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Chapter 1

Preliminaries

This chapter presents elements of the lecture course PROBABILITY THEORY I along the lines
of the textbook Klenke [2008], where far more details, examples and further discussions can be
found.

1.1 Basic measure theory

In the following, let Ω 6= ∅ be a nonempty set and let A ⊂ 2Ω (power set, set of all subsets
of Ω) be a class of subsets of Ω. Later, Ω will be interpreted as the space of elementary events
and A will be the system of observable events.

§1.1.1 Definition. (a) A pair (Ω,A ) consisting of a nonempty set Ω and a σ-algebra A is
called a measurable space. The sets A ∈ A are called measurable sets. If Ω is at most
countably infinite and if A = 2Ω, then the measurable space (Ω, 2Ω) is called discrete.

(b) A triple (Ω,A , µ) is called a measure space if (Ω,A ) is a measurable space and if µ is a
measure on A .

(c) A measure space (Ω,A ,P) is called a probability space, if in addition P(Ω) = 1. In this
case, the sets A ∈ A are called events.

§1.1.2 Remark. Let A ⊂ 2Ω and let µ : A → [0,∞] be a set function. We say that µ is
(a) monotone, if µ(A) 6 µ(B) for any two sets A,B ∈ A with A ⊂ B.

(b) additive, if µ
( n⊎
i=1

Ai
)

=
n∑
i=1

µ(Ai) for any choice of finitely many mutually disjoints sets

A1, . . . , An ∈ A with ∪ni=1Ai ∈ A . The disjoint union of sets is denoted by the symbol⊎
which only stresses the fact that the sets involved are mutually disjoint.

(c) σ-additive, if µ(
∞⊎
i=1

Ai) =
∞∑
i=1

µ(Ai) for any choice of countably many mutually disjoints

sets A1, A2, . . . ∈ A with ∪∞i=1Ai ∈ A .
A is called an algebra if (i) Ω ∈ A , (ii) A is closed under complements, and (iii) A is
closed under intersections. Note that, if A is closed under complements, then we have the
equivalences between (i) A is closed under (countable) unions and (ii) A is closed under
(countable) intersections. An algebra A is called σ-algebra, if it is closed under countable
intersections. If A is an algebra and µ : A → [0,∞] is a set function with µ(∅) = 0, then µ is
called a

(d) content, if µ is additive,

(e) premeasure, if µ is σ-additive,

(f) measure, if µ is a premeasure and A is a σ-Algebra.
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Chapter 1 Preliminaries 1.2 Random variables

A content µ on an algebra A is called
(g) finite, if µ(A) <∞ for every A ∈ A ,

(h) σ-finite, if there is a sequence Ω1,Ω2, . . . ∈ A such that Ω =
⋃∞
n=1 Ωn and such that

µ(Ωn) <∞ for all n ∈ N.

§1.1.3 Examples. (a) For any nonempty set Ω, the classes A = {∅,Ω} and A = 2Ω are the
trivial examples of σ-algebras.

(b) Let E ⊂ 2Ω. The smallest σ-algebra σ(E) =
⋂
{A : A is σ-algebra and E ⊂ A } with

E ⊂ σ(E) is called the σ-algebra generated by E and E is called a generator of σ(E).

(c) Let (Ω, τ) be a topological space with class of open sets τ ⊂ 2Ω. The σ-algebra B(Ω) that
is generated by the open sets is called the Borel-σ-algebra on Ω. The elementsB ∈ B(Ω)
are called Borel sets or Borel measurable sets. We write B := B(R), B+ := B(R+)
and Bn := B(Rn) for the Borel-σ-algebra on R, R+ := [0,∞) and Rn, respectively,
equipped with the usual Euclidean distance.

(d) Denote by 1A(x) the indicator function on a set A which takes the value one if x ∈ A and
zero otherwise. Let ω ∈ Ω and δω(A) = 1A(ω). Then δω is a probability measure on any
σ-algebra A ⊂ 2Ω. δω is called the Dirac measure on the point ω.

(e) Let Ω be an (at most) countable nonempty set and let A = 2Ω. Further let (pω)ω∈Ω be
non-negative numbers. Then A 7→ µ(A) :=

∑
ω∈Ω pωδω(A) defines a σ-finite measure. If

pω = 1 for every ω ∈ Ω, then µ is called counting measure on Ω. If Ω is finite, then so is
µ.

§1.1.4 Theorem (Carathéodory). Let A ⊂ 2Ω be an algebra and let µ be a σ-finite premeasure
on A . There exists a unique measure µ̃ on σ(A ) such that µ̃(A) = µ(A) for all A ∈ A .
Furthermore, µ̃ is σ-finite.

Proof of Theorem §1.1.4. We refer to Klenke [2008], Theorem 1.41.

§1.1.5 Remark. If µ is a finite content on an algebra A , then σ-continuity at ∅, that is,
µ(An)→ 0 = µ(∅) as n→∞ for any sequence (An)n∈N in A with µ(An) <∞ for some (and
then eventually all) n ∈ N and An ↓ ∅ (i.e., A1 ⊃ A2 ⊃ A3 ⊃ . . . and ∩∞n=1An = ∅), implies
σ-additivity.

§1.1.6 Example. A probability measure P on the measurable space (Rn,Bn) is uniquely de-
termined by the values P((−∞, b]) (where (−∞, b] = ×ni=1(−∞, bi], b ∈ Rn). In particular, a
probability measure P on R is uniquely determined by its distribution function F : R→ [0, 1],
x 7→ P((−∞, x]).

1.2 Random variables

In this section (Ω,A ), (S,S ) and (Si,Si), i ∈ I, denote measurable spaces where I is an
arbitrary index set.

§1.2.1 Definition. Let Ω be a nonempty set and let X : Ω→ S be a map.
(a) X is called A -S -measurable (or, briefly, measurable) if X−1(S ) := {X−1(S) : S ∈

S } ⊂ A , that is, if X−1(S) ∈ A for any S ∈ S . A measurable map X : (Ω,A ) →
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1.2 Random variables Chapter 1 Preliminaries

(S,S ) is called a random variable (r.v.) with values in (S,S ). If (S,S ) = (R,B) or
(S,S ) = (R+,B+), then X is called a real or positive random variable, respectively.

(b) The preimage X−1(S ) is the smallest σ-algebra on Ω with respect to which X is measur-
able. We say that σ(X) := X−1(S ) is the σ-algebra on Ω that is generated by X .

(c) For any, i ∈ I, letXi : Ω→ Si be an arbitrary map. Then σ(Xi, i ∈ I) :=
∨
i∈I σ(Xi) :=

σ
(
∪i∈I σ(Xi)

)
= σ

(
∪i∈I X−1

i (Si)
)

is called the σ-algebra on Ω that is generated by
(Xi, i ∈ I). This is the the smallest σ-algebra with respect to which allXi are measurable.

§1.2.2 Properties. Let I be an arbitrary index set. Consider Si ∈ 2S , i ∈ I, and a map
X : Ω→ S. Then

(a) X−1(∪i∈ISi) = ∪i∈IX−1(Si), X−1(∩i∈ISi) = ∩i∈IX−1(Si) ,

(b) X−1(S ) is a σ-algebra on Ω and {S ∈ S : X−1(S) ∈ A } is a σ-algebra on S.
If E is a class of sets in 2S , then σΩ(X−1(E)) = X−1(σS(E)).

§1.2.3 Examples. (a) The identity map Id : Ω→ Ω is A -A -measurable.

(b) If A = 2Ω and S = {∅,S}, then any map X : Ω→ S is A -S -measurable.

(c) Let A ⊂ Ω. The indicator function 1A : Ω → {0, 1} is A -2{0,1}-measurable, if and only
if A ∈ A .

For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x} (integer part),
x∨y = max(x, y) (maximum), x∧y = min(x, y) (minimum), x+ = max(x, 0) (positive part),
x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).

§1.2.4 Properties. (a) IfX, Y are real r.v.’s, then so areX+ := max(X, 0),X− := max(−X, 0),
|X| = X+ + X−, X + Y , X − Y , X · Y and X/Y with x/0 := 0 for all x ∈ R. In
particular, X+ and bXc is A -B+- and A -2Z-measurable, respectively.

(b) If X1, X2, . . . are real r.v.’s, then so are supn>1Xn, infn>1Xn,
lim supn→∞Xn := infk>1 supn>kXn and lim infn→∞Xn := supk>1 infn>kXn.

(c) Let X1, . . . , Xn : Ω → R be maps and define X := (X1, . . . , Xn) : Ω → Rn. Then X
is a real r.v. (i.e., A -Bn-measurable), if and only if each Xi is a real r.v. (i.e., A -B-
measurable).

(d) Let E = {Ai ∈ 2Ω, i ∈ I, mutually disjoint and
⊎
i∈I Ai = Ω} be a partition of Ω. A

map X : Ω → R is σ(E)-B-measurable, if there exist numbers xi ∈ R, i ∈ I, such that
X =

∑
i∈I xi1Ai

.

§1.2.5 Definition. (a) A real r.v. X is called simple if there is an n ∈ N and mutually disjoint
measurable sets Ai, . . . , An ∈ A as well as numbers α1, . . . , αn ∈ R, such that X =∑n

i=1 αi1Ai
.

(b) Assume that X,X1, X2, . . . are maps Ω → R := R ∪ {−∞,+∞} such that X1(ω) 6
X2(ω) 6 . . . and limn→∞Xn(ω) = X(ω) for any ω ∈ Ω. Then we write Xn ↑ X
and say that (Xn)n∈N increases (point-wise) to X . Analogously, we write Xn ↓ X if
(−Xn) ↑ (−X).
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§1.2.6 Example. Let us briefly consider the approximation of a positive r.v. by means of simple
r.v.’s. Let X : Ω→ R+ be a A -B+-measurable. Define Xn = (2−nb2nXc) ∧ n. Then Xn is a
simple r.v. and clearly, Xn ↑ X uniformly on each interval {X 6 c}.

§1.2.7 Property. Let X : (Ω,A ) → (S,S ) and Y : (Ω,A ) → (R,B) be r.v.’s. The real r.v.
Y is σ(X)-B-measurable if and only if there exists a S -B-measurable map f : S → R such
that Y = f(X).

§1.2.8 Definition. Let X : (Ω,A )→ (S,S ) be a r.v..
(a) For S ∈ S , we denote {X ∈ S} := X−1(S). In particular, we let {X > 0} :=

X−1([0,∞)) and define {X 6 b} similarly and so on.

(b) Let P be a probability measure on (Ω,A ). The image probability measure PX of P under
the map X is the probability measure PX := P ◦ X−1 on (S,S ) that is defined by
PX(S) := P(X ∈ S) := P(X−1(S)) for each S ∈ S . PX is called the distribution of X .
We write X ∼ Q if Q = PX and say X has distribution Q.

(c) A family (Xi)i∈I of r.v.’s is called identically distributed (i.d.) if PXi
= PXj

for all

i, j ∈ I. We write X d
= Y if PX = PY (d for distribution).

1.3 Independence

In the sequel, (Ω,A ,P) is a probability space, the sets A ∈ A are the events and I is an
arbitrary index set.

§1.3.1 Definition. (a) Let (Ai)i∈I be an arbitrary family of events. The family (Ai)i∈I is
called independent if for any finite subsetJ ⊂ I the product formula holds: P(∩j∈JAj) =∏

j∈J P(Aj).

(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.2 Lemma (Borel-Cantelli). Let A1, A2, . . . be events and define A∗ := lim supn→∞An.
(a) If

∑∞
n=1 P(An) <∞, then P(A∗) = 0.

(b) If (An)n∈N is independent and
∑∞

n=1 P(An) =∞, then P(A∗) = 1.

Proof of Lemma §1.3.2. We refer to Klenke [2008], Theorem 2.7.

§1.3.3 Corollary (Borel’s 0-1 criterion). Let A1, A2, . . . be independent events and define
A∗ := lim supn→∞An, then

(a)
∑∞

n=1 P(An) <∞ if and only if P(A∗) = 0,

(b)
∑∞

n=1 P(An) =∞ if and only if P(A∗) = 1.

For each i ∈ I, let (Si,Si) be a measurable space and let Xi : (Ω,A ) →)(Si,Si) be a r.v.
with generated σ-algebra σ(Xi) = X−1(Si).

§1.3.4 Definition. (a) The family (Xi)i∈I of r.v.’s is called independent if the family (σ(Xi))i∈I
of σ-algebras is independent.
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(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.5 Property. Let K be an arbitrary set and Ik, k ∈ K, arbitrary mutually disjoint index
sets. Define I = ∪k∈KIk. If the family (Xi)i∈I of r.v.’s is independent, then the family of
σ-algebras (σ(Xj, j ∈ Ik))k∈K is independent.

§1.3.6 Definition. Let X1, X2, . . . be r.v.’s. The σ-algebra
⋂
n>1 σ(Xi, i > n) is called the tail

σ-algebra and its elements are called tail events.

§1.3.7 Example. {ω :
∑

n>1Xn(ω) is convergent} is an tail event.

§1.3.8 Theorem (Kolmogorov’s 0-1 Law). The tail events of a sequence (Xn)n∈N of indepen-
dent r.v.’s have probability 0 or 1.

Proof of Theorem §1.3.8. We refer to Klenke [2008], Theorem 2.37.

1.4 Expectation

§1.4.1 Definition. We denote byM :=M(Ω,A ) the set of all real r.v.’s defined on the mea-
surable space (Ω,A ) and byM+ := M+(Ω,A ) ⊂ M the subset of all positive r.v.’s. Given
a probability measure P on (Ω,A ) the expectation is the unique functional E :M+ → [0,∞]
satisfying

(a) E(aX1 +X2) = aE(X1) + E(X2) for all X1, X2 ∈M+ and a ∈ R+;

(b) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then EXn ↑ EX;

(c) E1A = P(A) for all A ∈ A .
The expectation of X ∈ M is defined by E(X) := E(X+) − E(X−), if E(X+) < ∞ or
E(X−) <∞. Given ‖X‖p :=

(
E(|X|p)

)1/p, p ∈ [1,∞), and ‖X‖∞ := inf{c : P(X > c) = 0}
for p ∈ [1,∞] set Lp(Ω,A , P ) := {X ∈ M(Ω,A ) : ‖X‖p <∞} and Lp := Lp(Ω,A , P ) :=
{[X] : X ∈ Lp(Ω,A ,P)} where [X] := {Y ∈M(Ω,A ) : P(X = Y ) = 1}.

§1.4.2 Remark. L1 is the domain of definition of the expectation E, that is, E : L1 → R. The
vector space Lp equipped with the norm ‖·‖p is a Banach space and in case p = 2 it is a Hilbert
space with norm ‖·‖2 induced by the inner product 〈X, Y 〉2 := E(XY ).

§1.4.3 Properties. (a) For r.v.’sX, Y ∈ L1 we have the equivalences between (i) E(X1A) 6
E(Y 1A) for all A ∈ A and (ii) P(X 6 Y ) = 1. In particular, E(X1A) = E(Y 1A) holds
for all A ∈ A if and only if P(X = Y ) = 1.

(b) (Fatou’s lemma) AssumeX1, X2, . . . ∈M+, then E(lim infn→∞Xn) 6 lim infn→∞ E(Xn).

(c) (Dominated convergence) AssumeX,X1, X2, . . . ∈M such that limn→∞ |Xn(ω)−X(ω)| =
0 for all ω ∈ Ω. If there exists Y ∈ L1 with supn>1 |Xn| 6 Y , then we have limn→∞ E|Xn−
X| = 0 which in turn implies X ∈ L1 and limn→∞ |EXn − EX| = 0.

(d) (Hölder’s inequality) For X, Y ∈M holds E|XY | 6 ‖X‖p ‖Y ‖q with p−1 + q−1 = 1.

(e) (Cauchy-Schwarz inequality) For X, Y ∈ M holds E|XY | 6
√

E(X2)
√
E(Y 2) and

|Cov(X, Y )| 6
√

Var(X)
√
Var(Y ).
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1.5 Convergence of random variables

In the sequel we assume r.v.’s X1, X2, . . . ∈ M(Ω,A ) and a probability measure P on
(Ω,A ).

§1.5.1 Definition. (a) Let C := {ω ∈ Ω : limn→∞Xn(ω) exists and is finite}. The sequence
(Xn)n>1 converges almost surely (a.s.), if P(C) = 1. We writeXn

n→∞−→ X a.s., or briefly,
Xn

a.s.−→ X .

(b) The sequence (Xn)n>1 converges in probability, if limn→∞ P
(
|Xn −X| > ε

)
= 0 for all

ε > 0. We write Xn
n→∞−→ X in P, or briefly, Xn

P→ X .

(c) The sequence (Xn)n∈N converges in distribution, if E
(
f(Xn)

) n→∞−→ E
(
f(X)

)
for any

continuous and bounded function f : R → R. We write Xn
n→∞−→ X in distribution, or

briefly, Xn
d→ X .

(d) The sequence (Xn)n∈N converges in Lp, if limn→∞ E|Xn −X|p = 0. We write Xn
n→∞−→

X in Lp, or briefly, Xn
Lp−→ X .

§1.5.2 Remark. In (a) the set C =
⋂
k>1

⋃
n>1

⋂
i>1 {|Xn+i(ω)−Xn(ω)| < 1/k} is measur-

able. Moreover, if P(C) = 1 then there exists a r.v. X ∈M such that P(limn→∞Xn = X) = 1
where X = lim supn→∞Xn noting that X(ω) = limn→∞Xn(ω) for ω ∈ C.

§1.5.3 Properties. (a) We have Xn
a.s.−→ X if and only if supm>n |Xm − Xn|

n→∞−→ 0 in P
if and only if supj>n |Xj − X| n→∞−→ 0 in P if and only if ∀ε, δ > 0, ∃N(ε, δ) ∈ N,
∀n > N(ε, δ), P

(⋂
j>n {|Xj −X| 6 ε}

)
> 1− δ.

(b) If Xn
a.s.−→ X , then Xn

P→ X .

(c) If Xn
a.s.−→ X , then g(Xn)

a.s.−→ g(X) for any continuous function g.

(d) Xn
P→ X if and only if limn→∞ supj>n P(|Xj −Xn| > ε) = 0 for all ε > 0 if and only if

any sub-sequence of (Xn)n∈N contains a sub-sequence converging to X a.s..

(e) If Xn
P→ X , then g(Xn)

P→ g(X) for any continuous function g.

(f) Xn
a.s.−→ X ⇒ Xn

P→ X ⇐ Xn
Lp−→ X and Xn

P→ X ⇒ Xn
d→ X

1.6 Conditional expectation

In the sequel (Ω,A ,P) is a probability space and F is a sub-σ-algebra of A .

§1.6.1 Theorem. If X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) then there exists Y ∈ M+(Ω,F )
or Y ∈ L1(Ω,F ,P), respectively, such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover Y
is unique up to equality a.s..

Proof of Theorem §1.6.1. We refer to Klenke [2008], Theorem 8.12.

§1.6.2 Definition. For X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) each version Y as in Theo-
rem §1.6.1 is called conditional expectation (bedingte Erwartung) of X given F , symbolically
E(X|F ) := Y . For A ∈ A , P(A|F ) := E(1A|F ) is called a conditional probability of A
given the σ-algebra F . Given r.v.’s Xi, i ∈ I, we set E(X|(Xi)i∈I) := E(X|σ(Xi, i ∈ I)).
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1.6 Conditional expectation Chapter 1 Preliminaries

§1.6.3 Remark. Employing Proposition §1.2.7 there exists a B-B-measurable function f such
that E(Y |X) = f(X) a.s.. Therewith, we write E(Y |X = x) := f(x) (conditional expected
value, bedingter Erwartungswert). Since conditional expectations are defined only up to equal-
ity a.s., all (in)equalities with conditional expectations are understood as (in)equalities a.s., even
if we do not say so explicitly.

§1.6.4 Properties. Let G ⊂ F ⊂ A be σ-algebras and let X, Y ∈ L1(Ω,A ,P). Then:
(a) (Linearity) E(λX + Y |F ) = λE(X|F ) + E(Y |F ).

(b) (Monotonicity) If X > Y a.s., then E(X|F ) > E(Y |F ).

(c) If E(|XY |) < ∞ and Y is measurable with respect to F , then E(XY |F ) = Y E(X|F )
and E(Y |F ) = E(Y |Y ) = Y .

(d) (Tower property) E(E(X|F )|G ) = E(E(X|G )|F ) = E(X|G ).

(e) (Triangle inequality) E(|X| |F ) > |E(X|F )|.
(f) (Independence) If σ(X) and F are independent, then E(X|F ) = E(X).

(g) If P(A) ∈ {0, 1} for any A ∈ F , then E(X|F ) = E(X).

(h) (Jensen’s inequality) Letϕ : R→ R be convex and letϕ(Y ) be an element ofL1(Ω,A ,P).
Then ϕ(E(Y |F )) 6 E(ϕ(Y )|F ).

(i) (Dominated convergence) Assume Y ∈ L1(P), Y > 0 and (Xn)n∈N is a sequence of r.v.’s
with |Xn| 6 Y for n ∈ N and such that Xn

a.s.−→ X . Then limn→∞ E(Xn|F ) = E(X|F )
a.s. and in L1(P).

§1.6.5 Proposition. Let (H, 〈·, ·〉H) be a Hilbert space equipped with induced norm ‖·‖H and
let U be a closed linear subspace of H. For each x ∈ H there exists a unique element ux ∈ U
with ‖x− ux‖H = infu∈U ‖x− u‖H.

§1.6.6 Definition. For a closed subspace U of the Hilbert space (H, 〈·, ·〉H) the orthogonal
projection ΠU : H→ U is defined by ΠU(x) = ux with ux as in Proposition §1.6.5.

§1.6.7 Properties. Let U⊥ be the orthogonal complement of U in H. Then:
(a) (projection property) ΠU ◦ ΠU = ΠU ;

(b) (orthogonality) x− ΠUx ∈ U⊥ for each x ∈ H;

(c) each x ∈ H can be decomposed uniquely as x = ΠUx+ (x−ΠUx) in the orthogonal sum
of an element of U and an element of U⊥;

(d) ΠU is selfadjoint: 〈ΠUx, y〉H = 〈x,ΠUy〉H;

(e) ΠU is linear.

§1.6.8 Lemma. Let F be a sub-σ-algebra of A . Then L2(Ω,F ,P) is embedded as closed
linear subspace in the Hilbert space L2(Ω,A ,P).

§1.6.9 Corollary. Let F ⊂ A be a sub-σ-algebra and let X ∈ L2(Ω,A ,P) be a r.v.. Then
E(X|F ) is the orthogonal projection of X on L2(Ω,F ,P). That is, for any Y ∈ L2(Ω,F ,P),
‖X − Y ‖2

2 = E[(X − Y )2] > E[(X − E(X|F ))2] = ‖X − E(X|F )‖2
2 with equality if and

only if Y = E(X|F ).
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§1.6.10 Example. Let X, Y ∈ L1(P) be independent. Then E(X + Y |Y ) = E(X|Y ) +
E(Y |Y ) = E(X) + Y .

§1.6.11 Theorem. Let p ∈ [1,∞] and F ⊂ A be a sub-σ-algebra. Then the linear map
Lp(Ω,A ,P) → Lp(Ω,F ,P), X 7→ E(X|F ), is a contraction (that is, ‖E(X|F )‖p 6
‖X‖p) and thus bounded and continuous. Hence, for X,X1, X2, . . . ∈ Lp(Ω,A ,P) with
‖Xn −X‖p

n→∞−→ 0 we have ‖E(Xn|F )− E(X|F )‖p
n→∞−→ 0.

§1.6.12 Definition. A family (Xi)i∈I of r.v.’s in L1(Ω,A ,P) with arbitrary index set I is
called uniformly integrable if infa∈[0,∞) supi∈I E(1{|Xi|>a}|Xi|) = 0 which is satisfied in case
that supi∈I |Xi| ∈ L1(Ω,A ,P).

§1.6.13 Corollary. Let (Xi)i∈I be uniformly integrable in L1(Ω,A ,P) and let (Fj, j ∈ J )
be a family of sub-σ-algebras of A . Define Xi,j := E(Xi|Fj). Then (Xi,j)i∈I,j∈J is uni-
formly integrable in L1(Ω,A ,P). In particular, for X ∈ L1(Ω,A ,P) the family {E(X|F ) :
F is sub-σ-algebra of A } of r.v.’s in L1(Ω,A ,P) is uniformly integrable.
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Chapter 2

Stochastic processes

2.1 Motivating examples

2.1.1 The Poisson process

§2.1.1 Definition. Let (Sk)k∈N be positive r.v.’s on a probability space (Ω,A ,P) with 0 6
S1(ω) 6 S2(ω) 6 . . . for any ω ∈ Ω. The family N = (Nt)t>0 of No-valued r.v.’s given
by Nt :=

∑∞
k=1 1{Sk6t}, t > 0, is called counting process (Zählprozess) with jump times

(Sprungzeiten) (Sk)k∈N.

§2.1.2 Definition. A counting process (Nt)t>0 is called Poisson process of intensity λ > 0 if
(a) P(Nt+h −Nt = 1) = λh+ o(h) as h ↓ 0;

(b) P(Nt+h −Nt = 0) = 1− λh+ o(h) as h ↓ 0;

(c) (independent increments) (Nti − Nti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(d) (stationary increments) Nt −Ns
d
= Nt−s for all numbers t > s > 0 in R+.

§2.1.3 Theorem. For a counting process N = (Nt)t>0 with jump times (Sk)k∈N we have the
equivalences between:

(a) N is a Poisson process;

(b) N satisfies the conditions (iii), (iv) in the Definition §2.1.2 of a Poisson (Poi) process and
Nt ∼ Poi(λt) holds for all t > 0;

(c) (waiting times) The r.v.’s T1 := S1 and Tk := Sk − Sk−1, k = 2, 3, . . . , are independent
and identically Exp(λ)-distributed;

(d) Nt ∼ Poi(λt) holds for all t > 0 and the conditional distribution of (S1, . . . , Sn) given
{Nt = n} has the density

f(x1, . . . , xn) =
n!

tn
1{06x16...6xn6t}. (2.1)

(e) N satisfies the condition (c) in the Definition §2.1.2 of a Poisson process, E(N1) = λ and
(2.1) is the conditional density of (S1, . . . , Sn) given {Nt = n}.

Proof of Theorem §2.1.3 is given in the lecture course.

§2.1.4 Remark. Let (Ui)
n
i=1 be independent and identically U([0, t])-distributed r.v.’s and let

(U(i))
n
i=1 be their order statistics whereU(1) = min{Ui}ni=1 andU(k+1) = min{Ui}ni=1\{U(i)}ki=1,

k = 2, . . . , n. Then the joint density of (U(i))
n
i=1 is given exactly by (2.1). The characterisations

give rise to three simple methods to simulate a Poisson process: the definition §2.1.2 gives an
approximation for small h (forgetting the o(h)-term), part (c) in §2.1.3 just uses exponentially

Probability Theory II 9



Chapter 2 Stochastic processes 2.2 Definition of stochastic processes

distributed inter-arrival times Tk and part (d) uses the value at a specified right-end point and
then uses the uniform order statistics as jump times in-between (write down the details!).

2.1.2 Markov chains

§2.1.5 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time), let S be
a (at most) countable nonempty set (state space) and let S = 2S . A family (Xt)t∈T of S-
valued r.v.’s forms a Markov chain if for all n ∈ N, all t1 < t2 < . . . < tn < t in T and
all s1, . . . , sn, s in S with P(Xt1 = s1, . . . , Xtn = sn) > 0 the Markov property is satisfied:
P(Xt = s|Xt1 = s1, . . . , Xtn = sn) = P(Xt = s|Xtn = sn). For a Markov chain (Xt)t∈T and
t1 6 t2 in T, i, j ∈ S the transition probability to reach state j at time t2 from state i at time t1
is defined by pij(t1, t2) := P(Xt2 = j|Xt1 = i) (or arbitrary if not well-defined). The transition
matrix is given by P (t1, t2) :=

(
pij(t1, t2)

)
i,j∈S . The transition matrix and the Markov chain

are called time-homogeneous ifP (t1, t2) = P (0, t2 − t1) =: P (t2 − t1) holds for all t1 6 t2.

§2.1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov equation, that
is, for any t1 6 t2 6 t3 in T, P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplication). In the time-
homogeneous case this gives the semigroup property P (t1 + t2) = P (t1)P (t2) for all t1, t2 ∈ T,
and in particular P (n) = P (1)n for n ∈ N.

Proof of Proposition §2.1.6 is given in the lecture course.

2.1.3 Brownian motion

§2.1.7 Definition. A family (Wt)t>0 of real r.v.’s is called a Brownian motion if
(a) W0 = 0 a.s.;

(b) (independent increments) (Wti −Wti−1
)ni=1 are independent for any numbers 0 = t0 <

t1 < . . . < tn in R+;

(c) (stationary increments) Wt−Ws
d
= Wt−s ∼ N(0, t− s) for all numbers 0 6 s < t in R+;

(d) t 7→ Wt is continuous a.s..

§2.1.8 Remark. Questions:
(i) Existence?

(ii) W := (Wt)t>0 r.v. on which space?

(iii) For which functions f is f(W ) a r.v.? (e.g. f(W ) = sup06t61Wt)
Importance of the Brownian motion:

I If X1, X2, . . . are i.i.d. with E(Xi) = 0 and Var(Xi) = σ2 < ∞ then W is a “limit” of
Snt = 1

σ
√
n

∑
16i6ntXi (Donsker’s theorem).

I W is a central element in stochastic differential equationsXt =
∫ t

0
σ(Xs)dWs+

∫ t
0
b(Xs)ds.

How to define the first integral? (“Ito integral”)

2.2 Definition of stochastic processes

§2.2.1 Definition. A family X = (Xt)t∈T of r.v.’s on a common probability space (Ω,A ,P)
is called stochastic process. We call X time-discrete if T ⊂ Z and time-continuous if (a, b) ⊂
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T ⊂ R for some real numbers a < b. If all Xt take values in (S,S ), then (S,S ) is called the
state space (Zustandsraum) of X . For each fixed ω ∈ Ω the map t 7→ Xt(ω) is called sample
path (Pfad), trajectory (Trajektorie) or realisation (Realisierung) of X . If T = N0 or T = R+

the law of X0 is called initial distribution.

§2.2.2 Remark. We are particularly interested in the “random functions” t 7→ Xt rather than
in a single r.v. Xt. For this reason, we identify X = (Xt)t∈T as a r.v. with values in ST which
forces us to specify a σ-algebra on ST.

§2.2.3 Definition. Let (Si,Si), i ∈ I, be an arbitrary family of measurable spaces.
(a) The set i∈I Si of maps (si)i∈I : I → ∪i∈ISi such that si ∈ Si for all i ∈ I is called

product space. For J ⊂ I, let SJ := j∈J Sj . If, in particular, all the Si are equal, say
Si = S, then we write i∈I Si = SI .

(b) If j ∈ I, then Πj : SI → Sj , (si)i∈I 7→ sj denotes the jth coordinate map. More
generally, for J ⊂ K ⊂ I, the restricted map ΠKJ : SK → SJ , (sk)k∈K 7→ (sj)j∈J are
called canonical projection. In particular, we write ΠJ := ΠIJ .

(c) The product-σ-algebra SI :=
⊗

i∈ISi is the smallest σ-algebra on the product space SI
such that for every j ∈ I the coordinate map Πj : SI → Sj is measurable with respect
to SI-Sj , that is, SI =

⊗
i∈ISi = σ(Πi, i ∈ I) :=

∨
i∈I Π−1

i (Si). For J ⊂ I, let
SJ =

⊗
j∈J Sj . If (Si,Si) = (S,S ) for all i ∈ I, then we also write

⊗
i∈ISi = S ⊗I .

§2.2.4 Lemma. For a stochastic process X = (Xt)t∈T with state space (S,S ) the mapping
X : Ω→ ST, ω 7→ (Xt(ω))t∈T is a (ST,S ⊗T)-valued r.v.

Proof of Lemma §2.2.4 is given in the lecture course.

§2.2.5 Remark. Later on, we shall also consider smaller function spaces than ST, e.g. C(R+)
instead of RR+ .

§2.2.6 Definition. The distribution PX = P ◦X−1 of a stochastic process X = (Xt)t∈T defined
on (Ω,A ,P) with values in (ST,S ⊗T) is the image probability measure of P under the map
X .

§2.2.7 Remark. The distribution of a stochastic process is often complicate and generally there
does not exists an explicit formula. Therefore, we are interested in a characterisation exploiting
the distributions of the r.v.’s Xt.

§2.2.8 Definition. Let X = (Xt)t∈T be a stochastic process with distribution PX . For any
finite T ⊂ T let PTX := PΠT ◦X be the distribution of the r.v. (Xt)t∈T = ΠT ◦ X . The family
{PTX , T ⊂ T finite} is called family of the finite-dimensional distributions of X or PX .

§2.2.9 Definition. A family {PJ ,J ⊂ I finite} of probability measures is called consistent
on (SI ,SI) if for any finite J ⊂ K ⊂ I the canonical projection ΠKJ as in §2.2.3 (c) and
the probability measure PJ and PK on (SJ ,SJ ) and (SK,SK), respectively, satisfy PJ =
PK ◦ (ΠKJ )−1.

§2.2.10 Remark. Let PX be the distribution of a stochastic process X on (ST,S ⊗T) then its
family {PTX , T ⊂ T finite} of finite-dimensional distributions is consistent. Indeed, for J ⊂
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K ⊂ I finite, PJX = PX ◦Π−1
J = PX ◦(ΠKJ ◦ΠK)−1 = PX ◦(ΠK)−1◦(ΠKJ )−1 = PKX ◦(ΠKJ )−1.

§2.2.11 Definition. Two processes (Xt)t∈T, (Yt)t∈T on (Ω,A ,P) are called
(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other, if P(Xt = Yt) = 1
for all t ∈ T.

§2.2.12 Remark. (a) Obviously, indistinguishable processes are versions of each other. The
converse is in general false.

(b) If X is a version of Y , then X and Y share the same finite-dimensional distributions.
Processes with the same finite-dimensional distributions need not even be defined on the
same probability space and will in general not be versions of each other.

(c) Suppose (Xt)t∈R+ and (Yt)t∈R+ are real-valued stochastic processes with right-continuous
sample paths. Then they are indistinguishable already if they are versions of each other.

§2.2.13 Definition. A stochastic processes (Xt)t∈R+ is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn

n→∞−→ t always implies Xtn
P→ Xt

(convergence in probability).

§2.2.14 Remark. Every continuous stochastic process is stochastically continuous since a.s.
convergence implies convergence in probability. On the other hand, the Poisson process is
obviously not continuous but stochastically continuous, since limtn→t P(|Nt − Ntn| > ε) =
limtn→t(1− e−λ|t−tn|) = 0 for all ε ∈ (0, 1).

2.3 Probability measures on Polish spaces

§2.3.1 Definition. A metric space (S, d) is called Polish space if it is separable and complete.
More generally, a separable completely metrisable topological space is called Polish. Canoni-
cally, it is equipped with its Borel-σ-algebra B(S) generated by the open sets.

§2.3.2 Remark. Let (Ω, τ) be a topological space. For A ⊂ Ω we denote by A the closure of
A, by A◦ the interior and by ∂A the boundary of A. A set A ⊂ Ω is called dense if A = Ω. A
set A ⊂ Ω is called compact if each open cover U ⊂ τ of A (that is, A ⊂ ∪{U ;U ∈ U}) has
a finite subcover; that is, a finite U ′ ⊂ U with A ⊂ ∪{U ;U ∈ U ′}. Compact sets are closed.
A ⊂ Ω is called relatively compact if A is compact. On the other hand, A is called sequentially
compact (respectively relatively sequentially compact) if any sequence (ωn)n∈N with values in
A has a subsequence (ωnk

)k∈N that converges to some ω ∈ A (respectively ω ∈ A).
(Ω, τ) is called metrisable if there exists a metric d on Ω such that τ is induced by the

open balls Bε(x) = {ω ∈ Ω : d(x, ω) < ε}. In metrisable spaces, the notions compact and
sequentially compact coincide. A metric d on Ω is called complete if any Cauchy sequence with
respect to d converges in Ω. (Ω, τ) is called completely metrisable if there exists a complete
metric on Ω that induces τ . A metrisable space (Ω, τ) is called separable if there exists a
countable dense subset of Ω. Separability in metrisable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set U ⊂ τ withA =

⋃
{U ;U ⊂ A,U ∈ U}

for all A ∈ τ .
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Two measurable spaces (Ω1,B1), (Ω2,B2) with Borel-σ-algebra B1, B2, respectively, are
called Borel-isomorphic, if there exists a bijective map g : Ω1 → Ω2, such that g and g−1 are
measurable. In particular, each Polish space is Borel-isomorphic to a Borel subset of [0, 1].

Two topological spaces (Ω1, τ1) (Ω2, τ2) are called homeomorphic if there exists a bijective
map g : Ω1 → Ω2 such that g and g−1 are continuous. Therewith, each Polish space is homeo-
morphic to a subset of [0, 1]N, equipped with its product topology.

§2.3.3 Examples. R, Rn, `p ⊂ RN and Lp([0, 1]) equipped with their usual distance are Polish
spaces.

§2.3.4 Definition. Let (Si, di), i ∈ I ⊂ N, be a finite or countable family of metric spaces. The
product space i∈I Si is canonically equipped with the product metric d((si)i∈I , (s

′
i)i∈I) :=∑

i∈I 2−i(di(si, s
′
i)∧ 1) generating the product topology on i∈I Si in which a vector/sequence

converges if and only if all coordinates converge, that is, d(s(n), s)
n→∞−→ 0⇔ di(s

(n)
i , si)

n→∞−→ 0
for all i ∈ I.

§2.3.5 Lemma. Let (Sn, dn), n ∈ N, be a family of Polish spaces, then the Borel-σ-Algebra
B( n∈N Sn) on the product space n∈N Sn equals the product Borel-σ-algebra

⊗
n∈N B(Sn).

Proof of Lemma §2.3.5 is given in the lecture course.

§2.3.6 Remark. The⊇-relation holds for all topological spaces and products of any cardinality
with the same proof. The ⊆-property can already fail for the product of two topological (non-
Polish) spaces.

§2.3.7 Definition. Let (S, d) be a metric space equipped with its Borel-σ-algebra B(S). A
probability measure P on (S,B(S)) is called

(a) tight (straff) if for all ε > 0 there is a compact set K such that P(K) > 1− ε,
(b) regular (regulär) if B ∈ B(S) and ε > 0 then there exist a compact set K and an open

set O such that K ⊂ B ⊂ O and P(O\K) 6 ε.
A family P of probability measures on (S,B(S)) is called (uniformly) tight, if for all ε > 0
there is a compact set K such that P(K) > 1− ε for all P ∈ P .

§2.3.8 Remark. Considering a probability measure P on a metric space S we have the equiva-
lences between (i) P is tight and (ii) P(B) = sup{P(K) : K ⊆ B compact} for all B ∈ B(S),
and on the other hand between (i) P is regular and (ii) sup{P(K) : K ⊆ B compact} =
P(B) = inf{P(O) : O ⊇ B open} for all B ∈ B(S).

§2.3.9 Proposition (Ulam (1939)). Every probability measure on a Polish space is tight.
Proof of Proposition §2.3.9 is given in the lecture course.

§2.3.10 Theorem. Every probability measure on a Polish space is regular.
Proof of Theorem §2.3.10 is given in the lecture course.

§2.3.11 Theorem (Kolmogorov’s consistency theorem). Let I be an arbitrary index set and let
(Si,Bi) be Polish spaces, i ∈ I. Let {PJ ,J ⊂ I finite} be a consistent family of probability
measures on the product space (SI ,BI) as in §2.2.9. Then there exists a unique probability
measure P on (SI ,BI) having {PJ ,J ⊂ I finite} as family of finite dimensional distributions,
that is, PJ = P ◦ Π−1

J for any J ⊂ I finite.
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Proof of Theorem §2.3.11 is given in the lecture course.

§2.3.12 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let {PJ ,J ⊂
I finite} be a consistent family of probability measures on the product space (SI ,B⊗I) as in
§2.2.9. Then there exists a stochastic process (Xt)t∈I whose family of finite dimensional distri-
butions is given by {PJ ,J ⊂ I finite}, that is, (Xt)t∈J ∼ PJ for any J ⊂ I finite.
Proof of Corollary §2.3.12 is given in the lecture course.

§2.3.13 Corollary. Let I be an arbitrary index set and let (S,B) be Polish space. Let (Pi)i∈I
be a family of probability measures on (S,B). Then there exists the product measure

⊗
i∈I Pi

on the product space (SI ,B⊗I). In particular, there exists a familyX = (Xi)i∈I of independent
r.v.’s admitting the image probability measure PX =

⊗
i∈I Pi.

Proof of Corollary §2.3.13 is given in the lecture course.

§2.3.14 Remark. Kolmogorov’s consistency theorem does not hold for general measure spaces
(S,S ). The Ionescu-Tulcea Theorem, however, shows the existence of the probability measure
on general measure spaces under a Markovian dependence structure, see e.g. Klenke [2008],
Theorem 14.32.

2.4 Adapted stochastic process and stopping times

In the sequel, the index set T is a subset of R, X = (Xt)t∈T is a stochastic process on
a probability space (Ω,A ,P) with state space (S,S ) and image probability measure PX on
(ST,S ⊗T).

§2.4.1 Definition. A family F = (Ft)t∈T of σ-algebras with Ft ⊂ A , t ∈ T, is called a
filtration if Fs ⊂ Ft for all s, t ∈ T with s 6 t. (Ω,A ,P,F ) is called filtered probability
space.

§2.4.2 Definition. A stochastic process X = (Xt)t∈T is called adapted to the filtration F =
(Ft)t∈T if Xt is Ft-measurable for all t ∈ T. If Ft = σ(Xs, s 6 t) for all t ∈ T, then we
denote by FX = σ(X) the natural filtration generated by X .

§2.4.3 Remark. Clearly, a stochastic process is always adapted to the natural filtration it gen-
erates. The natural filtration is the smallest filtration to which the process is adapted.

§2.4.4 Definition. A stochastic process X = (Xn)n∈N0 is called predictable (or previsible)
with respect to a filtration F = (Ft)t∈N0 if X0 is constant and if, for every n ∈ N, Xn is
Fn−1-measurable.

§2.4.5 Definition. A r.v. τ with values in T ∪ {∞} is called a stopping time (with respect to
the filtration F ) if for any t ∈ T, {τ 6 t} ∈ Ft.

§2.4.6 Proposition. Let T be countable, τ is a stopping time if and only if {τ = t} ∈ Ft for
all t ∈ T.
Proof of Proposition §2.4.6 is left as an exercise.

§2.4.7 Examples. (a) Let to ∈ T, then τ ≡ to (constant) is a stopping time where σ(τ) =
{∅,Ω}.
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(b) Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration F = (Fn)n∈N0 . For
S ∈ S we call waiting time the first time that X is in S, that is,

τS(ω) :=

{
inf{n ∈ N0 : Xn(ω) ∈ S}, if ω ∈

⋃
n∈N0

X−1
n (S),

∞, otherwise

Then τS is a stopping time with respect to F . Note that τ∅ ≡ ∞ and τS ≡ 0.

§2.4.8 Lemma. Let τ and σ be stopping times. Then
(a) τ ∨ σ and τ ∧ σ are stopping times.

(b) If τ, σ > 0, then τ + σ is also a stopping time.

(c) If s ∈ R+, then τ + s is a stopping time. However, in general, τ − s is not.

Proof of Lemma §2.4.8 is left as an exercise.

§2.4.9 Remark. We note that (a) and (c) are properties we would expect of stopping times.
With (a), the interpretation is clear. For (c), note that τ − s peeks into the future by s time units
(in fact, {τ−s 6 t} ∈ Ft+s), while τ +s looks back s time units. For stopping times, however,
only retrospection is allowed.

§2.4.10 Example. Let X = (Xn)n∈N0 be a stochastic process adapted to a filtration (Fn)n∈N0 .
For S1, S2 ∈ S let τS1 and τS2 be waiting times as in §2.4.7 (b), then (i) τS1∪S2 = τS1 ∧ τS2 ,
(ii) τS1∩S2 = τS1 ∨ τS2 and (iii) if S1 ⊂ S2, then τS1 > τS2 .

§2.4.11 Definition. Let τ be a stopping time. Then

Fτ := {A ∈ A : A ∩ {τ 6 t} ∈ Ft for any t ∈ T}

is called the σ-algebra of τ -past.

§2.4.12 Example. If τ ≡ to is a constant stopping time at t0 ∈ T, then Fτ = Ft0 .

§2.4.13 Lemma. If τ and σ are stopping times then (i) Fτ∧σ = Fτ∩Fσ , (ii) Fτ∨σ = Fτ∨Fσ

and (iii) if τ 6 σ, then Fτ ⊂ Fσ.

Proof of Lemma §2.4.13 is given in the lecture course.

§2.4.14 Definition. If τ <∞ is a stopping time, then we define Xτ (ω) := Xτ(ω)(ω).

§2.4.15 Lemma. Let T be countable, letX be adapted and let τ <∞ be a stopping time. Then
Xτ is measurable with respect to Fτ . In particular, τ is Fτ -measurable.

Proof of Lemma §2.4.15 is given in the lecture course.

§2.4.16 Remark. For uncountable T and for fixed ω, in general, the map T → S, t 7→ Xt(ω)
is not measurable; hence neither is the composition Xτ always measurable. Here one needs
assumptions on the regularity of the paths t 7→ Xt(ω); for example, right continuity.

§2.4.17 Corollary. Let T be countable, letX be adapted and let (τs)s∈T be a family of stopping
times with τs 6 τt < ∞, s, t ∈ T, s 6 t. Then the process (Xτs)s∈T is adapted to the filtration
(Fτs)s∈T. In particular, (Xτ∧s)s∈T is adapted to both filtration (Fτ∧s)s∈T and (Ft)t∈T .

Proof of Corollary §2.4.17 is given in the lecture course.
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Chapter 2 Stochastic processes 2.4 Adapted stochastic process and stopping times

§2.4.18 Definition. Let T be countable, let (Xt)t∈T be adapted and let τ be a stopping time.
We define the stopped process Xτ = (Xτ

t )t∈T by Xτ
t = Xτ∧t for any t ∈ T which is adapted to

both filtration F τ = (F τ
t )t∈T = (Fτ∧t)t∈T and F = (Ft)t∈T.

16 Probability theory II
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