Lecture course *Probability Theory II* Summer semester 2016 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES

Exercise sheet 11

All exercises on this sheet are counted as **bonus exercises**. The final exam will contain **eight assignments**, which resemble the exercises on this sheet in extent and difficulty, but may involve different topics.

- **Exercise 1.** (a) Let $(X_i)_{i \in I}$ be a family of integrable r.v.'s on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$ with $\sup_{i \in I} \mathbb{E}|X_i| < \infty$. Show that $\{\mathbb{P}_{X_i} : i \in I\}$ is uniformly tight.
 - (b) Let $I \subseteq (0,\infty)$. Show that the family \mathcal{P} of exponential distributions on \mathbb{R} with $\mathcal{P} := \{\mathfrak{E}xp(\alpha) : \alpha \in I\}$ is uniformly tight if and only if $I \subseteq [K,\infty)$ for some K > 0. (2* + 2* points)

Exercise 2. Let $(N_t)_{t\geq 0}$ be a Poisson process on $(\Omega, \mathscr{A}, \mathbb{P})$ of intensity $\lambda > 0$ with jump times $(S_k)_{k\in\mathbb{N}}$. Show that for all $k \in \mathbb{N}$, t > 0, $u \in (0, t]$ and v > 0 it holds that:

$$\mathbb{P}(t-u < S_k \leqslant t, t < S_{k+1} \leqslant t+v) = \frac{(\lambda t)^k - (\lambda (t-u))^k}{k!} e^{-\lambda t} (1-e^{-\lambda v})$$

Hint: Use without proof that for i.i.d. $\mathfrak{E}xp(\lambda)$ -distributed r.v.'s $\varepsilon_1, ..., \varepsilon_k$ the sum $U_k := \sum_{i=1}^n \varepsilon_i$ has a $\Gamma(k, \lambda)$ -distribution with Lebesgue density $f_{U_k}(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x} \mathbb{1}_{[0,\infty)}(x)$. Thus, infer the joint density $f_{S_k, S_{k+1}-S_k}(x, y)$ of $(S_k, S_{k+1}-S_k)$. (4* points)

Exercise 3. Let $(\varepsilon_k)_{k \in \mathbb{N}_0}$ be an i.i.d. sequence of r.v.'s with distribution $\mathfrak{N}(0, \sigma^2)$, $\sigma > 0$. Define the processes $X_n := \left(\sum_{k=n}^{n+3} \varepsilon_k\right)^2$ and $Y_n := \sum_{k=3n}^{4n} \varepsilon_k$.

- (a) Show that $(X_n)_{n \in \mathbb{N}_0}$ is stationary and ergodic while $(Y_n)_{n \in \mathbb{N}_0}$ is *not* stationary.
- (b) Show that $\frac{1}{n} \sum_{i=0}^{n-1} X_i$ converges a.s. and find the limit. (2*+2* points)

Exercise 4. Let $(B_t)_{t\geq 0}$ be a Brownian motion on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$. Fix real numbers $0 \leq a < b$.

- (a) Show that the set $\{\omega \in \Omega : B_t(\omega) \text{ is monotone increasing on } [a, b]\}$ is \mathscr{A} -measurable.
- (b) For $n \in \mathbb{N}$, calculate the probability $\mathbb{P}(B_a \leq B_{a+\frac{b-a}{n}} \leq ... \leq B_b)$.
- (c) By considering the limit n → ∞, conclude that P-a.s. (B_t) is not monotone increasing on the interval [a, b].
 (1*+2*+1* points)

Exercise 5. Let $(X_n)_{n \in \mathbb{N}_0}$ be a time-homogeneous Markov chain on the finite state space $S := \{1, 2, 3\}$. The transition probabilities $p_{i,j}$, $i, j \in S$ are given by the following graph:

(a) Calculate $\mathbb{P}_2(X_2 = 3)$.

(b) Show that $(X_n)_{n \in \mathbb{N}_0}$ is irreducible.

(c) Classify the states in S into recurrent and transient states.

(d) Calculate a stationary distribution of the Markov chain. Is it unique?

(1*+1*+1* points)

Exercise 6. A Brownian bridge $(Z_t)_{t \in [0,1]}$ is a continuous, centred Gaussian process with covariance function $c(t, s) = t \land s - st$, $s, t \in [0, 1]$. Let $(B_t)_{t \ge 0}$ be a Brownian motion.

- (a) Show that the process $X_t := B_t tB_1$, $t \in [0, 1]$, is a Brownian bridge.
- (b) Show that the process $\widetilde{X}_t = (1-t)B_{\frac{t}{1-t}}, t \in [0,1), \widetilde{X}_1 = 0$, is a Brownian bridge.

(2*+2* points)