Lecture course Probability Theory II
Summer semester 2016
Ruprecht-Karls-Universität Heidelberg
Prof. Dr. Jan JOHANNES

Exercise sheet 4

Exercise 1. A function $f \in C^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ is called superharmonic, if for all $x \in \mathbb{R}^{d}, \Delta f(x)=$ $\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x) \leqslant 0$. In this case the following inequality holds for all balls $B_{r}(x) \subseteq \mathbb{R}^{d}$, $r>0, x \in \mathbb{R}^{d}$ (no proof required):

$$
\begin{equation*}
f(x) \geqslant \frac{1}{\lambda_{d}\left(B_{r}(0)\right)} \int_{B_{r}(x)} f(y) d \lambda_{d}(y) . \tag{1}
\end{equation*}
$$

(a) For a measurable function $f: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ and \mathbb{R}^{d}-valued independent r.v.'s X, Y with $f(X, Y) \in L_{1}$ show first that there holds $\mathbb{E}[f(X, Y) \mid Y]=g(Y)$ with $g(y)=$ $\mathbb{E}(f(X, y))$.
(b) Conclude that for a superharmonic function f on \mathbb{R}^{d} and $\left(\xi_{i}\right)_{i \geqslant 0}$ i.i.d. uniform r.v.'s on $B_{1}(0), f\left(S_{n}\right)$ is a $\left(\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)\right)_{n \geqslant 1}$-supermartingale, where $S_{n}=x+\sum_{i=1}^{n} \xi_{i}$.
(c) In the case $d=1$, prove the assertion from (b) without using (1).

Exercise 2. (a) Let \mathscr{F} be a filtration and $\left(X_{n}\right)_{n \in \mathbb{N}}$ a positive \mathscr{F}-supermartingale. Let $0<a<b<\infty$ and $\beta_{a, b}$ the number of upcrossings associated with $\left(X_{n}\right)_{n \in \mathbb{N}}$. Use Dubin's inequality (\$3.1.11) to prove the inequality

$$
\begin{equation*}
\mathbb{E} \beta_{a, b} \leqslant \frac{a}{b-a} \mathbb{E} \min \left(\frac{X_{1}}{a}, 1\right) . \tag{2}
\end{equation*}
$$

(b) Prove that if a positive supermartingale $\left(X_{t}\right)_{t \in \mathbb{N}}$ attains the value zero, then it is zero for all times afterwards.
Hint: Use Dubins' equality in the limit $a \rightarrow 0$ to show that with probability 1, there is no upcrossing of the interval $[0, b)$ for any $b>0$.
(4 points)

Exercise 3. Give a proof of Kolmogorov's 0-1-law based on martingale theory:
(a) Let $\left(\mathscr{F}_{n}\right)_{n \in \mathbb{N}}$ be a filtration and $\mathscr{F}_{\infty}:=\bigvee_{n \in \mathbb{N}} \mathscr{F}_{n}$. Show that for $A \in \mathscr{F}_{\infty}$, we have $\mathbb{E}\left[\mathbb{1}_{A} \mid \mathscr{F}_{n}\right] \xrightarrow{\text { a.s. }} \mathbb{1}_{A}$ as $n \rightarrow \infty$.
(b) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent r.v.'s. Consider the natural filtration $\left(\mathscr{F}_{n}\right)_{n \in \mathbb{N}}$ with $\mathscr{F}_{n}=\sigma\left(X_{k}, k \leqslant n\right)$ and the tail σ-algebra $\mathscr{G}=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k}, k \geqslant n\right)$.

For $A \in \mathscr{G}$, deduce that $\mathbb{P}(A)=\mathbb{E}\left[\mathbb{1}_{A} \mid \mathscr{F}_{n}\right] \xrightarrow{\text { a.s. }} \mathbb{1}_{A}$ such that $\mathbb{P}(A) \in\{0,1\}$ holds. (4 points)

Exercise 4. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an integrable $\{$ super/sub- $\}$ martingale. Show that for every stopping time τ, the stopped process $X^{\tau}=\left(X_{n}^{\tau}\right)_{n \in \mathbb{N}}$, defined by $X_{n}^{\tau}=X_{\tau \wedge n}$ for any $n \in \mathbb{N}$ is again an integrable $\{$ super/sub- \}martingale.
(4 points)

