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Chapter 1

Preliminaries

This chapter presents elements of the lecture course PROBABILITY THEORY I along the lines
of the textbook Klenke [2008], where far more details, examples and further discussions can be
found.

1.1 Basic measure theory

In the following, let Ω 6= ∅ be a nonempty set and let A ⊂ 2Ω (power set, set of all subsets
of Ω) be a class of subsets of Ω. Later, Ω will be interpreted as the space of elementary events
and A will be the system of observable events.

§1.1.1 Definition. (a) A pair (Ω,A ) consisting of a nonempty set Ω and a σ-algebra A is
called a measurable space. The sets A ∈ A are called measurable sets. If Ω is at most
countably infinite and if A = 2Ω, then the measurable space (Ω, 2Ω) is called discrete.

(b) A triple (Ω,A , µ) is called a measure space if (Ω,A ) is a measurable space and if µ is a
measure on A .

(c) A measure space (Ω,A ,P) is called a probability space, if in addition P(Ω) = 1. In this
case, the sets A ∈ A are called events.

§1.1.2 Remark. Let A ⊂ 2Ω and let µ : A → [0,∞] be a set function. We say that µ is
(a) monotone, if µ(A) 6 µ(B) for any two sets A,B ∈ A with A ⊂ B.

(b) additive, if µ
( n⊎
i=1

Ai
)

=
n∑
i=1

µ(Ai) for any choice of finitely many mutually disjoints sets

A1, . . . , An ∈ A with ∪ni=1Ai ∈ A . The disjoint union of sets is denoted by the symbol⊎
which only stresses the fact that the sets involved are mutually disjoint.

(c) σ-additive, if µ(
∞⊎
i=1

Ai) =
∞∑
i=1

µ(Ai) for any choice of countably many mutually disjoints

sets A1, A2, . . . ∈ A with ∪∞i=1Ai ∈ A .
A is called an algebra if (i) Ω ∈ A , (ii) A is closed under complements, and (iii) A is
closed under intersections. Note that, if A is closed under complements, then we have the
equivalences between (i) A is closed under (countable) unions and (ii) A is closed under
(countable) intersections. An algebra A is called σ-algebra, if it is closed under countable
intersections. If A is an algebra and µ : A → [0,∞] is a set function with µ(∅) = 0, then µ is
called a

(d) content, if µ is additive,

(e) premeasure, if µ is σ-additive,

(f) measure, if µ is a premeasure and A is a σ-Algebra.
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Chapter 1 Preliminaries 1.2 Random variables

A content µ on an algebra A is called
(g) finite, if µ(A) <∞ for every A ∈ A ,

(h) σ-finite, if there is a sequence Ω1,Ω2, . . . ∈ A such that Ω =
⋃∞
n=1 Ωn and such that

µ(Ωn) <∞ for all n ∈ N.

§1.1.3 Examples. (a) For any nonempty set Ω, the classes A = {∅,Ω} and A = 2Ω are the
trivial examples of σ-algebras.

(b) Let E ⊂ 2Ω. The smallest σ-algebra σ(E) =
⋂
{A : A is σ-algebra and E ⊂ A } with

E ⊂ σ(E) is called the σ-algebra generated by E and E is called a generator of σ(E).

(c) Let (Ω, τ) be a topological space with class of open sets τ ⊂ 2Ω. The σ-algebra B(Ω) that
is generated by the open sets is called the Borel-σ-algebra on Ω. The elementsB ∈ B(Ω)
are called Borel sets or Borel measurable sets. We write B := B(R), B+ := B(R+)
and Bn := B(Rn) for the Borel-σ-algebra on R, R+ := [0,∞) and Rn, respectively,
equipped with the usual Euclidean distance.

(d) Denote by 1A(x) the indicator function on a set A which takes the value one if x ∈ A and
zero otherwise. Let ω ∈ Ω and δω(A) = 1A(ω). Then δω is a probability measure on any
σ-algebra A ⊂ 2Ω. δω is called the Dirac measure on the point ω.

(e) Let Ω be an (at most) countable nonempty set and let A = 2Ω. Further let (pω)ω∈Ω be
non-negative numbers. Then A 7→ µ(A) :=

∑
ω∈Ω pωδω(A) defines a σ-finite measure. If

pω = 1 for every ω ∈ Ω, then µ is called counting measure on Ω. If Ω is finite, then so is
µ.

§1.1.4 Theorem (Carathéodory). Let A ⊂ 2Ω be an algebra and let µ be a σ-finite premeasure
on A . There exists a unique measure µ̃ on σ(A ) such that µ̃(A) = µ(A) for all A ∈ A .
Furthermore, µ̃ is σ-finite.

Proof of Theorem §1.1.4. We refer to Klenke [2008], Theorem 1.41.

§1.1.5 Remark. If µ is a finite content on an algebra A , then σ-continuity at ∅, that is,
µ(An)→ 0 = µ(∅) as n→∞ for any sequence (An)n∈N in A with µ(An) <∞ for some (and
then eventually all) n ∈ N and An ↓ ∅ (i.e., A1 ⊃ A2 ⊃ A3 ⊃ . . . and ∩∞n=1An = ∅), implies
σ-additivity.

§1.1.6 Example. A probability measure P on the measurable space (Rn,Bn) is uniquely de-
termined by the values P((−∞, b]) (where (−∞, b] = ×ni=1(−∞, bi], b ∈ Rn). In particular, a
probability measure P on R is uniquely determined by its distribution function F : R→ [0, 1],
x 7→ P((−∞, x]).

1.2 Random variables

In this section (Ω,A ), (S,S ) and (Si,Si), i ∈ I, denote measurable spaces where I is an
arbitrary index set.

§1.2.1 Definition. Let Ω be a nonempty set and let X : Ω→ S be a map.
(a) X is called A -S -measurable (or, briefly, measurable) if X−1(S ) := {X−1(S) : S ∈

S } ⊂ A , that is, if X−1(S) ∈ A for any S ∈ S . A measurable map X : (Ω,A ) →

2 Probability theory II



1.2 Random variables Chapter 1 Preliminaries

(S,S ) is called a random variable (r.v.) with values in (S,S ). If (S,S ) = (R,B) or
(S,S ) = (R+,B+), then X is called a real or positive random variable, respectively.

(b) The preimage X−1(S ) is the smallest σ-algebra on Ω with respect to which X is measur-
able. We say that σ(X) := X−1(S ) is the σ-algebra on Ω that is generated by X .

(c) For any, i ∈ I, letXi : Ω→ Si be an arbitrary map. Then σ(Xi, i ∈ I) :=
∨
i∈I σ(Xi) :=

σ
(
∪i∈I σ(Xi)

)
= σ

(
∪i∈I X−1

i (Si)
)

is called the σ-algebra on Ω that is generated by
(Xi, i ∈ I). This is the the smallest σ-algebra with respect to which allXi are measurable.

§1.2.2 Properties. Let I be an arbitrary index set. Consider Si ∈ 2S , i ∈ I, and a map
X : Ω→ S. Then

(a) X−1(∪i∈ISi) = ∪i∈IX−1(Si), X−1(∩i∈ISi) = ∩i∈IX−1(Si) ,

(b) X−1(S ) is a σ-algebra on Ω and {S ∈ S : X−1(S) ∈ A } is a σ-algebra on S.
If E is a class of sets in 2S , then σΩ(X−1(E)) = X−1(σS(E)).

§1.2.3 Examples. (a) The identity map Id : Ω→ Ω is A -A -measurable.

(b) If A = 2Ω and S = {∅,S}, then any map X : Ω→ S is A -S -measurable.

(c) Let A ⊂ Ω. The indicator function 1A : Ω → {0, 1} is A -2{0,1}-measurable, if and only
if A ∈ A .

For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x} (integer part),
x∨y = max(x, y) (maximum), x∧y = min(x, y) (minimum), x+ = max(x, 0) (positive part),
x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).Var

§1.2.4 Properties. (a) IfX, Y are real r.v.’s, then so areX+ := max(X, 0),X− := max(−X, 0),
|X| = X+ + X−, X + Y , X − Y , X · Y and X/Y with x/0 := 0 for all x ∈ R. In
particular, X+ and bXc is A -B+- and A -2Z-measurable, respectively.

(b) If X1, X2, . . . are real r.v.’s, then so are supn>1Xn, infn>1Xn,
lim sup
n→∞

Xn := infk>1 supn>kXn and lim inf
n→∞

Xn := supk>1 infn>kXn.

(c) Let X1, . . . , Xn : Ω → R be maps and define X := (X1, . . . , Xn) : Ω → Rn. Then X
is a real r.v. (i.e., A -Bn-measurable), if and only if each Xi is a real r.v. (i.e., A -B-
measurable).

(d) Let E = {Ai ∈ 2Ω, i ∈ I, mutually disjoint and
⊎
i∈I Ai = Ω} be a partition of Ω. A

map X : Ω → R is σ(E)-B-measurable, if there exist numbers xi ∈ R, i ∈ I, such that
X =

∑
i∈I xi1Ai .

§1.2.5 Definition. (a) A real r.v. X is called simple if there is an n ∈ N and mutually disjoint
measurable sets Ai, . . . , An ∈ A as well as numbers α1, . . . , αn ∈ R, such that X =∑n

i=1 αi1Ai .

(b) Assume that X,X1, X2, . . . are maps Ω → R := R ∪ {−∞,+∞} such that X1(ω) 6
X2(ω) 6 . . . and limn→∞Xn(ω) = X(ω) for any ω ∈ Ω. Then we write Xn ↑ X
and say that (Xn)n∈N increases (point-wise) to X . Analogously, we write Xn ↓ X if
(−Xn) ↑ (−X).

Probability theory II 3
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§1.2.6 Example. Let us briefly consider the approximation of a positive r.v. by means of simple
r.v.’s. Let X : Ω→ R+ be a A -B+-measurable. Define Xn = (2−nb2nXc) ∧ n. Then Xn is a
simple r.v. and clearly, Xn ↑ X uniformly on each interval {X 6 c}.

§1.2.7 Property. Let X : (Ω,A ) → (S,S ) and Y : (Ω,A ) → (R,B) be r.v.’s. The real r.v.
Y is σ(X)-B-measurable if and only if there exists a S -B-measurable map f : S → R such
that Y = f(X).

§1.2.8 Definition. Let X : (Ω,A )→ (S,S ) be a r.v..
(a) For S ∈ S , we denote {X ∈ S} := X−1(S). In particular, we let {X > 0} :=

X−1([0,∞)) and define {X 6 b} similarly and so on.

(b) Let P be a probability measure on (Ω,A ). The image probability measure PX of P under
the map X is the probability measure PX := P ◦ X−1 on (S,S ) that is defined by
PX(S) := P(X ∈ S) := P(X−1(S)) for each S ∈ S . PX is called the distribution of X .
We write X ∼ Q if Q = PX and say X has distribution Q.

(c) A family (Xi)i∈I of r.v.’s is called identically distributed (i.d.) if PXi = PXj for all

i, j ∈ I. We write X d
= Y if PX = PY (d for distribution).

1.3 Independence

In the sequel, (Ω,A ,P) is a probability space, the sets A ∈ A are the events and I is an
arbitrary index set.

§1.3.1 Definition. (a) Let (Ai)i∈I be an arbitrary family of events. The family (Ai)i∈I is
called independent if for any finite subsetJ ⊂ I the product formula holds: P(∩j∈JAj) =∏

j∈J P(Aj).

(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.2 Lemma (Borel-Cantelli). Let A1, A2, . . . be events and define A∗ := lim supn→∞An.
(a) If

∑∞
n=1 P(An) <∞, then P(A∗) = 0.

(b) If (An)n∈N is independent and
∑∞

n=1 P(An) =∞, then P(A∗) = 1.

Proof of Lemma §1.3.2. We refer to Klenke [2008], Theorem 2.7.

§1.3.3 Corollary (Borel’s 0-1 criterion). Let A1, A2, . . . be independent events and define
A∗ := lim sup

n→∞
An, then

(a)
∑∞

n=1 P(An) <∞ if and only if P(A∗) = 0,

(b)
∑∞

n=1 P(An) =∞ if and only if P(A∗) = 1.

For each i ∈ I, let (Si,Si) be a measurable space and let Xi : (Ω,A ) →)(Si,Si) be a r.v.
with generated σ-algebra σ(Xi) = X−1(Si).

§1.3.4 Definition. (a) The family (Xi)i∈I of r.v.’s is called independent if the family (σ(Xi))i∈I
of σ-algebras is independent.
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(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.5 Property. Let K be an arbitrary set and Ik, k ∈ K, arbitrary mutually disjoint index
sets. Define I = ∪k∈KIk. If the family (Xi)i∈I of r.v.’s is independent, then the family of
σ-algebras (σ(Xj, j ∈ Ik))k∈K is independent.

§1.3.6 Definition. Let X1, X2, . . . be r.v.’s. The σ-algebra
⋂
n>1 σ(Xi, i > n) is called the tail

σ-algebra and its elements are called tail events.

§1.3.7 Example. {ω :
∑

n>1Xn(ω) is convergent} is an tail event.

§1.3.8 Theorem (Kolmogorov’s 0-1 Law). The tail events of a sequence (Xn)n∈N of indepen-
dent r.v.’s have probability 0 or 1.
Proof of Theorem §1.3.8. We refer to Klenke [2008], Theorem 2.37.

1.4 Expectation

§1.4.1 Definition. We denote byM :=M(Ω,A ) the set of all real r.v.’s defined on the mea-
surable space (Ω,A ) and byM+ := M+(Ω,A ) ⊂ M the subset of all positive r.v.’s. Given
a probability measure P on (Ω,A ) the expectation is the unique functional E :M+ → [0,∞]
satisfying

(a) E(aX1 +X2) = aE(X1) + E(X2) for all X1, X2 ∈M+ and a ∈ R+;

(b) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then EXn ↑ EX;

(c) E1A = P(A) for all A ∈ A .
The expectation of X ∈ M is defined by E(X) := E(X+) − E(X−), if E(X+) < ∞ or
E(X−) <∞. Given ‖X‖p :=

(
E(|X|p)

)1/p, p ∈ [1,∞), and ‖X‖∞ := inf{c : P(X > c) = 0}
for p ∈ [1,∞] set Lp(Ω,A , P ) := {X ∈ M(Ω,A ) : ‖X‖p <∞} and Lp := Lp(Ω,A , P ) :=
{[X] : X ∈ Lp(Ω,A ,P)} where [X] := {Y ∈M(Ω,A ) : P(X = Y ) = 1}.

§1.4.2 Remark. L1 is the domain of definition of the expectation E, that is, E : L1 → R. The
vector space Lp equipped with the norm ‖·‖p is a Banach space and in case p = 2 it is a Hilbert
space with norm ‖·‖2 induced by the inner product 〈X, Y 〉2 := E(XY ).

§1.4.3 Properties. (a) For r.v.’sX, Y ∈ L1 we have the equivalences between (i) E(X1A) 6
E(Y 1A) for all A ∈ A and (ii) P(X 6 Y ) = 1. In particular, E(X1A) = E(Y 1A) holds
for all A ∈ A if and only if P(X = Y ) = 1.

(b) (Fatou’s lemma) Assume X1, X2, . . . ∈M+, then E(lim inf
n→∞

Xn) 6 lim inf
n→∞

E(Xn).

(c) (Dominated convergence) AssumeX,X1, X2, . . . ∈M such that limn→∞ |Xn(ω)−X(ω)| =
0 for all ω ∈ Ω. If there exists Y ∈ L1 with supn>1 |Xn| 6 Y , then we have limn→∞ E|Xn−
X| = 0 which in turn implies X ∈ L1 and limn→∞ |EXn − EX| = 0.

(d) (Hölder’s inequality) For X, Y ∈M holds E|XY | 6 ‖X‖p ‖Y ‖q with p−1 + q−1 = 1.

(e) (Cauchy-Schwarz inequality) For X, Y ∈ M holds E|XY | 6
√

E(X2)
√
E(Y 2) and

|Cov(X, Y )| 6
√

Var(X)
√
Var(Y ).
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1.5 Convergence of random variables

In the sequel we assume r.v.’s X1, X2, . . . ∈ M(Ω,A ) and a probability measure P on
(Ω,A ).

§1.5.1 Definition. (a) Let C := {ω ∈ Ω : limn→∞Xn(ω) exists and is finite}. The sequence
(Xn)n>1 converges almost surely (a.s.), if P(C) = 1. We writeXn

n→∞−→ X a.s., or briefly,
Xn

a.s.−→ X .

(b) The sequence (Xn)n>1 converges in probability, if limn→∞ P
(
|Xn −X| > ε

)
= 0 for all

ε > 0. We write Xn
n→∞−→ X in P, or briefly, Xn

P→ X .

(c) The sequence (Xn)n∈N converges in distribution, if E
(
f(Xn)

) n→∞−→ E
(
f(X)

)
for any

continuous and bounded function f : R → R. We write Xn
n→∞−→ X in distribution, or

briefly, Xn
d→ X .

(d) The sequence (Xn)n∈N converges in Lp, if limn→∞ E|Xn −X|p = 0. We write Xn
n→∞−→

X in Lp, or briefly, Xn
Lp−→ X .

§1.5.2 Remark. In (a) the set C =
⋂
k>1

⋃
n>1

⋂
i>1 {|Xn+i(ω)−Xn(ω)| < 1/k} is measur-

able. Moreover, if P(C) = 1 then there exists a r.v. X ∈M such that P(limn→∞Xn = X) = 1
where X = lim sup

n→∞
Xn noting that X(ω) = limn→∞Xn(ω) for ω ∈ C.

§1.5.3 Properties. (a) We have Xn
a.s.−→ X if and only if supm>n |Xm − Xn|

n→∞−→ 0 in P
if and only if supj>n |Xj − X| n→∞−→ 0 in P if and only if ∀ε, δ > 0, ∃N(ε, δ) ∈ N,
∀n > N(ε, δ), P

(⋂
j>n {|Xj −X| 6 ε}

)
> 1− δ.

(b) If Xn
a.s.−→ X , then Xn

P→ X .

(c) If Xn
a.s.−→ X , then g(Xn)

a.s.−→ g(X) for any continuous function g.

(d) Xn
P→ X if and only if limn→∞ supj>n P(|Xj −Xn| > ε) = 0 for all ε > 0 if and only if

any sub-sequence of (Xn)n∈N contains a sub-sequence converging to X a.s..

(e) If Xn
P→ X , then g(Xn)

P→ g(X) for any continuous function g.

(f) Xn
a.s.−→ X ⇒ Xn

P→ X ⇐ Xn
Lp−→ X and Xn

P→ X ⇒ Xn
d→ X

1.6 Conditional expectation

In the sequel (Ω,A ,P) is a probability space and F is a sub-σ-algebra of A .

§1.6.1 Theorem. If X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) then there exists Y ∈ M+(Ω,F )
or Y ∈ L1(Ω,F ,P), respectively, such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover Y
is unique up to equality a.s..

Proof of Theorem §1.6.1. We refer to Klenke [2008], Theorem 8.12.

§1.6.2 Definition. For X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) each version Y as in Theo-
rem §1.6.1 is called conditional expectation (bedingte Erwartung) of X given F , symbolically
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1.6 Conditional expectation Chapter 1 Preliminaries

E(X|F ) := Y . For A ∈ A , P(A|F ) := E(1A|F ) is called a conditional probability of A
given the σ-algebra F . Given r.v.’s Xi, i ∈ I, we set E(X|(Xi)i∈I) := E(X|σ(Xi, i ∈ I)).

§1.6.3 Remark. Employing Proposition §1.2.7 there exists a B-B-measurable function f such
that E(Y |X) = f(X) a.s.. Therewith, we write E(Y |X = x) := f(x) (conditional expected
value, bedingter Erwartungswert). Since conditional expectations are defined only up to equal-
ity a.s., all (in)equalities with conditional expectations are understood as (in)equalities a.s., even
if we do not say so explicitly.

§1.6.4 Properties. Let G ⊂ F ⊂ A be σ-algebras and let X, Y ∈ L1(Ω,A ,P). Then:
(a) (Linearity) E(λX + Y |F ) = λE(X|F ) + E(Y |F ).

(b) (Monotonicity) If X > Y a.s., then E(X|F ) > E(Y |F ).

(c) If E(|XY |) < ∞ and Y is measurable with respect to F , then E(XY |F ) = Y E(X|F )
and E(Y |F ) = E(Y |Y ) = Y .

(d) (Tower property) E(E(X|F )|G ) = E(E(X|G )|F ) = E(X|G ).

(e) (Triangle inequality) E(|X| |F ) > |E(X|F )|.
(f) (Independence) If σ(X) and F are independent, then E(X|F ) = E(X).

(g) If P(A) ∈ {0, 1} for any A ∈ F , then E(X|F ) = E(X).

(h) (Jensen’s inequality) Letϕ : R→ R be convex and letϕ(Y ) be an element ofL1(Ω,A ,P).
Then ϕ(E(Y |F )) 6 E(ϕ(Y )|F ).

(i) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then supn∈N E[Xn|F ] = E[X|F ].

(j) (Dominated convergence) Assume Y ∈ L1(P), Y > 0 and (Xn)n∈N is a sequence of r.v.’s
with |Xn| 6 Y for n ∈ N and such that Xn

a.s.−→ X . Then limn→∞ E(Xn|F ) = E(X|F )
a.s. and in L1(P).

§1.6.5 Proposition. Let (H, 〈·, ·〉H) be a Hilbert space equipped with induced norm ‖·‖H and
let U be a closed linear subspace of H. For each x ∈ H there exists a unique element ux ∈ U
with ‖x− ux‖H = infu∈U ‖x− u‖H.

§1.6.6 Definition. For a closed subspace U of the Hilbert space (H, 〈·, ·〉H) the orthogonal
projection ΠU : H→ U is defined by ΠU(x) = ux with ux as in Proposition §1.6.5.

§1.6.7 Properties. Let U⊥ be the orthogonal complement of U in H. Then:
(a) (projection property) ΠU ◦ ΠU = ΠU ;

(b) (orthogonality) x− ΠUx ∈ U⊥ for each x ∈ H;

(c) each x ∈ H can be decomposed uniquely as x = ΠUx+ (x−ΠUx) in the orthogonal sum
of an element of U and an element of U⊥;

(d) ΠU is selfadjoint: 〈ΠUx, y〉H = 〈x,ΠUy〉H;

(e) ΠU is linear.

§1.6.8 Lemma. Let F be a sub-σ-algebra of A . Then L2(Ω,F ,P) is embedded as closed
linear subspace in the Hilbert space L2(Ω,A ,P).
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§1.6.9 Corollary. Let F ⊂ A be a sub-σ-algebra and let X ∈ L2(Ω,A ,P) be a r.v.. Then
E(X|F ) is the orthogonal projection of X on L2(Ω,F ,P). That is, for any Y ∈ L2(Ω,F ,P),
‖X − Y ‖2

2 = E[(X − Y )2] > E[(X − E(X|F ))2] = ‖X − E(X|F )‖2
2 with equality if and

only if Y = E(X|F ).

§1.6.10 Example. Let X, Y ∈ L1(P) be independent. Then E(X + Y |Y ) = E(X|Y ) +
E(Y |Y ) = E(X) + Y .

§1.6.11 Theorem. Let p ∈ [1,∞] and F ⊂ A be a sub-σ-algebra. Then the linear map
Lp(Ω,A ,P) → Lp(Ω,F ,P), X 7→ E(X|F ), is a contraction (that is, ‖E(X|F )‖p 6
‖X‖p) and thus bounded and continuous. Hence, for X,X1, X2, . . . ∈ Lp(Ω,A ,P) with
‖Xn −X‖p

n→∞−→ 0 we have ‖E(Xn|F )− E(X|F )‖p
n→∞−→ 0.

§1.6.12 Definition. A family (Xi)i∈I of r.v.’s in L1(Ω,A ,P) with arbitrary index set I is
called uniformly integrable if infa∈[0,∞) supi∈I E(1{|Xi|>a}|Xi|) = 0 which is satisfied in case
that supi∈I ‖Xi‖1 ∈ L1(Ω,A ,P).

§1.6.13 Corollary. Let (Xi)i∈I be uniformly integrable in L1(Ω,A ,P) and let (Fj, j ∈ J )
be a family of sub-σ-algebras of A . Define Xi,j := E(Xi|Fj). Then (Xi,j)i∈I,j∈J is uni-
formly integrable in L1(Ω,A ,P). In particular, for X ∈ L1(Ω,A ,P) the family {E(X|F ) :
F is sub-σ-algebra of A } of r.v.’s in L1(Ω,A ,P) is uniformly integrable.

§1.6.14 Lemma. Every uniformly integrable sequence (Xn)n∈N of real r.v.’s which converges
a.s. also converges in L1.

Proof of Lemma §1.6.14 is given in the lecture.
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Chapter 2

Stochastic processes

2.1 Motivating examples

2.1.1 The Poisson process

§2.1.1 Definition. Let (Sk)k∈N be positive r.v.’s on a probability space (Ω,A ,P) with 0 6
S1(ω) 6 S2(ω) 6 . . . for any ω ∈ Ω. The family N = (Nt)t>0 of No-valued r.v.’s given
by Nt :=

∑∞
k=1 1{Sk6t}, t > 0, is called counting process (Zählprozess) with jump times

(Sprungzeiten) (Sk)k∈N.

§2.1.2 Definition. A counting process (Nt)t>0 is called Poisson process of intensity λ > 0 if
(i) P(Nt+h −Nt = 1) = λh+ o(h) as h ↓ 0;

(ii) P(Nt+h −Nt = 0) = 1− λh+ o(h) as h ↓ 0;

(iii) (independent increments) (Nti − Nti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(iv) (stationary increments) Nt −Ns
d
= Nt−s for all numbers t > s > 0 in R+.

§2.1.3 Theorem. For a counting process N = (Nt)t>0 with jump times (Sk)k∈N we have the
equivalences between:

(a) N is a Poisson process;

(b) N satisfies the conditions (iii), (iv) in the Definition §2.1.2 of a Poisson (Poi) process and
Nt ∼ Poi(λt) holds for all t > 0;

(c) (waiting times) The r.v.’s T1 := S1 and Tk := Sk − Sk−1, k = 2, 3, . . . , are independent
and identically Exp(λ)-distributed;

(d) Nt ∼ Poi(λt) holds for all t > 0 and the conditional distribution of (S1, . . . , Sn) given
{Nt = n} has the density

f(x1, . . . , xn) =
n!

tn
1{06x16...6xn6t}. (2.1)

(e) N satisfies the condition (iii) in the Definition §2.1.2 of a Poisson process, E(N1) = λ
and (2.1) is the conditional density of (S1, . . . , Sn) given {Nt = n}.

Proof of Theorem §2.1.3 is given in the lecture.

§2.1.4 Remark. Let (Ui)
n
i=1 be independent and identically U([0, t])-distributed r.v.’s and let

(U(i))
n
i=1 be their order statistics whereU(1) = min{Ui}ni=1 andU(k+1) = min{Ui}ni=1\{U(i)}ki=1,

k = 2, . . . , n. Then the joint density of (U(i))
n
i=1 is given exactly by (2.1). The characterisations

give rise to three simple methods to simulate a Poisson process: the definition §2.1.2 gives an
approximation for small h (forgetting the o(h)-term), part (iii) in §2.1.3 just uses exponentially
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distributed inter-arrival times Tk and part (iv) uses the value at a specified right-end point and
then uses the uniform order statistics as jump times in-between (write down the details!).

2.1.2 Markov chains

§2.1.5 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time), let S be
a (at most) countable nonempty set (state space) and let S = 2S . A family (Xt)t∈T of S-
valued r.v.’s forms a Markov chain if for all n ∈ N, all t1 < t2 < . . . < tn < t in T and
all s1, . . . , sn, s in S with P(Xt1 = s1, . . . , Xtn = sn) > 0 the Markov property is satisfied:
P(Xt = s|Xt1 = s1, . . . , Xtn = sn) = P(Xt = s|Xtn = sn). For a Markov chain (Xt)t∈T and
t1 6 t2 in T, i, j ∈ S the transition probability to reach state j at time t2 from state i at time t1
is defined by pij(t1, t2) := P(Xt2 = j|Xt1 = i) (or arbitrary if not well-defined). The transition
matrix is given by P (t1, t2) :=

(
pij(t1, t2)

)
i,j∈S . The transition matrix and the Markov chain

are called time-homogeneous ifP (t1, t2) = P (0, t2 − t1) =: P (t2 − t1) holds for all t1 6 t2.

§2.1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov equation, that
is, for any t1 6 t2 6 t3 in T, P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplication). In the time-
homogeneous case this gives the semigroup property P (t1 + t2) = P (t1)P (t2) for all t1, t2 ∈ T,
and in particular P (n) = P (1)n for n ∈ N.

Proof of Proposition §2.1.6 is given in the lecture.

2.1.3 Brownian motion

§2.1.7 Definition. A family (Wt)t>0 of real r.v.’s is called a Brownian motion if
(a) W0 = 0 a.s.;

(b) (independent increments) (Wti −Wti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(c) (stationary increments) Wt−Ws
d
= Wt−s ∼ N(0, t− s) for all numbers 0 6 s < t in R+;

(d) t 7→ Wt is continuous a.s..

§2.1.8 Remark. Questions:
(i) Existence?

(ii) W := (Wt)t>0 r.v. on which space?

(iii) For which functions f is f(W ) a r.v.? (e.g. f(W ) = sup06t61Wt)
Importance of the Brownian motion:

I If X1, X2, . . . are i.i.d. with E(Xi) = 0 and Var(Xi) = σ2 < ∞ then W is a “limit” of
Snt = 1

σ
√
n

∑
16i6ntXi (Donsker’s theorem).

I W is a central element in stochastic differential equationsXt =
∫ t

0
σ(Xs)dWs+

∫ t
0
b(Xs)ds.

How to define the first integral? (“Ito integral”)

2.2 Definition of stochastic processes

§2.2.1 Definition. A family X = (Xt)t∈T of r.v.’s on a common probability space (Ω,A ,P)
is called stochastic process. We call X time-discrete if T ⊂ Z and time-continuous if (a, b) ⊂
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T ⊂ R for some real numbers a < b. If all Xt take values in (S,S ), then (S,S ) is called the
state space (Zustandsraum) of X . For each fixed ω ∈ Ω the map t 7→ Xt(ω) is called sample
path (Pfad), trajectory (Trajektorie) or realisation (Realisierung) of X . If T = N0 or T = R+

the law of X0 is called initial distribution.

§2.2.2 Remark. We are particularly interested in the “random functions” t 7→ Xt rather than
in a single r.v. Xt. For this reason, we identify X = (Xt)t∈T as a r.v. with values in ST which
forces us to specify a σ-algebra on ST.

§2.2.3 Definition. Let (Si,Si), i ∈ I, be an arbitrary family of measurable spaces.
(a) The set i∈I Si of maps (si)i∈I : I → ∪i∈ISi such that si ∈ Si for all i ∈ I is called

product space. For J ⊂ I, let SJ := j∈J Sj . If, in particular, all the Si are equal, say
Si = S, then we write i∈I Si = SI .

(b) If j ∈ I, then Πj : SI → Sj , (si)i∈I 7→ sj denotes the jth coordinate map. More
generally, for J ⊂ K ⊂ I, the restricted map ΠKJ : SK → SJ , (sk)k∈K 7→ (sj)j∈J are
called canonical projection. In particular, we write ΠJ := ΠIJ .

(c) The product-σ-algebra SI :=
⊗

i∈ISi is the smallest σ-algebra on the product space SI
such that for every j ∈ I the coordinate map Πj : SI → Sj is measurable with respect
to SI-Sj , that is, SI =

⊗
i∈ISi = σ(Πi, i ∈ I) :=

∨
i∈I Π−1

i (Si). For J ⊂ I, let
SJ =

⊗
j∈J Sj . If (Si,Si) = (S,S ) for all i ∈ I, then we also write

⊗
i∈ISi = S ⊗I .

§2.2.4 Lemma. For a stochastic process X = (Xt)t∈T with state space (S,S ) the mapping
X : Ω→ ST, ω 7→ (Xt(ω))t∈T is a (ST,S ⊗T)-valued r.v.

Proof of Lemma §2.2.4 is given in the lecture.

§2.2.5 Remark. Later on, we shall also consider smaller function spaces than ST, e.g. C(R+)
instead of RR+ .

§2.2.6 Definition. The distribution PX = P ◦X−1 of a stochastic process X = (Xt)t∈T defined
on (Ω,A ,P) with values in (ST,S ⊗T) is the image probability measure of P under the map
X .

§2.2.7 Remark. The distribution of a stochastic process is often complicate and generally there
does not exists an explicit formula. Therefore, we are interested in a characterisation exploiting
the distributions of the r.v.’s Xt.

§2.2.8 Definition. Let X = (Xt)t∈T be a stochastic process with distribution PX . For any
finite T ⊂ T let PTX := PΠT ◦X be the distribution of the r.v. (Xt)t∈T = ΠT ◦ X . The family
{PTX , T ⊂ T finite} is called family of the finite-dimensional distributions of X or PX .

§2.2.9 Definition. A family {PJ ,J ⊂ I finite} of probability measures is called consistent
on (SI ,SI) if for any finite J ⊂ K ⊂ I the canonical projection ΠKJ as in §2.2.3 (c) and
the probability measure PJ and PK on (SJ ,SJ ) and (SK,SK), respectively, satisfy PJ =
PK ◦ (ΠKJ )−1.

§2.2.10 Remark. Let PX be the distribution of a stochastic process X on (ST,S ⊗T) then its
family {PTX , T ⊂ T finite} of finite-dimensional distributions is consistent. Indeed, for J ⊂
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K ⊂ I finite, PJX = PX ◦Π−1
J = PX ◦(ΠKJ ◦ΠK)−1 = PX ◦(ΠK)−1◦(ΠKJ )−1 = PKX ◦(ΠKJ )−1.

§2.2.11 Definition. Two processes (Xt)t∈T, (Yt)t∈T on (Ω,A ,P) are called
(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other, if P(Xt = Yt) = 1
for all t ∈ T.

§2.2.12 Remark. (a) Obviously, indistinguishable processes are versions of each other. The
converse is in general false.

(b) If X is a version of Y , then X and Y share the same finite-dimensional distributions.
Processes with the same finite-dimensional distributions need not even be defined on the
same probability space and will in general not be versions of each other.

(c) Suppose (Xt)t∈R+ and (Yt)t∈R+ are real-valued stochastic processes with right-continuous
sample paths. Then they are indistinguishable already if they are versions of each other.

§2.2.13 Definition. A stochastic processes (Xt)t∈R+ is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn

n→∞−→ t always implies Xtn
P→ Xt

(convergence in probability).

§2.2.14 Remark. Every continuous stochastic process is stochastically continuous since a.s.
convergence implies convergence in probability. On the other hand, the Poisson process is
obviously not continuous but stochastically continuous, since limtn→t P(|Nt − Ntn| > ε) =
limtn→t(1− e−λ|t−tn|) = 0 for all ε ∈ (0, 1).

2.3 Probability measures on Polish spaces

§2.3.1 Definition. A metric space (S, d) is called Polish space if it is separable and complete.
More generally, a separable completely metrisable topological space is called Polish. Canoni-
cally, it is equipped with its Borel-σ-algebra B(S) generated by the open sets.

§2.3.2 Remark. Let (Ω, τ) be a topological space. For A ⊂ Ω we denote by A the closure of
A, by A◦ the interior and by ∂A the boundary of A. A set A ⊂ Ω is called dense if A = Ω. A
set A ⊂ Ω is called compact if each open cover U ⊂ τ of A (that is, A ⊂ ∪{U ;U ∈ U}) has
a finite subcover; that is, a finite U ′ ⊂ U with A ⊂ ∪{U ;U ∈ U ′}. Compact sets are closed.
A ⊂ Ω is called relatively compact if A is compact. On the other hand, A is called sequentially
compact (respectively relatively sequentially compact) if any sequence (ωn)n∈N with values in
A has a subsequence (ωnk)k∈N that converges to some ω ∈ A (respectively ω ∈ A).

(Ω, τ) is called metrisable if there exists a metric d on Ω such that τ is induced by the
open balls Bε(x) = {ω ∈ Ω : d(x, ω) < ε}. In metrisable spaces, the notions compact and
sequentially compact coincide. A metric d on Ω is called complete if any Cauchy sequence with
respect to d converges in Ω. (Ω, τ) is called completely metrisable if there exists a complete
metric on Ω that induces τ . A metrisable space (Ω, τ) is called separable if there exists a
countable dense subset of Ω. Separability in metrisable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set U ⊂ τ withA =

⋃
{U ;U ⊂ A,U ∈ U}

for all A ∈ τ .
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Two measurable spaces (Ω1,B1), (Ω2,B2) with Borel-σ-algebra B1, B2, respectively, are
called Borel-isomorphic, if there exists a bijective map g : Ω1 → Ω2, such that g and g−1 are
measurable. In particular, each Polish space is Borel-isomorphic to a Borel subset of [0, 1].

Two topological spaces (Ω1, τ1) (Ω2, τ2) are called homeomorphic if there exists a bijective
map g : Ω1 → Ω2 such that g and g−1 are continuous. Therewith, each Polish space is homeo-
morphic to a subset of [0, 1]N, equipped with its product topology.

§2.3.3 Examples. R, Rn, `p ⊂ RN and Lp([0, 1]) equipped with their usual distance are Polish
spaces.

§2.3.4 Definition. Let (Si, di), i ∈ I ⊂ N, be a finite or countable family of metric spaces. The
product space i∈I Si is canonically equipped with the product metric d((si)i∈I , (s

′
i)i∈I) :=∑

i∈I 2−i(di(si, s
′
i)∧ 1) generating the product topology on i∈I Si in which a vector/sequence

converges if and only if all coordinates converge, that is, d(s(n), s)
n→∞−→ 0⇔ di(s

(n)
i , si)

n→∞−→ 0
for all i ∈ I.

§2.3.5 Lemma. Let (Sn, dn), n ∈ N, be a family of Polish spaces, then the Borel-σ-Algebra
B( n∈N Sn) on the product space n∈N Sn equals the product Borel-σ-algebra

⊗
n∈N B(Sn).

Proof of Lemma §2.3.5 is given in the lecture.

§2.3.6 Remark. The⊇-relation holds for all topological spaces and products of any cardinality
with the same proof. The ⊆-property can already fail for the product of two topological (non-
Polish) spaces.

§2.3.7 Definition. Let (S, d) be a metric space equipped with its Borel-σ-algebra B(S). A
probability measure P on (S,B(S)) is called

(a) tight (straff) if for all ε > 0 there is a compact set K such that P(K) > 1− ε,
(b) regular (regulär) if B ∈ B(S) and ε > 0 then there exist a compact set K and an open

set O such that K ⊂ B ⊂ O and P(O\K) 6 ε.
A family P of probability measures on (S,B(S)) is called (uniformly) tight, if for all ε > 0
there is a compact set K such that P(K) > 1− ε for all P ∈ P .

§2.3.8 Remark. Considering a probability measure P on a metric space S we have the equiva-
lences between (i) P is tight and (ii) P(B) = sup{P(K) : K ⊆ B compact} for all B ∈ B(S),
and on the other hand between (i) P is regular and (ii) sup{P(K) : K ⊆ B compact} =
P(B) = inf{P(O) : O ⊇ B open} for all B ∈ B(S).

§2.3.9 Proposition (Ulam (1939)). Every probability measure on a Polish space is tight.
Proof of Proposition §2.3.9 is given in the lecture.

§2.3.10 Theorem. Every probability measure on a Polish space is regular.
Proof of Theorem §2.3.10 is given in the lecture.

§2.3.11 Theorem (Kolmogorov’s consistency theorem). Let I be an arbitrary index set and let
(Si,Bi) be Polish spaces, i ∈ I. Let {PJ ,J ⊂ I finite} be a consistent family of probability
measures on the product space (SI ,BI) as in §2.2.9. Then there exists a unique probability
measure P on (SI ,BI) having {PJ ,J ⊂ I finite} as family of finite dimensional distributions,
that is, PJ = P ◦ Π−1

J for any J ⊂ I finite.
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Proof of Theorem §2.3.11 is given in the lecture.

§2.3.12 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let {PJ ,J ⊂
I finite} be a consistent family of probability measures on the product space (SI ,B⊗I) as in
§2.2.9. Then there exists a stochastic process (Xt)t∈I whose family of finite dimensional distri-
butions is given by {PJ ,J ⊂ I finite}, that is, (Xt)t∈J ∼ PJ for any J ⊂ I finite.

Proof of Corollary §2.3.12 is given in the lecture.

§2.3.13 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let (Pi)i∈I
be a family of probability measures on (S,B). Then there exists the product measure

⊗
i∈I Pi

on the product space (SI ,B⊗I). In particular, there exists a familyX = (Xi)i∈I of independent
r.v.’s admitting the image probability measure PX =

⊗
i∈I Pi.

Proof of Corollary §2.3.13 is given in the lecture.

§2.3.14 Remark. Kolmogorov’s consistency theorem does not hold for general measure spaces
(S,S ). The Ionescu-Tulcea Theorem, however, shows the existence of the probability measure
on general measure spaces under a Markovian dependence structure, see e.g. Klenke [2008],
Theorem 14.32.

2.4 Adapted stochastic process and stopping times

In the sequel, the index set T is a subset of R, X = (Xt)t∈T is a stochastic process on
a probability space (Ω,A ,P) with state space (S,S ) and image probability measure PX on
(ST,S ⊗T).

§2.4.1 Definition. A family F = (Ft)t∈T of σ-algebras with Ft ⊂ A , t ∈ T, is called a
filtration if Fs ⊂ Ft for all s, t ∈ T with s 6 t. (Ω,A ,P,F ) is called filtered probability
space.

§2.4.2 Definition. A stochastic process X = (Xt)t∈T is called adapted to the filtration F =
(Ft)t∈T if Xt is Ft-measurable for all t ∈ T. If Ft = σ(Xs, s 6 t) for all t ∈ T, then we
denote by FX = σ(X) the natural filtration generated by X .

§2.4.3 Remark. Clearly, a stochastic process is always adapted to the natural filtration it gen-
erates. The natural filtration is the smallest filtration to which the process is adapted. Moreover,
F∞ =

∨
t∈T Ft.

§2.4.4 Definition. A stochastic processX = (Xn)n∈N0 is called predictable (or previsible) with
respect to a filtration F = (Fn)n∈N0 if X0 is constant (i.e. F0-measurable) and if, for every
n ∈ N, Xn is Fn−1-measurable. X is called an increasing process if it is a predictable process
of finite r.v.’s such that 0 = X0 6 X1 6 X2 6 . . . a.s. on Ω.

§2.4.5 Remark. It is important to note that for a predictable process and in particular for an
increasing process, not only, (Xn)n∈N0 but also the sequence (Xn+1)n∈N0 is adapted to the
filtration (Fn)n∈N0 .
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§2.4.6 Definition. A r.v. τ with values in T∪ {sup{T}} is called a stopping time (with respect
to the filtration F ) if for any t ∈ T, {τ 6 t} ∈ Ft, that is, if the process Xt := 1{τ6t} is
adapted.

§2.4.7 Proposition. Let T be countable, τ is a stopping time if and only if {τ = t} ∈ Ft for
all t ∈ T.

Proof of Proposition §2.4.7 is left as an exercise.

§2.4.8 Examples. (a) Let to ∈ T, then τ ≡ to (constant) is a stopping time where σ(τ) =
{∅,Ω}.

(b) Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration F = (Fn)n∈N0 . For
S ∈ S we call hitting time the first time that X is in S, that is,

τS(ω) :=

{
inf{n ∈ N0 : Xn(ω) ∈ S}, if ω ∈

⋃
n∈N0

X−1
n (S),

∞, otherwise

Then τS is a stopping time with respect to F . Note that τ∅ ≡ ∞ and τS ≡ 0.

§2.4.9 Lemma. Let τ and σ be stopping times. Then
(a) τ ∨ σ and τ ∧ σ are stopping times.

(b) If τ, σ > 0, then τ + σ is also a stopping time.

(c) If s ∈ R+, then τ + s is a stopping time. However, in general, τ − s is not.

Proof of Lemma §2.4.9 is left as an exercise.

§2.4.10 Remark. We note that (a) and (c) are properties we would expect of stopping times.
With (a), the interpretation is clear. For (c), note that τ − s peeks into the future by s time units
(in fact, {τ−s 6 t} ∈ Ft+s), while τ +s looks back s time units. For stopping times, however,
only retrospection is allowed.

§2.4.11 Example. Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration (Fn)n∈N0 .
For S1, S2 ∈ S let τS1 and τS2 be hitting times as in §2.4.8 (b), then τS1 > τS2 whenever
S1 ⊂ S2. In particular, it follows that τS1 ∧ τS2 > τS1∪S2 and τS1∩S2 > τS1 ∨ τS2 .

§2.4.12 Definition. Let τ be a stopping time. Then

Fτ := {A ∈ A : A ∩ {τ 6 t} ∈ Ft for any t ∈ T}

is called the σ-algebra of τ -past.

§2.4.13 Example. If τ ≡ to is a constant stopping time at t0 ∈ T, then Fτ = Ft0 .

§2.4.14 Lemma. If τ and σ are stopping times then (i) Fσ ∩ {σ 6 τ} ⊂ Fτ∧σ = Fτ ∩Fσ ,
(ii) Fτ = Ft on {τ = t} for all t ∈ T and (iii) Fτ∨σ = Fτ ∨Fσ. In particular, we see from
(i) that {σ 6 τ} ∈ Fσ ∩Fτ , that Fσ = Fτ on {σ = τ}, and that Fτ ⊂ Fσ whenever τ 6 σ.

Proof of Lemma §2.4.14 is given in the lecture.

§2.4.15 Definition. For a stopping time τ define Xτ (ω) := Xτ(ω)(ω) for all ω ∈ {τ < ∞} or
equivalently Xτ := Xt on {τ = t} for all t ∈ T .

Probability theory II 15



Chapter 2 Stochastic processes 2.4 Adapted stochastic process and stopping times

§2.4.16 Lemma. Let T be countable, let X be adapted and let τ be a stopping time. Then Xτ

is measurable with respect to Fτ . In particular, τ is Fτ -measurable.

Proof of Lemma §2.4.16 is given in the lecture.

§2.4.17 Remark. For uncountable T and for fixed ω, in general, the map T → S, t 7→ Xt(ω)
is not measurable; hence neither is the composition Xτ always measurable. Here one needs
assumptions on the regularity of the paths t 7→ Xt(ω); for example, right continuity (cf. Kallen-
berg [2002], Lemma 7.5, p.122).

§2.4.18 Corollary. Let T be countable, letX be adapted and let (τt)t∈T be a family of stopping
times with τt 6 τs < ∞, s, t ∈ T, t 6 s. Then the process (Xτt)t∈T is adapted to the filtration
(Fτt)t∈T. In particular, (Xτ∧t)t∈T is adapted to both filtration (Fτ∧t)t∈T and (Ft)t∈T .

Proof of Corollary §2.4.18 is given in the lecture.

§2.4.19 Definition. Let T be countable, let (Xt)t∈T be adapted and let τ be a stopping time.
We define the stopped process Xτ = (Xτ

t )t∈T by Xτ
t = Xτ∧t for any t ∈ T which is adapted to

both filtration F τ = (F τ
t )t∈T = (Fτ∧t)t∈T and F = (Ft)t∈T.
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Chapter 3

Martingale theory

3.1 Positive {super-}martingales

In the following, let T ⊂ R be an index set, let F = (Ft)t∈T be a filtration and let
(Ω,A ,P,F ) be a filtered probability space. For a, b ∈ R, a < b, we denote by Ja, bK :=
[a, b] ∩ Z the set of all integers contained in the closed interval [a, b].

§3.1.1 Definition. Let X = (Xt)t∈T be a positive adapted stochastic process on a filtered prob-
ability space (Ω,A ,P,F ). X is called (with respect to F ) a

positive supermartingale if Xs > E(Xt|Fs) for all s, t ∈ T with t > s,

positive martingale if Xs = E(Xt|Fs) for all s, t ∈ T with t > s.
A Rd-valued adapted stochastic process X = ((X1

t , . . . , X
d
t ))t∈T on (Ω,A ,P,F ) is called a

positive {super-}martingale if each coordinate process Xk = (Xk
t )t∈T is a positive

{super-}martingale.

§3.1.2 Remark. (a) Clearly, for a supermartingale, we have E(Xr|Fs) > E(Xt|Fs) for all
s < r 6 t, i.e., (E(Xt|Fs))t>s decreases (point-wise), the map t 7→ E[Xt] is monotone
decreasing and for martingales it is constant.

(b) If T = N, T = N0 or T = Z, then it is enough to consider at each instant s only t =
s+ 1. In fact, by the tower property of the conditional expectation, we get E(Xs+2|Fs) >
E(E(Xs+1|Fs+1)|Fs) = E(Xs+1|Fs). Thus, if the defining inequality (or equality) holds
for any time step of size one, by induction it holds for all times.

(c) If we do not explicitly mention the filtration F , we tacitly assume that F = σ(X) is the
natural filtration generated by X .

(d) Let F and F
◦ be filtrations with Ft ⊂ F

◦ for all t, and let X be a positive F
◦-{super-

}martingale that is adapted to F . Then X is also a positive {super-}martingale with
respect to the smaller filtration F . Indeed, for s < t and for the case of a supermartingale,
E(Xt|Fs) = E(E(Xt|F

◦
s )|Fs) 6 E(Xs|Fs) = Xs. In particular, a positive F -{super-

}martingale X is always a {super-}martingale with respect to its own natural filtration
σ(X).

§3.1.3 Theorem. (a) LetX and Y be positive {super-}martingales and a, b > 0. Then (aX+
bY ) is a positive {super-}martingale.

(b) Let X and Y be positive supermartingales. Then Z := X ∧ Y = (min(Xt, Yt))t∈T is a
positive supermartingale.

(c) If (Xn)n∈N is a positive supermartingale, E(Xk) > E(X1) for some k ∈ N, then (Xn)n∈J1,kK

is a positive martingale. If there exists a sequence kn ↑ ∞ with E(Xkn) > E(X1), n ∈ N,
then X is a positive martingale.
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(d) Let (Xn)n∈N and (Yn)n∈N be positive supermartingales and let τ be a stopping time such
that Xτ (ω) > Yτ (ω) for all ω ∈ {τ < ∞}. Then Z := (Xn1{n<τ} + Yn1{τ6n})n∈N0 is a
positive supermartingale.

Proof of Theorem §3.1.3 is given in the lecture.

§3.1.4 Proposition (Maximal inequality). Let (Xn)n∈N be a positive supermartingale. Then
supn∈NXn is a.s. finite on the set {X1 <∞} and satisfies for any number a > 0:

P(sup
n∈N

Xn > a|F1) := E
[
1{supn∈NXn>a}|F1

]
6 min(X1/a, 1).

Proof of Proposition §3.1.4 is given in the lecture.

§3.1.5 Remark. The last results still holds true when replacing the constant a by a positive,
F1-measurable r.v. A, that is, P

(
supn∈NXn > A|F1

)
6 min

(
X1

A
, 1
)

on the set {A > 0}.
Consequently:

(a) For any positive supermartingale (Xn)n∈N, any positive F1-measurable r.v. A such that
A 6 supn∈NXn it follows that 1 = P

(
supn∈NXn > A|F1

)
6 min

(
X1

A
, 1
)

and, hence
A 6 X1. In other words, X1 is the largest F1-measurable lower bound of supn∈NXn.

(b) More generally: supn∈J1,kKXn, k ∈ N, is the largest Fk-measurable lower bound of
supn∈NXn. Indeed, (supn∈J1,kKXn, Xk+1, Xk+2, . . . ) is a supermartingale adapted to the
filtration (Fk,Fk+1, . . . ) and, hence by employing Proposition §3.1.4 any positive Fk-
measurable r.v. A such that A 6 supn∈NXn satisfies A 6 supn∈J1,kKXn.

§3.1.6 Definition. Let (xn)n∈N be a sequence in R := R ∪ {∞}. For a, b ∈ R with a < b
defining inductively the integers τ0 := 1, σk := inf{n > τk : xn 6 a} and τk+1 := inf{n >
σk : xn > b}, k = 0, 1, 2, . . . , the number of upcrossing (aufsteigende Überquerungen) of the
interval [a, b] by the sequence (xn)n∈N is denoted by βa,b := sup{k > 1 : τk <∞}.

§3.1.7 Remark. Clearly, if lim infn→∞ xn < a < b < lim supn→∞ xn then βa,b =∞ which in
turn implies lim infn→∞ xn 6 a < b 6 lim supn→∞ xn. In other words, the sequence (xn)n∈N
in R is convergent if and only if βa,b <∞ for all a < b in R (or in Q).

§3.1.8 Lemma. For any sequence of real r.v.’s (Xn)n∈N and any a < b in R (or Q) the upcross-
ing numbers βa,b(ω) associated with each sequence (Xn(ω))n∈N define a r.v..
Proof of Lemma §3.1.8 is left as an exercise.

§3.1.9 Remark. Note that τk (and σk) as in §3.1.6 defines for each k = 0, 1, . . . a stopping
time since {τk = n} (and {σk = n}) depends only on {Xm,m 6 n} and, hence belongs to Fn.
In addition, τk 6 τk+1, k ∈ N.

§3.1.10 Lemma. A sequence of real r.v.’s (Xn)n∈N converges a.s. if and only if the upcrossing
numbers βa,b are finite a.s. for any a < b in R (or Q).
Proof of Lemma §3.1.10 is left as an exercise.

§3.1.11 Lemma (Dubin’s inequality). Let (Xn)n∈N be a positive supermartingale. For any
k ∈ N and any numbers 0 < a < b < ∞ the associated upcrossing numbers βa,b satisfy the
inequality

P
(
βa,b > k|F1

)
6
(
a/b
)k

min

(
X1

a
, 1

)
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The r.v.’s βa,b are hence a.s. finite.

Proof of Lemma §3.1.11 is given in the lecture.

§3.1.12 Remark. Note that, if (Xz)z∈Z is a positive supermartingale, then P
(
βa,b > k|F1

)
6(

a/b
)k

min
(

supz61Xz

a
, 1
)

.

§3.1.13 Theorem. Every positive supermartingale (Xn)n∈N converges a.s., i.e., Xn
a.s.−→ X∞.

Furthermore, the a.s. limit X∞ satisfies E[X∞|Fn] 6 Xn for all n ∈ N.

Proof of Theorem §3.1.13 is given in the lecture.

§3.1.14 Remark. (a) Since E[X∞|Fn] 6 Xn holds for all n ∈ N it follows that X∞ < ∞
a.s. on the complement of the event ∩n∈N{Xn =∞}. Indeed, for all n, X∞ is integrable
on each event {E[X∞|Fn] 6 a}, a ∈ R+ and hence finite on the event {E[X∞|Fn] <∞}.

(b) If (Xn)n∈N is an integrable positive supermartingale, that is, Xn ∈ L1 for all n ∈ N,
then E[X∞|Fn] 6 Xn implies X∞ ∈ L1. However, in general, an integrable positive
supermartingale does not converge to X∞ in L1.

(c) If (Xn)n∈N is a positive martingale, that is, Xn = E[Xn+1|Fn] a.s. for all n ∈ N, then by
Theorem §3.1.13 Xn

a.s.−→ X∞ and E[X∞|Fn] 6 Xn for all n ∈ N, where the inequality
does generally not become an equality. The next proposition provides a situation in which
this phenomena not arrives.

§3.1.15 Proposition. Let p ∈ [1,∞). For all Z ∈ L+
p := Lp ∩ M+ the stochastic process

(Zn)n∈N given by Zn := E[Z|Fn], n ∈ N, is a positive martingale which converges a.s. and in
Lp to Z∞ := E[Z|F∞] with F∞ :=

∨
n∈N Fn.

Proof of Proposition §3.1.15 is given in the lecture.

§3.1.16 Remark. (a) A positive martingale (Zn)n∈N as in §3.1.15 and its a.s.-limit Z∞ ver-
ify the equality Zn = E[Z∞|Fn] a.s. for all n ∈ N by employing that E[Z∞|Fn] =
E[E[Z|F∞]|Fn] = E[Z|Fn] = Zn.

(b) Let (Xn)n∈N be a positive martingale which converges in Lp, i.e., Xn
Lp−→ X∞. Then,

the equality Xn = E[Xm|Fn] a.s. for all m > n and the continuity of the conditional
expectation on Lp imply together that Xn = E[X∞|Fn] a.s. for all n ∈ N. Thereby,
Proposition §3.1.15 implies that the martingales of the form (E[Z|Fn])n∈N with Z ∈ L+

p

are exactly the positive martingales in Lp which converge in Lp as n → ∞. A positive
martingale (Xn)n∈N is called closable (abschließbar) in Lp, if there exists anX ∈ L+

p with
Xn = E[X|Fn], for all n ∈ N.

(c) Considering Z = Z+ − Z− allows to extend immediately the last proposition to a r.v.
Z ∈ Lp.

§3.1.17 Corollary. For any positive r.v. Z we have E[Z|Fn]
a.s.−→ E[Z|F∞] on the complement

of the event ∩n∈N{E[Z|Fn] =∞}.
Proof of Corollary §3.1.17 is left as an exercise.

§3.1.18 Remark. Note that in the preceding corollary integrability is not assumed. However,
the result cannot be improved. In Neveu [1975], p.31, for example, a r.v. Z is constructed
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which is F∞-measurable and a.s. finite such that E[Z|Fn] =∞ a.s. for all n ∈ N. In this case,

E[Z|Fn]
Lp−→ E[Z|F∞] = Z holds only on a negligible set.

§3.1.19 Lemma. For any positive {super-}martingale (Xn)n∈N and for any stopping time τ ,
the stopped process Xτ = (Xτ∧n)n∈N is a positive {super}martingale.
Proof of Lemma §3.1.19 is left as an exercise.

§3.1.20 Theorem (Optional stopping). Let (Xn)n∈N be a positive supermartingale and X∞ its
a.s.-limit. Then, for any stopping times τ and σ we have

Xτ > E[Xσ|Fτ ] a.s. on the event {τ 6 σ}.
Proof of Theorem §3.1.20 is given in the lecture.

§3.1.21 Remark. If (Xn)n∈N is a positive martingale, then the inequalityXτ > E[Xσ|Fτ ] does
generally not become an equality.

3.2 Integrable {super/sub-}martingales

§3.2.1 Definition. Let X = (Xt)t∈T be an adapted stochastic process on a filtered probability
space (Ω,A ,P,F ) with Xt ∈ L1(Ω,A ,P) for all t ∈ T. X is called (with respect to F ) a

(integrable) supermartingale if Xs > E(Xt|Fs) for all s, t ∈ T with t > s,

(integrable) submartingale if Xs 6 E(Xt|Fs) for all s, t ∈ T with t > s,

(integrable) martingale if Xs = E(Xt|Fs) for all s, t ∈ T with t > s.
An Rd-valued adapted stochastic process X = ((X1

t , . . . , X
d
t ))t∈T is called an (integrable)

{super/sub-}martingale if each coordinate processXk = (Xk
t )t∈T is an (integrable) {super/sub-}

martingale.

§3.2.2 Remark. (a) The integrability assumption is often replaced by the weaker assumption
E(X+

t ) < ∞ for all t ∈ T. This generalisation is only helpful in case of a negative
submartingale (by changing the sign a positive supermartingale).

(b) The a.s. convergence of an integrable submartingale is essentially a corollary of The-
orem §3.1.13 which establishes the convergence for positive supermartingales with the
only difference, that any positive supermartingale converges a.s. but not every integrable
submartingale converges a.s..

§3.2.3 Lemma. Let M be a Rd-valued integrable martingale and consider a convex function
f : Rd → R such that X = f(M) is integrable. Then X is a submartingale. The statement
remains true for any real-valued integrable submartingale M , provided that f is also non-
decreasing.
Proof of Lemma §3.2.3 is left as an exercise.

§3.2.4 Remark. The last result is often applied with f(x) = ‖x‖pp, for some p > 1 or, for
d = 1, with f(x) = x+.

§3.2.5 Theorem. Every integrable submartingale (Xn)n∈N satisfying supt∈T E(X+
t ) <∞ con-

verges a.s., i.e., Xn
a.s.−→ X∞. Furthermore, the a.s. limit X∞ is integrable. In case of an

integrable martingale the condition supt∈T E(X+
t ) <∞ is equivalent to supt∈T ‖Xt‖1 <∞.
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Proof of Theorem §3.2.5 is given in the lecture.

§3.2.6 Remark. The decomposition Xn = Mn − An, n ∈ N, into a positive integrable mar-
tingale (Mn)n∈N and a positive integrable supermartingale (An)n∈N obtained in the proof of
Theorem §3.2.5 is called Krickeberg decomposition.

§3.2.7 Lemma. Let (Xn)n∈N be an integrable martingale and let τ be a bounded stopping
time, that is, τ 6 K for some K ∈ N. Then Xτ = E[XK |Fτ ] and in, particular E(Xτ ) =
E(X1). Assume that, more generally,X is only adapted and integrable. ThenX is an integrable
martingale if and only if E(Xτ ) = E(X1) for any bounded stopping time τ .

Proof of Lemma §3.2.7 is given in the lecture.

§3.2.8 Definition. Let (Xn)n∈N0 be an adapted real-valued process and let (Hn)n∈N be a real-
valued predictable process as defined in §2.4.4. The discrete stochastic integral of H with
respect toX is the adapted stochastic processH•X = ((H•X)n)n∈N0 defined by (H•X)0 := 0
and (H • X)n :=

∑n
k=1 Hk(Xk − Xk−1) for n ∈ N. If X is a martingale, then H • X is also

called the martingale transform of X .

§3.2.9 Example. Let X be a (possibly unfair) game where Xn − Xn−1 is the gain per euro
in the nth round. We interpret Hn as the number of euros we bet in the nth game. H is then
a gambling strategy. Clearly, the value of Hn has to be decided at time n − 1; that is, before
the result of Xn is known. In other words, H must be predictable. Now assume that X is a
fair game (that is, a martingale) and H is locally bounded (that is, each Hn is bounded). From
E[Xn+1−Xn|Fn] = 0 follows that E[(H•X)n+1|Fn] = E[(H•X)n+Hn+1(Xn+1−Xn)|Fn] =
(H •X)n +Hn+1E[Xn+1−Xn|Fn] = (H •X)n. Thus H •X is a martingale. The next result
says that the converse also holds; that is, X is a martingale if, for sufficiently many predictable
processes, the stochastic integral is a martingale.

§3.2.10 Proposition. Let (Xn)n∈N0 be an adapted, real-valued stochastic process.
(a) X is an integrable martingale if and only if, for any locally bounded predictable process

H , the stochastic integral H •X is an integrable martingale.

(b) X is an integrable submartingale (supermartingale) if and only if H •X is an integrable
submartingale (supermartingale) for any locally bounded positive predictable process H .

Proof of Proposition §3.2.10 is given in the lecture.

§3.2.11 Remark. The preceding proposition says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to non-negative
gambling strategies, as we are in real life, a supermartingale) into a submartingale. Quite the
contrary is suggested by the many invitations to play all kinds of “sure winning systems” in
lotteries.

3.3 Regular integrable martingale

§3.3.1 Proposition. For every integrable martingale (Xn)n∈N on a filtered probability space
(Ω,A ,P,F ) the following conditions are equivalent

(i) The sequence (Xn)n∈N converges in L1 as n→∞;
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(ii) supn∈N ‖Xn‖1 < ∞ and the a.s. limit X∞ = limn→∞Xn of the martingale which exists
in L1 due to Theorem 3.2.5 satisfies the equalities Xn = E[X∞|Fn] for all n ∈ N;

(iii) The martingale is closable, that is, there exists a r.v. X ∈ L1(Ω,A ,P) such that Xn =
E[X|Fn] for all n ∈ N;

(iv) The sequence (Xn)n∈N is uniformly integrable in L1(Ω,A ,P), that is,
lima→∞ supn∈N E

(
1{|Xn|>a}|Xn|

)
= 0 which is satisfied whenever supn∈N ‖Xn‖1 ∈ L1.

The integrable martingale (Xn)n∈N will be called regular if it satisfies one of these equivalent
conditions.

Proof of Proposition §3.3.1 is given in the lecture.

§3.3.2 Corollary. Let (Xn)n∈N be a regular integrable martingale. (i) For every stopping
time τ , the r.v. Xτ is integrable. (ii) The family {Xτ ; τ is a finite stopping time} is uniformly
integrable. (iii) For every pair of stopping times τ, σ such that τ 6 σ a.s., the “martingale
equality” Xτ = E[Xσ|Fτ ] is also satisfied.

Proof of Corollary §3.3.2 is given in the lecture.

§3.3.3 Remark. For a regular integrable martingale the limit X∞ = limn→∞Xn exists a.s. and
the r.v. Xτ (resp. Xσ) by definition equals X∞ on {τ =∞} (resp. {σ =∞}). Since τ ∧σ 6 σ
a.s. the corollary implies Xτ∧σ = E[Xσ|Fτ∧σ]. Furthermore E[Xσ|Fτ ] = E[Xσ|Fτ∧σ], and
hence, for any stopping time τ, σ we have Xτ∧σ = E[Xσ|Fτ ]. Indeed, for all A ∈ Fτ we have

E[E[Xσ|Fτ ]1A] = E[Xσ1A] = E[Xσ1A ∩ {τ 6 σ}︸ ︷︷ ︸
∈Fτ∧σ

] + E[Xσ1A ∩ {τ > σ}︸ ︷︷ ︸
∈Fτ∧σ

]

= E[E[Xσ|Fτ∧σ]1A∩{τ6σ}] + E[Xτ∧σ1A∩{τ>σ}]

= E
[{

E[Xσ|Fτ∧σ]1{τ6σ} +Xτ∧σ1{τ>σ}
}
1A

]
Thereby, E[Xσ|Fτ ] = E[Xσ|Fτ∧σ]1{τ6σ} + Xτ∧σ1{τ>σ} and Fτ∧σ-measurable, which in turn
implies, E[Xσ|Fτ ] = E

[
E[Xσ|Fτ ]|Fτ∧σ] = E[Xσ|Fτ∧σ] by employing that Fτ∧σ ⊂ Fτ .

§3.3.4 Proposition. Every martingale (Xn)n∈N which is bounded in Lp for some p > 1 in the
sense that supn∈N ‖Xn‖p < ∞, is regular. Furthermore, the martingale converges in Lp to an
a.s. limit X∞.

Proof of Proposition §3.3.4 is given in the lecture.

§3.3.5 Remark. The last proposition is false for p = 1.

§3.3.6 Lemma. Every positive and integrable submartingale (Xn)n∈N satisfies the inequalities
aP(supm6nXm > a) 6 E

(
1{supm6nXm>a}Xn

)
for all n ∈ N and all a > 0.

Proof of Lemma §3.3.6 is given in the lecture.

§3.3.7 Proposition. For every martingale (Xn)n∈N which is bounded in Lp for some p > 1 the
r.v. supn∈N|Xn| belongs to Lp and satisfies ‖supn∈N|Xn|‖p 6

p
p−1

supn∈N ‖Xn‖p.
Proof of Proposition §3.3.7 is given in the lecture.
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§3.3.8 Remark. The last proposition is false for p = 1. However, for every martingale (Xn)n∈N
satisfying the condition supn∈N E

[
|Xn|

(
log |Xn|

)
+

]
<∞, the r.v. supn∈N|Xn| is integrable and

the martingale (Xn)n∈N is therefore regular (c.f. Neveu [1975], Proposition IV-2-10, p.70).

The concepts of filtration and martingale do not require the index set T (interpreted as time)
to be a subset of [0,∞). Hence we can consider the case T = −N0.

§3.3.9 Definition. Let F = (Fn)n∈−N0 be a filtration where F−n−1 ⊂ F−n, n ∈ N0 and let
X = (Xn)n∈−N0 be an integrable martingale with respect to F , that is, X−n ∈ L1, X−n is
F−n-measurable and E[X−n|F−n−1] = X−n−1 hold for all n ∈ N0. Then X = (X−n)n∈N0 is
called an (integrable) backwards martingale.

§3.3.10 Remark. A backwards martingale is always uniformly integrable and hence regular.
This follows from Corollary §1.6.13 and the fact that X−n = E[X0|F−n] for any n ∈ N0.

§3.3.11 Proposition. Let (X−n)n∈N0 be a backward martingale with respect to (F−n)n∈N0 .
Then there exists X−∞ = limn→∞X−n a.s. and in L1. Furthermore, X−∞ = E[X0|F−∞]
where F−∞ = ∩∞n=1F−n.

Proof of Proposition §3.3.11 is given in the lecture.

§3.3.12 Example (Kolmogorov’s strong law of large numbers). Let (Xn)n∈N be a sequence of
i.i.d. real-valued r.v.’s in L1, then n−1

∑n
k=1 Xk

n→∞−→ E(X1) a.s. and in L1.

3.4 Regular stopping times for an integrable martingale

§3.4.1 Lemma. Let (Xn)n∈N be an integrable {super/sub}martingale. For every stopping time
τ , the stopped process Xτ = (Xτ

n)n∈N by Xτ
n = Xτ∧n for any n ∈ N is again an integrable

{super/sub}martingale.

Proof of Lemma §3.4.1 is left as an exercise.

§3.4.2 Definition. A stopping time τ is called regular for an integrable martingale (Xn)n∈N if
the stopped process Xτ = (Xτ∧n)n∈N is regular.

§3.4.3 Proposition. For every integrable martingale (Xn)n∈N on a filtered probability space
(Ω,A ,P,F ) and for every stopping time τ the following conditions are equivalent

(a) the stopping time is regular;

(b) the stopping time satisfies the following conditions: (i) the limit X∞ = limn→∞Xn exists
a.s. on {τ =∞}; (ii) the r.v. Xτ which is defined a.s., is integrable and (iii) Xτ∧n =
E[Xτ |Fn] a.s. for all n ∈ N.

(c) the stopping time satisfies the following conditions: (i) (Xn1{τ>n})n∈N is a uniformly
integrable sequence and (ii) E(1{τ<∞}|Xτ |) <∞.

Proof of Proposition §3.4.3 is given in the lecture.

§3.4.4 Remark. Condition (c) (ii) is automatically satisfied by every martingale (Xn)n∈N such
that supn∈N E|Xn| <∞, in particular by every positive integrable martingale (E|Xn| = EXn =
EX1).
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§3.4.5 Proposition. Let τ be a regular stopping time. For every pair σ1, σ2 of stopping times
such that σ1 6 σ2 6 τ , for such such a pair the r.v.’s Xσ1 and Xσ2 both exist, are integrable,
and satisfy the “martingale identity” Xσ1 = E[Xσ2|Fσ1 ] a.s..

Proof of Proposition §3.4.5 is given in the lecture.

§3.4.6 Corollary. Let τ and σ be two stopping times such that τ 6 σ a.s.. For a given martin-
gale (Xn)n∈N the stopping time τ is regular whenever the stopping time σ is regular.

Proof of Corollary §3.4.6 is given in the lecture.

§3.4.7 Remark. Corollary §3.4.6 shows in particular that for a regular martingale, every stop-
ping time is regular (take σ = +∞).

§3.4.8 Corollary. For every martingale (Xn)n∈N such that supn∈N E|Xn| < ∞, in particular
for every positive and integrable martingale, the hitting time τa defined by τa := inf{n : |Xt| >
a} is regular for all a > 0.

Proof of Corollary §3.4.8 is given in the lecture.

§3.4.9 Proposition. Let (Xt)t∈T be an integrable martingale. In order that the stopping time
τ be regular for this martingale and that also limn→∞Xn = 0 a.s. on {τ =∞}, it is neces-
sary and sufficient that the following two conditions be satisfied: (i) E1{τ<∞}|Xτ | < ∞ and
(ii) limn→∞ E1{τ>n}|Xn| = 0.

Proof of Proposition §3.4.9 is given in the lecture.

§3.4.10 Example (Wald identity). Let (Xn)n∈N be a sequence of i.i.d. real-valued r.v.’s defined
on a filtered probability space (Ω,A ,P,FX) with natural filtration FX . Assuming further that
X1 ∈ L2 the processes (Sn − nEX1)n∈N with Sn :=

∑n
i=1Xi, n ∈ N, and ((Sn − nEX1)2 −

nVarX1)n∈N are integrable martingales which are not regular since they diverge a.s. when
n → ∞. However, every stopping time τ such that E(τ) < ∞ is regular for each of the
two martingales (Sn − nEX1)n∈N and ((Sn − nEX1)2 − nVarX1)n∈N. Such a stopping time
satisfies the Wald identities (i) E(Sτ ) = E(τ)E(X1) and (ii) E[Sτ−τE(X1)]2 = E(τ)Var(X1).
Moreover, if in addition E(τ 2) <∞ then Var(Sτ ) = Var(τ)(EX1)2 + E(τ)Var(X1).

3.5 Regularity of integrable submartingales

The study of integrable martingales can be very easily extended to integrable submartingales
by using the Krickeberg decomposition of such submartingales.

§3.5.1 Proposition. For every integrable submartingale (Xn)n∈N, the following conditions are
equivalent:

(a) The sequence (X+
n )n∈N converges in L1;

(b) supn∈N EX+
n < ∞ and the a.s. limit X∞ = limn→∞Xn of the submartingale (Xn)n∈N

which exists and is integrable by Theorem §3.2.5, satisfies the inequalitiesXn 6 E[X∞|Fn]
a.s. for all n ∈ N;

(c) There exists an integrable r.v. Y such that Xn 6 E[Y |Fn] for all n ∈ N;
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(d) The sequence (X+
n )n∈N satisfies the uniform integrability condition

lim
a→∞

sup
n∈N

E1{X+
n >a}X

+
n = 0

which holds particularly if E supn∈NX
+
n <∞.)

The integrable submartingale (Xn)n∈N is said to be regular if it satisfies the preceding equiva-
lent conditions.
Proof of Proposition §3.5.1 is given in the lecture.

§3.5.2 Remark. For a negative integrable submartingale (i.e., for a positive integrable super-
martingale with its sign changed), the conditions of the proposition hold trivially. Observe that
such a submartingale does not converge in mean, although it always converge a.s., and the con-
dition (a) of the preceding proposition is strictly less restrictive than the convergence of the
submartingale in L1. On the other hand it is clear that for a positive submartingale condition (a)
gives L1-convergence of the submartingale.

§3.5.3 Corollary. For every regular submartingale (Xn)n∈N and for every stopping time τ ,
the r.v. Xτ is integrable; for every pair τ1, τ2 of stopping times such that τ1 6 τ2 a.s., the
submartingale inequality Xτ1 6 E[Xτ2 |Fτ1 ] remains true a.s..
Proof of Corollary §3.5.3 is given in the lecture.

§3.5.4 Remark. Finally, it is straightforward to extend the regularity of stopping times as given
in Proposition §3.4.3 and §3.4.5 to integrable submartingales. The only changes required in the
statement of this proposition consist in replacing the word “martingales” by “submartingales”
and writing the inequalities Xτ∧n 6 E[Xτ |Fn] and Xσ1 6 E[Xσ2|Fσ1 ] instead of the corre-
sponding equalities.

3.6 Doob decomposition and square variation

The introduction of the notion of predictable and increasing process as defined in §2.4.4 al-
lows to effect decompositions of {super/sub-}martingales. As before, we take once and for
all a filtered probability space (Ω,A ,P,F ). Let X = (Xn)n∈N0 be an adapted integrable
process. We will decompose X into a sum consisting of a martingale and a predictable pro-
cess. To this end, for n ∈ N0, define Mn := X0 +

∑n
k=1

(
Xk − E[Xk|Fk−1]

)
and An :=∑n

k=1

(
E[Xk|Fk−1]−Xk−1

)
. Evidently, Xn = Mn+An. By constructionA is predictable with

A0 = 0, and M is a martingale since E[Mn−Mn−1|Fn−1] = E[Xn−E[Xn|Fn−1]|Fn−1] = 0.

§3.6.1 Proposition (Doob decomposition). Let X = (Xn)n∈N0 be an adapted integrable pro-
cess. Then there exists a unique decomposition X = M + A, where A is predictable with
A0 = 0 and M is a martingale. This representation of X is called the Doob decomposition. X
is a submartingale if and only if A is an increasing process.
Proof of Proposition §3.6.1 is given in the lecture.

§3.6.2 Proposition. Let X := (Xn)n∈N0 be an integrable submartingale and let X = M + A
be its Doob decomposition.

(a) The condition supn∈N0
EX+

n < ∞ (which suffices to ensure a.s. convergence of the sub-
martingale) is equivalent to the conjunction of the two conditions (i) A∞ ∈ L1 and
(ii) supn∈N0

E(|Mn|) <∞.
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(b) The convergence in L1 of the submartingale X is equivalent to the conjunction of the two
conditions (i) M is a regular martingale and (ii) A∞ ∈ L1.

(c) For every stopping time τ regular for the martingale M , the r.v. Xτ is integrable if and
only if EAτ <∞, and then EXτ = EM0 + EAτ .

Proof of Proposition §3.6.2 is given in the lecture.

§3.6.3 Example. Let (Xn)n∈N0 be a square integrable F -martingale, i.e., Xn ∈ L2(Ω,A ,P)
for all n ∈ N0. By Lemma §3.2.3, (X2

n)n∈N0 is a submartingale. Furthermore, E[Xi−1Xi|Fi−1] =
Xi−1E[Xi−1|Fi−1] = X2

i−1, hence considering the Doob decomposition of (X2
n)n∈N0 we find

An =
n∑
i=1

(
E[X2

i |Fi−1]−X2
i−1

)
=

n∑
i=1

(
E[(Xi −Xi−1)2|Fi−1]− 2X2

i−1 + 2E[Xi−1Xi|Fi−1]
)

=
n∑
i=1

E[(Xi − Xi−1)2|Fi−1].

§3.6.4 Definition. Let (Xn)n∈N0 be a square integrable F -martingale. The unique increasing
process A for which (X2

n−An)n∈N0 becomes a martingale is called square variation process of
X and is denoted by 〈X〉 := (〈X〉n)n∈N0 := A.

§3.6.5 Proposition. LetX be as in Definition §3.6.4. Then, for n ∈ N0, 〈X〉n =
∑n

i=1 E[(Xi−
Xi−1)2|Fi−1] and E〈X〉n = Var(Xn −X0).

Proof of Proposition §3.6.5 is given in the lecture.

§3.6.6 Example. Let X1, X2, . . . be independent, square integrable r.v.’s. If E(Xn) = 0, for all
n ∈ N, then Sn :=

∑n
i=1 Xi defines a square integrable martingale with 〈S〉n =

∑n
i=1 E(X2

i ).
In fact, An =

∑n
i=1 E[X2

i |X1, . . . , Xi−1] =
∑n

i=1 E[X2
i ]. Note that in order for 〈S〉 to have

this simple form, it is not enough for the r.v.’s X1, X2, . . . to be uncorrelated. On the other
hand, if E(Xn) = 1, for all n ∈ N, then Yn :=

∏n
i=1Xi defines a square integrable martin-

gale with respect to the natural filtration F = σ(Y ) and E[(Yn − Yn−1)2|Fn−1] = E[(Yn −
1)2X2

n−1|Fn−1] = Var(Yn)X2
n−1. Hence, 〈Y 〉n =

∑n
i=1 Var(Yi)X

2
i−1 which is a truly random

process.

§3.6.7 Lemma. Let X be a square integrable martingale with square variation process 〈X〉,
and let τ be a stopping time. Then the stopped processXτ has square variation process 〈Xτ 〉 =
〈X〉τ := (〈X〉τ∧n)n∈N.

Proof of Lemma §3.6.7 is given in the lecture.

§3.6.8 Proposition. Let X := (Xn)n∈N0 be a square integrable martingale with X0 = 0.
(a) If E〈X〉∞ <∞, then the martingale X converges in L2 and, hence X is regular.

(b) A stopping time τ is regular for the martingale X whenever E
√
〈X〉τ < ∞ and then

E supn6τ |Xn| 6 3E
√
〈X〉τ <∞.

(c) in every case the martingale X converges a.s. to a finite limit on the event {〈X〉∞ <∞}.
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Proof of Proposition §3.6.8 is given in the lecture.

§3.6.9 Corollary. Let X := (Xn)n∈N0 be a square integrable martingale with square variation
process 〈X〉. Then the following four statements are equivalent: (i) supn∈N E(X2

n) < ∞,
(ii) limn→∞ E(〈X〉n) <∞, (iii) X converges in L2, and (iv) X converges almost surely and in
L2.

Proof of Corollary §3.6.9 is given in the lecture.

§3.6.10 Proposition. If X is a square integrable martingale, then for any α > 1/2,

Xn/(〈X〉n)α
n→∞−→ 0 a.s. on {〈X〉∞ =∞}.

Proof of Proposition §3.6.10 is given in the lecture.

§3.6.11 Example. Let X1, X2, . . . be independent, square integrable r.v.’s. If (an)n∈N is an
increasing and diverging sequence in R such that

∑∞
i=1 Var(Xi)/a

2
i <∞, then a−1

n

∑n
i=1(Xi−

EXi)
n→∞−→ 0 a.s..
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