|
|
outline |
notes |
Kap 1 |
Measure and integration theory |
|
|
§01 |
Measure theory |
|
le01 le02 |
§02 |
Integration theory |
|
le03 le04 le05 le06
|
§03 |
Measures with density |
|
le07
|
§04 |
Measures on product spaces |
|
le08
le09
le10
|
Chap 2 |
Conditional expectation |
|
|
§05 |
Discretely or continuously distributed random variables |
|
|
§06 |
Positive numerical random variables |
|
le11
le12
|
§07 |
Integrable random variables |
|
le13
|
§08 |
Bayesian approach |
|
le14
|
Chap 3 |
Stochastic processes and stopping times |
|
|
§09 |
Stochastic processes |
|
|
§10 |
Stopping times |
|
le15
|
Chap 4 |
Martingale theory |
|
|
§11 |
Positive (super-)martingale |
|
le16
le17
|
§12 |
Integrable (sub-,super-)martingale |
|
|
§13 |
Regular integrable martingale |
|
le18
|
§14 |
Regular stopping time for an integrable martingale |
|
le19
|
§15 |
Regular integrable submartingale |
|
|
§16 |
Doob decomposition and square variation |
|
le20
le21
|
Chap 5 |
Markov chains |
Chap 1-5 |
|
§17 |
Markov chains |
(09.07.2024)
|
|
§18 |
Recurrence und transience |
|
le22
|
§19 |
Invariant distribution |
|
le23
le24
le25
|
|
|
|
|