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Chapter 1

Preliminaries

This chapter presents elements of the lecture course PROBABILITY THEORY I along the lines
of the textbook Klenke [2008], where far more details, examples and further discussions can be
found.

1.1 Basic measure theory

In the following, let Ω 6= ∅ be a nonempty set and let A ⊂ 2Ω (set of all subsets of Ω) be a
class of subsets of Ω. Later, Ω will be interpreted as the space of elementary events and A will
be the system of observable events.

§1.1.1 Definition. (a) A pair (Ω,A ) consisting of a nonempty set Ω and a σ-algebra A is
called a measurable space. The sets A ∈ A are called measurable sets. If Ω is at most
countably infinite and if A = 2Ω, then the measurable space (Ω, 2Ω) is called discrete.

(b) A triple (Ω,A , µ) is called a measure space if (Ω,A ) is a measurable space and if µ is a
measure on A .

(c) A measure space (Ω,A ,P) is called a probability space, if in addition P(Ω) = 1. In this
case, the sets A ∈ A are called events.

§1.1.2 Remark. Let A ⊂ 2Ω and let µ : A → [0,∞] be a set function. We say that µ is
(a) monotone, if µ(A) 6 µ(B) for any two sets A,B ∈ A with A ⊂ B.

(b) additive, if µ
( n⊎
i=1

Ai

)
=

n∑
i=1

µ(Ai) for any choice of finitely many mutually disjoints sets

A1, . . . , An ∈ A with ∪ni=1Ai ∈ A . The disjoint union of sets is denoted by the symbol⊎
which only stresses the fact that the sets involved are mutually disjoint.

(c) σ-additive, if µ(
∞⊎
i=1

Ai) =
∞∑
i=1

µ(Ai) for any choice of countably many mutually disjoints

sets A1, . . . , An ∈ A with ∪ni=1Ai ∈ A .
A is called an algebra if (i) Ω ∈ A , (ii) A is closed under complements, and (iii) A is
closed under intersections. Note that, if A is closed under complements, then we have the
equivalences between (i) A is closed under (countable) unions and (ii) A is closed under
(countable) intersections. An algebra A is called σ-algebra, if it is closed under countable
intersections. If A is an algebra and µ : A → [0,∞] is a set function with µ(∅) = 0, then µ is
called a

(d) content, if µ is additive,

(e) premeasure, if µ is σ-additive,

(f) measure, if µ is a premeasure and A is a σ-Algebra.
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Chapter 1 Preliminaries 1.2 Random variables

A content µ on an algebra A is called
(g) finite, if µ(A) <∞ for every A ∈ A ,

(h) σ-finite, if there is a sequence Ω1,Ω2, . . . ∈ A such that Ω =
⋃∞

n=1 Ωn and such that
µ(Ωn) <∞ for all n ∈ N.

§1.1.3 Examples. (a) For any nonempty set Ω, the classes A = {∅,Ω} and A = 2Ω are the
trivial examples of σ-algebras.

(b) Let E ⊂ 2Ω. The smallest σ-algebra σ(E) =
⋂
{A : A is σ-algebra and E ⊂ A } with

E ⊂ σ(E) is called the σ-algebra generated by E and E is called a generator of σ(E).

(c) Let (Ω, τ) be a topological space with class of open sets τ ⊂ 2Ω. The σ-algebra B(Ω) that
is generated by the open sets is called the Borel-σ-algebra on Ω. The elementsB ∈ B(Ω)
are called Borel sets or Borel measurable sets. We write B := B(R), B+ := B(R+)
and Bn := B(Rn) for the Borel-σ-algebra on R, R+ := [0,∞) and Rn, respectively,
equipped with the usual Euclidean distance.

(d) Denote by 1A(x) the indicator function on a set A which takes the value one if x ∈ A and
zero otherwise. Let ω ∈ Ω and δω(A) = 1A(ω). Then δω is a probability measure on any
σ-algebra A ⊂ 2Ω. δω is called the Dirac measure on the point ω.

(e) Let Ω be an (at most) countable nonempty set and let A = 2Ω. Further let (pω)ω∈Ω be
non-negative numbers. Then A 7→ µ(A) :=

∑
ω∈Ω pωδω(A) defines a σ-finite measure. If

pω = 1 for every ω ∈ Ω, then µ is called counting measure on Ω. If Ω is finite, then so is
µ.

§1.1.4 Theorem (Carathéodory). Let A ⊂ 2Ω be an algebra and let µ be a σ-finite premeasure
on A . There exists a unique measure µ̃ on σ(A ) such that µ̃(A) = µ(A) for all A ∈ A .
Furthermore, µ̃ is σ-finite.

Proof of Theorem §1.1.4. We refer to Klenke [2008], Theorem 1.41.

§1.1.5 Remark. If µ is a finite content on an algebra A , then σ-continuity at ∅, that is,
µ(An)→ 0 = µ(∅) as n→∞ for any sequence (An)n∈N in A with µ(An) <∞ for some (and
then eventually all) n ∈ N and An ↓ ∅ (i.e., A1 ⊃ A2 ⊃ A3 ⊃ . . . and ∩∞n=1An = ∅), implies
σ-additivity.

§1.1.6 Example. A probability measure P on the measurable space (Rn,Bn) is uniquely de-
termined by the values P((−∞, b]) (where (−∞, b] = ×n

i=1(−∞, bi], b ∈ Rn). In particular, a
probability measure P on R is uniquely determined by its distribution function F : R→ [0, 1],
x 7→ P((−∞, x]).

1.2 Random variables

In this section (Ω,A ), (S,S ) and (Si,Si), i ∈ I, denote measurable spaces where I is an
arbitrary index set.

§1.2.1 Definition. Let Ω be a nonempty set and let X : Ω→ S be a map.
(a) X is called A -S -measurable (or, briefly, measurable) if X−1(S ) := {X−1(S) : S ∈

S } ⊂ A , that is, if X−1(S) ∈ A for any S ∈ S . A measurable map X : (Ω,A ) →
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1.2 Random variables Chapter 1 Preliminaries

(S,S ) is called a random variable (r.v.) with values in (S,S ). If (S,S ) = (R,B) or
(S,S ) = (R+,B+), then X is called a real or positive random variable, respectively.

(b) The preimage X−1(S ) is the smallest σ-algebra on Ω with respect to which X is measur-
able. We say that σ(X) := X−1(S ) is the σ-algebra on Ω that is generated by X .

(c) For any, i ∈ I, let Xi : Ω → Si be an arbitrary map. Then σ(Xi, i ∈ I) := σ
(
∪i∈I

σ(Xi)
)

= σ
(
∪i∈IX−1

i (Si)
)

is called the σ-algebra on Ω that is generated by (Xi, i ∈ I).
This is the the smallest σ-algebra with respect to which all Xi are measurable.

§1.2.2 Properties. Let I be an arbitrary index set. Consider Si ∈ 2S , i ∈ I, and a map
X : Ω→ S. Then

(a) X−1(∪i∈ISi) = ∪i∈IX−1(Si), X−1(∩i∈ISi) = ∩i∈IX−1(Si) ,

(b) X−1(S ) is a σ-algebra on Ω and {S ∈ S : X−1(S) ∈ A } is a σ-algebra on S.
If E is a class of sets in 2S , then σΩ(X−1(E)) = X−1(σS(E)).

§1.2.3 Examples. (a) The identity map Id : Ω→ Ω is A -A -measurable.

(b) If A = 2Ω and S = {∅,S}, then any map X : Ω→ S is A -S -measurable.

(c) Let A ⊂ Ω. The indicator function 1A : Ω → {0, 1} is A -2{0,1}-measurable, if and only
if A ∈ A .

For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x} (integer part),
x∨y = max(x, y) (maximum), x∧y = min(x, y) (minimum), x+ = max(x, 0) (positive part),
x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).

§1.2.4 Properties. (a) IfX, Y are real r.v.’s, then so areX+ := max(X, 0),X− := max(−X, 0),
|X| = X+ + X−, X + Y , X − Y , X · Y and X/Y with x/0 := 0 for all x ∈ R. In
particular, X+ and bXc is A -B+- and A -2Z-measurable, respectively.

(b) If X1, X2, . . . are real r.v.’s, then so are supn>1Xn, infn>1Xn,
lim supn→∞Xn := infk>1 supn>kXn and lim infn→∞Xn := supk>1 infn>kXn.

(c) Let X1, . . . , Xn : Ω → R be maps and define X := (X1, . . . , Xn) : Ω → Rn. Then X
is a real r.v. (i.e., A -Bn-measurable), if and only if each Xi is a real r.v. (i.e., A -B-
measurable).

(d) Let E = {Ai ∈ 2Ω, i ∈ I, mutually disjoint and
⊎

i∈I Ai = Ω} be a partition of Ω. A
map X : Ω → R is σ(E)-B-measurable, if there exist numbers xi ∈ R, i ∈ I, such that
X =

∑
i∈I xi1Ai

.

§1.2.5 Definition. (a) A real r.v. X is called simple if there is an n ∈ N and mutually disjoint
measurable sets Ai, . . . , An ∈ A as well as numbers α1, . . . , αn ∈ R, such that X =∑n

i=1 αi1Ai
.

(b) Assume that X,X1, X2, . . . are maps Ω → R := R ∪ {−∞,+∞} such that X1(ω) 6
X2(ω) 6 . . . and limn→∞Xn(ω) = X(ω) for any ω ∈ Ω. Then we write Xn ↑ X
and say that (Xn)n∈N increases (point-wise) to X . Analogously, we write Xn ↓ X if
(−Xn) ↑ (−X).

§1.2.6 Example. Let us briefly consider the approximation of a positive r.v. by means of simple
r.v.’s. Let X : Ω→ R+ be a A -B+-measurable. Define Xn = (2−nb2nXc) ∧ n. Then Xn is a
simple r.v. and clearly, Xn ↑ X uniformly on each interval {X 6 c}.
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§1.2.7 Property. Let X : (Ω,A ) → (S,S ) and Y : (Ω,A ) → (R,B) be r.v.’s. The real r.v.
Y is σ(X)-B-measurable if and only if there exists a S -B-measurable map f : S → R such
that Y = f(X).

§1.2.8 Definition. Let X : (Ω,A )→ (S,S ) be a r.v..
(a) For S ∈ S , we denote {X ∈ S} := X−1(S). In particular, we let {X > 0} :=

X−1([0,∞)) and define {X 6 b} similarly and so on.

(b) Let P be a probability measure on (Ω,A ). The image probability measure PX of P under
the map X is the probability measure PX := P ◦ X−1 on (S,S ) that is defined by
PX(S) := P(X ∈ S) := P(X−1(S)) for each S ∈ S . PX is called the distribution of X .
We write X ∼ Q if Q = PX and say X has distribution Q.

(c) A family (Xi)i∈I of r.v.’s is called identically distributed (i.d.) if PXi
= PXj

for all

i, j ∈ I. We write X d
= Y if PX = PY (d for distribution).

1.3 Independence

In the sequel, (Ω,A ,P) is a probability space, the sets A ∈ A are the events and I is an
arbitrary index set.

§1.3.1 Definition. (a) Let (Ai)i∈I be an arbitrary family of events. The family (Ai)i∈I is
called independent if for any finite subsetJ ⊂ I the product formula holds: P(∩j∈JAj) =∏

j∈J P(Aj).

(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).

§1.3.2 Lemma (Borel-Cantelli). Let A1, A2, . . . be events and define A∗ := lim supn→∞An.
(a) If

∑∞
n=1 P(An) <∞, then P(A∗) = 0.

(b) If (An)n∈N is independent and
∑∞

n=1 P(An) =∞, then P(A∗) = 1.

Proof of Lemma §1.3.2. We refer to Klenke [2008], Theorem 2.7.

§1.3.3 Corollary (Borel’s 0-1 criterion). Let A1, A2, . . . be independent events and define
A∗ := lim supn→∞An, then

(a)
∑∞

n=1 P(An) <∞ if and only if P(A∗) = 0,

(b)
∑∞

n=1 P(An) =∞ if and only if P(A∗) = 1.

For each i ∈ I, let (Si,Si) be a measurable space and let Xi : (Ω,A ) →)(Si,Si) be a r.v.
with generated σ-algebra σ(Xi) = X−1(Si).

§1.3.4 Definition. (a) The family (Xi)i∈I of r.v.’s is called independent if the family (σ(Xi))i∈I
of σ-algebras is independent.

(b) Let Ei ⊂ A for all i ∈ I. The family (Ei)i∈I is called independent if, for any finite subset
J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , the product formula holds: P(∩j∈JEj) =∏

j∈J P(Ej).
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§1.3.5 Property. Let K be an arbitrary set and Ik, k ∈ K, arbitrary mutually disjoint index
sets. Define I = ∪k∈KIk. If the family (Xi)i∈I of r.v.’s is independent, then the family of
σ-algebras (σ(Xj, j ∈ Ik))k∈K is independent.

§1.3.6 Definition. Let X1, X2, . . . be r.v.’s. The σ-algebra
⋂

n>1 σ(Xi, i > n) is called the tail
σ-algebra and its elements are called tail events.

§1.3.7 Example. {ω :
∑

n>1Xn(ω) is convergent} is an tail event.

§1.3.8 Theorem (Kolmogorov’s 0-1 Law). The tail events of a sequence (Xn)n∈N of indepen-
dent r.v.’s have probability 0 or 1.

Proof of Theorem §1.3.8. We refer to Klenke [2008], Theorem 2.37.

1.4 Expectation

§1.4.1 Definition. We denote byM :=M(Ω,A ) the set of all real r.v.’s defined on the mea-
surable space (Ω,A ) and byM+ := M+(Ω,A ) ⊂ M the subset of all positive r.v.’s. Given
a probability measure P on (Ω,A ) the expectation is the unique functional E :M+ → [0,∞]
satisfying

(a) E(aX1 +X2) = aE(X1) + E(X2) for all X1, X2 ∈M+ and a ∈ R+;

(b) Assume X,X1, X2, . . . ∈M+ such that Xn ↑ X then EXn ↑ EX;

(c) E1A = P(A) for all A ∈ A .
The expectation of X ∈ M is defined by E(X) := E(X+) − E(X−), if E(X+) < ∞ or
E(X−) <∞. Given ‖X‖p :=

(
E(|X|p)

)1/p, p ∈ [1,∞), and ‖X‖∞ := inf{c : P(X > c) = 0}
for p ∈ [1,∞] set Lp(Ω,A , P ) := {X ∈ M(Ω,A ) : ‖X‖p <∞} and Lp := Lp(Ω,A , P ) :=
{[X] : X ∈ Lp(Ω,A ,P)} where [X] := {Y ∈M(Ω,A ) : P(X = Y ) = 1}.

§1.4.2 Remark. L1 is the domain of definition of the expectation E, that is, E : L1 → R. The
vector space Lp equipped with the norm ‖·‖p is a Banach space and in case p = 2 it is a Hilbert
space with norm ‖·‖2 induced by the inner product 〈X, Y 〉2 := E(XY ).

§1.4.3 Properties. (a) For r.v.’sX, Y ∈ L1 we have the equivalences between (i) E(X1A) 6
E(Y 1A) for all A ∈ A and (ii) P(X 6 Y ) = 1. In particular, E(X1A) = E(Y 1A) holds
for all A ∈ A if and only if P(X = Y ) = 1.

(b) (Fatou’s lemma) AssumeX1, X2, . . . ∈M+, then E(lim infn→∞Xn) 6 lim infn→∞ E(Xn).

(c) (Dominated convergence) AssumeX,X1, X2, . . . ∈M such that limn→∞ |Xn(ω)−X(ω)| =
0 for all ω ∈ Ω. If there exists Y ∈ L1 with supn>1 |Xn| 6 Y , then we have limn→∞ E|Xn−
X| = 0 which in turn implies X ∈ L1 and limn→∞ |EXn − EX| = 0.

(d) (Hölder’s inequality) For X, Y ∈M holds E|XY | 6 ‖X‖p ‖Y ‖q with p−1 + q−1 = 1.

(e) (Cauchy-Schwarz inequality) For X, Y ∈ M holds E|XY | 6
√

E(X2)
√
E(Y 2) and

|Cov(X, Y )| 6
√

Var(X)
√
Var(Y ).
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1.5 Convergence of random variables

In the sequel we assume r.v.’s X1, X2, . . . ∈ M(Ω,A ) and a probability measure P on
(Ω,A ).

§1.5.1 Definition. (a) Let C := {ω ∈ Ω : limn→∞Xn(ω) exists and is finite}. The sequence
(Xn)n>1 converges almost surely (a.s.), if P(C) = 1. We writeXn

n→∞−→ X a.s., or briefly,
Xn

a.s.−→ X .

(b) The sequence (Xn)n>1 converges in probability, if limn→∞ P
(
|Xn −X| > ε

)
= 0 for all

ε > 0. We write Xn
n→∞−→ X in P, or briefly, Xn

P→ X .

(c) The sequence (Xn)n∈N converges in distribution, if E
(
f(Xn)

) n→∞−→ E
(
f(X)

)
for any

continuous and bounded function f : R → R. We write Xn
n→∞−→ X in distribution, or

briefly, Xn
d→ X .

(d) The sequence (Xn)n∈N converges in Lp, if limn→∞ E|Xn −X|p = 0. We write Xn
n→∞−→

X in Lp, or briefly, Xn
Lp−→ X .

§1.5.2 Remark. In (a) the set C =
⋂

k>1

⋃
n>1

⋂
i>1 {|Xn+i(ω)−Xn(ω)| < 1/k} is measur-

able. Moreover, if P(C) = 1 then there exists a r.v. X ∈M such that P(limn→∞Xn = X) = 1
where X = lim supn→∞Xn noting that X(ω) = limn→∞Xn(ω) for ω ∈ C.

§1.5.3 Properties. (a) We have Xn
a.s.−→ X if and only if supm>n |Xm − Xn|

n→∞−→ 0 in P
if and only if supj>n |Xj − X| n→∞−→ 0 in P if and only if ∀ε, δ > 0, ∃N(ε, δ) ∈ N,
∀n > N(ε, δ), P

(⋂
j>n {|Xj −X| 6 ε}

)
> 1− δ.

(b) If Xn
a.s.−→ X , then Xn

P→ X .

(c) If Xn
a.s.−→ X , then g(Xn)

a.s.−→ g(X) for any continuous function g.

(d) Xn
P→ X if and only if limn→∞ supj>n P(|Xj −Xn| > ε) = 0 for all ε > 0 if and only if

any sub-sequence of (Xn)n∈N contains a sub-sequence converging to X a.s..

(e) If Xn
P→ X , then g(Xn)

P→ g(X) for any continuous function g.

(f) Xn
a.s.−→ X ⇒ Xn

P→ X ⇐ Xn
Lp−→ X and Xn

P→ X ⇒ Xn
d→ X

1.6 Conditional expectation

In the sequel (Ω,A ,P) is a probability space and F is a sub-σ-algebra of A .

§1.6.1 Theorem. If X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) then there exists Y ∈ M+(Ω,F )
or Y ∈ L1(Ω,F ,P), respectively, such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover Y
is unique up to equality a.s..

Proof of Theorem §1.6.1. We refer to Klenke [2008], Theorem 8.12.

§1.6.2 Definition. For X ∈ M+(Ω,A ) or X ∈ L1(Ω,A ,P) each version Y as in Theo-
rem §1.6.1 is called conditional expectation (bedingte Erwartung) of X given F , symbolically
E(X|F ) := Y . For A ∈ A , P(A|F ) := E(1A|F ) is called a conditional probability of A
given the σ-algebra F . Given r.v.’s Xi, i ∈ I, we set E(X|(Xi)i∈I) := E(X|σ(Xi, i ∈ I)).
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1.6 Conditional expectation Chapter 1 Preliminaries

§1.6.3 Remark. Employing Proposition §1.2.7 there exists a σ(X)-B-measurable function f
such that E(Y |X) = f(X) a.s.. Therewith, we write E(Y |X = x) := f(x) (conditional
expected value, bedingter Erwartungswert). Since conditional expectations are defined only up
to equality a.s., all (in)equalities with conditional expectations are understood as (in)equalities
a.s., even if we do not say so explicitly.

§1.6.4 Properties. Let G ⊂ F ⊂ A be σ-algebras and let X, Y ∈ L1(Ω,A ,P). Then:
(a) (Linearity) E(λX + Y |F ) = λE(X|F ) + E(Y |F ).

(b) (Monotonicity) If X > Y a.s., then E(X|F ) > E(Y |F ).

(c) If E(|XY |) < ∞ and Y is measurable with respect to F , then E(XY |F ) = Y E(X|F )
and E(Y |F ) = E(Y |Y ) = Y .

(d) (Tower property) E(E(X|F )|G ) = E(E(X|G )|F ) = E(X|G ).

(e) (Triangle inequality) E(|X| |F ) > |E(X|F )|.
(f) (Independence) If σ(X) and F are independent, then E(X|F ) = E(X).

(g) If P(A) ∈ {0, 1} for any A ∈ F , then E(X|F ) = E(X).

(h) (Jensen’s inequality) Letϕ : R→ R be convex and letϕ(Y ) be an element ofL1(Ω,A ,P).
Then ϕ(E(Y |F )) 6 E(ϕ(Y )|F ).

(i) (Dominated convergence) Assume Y ∈ L1(P), Y > 0 and (Xn)n∈N is a sequence of r.v.’s
with |Xn| 6 Y for n ∈ N and such that Xn

a.s.−→ X . Then limn→∞ E(Xn|F ) = E(X|F )
a.s. and in L1(P).

§1.6.5 Proposition. Let (H, 〈·, ·〉H) be a Hilbert space equipped with induced norm ‖·‖H and
let U be a closed linear subspace of H. For each x ∈ H there exists a unique element ux ∈ U
with ‖x− ux‖H = infu∈U ‖x− u‖H.

§1.6.6 Definition. For a closed subspace U of the Hilbert space (H, 〈·, ·〉H) the orthogonal
projection ΠU : H→ U is defined by ΠU(x) = ux with ux as in Proposition §1.6.5.

§1.6.7 Properties. Let U⊥ be the orthogonal complement of U in H. Then:
(a) (projection property) ΠU ◦ ΠU = ΠU ;

(b) (orthogonality) x− ΠUx ∈ U⊥ for each x ∈ H;

(c) each x ∈ H can be decomposed uniquely as x = ΠUx+ (x−ΠUx) in the orthogonal sum
of an element of U and an element of U⊥;

(d) ΠU is selfadjoint: 〈ΠUx, y〉H = 〈x,ΠUy〉H;

(e) ΠU is linear.

§1.6.8 Lemma. Let F be a sub-σ-algebra of A . Then L2(Ω,F ,P) is embedded as closed
linear subspace in the Hilbert space L2(Ω,A ,P).

§1.6.9 Corollary. Let F ⊂ A be a sub-σ-algebra and let X ∈ L2(Ω,A ,P) be a r.v.. Then
E(X|F ) is the orthogonal projection of X on L2(Ω,F ,P). That is, for any Y ∈ L2(Ω,F ,P),
‖X − Y ‖2

2 = E[(X − Y )2] > E[(X − E(X|F ))2] = ‖X − E(X|F )‖2
2 with equality if and

only if Y = E(X|F ).
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§1.6.10 Example. Let X, Y ∈ L1(P) be independent. Then E(X + Y |Y ) = E(X|Y ) +
E(Y |Y ) = E(X) + Y .

§1.6.11 Corollary. Let p ∈ [1,∞] and F ⊂ A be a sub-σ-algebra. Then the linear map
Lp(Ω,A ,P) → Lp(Ω,F ,P), X 7→ E(X|F ), is a contraction (that is, ‖E(X|F )‖p 6
‖X‖p) and thus bounded and continuous. Hence, for X,X1, X2, . . . ∈ Lp(Ω,A ,P) with
‖Xn −X‖p

n→∞−→ 0 we have ‖E(Xn|F )− E(X|F )‖p
n→∞−→ 0.

§1.6.12 Definition. A family (Xi)i∈I of r.v.’s in L1(Ω,A ,P) with arbitrary index set I is
called uniformly integrable if infa∈[0,∞) supi∈I E(1{|Xi|>a}|Xi|) = 0 which is satisfied in case
that supi∈I |Xi| ∈ L1(Ω,A ,P).

§1.6.13 Corollary. Let (Xi)i∈I be uniformly integrable in L1(Ω,A ,P) and let (Fj, j ∈ J )
be a family of sub-σ-algebras of A . Define Xi,j := E(Xi|Fj). Then (Xi,j)i∈I,j∈J is uni-
formly integrable in L1(Ω,A ,P). In particular, for X ∈ L1(Ω,A ,P) the family {E(X|F ) :
F is sub-σ-algebra of A } of r.v.’s in L1(Ω,A ,P) is uniformly integrable.
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