Lecture course *Probability Theory II* Summer semester 2016 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES

Exercise sheet 10

Exercise 1. Show that for a sequence of probability measures $(\mathbb{P}_n)_{n \in \mathbb{N}}$ on $\mathcal{C}([0, 1])$:

$$\forall \varepsilon > 0 : \lim_{\delta \to 0} \limsup_{n \to \infty} \sup_{t \in [0, 1-\delta]} \delta^{-1} \mathbb{P}_n \left(\max_{s \in [t, t+\delta]} |f(s) - f(t)| \ge \varepsilon \right) = 0$$

implies for the modulus of continuity $w_f(\delta)$

$$\forall \varepsilon > 0 : \lim_{\delta \to 0} \limsup_{n \to \infty} \mathbb{P}_n(w_f(\delta) \ge \varepsilon) = 0.$$
(4 points)

Exercise 2. Let (S, d) be a metric space and $\mathscr{B}(S)$ the Borel- σ -algebra of S. For $m, n \in \mathbb{N}$ let $T_n, T_{n,m}, T$ and T_m be r.v.'s with values in $(S, \mathscr{B}(S))$. Show that $T_n \xrightarrow{d} T$ as $n \to \infty$, if the following conditions hold:

- (a) $\forall m \in \mathbb{N}: T_{n,m} \xrightarrow{d} T_m \text{ as } n \to \infty.$
- (b) $T_m \xrightarrow{d} T$ as $m \to \infty$.

(c) $\lim_{m\to\infty} \limsup_{n\to\infty} \mathbb{P}(d(T_{n,m},T_n) > \varepsilon) = 0$ for all $\varepsilon > 0$.

Hint: Use the Portemanteau theorem, \$6.1.4 (v). For a closed set $F \subseteq S$ define $d(x, F) := \inf\{d(x, y), y \in F\}$, $\overline{B}_{\varepsilon}(F) := \{x \in S : d(x, F) \leq \varepsilon\}$ and for r.v.'s X, Z use that $\mathbb{P}(Z \in F) \leq \mathbb{P}(d(X, Z) > \varepsilon) + \mathbb{P}(X \in \overline{B}_{\varepsilon}(F)).$ (4 points)

Exercise 3. Let $(W_t)_{t\geq 0}$ be a Brownian motion as defined in \$2.1.7 on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$. For an interval $[a, b] \subseteq [0, \infty)$ define the variation

$$V_{[a,b]}(W) := \sup_{n \in \mathbb{N}, a = t_0 < \dots < t_n = b} \sum_{i=1}^n |W_{t_i} - W_{t_{i-1}}|.$$

(a) Let $t_i := a + \frac{i}{n}(b-a), i \in \{0, ..., n\}$ be a uniform partition of the interval $[a, b], n \in \mathbb{N}$. Show that

$$\sum_{i=1}^{n} |W_{t_i} - W_{t_{i-1}}|^2 \xrightarrow{\mathbb{P}} b - a \quad \text{as } n \to \infty.$$

(b) Define $M^*(n) := \max_{i=1,...,n} |W_{t_i} - W_{t_{i-1}}|$. Show that

$$V_{[a,b]}(W) \ge \frac{1}{M^*(n)} \sum_{i=1}^n |W_{t_i} - W_{t_{i-1}}|^2,$$

conclude that $(W_t)_{t\in[a,b]}$ has unbounded variation on [a,b] a.s.: $V_{[a,b]}(W) = \infty$ a.s. *Hint: For a sequence of real r.v.'s* $(X_n)_{n\in\mathbb{N}}$, the following characterisation holds: $X_n \xrightarrow{\mathbb{P}} X$ as $n \to \infty$ if and only if for every subsequence $(X_{n_k})_{k\in\mathbb{N}}$ there exists a further subsequence $(X_{n_{k_l}})_{l\in\mathbb{N}}$ such $X_{n_{k_l}} \xrightarrow{a.s.} X$ as $l \to \infty$. (4 points)

Exercise 4. Let $(W_t)_{t \ge 0}$ be a Brownian motion, $\mu \in \mathbb{R}$ and $\sigma > 0$. Define the r.v.

$$S_t = \exp\left(\mu t + \sigma W_t\right).$$

- (a) Calculate the mean and the variance of S_t for $t \ge 0$.
- (b) Calculate the probability density function of S_t for t > 0.
- (c) Under which condition is S_t a martingale with respect to the canonical filtration generated by the Brownian motion?

(4 points)