Snt = 1

σ
√
n

∑
16i6ntXi (Donsker’s theorem).

I W is a central element in stochastic differential equationsXt =
∫ t

0
σ(Xs)dWs+

∫ t
0
b(Xs)ds.

How to define the first integral? (“Ito integral”)

2.2 Definition of stochastic processes

§2.2.1 Definition. A family X = (Xt)t∈T of r.v.’s on a common probability space (Ω,A ,P)
is called stochastic process. We call X time-discrete if T ⊂ Z and time-continuous if (a, b) ⊂
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T ⊂ R for some real numbers a < b. If all Xt take values in (S,S ), then (S,S ) is called the
state space (Zustandsraum) of X . For each fixed ω ∈ Ω the map t 7→ Xt(ω) is called sample
path (Pfad), trajectory (Trajektorie) or realisation (Realisierung) of X . If T = N0 or T = R+

the law of X0 is called initial distribution.

§2.2.2 Remark. We are particularly interested in the “random functions” t 7→ Xt rather than
in a single r.v. Xt. For this reason, we identify X = (Xt)t∈T as a r.v. with values in ST which
forces us to specify a σ-algebra on ST.

§2.2.3 Definition. Let (Si,Si), i ∈ I, be an arbitrary family of measurable spaces.
(a) The set i∈I Si of maps (si)i∈I : I → ∪i∈ISi such that si ∈ Si for all i ∈ I is called

product space. For J ⊂ I, let SJ := j∈J Sj . If, in particular, all the Si are equal, say
Si = S, then we write i∈I Si = SI .

(b) If j ∈ I, then Πj : SI → Sj , (si)i∈I 7→ sj denotes the jth coordinate map. More
generally, for J ⊂ K ⊂ I, the restricted map ΠKJ : SK → SJ , (sk)k∈K 7→ (sj)j∈J are
called canonical projection. In particular, we write ΠJ := ΠIJ .

(c) The product-σ-algebra SI :=
⊗

i∈ISi is the smallest σ-algebra on the product space SI
such that for every j ∈ I the coordinate map Πj : SI → Sj is measurable with respect
to SI-Sj , that is, SI =

⊗
i∈ISi = σ(Πi, i ∈ I) :=

∨
i∈I Π−1

i (Si). For J ⊂ I, let
SJ =

⊗
j∈J Sj . If (Si,Si) = (S,S ) for all i ∈ I, then we also write

⊗
i∈ISi = S ⊗I .

§2.2.4 Lemma. For a stochastic process X = (Xt)t∈T with state space (S,S ) the mapping
X : Ω→ ST, ω 7→ (Xt(ω))t∈T is a (ST,S ⊗T)-valued r.v.

Proof of Lemma §2.2.4 is given in the lecture.

§2.2.5 Remark. Later on, we shall also consider smaller function spaces than ST, e.g. C(R+)
instead of RR+ .

§2.2.6 Definition. The distribution PX = P ◦X−1 of a stochastic process X = (Xt)t∈T defined
on (Ω,A ,P) with values in (ST,S ⊗T) is the image probability measure of P under the map
X .

§2.2.7 Remark. The distribution of a stochastic process is often complicate and generally there
does not exists an explicit formula. Therefore, we are interested in a characterisation exploiting
the distributions of the r.v.’s Xt.

§2.2.8 Definition. Let X = (Xt)t∈T be a stochastic process with distribution PX . For any
finite T ⊂ T let PTX := PΠT ◦X be the distribution of the r.v. (Xt)t∈T = ΠT ◦ X . The family
{PTX , T ⊂ T finite} is called family of the finite-dimensional distributions of X or PX .

§2.2.9 Definition. A family {PJ ,J ⊂ I finite} of probability measures is called consistent
on (SI ,SI) if for any finite J ⊂ K ⊂ I the canonical projection ΠKJ as in §2.2.3 (c) and
the probability measure PJ and PK on (SJ ,SJ ) and (SK,SK), respectively, satisfy PJ =
PK ◦ (ΠKJ )−1.

§2.2.10 Remark. Let PX be the distribution of a stochastic process X on (ST,S ⊗T) then its
family {PTX , T ⊂ T finite} of finite-dimensional distributions is consistent. Indeed, for J ⊂
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K ⊂ I finite, PJX = PX ◦Π−1
J = PX ◦(ΠKJ ◦ΠK)−1 = PX ◦(ΠK)−1◦(ΠKJ )−1 = PKX ◦(ΠKJ )−1.

§2.2.11 Definition. Two processes (Xt)t∈T, (Yt)t∈T on (Ω,A ,P) are called
(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other, if P(Xt = Yt) = 1
for all t ∈ T.

§2.2.12 Remark. (a) Obviously, indistinguishable processes are versions of each other. The
converse is in general false.

(b) If X is a version of Y , then X and Y share the same finite-dimensional distributions.
Processes with the same finite-dimensional distributions need not even be defined on the
same probability space and will in general not be versions of each other.

(c) Suppose (Xt)t∈R+ and (Yt)t∈R+ are real-valued stochastic processes with right-continuous
sample paths. Then they are indistinguishable already if they are versions of each other.

§2.2.13 Definition. A stochastic processes (Xt)t∈R+ is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn

n→∞−→ t always implies Xtn
P→ Xt

(convergence in probability).

§2.2.14 Remark. Every continuous stochastic process is stochastically continuous since a.s.
convergence implies convergence in probability. On the other hand, the Poisson process is
obviously not continuous but stochastically continuous, since limtn→t P(|Nt − Ntn| > ε) =
limtn→t(1− e−λ|t−tn|) = 0 for all ε ∈ (0, 1).

2.3 Probability measures on Polish spaces

§2.3.1 Definition. A metric space (S, d) is called Polish space if it is separable and complete.
More generally, a separable completely metrisable topological space is called Polish. Canoni-
cally, it is equipped with its Borel-σ-algebra B(S) generated by the open sets.

§2.3.2 Remark. Let (Ω, τ) be a topological space. For A ⊂ Ω we denote by A the closure of
A, by A◦ the interior and by ∂A the boundary of A. A set A ⊂ Ω is called dense if A = Ω. A
set A ⊂ Ω is called compact if each open cover U ⊂ τ of A (that is, A ⊂ ∪{U ;U ∈ U}) has
a finite subcover; that is, a finite U ′ ⊂ U with A ⊂ ∪{U ;U ∈ U ′}. Compact sets are closed.
A ⊂ Ω is called relatively compact if A is compact. On the other hand, A is called sequentially
compact (respectively relatively sequentially compact) if any sequence (ωn)n∈N with values in
A has a subsequence (ωnk)k∈N that converges to some ω ∈ A (respectively ω ∈ A).

(Ω, τ) is called metrisable if there exists a metric d on Ω such that τ is induced by the
open balls Bε(x) = {ω ∈ Ω : d(x, ω) < ε}. In metrisable spaces, the notions compact and
sequentially compact coincide. A metric d on Ω is called complete if any Cauchy sequence with
respect to d converges in Ω. (Ω, τ) is called completely metrisable if there exists a complete
metric on Ω that induces τ . A metrisable space (Ω, τ) is called separable if there exists a
countable dense subset of Ω. Separability in metrisable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set U ⊂ τ withA =

⋃
{U ;U ⊂ A,U ∈ U}

for all A ∈ τ . A compact metric space is always separable (simply choose the union of finite
covers comprising balls of radius 1/n).
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Two measurable spaces (Ω1,B1), (Ω2,B2) with Borel-σ-algebra B1, B2, respectively, are
called Borel-isomorphic, if there exists a bijective map g : Ω1 → Ω2, such that g and g−1 are
measurable. In particular, each Polish space is Borel-isomorphic to a Borel subset of [0, 1].

Two topological spaces (Ω1, τ1) (Ω2, τ2) are called homeomorphic if there exists a bijective
map g : Ω1 → Ω2 such that g and g−1 are continuous. Therewith, each Polish space is homeo-
morphic to a subset of [0, 1]N, equipped with its product topology.

§2.3.3 Examples. R, Rn, `p ⊂ RN and Lp([0, 1]) equipped with their usual distance are Polish
spaces.

§2.3.4 Definition. Let (Si, di), i ∈ I ⊂ N, be a finite or countable family of metric spaces. The
product space i∈I Si is canonically equipped with the product metric d((si)i∈I , (s

′
i)i∈I) :=∑

i∈I 2−i(di(si, s
′
i)∧ 1) generating the product topology on i∈I Si in which a vector/sequence

converges if and only if all coordinates converge, that is, d(s(n), s)
n→∞−→ 0⇔ di(s

(n)
i , si)

n→∞−→ 0
for all i ∈ I.

§2.3.5 Lemma. Let (Sn, dn), n ∈ N, be a family of Polish spaces, then the Borel-σ-Algebra
B( n∈N Sn) on the product space n∈N Sn equals the product Borel-σ-algebra

⊗
n∈N B(Sn).

Proof of Lemma §2.3.5 is given in the lecture.

§2.3.6 Remark. The⊇-relation holds for all topological spaces and products of any cardinality
with the same proof. The ⊆-property can already fail for the product of two topological (non-
Polish) spaces.

§2.3.7 Definition. Let (S, d) be a metric space equipped with its Borel-σ-algebra B(S). A
probability measure P on (S,B(S)) is called

(a) tight (straff) if for all ε > 0 there is a compact set K such that P(K) > 1− ε,
(b) regular (regulär) if B ∈ B(S) and ε > 0 then there exist a compact set K and an open

set O such that K ⊂ B ⊂ O and P(O\K) 6 ε.
A family P of probability measures on (S,B(S)) is called (uniformly) tight, if for all ε > 0
there is a compact set K such that P(K) > 1− ε for all P ∈ P .

§2.3.8 Remark. Considering a probability measure P on a metric space S we have the equiva-
lences between (i) P is tight and (ii) P(B) = sup{P(K) : K ⊆ B compact} for all B ∈ B(S),
and on the other hand between (i) P is regular and (ii) sup{P(K) : K ⊆ B compact} =
P(B) = inf{P(O) : O ⊇ B open} for all B ∈ B(S).

§2.3.9 Proposition (Ulam (1939)). Every probability measure on a Polish space is tight.
Proof of Proposition §2.3.9 is given in the lecture.

§2.3.10 Theorem. Every probability measure on a Polish space is regular.
Proof of Theorem §2.3.10 is given in the lecture.

§2.3.11 Theorem (Kolmogorov’s consistency theorem). Let I be an arbitrary index set and let
(Si,Bi) be Polish spaces, i ∈ I. Let {PJ ,J ⊂ I finite} be a consistent family of probability
measures on the product space (SI ,BI) as in §2.2.9. Then there exists a unique probability
measure P on (SI ,BI) having {PJ ,J ⊂ I finite} as family of finite dimensional distributions,
that is, PJ = P ◦ Π−1

J for any J ⊂ I finite.
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Proof of Theorem §2.3.11 is given in the lecture.

§2.3.12 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let {PJ ,J ⊂
I finite} be a consistent family of probability measures on the product space (SI ,B⊗I) as in
§2.2.9. Then there exists a stochastic process (Xt)t∈I whose family of finite dimensional distri-
butions is given by {PJ ,J ⊂ I finite}, that is, (Xt)t∈J ∼ PJ for any J ⊂ I finite.

Proof of Corollary §2.3.12 is given in the lecture.

§2.3.13 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let (Pi)i∈I
be a family of probability measures on (S,B). Then there exists the product measure

⊗
i∈I Pi

on the product space (SI ,B⊗I). In particular, there exists a familyX = (Xi)i∈I of independent
r.v.’s admitting the image probability measure PX =

⊗
i∈I Pi.

Proof of Corollary §2.3.13 is given in the lecture.

§2.3.14 Remark. Kolmogorov’s consistency theorem does not hold for general measure spaces
(S,S ). The Ionescu-Tulcea Theorem, however, shows the existence of the probability measure
on general measure spaces under a Markovian dependence structure, see e.g. Klenke [2008],
Theorem 14.32.

2.4 Adapted stochastic process and stopping times

In the sequel, the index set T is a subset of R, X = (Xt)t∈T is a stochastic process on
a probability space (Ω,A ,P) with state space (S,S ) and image probability measure PX on
(ST,S ⊗T).

§2.4.1 Definition. A family F = (Ft)t∈T of σ-algebras with Ft ⊂ A , t ∈ T, is called a
filtration if Fs ⊂ Ft for all s, t ∈ T with s 6 t. (Ω,A ,P,F ) is called filtered probability
space.

§2.4.2 Definition. A stochastic process X = (Xt)t∈T is called adapted to the filtration F =
(Ft)t∈T if Xt is Ft-measurable for all t ∈ T. If Ft = σ(Xs, s 6 t) for all t ∈ T, then we
denote by FX = σ(X) the natural filtration generated by X .

§2.4.3 Remark. Clearly, a stochastic process is always adapted to the natural filtration it gen-
erates. The natural filtration is the smallest filtration to which the process is adapted. Moreover,
F∞ =

∨
t∈T Ft.

§2.4.4 Definition. A stochastic processX = (Xn)n∈N0 is called predictable (or previsible) with
respect to a filtration F = (Fn)n∈N0 if X0 is constant (i.e. F0-measurable) and if, for every
n ∈ N, Xn is Fn−1-measurable. X is called an increasing process if it is a predictable process
of finite r.v.’s such that 0 = X0 6 X1 6 X2 6 . . . a.s. on Ω.

§2.4.5 Remark. It is important to note that for a predictable process and in particular for an
increasing process, not only, (Xn)n∈N0 but also the sequence (Xn+1)n∈N0 is adapted to the
filtration (Fn)n∈N0 .
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§2.4.6 Definition. A r.v. τ with values in T∪ {sup{T}} is called a stopping time (with respect
to the filtration F ) if for any t ∈ T, {τ 6 t} ∈ Ft, that is, if the process Xt := 1{τ6t} is
adapted.

§2.4.7 Proposition. Let T be countable, τ is a stopping time if and only if {τ = t} ∈ Ft for
all t ∈ T.

Proof of Proposition §2.4.7 is left as an exercise.

§2.4.8 Examples. (a) Let to ∈ T, then τ ≡ to (constant) is a stopping time where σ(τ) =
{∅,Ω}.

(b) Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration F = (Fn)n∈N0 . For
S ∈ S we call hitting time the first time that X is in S, that is,

τS(ω) :=

{
inf{n ∈ N0 : Xn(ω) ∈ S}, if ω ∈

⋃
n∈N0

X−1
n (S),

∞, otherwise

Then τS is a stopping time with respect to F . Note that τ∅ ≡ ∞ and τS ≡ 0.

§2.4.9 Lemma. Let τ and σ be stopping times. Then
(a) τ ∨ σ and τ ∧ σ are stopping times.

(b) If τ, σ > 0, then τ + σ is also a stopping time.

(c) If s ∈ R+, then τ + s is a stopping time. However, in general, τ − s is not.

Proof of Lemma §2.4.9 is left as an exercise.

§2.4.10 Remark. We note that (a) and (c) are properties we would expect of stopping times.
With (a), the interpretation is clear. For (c), note that τ − s peeks into the future by s time units
(in fact, {τ−s 6 t} ∈ Ft+s), while τ +s looks back s time units. For stopping times, however,
only retrospection is allowed.

§2.4.11 Example. Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration (Fn)n∈N0 .
For S1, S2 ∈ S let τS1 and τS2 be hitting times as in §2.4.8 (b), then τS1 > τS2 whenever
S1 ⊂ S2. In particular, it follows that τS1 ∧ τS2 > τS1∪S2 and τS1∩S2 > τS1 ∨ τS2 .

§2.4.12 Definition. Let τ be a stopping time. Then

Fτ := {A ∈ A : A ∩ {τ 6 t} ∈ Ft for any t ∈ T}

is called the σ-algebra of τ -past.

§2.4.13 Example. If τ ≡ to is a constant stopping time at t0 ∈ T, then Fτ = Ft0 .

§2.4.14 Lemma. If τ and σ are stopping times then (i) Fσ ∩ {σ 6 τ} ⊂ Fτ∧σ = Fτ ∩Fσ ,
(ii) Fτ = Ft on {τ = t} for all t ∈ T and (iii) Fτ∨σ = Fτ ∨Fσ. In particular, we see from
(i) that {σ 6 τ} ∈ Fσ ∩Fτ , that Fσ = Fτ on {σ = τ}, and that Fτ ⊂ Fσ whenever τ 6 σ.

Proof of Lemma §2.4.14 is given in the lecture.

§2.4.15 Definition. For a stopping time τ define Xτ (ω) := Xτ(ω)(ω) for all ω ∈ {τ < ∞} or
equivalently Xτ := Xt on {τ = t} for all t ∈ T .
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§2.4.16 Lemma. Let T be countable, let X be adapted and let τ be a stopping time. Then Xτ

is measurable with respect to Fτ . In particular, τ is Fτ -measurable.

Proof of Lemma §2.4.16 is given in the lecture.

§2.4.17 Remark. For uncountable T and for fixed ω, in general, the map T → S, t 7→ Xt(ω)
is not measurable; hence neither is the composition Xτ always measurable. Here one needs
assumptions on the regularity of the paths t 7→ Xt(ω); for example, right continuity (cf. Kallen-
berg [2002], Lemma 7.5, p.122).

§2.4.18 Corollary. Let T be countable, letX be adapted and let (τt)t∈T be a family of stopping
times with τt 6 τs < ∞, s, t ∈ T, t 6 s. Then the process (Xτt)t∈T is adapted to the filtration
(Fτt)t∈T. In particular, (Xτ∧t)t∈T is adapted to both filtration (Fτ∧t)t∈T and (Ft)t∈T .

Proof of Corollary §2.4.18 is given in the lecture.

§2.4.19 Definition. Let T be countable, let (Xt)t∈T be adapted and let τ be a stopping time.
We define the stopped process Xτ = (Xτ

t )t∈T by Xτ
t = Xτ∧t for any t ∈ T which is adapted to

both filtration F τ = (F τ
t )t∈T = (Fτ∧t)t∈T and F = (Ft)t∈T.
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Chapter 3

Martingale theory

3.1 Positive {super}martingales

In the following, let T ⊂ R be an index set, let F = (Ft)t∈T be a filtration and let
(Ω,A ,P,F ) be a filtered probability space. For a, b ∈ R, a < b, we denote by Ja, bK :=
[a, b] ∩ Z the set of all integers contained in the closed interval [a, b].

§3.1.1 Definition. Let X = (Xt)t∈T be a positive adapted stochastic process on a filtered prob-
ability space (Ω,A ,P,F ). X is called (with respect to F ) a

positive supermartingale if Xs > E(Xt|Fs) for all s, t ∈ T with t > s,

positive martingale if Xs = E(Xt|Fs) for all s, t ∈ T with t > s.
A Rd-valued adapted stochastic process X = ((X1

t , . . . , X
d
t ))t∈T on (Ω,A ,P,F ) is called a

positive {super}martingale if each coordinate process Xk = (Xk
t )t∈T is a positive

{super}martingale.

§3.1.2 Remark. (a) Clearly, for a supermartingale, we have E(Xr|Fs) > E(Xt|Fs) for all
s < r 6 t, i.e., (E(Xt|Fs))t>s decreases (point-wise), the map t 7→ E[Xt] is monotone
decreasing and for martingales it is constant.

(b) If T = N, T = N0 or T = Z, then it is enough to consider at each instant s only t =
s+ 1. In fact, by the tower property of the conditional expectation, we get E(Xs+2|Fs) >
E(E(Xs+1|Fs+1)|Fs) = E(Xs+1|Fs). Thus, if the defining inequality (or equality) holds
for any time step of size one, by induction it holds for all times.

(c) If we do not explicitly mention the filtration F , we tacitly assume that F = σ(X) is the
natural filtration generated by X .

(d) Let F and F
◦ be filtrations with Ft ⊂ F

◦
t for all t, and let X be a positive F

◦-
{super}martingale that is adapted to F . Then X is also a positive {super}martingale
with respect to the smaller filtration F . Indeed, for s < t and for the case of a super-
martingale, E(Xt|Fs) = E(E(Xt|F

◦
s )|Fs) 6 E(Xs|Fs) = Xs. In particular, a positive

F -{super}martingale X is always a {super}martingale with respect to its own natural
filtration σ(X).

§3.1.3 Theorem. (a) Let X and Y be positive {super}martingales and a, b > 0. Then (aX +
bY ) is a positive {super}martingale.

(b) Let X and Y be positive supermartingales. Then Z := X ∧ Y = (min(Xt, Yt))t∈T is a
positive supermartingale.

(c) If (Xn)n∈N is a positive supermartingale, E(Xk) > E(X1) for some k ∈ N, then (Xn)n∈J1,kK

is a positive martingale. If there exists a sequence kn ↑ ∞ with E(Xkn) > E(X1), n ∈ N,
then X is a positive martingale.
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(d) Let (Xn)n∈N and (Yn)n∈N be positive supermartingales and let τ be a stopping time such
that Xτ (ω) > Yτ (ω) for all ω ∈ {τ < ∞}. Then Z := (Xn1{n<τ} + Yn1{τ6n})n∈N0 is a
positive supermartingale.

Proof of Theorem §3.1.3 is given in the lecture.

§3.1.4 Proposition (Maximal inequality). Let (Xn)n∈N be a positive supermartingale. Then
supn∈NXn is a.s. finite on the set {X1 <∞} and satisfies for any number a > 0:

P(sup
n∈N

Xn > a|F1) := E
[
1{supn∈NXn>a}|F1

]
6 min(X1/a, 1).

Proof of Proposition §3.1.4 is given in the lecture.

§3.1.5 Remark. The last results still holds true when replacing the constant a by a positive,
F1-measurable r.v. A, that is, P

(
supn∈NXn > A|F1

)
6 min

(
X1

A
, 1
)

on the set {A > 0}.
Consequently:

(a) For any positive supermartingale (Xn)n∈N, any positive F1-measurable r.v. A such that
A 6 supn∈NXn it follows that 1 = P

(
supn∈NXn > A|F1

)
6 min

(
X1

A
, 1
)

and, hence
A 6 X1. In other words, X1 is the largest F1-measurable lower bound of supn∈NXn.

(b) More generally: supn∈J1,kKXn, k ∈ N, is the largest Fk-measurable lower bound of
supn∈NXn. Indeed, (supn∈J1,kKXn, Xk+1, Xk+2, . . . ) is a supermartingale adapted to the
filtration (Fk,Fk+1, . . . ) and, hence by employing Proposition §3.1.4 any positive Fk-
measurable r.v. A such that A 6 supn∈NXn satisfies A 6 supn∈J1,kKXn.

§3.1.6 Definition. Let (xn)n∈N be a sequence in R := R ∪ {∞}. For a, b ∈ R with a < b
defining inductively the integers τ0 := 1, σk := inf{n > τk : xn 6 a} and τk+1 := inf{n >
σk : xn > b}, k = 0, 1, 2, . . . , the number of upcrossing (aufsteigende Überquerungen) of the
interval [a, b] by the sequence (xn)n∈N is denoted by βa,b := sup{k > 1 : τk <∞}.

§3.1.7 Remark. Clearly, if lim infn→∞ xn < a < b < lim supn→∞ xn then βa,b =∞ which in
turn implies lim infn→∞ xn 6 a < b 6 lim supn→∞ xn. In other words, the sequence (xn)n∈N
in R is convergent if and only if βa,b <∞ for all a < b in R (or in Q).

§3.1.8 Lemma. For any sequence of real r.v.’s (Xn)n∈N and any a < b in R (or Q) the upcross-
ing numbers βa,b(ω) associated with each sequence (Xn(ω))n∈N define a r.v..
Proof of Lemma §3.1.8 is left as an exercise.

§3.1.9 Remark. Note that τk (and σk) as in §3.1.6 defines for each k = 0, 1, . . . a stopping
time since {τk = n} (and {σk = n}) depends only on {Xm,m 6 n} and, hence belongs to Fn.
In addition, τk 6 τk+1, k ∈ N.

§3.1.10 Lemma. A sequence of real r.v.’s (Xn)n∈N converges a.s. if and only if the upcrossing
numbers βa,b are finite a.s. for any a < b in R (or Q).
Proof of Lemma §3.1.10 is left as an exercise.

§3.1.11 Lemma (Dubin’s inequality). Let (Xn)n∈N be a positive supermartingale. For any
k ∈ N and any numbers 0 < a < b < ∞ the associated upcrossing numbers βa,b satisfy the
inequality

P
(
βa,b > k|F1

)
6
(
a/b
)k

min

(
X1

a
, 1

)
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The r.v.’s βa,b are hence a.s. finite.

Proof of Lemma §3.1.11 is given in the lecture.

§3.1.12 Remark. Note that, if (Xz)z∈Z is a positive supermartingale, then P
(
βa,b > k|F1

)
6(

a/b
)k

min
(

supz61Xz

a
, 1
)

.

§3.1.13 Theorem. Every positive supermartingale (Xn)n∈N converges a.s., i.e., Xn
a.s.−→ X∞.

Furthermore, the a.s. limit X∞ satisfies E[X∞|Fn] 6 Xn for all n ∈ N.

Proof of Theorem §3.1.13 is given in the lecture.

§3.1.14 Remark. (a) Since E[X∞|Fn] 6 Xn holds for all n ∈ N it follows that X∞ < ∞
a.s. on the complement of the event ∩n∈N{Xn =∞}. Indeed, for all n, X∞ is integrable
on each event {E[X∞|Fn] 6 a}, a ∈ R+ and hence finite on the event {E[X∞|Fn] <∞}.

(b) If (Xn)n∈N is an integrable positive supermartingale, that is, Xn ∈ L1 for all n ∈ N,
then E[X∞|Fn] 6 Xn implies X∞ ∈ L1. However, in general, an integrable positive
supermartingale does not converge to X∞ in L1.

(c) If (Xn)n∈N is a positive martingale, that is, Xn = E[Xn+1|Fn] a.s. for all n ∈ N, then by
Theorem §3.1.13 Xn

a.s.−→ X∞ and E[X∞|Fn] 6 Xn for all n ∈ N, where the inequality
does generally not become an equality. The next proposition provides a situation in which
this phenomena not arrives.

§3.1.15 Proposition. Let p ∈ [1,∞). For all Z ∈ L+
p := Lp ∩ M+ the stochastic process

(Zn)n∈N given by Zn := E[Z|Fn], n ∈ N, is a positive martingale which converges a.s. and in
Lp to Z∞ := E[Z|F∞] with F∞ :=

∨
n∈N Fn.

Proof of Proposition §3.1.15 is given in the lecture.

§3.1.16 Remark. (a) A positive martingale (Zn)n∈N as in §3.1.15 and its a.s.-limit Z∞ ver-
ify the equality Zn = E[Z∞|Fn] a.s. for all n ∈ N by employing that E[Z∞|Fn] =
E[E[Z|F∞]|Fn] = E[Z|Fn] = Zn.

(b) Let (Xn)n∈N be a positive martingale which converges in Lp, i.e., Xn
Lp−→ X∞. Then,

the equality Xn = E[Xm|Fn] a.s. for all m > n and the continuity of the conditional
expectation on Lp imply together that Xn = E[X∞|Fn] a.s. for all n ∈ N. Thereby,
Proposition §3.1.15 implies that the martingales of the form (E[Z|Fn])n∈N with Z ∈ L+

p

are exactly the positive martingales in Lp which converge in Lp as n → ∞. A positive
martingale (Xn)n∈N is called closable (abschließbar) in Lp, if there exists anX ∈ L+

p with
Xn = E[X|Fn], for all n ∈ N.

(c) Considering Z = Z+ − Z− allows to extend immediately the last proposition to a r.v.
Z ∈ Lp.

§3.1.17 Corollary. For any positive r.v. Z we have E[Z|Fn]
a.s.−→ E[Z|F∞] on the complement

of the event ∩n∈N{E[Z|Fn] =∞}.
Proof of Corollary §3.1.17 is left as an exercise.

§3.1.18 Remark. Note that in the preceding corollary integrability is not assumed. However,
the result cannot be improved. In Neveu [1975], p.31, for example, a r.v. Z is constructed
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which is F∞-measurable and a.s. finite such that E[Z|Fn] =∞ a.s. for all n ∈ N. In this case,

E[Z|Fn]
Lp−→ E[Z|F∞] = Z holds only on a negligible set.

§3.1.19 Lemma. For any positive {super}martingale (Xn)n∈N and for any stopping time τ , the
stopped process Xτ = (Xτ∧n)n∈N is a positive {super}martingale.
Proof of Lemma §3.1.19 is left as an exercise.

§3.1.20 Theorem (Optional stopping). Let (Xn)n∈N be a positive supermartingale and X∞ its
a.s.-limit. Then, for any stopping times τ and σ we have

Xτ > E[Xσ|Fτ ] a.s. on the event {τ 6 σ}.
Proof of Theorem §3.1.20 is given in the lecture.

§3.1.21 Remark. If (Xn)n∈N is a positive martingale, then the inequalityXτ > E[Xσ|Fτ ] does
generally not become an equality.

3.2 Integrable {super/sub}martingales

§3.2.1 Definition. Let X = (Xt)t∈T be an adapted stochastic process on a filtered probability
space (Ω,A ,P,F ) with Xt ∈ L1(Ω,A ,P) for all t ∈ T. X is called (with respect to F ) a

(integrable) supermartingale if Xs > E(Xt|Fs) for all s, t ∈ T with t > s,

(integrable) submartingale if Xs 6 E(Xt|Fs) for all s, t ∈ T with t > s,

(integrable) martingale if Xs = E(Xt|Fs) for all s, t ∈ T with t > s.
An Rd-valued adapted stochastic process X = ((X1

t , . . . , X
d
t ))t∈T is called an (integrable)

{super/sub}martingale if each coordinate processXk = (Xk
t )t∈T is an (integrable) {super/sub}

martingale.

§3.2.2 Remark. (a) The integrability assumption is often replaced by the weaker assumption
E(X+

t ) < ∞ for all t ∈ T. This generalisation is only helpful in case of a negative
submartingale (by changing the sign a positive supermartingale).

(b) The a.s. convergence of an integrable submartingale is essentially a corollary of The-
orem §3.1.13 which establishes the convergence for positive supermartingales with the
only difference, that any positive supermartingale converges a.s. but not every integrable
submartingale converges a.s..

§3.2.3 Lemma. Let M be a Rd-valued integrable martingale and consider a convex function
f : Rd → R such that X = f(M) is integrable. Then X is a submartingale. The statement
remains true for any real-valued integrable submartingale M , provided that f is also non-
decreasing.
Proof of Lemma §3.2.3 is left as an exercise.

§3.2.4 Remark. The last result is often applied with f(x) = ‖x‖pp, for some p > 1 or, for
d = 1, with f(x) = x+.

§3.2.5 Theorem. Every integrable submartingale (Xn)n∈N satisfying supn∈N E(X+
n ) < ∞

converges a.s., i.e., Xn
a.s.−→ X∞. Furthermore, the a.s. limit X∞ is integrable. In case of an

integrable martingale the condition supn∈N E(X+
n ) <∞ is equivalent to supn∈N ‖Xn‖1 <∞.
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Proof of Theorem §3.2.5 is given in the lecture.

§3.2.6 Remark. The decomposition Xn = Mn − An, n ∈ N, into a positive integrable mar-
tingale (Mn)n∈N and a positive integrable supermartingale (An)n∈N obtained in the proof of
Theorem §3.2.5 is called Krickeberg decomposition.

§3.2.7 Lemma. Let (Xn)n∈N be an integrable martingale and let τ be a bounded stopping time,
that is, τ 6 K for some K ∈ N. Then Xτ = E[XK |Fτ ] and in, particular E(Xτ ) = E(X1).
Assume that, more generally, (Xn)n∈N is only adapted and integrable. Then (Xn)n∈N is an
integrable martingale if and only if E(Xτ ) = E(X1) for any bounded stopping time τ .

Proof of Lemma §3.2.7 is given in the lecture.

§3.2.8 Definition. Let (Xn)n∈N0 be an adapted real-valued process and let (Hn)n∈N be a real-
valued predictable process as defined in §2.4.4. The discrete stochastic integral of H with
respect toX is the adapted stochastic processH•X = ((H•X)n)n∈N0 defined by (H•X)0 := 0
and (H • X)n :=

∑n
k=1 Hk(Xk − Xk−1) for n ∈ N. If X is a martingale, then H • X is also

called the martingale transform of X .

§3.2.9 Example. Let X be a (possibly unfair) game where Xn − Xn−1 is the gain per euro
in the nth round. We interpret Hn as the number of euros we bet in the nth game. H is then
a gambling strategy. Clearly, the value of Hn has to be decided at time n − 1; that is, before
the result of Xn is known. In other words, H must be predictable. Now assume that X is a
fair game (that is, a martingale) and H is locally bounded (that is, each Hn is bounded). From
E[Xn+1−Xn|Fn] = 0 follows that E[(H•X)n+1|Fn] = E[(H•X)n+Hn+1(Xn+1−Xn)|Fn] =
(H •X)n +Hn+1E[Xn+1−Xn|Fn] = (H •X)n. Thus H •X is a martingale. The next result
says that the converse also holds; that is, X is a martingale if, for sufficiently many predictable
processes, the stochastic integral is a martingale.

§3.2.10 Proposition. Let (Xn)n∈N0 be an adapted, real-valued process with X0 ∈ L1.
(a) X is an integrable martingale if and only if, for any locally bounded predictable process

H , the stochastic integral H •X is an integrable martingale.

(b) X is an integrable submartingale (supermartingale) if and only if H •X is an integrable
submartingale (supermartingale) for any locally bounded positive predictable process H .

Proof of Proposition §3.2.10 is given in the lecture.

§3.2.11 Remark. The preceding proposition says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to non-negative
gambling strategies, as we are in real life, a supermartingale) into a submartingale. Quite the
contrary is suggested by the many invitations to play all kinds of “sure winning systems” in
lotteries.

3.3 Regular integrable martingale

§3.3.1 Proposition. For every integrable martingale (Xn)n∈N on a filtered probability space
(Ω,A ,P,F ) the following conditions are equivalent

(i) The sequence (Xn)n∈N converges in L1 as n→∞;
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(ii) supn∈N ‖Xn‖1 < ∞ and the a.s. limit X∞ = limn→∞Xn of the martingale which exists
in L1 due to Theorem §3.2.5 satisfies the equalities Xn = E[X∞|Fn] for all n ∈ N;

(iii) The martingale is closable, that is, there exists a r.v. X ∈ L1(Ω,A ,P) such that Xn =
E[X|Fn] for all n ∈ N;

(iv) The sequence (Xn)n∈N is uniformly integrable in L1(Ω,A ,P), that is,
lima→∞ supn∈N E

(
1{|Xn|>a}|Xn|

)
= 0 which is satisfied whenever supn∈N ‖Xn‖1 ∈ L1.

The integrable martingale (Xn)n∈N will be called regular if it satisfies one of these equivalent
conditions.

Proof of Proposition §3.3.1 is given in the lecture.

§3.3.2 Corollary. Let (Xn)n∈N be a regular integrable martingale. (i) For every stopping
time τ , the r.v. Xτ is integrable. (ii) The family {Xτ ; τ is a finite stopping time} is uniformly
integrable. (iii) For every pair of stopping times τ, σ such that τ 6 σ a.s., the “martingale
equality” Xτ = E[Xσ|Fτ ] is also satisfied.

Proof of Corollary §3.3.2 is given in the lecture.

§3.3.3 Remark. For a regular integrable martingale the limit X∞ = limn→∞Xn exists a.s. and
the r.v. Xτ (resp. Xσ) by definition equals X∞ on {τ =∞} (resp. {σ =∞}). Since τ ∧σ 6 σ
a.s. the corollary implies Xτ∧σ = E[Xσ|Fτ∧σ]. Furthermore E[Xσ|Fτ ] = E[Xσ|Fτ∧σ], and
hence, for any stopping time τ, σ we have Xτ∧σ = E[Xσ|Fτ ]. Indeed, for all A ∈ Fτ we have

E[E[Xσ|Fτ ]1A] = E[Xσ1A] = E[Xσ1A ∩ {τ 6 σ}︸ ︷︷ ︸
∈Fτ∧σ

] + E[Xσ1A ∩ {τ > σ}︸ ︷︷ ︸
∈Fτ∧σ

]

= E[E[Xσ|Fτ∧σ]1A∩{τ6σ}] + E[Xτ∧σ1A∩{τ>σ}]

= E
[{

E[Xσ|Fτ∧σ]1{τ6σ} +Xτ∧σ1{τ>σ}
}
1A

]
Thereby, E[Xσ|Fτ ] = E[Xσ|Fτ∧σ]1{τ6σ} + Xτ∧σ1{τ>σ} is Fτ∧σ-measurable, which in turn
implies, E[Xσ|Fτ ] = E

[
E[Xσ|Fτ ]|Fτ∧σ] = E[Xσ|Fτ∧σ] by employing that Fτ∧σ ⊂ Fτ .

§3.3.4 Proposition. Every martingale (Xn)n∈N which is bounded in Lp for some p > 1 in the
sense that supn∈N ‖Xn‖p < ∞, is regular. Furthermore, the martingale converges in Lp to an
a.s. limit X∞.

Proof of Proposition §3.3.4 is given in the lecture.

§3.3.5 Remark. The last proposition is false for p = 1.

§3.3.6 Lemma. Every positive and integrable submartingale (Xn)n∈N satisfies the inequalities
aP(supm∈J1,nKXm > a) 6 E

(
1{supm∈J1,nK Xm>a}Xn

)
for all n ∈ N and all a > 0.

Proof of Lemma §3.3.6 is given in the lecture.

§3.3.7 Proposition. For every martingale (Xn)n∈N which is bounded in Lp for some p > 1 the
r.v. supn∈N|Xn| belongs to Lp and satisfies ‖supn∈N|Xn|‖p 6

p
p−1

supn∈N ‖Xn‖p.
Proof of Proposition §3.3.7 is given in the lecture.
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§3.3.8 Remark. The last proposition is false for p = 1. However, for every martingale (Xn)n∈N
satisfying the condition supn∈N E

[
|Xn|

(
log |Xn|

)
+

]
<∞, the r.v. supn∈N|Xn| is integrable and

the martingale (Xn)n∈N is therefore regular (c.f. Neveu [1975], Proposition IV-2-10, p.70).

The concepts of filtration and martingale do not require the index set T (interpreted as time)
to be a subset of [0,∞). Hence we can consider the case T = −N0.

§3.3.9 Definition. Let (Fn)n∈−N0 be a filtration where F−n−1 ⊂ F−n, n ∈ N0 and let
(Xn)n∈−N0 be an integrable martingale with respect to (Fn)n∈−N0 , that is, X−n ∈ L1, X−n
is F−n-measurable and E[X−n|F−n−1] = X−n−1 hold for all n ∈ N0. Then X = (X−n)n∈N0

is called an (integrable) backwards martingale.

§3.3.10 Remark. A backwards martingale is always uniformly integrable and hence regular.
This follows from Corollary §1.6.13 and the fact that X−n = E[X0|F−n] for any n ∈ N0.

§3.3.11 Proposition. Let (X−n)n∈N0 be a backward martingale with respect to (F−n)n∈N0 .
Then there exists X−∞ = limn→∞X−n a.s. and in L1. Furthermore, X−∞ = E[X0|F−∞]
where F−∞ = ∩∞n=1F−n is called terminal or tail σ-algebra.

Proof of Proposition §3.3.11 is given in the lecture.

§3.3.12 Example (Kolmogorov’s strong law of large numbers). Let (Xn)n∈N be a sequence of
i.i.d. real-valued r.v.’s in L1, then n−1

∑n
k=1 Xk

n→∞−→ E(X1) a.s. and in L1.

3.4 Regular stopping times for an integrable martingale

§3.4.1 Lemma. Let (Xn)n∈N be an integrable {super/sub}martingale. For every stopping time
τ , the stopped process Xτ = (Xτ

n)n∈N with Xτ
n := Xτ∧n for any n ∈ N is again an integrable

{super/sub}martingale.

Proof of Lemma §3.4.1 is left as an exercise.

§3.4.2 Definition. A stopping time τ is called regular for an integrable martingale (Xn)n∈N if
the stopped process Xτ = (Xτ

n)n∈N is regular.

§3.4.3 Proposition. For every integrable martingale (Xn)n∈N on a filtered probability space
(Ω,A ,P,F ) and for every stopping time τ the following conditions are equivalent

(a) the stopping time is regular;

(b) the stopping time satisfies the following conditions: (i) the limit X∞ = limn→∞Xn exists
a.s. on {τ =∞}; (ii) the r.v. Xτ which is defined a.s., is integrable and (iii) Xτ∧n =
E[Xτ |Fn] a.s. for all n ∈ N.

(c) the stopping time satisfies the following conditions: (i) (Xn1{τ>n})n∈N is a uniformly
integrable sequence and (ii) E(1{τ<∞}|Xτ |) <∞.

Proof of Proposition §3.4.3 is given in the lecture.

§3.4.4 Remark. Condition (c) (ii) is automatically satisfied by every martingale (Xn)n∈N such
that supn∈N E|Xn| <∞, in particular by every positive integrable martingale (E|Xn| = EXn =
EX1).
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§3.4.5 Proposition. Let τ be a regular stopping time. For every pair σ1, σ2 of stopping times
such that σ1 6 σ2 6 τ , for such such a pair the r.v.’s Xσ1 and Xσ2 both exist, are integrable,
and satisfy the “martingale identity” Xσ1 = E[Xσ2|Fσ1 ] a.s..

Proof of Proposition §3.4.5 is given in the lecture.

§3.4.6 Corollary. Let τ and σ be two stopping times such that τ 6 σ a.s.. For a given martin-
gale (Xn)n∈N the stopping time τ is regular whenever the stopping time σ is regular.

Proof of Corollary §3.4.6 is given in the lecture.

§3.4.7 Remark. Corollary §3.4.6 shows in particular that for a regular martingale, every stop-
ping time is regular (take σ = +∞). On the other hand, for an integrable martingale every
constant stopping time is regular, and hence, by Corollary §3.4.6 every bounded stopping time
is regular too.

§3.4.8 Corollary. For every martingale (Xn)n∈N such that supn∈N E|Xn| < ∞, in particular
for every positive and integrable martingale, the hitting time τa defined by τa := inf{n ∈ N :
|Xn| > a} is regular for all a > 0.

Proof of Corollary §3.4.8 is given in the lecture.

§3.4.9 Proposition. Let (Xn)n∈N be an integrable martingale. In order that the stopping time
τ be regular for this martingale and that also limn→∞Xn = 0 a.s. on {τ =∞}, it is neces-
sary and sufficient that the following two conditions be satisfied: (i) E1{τ<∞}|Xτ | < ∞ and
(ii) limn→∞ E1{τ>n}|Xn| = 0.

Proof of Proposition §3.4.9 is given in the lecture.

§3.4.10 Example (Wald identity). Let (Xn)n∈N be a sequence of i.i.d. real-valued r.v.’s defined
on a filtered probability space (Ω,A ,P,FX) with natural filtration FX . Assuming further that
X1 ∈ L2 the processes (Sn − nEX1)n∈N with Sn :=

∑n
i=1Xi, n ∈ N, and ((Sn − nEX1)2 −

nVarX1)n∈N are integrable martingales which are not regular since they diverge a.s. when
n → ∞. However, every stopping time τ such that E(τ) < ∞ is regular for each of the
two martingales (Sn − nEX1)n∈N and ((Sn − nEX1)2 − nVarX1)n∈N. Such a stopping time
satisfies the Wald identities (i) E(Sτ ) = E(τ)E(X1) and (ii) E[Sτ−τE(X1)]2 = E(τ)Var(X1).
Moreover, if in addition E(τ 2) <∞ then Var(Sτ ) = Var(τ)(EX1)2 + E(τ)Var(X1).

3.5 Regularity of integrable submartingales

The study of integrable martingales can be very easily extended to integrable submartingales
by using the Krickeberg decomposition of such submartingales.

§3.5.1 Proposition. For every integrable submartingale (Xn)n∈N, the following conditions are
equivalent:

(a) The sequence (X+
n )n∈N converges in L1;

(b) supn∈N EX+
n < ∞ and the a.s. limit X∞ = limn→∞Xn of the submartingale (Xn)n∈N

which exists and is integrable by Theorem §3.2.5, satisfies the inequalitiesXn 6 E[X∞|Fn]
a.s. for all n ∈ N;

(c) There exists an integrable r.v. Y such that Xn 6 E[Y |Fn] for all n ∈ N;
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(d) The sequence (X+
n )n∈N satisfies the uniform integrability condition

lim
a→∞

sup
n∈N

E1{X+
n >a}X

+
n = 0

which holds particularly if E supn∈NX
+
n <∞.)

The integrable submartingale (Xn)n∈N is said to be regular if it satisfies the preceding equiva-
lent conditions.

Proof of Proposition §3.5.1 is given in the lecture.

§3.5.2 Remark. For a negative integrable submartingale (i.e., for a positive integrable super-
martingale with its sign changed), the conditions of the proposition hold trivially. Observe that
such a submartingale does not converge in mean, although it always converge a.s., and the con-
dition (a) of the preceding proposition is strictly less restrictive than the convergence of the
submartingale in L1. On the other hand it is clear that for a positive submartingale condition (a)
gives L1-convergence of the submartingale.

§3.5.3 Corollary. For every regular submartingale (Xn)n∈N and for every stopping time τ ,
the r.v. Xτ is integrable; for every pair τ1, τ2 of stopping times such that τ1 6 τ2 a.s., the
submartingale inequality Xτ1 6 E[Xτ2 |Fτ1 ] remains true a.s..

Proof of Corollary §3.5.3 is given in the lecture.

§3.5.4 Remark. Finally, it is straightforward to extend the regularity of stopping times as given
in Proposition §3.4.3 and §3.4.5 to integrable submartingales. The only changes required in the
statement of this proposition consist in replacing the word “martingales” by “submartingales”
and writing the inequalities Xτ∧n 6 E[Xτ |Fn] and Xσ1 6 E[Xσ2|Fσ1 ] instead of the corre-
sponding equalities.

3.6 Doob decomposition and square variation

The introduction of the notion of predictable and increasing process as defined in §2.4.4
allows to effect decompositions of {super/sub}martingales. As before, we take once and for all
a filtered probability space (Ω,A ,P,F ). Let X = (Xn)n∈N0 be an adapted integrable process.
We will decompose X into a sum consisting of an integrable martingale and a predictable
process. To this end, define M0 := X0, A0 := 0, Mn := X0 +

∑n
k=1

(
Xk − E[Xk|Fk−1]

)
and

An :=
∑n

k=1

(
E[Xk|Fk−1] −Xk−1

)
for n ∈ N. Evidently, Xn = Mn + An. By construction,

Mn −Mn−1 = Xn − E[Xn|Fn−1] and An − An−1 = E[Xn|Fn−1] − Xn−1, for n ∈ N, and,
hence A is predictable with A0 = 0, and M is a martingale since E[Mn − Mn−1|Fn−1] =
E[Xn − E[Xn|Fn−1]|Fn−1] = 0.

§3.6.1 Proposition (Doob decomposition). Let X = (Xn)n∈N0 be an adapted integrable pro-
cess. Then there exists a unique decomposition X = M + A, where A is predictable with
A0 = 0 and M is a martingale. This representation of X is called the Doob decomposition. X
is a submartingale if and only if A is an increasing process.

Proof of Proposition §3.6.1 is given in the lecture.

§3.6.2 Proposition. Let X := (Xn)n∈N0 be an integrable submartingale and let X = M + A
be its Doob decomposition.
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(a) The condition supn∈N0
EX+

n < ∞ (which suffices to ensure a.s. convergence of the sub-
martingale) is equivalent to the conjunction of the two conditions (i) A∞ ∈ L1 and
(ii) supn∈N0

E(|Mn|) <∞.

(b) The convergence in L1 of the submartingale X is equivalent to the conjunction of the two
conditions (i) M is a regular martingale and (ii) A∞ ∈ L1.

(c) For every stopping time τ regular for the martingale M , the r.v. Xτ is integrable if and
only if EAτ <∞, and then EXτ = EM0 + EAτ .

Proof of Proposition §3.6.2 is given in the lecture.

§3.6.3 Example. Let (Xn)n∈N0 be a square integrable F -martingale, i.e., Xn ∈ L2(Ω,A ,P)
for all n ∈ N0. By Lemma §3.2.3, (X2

n)n∈N0 is a submartingale. Furthermore, E[Xi−1Xi|Fi−1] =
Xi−1E[Xi|Fi−1] = X2

i−1, hence considering the Doob decomposition of (X2
n)n∈N0 we find

A0 = 0 and for n ∈ N,

An =
n∑
i=1

(
E[X2

i |Fi−1]−X2
i−1

)
=

n∑
i=1

(
E[(Xi −Xi−1)2|Fi−1]− 2X2

i−1 + 2E[Xi−1Xi|Fi−1]
)

=
n∑
i=1

E[(Xi − Xi−1)2|Fi−1].

§3.6.4 Definition. Let (Xn)n∈N0 be a square integrable F -martingale. The unique increasing
process A for which (X2

n−An)n∈N0 becomes a martingale is called square variation process of
X and is denoted by 〈X〉 := (〈X〉n)n∈N0 := A.

§3.6.5 Proposition. Let X be as in Definition §3.6.4. Then, for n ∈ N, 〈X〉n =
∑n

i=1 E[(Xi −
Xi−1)2|Fi−1] and E〈X〉n = Var(Xn −X0).

Proof of Proposition §3.6.5 is given in the lecture.

§3.6.6 Example. Let X1, X2, . . . be independent, square integrable r.v.’s. If E(Xn) = 0, for all
n ∈ N, then Sn :=

∑n
i=1Xi defines a square integrable martingale with respect to the filtration

(σ(X1, . . . , Xn))n∈N and we find 〈S〉n =
∑n

i=1 E[X2
i |σ(X1, . . . , Xi−1)] =

∑n
i=1 E[X2

i ]. Note
that in order for 〈S〉 to have this simple form, it is not enough for the r.v.’s X1, X2, . . . to be
uncorrelated. On the other hand, if E(Xn) = 1, for all n ∈ N, then Pn :=

∏n
i=1Xi defines

a square integrable martingale with respect to the natural filtration F = σ(P ) and E[(Pn −
Pn−1)2|Fn−1] = E[(Xn−1)2P 2

n−1|Fn−1] = Var(Xn)P 2
n−1. Hence, 〈P 〉n =

∑n
i=1 Var(Xi)P

2
i−1

which is a truly random process.

§3.6.7 Lemma. Let X = (Xn)n∈N0 be a square integrable martingale with square variation
process 〈X〉, and let τ be a stopping time. Then the stopped process Xτ has square variation
process 〈Xτ 〉 = 〈X〉τ = (〈X〉τ∧n)n∈N0 .

Proof of Lemma §3.6.7 is given in the lecture.

§3.6.8 Proposition. Let X := (Xn)n∈N0 be a square integrable martingale with X0 = 0.

26 Probability theory II



3.6 Doob decomposition and square variation Chapter 3 Martingale theory

(a) If E〈X〉∞ <∞, then the martingale X converges in L2 and, hence X is regular; further,
E(supn∈N0

X2
n) 6 4E〈X〉∞ <∞.

(b) A stopping time τ is regular for the martingale X whenever E
√
〈X〉τ < ∞ and then

E supn∈J0,τK |Xn| 6 3E
√
〈X〉τ <∞.

(c) in every case the martingale X converges a.s. to a finite limit on the event {〈X〉∞ <∞}.
Proof of Proposition §3.6.8 is given in the lecture.

§3.6.9 Corollary. Let X := (Xn)n∈N0 be a square integrable martingale with square variation
process 〈X〉. Then the following four statements are equivalent: (i) supn∈N0

E(X2
n) < ∞,

(ii) limn→∞ E(〈X〉n) <∞, (iii) X converges in L2, and (iv) X converges almost surely and in
L2.

Proof of Corollary §3.6.9 is given in the lecture.

§3.6.10 Proposition. If X is a square integrable martingale, then for any α > 1/2,

(Xn −X0)/(〈X〉n)α
n→∞−→ 0 a.s. on {〈X〉∞ =∞}.

Proof of Proposition §3.6.10 is given in the lecture.

§3.6.11 Example. Let X1, X2, . . . be independent, square integrable r.v.’s. Consider S0 := 0
and Sn :=

∑n
i=1(Xi−EXi), n ∈ N, then 〈S〉n =

∑n
i=1 Var(Xi) and by Proposition §3.6.10 for

any α > 1/2 we have Sn/(
∑n

i=1 Var(Xi))
α a.s.−→ 0 whenever

∑∞
i=1 Var(Xi) = ∞. In particu-

lar, if (Xn)n∈N is a sequence of i.i.d. square integrable r.v.’s, then Sn/nα
a.s.−→ 0. On the other

hand, if (an)n∈N is an increasing and diverging sequence in R, then for any sequence (yn)n∈N in
R such that

∑∞
n=1 yn/an < ∞ by Kronecker’s Lemma holds a−1

n

∑n
i=1 yi

n→∞−→ 0. Thereby, if∑∞
i=1 Var(Xi)/a

2
i < ∞, then by Corollary §3.6.9 the martingale (

∑n
i=1(Xi − E(Xi))/ai)n∈N

converges a.s. to a finite limit and, hence due to Kronecker’s Lemma a−1
n

∑n
i=1(Xi−EXi)

a.s.−→
0. In case of i.i.d. r.v.’s we find n−1

∑n
i=1(Xi − EXi)

a.s.−→ 0.
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Chapter 4

Markov chains

4.1 Time-homogeneous Markov chain

In this chapter X = (Xn)n∈N0 denotes a time-homogeneous Markov chain with at most
countable state space (S,S ) and transition matrix P = (Pij)i,j∈S as introduced in Section
2.1.2. Considering the transition matrix P and an initial (discrete) probability measure µ on
(S,S )

PJ0,nK(B0 × · · · ×Bn) :=
∑
j0∈B0

µ({j0})
∑
j1∈B1

Pj0,j1 · · ·
∑
jn∈Bn

Pjn−1,jn , for B0, B1, . . . ∈ S

defines a consistent family {PJ ,J ⊂ N0 finite} of probability measures on the product space
(SN0 ,S ⊗N0) which determines by Kolmogorov’s consistency theorem §2.3.11 a probability
measure Pµ on (SN0 ,S ⊗N0). The Markov chain X = (Xn)n∈N0 realised as a coordinate pro-
cess, i.e., Xn = Πn : SN0 → S , (jm)m∈N0 7→ Πn((jm)m∈N0) = jn as defined in §2.2.3,
admits then as image probability measure Pµ, that is, for B0, B1, . . . in S we have Pµ(X0 ∈
B0, . . . , Xn ∈ Bn) = PJ0,nK(B0 × · · · × Bn) and evidently Pµ(X0 ∈ B0) = µ(B0). When
µ = δj , a point mass at j ∈ S, we use Pj as an abbreviation for Pδj where for every initial
probability measure µ and for every A ∈ S ⊗N0 holds Pµ(A) =

∑
j∈S Pj(A)µ({j}).

§4.1.1 Definition. A stochastic processX = (Xn)n∈N0 with values in an at most countable state
space (S,S ) is called a time-homogeneous Markov chain with family of probability measures
(Pj)j∈S on (SN0 ,S ⊗N0), if

(i) For every j ∈ S, (Xn)n∈N0 is a stochastic process on the probability space (SN0 ,S ⊗N0 ,Pj)
with Pj(X0 = j) = 1.

(ii) The map κ : S × S ⊗N0 → [0, 1], (j, A) 7→ Pj(A) is a stochastic kernel (a regular
conditional distribution). For every n ∈ N0, the map κn : S × S → [0, 1], (j, B) 7→
κ(j,Π−1

n (B)) = Pj(Xn ∈ B) is a stochastic kernel and the n-step transition matrix
(P n

ij)i,j∈S of X is given by P n
ij = κn(i, {j}) = Pi(Xn = j).

(iii) X = (Xn)n∈N0 has w.r.t. the natural filtration F = (Fn)n∈N0 with Fn = σ(X0, . . . , Xn)
the time-homogeneous Markov property: For every i, j ∈ S and all m,n ∈ N0 we have
Pi[Xn+m = j|Fm] = κn(Xm, {j}) = PXm(Xn = j) = P n

Xmj
, Pi-a.s..

We write Ej for expectation with respect to Pj , Lj(X) = Pj , Lj(X|A ) = Pj[X ∈ •|A ] for
a regular conditional distribution of X given A and Ej[f(X)|A ] for a conditional expectation
of f(X) given A . In particular, we use the notation PXk = κ(Xk, •), that is, we understand
Xk as the initial value of a second Markov chain with the same family of probability measures
(Pj)j∈S .

§4.1.2 Remark. The existence of the family (κn)n∈N0 of stochastic kernels implies the exis-
tence of the kernel κ (cf. Klenke [2008], Theorem 17.8, p.347). Thus, a time-homogeneous
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Markov chain is simply a stochastic process with the Markov property and for which the tran-
sition probabilities are time-homogeneous.

§4.1.3 Definition. Let T ⊂ R be a set that is closed under addition (for example, T = N0). The
shift operator ϑ : ST → ST is given by (xt)t∈T 7→ ϑ((xt)t∈T) := (xt+1)t∈T and, for s ∈ T,
ϑs : ST → ST is given by (xt)t∈T 7→ ϑs((xt)t∈T) = (xt+s)t∈T .

§4.1.4 Property (Klenke [2008], Theorem 17.9, p.348, Corollary 17.10, p.349). A stochastic
processX = (Xn)n∈N0 is a time-homogeneous Markov chain if and only if for every n ∈ N0 and
j ∈ S , Lj[ϑn(X)|Fn] = LXn(X) = PXn if and only if there exists a stochastic kernel κ : S ×
S ⊗N0 → [0, 1] such that, for every bounded S ⊗N0-measurable function f : SN0 → R and for
every n ∈ N0 and j ∈ S, we have Ej[f(ϑn(X))|Fn] = EXn [f(X)] :=

∫
SN0 κ(Xn, dx)f(x).

§4.1.5 Definition. A time-homogeneous Markov chain X = (Xn)n∈N0 with family of prob-
ability measures (Pj)j∈S has the strong Markov property if, for every a.s. finite stopping
time τ , and every j ∈ S , Lj[ϑτ (X)|Fτ ] = LXτ (X) := κ(Xτ , •) or equivalently for every
bounded S ⊗N0-measurable function f : SN0 → R we have Ej[f(ϑτ (X))|Fτ ] = EXτ [f(X)] :=∫
SN0 κ(Xτ , dx)f(x).

§4.1.6 Lemma. Every time-homogeneous Markov chain X = (Xn)n∈N0 has the strong Markov
property.

Proof of Lemma §4.1.6 is given in the lecture.

4.2 Markov chains: recurrence and transience

§4.2.1 Definition. For i, j ∈ S, k ∈ N introduce the k-th time of return to j recursively by
τ kj := inf

{
n > τ k−1

j |Xn = j
}

and τ 0
j := 0. We set further τj := τ 1

j and ρij := Pi(τj <∞).

§4.2.2 Remark. Note that ρij = Pi(there is an k > 1 with Xk = j) is the probability of ever
going from i to j. In particular, if ρij > 0 then there exists a k ∈ N such that Pi(Xk = j) =
P k
ij > 0. Moreover, ρjj is the return probability (after the first jump) from j to j. Note that
τ 1
j > 0 even if we start the chain at X0 = j.

§4.2.3 Definition. A state j ∈ S is called (i) recurrent if ρjj = 1, (ii) positive recurrent if
Ej(τj) < ∞, (iii) null recurrent if j is recurrent but not positive recurrent, (iv) transient if
ρjj < 1, and (v) absorbing, if Pjj = 1. The Markov chain X is called {positive/null} recurrent
if every state j ∈ S is {positive/null} recurrent and is called transient if every recurrent state is
absorbing.

§4.2.4 Remark. Clearly, we have: “absorbing”⇒ “positive recurrent”⇒ “recurrent”.

§4.2.5 Lemma. For k ∈ N and i, j ∈ S we have Pi(τ kj <∞) = ρijρ
k−1
jj .

Proof of Lemma §4.2.5 is given in the lecture.

§4.2.6 Definition. For i, j ∈ S denote by Nj :=
∑∞

n=0 1{Xn=j} the total number of visits of X
to state j and by Gij = Ei[Nj] =

∑∞
n=0 Pi(Xn = j) =

∑∞
n=0 P

n
ij the Green function of X .

§4.2.7 Lemma. (i) A state j ∈ S is recurrent if and only if Gjj =∞;
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(ii) If a state j ∈ S is transient then for all i ∈ S, Gij <∞ with

Gij =

{
ρij

1−ρjj , if i 6= j
1

1−ρjj , if i = j

}
=

ρij
1− ρjj

+ 1{i=j}.

Proof of Lemma §4.2.7 is given in the lecture.

§4.2.8 Proposition. If a state i ∈ S is recurrent and ρij > 0, j ∈ S , then the state j is
recurrent, and ρij = ρji = 1.

Proof of Proposition §4.2.8 is given in the lecture.

§4.2.9 Definition. A subset B ⊂ S of states is closed if ρij = 0 holds for all i ∈ B and
j ∈ Bc = S\B. A subset B ⊂ S is irreducible if ρij > 0 holds for all i, j ∈ B. If the state
space S is irreducible then the Markov chain is called irreducible.

§4.2.10 Corollary. A irreducible Markov chain is either recurrent or transient. If |S| > 2, then
there is no absorbing state.

Proof of Corollary §4.2.10 The result is an immediate consequence of Proposition §4.2.8.

§4.2.11 Proposition. For an irreducible Markov chain on a finite state space S all states are
recurrent.

Proof of Proposition §4.2.11 is given in the lecture.

4.3 Invariant distributions

In the following, let P = (Pij)i,j∈S be a transition matrix on a countable state space S and
let (Xn)n∈N0 be a corresponding Markov chain.

§4.3.1 Definition. If µ is a measure on (S,S ) and f : S → R is a map, then we write
µP ({j}) =

∑
i∈S µ({i})Pij and Pf(i) =

∑
j∈S Pijf(j) if the sums converge.

§4.3.2 Definition. (i) A σ-finite measure µ on (S,S ) is called an invariant measure if µP =
µ. A probability measure that is an invariant measure is called an invariant distribution.
Denote by I the set of invariant distributions.

(ii) A function f : S → R is called subharmonic if Pf exists and if f 6 Pf . f is called
superharmonic if f > Pf and harmonic if f = Pf .

§4.3.3 Remark. In the terminology of linear algebra, an invariant measure is a left eigenvector
of P corresponding to the eigenvalue 1. A harmonic function is a right eigenvector correspond-
ing to the eigenvalue 1.

§4.3.4 Lemma. If f is bounded and {sub/super}harmonic, then (f(Xn))n∈N0 is a {sub/super}
martingale with respect to the natural filtration F = σ(X) generated by X .

Proof of Lemma §4.3.4 is given in the lecture.

§4.3.5 Proposition. If X is transient, then an invariant distribution does not exist.

Proof of Proposition §4.3.5 is given in the lecture.
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§4.3.6 Theorem. Let j be a recurrent state and let τj = inf {n > 0 : Xn = j}. Then one
invariant measure µj is defined by

µj({i}) = Ej
( τj−1∑
n=0

1{Xn=i}
)

=
∞∑
n=0

Pj(Xn = i; τj > n).

Proof of Theorem §4.3.6 is given in the lecture.

§4.3.7 Corollary. IfX is positive recurrent, then π := µj[Ej(τj)]−1 is an invariant distribution
for any j ∈ S.

Proof of Corollary §4.3.7 is given in the lecture.

§4.3.8 Theorem. If X is irreducible, then X has at most one invariant distribution.

Proof of Theorem §4.3.8 is given in the lecture.

§4.3.9 Remark. One could in fact show that if X is irreducible and recurrent, then an invariant
measure ofX is unique up to a multiplicative factor (see Durrett [1996], Theorem 5.4.4). On the
other hand, for transient X , there can be more than one invariant measure (see Klenke [2008],
Remark 17.50).

Recall that I is the set of invariant distributions of X .

§4.3.10 Theorem. Let X be irreducible. X is positive recurrent if and only if I 6= ∅. In this
case, I = {π} with π({j}) =

[
Ej(τj)

]−1
> 0 for all j ∈ S.

Proof of Theorem §4.3.10 is given in the lecture.

§4.3.11 Corollary. If X is irreducible, then the following statements are equivalent: (i) There
exists a positive recurrent state. (ii) There exists a invariant distribution. (iii) All states are
positive recurrent.

Proof of Corollary §4.3.11 is given in the lecture.
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Ergodic theory

5.1 Stationary and ergodic processes

Ergodic theory is the study of laws of large numbers for possibly dependent, but stationary,
random variables.

§5.1.1 Definition. Let T ⊂ R be a set that is closed under addition (e.g., T ∈ {N0,Z,R+,R})
and ϑ be the shift operator as defined in §4.1.3. A stochastic process X = (Xt)t∈T is called
stationary if Pϑt(X) = PX for all t ∈ T.

§5.1.2 Remark. If T = N then Pϑn(X) = PX for all n ∈ N is equivalent to Pϑ(X) = PX .

§5.1.3 Example. (i) If X = (Xt)t∈T is i.i.d., then X is stationary. Dismissing the indepen-
dence assumption, i.e., PXt = PX0 holds for every t ∈ T, in general X is not stationary.
For example, consider T = N0 and X1 = X2 = X3 = . . . but X0 6= X1. Then X is not
stationary.

(ii) Let X be a Markov chain with invariant distribution π. If π is the initial probability
measure, i.e., Pπ is the distribution of X , then X is stationary.

(iii) Let X = (Xn)n∈Z be i.i.d. real r.v.’s and let c1, . . . , ck ∈ R. Then Yn :=
∑k

l=1 clXn−l,
n ∈ Z, defines a stationary process Y that is called the moving average with weights
c1, . . . , ck. In fact, Y is stationary if only X is stationary.

In the sequel, assume that (Ω,A ,P) is a probability space and T : Ω → Ω is a measurable
map.

§5.1.4 Definition. T is called measure preserving (maßerhaltend) if PT (A) = P(T−1(A)) =
P(A) holds for allA ∈ A . In this case (Ω,A ,P, T ) is called a (measure preserving) dynamical
system.

§5.1.5 Example. Let (S,B(S)) be a Polish space equipped with its Borel-σ-algebra.
(i) For a S-valued r.v. Y and a measure preserving map T on a probability space (Ω,A ,P)

the process Xn(ω) := Y (T n(ω)), n ∈ N0, is stationary.

(ii) Let X = (Xn)n∈N0 be the coordinate process on (Ω,A ,P) = (SN0 ,B(S)⊗N0 ,P). If ϑ
is the shift operator as defined in §4.1.3, then Xn(ω) = X0(ϑn(ω)). X is stationary if
and only if (Ω,A ,P, ϑ) is a dynamical system. Moreover, if X is stationary and Y is a
S-valued r.v. on (Ω,A ,P), then Yn = Y (ϑn(X)) is stationary.

§5.1.6 Definition. An event A ∈ A is called strictly invariant if T−1(A) = A and (almost)
invariant if 1T−1(A) = 1A P-a.s., that is P(T−1(A)∆A) = 0. The σ-algebra of all (almost)
invariant events is denoted by IT .
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Recall that a σ-algebra A is called P-trivial if P(A) ∈ {0, 1} for every A ∈ A .

§5.1.7 Definition. If T is measure preserving and the σ-algebra IT of (almost) invariant events
is P-trivial, then (Ω,A ,P, T ) is called ergodic.

§5.1.8 Remark. For every (almost) invariant event A ∈ IT there exists a strictly invariant
event A∗ such that P(A∆A∗) = 0. Thereby, if the σ-algebra I ∗

T of all strictly invariant events
is P-trivial, then (Ω,A ,P, T ) is ergodic.

§5.1.9 Lemma. (i) A measurable map f : (Ω,A ) → (R,B) is IT -measurable if and only
if f ◦ T = f .

(ii) (Ω,A ,P, T ) is ergodic if and only if any IT -measurable f : (Ω,IT )→ (R,B) is P-a.s.
constant.

Proof of Lemma §5.1.9 is given in the lecture.

§5.1.10 Definition. If (SN0 ,B(S)⊗N0 ,P, ϑ) is ergodic, then the coordinate process (Xn)n∈N0

(as in Example §5.1.5 (ii)) is called ergodic.

§5.1.11 Example. Consider X = (Xn)n∈N0 and Y = (Yn)n∈N0 as in Example §5.1.5 (ii).
(i) If X is ergodic, then Y is ergodic.

(ii) Let (Xn)n∈N0 be i.i.d. IfA ∈ Iϑ , then,A = (ϑn)−1(A) = {ω : ϑn(ω) ∈ A} ∈ σ(ϑn(X)) =
σ(Xn, Xn+1, . . . ) for every n ∈ N0. Hence, if we let T := ∩∞n=1σ(ϑn(X)) be the tail σ-
algebra of (Xn)n∈N then IT ⊂ T . By Kolmogorov’s 0-1 law (Theorem §1.3.8), T is
P-trivial. Hence, IT is also P-trivial and therefore (Xn)n∈N0 is ergodic.

5.2 Ergodic theorems

In this section, (Ω,A ,P, T ) always denotes a measure preserving dynamical system. Further
let f : Ω→ R be measurable and

Xn(ω) = f ◦ T n(ω) for all n ∈ N0.

Hence X = (Xn)n∈N0 is a stationary real-valued stochastic process. Let

Sn :=
n−1∑
k=0

Xk (S0 := 0)

denote the nth partial sum. Ergodic theorems are laws of large numbers for (Sn)n∈N. We start
with a preliminary lemma.

§5.2.1 Lemma (Hopf’s maximal-ergodic lemma). Let f = X0 ∈ L1(P). Define Mn :=
max {Sk, k ∈ J0, nK}, n ∈ N, and M∞ := sup {Sk, k ∈ N0}. Then E(X01{Mn>0}) > 0 for
every n ∈ N and by dominated convergence E(X01{M∞>0}) > 0.

Proof of Lemma §5.2.1 is given in the lecture.
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§5.2.2 Theorem (Birkhoff’s ergodic theorem). Let X0 ∈ L1(P). Then

1

n

n−1∑
k=0

Xk =
1

n

n−1∑
k=0

f ◦ T k n→∞−→ E[X0|ST ] P-a.s..

In particular, if T is ergodic, then 1
n

∑n−1
k=0 Xk

n→∞−→ E[X0] P-a.s..

Proof of Theorem §5.2.2 is given in the lecture.

§5.2.3 Lemma. Let p > 1 and let (Xn)n∈N0 be identically distributed, real r.v.’s with
E(|X0|p) <∞. Define Yn :=

∣∣ 1
n

∑n−1
k=0 Xk

∣∣p for n ∈ N. Then (Yn)n∈N is uniformly integrable.

Proof of Lemma §5.2.3 is given in the lecture.

§5.2.4 Theorem (von Neumann’s ergodic theorem). Let (Ω,A ,P, T ) be a measure preserving
dynamical system, p > 1, X0 ∈ Lp(P) and Xn = X0 ◦ T n. Then

1

n

n−1∑
k=0

Xk
n→∞−→ E[X0|ST ] in Lp(P).

In particular, if T is ergodic, then 1
n

∑n−1
k=0 Xk

n→∞−→ E[X0] in Lp(P).

Proof of Theorem §5.2.4 is given in the lecture.

§5.2.5 Theorem. Let X be a positive recurrent, irreducible Markov chain on a countable state
space S. Let π be the invariant distribution of X given in Theorem §4.3.10. If π is the initial
probability measure of X , then the Markov chain is ergodic.

Proof of Theorem §5.2.5 is given in the lecture.

§5.2.6 Remark. By Corollary §4.3.11 for a irreducible Markov chain are equivalent: (i) There
exists a positive recurrent state. (ii) There exists a invariant distribution π. (iii) All states are
positive recurrent. Thereby, an irreducible Markov chain with some positive-recurrent state j
is ergodic under the invariant initial distribution π or, if an irreducible Markov chain has an
invariant distribution, then it is ergodic.
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Chapter 6

Weak convergence

6.1 Fundamental properties

In the sequel, (S,B(S)) denotes a metric space (S, d) equipped with Borel σ-algebra B(S).
The space of all bounded continuous and real-valued functions on S is denoted by Cb(S). If µ
is a measure on (S,B(S)) and f ∈ L1(S,B(S), µ) we write µf =

∫
S fdµ.

§6.1.1 Definition. Let P,P1,P2, . . . be probability measures on (S,B(S)). We say that (Pn)n∈N
converges weakly to P, if limn→∞ Pnf = Pf for all f ∈ Cb(S), and we write formally Pn

w→ P
or P = w-lim

n→∞
Pn.

§6.1.2 Remark. Weak convergence induces on the space of finite measures on (S,B(S)) the
weak topology (or weak∗-topology in functional analysis). This is the coarsest topology such
that for all f ∈ Cb(S), the map µ 7→ µf is continuous. If S is separable, then it can be shown
that the weak topology is metrisable; for example, by virtue of the so-called Prohorov metric
(see, for example, Billingsley [1999], Appendix III).

§6.1.3 Example. Let x, x1, x2, . . . be elements of S such that d(xn, x)
n→∞−→ 0. Consider Pn :=

δxn , n ∈ N and P := δx. Then by definition Pn
w→ P since f(xn)

n→∞−→ f(x) for all f ∈ Cb(S).
For open O ∈ B(S) with xn ∈ O, n ∈ N, and x ∈ ∂O we have limn→∞ Pn(O) = 1 while
P(O) = 0. For events B ∈ B(S) with x 6∈ ∂B and x ∈ B◦ it follows xn ∈ B

◦ for all n > no
and thus limn→∞ Pn(B) = 1 = P(B).

For measurable g : S → R, let Ug be the set of points of discontinuity of g where Ug is Borel
measurable.

§6.1.4 Theorem (Portemanteau). For probability measures P,P1,P2, . . . on (S,B(S)) the fol-
lowing are equivalent:

(i) P = w-lim
n→∞

Pn;

(ii) lim
n→∞

Pnf = Pf for all bounded Lipschitz continuous f ;

(iii) lim
n→∞

Pnf = Pf for all bounded measurable f with P(Uf ) = 0;

(iv) lim inf
n→∞

Pn(U) > P(U) for all open U ⊂ S;

(v) lim sup
n→∞

Pn(F ) 6 P(F ) for all closed F ⊂ S;

(vi) limn→∞ Pn(B) = P(B) for all measurable B with P(∂B) = 0.

Proof of Theorem §6.1.4 is given in the lecture.
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§6.1.5 Definition. LetX,X1, X2, . . . be r.v.’s with values in S . We say that (Xn)n∈N converges
in distribution to X , formally Xn

d→ X or Xn
d→ PX , if the distributions converge weakly, and

hence if PX = w-lim
n→∞

PXn .

§6.1.6 Theorem (Slutzky’s theorem). Let X,X1, X2, . . . and Y1, Y2, . . . be r.v.’s with values in
S. Assume Xn

d→ X and d(Xn, Yn)
P→ 0. Then Yn

d→ X .

Proof of Theorem §6.1.6 is given in the lecture.

§6.1.7 Corollary. If Xn
P→ X , then Xn

d→ X . The converse is false in general.

Proof of Corollary §6.1.7 is given in the lecture.

§6.1.8 Example. If X,X1, X2, . . . are i.i.d. (with nontrivial distribution), then trivially Xn
d→

X but not Xn
P→ X .

§6.1.9 Definition. Let F, F1, F2, . . . be distribution functions of probability measures on R.
We say that (Fn)n∈N converges weakly to F , formally Fn

d→ F or F = w-lim
n→∞

Fn, if F (x) =

limn→∞ Fn(x) for all points of continuity x of F .

§6.1.10 Example. If F is the distribution function of a probability measure on R and Fn(x) :=
F (x+ n) for x ∈ R, then (Fn)n∈N converges pointwise to 1. However, this is not a distribution
function, as 1 does not converge to 0 for x → −∞. On the other hand, if Gn(x) := F (x− n),
then (Gn)n∈N converges pointwise to G ≡ 0. However, G(∞) = 0 < lim sup

n→∞
Gn(∞) = 1;

hence we do not have weak convergence here either. Indeed, in each case, there is a mass defect
in the limit (in the case of the Fn on the left and in the case of theGn on the right). However, the
definition of weak convergence of distribution functions is constructed so that no mass defect
occurs in the limit.

§6.1.11 Theorem (Helly-Bray). Let P,P1,P2, . . . probability measures on R with correspond-
ing distribution functions F, F1, F2, . . . . The following are equivalent: (i) Pn

w→ P and
(ii) Fn

d→ F .

Proof of Theorem §6.1.11 is given in the lecture.

§6.1.12 Corollary. Let X,X1, X2, . . . be real r.v.’s with distribution functions F, F1, F2, . . . .
Then the following are equivalent: (i) Xn

d→ X; (ii) E[f(Xn)]
n→∞−→ E[f(X)] for all f ∈ Cb(R)

and (iii) Fn
d→ F .

§6.1.13 Theorem (Continuous mapping theorem). Let (S1, d1) and (S2, d2) be metric spaces
and let ϕ : S1 → S2 be measurable. Denote by Uϕ the set of points of discontinuity of ϕ.

(i) If P,P1,P2, . . . be probability measures on S with P(Uϕ) = 0 and Pn
w→ P, then Pn ◦

ϕ−1 w→ P ◦ ϕ−1.

(ii) If X,X1, X2, . . . are S1-valued r.v.’s with P(X ∈ Uϕ) = 0 and Xn
d→ X , then ϕ(Xn)

d→
ϕ(X).

Proof of Theorem §6.1.13 is given in the lecture.
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6.2 Prohorov’s theorem

§6.2.1 Example. Let (C([0, 1]), ‖·‖sup) denote the metric space of continuous and real-valued
functions on [0, 1] equipped with the topology of uniform convergence using the metric d(f, g) =
‖f − g‖sup = supt∈[0,1] |f(t)−g(t)|. Recall that the canonical projections Π{t1,...,tk} : C([0, 1])→
Rk, f 7→ (f(t1), . . . , f(tk)) are continuous and thus measurable. Moreover, any probability
measure on (C([0, 1]),B(C([0, 1]))) is uniquely determined by its finite dimensional distribu-
tions. However, weak converges of the finite dimensional distributions does generally not im-
ply weak convergence in (C([0, 1]),B(C([0, 1]))). For example, let Pn := δxn , n ∈ N, with
xn(t) = nt1[0,1/n] + (2 − nt)1[1/n,2/n], t ∈ [0, 1], and P := δx0 with x0 ≡ 0. Obviously,
(Pn)n∈N would converges weakly to P, if Pnf = f(xn) converges to Pf = f(x0) for all
f ∈ Cb(C([0, 1])). Consider f(x) := min(‖x‖sup , 1) then f(xn) = 1, n ∈ N, and f(x0) = 0,
hence (Pn)n∈N does not converge weakly to P. On the other hand, xn(t)

n→∞−→ 0 = x0(t) for all
t ∈ [0, 1] and, thus the finite dimensional distributions converge weakly.

§6.2.2 Definition. Let (S, d) be a metric space equipped with its Borel-σ-algebra B(S) and
let P(S) denote the space of all probability measures on (S,B(S)). A family F ⊂ P(S) of
probability measures is called

(a) weakly relatively sequentially compact if each sequence (Pn)n∈N in F has a weakly con-
vergent subsequence with limit in P(S):

(b) weakly sequentially compact if each sequence (Pn)n∈N in F has a weakly convergent
subsequence with limit in F .

§6.2.3 Remark. If (S, d) is separable, then the weak topology is metrisable (Remark §6.1.2),
and thus the notions compact and sequentially compact coincide (Remark §2.3.2).

§6.2.4 Proposition. Let S be a compact metric space. Then the set P(S) is weakly (sequen-
tially) compact.

Proof of Proposition §6.2.4 is given in the lecture.

§6.2.5 Theorem. Let (S, d) be Polish and let µ be a measure on the Borel-σ-algebra B(S).
Then there is a compact metric space (S∗, d∗) and a measure µ∗ on B(S∗) satisfying

(i) S is a subset of S∗;
(ii) B(S) is a subset of B(S∗) and µ(B) = µ∗(B) for all B ∈ B(S);

(iii) µ∗(S∗\S) = 0.
In particular, S is Gδ (a countable intersection of open sets in B(S∗)) and hence S is B(S∗)-
measurable.

Proof of Theorem §6.2.5 An outline of the proof is given in the lecture.

§6.2.6 Definition. A family F ⊂ P(S) of probability measures on (S,B(S)) is called (uni-
formly) tight (straff) if, for any ε > 0, there exists a compact setKε ⊂ S such that P(Kε) > 1−ε
for all P ∈ F .

§6.2.7 Remark. If S is Polish, then by Proposition §2.3.9, every singleton, {P} with P ∈
P(S), is tight and thus so is every finite family.
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§6.2.8 Theorem (Prohorov’s theorem). Let (S, d) be a metric space and let F ⊂ P(S) be a
family of probability measures on (S,B(S)).

(i) If F is tight then F is weakly relatively sequentially compact.

(ii) If S is Polish, then also the converse holds: If F is weakly relatively sequentially compact
then F is tight.

Proof of Theorem §6.2.8 In the lecture a proof of (i) and (ii) is given assuming S is Polish.
In case S is not Polish the proof of (i) is far more involved and we refer to Billingsley [1999]
(Theorem 6.1 and 6.2) or Klenke [2008] (Theorem 13.29).

Let X and (Xn)n∈N be r.v.’s with values in (C([0, 1]), ‖·‖sup) equipped with its Borel-σ-
algebra B(C([0, 1])) (i.e., continuous stochastic processes) with distributions PX and (PXn)n∈N.

§6.2.9 Definition. We say that the finite-dimensional distributions of (Xn) converge to those
of X if, for every k ∈ N and t1, . . . , tk ∈ [0, 1], we have (Xn

t1
, . . . , (Xn

tk
)
d→ (Xt1 , . . . , (Xtk). In

this case, we write Xn fdd−→ X or PXn
fdd−→ PX .

§6.2.10 Remark. The finite dimensional distributions determine uniquely a probability mea-
sure on (C([0, 1]),B(C([0, 1]))). Consequently, Pn

fdd−→ P and Pn
fdd−→ Q imply P = Q.

§6.2.11 Proposition. Weak convergence implies convergence of the finite-dimensional distri-
butions: Pn

w→ P implies Pn
fdd−→ P.

Proof of Proposition §6.2.11 is given in the lecture.

§6.2.12 Theorem. Let (Pn)n∈N and P be probability measures on (C([0, 1]),B(C([0, 1]))).
Then the following are equivalent:

(i) Pn
fdd−→ P and (Pn)n∈N is (uniformly) tight.

(ii) Pn
w→ P.

Proof of Theorem §6.2.12 is given in the lecture.

§6.2.13 Definition. For δ > 0 and f ∈ C([0, 1]) the modulus of continuity is defined by
wf (δ) := sup {|f(t)− f(s)| : |t− s| 6 δ, t, s ∈ [0, 1]}.

§6.2.14 Remark. Since any f ∈ C([0, 1]) is uniformly continuous, it follows limδ→0wf (δ) = 0
and moreover |wf (δ) − wg(δ)| 6 2 ‖f − g‖sup. Thereby, for fixed δ, w•(δ) is continuous on
(C([0, 1]), ‖·‖sup) and thus B(C([0, 1]))-measurable.

§6.2.15 Theorem (Arzelà-Ascoli). Let (K, d) be a compact metric space and let (C(K), ‖·‖sup)
be the metric space of continuous and real-valued functions on K. A subset B ⊂ C(K) is
relatively compact if and only if the following two conditions hold.

(i) There exists x ∈ K and c > 0 such that |f(x)| 6 c <∞ for all f ∈ B.

(ii) We have limδ↓0 sup {wδ(f) : f ∈ B} = 0.

Proof of Theorem §6.2.8 We refer to, e.g., Dudley [2002] (Theorem 2.4.7).

§6.2.16 Remark. Due to (ii) the condition (i) can be replaced by: B is bounded in (C(K), ‖·‖sup),
that is, there is c > 0, ‖f‖sup 6 c <∞ for all f ∈ B.
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§6.2.17 Theorem. A sequence (Pn) of probability measures on C([0, 1]) is (uniformly) tight if
and only if the following two conditions hold.

(i) For every η > 0, there is a > 0 such that supn∈N Pn({f : |f(0)| > a}) 6 η.

(ii) For all ε, η > 0 there is δ ∈ (0, 1) such that supn∈N Pn({f : wf (δ) > ε}) 6 η.
Thereby, a sequence of r.v.’s (Xn)n∈N with values in C([0, 1]) is (uniformly) tight, if the sequence
(X(0)n)n∈N is (uniformly) tight and
(iii) For all ε, η > 0 there is δ ∈ (0, 1) such that P

(
sup|t−s|6δ |Xn(s) −Xn(t)| > ε

)
6 η for

all n ∈ N.

Proof of Theorem §6.2.17 is given in the lecture.
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