Lecture course *Probability Theory II* Summer semester 2016 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES

Exercise sheet 9

Exercise 1. Consider $(\mathbb{R}, |\cdot|)$ equipped with its Borel- σ -algebra \mathscr{B} . Let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in $(\mathbb{R}, |\cdot|)$ with limit x. Show directly without using the Portemanteau theorem that

- (a) $\delta_x = w \lim_{n \to \infty} \delta_{x_n}$.
- (b) $\liminf_{n \to \infty} \delta_{x_n}(O) \ge \delta_x(O)$ for all open $O \subseteq \mathbb{R}$.
- (c) $\delta_{x_n}(A) \xrightarrow{n \to \infty} \delta_x(A)$ for all $A \in \mathscr{B}$ with $\delta_x(\partial A) = 0$, ∂A the boundary of A. (4 points)

Exercise 2. Let (S, d) be a metric space equipped with Borel- σ -algebra. For $n \in \mathbb{N}$ let X_n, X, Y_n, Y be S-valued r.v.'s defined on some probability space $(\Omega, \mathscr{A}, \mathbb{P})$. Assume that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$.

- (a) Give a counterexample to show that in general, one can not conclude $(X_n, Y_n) \xrightarrow{d} (X, Y)$ in $\mathcal{S} \times \mathcal{S}$ endowed with the product topology.
- (b) Assume that for some $c \in S$ it holds that $\mathbb{P}(X = c) = 1$. Then $X_n \xrightarrow{\mathbb{P}} X$.
- (c) Under the assumption of (b), show that $(X_n, Y_n) \xrightarrow{d} (X, Y)$.

Hint: Use the Portemanteau theorem for (b) and (c).

(4 points)

Exercise 3. Let X, X_1, X_2, \ldots be \mathbb{Z} -valued r.v.'s on a probability space $(\Omega, \mathscr{A}, \mathbb{P})$. Show that $X_n \xrightarrow{d} X$ if and only if $\mathbb{P}(X_n = m) \xrightarrow{n \to \infty} \mathbb{P}(X = m)$ for all $m \in \mathbb{Z}$. (4 points)

- **Exercise 4.** (a) Consider $([0,1], |\cdot|)$ equipped with its Borel- σ -algebra \mathscr{B} . Show that $\frac{1}{n} \sum_{k=1}^{n} \delta_{k/n} \xrightarrow{w} \lambda$, where λ is the Lebesgue measure on \mathbb{R} restricted to [0,1].
 - (b) For each $n \in \mathbb{N}$ let X_n be a geometrically distributed r.v. with parameter $p_n \in (0, 1)$. How must we choose the sequence $(p_n)_{n \in \mathbb{N}}$ in order that $\mathbb{P}_{X_n/n}$ converges weakly to the exponential distribution with parameter $\alpha > 0$? (4 points)

