Lecture course *Probability Theory II* Summer semester 2016 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES

Exercise sheet 3

Exercise 1. Let $C([0,\infty))$ be equipped with the topology of uniform convergence on compacts using the metric $d(f,g) := \sum_{k \ge 1} 2^{-k} \left(\sup_{t \in [0,k]} |f(t) - g(t)| \land 1 \right)$. Prove

- (a) $(C([0,\infty)), d)$ is Polish.
- (b) The Borel σ-algebra is the smallest σ-algebra that makes all coordinate projections π_t : C([0,∞)) → ℝ, t ≥ 0, measurable.
- (c) For any continuous stochastic process $(X_t)_{t\geq 0}$ on $(\Omega, \mathscr{A}, \mathbb{P})$ the mapping $\overline{X} : \Omega \to C([0,\infty))$ with $\overline{X}(\omega)_t := X_t(\omega)$ is Borel-measurable.
- (d) The law of \overline{X} is uniquely determined by the finite-dimensional distributions of X. (4 points)

Exercise 2. A Gaussian process $(X_t)_{t\in\mathbb{T}}$ is a process with (generalized) Gaussian finitedimensional distributions: For any $t_1, ..., t_n \in \mathbb{T}$, $(X_{t_1}, ..., X_{t_n}) \sim \mathfrak{N}(\mu_{t_1,...,t_n}, \Sigma_{t_1,...,t_n})$, where $\mu_{t_1,...,t_n} \in \mathbb{R}^n$ and $\Sigma_{t_1,...,t_n} \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite.

- (a) Argue that the finite-dimensional distributions of a Gaussian process (X_t)_{t∈T} are uniquely determined by the expectation function t → E(X_t) and the covariance function (s, t) → Cov(X_s, X_t).
- (b) Show that for any function $\mu : \mathbb{T} \to \mathbb{R}$ and any symmetric, positive semi-definite function $C : \mathbb{T}^2 \to \mathbb{R}$, i.e. C(t, s) = C(s, t) and

$$\forall n \ge 1; t_1, ..., t_n \in \mathbb{T}; \lambda_1, ..., \lambda_n \in \mathbb{R} : \sum_{i,j=1}^n C(t_i, t_j) \lambda_i \lambda_j \ge 0,$$

there is a Gaussian process with expectation function μ and covariance function C. (4 points)

Exercise 3. Let $(X_t)_{t\in\mathbb{N}}$ be a sequence of r.v.'s on Ω and $a, b \in \mathbb{R}$ (or \mathbb{Q}) with a < b. For $\omega \in \Omega$ the integers $\tau_0(\omega) = 1$, $\sigma_{k+1}(\omega) = \inf\{t \ge \tau_k(\omega) : X_t(\omega) \le a\}$ and $\tau_{k+1}(\omega) = \inf\{t \ge \sigma_k(\omega) : X_t(\omega) \ge b\}$, k = 0, 1, 2, ... define the upcrossing number associated with $(X_t(\omega))_{t\in\mathbb{N}}, \beta_{a,b}(\omega) = \sup\{k \ge 1 : \tau_k(\omega) < \infty\}$ (see \$3.1.6). Show the following claims:

(a) The numbers $\beta_{a,b}(\omega)$ define a r.v. on Ω .

- (b) (X_t)_{t∈ℕ} converges a.s. if and only if for any a < b in ℝ (or ℚ) the upcrossing numbers β_{a,b} are finite a.s. for any a < b in ℝ (or ℚ).</p>
- Let $\mathbb{F} = (\mathscr{F}_n)_{n \in \mathbb{N}}$ be a filtration and $\mathscr{F}_{\infty} := \bigvee_{n \in \mathbb{N}} \mathscr{F}_n$. Show that:
 - (c) For any positive r.v. Z we have $\mathbb{E}(Z|\mathscr{F}_n) \xrightarrow{n \to \infty} \mathbb{E}(Z|\mathscr{F}_\infty)$ a.s. on the complement of the event $\bigcap_{n \in \mathbb{N}} \{\mathbb{E}(Z|\mathscr{F}_n) = \infty\}$.
 - (d) For any positive (super-)martingale $(X_n)_{n \in \mathbb{N}}$ and for any stopping time τ , the stopped process $X^{\tau} = (X_{\tau \wedge n})_{n \in \mathbb{N}}$ is a positive (super-)martingale. (4 points)
- **Exercise 4.** (a) Let $(N_t)_{t \ge 0}$ be a Poisson process of intensity $\lambda > 0$ on some probability space $(\Omega, \mathscr{A}, \mathbb{P})$, and let $M_t := N_t \lambda t$. Show that $(M_t^2 N_t)_{t \ge 0}$ and $(M_t^2 \lambda t)_{t \ge 0}$ are both intergable martingales with respect to the filtration $(\sigma(N_s, s \le t))_{t \ge 0}$.
 - (b) Let $X = (X_t)_{t \in \mathbb{T}}$, $\mathbb{T} \subseteq \mathbb{R}$ be an integrable \mathbb{F} -martingale with values in \mathbb{R} and $\phi : \mathbb{R} \to \mathbb{R}$ a measurable convex function. Show the following claims:
 - (i) If $\phi(X_t)$ is integrable for all $t \in \mathbb{T}$, then $(\phi(X_t))_{t \in \mathbb{T}}$ is an \mathbb{F} -submartingale.
 - (ii) If $t^* = \sup(\mathbb{T}) \in \mathbb{T}$, and $\phi(X_{t^*})$ is integrable, then $(\phi(X_t))_{t \in \mathbb{T}}$ is an \mathbb{F} -submartingale.
 - (iii) The above statements continue to hold if X is only an integrable submartingale, but in addition ϕ is assumed to be monotone increasing. (4 points)