Lecture course Probability Theory II
Summer semester 2016
Ruprecht-Karls-Universität Heidelberg
Prof. Dr. Jan JOHANNES

Exercise sheet 11

All exercises on this sheet are counted as bonus exercises. The final exam will contain eight assignments, which resemble the exercises on this sheet in extent and difficulty, but may involve different topics.

Exercise 1. (a) Let $\left(X_{i}\right)_{i \in I}$ be a family of integrable r.v.'s on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$ with $\sup _{i \in I} \mathbb{E}\left|X_{i}\right|<\infty$. Show that $\left\{\mathbb{P}_{X_{i}}: i \in I\right\}$ is uniformly tight.
(b) Let $I \subseteq(0, \infty)$. Show that the family \mathcal{P} of exponential distributions on \mathbb{R} with $\mathcal{P}:=\{\mathfrak{E} x p(\alpha): \alpha \in I\}$ is uniformly tight if and only if $I \subseteq[K, \infty)$ for some $K>0$.

Exercise 2. Let $\left(N_{t}\right)_{t \geqslant 0}$ be a Poisson process on $(\Omega, \mathscr{A}, \mathbb{P})$ of intensity $\lambda>0$ with jump times $\left(S_{k}\right)_{k \in \mathbb{N}}$. Show that for all $k \in \mathbb{N}, t>0, u \in(0, t]$ and $v>0$ it holds that:

$$
\mathbb{P}\left(t-u<S_{k} \leqslant t, t<S_{k+1} \leqslant t+v\right)=\frac{(\lambda t)^{k}-(\lambda(t-u))^{k}}{k!} e^{-\lambda t}\left(1-e^{-\lambda v}\right)
$$

Hint: Use without proof that for i.i.d. $\mathfrak{E x p}(\lambda)$-distributed r.v.'s $\varepsilon_{1}, \ldots, \varepsilon_{k}$ the sum $U_{k}:=$ $\sum_{i=1}^{n} \varepsilon_{i}$ has $a \Gamma(k, \lambda)$-distribution with Lebesgue density $f_{U_{k}}(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x} \mathbb{1}_{[0, \infty)}(x)$. Thus, infer the joint density $f_{S_{k}, S_{k+1}-S_{k}}(x, y)$ of $\left(S_{k}, S_{k+1}-S_{k}\right)$.
(4* points)

Exercise 3. Let $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}_{0}}$ be an i.i.d. sequence of r.v.'s with distribution $\mathfrak{N}\left(0, \sigma^{2}\right), \sigma>0$. Define the processes $X_{n}:=\left(\sum_{k=n}^{n+3} \varepsilon_{k}\right)^{2}$ and $Y_{n}:=\sum_{k=3 n}^{4 n} \varepsilon_{k}$.
(a) Show that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is stationary and ergodic while $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ is not stationary.
(b) Show that $\frac{1}{n} \sum_{i=0}^{n-1} X_{i}$ converges a.s. and find the limit.

Exercise 4. Let $\left(B_{t}\right)_{t \geqslant 0}$ be a Brownian motion on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$. Fix real numbers $0 \leqslant a<b$.
(a) Show that the set $\left\{\omega \in \Omega: B_{t}(\omega)\right.$ is monotone increasing on $\left.[a, b]\right\}$ is \mathscr{A}-measurable.
(b) For $n \in \mathbb{N}$, calculate the probability $\mathbb{P}\left(B_{a} \leqslant B_{a+\frac{b-a}{n}} \leqslant \ldots \leqslant B_{b}\right)$.
(c) By considering the limit $n \rightarrow \infty$, conclude that \mathbb{P}-a.s. $\left(B_{t}\right)$ is not monotone increasing on the interval $[a, b]$.

$$
(1 *+2 *+1 * \text { points })
$$

Exercise 5. Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a time-homogeneous Markov chain on the finite state space $\mathcal{S}:=\{1,2,3\}$. The transition probabilities $p_{i, j}, i, j \in \mathcal{S}$ are given by the following graph:

(a) Calculate $\mathbb{P}_{2}\left(X_{2}=3\right)$.
(b) Show that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is irreducible.
(c) Classify the states in \mathcal{S} into recurrent and transient states.
(d) Calculate a stationary distribution of the Markov chain. Is it unique?

$$
\left(1^{*}+1^{*}+1^{*}+1^{*} \text { points }\right)
$$

Exercise 6. A Brownian bridge $\left(Z_{t}\right)_{t \in[0,1]}$ is a continuous, centred Gaussian process with covariance function $c(t, s)=t \wedge s-s t, s, t \in[0,1]$. Let $\left(B_{t}\right)_{t \geqslant 0}$ be a Brownian motion.
(a) Show that the process $X_{t}:=B_{t}-t B_{1}, t \in[0,1]$, is a Brownian bridge.
(b) Show that the process $\widetilde{X}_{t}=(1-t) B_{\frac{t}{1-t}}, t \in[0,1), \widetilde{X}_{1}=0$, is a Brownian bridge.

