Lecture course Probability Theory II
Summer semester 2016
Ruprecht-Karls-Universität Heidelberg
Prof. Dr. Jan JOHANNES

Exercise sheet 10

Exercise 1. Show that for a sequence of probability measures $\left(\mathbb{P}_{n}\right)_{n \in \mathbb{N}}$ on $\mathcal{C}([0,1])$:

$$
\forall \varepsilon>0: \lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \sup _{t \in[0,1-\delta]} \delta^{-1} \mathbb{P}_{n}\left(\max _{s \in[t, t+\delta]}|f(s)-f(t)| \geqslant \varepsilon\right)=0
$$

implies for the modulus of continuity $w_{f}(\delta)$

$$
\forall \varepsilon>0: \lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \mathbb{P}_{n}\left(w_{f}(\delta) \geqslant \varepsilon\right)=0
$$

Exercise 2. Let (\mathcal{S}, d) be a metric space and $\mathscr{B}(\mathcal{S})$ the Borel- σ-algebra of \mathcal{S}. For $m, n \in \mathbb{N}$ let $T_{n}, T_{n, m}, T$ and T_{m} be r.v.'s with values in $(\mathcal{S}, \mathscr{B}(\mathcal{S}))$. Show that $T_{n} \xrightarrow{d} T$ as $n \rightarrow \infty$, if the following conditions hold:
(a) $\forall m \in \mathbb{N}: T_{n, m} \xrightarrow{d} T_{m}$ as $n \rightarrow \infty$.
(b) $T_{m} \xrightarrow{d} T$ as $m \rightarrow \infty$.
(c) $\lim _{m \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \mathbb{P}\left(d\left(T_{n, m}, T_{n}\right)>\varepsilon\right)=0$ for all $\varepsilon>0$.

Hint: Use the Portemanteau theorem, \$6.1.4 (v). For a closed set $F \subseteq \mathcal{S}$ define $d(x, F):=$ $\inf \{d(x, y), y \in F\}, \bar{B}_{\varepsilon}(F):=\{x \in \mathcal{S}: d(x, F) \leqslant \varepsilon\}$ and for r.v.'s X, Z use that $\mathbb{P}(Z \in F) \leqslant \mathbb{P}(d(X, Z)>\varepsilon)+\mathbb{P}\left(X \in \bar{B}_{\varepsilon}(F)\right)$.

Exercise 3. Let $\left(W_{t}\right)_{t \geqslant 0}$ be a Brownian motion as defined in $\$ 2.1 .7$ on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$. For an interval $[a, b] \subseteq[0, \infty)$ define the variation

$$
V_{[a, b]}(W):=\sup _{n \in \mathbb{N}, a=t_{0}<\ldots<t_{n}=b} \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right| .
$$

(a) Let $t_{i}:=a+\frac{i}{n}(b-a), i \in\{0, \ldots, n\}$ be a uniform partition of the interval $[a, b]$, $n \in \mathbb{N}$. Show that

$$
\sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right|^{2} \xrightarrow{\mathbb{P}} b-a \quad \text { as } n \rightarrow \infty
$$

(b) Define $M^{*}(n):=\max _{i=1, \ldots, n}\left|W_{t_{i}}-W_{t_{i-1}}\right|$. Show that

$$
V_{[a, b]}(W) \geqslant \frac{1}{M^{*}(n)} \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right|^{2}
$$

conclude that $\left(W_{t}\right)_{t \in[a, b]}$ has unbounded variation on $[a, b]$ a.s.: $V_{[a, b]}(W)=\infty$ a.s. Hint: For a sequence of real r.v.'s $\left(X_{n}\right)_{n \in \mathbb{N}}$, the following characterisation holds: $X_{n} \xrightarrow{\mathbb{P}} X$ as $n \rightarrow \infty$ if and only if for every subsequence $\left(X_{n_{k}}\right)_{k \in \mathbb{N}}$ there exists a further subsequence $\left(X_{n_{k_{l}}}\right)_{l \in \mathbb{N}}$ such $X_{n_{k_{l}}} \xrightarrow{\text { a.s. }} X$ as $l \rightarrow \infty$.

Exercise 4. Let $\left(W_{t}\right)_{t \geqslant 0}$ be a Brownian motion, $\mu \in \mathbb{R}$ and $\sigma>0$. Define the r.v.

$$
S_{t}=\exp \left(\mu t+\sigma W_{t}\right)
$$

(a) Calculate the mean and the variance of S_{t} for $t \geqslant 0$.
(b) Calculate the probability density function of S_{t} for $t>0$.
(c) Under which condition is S_{t} a martingale with respect to the canonical filtration generated by the Brownian motion?

