| |
|
outline |
notes |
| Kap 1 |
Measure and integration theory |
|
|
| §01 |
Measure theory |
|
le01 le02 |
| §02 |
Integration theory |
|
le03 le04 le05 le06
|
| §03 |
Measures with density |
|
le07
|
| §04 |
Measures on product spaces |
|
le08
le09
le10
|
| Chap 2 |
Conditional expectation |
|
|
| §05 |
Discretely or continuously distributed random variables |
|
|
| §06 |
Positive numerical random variables |
|
le11
le12
|
| §07 |
Integrable random variables |
|
le13
|
| §08 |
Bayesian approach |
|
le14
|
| Chap 3 |
Stochastic processes and stopping times |
|
|
| §09 |
Stochastic processes |
|
|
| §10 |
Stopping times |
|
le15
|
| Chap 4 |
Martingale theory |
|
|
| §11 |
Positive (super-)martingale |
|
le16
le17
|
| §12 |
Integrable (sub-,super-)martingale |
|
|
| §13 |
Regular integrable martingale |
|
le18
|
| §14 |
Regular stopping time for an integrable martingale |
|
le19
|
| §15 |
Regular integrable submartingale |
|
|
| §16 |
Doob decomposition and square variation |
|
le20
le21
|
| Chap 5 |
Markov chains |
Chap 1-5 |
|
| §17 |
Markov chains |
(09.07.2024)
|
|
| §18 |
Recurrence und transience |
|
le22
|
| §19 |
Invariant distribution |
|
le23
le24
le25
|
|
|
|
|