Lecture course *Probability Theory II* Summer semester 2016 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES

Exercise sheet 7

Exercise 1. Let $X = (X_n)_{n \in \mathbb{N}_0}$ be a time-homogeneous Markov chain on an at most countable state space $(\mathcal{S}, \mathscr{S})$ with transition matrix P.

- (a) Show that for $i \in S$ positive recurrent and $\rho_{ij} > 0$, also j is positive recurrent.
- (b) Suppose that $\psi : S \to \mathbb{R}$ is bounded and satisfies $\sum_{j \in S} P_{ij}\psi(j) \leq \lambda\psi(i)$ for some $\lambda > 0$ and all $i \in S$. Show that $\lambda^{-n}\psi(X_n)$ constitutes a supermartingale. (4 points)

Exercise 2. Let $(X_n)_{n \in \mathbb{N}_0}$ be a Markov chain on the state space $S = \{0, 1\}$ with transition matrix

$$p = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix},$$

where $\alpha + \beta > 0$.

- (a) Calculate the correlation $\rho(X_m, X_{m+n})$, and its limit for $m \to \infty$ for fixed n.
- (b) Find $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \mathbb{P}(X_i = 1)$.
- (c) Under which conditions is the process stationary? (4 points)
- **Exercise 3.** (a) Characterise the measure preserving transformations on a finite set $\Omega = \{\omega_1, ..., \omega_n\}$ with $n \ge 1$ elements, given a probability measure \mathbb{P} on the power set 2^{Ω} .
 - (b) Assume now that $\mathbb{P}(\{\omega_i\}) > 0$ for all $1 \leq i \leq n$. Show that there exists a unique probability measure \mathbb{P} on the power set, such that there is an ergodic transformation $T: \Omega \to \Omega$. How do \mathbb{P} and T look like? (4 points)

Exercise 4. Let $(\Omega, \mathscr{A}, \mathbb{P})$ be a probability space. Prove or disprove:

- (a) Let $(U_n)_{n \in \mathbb{N}_0}$ and $(V_n)_{n \in \mathbb{N}_0}$ be real-valued stationary processes on $(\Omega, \mathscr{A}, \mathbb{P})$. Then the process $(W_n)_{n \in \mathbb{N}_0}$ with $W_n = U_n V_n$ is stationary.
- (b) Every stationary process (Z_n)_{n∈ℕ0} on (Ω, 𝒜, ℙ) is a martingale with respect to the natural filtration 𝒞^Z.
- (c) Let $(X_n)_{n \in \mathbb{N}_0}$ be a real-valued stationary process. Then the process $(Y_n)_{n \in \mathbb{N}_0}$ with

$$Y_n = \sum_{i=0}^{\infty} (-1)^i \frac{(X_n + X_{n+1})^{2i+1}}{(2i+1)!}$$

is again stationary.

(d) For $A \in \mathbb{R}_+$, $\varphi \in (0, 2\pi)$ and U having a uniform distribution in $[0, 2\pi]$, the sequence $(X_t)_{t \in \mathbb{Z}}$ where $X_t = A \cos(\phi t + U)$ is stationary. (4 points)