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Chapter 1

Preliminaries

This chapter presents elements of the PROBABILITY THEORY along the
lines of the lecture course Probability theory II.

Here and subsequently, for s a measure on a measurable space (£2,47) and f : Q — R*
a measurable function, xf denotes the integral [ fdu. In particular, given a probability mea-
sure P and a random variable (r.v.) X distributed according to P the expectation of f(X)
w.r.t. P is denoted by Pf, Ep f(X) or Ef(X) for short. For example, when applied to the
empirical measure P, = %Z?:l 0x, of a sample X;,..., X, the discrete uniform mea-
sure on the sample values, this yields P, f = 23" | f(X;). In other words, P, f is an ab-
breviation for the average = > " | f(X;). Let M(Q, o, 1) denote the set of all real-valued

Borel-measurable maps on a measure space (€2, 7, 11). Given f € M(Q, <7, ) let || f|| =
(ulfI7)7, p € [1,00) and ||f]| o = inf{c : pu(|f| > ¢) = 0}. Thereby, for p € [1,o0]
we set Ly = L(Q,/,p) = {f € M(Q, o, p) : ||fll;, < oo} or LV := L for short.

In the sequel, a random vector in R* or R¥-valued r.v. is a vector X = (X!, ..., X¥) of real
valued r.v.’s defined on a common probability space (€2, <7, P). We denote by ||| and (-, )
the Euclidean norm and inner product on R*, respectively, i.e, ||z = (31, |2*[*)"/? and

(z,y) = S8 atyl, x = (2%, ..., 2%),y = (y',..., ") € R*. Obviously, for a R*-valued r.v.
X = (X',...,X%), ||X] is a real valued r.v. and || X|| € L” is equivalent to X' € L%, i.e.,
HX’HL§ = (E|X!|")"/? < oo, for each i € [1,k] := [1,k] N Z. Moreover, for z,y € R we
agree on the following notations |z | := max{k € Z : k < z} (integer part), z Vy = max(z,y)
(maximum), 2 A y = min(z, y) (minimum), ™ = max(x, 0) (positive part), =~ = max(—z, 0)
(negative part) and |z| = 2~ + 2+ (modulus).

1.1 Convergence of random variables

§1.1.1 Definition. Given r.v.’s X, X, X5, ... on a probability space ({2, .o/, P) with values in
a metric space (X, d) equipped with its Borel-o-field the sequence (X,,),en converges to X:

(a) almost surely (a.s.), if P(lim,, o d(X,, X) = 0) = 1. We write X, % X a.s., or
briefly, X,, % X.

(b) in probability, if lim,,_,, ]P(d(Xn, X)> 5) = 0forall ¢ > 0. We write X,, — X in P,
or briefly, X, 5 X,

(c) in distribution, if Ep (f(X,)) "= Ep(f(X)) for any continuous and bounded function
fi X = R. We write X, "= X in distribution, or briefly, X,, & X.

(d) in L? or p-th mean, if lim,,_,., E|d(X,, X)|P = 0. We write X, "% X in LP, or briefly,
X, 5 X. 0
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Chapter 1 Preliminaries 1.1 Convergence of random variables

§1.1.2 Remark. Considering R*-valued r.v.’s X, X;, X5, ... and the Euclidean norm ||-|| on
R* convergence of (X,,),en to X in p-th mean, that is, lim,,_,, E || X,, — X||” = 01is equivalent
to the convergence of each component in L?, i.e., lim,,_,, || X} — X*||,, = 0,4 € [1, k]. O

§1.1.3 Properties. Consider rv.’s X, X1, Xy, ... on a probability space (), o7 , P) with values
in a metric space (X, d) equipped with its Borel-c-field.

(a) Wehave X,, = X ifand only if sup,,~,, d( X, X,,) % 0ifand only ifsup;, d(X;, X) 5
0 if and only if Ve,§ > 0, AN(e,0) € N, Vn > N(g,0), ]P’(ﬂj% {d(X;,X)<e}) >
1-09.

(b) X, 25 X, then X,, > X.

(¢) If X, =5 X, then g(X,,) £ g(X) for any continuous function g.
(d) If X, 5 X, then 9(Xn) RN g(X) for any continuous function g.

© X, " X=X, 5 xex, D XandX, H X=X, 5 X s

§1.1.4 Properties (Portemanteau). Let X, X1, X, ... be rv.’s on a probability space (2, <7, P)
with values in a metric space (X, d) equipped with its Borel-o-field, then the following state-
ments are equivalent:

i) X, 5 X;

(i) im inf P(X,, e U) > P(X € U) forall open U C X;
n—oo

(i) lim supP(X,, € F) <P(X € F) forall closed F C X;

n—oo

(iv) lim, 0 P(X,, € B) = P(X € B) for all measurable B with P(X € 0B) = 0 where B,
B® and OB = B\B’ is the closure, interior and the boundary of B, respectively.

§1.1.5 Property (Helly-Bray). For R*-valued r.v.’s X, X1, Xs, ... defining distribution func-
tions for each v € RF by F(z) := P(X < 2) and F,,(z) := P(X,, < ), n € N, are equivalent:
(1) X, Y X and (i) lim,, 00 F, (x) = F(2) for all points of continuity x of F. O
§1.1.6 Property (Continuous mapping theorem). Let (X;,d;) and (X, dy) be metric spaces

equipped with their Borel-o-fields and let o : X\ — X, be measurable. Denote by U, the set
of points of discontinuity of ¢. If X, X1, Xs, ... are Xy-valued rv.’s with P(X € U,) = 0 and

X, L X, then p(X,) L o(X). o
§1.1.7 Property (Slutzky’s lemma). Let X, X1, Xo,... and Y1,Y5, ... be rv.’s with values in
a common metric space (X, d) satisfying X, %y X and d(X,,Ys) 50. Then Y, % X. O

§1.1.8 Remark. If X, 5 x , then X, 9, X. The converse is false in general. Indeed, if
X, X1, Xy, ... are independent and identically distributed (i.i.d.) (with nontrivial distribution),

then trivially X, 95 X but X, 7EZ> X. 0

§1.1.9 Examples. Consider R¥-valued r.v.’s X, X, X,, ... satisfying X, NS'S
(i) Yy, Yy, ... are Rf-valued r.v.’s and ¢ € R¥ such that Y, % ¢, then X,, + Y, & X + c.
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1.1 Convergence of random variables Chapter 1 Preliminaries

(i) If 1,20, ... are k£ X k random matrices and > a £ X k£ matrix such that X, 4, >,
then >, X, 4y ¥ X. If in addition ¥ is strictly positive definite, and thus invertible, then

d

X, 4 21X and 2,2 X, & $-1/2X, respectively. O

§1.1.10 Property (Law of Large Numbers). Let X, X, Xo, ... be i.i.d. RF-valued r.v.’s with
E || X]|| < oo. Then 1 3" | X; =5 E(X). O

§1.1.11 Property. Let X be a RF-valued rv. with E | X ||* < co. Ifb € R* and Ais a (k x k)-
dimensional matrix, then' Y := AX + b is a R¥-valued rv. with E ||Y|]> < co. If we further
denote by i := E(X) and % := Cov(X) = E(X —p)(X —p)" = E(XX")—ppu' the expectation
and covariance matrix of X, respectively, then E(Y) = Au + b and Cov(Y) = AL AL O

§1.1.12 Definition. A R*-valued r.v. X with p := E(X) and ¥ := Cov(X) is multivari-
ate normal distributed, i.e., X ~ 9(u,Y), if for each ¢ € R the real valued r.v. (X, c) is
normal distributed with mean (i, ¢) and variance (Xc, c), i.e., (X,c) ~ N({(u,c), (Xc,c)). If
Idy, denotes the k-dimensional identity matrix, then X ~ 9%(0,1dy) is called standard normal
distributed. O

§1.1.13 Property. Arv. X = (X1 ..., X*)is standard normal distributed, i.e., X ~ 9(0,1d},)
ifand only if X', ..., X* are independent and identically N(0, 1)-distributed. O

§1.1.14 Remark. In other words, a multivariate 91(0, Id,)-distribution equals the product of its
marginal 9%(0, 1)-distributions, or 91(0, Id,,) = M®*(0, 1) := []_, 9%(0, 1) for short. O

§1.1.15 Property (Central Limit Theorem). Let X, X1, X, ... be i.i.d. RF-valued rv.’s in L?,
ie, E||X|* < oc. Then \/Lﬁ Yo (X —E(X)) 4 (0, Cov(X)). O

§1.1.16 Property (Lindeberg-Feller CLT). For each n € N let Y, ,...,Y, . be indepen-
dent RP-valued r.v.’s in L* such that (i) S5 E ||Vl L4y, >} %0 for any € > 0 and

(i) 35 Cov(Yoi) =3 5. Then S5 (Vi — E(Yoi)) S N0, 3). o

§1.1.17 Example. Assume i.i.d. RF-valued r.v.’s X, X1, X»,... in L? with u = E(X) and
¥ = Cov(X), which is strictly positive definite.

(i) (CLT) &= 50, (X — 1) & (0, 2),
(i) (LLN) X, = 2 370 X 5 g,
(i) (LLN) 1377 X, X! 5 B(XXY),

(iv) By = 2300 (X = X)(X; = X))t = L300 X! - X, X, 5 E(XXY) -t =
Cov(X) = ¥ (using (ii) and (iii), Slutzky’s lemma §1.1.7 and continuous mapping theo-

rem §1.1.6)
(v) \/ﬁZﬁl/Q(Y — 1) LN 7M(0, Id) (using (i), (iv) and Slutzky’s lemma §1.1.7 as in the exam-
ples §1.1.9 (i1)) O

§1.1.18 Remark. A map ¢ : R¥ — R™, that is defined at least on a neighbourhood of 6, is
called differentiable at 0, if there exists a linear map (matrix) ¢y, := #(6,) : R¥ — R™ such
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Chapter 1 Preliminaries 1.2 Stochastic Landau notation

that

o) = 6160) — b0 - 00)
A 106,

=0.

The linear map = égox is called (total) derivative as opposed to partial derivatives. A
sufficient condition for ¢ to be (totally) differentiable is that all partial derivatives d¢;(6)/06,
exist for # in a neighbourhood of ¢, and are continuous at 6,,. O

§1.1.19 Property (Delta method). Ler ¢ : R¥ D Dy — R™ be a map defined on a subset Dy, of
R* and differentiable at 0,. Let T, Ty, Ty, ... be rv.’s taking their values in the domain Dy of

¢ Ifrop (T, — 0,) Ly T for numbers r, — oo, then 1, (d(1,,) — #(6,)) 4 bo, (T). Moreover, the
difference between r,,(¢(T),) — #(6,)) and ¢g,(r,(T,, — 0,)) converges to zero in probability. ©

§1.1.20 Remark. Commonly, v/n(T,, — 6,) LN M(u, X). Then applying the delta method it

follows that v/n(¢(T) — #(6,)) = N(Jo, k. 6o, 564, ). 0
§1.1.21 Property (Markov’s inequality). If X is a R*-valued r.v. in LP for some p > 1, then
P(|X]| > ¢) < cE | X[ -

§1.1.22 Property (Monotone convergence). Assume real-valued rv.’s X, X1, Xo, ... such that
X1 < Xo< ... as.,or X, T forshort. Then E lim,, ., X,, = lim,, . EX,. O

§1.1.23 Property (Dominated convergence). Assume real-valued r.v.’s X, X1, Xo, ... such that
X, =2 X. If there exists Y € L' with SUp,>; | Xn| <Y as., then lim, . E|X,, — X| =0
which in turn implies X € L' and lim,,_,, |[EX,, — EX| = 0. O

§1.1.24 Definition. Let (X, d) be a metric space equipped with its Borel-o-algebra. A sequence
of X-valued 1.v.’s (X, )nen is called (uniformly) tight (straff) or bounded in probability, if, for
any ¢ > 0, there exists a compact set K. C X suchthat P(X, € K.) > 1 —eforalln € N. o

§1.1.25 Remark. If (X, d) is Polish, i.e., separable and complete, then every X'-valued r.v. X
is bounded in probability and thus so is every finite family. O

§1.1.26 Example. A sequence (X,,),cn of R¥-valued r.v.’s is bounded in probability, if for any
e > 0, there exists a constant K such that P(|| X,,|| > K.) < eforalln € N. O

§1.1.27 Property (Prohorov’s theorem). Let (X, d) be a Polish space equipped with its Borel-
o-algebra and let X, X1, X5, ... be X-valued r.v.’s.
() If X, 4, X, then (X,,)nen is bounded in probability.

(i) If (X,)nen is bounded in probability, then there exists a sub-sequence (X, )xen Which
converges in distribution.

1.2 Stochastic Landau notation

In the sequel, X7, X5, ... are r.v.’s on a common probability space (€2, o7, IP) with values in
a metric space (X', d) equipped with its Borel-o-algebra. Moreover, x1, 23, . .. belong to X and
ai, as, ... are numbers.
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1.2 Stochastic Landau notation Chapter 1 Preliminaries

§1.2.1 Notations. (a) Recall the Landau notations (i) z,, = o(1), if z,, 20, and (ii) z,, =

O(1), if sup,,en d(2,,0) < oo, we write analogously (i) X,, = op(1), if X, % 0, and
(i) X,, = Op(1), if (X,,)nen is bounded in probability.

(b) More generally, given a sequence (a,),en Of strictly positive numbers, keeping in mind
that (i) x, = o(ay), if z,/a, = o(1), and that (ii) =, = O(a,), if z,/a, = O(1),
we write analogously (i) X,, = op(ay,), if X,,/a, = op(1), and (ii)) X,, = Op(a,), if
Xn/an = O]p(l)

(c) Assuming a sequence (A, )nen of strictly positive r.v.’s we write (i) X,, = op(4,), if

X, /A, = op(1), and (i) X,, = Op(A,), if X,,/A,, = Op(1). O
§1.2.2 Properties (Exercise). (a) op(1l) + op(1l) = op(1) meaning if X,, = op(1) and Y,, =

op(1) then X,, +Y,, = op(1);

(b) Op(1)+o0p(1) = Op(1),

(¢) Op(1) - op(1) = op(1);

(d) (I+op(1))"" = 0p(1);

(e) op(Ry,) = Ryop(1);

(1) Op(Ry) = ROp(1);

(2) op(Op(1)) = op(1) meaning if X,, = Op(1) and Y,, = op(X,,) then Y,, = op(1). O
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Chapter 2

M- and Z-estimator

2.1 Introduction / motivation / illustration

§2.1.1 Example (Linear model). Describe the dependence of the variation of a real-valued r.v. Y;
(response) on the variation of an explanatory R*-valued r.v. X; = (X},..., XF)! (explanatory
variable) by a linear relationship E[Y;|X;] = 01X} + -+ + 0*XF = X!0, or equivalently
Y; = X0, + ¢; where ¢; is a random error satisfying E[g;|X;] = 0. The parameter 0, € R*
is unknown, and our interest is inference on 6,. Assuming that (Y7, X3),...,(Y,, X,,) form an
i.i.d. sample, we write Y = (Y1,...,Y,)" and X' = (X7, ..., X,,) for short. Consequently, we
have E[Y'|X] = X6,. Consider a Least Squares Estimator (LSE) 50 satisfying

n

~ 1 1
0, € arg inf—Z(Yi—XfQ)2 — arg inf — ||Y — X8| (2.1)
gcRrk TV

kN
9eR —

where arg inf denotes the set of points attaining the function’s smallest value. If X'X =
ZZ L X; X! is strictly positive definite, and hence, invertible, the unique LSE is given by

6, = (X'X)'XtY = (Ly 1XXt) . L 3°"  YiX;. Under “usual” regularity conditions
(see §1.1.17) we have £ 37" | X; X! 5 E(X,X!) =: Q (LLN). If in addition E(£2|X;) = o2
then \/—ﬁ Yo eiXi 5 M(0, 0%Q) (CLT). Applying Slutzky’s lemma §1.1.7 and the continuous

mapping theorem §1.1.6 holds \/n(8, — 6,) < MN(0, 2(E(X:X1))~1). A further inference
on 6, (hypothesis testing, confidence intervals, etc.) might typically based on this asymptotic
result. However, the essential assumption is the linear relationship § — E[Y'|X] = X6. m|

§2.1.2 Example (Generalised linear model). Consider a real r.v. Y; and a R¥-valued r.v. X obey-

ing E[Y;|X;] = ¢(X}6,) for a given link function ¢ : R — R and an unknown parameter

0, € R*. As an illustration consider the effect of a three different drugs on the behaviour of cer-

tain animals. Therefore, each drug is given in different dose to certain animals and we count on

how many animals an effect occurred. The next table summarises the results of the experiment.
drug log-dose ‘ effect no effect ‘ drug log-dose ‘ effect no effect

1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Table 1.1: Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.
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Chapter 2 M- and Z-estimator 2.1 Introduction / motivation / illustration

0,8 +

0,6 +

~ -0 xQ — hc o T

041

w o> -0

0,2 +

»w o+ x®—h-hm

0,6 0,9 1,2 1,5
Logdosis

Figure 1.1: Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: o; 3: -.

Let Y}, denote the counts of an effect among n;;, animals applying a log-dose Xy, j € [1, Ji]
of the drug k € [1, K]. Assuming an “independent and identical” behaviour of the n;; animals
it seems reasonable to model Y}, as Binomial-Bin(n,y, 7 )-distributed r.v. with unknown per-
centage ;). € (0,1). Typically, it is assumed that n,m;x = E[Yjr| Xjx] = 9(6% + 6%2,1.) where
6L, ... 0% is a drug specific factor and 6° is a common effect of the log-dose for all drugs. The
model is called “Probit” if ¢ is the distribution function of a standard-normal distribution while

it is called “Logit” if g = 1_7; is the logit-distribution function. Keeping in mind example
§2.1.1aLSE®, € arg infpepr S0 Ejil(Y}k — g(0% + 0%z ;;))? might be considered. O

§2.1.3 Example (Non-linear regression). Consider a real r.v. Y; and a R*-valued r.v. X obeying
E[Y;|X;] = ¢g(X,8,) for a given link function g : R* x R? — R and an unknown parameter
0, € RP. The next figure shows, for example, the widely used Gompertz function g(x) =
aexp(—bexp(zlog(c))).

0 2 a - -2 0 2 a - -2 0

As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
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2.1 Introduction / motivation / illustration Chapter 2 M- and Z-estimator

n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane
3,541 205,8 90,9 37,1 5,686 297,3 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 494 2,648 305,7 142 86
4,722 401,6 187,2 44,9 3,303 300,1 143,7 90,2
0,593 2249 92,7 116,3 3,054 3054 141,1 87.4
0,268 402,6 102,2 128,9 3,302 305,2 141,5 87
2,797 212,7 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33
3,196 1333 140,8 87,6 2,002 417,2 83,9 32,9
2,021 470,9 144,2 86,9 9,604 251 2944 41,5
0,896 300 68,3 81,7 7,154 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2
Table 1.3: Isomerisation reaction rate of an n-pentane into an isopentane.
10,0 1
R °
e
a 7,5+ °
¢ °
| .
o 501 o
n
° .° 3
R 257 e
a %0 °
t ° °
€ : :
200 300
Hydrogen
R 10,01 . Ro100+t R
e e
a a
c 7,5¢ ° c 7571
t ° t . °
(i) 504 * o ® o 507 . °
" 2,514 ¢ ° ) 2,51 . -:. 3
R . % R o
a ° a
t " " " " t +
€ 100 150 200 250 € 40
n-Pentane Isopentane

Figure 1.3: Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special
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Chapter 2 M- and Z-estimator 2.1 Introduction / motivation / illustration

case is given by

0163(X2 — X3/1.632)

ElY;| X!, X7, X]] =
Y )= 1+ 02X] +03X2 401X}

(2

i € [1,n], (2.2)

where X!, X? and X? is the partial pressure of hydrogen, isopentane and n-pentane, respec-
tively, and 6;, ..., 04 are unknown parameters. Aiming inference on 6, we might again consider
aLSE 0, € arg infycpe > 1 (Y; — 9(Xi,60,))>. O

§2.1.4 Example (Quantile regression). Consider a RP-valued r.v. Y; and a R¥-valued r.v. X
obeying Y; = X0, + ¢; with P(¢g; < 0|X) = « for a given value o € (0, 1) for the quantile
or equivalently P(Y; < X!6,|X;) = a meaning that the conditional-a-quantile of Y; given
X; equals X!0,. Keeping in mind that ¢, is a a-quantile of Z if P(Z < ¢,) = a. Define'
Toa(2) = (1 =)z~ +azt where 7,(2) = (1 —a)|z| if 2 < 0 and 7,(z) = az otherwise. Under
regularity conditions the function ¢ — E(7,(Z — ¢)) attains its minimum at the value ¢ = ¢,.
Roughly, we have

B2 - 0) = (1= a) / - af@ vag [ ara:

1—04/ f(z dz—a/ f(z

=1-a)P(Z<q)—aP(Z>q) =P(Z<q)— o

Consequently, the a-quantile satisfies 0 = B%]E(TQ(Z —q)) |q:q . Thereby, given an i.i.d. sample
(Y1, X1), ..., (Ya, X,) a reasonable estimator of 6, is 6, € arg infyepe > 0 7o (Y — X[0). O

§2.1.5 Example (Generalised Method of Moments). Given a r.v. Z and functions hq, ..., hy let
6, be a parameter of interest satisfying E[h;(Z,0,)] = 0 for j € [1,J] or E[H(Z,6,)] = 0
where H(Z.60,) = (h1(Z,0,),...,h;(Z,0,))" for short. Supposing an i.i.d. sample Z, ..., Z,
of Z an estimator 0, is called a moment estimator if Ly hi(Z, 50) = 0 forj € [1,J], or
LN H(Z;, é\o) — 0 for short. Since 6, does often not exist or is not unique setting M, (0) =
(230 H(Z;,0)'Wa(+ 30, H(Z;,0)) for a given weighting matrix W, any estimator 8,
arg inf,cqg M, (0) is called a Generalised Method of Moments (GMM) estimator. O

§2.1.6 Definition (Statistical experiment). Let Pg = {Py,0 € ©} be a family of probability
measures on a measurable space (X, %). The set of indices © is called parameter space. If
X is a r.v. taking values in (X, %) with distribution Py for some 6 € O, i.e. X ~ Py,
then we write X ® Pg. The triple (X', %4, Pg) is called a statistical experiment or statistical
model. If the r.v.’s Xy, ..., X, form an independent and identically distributed (i.i.d.) sample

of X ~ P, then P®" = ®7_, P denotes its joint product probability measure on the product

measure space (X", B%"). We write Xi,..., X, P oor (X1,...,X,) ~ P®" for short.

More generally, if Pg = {P},0 € O} denotes a family of probability measures on (X", ")
we write (X1,...,X,,) @ Pg if (Xy,...,X,,) ~ P} for some § € ©. A statistical model
(X, A, Pg) or the family of probability measures Pg is called dominated, if there exists a o-
finite measure p on % such that for each § € © the probability measure Py is absolutely

'We use the notation z* = max(z,0) = 2 V0and 2~ = (—2) V0.
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2.2 Consistency Chapter 2 M- and Z-estimator

continuous w.r.t. p, i.e. Py < u. We write Po < p for short. The Radon-Nikodym density
Lo(z) := [dPy/dpu)(x) and its logarithm £y(x) := log(Ly(x)) parametrised by 6 € © is called
likelihood and log-likelihood function, respectively. Assuming (X1,...,X,) ® Pg", that is,
Xi,...,X, form an i.i.d. sample of X ® Pg, its (joint) likelihood and log-likelihood fulfils

Ly(zy,...,xn) =iy Lo(x;) and ly(z1, ..., x,) = D Lo(x;), respectively. O

§2.1.7 Example (Maximum-Likelihood-Estimator (MLE)). Let X ® Pg < u. Consider the like-
lihood Lg(x) and log-likelihood ¢4(z) as a function of § parametrised by z. An estimator
0 := 0(X) is called Maximum-Likelihood-Estimator (MLE) for 0, if Loy (x) = suDgeq Lo(x)
or equivalently {5, () = supyee lo(z) for pi-a.e. x € X. Consequently, based on an i.i.d. sam-
ple Xi,..., X, of X ® Pg or (X1,...,X,)® Pg" the MLE satisfies 0e arg supyce Pnly by
using that P, ¢y = %Z?:l lo(X;). O

§2.1.8 Remark. Keep in mind that Pf and P, f denotes the integral [ fdP and [ fd P, =
L3 f(X;) wrt. P and the empirical measure P, = 10y, of a sample X, ..., X, respec-
tively. In all the examples the estimator is characterised either by 6 € arg supycq P,y for a

given real-valued function my of the data or  is a zero of the mapping 6 — P, for a given
RP-valued function vy of the data. Obviously, rather than maximising a criterion function we
might search for a zero of the associated normal or estimating equations. O

§2.1.9 Definition (M- and Z-estimator). We call 0 an M-estimator, if f maximises a criterion
function M,,(0) over the parameter space © or more generally, if it is a near maximum, that
is, M,(60,) > supgeg M, (6) — op(1). We call 6 a Z-estimator, if it’s a zero of a normal or

~

estimating equation W,,(#) or more generally, if it is a near zero, that is, ¥,,(6,,) = op(1). O

§2.1.10 Example. Consider (X1,...,X,)@® P&. Given a function my : X — R any 0 =
6(X1,...,X,) (nearly) maximising the map 6 — M, (0) := P,my = 13" my(X;) is an
M-estimator. On the other hand given a function 1y : X — R*, any § = 0(X1,..., X,,) being

a (near) zero of the map 0 > U, (0) := P,y = % > ¥e(X;) is a Z-estimator. O

2.2 Consistency

Here and subsequently, let (O, d) be a metric space. An estimator @\n of 4, is called consistent
if the sequence (0,,)nen converges in probability to 0, i.e. d(0,,0,) = op(1). For instance, by
the LLN the sample mean X, is consistent for the population mean E X .

Consider an M-estimator é\n for a random criterion function M,,(6). Suppose there is a de-
terministic criterion function M(#) such that M,,(0) S M (0) holds point-wise for each § € ©.

For example, due to the LLN M,,(§) = P,my x5 Pmg = M(0) provided Pmy exists. The hope
is that a maximiser of M,, then converges to the maximising value of M. However, in general
point-wise convergence will not be sufficient.

§2.2.1 Theorem. Consider real-valued random functions M,, on ©, n € N, and a deterministic
real-valued function M on © such that for any € > 0

(1) supgee|M,(0) — M(0)| = op(1) (uniform convergence in probability);
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Chapter 2 M- and Z-estimator 2.2 Consistency

(i1) Supg.qp9,)5c M(0) < M(6,) (identification).

Any sequence of estimators (é\n)neN of 0, with Mn(é\n) > M, (0,) — op(1) is consistent, i.e.,
converges in probability to 0,,.

Proof of Theorem §2.2.1 is given in the lecture. O

§2.2.2 Theorem. Consider R*-valued random functions V,,, n € N, and a deterministic R*-
valued function V such that for any € > 0

(1) supgee |[¥n(0) — U (0)] = op(1) (uniform convergence in probability);
(i1) infp.qe0,0,)5¢ || ¥ (O)] > 0 = [[¥(6,)]| (identification).

Any sequence of estimators (0,,),en of 0, such that \Ifn(gn) = op(1) is consistent, i.e., converges
in probability to 0,,.

Proof of Theorem §2.2.2 is given in the lecture. O

§2.2.3 Lemma. Assume that (i) © is compact, (ii) M(0,) > M(8), for all 6 # 0,, and (iii) 0 —
M(0) is continuous. Then, it holds supg.q g, M(0) < M(0,) for all & > 0.

>e

Proof of Lemma §2.2.3 1is left as an exercise. O

§2.2.4 Example (MLE, §2.1.7 continued). Keep in mind that a MLE f maximises the map 6 +—
Poly = 237 €y(X;) or equivalently 6 — Pl — P, ly, = P,log(dPy/dPy,) = Pulyge,
where Lgg, () := [dPy/dPy,](x) = [dPy/du(x)/[dPs,/du](x) = Le(x)/Le,(x) assuming
Py < Py,. Given lpg, := log(Lge,) = log(dPy/dPy,) considering M, (0) := P,ly4, and
M(0) := Po,lg,, we have M, (0) = M(0)+ op,, (1) forall & € ©. The quantity K L(P,, Py) =
Py, log(dPy, /dPy) = —IPy, g, is called Kullback-Leibler-divergence of Py, and Py. Assume
here and subsequently that the parameter 6 is identifiable, that is, from Py, = Py, follows
61 = 05. Identifiability is a natural condition since it is a necessary condition for the existence
of a consistent estimator. However, if ¢ is identifiable then M(0) = — K L(Py,,Py) attains its
maximum uniquely at 6,. Precisly, keeping in mind that M(0,) = Py, log(1) = 0 it holds
M(0) < 0 for each 6 # 6,. Indeed, employing log x < 2(y/x — 1) for each = > 0 we have

Py, lo0, < 2Po,(v/Los, — 1) = 2(/Lo, v Lo,)rz —2=— H\/L_e — v/ Lo,

where the right hand side equals zero, if § = 6,, and it is strictly negative, otherwise. The

quantity H(Py,Py,) := ||v/Lo — \/La,||,. is called Hellinger-distance between Py and Py,
I

which does not depend on the choice of the dominating measure. However, assuming in addition

that © is compact and 0 — Py, ly ¢, is continuous then employing Lemma §2.2.3 the condition
(i1) of Theorem §2.2.1 is satisfied. O

2
L,

§2.2.5 Proposition. If the following conditions
(1) (©,d) is a compact metric space,
(i1) @ — M(0) is continuous and M, (0) = M(0) + op(1) for all € 6,
(iii) 1;%1 lim sup P( sup |M,,(01) — M,,(65)] > €) = 0 forall e > 0,

n—oo 91,92:d(91,92)§5

hold, then supgy.g | M, (0) — M(0)| = op(1).
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2.2 Consistency Chapter 2 M- and Z-estimator

Proof of Proposition §2.2.5 is given in the lecture. O

§2.2.6 Example. Let (Xq,...,X,,) N_IP®” and let my : X — R be a function belonging to
Ly forall § € ©. Consider M,(0) = P,mg = =37 mg(X;) and M(0) = Pmg = Emg(X)
where due to the LLN M,,(0) = M(6) + op(1) for each § € ©. Suppose in addition

(a) (O,d) is a compact metric space,

(b) 6 +— mg(z) is continuous for all z,

(c) thereis H € Lj with supyeg |mg(z)| < |H ()| for all x, or equivalently, supy.g |mg(X)|
belongs to L.

hold. It follows (I) @ — Pmy = M(6) is continuous and (1) supyeg| M., (0) — M(8)| = op(1).
Indeed, by employing dominated convergence (b) and (c) imply together (I). Consider (II).
Setting A} := sup{|M,,(01) — M,,(6)] : d(6,62) < §} we show below for all £, > 0 exists
0 > 0 such that lim sup,,_, P(Ag > 5) < 7 which in turn by Proposition §2.2.5 implies
the claim (II) and, whence condition (i) of Theorem §2.2.1 is satisfied. Given ¢ > 0 and
n > 0 from (b) and (c) by applying dominated convergence there is 6 > 0 such that ps :=
E (sup{|mg, (X) — mg,(X)|,d(01,62) < 0}) < ne which in turn implies E(A}) < ps < ne.
Employing Markov’s inequality the last estimate implies the claim (11).

If in addition M(6,) > M(#), for all 6 # 0, then due to Lemma §2.2.3 also the condition
(i1) of Theorem §2.2.1 holds true. Consequently, in this situation any estimator 0 of 6, with
M, (0 ) = M, (0,) — op(1) is consistent, i.e., converges in probability to 6,. O

§2.2.7 Remark. If © is not compact we eventually might choose ©, C © compact with 6, €
O, satisfying supyce\e, Mn(f) < M,0, and the conditions (b) and (c) in Example §2.2.6 where
© is replaced by ©,. Then still supy.q || M, (0) — M(0)|| = op(1) holds true. O

§2.2.8 Example. Let (X,,...,X,) ~ P®" and for each § € © let ¢y : X — R* be a function
such that the real-valued r.v. ||1)5(X)|| belongs to L}. Keeping in mind that more generally for
any function vy taking values in a separable normed vector space there exists Ey(X) = Py
whenever E ||15(X)|| < co. Consider ¥,,(6) = P,thp = L1377 1p(X;) and ¥ () = Prpy =
E1y(X) where due to the LLN W,,(6) = W (6) + op(1) for each § € ©. Suppose in addition
(a) (©,d) is a compact metric space,
(b) 6+ 1y(x) is continuous for all x,

(¢) Supgeo |[1e(X)|| belongs to L.
hold. It follows (i) § — Py = () is continuous and (i) supyee ||V (0) — ¥ (8)]| = op(1),
i.e. condition (i) of Theorem §2.2.2 is satisfied. If in addition ||V (60,)|| = 0 < ||V (8)|, for
all & # 6,, then due to Lemma §2.2.3 also the condition (ii) of Theorem §2.2.2 holds true.
Consequently, in this situation any estimator 6,, of 6, with ¥,,(6,,) = op(1) is consistent, i.e.,
converges in probability to 6,,. O

§2.2.9 Remark. The conditions (i) and (ii) of Theorem §2.2.2 being sufficient to ensure con-
sistency might be weakened in specific situations as we see next. O

§2.2.10 Proposition. Let © C R and V,(0) = V(0) + op(1) for all 0 € © where V¥ is a
deterministic function. Assume, either

(1) 6 +— W, (0) is continuous and has exactly one zero 0, or
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(ii) 0+ U, (0) is non-decreasing with U,,(6,,) = op(1).
Let 6, be a point such that V (0, — ) < 0 < Y (0, + ¢) for every € > 0. Then B = 0, + op(1).

Proof of Proposition §2.2.10 is given in the lecture. O

§2.2.11 Example. Let (Xi,...,X,) ~ P®". The sample median é\n is a (near) zero of the
map 6 — W, (0) = L 3" sign(X; — 6) where sign(z) = I{zz0y — l{z<0). Considering
U(0) = Esign(X — 0) = P(X > 6) — P(X < 0) we have obviously ¥, (0) = WV (0) + op(1)
for each 6 € ©. Keeping in mind that § — ¥, (6) is non-increasing from Proposition §2.2.10
follows consistency of the sample median @\n, 1.€., @1 =0, + op(1), if for any € > 0 in addition
U, —e) >0 > Vb, +e)orequivalently P(X < 6, —¢) < 1/2 < P(X < 0, +¢). In
other words, the sample median @L is a consistent estimator of the population median, if it is
unique. O

2.3 Asymptotic normality

Consider (Xi,...,X,) ~ P, W,(0) = 13" p(X;) = Puihp and V() = ]ng for
6 € ©. Let 6, be a zero of ¥, (0), i.e., 0, is a Z-estimator. Assume in addition that 6,
0, + op(1) where 0, is a zero of W (#). Heuristically, consider a Taylor expansion of a real—

valued ¥ ()around& € © C R, thatis, 0 = ¥,,(6,) = ¥,.(6,) + (6, — 6,)¥,.(6, ) + %((?n -
0,)0,(6,) for some 6, between 6, and 0,.. Thus rewriting the last identity \/n (9 -0, =

/0, (0,) (W, (6,) + 10, — 6,)*0,(6, )) If g, belongs to L2, then due to the CLT it

holds —/n(U,,(6,) — U (6,)) = —v/n(Pabg, — Py, ) L N0, Py2 ). If moreover vy, € L1,
then by the LLN ¥,,(6,) = P,vy, = Pty, + op(1). If in addltlon U,(6,) = Op(1) then
employing Slutzky’s lemma §1.1.7 it follows /n(0, — 6,) < N0, (Pg, ) P15 ). In the
sequel, 6 is a vector and W (-) vector-valued. Consequently, ¥ (6,) is matrix and we denote by
| ¥ (8,)||r its Frobenius norm, where ||M||p := (Z}]:l S Mfk)l/2 for any J x K matrix
M = (Mji) k-

§2.3.1 Theorem. Let the following conditions
(i) 0~ W,,(0) is differentiable in a neighbourhood U of 0, € ©°
(i) U,(0) := ZU,(0) satisfies supgey | Wn(0) — W (0)|| = op(1) for some continuous
deterministic function W (0) with invertible U (6,),
(i) /nW,(0,) © N(0,9,) (CLT),
hold true. If in addition 8, = 6, + op(1) with \I/n(@\n) = op(n~Y2) then \/n(6, — 6,) +
VA (0,)710,,(6,) = op(1), and hence /n(6,, — 0,) L (0, [T (6,)| 2| (6,)71).

Proof of Theorem §2.3.1 is given in the lecture. O

§2.3.2 Theorem. Let the following conditions
(i) 6+ M,(0) is twice differentiable in a neighbourhood U of 0, € ©°

(i) M,(0) := gjeM (0) satisfies supger || M (0 )— M(9)|| = op(1) for some continuous

deterministic function M(6) with invertible M(8,),
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2.3 Asymptotic normality Chapter 2 M- and Z-estimator

(i) V0,(0) = £ M, (6) fulfls /b, (6,) > 1(0,9,) (CLT),
d

hold true. If in addition 0, = 0, + op(1) with 6, = SUPgee Mn(0) then v, —6,) L
N(0, | M (6,)| =" 2| M(6,) ).

Proof of Theorem §2.3.2 is given in the lecture. O

§2.3.3 Example. Let (Xi,...,X,) ~ P“" and let my : X — R be a function belonging to
Ly for all § € ©. Consider M,(0) = P,mg = £ >°"  mg(X;) and M(0) = Pmg = Emg(X)
where due to the LLN M,,(0) = M(0) + op(1) for each 6 € ©. Suppose in addition that

(a) 8 +— my(x) is twice continuously differentiable in a neighbourhood U of 6, € ©°,

(b) myg = %mg belongs to L2, fulfils Prig, = 0 and ensures the existence of ngomgo,

(C) The := %mg satisfies supges |70 » € Lp and Pring is strictly negative definite,

hold true. If 6, = 6, + op(1) then \/n(6, — 6,) &> (0, (Pring) ~ (Pring, 1ty ) (Pring) ). Indeed,
the claim follows from Theorem §2.3.2 if the conditions (i)-(iii) are satisfied, where (i) follows
directly from (a). Moreover, following Example §2.2.6, (b) implies the condition (ii) and due to
the CLT the condition (iii) follows from (c). We have shown /72 (6, — 6,) < (0, H;'Q,H )
where H, := Prig, and Q, := Prig, 1y . Thereby, if one wants to use the asymptotic distri-
bution to conduct inference then estimators of H, and €2, are needed. A typical approach to
obtain these estimators is as follows. First replacing P by P,,, the quantity H (0) = P,,7y and
@(6) = IP,,1hgrinl; is just an empirical counterpart of H(6) = Priy and Q(0) = Pringrn}y, respec-
tively. Secondly, replace 6, by its estimator @\n we obtain f[n = O (@\n) and Qn = ﬁ(gn) as
estimator of H, := H(0,) and Q, := Q(0,), respectively. If in addition to (a)-(c) the conditions

(d) (©,d) is a compact metric space,

() supgey ||me|| belongs to L,
are satisfied, then sup,c||H(0) — H(0)||r = op(1) and supyy||Q60) — QO)|r = op(1)
following line by line the arguments in Example §2.2.8. From these uniform convergences and
0, = 0, + op(1) follows H, = H(6,) = H(6,) + op(1) and Q,, = Q(8,) = Q(6,) + op(1)
which in turn implies V,, :== H'Q, H-' = H;'Q,H;' + op(1). Consequently, by applying
Slutzky’s lemma §1.1.7 we have \/ﬁﬁn_l/z(é\n —46,) 4 20, Id). O

§2.3.4 Example (MLE, §2.2.4 continued). Consider the MLE @l which maximises the (joint)
log-likelihood 6 — P,y = L 3" | £5(X;) given a sample (X1,..., X,,) ® P§" with Pe < p.
If the following conditions

(a) (O,d) is a compact metric space,

(b) the parameter @ is identifiable, i.e., §; # 05 implies Py, # Py,

(c) the map 6 +— ly(x) is continuous for all x,

(d) supgeg |€s| belongs to Ly,

hold true, then combining the arguments in Example §2.2.4 and §2.2.6 the assumptions of
Theorem §2.2.1 are satisfied, which in turn implies consistency of the MLE 6,, = 6, + Op,, (1).
As shown in the lecture course Statistik 1 if in addition the following conditions

(e) the map 6 — {y(x) is twice continuously differentiable in a neighbourhood U of
0, € ©°,
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(f) £g := 2.1y satisfies supger |1l € L?PQO and £y := &0y fulfils supyey || 6o]| € Ly, ,

829
(g) the Fisher-information matrix Zy, := Pgoégoégo is strictly positive definite,

are fulfilled, then the identity Z, = —]P)gcggo holds true and the MLE satisfies \/ﬁ(gn —0,) =

\/iﬁ Z?:llélégo(Xi) + op,, (1) and, consequently, \/ﬁ(é\n —46,) 4, ‘ﬁ(O,I;ol). O

§2.3.5 Remark. The conditions (¢) and (f) in the last example can be weakened replacing

differentiability by Hellinger—differentiability. More precisely, keeping in mind the Hellinger-
distance H(Py,Py,) = H\/ — /Ly, HL2 the family Pg is called Hellinger-differentiable in

0, € ©° C R” if there exists a map z — (g, (x) € R* such that

J

pi(dx)

Lg(l’) L,9 g@

o(2),0 = 00)\/ Lo, (z)

— H\/L_e— \/L_90_ %<éeoa9 —00)\/ Lo,

o

=o( 16— 6,]*).

m

The map 0 > 59 (z) is called score function. We note that Helhnger—dlfferentlablhty implies

o)/ Lo, € L, where /Ly, € L2 using ||\/Lg,|7. = [ Lo, (x =1< o

and hence Py, |((g,, 0 — 0,)> = ||(s,,0 — 0,)\/Lo, |2 > < OOWthh in turn 1mphes lg, € L,

Thereby, the Fisher-information matrix Zy, = Pgoégo% is well-defined. Note that, the score
function and the Fisher-information matrix are independent of the dominating measure p. O

2.4 Testing procedures

Consider a parameter of interest 6, € ©. Given amap A : © — RP we eventually want to test
a hypothesis Hy : A(6,) = 0 against the alternative H; : A(6,) # 0. Typical examples include
A(0,) = 0, — 0, for a given value 0,, or more generally, linear hypothesis A(6,) = M0, — a.
for a given value a, and matrix M which covers in particular testing of the j-th coordinate of
0, = (0L,...,0%),1ie., A(6,) = 6 — aJ. Under regularity conditions it seems reasonable to
assume an estimator 0, of 6, having the property /7(A(6,,)—A(6,)) N N(0, X) with invertible
asymptotic covariance matrix Y. If we have in addition an estimator X, = X —1— Op(l) at hand
then under the hypothesis H, a Wald test exploits the property W, = nA(@ ) A(Q ) 4 X;
where X% is a Chi-square-distribution with p degrees of freedom. Precisely, a Wald test rejects
the hypothesis Hy : A(6,) = 0 if W, exceeds the 1-a-Quantile Xi.1_o Of a x2-distribution.
Obviously, the Wald test does exactly meets the asymptotic level «, i.e., limn%ooIP’(ﬁ/\n >
Xoi o) =P(W >=x2,_,) = awhere W ~ x2. However, the behaviour of the test statistic I¥/,,
under the alternative H, is still an open questions, which we intent to study in the next sections.

§2.4.1 Example (§2.3.3 continued). Consider a sample X ..., X,, ~ P®" and functions my :
X — R belonging to L} for all § € © C R*. For each §# € O let M,(0) = P,my =
LS me(X;) and M (6) = Pmy. Under the conditions (a)-(¢) given in Example §2.3.3 an
M-estimator 0, := arg max, o M, (6) satisfies \/n(6, — 6,) = N(0, H;'Q,H;1). Moreover,
we have access to estimators H, = H, + op(1) and Q, = O, + op(1). Let A be continu-
ously differentiable in a neighbourhood of 8, then applying the delta method §1.1.19 we obtain
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Vi(A(B,) — A(8,)) & M0, S,) with S, == Ay, H;'Q,H, A} . From A; = Ay, + op(1) fol-
lows 3, := Ay H, 10, H, 1AL =%+ op(1) and, thus v/n3 > (A(0,) — A(6,)) “ 9(0,1d)
which under Hy implies W, := nA(6,)'S-1A(,) L Xo- O
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Chapter 3
Contiguity

Motivation: Considering a parameter of interest 6, € © we eventually want to test a hypothe-
sis Hy : 0, € O against the alternative H; : 0, € ©; = ©\0,. Under regularity conditions we
may have at hand an estimator 0, of 6, with the property \/ﬁ(@\n —40,) 4 21(0,Z,, 1). Typically
based on @\n we can construct a test statistic 7,, with known asymptotic distribution under H,
such that the associated test does not exceed asymptotically the given level on the hypothesis
H,. However, we like to invest also its power on the alternative which depends on the spe-
cific value of § € ©; commonly getting closer and closer to the hypothesis as the sample size
increases.

Here and subsequently, we restrict our attention to two sequences (P,,)nen and (Qy,)nen of
probability measures. We aim to obtain the limiting distribution of a sequence (7,,),en of (test)
statistics under Q,, if its limiting distribution under P,, is known.

3.1 Likelihood ratios

§3.1.1 Definition. Let P and Q be measures on a common measurable space (€2, <7). We say
Q is absolutely continuous w.r.t. P, if for any A € &7 with P(A) = 0 follows Q(A) = 0. Write
Q< P.IfQ=QpUQg withQpNQg =0 and Q(Qp) = P(Qg) = 0, then P and Q are called
orthogonal or singular. Write Q L P. O

§3.1.2 Remark. Keep in mind that generally P and Q need to be neither absolutely continuous
nor singular. Assuming densities g and p w.r.t. some measure ., we may consider Qp = {p > 0}
and Qg = {¢ > 0} where P(Q\€),) = Pl = 0. Keep in mind if z(£2, N Q) > 0 then
2,N§}, receives positive measure from both P and Q. The measure QQ can be written as the sum
Q = Q*+Q* of the measures Q*(A) = Q(AN{p > 0}) and Q*(A) = Q(AN{p = 0}) which
is called Lebesgue decomposition of Q w.r.t. P. Where Q* < IP and Q" are called absolutely
continuous part and the orthogonal (or singular) part of Q w.r.t. P, respectively. Obviously, the
function ¢/p is a density of Q* w.r.t. P and we denote it dQ /dP (not: dQ®/dP!). The density
dQ/dP is only P-almost surely unique by definition. We note that dQ /dPP and the Lebesgue
decomposition are independent of the dominating measure. Here and subsequently, we consider
dQ/dP and dP/dQ as r.v.’s on (€2, &) with values in (R, £). O

§3.1.3 Lemma. Let P and QQ be probability measures with densities p and q w.r.t. a measure |i.
Then for the measure Q*(A) :== QLaly~0y and Q+(A) := QLal—oy
HQ=Q"+Q, Q"< P, Q" LP
(i) Q*(A) = Q"1 =P(]14) for every measurable set A.
(iii) Q < P ifand only if Qlp—oy = 0 if and only ifIP’% =1

Proof of Lemma §3.1.3 is given in the lecture. O
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§3.1.4 Remark. For each measurable function f > 0 it holds generally

Qf 2 Qf Lm0y = nfal 0y =Pf1

In particular, for any f identity holds if and only if Q < P. O

3.2 Contiguity

Consider two probability measures P and Q on a common measure space (£2,.27) and let X
be a R¥-valued r.v. on €. If Q < P, then the Q-law of X, i.e., its induced probability measure
Q¥ on R, can be calculated from the P-law of the random vector (X, V) := (X, dQ/dP), i.e.,
its induced probability measure P(XV) on (R*!, ®(*+1)) through the formula

QYf =Eof(X) =Epf(X)g =PV [f@id] setting [f&id)(z,v) = f(x)v.
Obviously, this relationship could also be expressed as
Q(X € B) = Q%15 = Epl(X) 92 = PXY)[15mid]

which is only valid under the assumption Q < P, since a part of (Q orthogonal to P can’t be
recovered.

We introduce next an asymptotic version of absolute continuity. For n € N let Q,, and P, be
probability measures on a measurable space (£2,,, 97,). Given for each n € N ar.v. X,, defined
on (£2,,47,) we aim to derive conditions which allow to calculate the Q,-limit of X, from a
suitable P, -limit of (X,,, V) := (X, dQ,,/dP,).

§3.2.1 Definition. Let P,, and Q,, be measures on a common measurable space (€2,,, %7,), n €
N. The sequence (Q,, ) en is called contiguous w.r.t. (P, ),en, if for any A,, € o7,, n € N, with
lim,, o P, (Ay,) = 0 follows lim,, ,o, Q,(A,) = 0. Write Q,, < P,,. The sequences (Q,,),en
and (P,,),en are called mutually contiguous if both Q,, <P, and P,, < Q,,. Write Q,, <>P,,. ©

Next we characterise contiguity in terms of the asymptotic behaviour of the sequence of
likelihood ratios (dQ,,/dP,),en and (dP,/dQ,),en. Keeping in mind that for each n € N
both likelihood ratios dQ,,/dP,, and dP,/dQ,, are non-negative and satisfy Pn% < 1 and
Qn% < 1. Employing Markov’s inequality §1.1.21 for any K > 0 and all n € N we

have Q,(dP,/dQ, > K) < K‘l(@n% < K7'and P,(dQ, /dP, > K) < K~!, whence
both sequences (dQ,,/dP,),en and (dP,,/dQ,,),en are uniformly tight. Consequently, due to
Prohorov’s theorem §1.1.27 (ii) along a sub-sequence both, (dQ,,/dP,,),en and (dP,, /dQ,,)nen,
converge in distribution. In analogy to Lemma §3.1.3 (iii) where absolute continuity is shown
to be equal to Q1 ,—p, = 0 and IP’% = 1 we establish below the equality of contiguity and “each
weak limit point of dIP,,/dQ,, under Q,, gives mass zero to zero” and “each weak limit point of
dQ,,/dP,, under P, has mean one”. However, the next lemma gathers preliminary results used

in the proofs.

§3.2.2 Lemma. For eachn € N let X,, and Y, be (R*, 8°%)-valued r.v.’s on a common prob-
ability space (2, p, Py,).
(i) If there is a R*-valued r.v. X and a constant ¢ € R¥ such that X, 4 X and Y, LNp
then (X,,Y,) L (X, c).
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(i) X, % X holds if and only if lim inf E f(X,,) > Ef(X) for any non-negative and
n—oo

continuous function f (not necessarily bounded).

Proof of Lemma §3.2.2 1is left as an exercise. O

§3.2.3 Lemma. Let P, and Q,, be measures on a common measurable space (2, <,,), n € N.
The following statements are equivalent:

(1) Qn <Py,

(i) if U, = dP,/dQ, Y U under Q,, ie., QUr LN QY, along a sub-sequence, then
QU > 0) = Eqlysoy = 1,

(iii) if V,, := dQ,/dP, YV under P,, ie., P'» 4, pv, along a sub-sequence, then
EV =1,

(iv) forany rv. Ty : Q, — RE, n € N, with T), 23 0 follows T, & 0.

Proof of Lemma §3.2.3 1is given in the lecture. O

§3.2.4 Example. Let P, and QQ,, be measures on a common measurable space (€2, .2%,),n € N

satisfying dP,,/dQ,, Ly= exp(W) under Q,, with W ~ N(u, %), then Q,, < P,,. Indeed,
from U = exp(W) > 0 as. and hence Elyy~o; = 1 follows the claim employing Lemma
§3.2.3 (i1). Furthermore, Q,, <P, holds if and only if y = —%02. By using Lemma §3.2.3
(i11) with switched roles of Q,, and P, we have P,, <« Q,, if and only if 1 = EU = E exp(W) =

[ exp(w) \/2;? exp(— (w2;§)2 Jdw = exp(% — %) which in turn implies the claim. O

§3.2.5 Theorem. Let IP,, and Q,, be probability measures, and X,, be a (Rk, %®k)—valued V.
on a common measurable space (), %,), n € N. Suppose that Q,, <P, and for V,, := dQ,,/
dP,, assume that (X,,V},) 4 (X,V) under P, i.e., PV Ly pOXV) - Considering the map
P% 5 B QX(B) := PYV[1p®id] = Eplg(X)V, then Q¥ defines a probability measure
on (RF, B%F) satisfying Q¥ f = PXV[f®id] = Epf(X)V for any QX -integrable function f
and X, LN Q¥ under Q,, i.e., QXr LN Q¥.

Proof of Theorem §3.2.5 is given in the lecture. O

§3.2.6 Example (Le Cam’s third lemma). Let P,, and Q,, be probability measures, and X,, be
a (R¥, %®%)-valued r.v. on a common measurable space (Q,,<,), n € N. Setting W,, :=
log(dQ,,/dP,,) suppose that P W) Ly pXW where (X, W) is jointly normal distributed with
marginals X ~ M (u,2) and W ~ N(—c?2/2, 0?). In other words setting 7 := Covp(X, W) =
Ep(X — p)(W + 02/2) we assume that

e 2). ¢ 2))
-% ™ o

Then, X, LN Ny (1n+ 7, %) under Q,,, that is, QX» 4, Ny (p + 7, %). Indeed, by the continuous
mapping theorem §1.1.6 from (3.1) for V,, := exp(W,,) = dQ,,/dP,, follows P V) 4y pexy)
with V' = exp(W). Since EpV = 1 following the arguments in Example §3.2.4 we have
Q,, <P, and thus, from Theorem §3.2.5 follows QX~ 4 QX with QX f = PXV|[f®id] =
Ep f(X)V. Thereby, it remains to show that Q% = 9.(u + 7, %). Keep in mind that for each
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t € R the characteristic function 1z (t) := Eexp(i(t,Z)) of Z ~ N(v,I") satisfies 1.(t) =
exp(i(t,v) — 3(I't,t)). Considering the characteristic functions ¢x and ¥ xwy of Q¥ and
PXW) | respectively, the elementary identity ¢ (t) = Eq exp(i(t, X)) = Epexp(i(t, X))V =
Ep exp(i(t, X) + W) = ¥x,w)(t, —i) holds for each ¢ € R. Exploiting (3.1) it is easily seen
that ¢ xw)(t, —i) = exp(i(t, u+7)—5 (3¢, t)) holds forall t € R, whence Q¥ = My (u+7, %),
which shows the claim. O
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Chapter 4
Local asymptotic nhormality (LAN)

4.1 Introduction

For each n € N let (2, ,,P% = {P};,0 € ©}) be a statistical experiment. Typically, we
may think of i.i.d. r.v.’s X, X;, X, ... taking values in some measurable space (X', %) and
satisfying X @ Pg for some parametrised familly Pg = {Py, 0 € O} of probability measures
on (X, %). In this situation, (Xi,...,X,) ® Pg" where P§" = {Py",0 € O} is a family of
product measures on (X™, %°"), and thus, 2, = X", o, = %" and Pg = Pg".

Aim: Approximate (£2,,,.9%,, Pg) in a certain sense by a Gaussian location model after suit-
able reparametrisation.

§4.1.1 Definition. Consider on (R*, %) the family M(R*,¥) = {N(h,X),h € R*} of
multivariate normal distributions with common covariance matrix ¥ and varying mean h € R*.
Noting that for each i € R* the likelihood Lj, of 91(h, ¥) w.r.t. the Lebesgue measure satisfies
Ly(x) = Lo(x — h) for all z € RF the statistical experiment (R*, %% M(R*, %)) is called a
Gaussian location model. O

Consider a localised reparametrisation centred around a fixed value 6, of the parameter which
is in the sequel regarded as known.

§4.1.2 Definition. Consider a sequence of statistical experiments (2,,, <7,, P%), n € N, with
common parameter set © C R*. Given a localising rate (5,)nen With 6, = o(1) for each
n € N define a local parameter set O" := {6 1(0 — 0,) : € ©} C R*. For each § € © and
associated local parameter h = 6, (60 —0,) € O} rewriting P as ;| s . we obtain a sequence
of localised statistical experiment (S, %, P§ gn g, = {Py 5,1, 1 € O3}), n €N, O

§4.1.3 Remark. In the sequel we eventually take the local parameter set ©" equal to R* which
is not correct if the parameter set © is a strict subset of R*. However, if 6, is an inner point of
O, which is assumed throughout this section, then for each h € R* the parameter 6 = 60, + J,,h
belongs to © for every sufficiently large n. In other words, the local parameter set O converges
to the whole of R*¥ as n — o0, i.e., Unen©? = R”. Thereby, we tactically may either define
the probability measure Py, s, j, arbitrarily if 6, 4 6, does not belong to O, or assume that 7 is
sufficiently large. O

Aim: Show, for large n, that the localised statistical experiment (£2,,, 7,, Ps5 gr4,) and the
Gaussian location model (R¥, %% 9M(R*, Z,!)) are similar in statistical properties whenever
the original experiments, i.e., # — [Py, are “smooth”.

§4.1.4 Heuristic. Consider a p-dominated family Pg on (X, %), i.e., Po < p, with © C R
and likelihood function Ly of Py w.r.t. p. Assume that for all z € X, the map 0 — (p(x) =
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log(Ly(x)) is twice differentiable with derivatives {y(z) and fy(x). For every fixed = a “Taylor
expansion of the log of the likelihood-ratio” leads to log([Lg+n/Le](z)) = hlg(z) + 3h*ly(x) +
0,(h?) where the remainder term depends on x. Consequently, assuming a product experiment
(A", %", Pg") eventually it holds log([Lg,  ~/L§]) = hy/nP Lo+ 5h* P,ly+ R, where the
score fg has mean zero, i.e., P9€9 = 0, and the Fisher information Zy equals —]P)gég Py (fg) .
Setting Zj := \/nZ; ! P,{; from the Central Limit Theorem §1.1.15 follows Z' 4 N0,Z, ")
under P$" while due to the Law of Large Numbers §1.1.10 it holds P, {y = —Ty+ Open (1). If in

addition the remainder term is negligible, i.e., R,, = Opzn (1), then the log of the likelihood-ratio
permits an expansion

log(dPy, | m/dPG") = hTp2Zg — 3h°Ty + open(1)

which in the limit equals the log of the likelihood-ratio in a Gaussian location model. If the
likelihood process permits such an expansion in a neighbourhood of # we call the sequence of
experiments “local asymptotic normal’. O

§4.1.5 Definition. A sequence of statistical experiments (€2,,, .%7,, P%,),en converges to a limit
experiment (S), o7 | P,) if for any finite subset Z C H and each h,, € ‘H holds weak convergence

of the finite dimensional distributions (dP};/dP} | h € T) 4 (dP/dPp,, h € T) under P} . O

§4.1.6 Definition. A sequence of statistical experiments (€2,,.%%,, P%),cny with © C R* is
called locally asymptotic normal (LAN) in 6, € O, if there is a localising rate (d,,)nen With
6, = o(1), a sequence of .v.’s (2 )nen and a strictly positive definite matrix Zy, such that for
every h € R the following three statements hold true:

(i) 6, + d,h € © for all n sufficiently large n, i.e., n = n,(h);
(ii) Z3 4 2N(0,Z,.") under Pj ;
(i) log(dPg" ;s  /APG") = (Zy, 23, h) — 3(Zg,h, h) + Ry, where R, ), = Opn (1).

The matrix Zy, is called Fisher information at 0, and (Z} ), is called central sequence. O

§4.1.7 Remark. In a Gaussian location model (R*, %% 91(R*,Z, ")) the log of the likelihood-
ratio is given by log (d0N(h, Z,.") /dN(0,Z, ")) = (Zy, Z, h) —5(Zy,h, h) where Z ~ N(0,Z, ")
under 9(0,Z,"). Consequently, if (Qn, 9, P2)en is LAN then for any finite Z C R* we
have (log(dngi’ignh/dIP’g”),h e L (log (d9(h,Z, ") /dN(0,Z, ")), h € Z) and whence

(dPg" s /dPG" b € T) N (dN(R, Z, ') /dN(0,Z, "), h € T) due to the continuous mapping
theorem §1.1.6. In other words the sequence of statistical experiments (£2,,, %7,, P{),en has a
Gaussian location model as limit experiment. m

§4.1.8 Definition. A LAN sequence of statistical experiments is called uniformly locally asymp-
totic normal (ULAN) in 0, € O, if the condition (iii) in definition §4.1.6 is replaced by

(iii') for any sequence h,, — hitholdslog(dPg" s , /APF") = (I, 25 , h)—5(Zg,h, h)+
R, 1, where R, 5, = op§n(1) O

Keep in mind that a yi-dominated family Pg with likelihood Ly of Py w.r.t. 1 is Hellinger-
differentiable in 0, € ©°, if there is by, € L, ,i.e.,IPy,||lg,||* < oo, such that for any h — 0 it

holds H\/L00+h — \/Lgo 690, >\/L00HL3 = O(HhH> (Cf Remark §235)
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§4.1.9 Theorem. Let © be an open set in R* and let Pg be a p-dominated family of probability
measures on a measurable space (X, %) which is Hellinger-differentiable in 0, € © with score
lg, satisfying Py, lg, = 0, Py, ||0s,||> < 0o and strictly positive definite Fisher information matrix
Ty, = Py, (égoégo). Then the sequence of product experiments (X", 8" Pg") is ULAN in 0,
with localising rate (8, := 1/v/n)nen and central sequence (2} = \/nZ, P,lo, )ner that is,

for any sequence h,, — h it holds log(dpgihn/ﬁ/dPgi") = (Ty, 23 h) — 5(Zo,h, h) + Rop,

where R,, j,, = opgan(l) and \/ﬁpn%o 4, MN(0,Zy,) under Pg’;”.

Proof of Theorem §4.1.9 is given in the lecture. O

4.2 Hellinger-differentiability

§4.2.1 Proposition. Given a statistical experiment (X, %, Pg) for all & € © C R* in a neigh-
bourhood of 0, € © let Py < Py, and let Ly g, (x) := [dPy/dPy,|(z), x € X, be the associated
likelihood function w.r.t. Py,. If 0 — Ly g () is L]%g -differentiable in 0,, that is, there is a map

x> Lg,g,(x) in L3, (ie., Py, || Lo, 9, ||> < 00), such that

166, — Lo,0, — (Lo,0,,0 — Oodllzz, = o(ll0 =bo[l) as | —0o] =0,

then Pg is Hellinger-differentiable in 0, with score function 590 = Lgo’go.
Proof of Proposition §4.2.1 is given in the lecture. O

§4.2.2 Proposition. Let Pg be a u-dominated family of probability measures on a measurable
space (X, B) with open © C R* and associated likelihood function Lo(x) = [dPq/dp](z),
x € X. Suppose the following conditions hold true:
(i) for each v € X the map 0 — sg(x) := \/Lg(x) is continuously differentiable with
derivative 5¢(x),

(ii) 3¢ belongs to L. (i.e., il $o* < 00), and hence Ty = pi($95) is well-defined for all
0 €0,

(ii1) the map 0 — Ty is continuous.
Then Pg is Hellinger-differentiable with score function é@o = 2\5—%9]1{ Lo(x)>0}-

Proof of Proposition §4.2.2 is given in the lecture. O

§4.2.3 Example. Consider a statistical location model (R, B, Pg) dominated by the Lebesgue
measure A with likelihood function for each # € R given by Ly(z) = g(z — ), z € R,
where ¢ is a strictly positive density. If g is continuously differentiable with derivative g satis-
fying A\(]g|?/g) < oo then due to Proposition §4.2.2 the family Py is Hellinger-differentiable

—igz:zg. Indeed, setting sg(z) = +/g(x — ), we have $g(x) =

29 —0) = —Lg(z — 0)/\/g(x — 6) which is continuous in # and hence condition (i) is
satisfied. Moreover conditions (ii) and (iii) hold true, since by assumption Z, = \(39)? =
A(|g?/g) < oo is constant in § and thus continuous. Thereby, from Proposition §4.2.2 follows
the claim with £y = 2 7= 111, (2)>0) = —g(z —0)/g(x —0). O

with score function ¢y =
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4.3 Limit distributions under alternatives

§4.3.1 Theorem. Let (Q,, ,,P%),en be LAN in 0, € © C RF with localising rate (0,)nen,
central sequence (2§ )nen and strictly positive definite Fisher information matrix Ty,. Then for
any h,h/ € R the following statements hold true:

(1) (PG s, n)nen and (Py s 1/ )nen are mutually contiguous, i.e., Py s, <>Pg o/

(i) Zp & N(h,Z,") under By s .
If the sequence of statistical experiments is ULAN, then for any h,, — h and h!, — I/ in R¥ the
following statements hold true:

(i) (Py 15,1, Jnen and (Pg s h )nen are mutually contiguous, i.e., Py s, <>Py s h s
d _
(i) Zg — ‘)t(h,Zgol) under Py 5, .
Proof of Theorem §4.3.1 is given in the lecture. O

§4.3.2 Corollary. Let (X, 2, Pg) be Hellinger-differentiable in 0, with score function éga such
that the assumptions of Theorem §4.1.9 hold true. Given the sequence of product experi-
ments (X", B, P& )nen let (0, )nen be a sequence of estimators of 6, allowing an expansion

\/ﬁ(é\n —0,) = V/n Py, + Opgbn(l) for some RF-valued function 1y, satisfying Py 1y, = 0

and Py, ||, ||* < oo. For each h € R¥ holds \/i(0, — 0,) & N(Py, (4,05 ), Py, (g, %))

Qn
under P90+h/\/ﬁ'

Proof of Corollary §4.3.2. By Theorem §4.1.9 (X", %", Pg" ),en is ULAN with localising
rate (&, := 1/1/n)nen and under Py" holds VP, LN MN(0, Pgoégofgo). On the other hand

side, we have v/n P10, 4 (0, Py, 6,15, ). Employing Slutzky’s lemma §1.1.7 under Pg™ it
follows

V0, — 6,) 4 o ( ( 0 ) ( Py, o, 05, Pa, v, (ls,, h>))
10g<dPg®;ih/\/ﬁ/dP58;n) - %]P)eo | <€00 ? h) |2 ’ IP)‘go <£907 h’> ,’7%0 Peo | <€90 ? h) |2
The assertion follows now from le Cam’s third lemma as in Example §3.2.6, which completes
the proof. m

§4.3.3 Example (§2.3.3 continued). Let 0, = arg min{M(0),0 € O} with M(0) := Pymy for
some function my € Lp,. Considering an M-estimator @L := arg min{M,,(0),0 € O} of 0,
with M, (8) := P,my as in Example §2.3.3 we have \/n(0, — 6,) = /n(Po,rivg,) ' Pring, +
O]Pg@:(l), that is, vy, = (Pg,179,) *1irg,. Under Pgeﬁh/ﬁ it follows then /n (0, — 6,) %
N((Po, 10,) Po, 10, (€s,, b, (Po,1i2q,) " (Pa,10,12%) ) (Pg,7it,)~"). In the particular case of
an MLE é\n as in Example §2.3.4 setting my := {9 = log(Ly) and Z,, := Pgofgoégo = —]P)goggo

we have \/ﬁ(é\n —0,) =1, vn ango + opgan(l) which together with Zy h = Py, <€90, h>€90

n . . ~ d —
under Pim/\/ﬁ implies /n(6,, — 0,) — fﬂ(h,Igol). -

§4.3.4 Remark. Supposing \/7(8,, — 6,) = \/n Py, + opgn (1) let us further assume a trans-
formation A : © — RP that is “smooth”, and hence by em;;loying the Delta method §1.1.19,
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for instance satisfies \/n(A(6,) — A(6,)) = Ag, /1 Ppibg, + Opgn (1) under Py™. Consequently,
VI(AG,) = A(0,)) © N(Ag, Py, g, (Lo, ), Ag,Po, 1,15, Ab ) under Py, and in the spe-
cial case of an MLE /n(A(6,) — A(6,)) & N(Ag,h, Ag, T, ' AY ) under Py O
§4.3.5 Example (§2.4.1 continued). Under the conditions of Corollary §4.3.2 consider the test
problem H, : A(6) = 0 against the alternative H; : A(#) # 0 for some transformation A satis-

~

fying \/n(A(6,) — A(0,)) = Ag, /1 Potby, + opg)n(l) under Py, As in section 2.4 let W, =

nA(6,)'S-1A(6,) where 3, is under P5" a consistent estimator of X := A, Po, o, 1%, AY e,

A~

Y, =3+ opg@n(l), then a Wald test is given by ,, = 1 (W2} Thereby, under H,, that
is, A(6,) = 0, we have \/nA(0,) = Ag,/n Poiby, + opgn (1) and W, L W~ X, under Pg’"

n—oo

which in turn implies Pﬁ”(ﬁn > X1 o) — P(W > x2, ) = a. In other words, the Wald
test is asymptotically a level « test. Let us denote by 5, (61) = Py ey, = Py (pn = 1) =

P?;”(Wn > X21_o) the power function of the Wald-test ¢,, evaluated at 6; with A(f;) # 0. In
the sequel we consider local alternatives of the form 6, + h/y/n and thus we are interested in

n 117 : n ) d
Byon 0o+ h/\/n) = P2+h/ﬁ(Wn > X2 1_o)- Obviously, under P?;M/\/ﬁ we have \/nA(6,) —

N(Ag, Po, 0, (£, h), ), or equivalently, S~V2/nA(0,) L N(S2Ag, Py, by, (bo,, 1), 1d),
and hence, nA(6,)'SA®6,) L W, ~ X%(H\Zfl/ZAQOIP’go@bgo(ﬁgo,h)||2) where x7(a) de-

notes a non-central y?-distribution. Moreover, W,, — nA(an)thlA(@\n) = OP?n(l) and thus
W, — nA(6,)'S1A(0,) = open (1) due to Lemma §3.2.3 by employing that Py" and

Oo+h//1

P?Z hy v Ar€ mutually contiguous. Consequently, /W?n LN W}, under IP’?Z Wi and thus Bg; (0,+
h/\/n) =X P(W, > Xo1_o)- Note that in the particular case of an MLE we have W), ~
XE(hAY (Ag, Ly  Af )71 A, h). O

4.4 Asymptotic power function

Let (€2, 4,,P%) be LANin 6, € © C RP with localising sequence (4,,),cn, central sequence

(23, )nen and strictly positive definite Fisher information matrix Zy,, that is, 2;0 =1y, 2y 4,
N(0,Zy,) under P5" and A, := log(dPj, 5 ,,/dP5) = (To, 25, h) — 3Ty, h, h) + open(1).

Denoting o7 := (Zy,h, h) from 25‘0 N 21(0, Zy,) under P§ and ‘;’;&) 4 N(h,Zy,) under Py 5 ,

it follows A,, & Zp ~N(—30%,0%) under Py and A, LN Z} ~N(302,0%) under Py, .

§4.4.1 Example (Neyman-Pearson test). Consider the elementary test problem H, : [Py against
H, : ]P’gl. In this situation the most powerful level-« test is of Neyman-Pearson form, i.e.,
©n = Lia, ey if PG (¢ = 1) = a. Let us denote by B (61) = P§ oy = P§ (¢, = 1) =
Py (An > cy) the power function of ¢} evaluated at ¢,. Keep in mind that the value j3,. (6)
equals the maximal size of the power in the class of all level-« tests, i.e., for any level-« test
¢n holds 3, (61) < By (61). In particular, in case of local alternatives, i.e., H, : Pj against
Hy : Py ;. exploiting the LAN assumption we have o = Pj o = Py (A, > ¢,) —3
P(Z > ¢1_o) = a which implies ¢, =3 ¢;_q, and in addition B, (0, + 5,h) = P§ s ok =

Py s n(Mn > o) = P(2} > c10) =: B (). 0
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§4.4.2 Example. In a Gaussian location model, i.e. Y @ N(RP, I, ) consider the test prob-
lem H, : N(0,Z, ") against the alternative H, : ‘ﬁ(h Z,h). Itis easﬂy seen that in this situation
the log of the hkehhood ratio Ay, := log(d0N(h, Z,")/ d‘ﬁ(O Z,")) equals (Zy,Y, h) — o7 and
thus A, = Z7 ~ N(— ah,ah) under the hypothes1s N(0,Z, f) and A, = Z} ~ N(3 ah,aﬁ)
under the alternatlve sﬁ(h 7,."). Moreover, keeping in mind that P(Zp > cl,a) = « the most
powerful level-« test ¢* has agam Neyman-Pearson form, i.e., * = 1{a,>¢,_,}, and its power
is given by Py (A, > ¢1-4) = P(Z} > ¢1-4) = B,+(h) which again is maximal. O

§4.4.3 Remark. In a statistical LAN experiment the power function 3. of a Neyman-Pearson
test o, for H, : Py against H, : Pj converges point-wise as n — oo to the power function 3+
of a Neyman- _Pearson test ©* for H, : M(0,Z,") against Hy : N(h, I, ). O

§4.4.4 Theorem. Let © C R. Consider the one-sided test problem H, : 0 < 0, against
Hy : 0 > 0,. Suppose that (§2,,, <4,,,PY) is LAN in 6, € © with localising sequence (0,,)nen,
central sequence (Z} )nen and strictly positive Fisher information Ty, > 0.
(i) Given any test statistic T, satisfying (T,,, 1y, 2y ) 4 N0, ) withS = ((0%, p)*, (p, Zp,)")
consider a randomised test ¢y, := 1i1, ~c} +Vnl{1,=c,} Withy, € [0,1] and ¢, € R
such that B3, (0,) := Py on = Py (T, > c) 47l (Tn = cn) = oy =% &. Choos-
ing z1-q such that 1) (21-a) = P(Z < 21-0) = 1—awith Z ~ N(0, 1) we have
Bon(Oo+0nh) =P§ s 1on X P(Z > 2_a—hp/o) = 1-Fag1y(z1_a—hp/o) =
Foo,1)(=21—a + hp/o).

(i1) In the special case T,, = Iy, Zy choosing v, = 0 and ¢, = 21-ar/Zp,, i€
P = Lz, zn ooy 3y} We have By; (00) = By 07, = P (/16,25 > 21-a) )=
P(Z > z1-0) = aand B,x (0, + 0uh) =Py 5 105 n%—of P(Z > z1-a — h\/Ty,) =

Fao,1)(—21—a + h/Zy,).

Proof of Theorem §4.4.4 is given in the lecture. O

§4.4.5 Remark. (i) By using Theorem §3.2.5 directly it might still be p0551ble to cal-
culate an asymptotic power of a test if A,, := log(dPy 5 ,/dPy ) 2y Q under Py
where () is not necessarily 9%(0, 1) distributed.

(i) Keeping in mind that p* = |Cov(T,,Zy, 23 )|* < Var(T,) Var(Zy, 2} ) = 071y,
the test ¢ given in Theorem §4.4.4 (i) maximises the asymptotic power when con-
sidering only tests 7;, as given in part (i) of Theorem §4.4.4. O

§4.4.6 Theorem. Let the assumptions of Theorem §4.4.4 be satisfied. For any test @,, of the one-
sided test problem H, : 0 < 0, against Hy : 0 > 0, satisfying B,,(0,) := Py 0, = ay, %o
it holds

(i) for any h > 0 we have lim sup B, (0, + 6nh) < Fano1)(—21-a + h\/I_go);

n—oo
. o > B '
(i) for any h < 0 we have h}lri}loglf Bon (0o + 0nh) = Foo1y(—21-a + h/Zs,)
Proof of Theorem §4.4.6 1is given in the lecture. O

§4.4.7 Remark. Keeping in mind Theorem §4.4.6 we call the test (sequence) () )nen given in
Theorem §4.4.4 (i1) asymptotically uniformly most powerful level-« test (sequence) in the class
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of all asymptotic level-a test (sequences). Its asymptotic power function equals Foyo.1)(— 21—+
h+/Zy,) which is the power function of the uniformly most powerful test of H, : h < 0 against
Hy : h > 0 in the limit Gaussian location experiment (R, 2, (R, Z,")). O

4.5 Asympitotic relative efficiency

Let (2, %, Pg)nen be LAN with localising rate (0, := 1/y/n)nen. Consider a test ¢
satisfying the conditions of Theorem §4.4.4 (i) and hence, admitting an asymptotic power func-
tion such that 8. (6, + h/v/n) "= Fy.1)(—21—a + hpa/0,). Thereby, choosing n = h/\/n
the approximation Bga (0, + 1) ~ Fy(o,1)(—21-a + 1v/1pa/0s) is reasonable. In analogy, if
¢" is another test satisfying the conditions of Theorem §4.4.4 (i) we have (3, (0, + 1) ~
Fyo,1)(—21—a + 1v/1ps/0s). Roughly speaking, this means, that at 6, + 1 the power of the
test ¢, and cpflb with sample size n, and ny, respectively, is approximately equal if n,p? /02 =
nyp; /oy The quantity are(pf , @b ) = (na/m) = (pjo2)/(p2o}) is called asymptotic relative
efficiency. Meaning, that a sample of size n, = are(y}, , gpflb) ny 1s needed for the test ¢y,
to attain the same asymptotic power as the test goflb with sample size n,. More precisely, if
ng = are(yh | gpflb)nb and n;, — oo then B¢%b (0o +h/\/Na) iy Fao,1)(=21—a + hpa/0o,) and

n—oo

Bes (0o + h/\/Na) — Fy1)(—21-a + hpa/oa). Comparing with ¢}, as in Theorem §4.4.4
(i1) allows to have a notion of asymptotic absolute efficiency.

4.6 Rank tests

Consider a sample Xi,..., X, of independent and not necessarily identically distributed
real-valued r.v.’s. Denote by S, the set of all permutations of the set [1,n]. Given a vector
(x1,...,2,) let (zg,,..., 2z, ) denote its arrangement according to the permutation s € S,,.
More generally, (Xg,, ..., Xg, ) denotes the arrangement of the r.v. (X1, ..., X)) according to
a §,,-valued r.v. (random permutation) S. Precisely, given X1, ..., X, and S defined on a com-
mon probability space (€2, o7, P) for each w € Q letting (z1,...,2,) = (X1(w),..., Xp(w))
and s := S(w) we set (Xg,,...,Xgs, ) (W) := (x5, ..., Ts,)-

§4.6.1 Definition. A S, -valued r.v. (random permutation) R is called a rank vector of a R"-
valued r.v. (Xq,...,X,), if X; = Xg,, i € [1,n], and Xg, < Xg, < --- < Xg,. For each
i € [1,n], the component R; is called the rank of the i-th component X;. O

Here and subsequently we assume that the law of each component of (X7, ..., X,,) has a den-
sity with respect to the Lebesgue measure, i.e., the associated cumulative distribution function
(c.d.f.) is continuous, and we say the law is continuous, for short. Consequently, with proba-
bility one all components of (X7, ..., X,,) differ and thus Xp, < Xp, < --- < Xg,. Thereby,
the rank vector (Ry, ..., R,) is uniquely determined by R; = > 7 T(x,<x,}, ¢ € [1,n]. In
particular if F, (x) == @nll(_ow], x € R, denotes the empirical c.d.f., then it is easily seen that
i = nF,(Xg,) and R; = nF,(X;) for each i € [1,n].

§4.6.2 Lemma (Preliminary results). Let X = (Xy,...,X,) and the associated rank vector
R = (Ry,...,R,) be rv.’s on a common probability space (0, o7/, P). If X1,..., X, are i.id.
real-valued r.v.’s with common continuous c.d.f. F and common density f w.rt. the Lebesgue
measure, then the following statements hold true:
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(i) The S,-valued r.v. R has an uniform (Laplace) distribution, i.e., for all s € S,, it
holds PE(s) = P(R = s) = 2

nl’

(i1) The rank vector R and the ordered vector (Xg,, ..., Xg,) are independent;

(iii) The ordered vector (Xg,, ..., Xr,) admits a density w.r.t. the Lebesgue measure
given by n!lp(x) [T, f(z;) with B := {(x1,...,2,) € R,z < ... <z, };

(iv) Foreach i € [1,n] the R;-th component X, of the ordered vector admits a density
w.r.t. the Lebesgue measure given by i(")|F (z)["!|1 — F ()"~ f(x);

(v) For each rv. T € Ly holds E[T(Xy,...,X,)|R = r] = E[T(X,,,...,X.,)]
P-a.s..

Proof of Lemma §4.6.2 (i), (iv) and (v) is given in the lecture, while (ii) and (iii) is left as an
exercise. =

§4.6.3 Definition. Let P and QQ be probability measures on (R, %). We say P is stochastically
smaller than Q, or P < @ for short, if P((c,00)) < Q((¢,00)) for all ¢ € R. If in addition
P # Q, then we write P < Q. m

§4.6.4 Remark. Roughly speaking, P < Q says that realisations of QQ are typically larger than
realisations of PP. 0

§4.6.5 Example. Consider on (R, %) two Gaussian distributions with common variance o and
individual mean y and 1/, respectively, i.e., (i, 0?) and N(y’, o). Obviously, N(u, 0?) <
N(y/, 0?) if and only if u S /. More generally, given a location family Py as introduced in
Example §4.2.3 with likelihood function for each § € R given by Ly(z) = g(x — ), v € R for
some strictly positive Lebesgue-density g on R, then Py < Py holds if and only if 6 S 0. o

Aim: test the hypothesis H, : P = Q against the alternative H; : P < Q. Loosely speak-
ing, this means, that we aim to reject the null hypothesis if realisations of P are significantly
smaller than realisation of Q. Therefore, consider a sample of n = k + [ independent real-
valued r.v.’s Xy, ..., X,, where the first k£ r.v.’s have a common distribution P and the last [ r.v.’s
are distributed according to a common distribution Q. Keep in mind that we want to reject if
realisations of the common distribution IP of the first k r.v.’s are significantly smaller than reali-
sations of the common distribution of the last / r.v.’s. Given the rank vector R = (Ry,..., R,)
associated to the pooled sample (X7, ..., X,,) it seems thus reasonable to reject the hypothesis
if the sum of ranks within the first group of k r.v.’s, i.e., Wp = Zle R;, takes sufficiently
smaller values then the sum of ranks within the second group of [ r.v.’s, i.e., Wg = ZkH R;

i=k+1
where obviously Wp + Wg = Z?zl R; = Z?:li = ‘n(n;l)'

§4.6.6 Lemma. Defining Uy = Y&, Zfi,iﬂ Lix;>x;y it holds Wp = Uy + M) and
1(14+1)

analogously Wo = kl — Uy + =5

Proof of Lemma §4.6.6 is given in the lecture. O

Keeping the last lemma in mind, we use the test statistic Wp or equivalently Uy, to reject
the hypothesis Hy : P = Q against the alternative H, : P < Q, if Uy, < c or equivalently
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Wp < c+ (kﬂ) for a certain threshold 0 < ¢ < kl. The test is called (one-sided) Mann-
Whitney U- test or Wilcoxon two-sample rank sum test'. The critical value has to be chosen
according to a pre-specified level o which under the null hypothesis necessitates the knowledge
of the distribution of Uj; or an asymptotic approximation. Interestingly the next proposition
shows that under the null hypothesis the distribution of Uy, is distribution free in the following
sense: If P = Q and IP is continuous, then the distribution of Uy; is determined and it is
independent of the underlying distribution P.

§4.6.7 Proposition. For every continuous P and m € [0,kl] it holds P**+)(Uy = m) =
N(m; k, l)/(kH) where N(m; k, 1) denotes the number of all partitions Zf (m; =mofmin

k increasing ordered numbers m; < ms < - -+ < my, taking from the set [0,1]. In particular, it
holds PEF+! (U, = m) = PEFHD (U, = kI — m).

Proof of Proposition §4.6.7 is given in the lecture. O

For small values of m the partition number N (m; k, ) can be calculated by combinatorical
means and there exists tables gathering certain quantiles of the Uy;-distribution. However, for
large values of m the exact calculation of quantiles of the Uy;-distribution may be avoided by
using an appropriate asymptotic approximation. In the sequel we let £ and [ and thus n =
k + [ tend to infinity, which formally means that we consider sequences (k,)nen and (1,)nen
satisfying k,, + [,, = n for any n € N. Here and subsequently we assume that k,, /n e
(0,1) and hence I,,/n "=3 1 — ~. For sake of presentation, however, we drop the additional
index n and write shortly n = k + [ with k/n "= ~ and hence I/n "=3 1 — 1.

§4.6.8 Theorem. Let X1, Xs,... be i.i.d. real- valued rv.’s with common distribution P and
continuous c.d.f. F. Consider Ukl = Zl . Z] Cpr1 Lix,>x;) and define

k k+l1 k k+1
T =1 F(X;)—k Y F(X; Z X)) =1/2) =k Y (F(X;) —1/2).
i=1 i=k+1 i=1 i=k+1

Setting n = k + 1, vg := kl(n 4+ 1)/12, T}, := Ty /\/v and U}y == (Ug — kl/2)/ /g if
k/n — v € (0,1) then U, — T} = opsn(1), T} 4 MN(0, 1) and thus U}, LN MN(0,1) asn — oc.

Proof of Theorem §4.6.8 is given in the lecture. O

Keeping in mind the last assertion given a sample of n = k£ + [ independentr.v.’s X5, ..., X,

with Xy, ..., X} “% P and D, (AT T, ¢A) i @, consider a test which rejects the null hy-

pothesis H, : P = Q against the alternative P’ < Q, if Uj; < kl/24 z4/Viy where Foo1)(2a) =
«. Note that, it is asymptotically a level-a test due to Theorem §4.6.8 since under the null hy-
pothesis P2 (Uy; < kl/2 + 2o\/0m) =3 Fyo1)(2a) = a for k/n "3 ~ € (0,1). Note
that the null hypothesis H, : P = Q against the alternative P > Q is analogously rejected if
Upt > kl/24 21_a+/Viy. Next we study the (asymptotic) size of the power of the rank test under

'The version based on Wy has been proposed by Wilcoxon [1945], while the Uy, -version has been independently
be introduced by Mann and Whitney [1947].

Statistics 11 31



Chapter 4 Local asymptotic normality (LAN) 4.7 Asymptotic power of rank tests

local alternatives where we use that under the assumptions of Theorem §4.6.8 it holds

k+l1
* (X:)—1/2 F(X;)—1/2
Ukl (Ukl k’l/Q /\/Uk [f \/1)/_1/ %% Ek 1%/12/%—0[?7@71(1)
i=k+

=\/1—7\/_@kg—ﬁ\/i@zg+oﬂ»®n(1) 4.1)

setting g := V12(F —1/2), Pyg :== 1 S g(X;)and Qg =1 Zf+,i+1 g(X;) where P,g and
Qg are independent, Pg = 0, and Pg?> = 1 by construction.

4.7 Asymptotic power of rank tests

Considering the test of the hypothesis H, : P = Q against the alternative H; : P > Q
we restrict our attention to the special case that P and Q belong to a location family Py as
introduced in Example §4.2.3. Precisely, we assume that the family Py of probability measures
on (R, %) is dominated by the Lebegues measure. For each § € R, Py admits a likelihood
function given by Ly(x) = q(z—0), © € R, where ¢ is a continuous and strictly positive density
on R. Recall that in this context Py < Py holds if and only if § < 6’ (see Example §4.6.5).
Observe further that we can assume that Q = P, (possibly after a reparametrisation). Supposing
independent r.v.’s X1, ..., X, with (X,..., X3) @ PE* and (Xj11,. .., X,) ~ P§! their joint
distribution belongs to the two sample location family P5™ := {Pi*! := PJ* @ P§' 0 € R}.
Summarising, based on the statistical two sample location experiment (R™, ", IP’H%H) the aim
is to test the hypothesis Hy : # = 0 against the alternative H; : 6 > 0.

§4.7.1 Regular location model. A location family Pr of probability measures on (R, %) as
introduced in Example §4.2.3 is called regular if the density ¢ is in addition continuously dif-
ferentiable with derivative ¢ satisfying A(|¢|?/q) < oo. Following the Example §4.2.3 a regular
location family Py is Hellinger-differentiable with score function £y = —(z — 6)/q(z — )
and Fisher information Z := \(|¢|?/q). O

By applying Theorem §4.1.9 for a regular location model the associated product experiment
(RF, 2% PE*) is ULAN with localising rate (3, = 1/v/k)ien and in 6, = 0 with cen-
tral sequence (2} := —VEZ ' Py(d/q))ren. Precisely, for any sequence hj, — h it holds
log(def/\/E/dP?k) = —hkPy(d/q) — $h°T + opgr(1) and VEPL(d/q) L MN(0,T) under
Pf)@k . Given a two sample location family ]P’ﬂk;rl for any € € R the log of the likelihood-ratio
satisfies log(dP4t /dPET) = log(dPY* /dP§*). Thereby, if the location family is regular and
k/n"=% v € (0,1), whence hy, := hy/k/n n_>—°>° , hy/7, it follows

Ay = log(dBy 7o /PG = log(d]P’fk/ v/ PG
= —h ﬁ\/E Pe(q/q) — IR’ + opr(1) (4.2)

§4.7.2 Theorem. Assume a two sample regular location model. Consider for the test problem

Hy : 0 = 0 against Hy : 0 > 0 the rank test p, = } with
Fy0,1)(—21-a) = a. If k/n € (0, 1), then the following statements hold true:

(i) Under the null hypothesis H 20 = 0 holds Pk, = PS*U UL > 2_4) =3 a,
i.e., ©, is an asymptotic level-« test;

IL{Ukl>icl/2+zl,a\/m} - H{U;pzl,a

’I’L—)OO
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(ii) Its power function B, (0) = Pit o, satisfies under local alternatives S, (h/\/n) =
Pyl a(Ui > z1-a) = Fawoy(=21-a + p) with p = h(A¢*)\/129(1 = 7).

Proof of Theorem §4.7.2 is given in the lecture. O

§4.7.3 Remark. Let us briefly consider the test of Hy : # = 0 against the alternative H; : § < 0,

where an asymptotic level-« test is given by ¢, = 1 {Ua<kl/2 420y} = 1 {Ut<za}" Its power

function satisfies for local alternatives 3, (h/v/n) = ]P”;j\lf(U,jl < 24) 3 Fono.1) (2 — p)- O

§4.7.4 Gaussian two sample location model. Consider a two sample Gaussian location ex-
periment where X7, ..., X, are independent r.v.’s with common variance o2 > 0 obeying
(X1,..., X)) ~ N0, 0%) for some § € R and (Xpy1,...,X,) ~ N®(0,0?). Consequently,
their joint distribution belongs to the two sample Gaussian location family ‘Jt]'f{rl = {‘JT’;” =
Nk (0, 0?) @ M0, 0%), 0 € R} which is obviously a regular. O

§4.7.5 Example. In a Gaussian two sample location model consider testing of the hypothesis
H,: 0 =0against H; : § > 0 (or H, : 6 < 0). Define Ty := I3 X; — k>0, X;

and Via = G {00 (X — £ 300 X0 4+ S (X0 — 000 X0)?) then under the
null hypothesis, i.e., (Xi,..., X,) ~ N®(0,0?), the t-statistic T}; := Ty/v/Vi has a t,_o-
distribution with n — 2 degrees of freedom, or 7}; ~ t,_, for short. Let us denote by t, 5,
its k-quantile. Thereby, the t-test ¢ = 1 (Tt 21 0} (or pr =1 (Ti<tn 20} ) is a level-«a
test for H, : 8 = 0 against H; : § > 0 (or H; : 6 < 0). Since a Gaussian location model
is regular we can directly apply Theorem §4.7.2 to derive its asymptotic power function under
local alternatives. However, Theorem §4.7.2 allows us to study a t-test in an arbitrary regular
location model with mean location and variance. More precisely, in a Gaussian location family
with common variance o? > 0 introducing ¢,(z) := x/o, v € R the density ¢ satisfies in
addition \(g,q) = 0 and 1 = A\(g%q). O

§4.7.6 Regular mean location and variance model. Leto® > 1and g,(z) := /o, € R. We
call a regular location family with density ¢ satisfying in addition A\(g,q) = 0 and 1 = \(g2q) a
regular mean location and variance model. O

§4.7.7 Theorem. Assume a two sample regular mean location and variance model. Consider
for the test problem Hy : 0 = 0 against Hy : 0 > 0 the t-test ¢}, = } with

1-— Ftn 2(tn 2,1— a)—Oé Ifk/n

(1) Under the null hypothesis H,, 9 = 0 holds IP’k+lg0n X, e, @y Is an asymptotic
level-« test;

1{T£l>tn72,lfa
€ (0,1), then the following statements hold true:

n—)oo

(ii) Its power function By (0) = PhTo* satisfies under local alternatives (3, (h/\/n) =

sz\lf(T]:l > tn 2,1— a) TL_)—O>O Fm(o 1)( Z1—a —+ p) Wlﬂ’l p — ho.—l 7(1 — 7)

Proof of Theorem §4.7.7 is given in the lecture. O

§4.7.8 Remark. Let us compare the asymptotic level-a rank-test ¢, = 1 (VK241 -0y}
and t-test oy = 1 { 1 Using their asymptotic power functions the asymptotic relative

Tgl>tn—2,1—a

efficiency between both tests equals are(ip,, @) = 120%(A¢*)?. In the particular case of a
Gaussian location model, i.e., ¢(x) = \/21?0 exp(—z?/(20?)) if follows \¢*> = 1/(24/70) and
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hence are(y,, p;) = 3/m ~ 0.955. On the other hand side, if we denote by Q the class of all
Lebesgue-densities on R satisfying A(¢g,q) = 0 and \(g2¢) = 1, then Hodges and Lehmann
[1956] have shown that inf e 120°(Ag*)* = 0.864 and sup o 120%(Ag*)? = co. O
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Chapter 5

Non-parametric statistics: local smoothing

This chapter presents elements of the non-parametric inference for curves
along the lines of the textbooks by Tsybakov [2009] and Comte [2015]
where far more details, examples and further discussions can be found.

5.1 Non-parametric curve estimation

Non-parametric density estimation. Consider a family P of probability measures on
(R, #) which contains the distribution of an observation X, i.e., X @ P. The class P captures
the prior knowledge about the distribution of the observation. Considering a class containing
just a singleton, i.e., P = {IP} for some probability measure P, means that the data generating
process is known in advance. On the contrary taking P equal to the set P(R) of all possible
probability measures on (R, %) reflects a lack of prior knowledge. In a certain sense a para-
metric model P = Pg for some parameter set © C R¥ provides then a usual trade-off between
both extremes. On the other hand side, for an arbitrary probability measure P with c.d.f. F
given an i.i.d. sample Xy, ..., X,, with common distribution P a reasonable estimator of I
is the empirical c.d.f. F,(t) = P,1(_cy, t € R. Obviously, for each t € R, F,(¢) is an
unbiased estimator of F, with variance Var(F,(¢)) = 1F(t)(1 — F(t)) and hence F,(t) con-
verges in probability to F(¢). Moreover, by the Law of Large Numbers §1.1.10 almost sure
convergence holds true point-wise and even uniformly due to Glivenko-Cantelli’s Theorem,
ie., [|F, — ]FHLOo = sup,cg |Fn(t) — F(t)] == 0. If we assume in addition that P’ admits

a Lebesgue density then F,, is the unbiased estimator with minimal variance employing the
Theorem of Lehman-Scheffé. However, comparing different probability measures using their
associated c.d.f.’s is visually difficult and hence typically other measures for dissimilarities are
used. Consider, for instance, for two probability measures P and Q on (R, A) their total vari-
ation distance given by ||P — Q|| := sup{|P(B) — Q(B)|, B € #}. Noting that for any
continuous probability measure P on (R, %), ||IP’ — @nH vy = 1as. forany n € N, the em-
pirical probability measure P, is not a consistent estimator of P in terms of the total variation
distance. In other words, the estimator will usually depend on the measure (metric, topology,
etc.) we use to quantify its accuracy as an estimator of P.

§5.1.1 Proposition (Scheffé’s theorem). Let P and Q be two probability measures on (R, %)
absolute continuous w.r.t. the Lebesgue measure \ with densities p and @, respectively. Then

IP—Qllpy =AM —a)" =3P —al =3 [lp —all.
Proof of Proposition §5.1.1 is given, for example, in Tsybakov [2009], Lemma 2.1, p.70. O

In the sequel D denotes a family of Lebesgue-densities on (R, B) and for each density p € D
let P and [E;, be its associated probability measure and expectation, respectively. We consider
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the statistical product experiment (R", %" Py" = {P®",p = dP/d\ € D}) and we write
X1, X, 9 P € D for short. Moreover, ]E%” denotes the expectation w.r.t. P®". Typically,
given an estimator p of p we consider for p > 1 either EZ"|p (t) — p(t)[?, for each ¢ € R, and
ESMD — pllf, = ES"(A|D — p|P) as, respectively, a local and global measure of its accuracy

with a special focuson p = 1 or p = 2.

Non-parametric regression. Describe the dependence of the variation of a real-valued r.v.
Y (response) on the variation of an explanatory real-valued random or deterministic variable
Z by a functional relationship Y = f(Z) + ¢ where f is the unknown functional parameter
of interest. Typically, it is assumed that the error term ¢ either is centred, i.e., E¢ = 0, in
case of deterministic explanatory variables Z, or satisfies E(¢|Z) = 0, in case of random Z.
For a detailed discussion of the deterministic case we refer to Tsybakov [2009]. Here and
subsequently, we restrict our attention to the case that X := (Y, Z) is a random vector with
values in a measure space (X', %) and our aim is statistical inference on f(Z) = E(Y|Z).
Typically, the distribution of X = (Y, Z) is parametrised by the regression function f only,
ie., X ~ Py, and the dependence on the marginal distribution of the regressor Z and the
conditional distribution of the error term ¢ given Z is not made explicit. For sake of simplicity,
let us in addition suppose that Z takes its values in R and the joint distribution of X = (Y, 7)
admits a joint Lebesgue density p, ,. Denoting by p, the marginal density of Z we use the
identity £(z) :== f(2)p,(2) = [y, ,(y, 2)dy which as usual holds a.s. only. Given an i.i.d.
sample of X a widely used estimation strategy is then based on a separate estimation of the
function ¢ and the marginal density p,, say by ¢ and D, and forming a possibly regularised
estimator f = (¢, /D,)1 (5,50} for the function of interest f = ¢/p,. However, there are

many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel F
denotes a family of regression functions and for each f € IF let Py and E; be the associated
probability measure of X = (Y, Z) and its expectation, respectively. We denote by Pr the
family of all possible distributions of X, but keep in mind, that generally the distribution of X
is not uniquely determined by f € F only. However, an i.i.d. sample of X = (Y, Z) obeying the
regression model we denote by X, ..., X, @ PE" or (Y1, Z1), ..., (Ya, Z,) @ PE" for short.
Typically, given an estimator f of f we consider again for p > 1 either E;’?”\f(z) — f(2)J?, for

each z € R, and E;‘?”Hf— fls, = E;‘?"(MfA— fI?) as, respectively, a local and global measure
of its accuracy.

5.2 Kernel density estimation

Throughout this section let X, ..., X, % P be real-valued r.v.’s with c.d.f. F and Lebesgue-

density p = dP/d\.

§5.2.1 Definition. An integrable map K : R — R, i.e., \|K| < oo, with AK = 1 is called a
kernel. Given h > 0, typically called bandwidth, the kernel density estimator of p(x) evaluated

at a point x € R is defined as P, (z) := 13" 1K (%) = P,K} using the abbreviation

Ki(X) =+ K (&%) forz, X € R. O

§5.2.2 Remark. Starting with F(z 4 h) — F(z — h) = AM(Ljz—pe4np) for any 2 > 0 we have
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for 1 sufficiently small F(z + h) — F(x — h) ~ p(x)2h. Replacing the unknown c.d.f. F by its
empirical counter part F,, Rosenblatt [1956] proposed for p (=) the following estimator

~ F.(z+h) —F,(x —h) -
Py (l’) = oh = % IEDn-ﬂ]m—h,z—l—h] Z 2

= DK = 4 YR = Buk;
1=1 =1

setting K (z) := $1j_13)(z) and K (X) := +K(22%) for 2, X € R. Observe that K is
a density, which in turn implies that ﬁl is a density for each A > 0 as well. Parzen [1962]
introduces a kernel K and a bandwidth A as in Definition §5.2.1 and studies the more general
kernel density estimator P, (z) = 13"  1K(& ’”) = P,K7. Note that \p, = 1 since
AK = 1. If the kernel is in addition posmve then P, is a density. An alternative motivation for

a kernel density estimator provides the following lemma. O

§5.2.3 Proposition (Bochner’s lemma). Let g : R — R be bounded, i.e., ||g||;-~ < oo, and
continuous in a neighbourhood of reR IfQ : R —> R is integrable ie., /\|Q| < oo, and

z . 1 o—z : — z ac — _
Q3 = ;Q(5%), then }lllir(l))\( hm F [Q(52)g(2)dz = g(x) [ Q(2)dz = g(x)A\Q
Proof of Proposition §5.2.3 is given in the lecture. O

§5.2.4 Example. Typically considered is a rectangular kernel K (u) := ,
lar kernel K (u) := (1 —|u|)L{—1,173(u), an Epanechmkov kernel K (u) := 2(1—u?) L1, (u)
or a Gaussian kernel K (u) := \/Lz? exp(—u?/2). O

Local measure of accuracy. For a kernel density estimator p, we consider first its mean
squared error at a point z € R, that is, R(D, (z), p(z)) = EZ"|p, (v) — p(x)]* = MSE(z).
Observe that MSE(z) = Vary, (p, () +|biasy, (x)|* with bias, (z) := ES"p, (z) —p (x) where
we study separately the variance and the bias term, i.e., Vary, (P, (z)) and bias, (z).

§5.2.5 Lemma. If |p||, < oo and ||K||3» = AK? < oo, then for each x € R it holds
Vary (B, (2)) < (nh) ™ [Pl g 1 K172

Proof of Lemma §5.2.5 is given in the lecture. O

§5.2.6 Remark. Let p be bounded and continuous, and suppose that K belongs to L' N L2
with AKX = 1. From Lemma §5.2.5 follows then Var, (B, () < (nh)"'[|p|| o | K |72
On the other hand, since biasy (z) = A(Kjp) — p(z) from Bochner’s lemma §5.2.3 follows
|biasp, (r)| = o(1) as h — 0. By combining both results, we obtain for any sequence (A, )nen
of bandwidths satisfying nh, — oo and h,, = o(1) that R(p, (z),p(v)) = o(1) as n — oo.
Consequently, the kernel density estimator is consistent, but its rate of convergence might be
arbitrarily slow. Here and subsequently the bandwidth depends on n but we drop from now on
the additional index n and write shortly nh "= oo or h = o(1) as n — cc. 0.

§5.2.7 Lemma. Let p be twice-differentiable with bounded second derivative p, i.e., ||P | <
oo and let the kernel K satisfy in addition \(id K) = 0 and \(id* | K|) < oo with id(u) := u,
u € R. Then for each x € R, h > 0 and n € N it holds |bias, (2)| < h?3 ||D]| ;- A(id* | K]).
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Proof of Lemma §5.2.7 1is given in the lecture. O

§5.2.8 Remark. Let p be bounded and twice-differentiable with bounded second derivative p
and suppose that K belongs to L' N L? with AK = 1, A(id K) = 0 and \(id* |K|) < co. By
combination of Lemma §5.2.5 and §5.2.7 follows uniformly for all z € R

R, (), p(2)) < (nh) " 1Dl g 1K |72 + 5 D17 (AGd® [K))?,

where the first and second right hand side term is increasing and decreasing, respectively, as h

tends to zero. Therefore, let us minimise the right hand side as a function of /. Keep in mind that

M(h) = a(nh)™" +bh*, h > 0, attains its minimum M (h,) = b(5%;)"/ 0+ n=20/C+1 o
HPHLDOHK”LQ

( 15 117 00 (A(d? | K)))?

h — ( g )1/(2B+1) —1/(254‘1)_ Therefore’ Choosing ho = )1/5n_1/5 we obtain

sup R(D,, (2),p(2)) < 1 (1B 15 (G [K)?) " (IIpll e [K]72)1° 0.

zeR

We shall emphasise that the optimal bandwidth h, depends not only on the Kernel but also on
characteristics of the unknown density p, and hence, is in general not feasible in practise. O

§5.2.9 Proposition. Let p be bounded and continuous in x and let K € L' N L? be bounded
with \K = 1. Ifhn — oo and h = o(1) then Vnh(D, () — EpD, (z)) & N0, p (z)AK?),

Proof of Proposition §5.2.9 is given in the lecture. O

§5.2.10 Remark. Let p be bounded and twice-differentiable with continuous in z and bounded
second derivative . If K satisfies \(id K') = 0 and A(id* |K|) < oo in addition to the assump-
tions of Proposition §5.2.9 then h~?bias,, (z) = 1 (z)A(id® K)+o(1) as h — 0. Consequently,

choosing hn'/> — ¢ > 0 it follows v/nhbiasy (v) = 052/21'1')(x))\(id2 K) + o(1) and hence
Vih(D, () — p(2)) S N(ELD (2)A(id? K), p () AK?2) due Proposition §5.2.9. On the other

hand side, if hn!/®> = o(1) it follows in analogy vVnh(D, (z) — p(z)) & N0, p(2)AK?). o

§5.2.11 Definition. For/ € Namap K : R — Ris called a kernel of order [ if the functions
id’ K, j € [0, 1], are integrable and satisfy AK = 1 and A\(id’K) = 0, j € [1,1]. O

§5.2.12 Remark. For arbitrary [ € N the construction of a kernel of order [ and several ex-
amples are given, for instance, in Tsybakov [2009], section 1.2.2, or Comte [2015] section
3.24. O

§5.2.13 Definition. For two positive numbers 5 and L the Holder class H(S, L) on R is a set
of | = | 3] times differentiable functions f : R — R whose derivative f() for any z,y € R

satisfies | f()(z) — fU(y)| < L|z — y|?~. O
§5.2.14 Lemma. Let p € H(B,L) and let K be a kernel of order | = |B] satisfying
A([id|?|K|) < oo. Then foreachx € R, h > 0andn € N it holds |biasy, (z)| < WP EX([id|?| K).
Proof of Lemma §5.2.14 1is given in the lecture. O
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§5.2.15 Remark. Letp € #H(3, L) be bounded and suppose that K is a kernel of order | = | /3|
satisfying AK? < oo and A(Jid|?|K|) < oo. By combination of Lemma §5.2.5 and §5.2.14
follows uniformly for all z € R

R(B,(2),p(@)) < ()7 Dl [ K172 + 12 (EA(lid|?| K1),

therefore minimising the right hand side as a function of A leads to an optimal bandwidth
1P| oo 15117 2
2B(E(id/?|K1))?
mal bandwidth h, we have sup, i R(D,, (z),p(z)) = O(n=2#/@#1)) However, the optimal
bandwidth h, depends again on characteristics of the unknown density p, and hence, is in gen-
eral not feasible in practise. O

he = c¢n~ /1) with constant ¢2#+! = Consequently, by choosing the opti-

Global measure of accuracy. Assuming a density p € L? we consider next the integrated
mean squared error (MISE) of the kernel density estimator p,, that is, MISE := R(p,,p) =
EE" B, — pli7. = EE"AID, —p|>. Observe that MISE = [, Var, (, ())dx + [, bias; (z)dz
with biasp, (z) = M Kjp) — p(x) where we study now separately the integrated variance and
bias term.

§5.2.16 Lemma. If K € L?, then for any density p holds [, Var, (D, (z))dz < (nh)™! [
Proof of Lemma §5.2.16 is given in the lecture. O

§5.2.17 Definition. For two positive numbers (3 and L the Nikol’ski class N'(§3, L) on R is a set
of | = | 3] times differentiable functions f : R — R whose derivative f() for all ¢ € R satisfies

(SO + 1) = fO(x)Pda) ' < LIt :

§5.2.18 Lemma. Let p € N(B,L) and let K be a kernel of order | = |3] satisfying
A(Jid|?|K|) < oo. Then for each v € R, h > 0 and n € N it holds [ |bias,(z)|*dz <
RO A(lid)7 | ) .

Proof of Lemma §5.2.18 is given in the lecture. O

§5.2.19 Remark. Let p € L* N N(B3, L) and let K be a kernel of order | = |3] satisfying
AK? < oo and A(]id|?|K|) < oo. By combination of Lemma §5.2.16 and §5.2.18 follows

-~ _ . 2
R(B,.p) < (nh) K|z + 1 (FA(i°] K )

therefore minimising the right hand side as a function of A leads to an optimal bandwidth

h, = ¢n~Y/25+D) with constant 2Tt = — 2K Consequently, by choosing the opti-
o 2B A7 K )2

mal bandwidth h, we have R(p, ,p) = O(n~?/*t1). However, the optimal bandwidth A,
depends again on characteristics of the unknown density p, and hence, is in general not feasible
in practise. O

Data-driven bandwidth selection. Considering a kernel density estimator p, the choice
of the bandwidth / is crucial. An ideal value of the bandwidth is, for instance, given by
hia = arg min{R(p,,p),h > 0}. Note that for a given density p, the estimator lAphid’ if
hiq exists, has minimal MISE within the family {p,,h > 0} of all kernel density estimators
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with fixed kernel and varying bandwidth. Unfortunately, the value h;; and hence @hid remains
purely theoretical and thus is often called oracle, since R(p, ,p) depends on unknown charac-
teristics of the density p. A common idea is to use unbiased estimation of the risk R(p, ., p)
and to minimise the unbiased estimator of the risk rather than the unknown risk itself. Note
that R(p,, p) = EZ"{AD> — 2\(D,p)} + Ap®. Since the integral Ap* does not depend on h
the minimiser h;q of R(P, , p) also minimises the function J(h) = EE"{Ap? — 2\(p,p)}. We
construct now an unbiased estimator of .J(h). For this purpose it is sufficient to find an unbiased
estimator for each of the quantities ES"Ap? and ES"A\(D,p). A trivial unbiased of ES"\p? is
Ap:. Define further p*(z) = (—1) >4 Kii(X;), then & 3% | B, *(X;) is an unbiased estima-
tor of EX"A(p, p). Consequently, CV (h) := Ap> — 2 Zl L D, (X;) is an unbiased estimator
of J(h), where C'V stands for “cross-validation”. The function C'V is called the leave-one-
out cross-validation criterion or simply the cross-validation criterion. Keeping in mind, that
the functions h + R(D,,p) and h — EZ"{CV(h)} have the same minimiser. In turn, the
minimizers of E5"{CV'(h)} can be approximated by those of the function C'V' which can be
computed from the sample: h., = arg min{CV (h), h > 0} whenever the minimum is attained.
Finally, we define the cross-validation estimator @hw. Note that this is a kernel estimator with
random bandwidth A, depending on the sample only. It can be proved that under appropriate
conditions the risk of the estimator P, is asymptotically equivalent to that of the ideal kernel
pseudo-estimator (oracle) ﬁBhid.

5.3 Non-parametric regression

Here and subsequently, consider i.i.d. rv.’s (Y, Z2), (Y1, Z1), (Ya, Z2),... obeying a non-
parametric regression model E;(Y'|Z) = f(Z) for some unknown regression function f € F as
introduced in section 5.1, i.e., (Y1, Z1), ..., (Yo, Zn) @ PE™.

§5.3.1 Assumptions and notations. (i) The centred error terme :=Y — f(Z),i.e.,Ef(e) =0,
has a finite second moment o2 := E(¢?). (ii) € and the real-valued explanatory variable Z are
independent. (iii) The joint distribution IPYZ of (Y, Z) admits a Lebesgue density p*-#2. The
marginal Lebesgue density of Z is denoted by pZ. (iv) Define ¢ := fpZ? = [yp¥Z(y,e)dy. ©

Consider a kernel density estimator P (y, z) = + >."" | K}/(Y;)K;(Z;) of the joint density
p*Z(y, z) with K (X) := + K(%-2) for some kernel function K and bandwidth & > 0. Keep-
ing in mind that ¢ = [yp¥Z(y,e)dy and pZ = [ p*-Z(y, e)dy their estimators are obtained
by replacing the unknown density p*-# by its kernel density estimator @f»z . If the kernel K
satisfies A = 1 and A(id K') = 0, then 6 = [ypr?(y,2)dy = + > ViK}(Z;) and
DZ(2) == [ D2 (y, 2)dy = = 300 K7 (Z;) is the usual kernel density estimator of pZ.

§5.3.2 Definition. Given a kernel A and a bandwidth h, the Nadaraya—Watson estimator of
f(z) evaluated at a point z € R is defined as

._ h(z) Zz  YiK 57 (2
fh(z)_@f(z)_ 12] leZ Z Z ( )7 f]ph()%o

and fA'h(z) = 0 otherwise, using the abbreviation K;(Z) := + K (%2) for z, Z € R. O
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Local measure of accuracy. Keeping in mind that pZ? is a kernel density estimator of
p? we can apply the results obtained in the last section. Therefore, it remains to consider the
estimator ¢, of /. We consider first its mean squared error at a given point z € R, that is,
R(L,(2),£(2)) = EF"|L, (2) = £(2)|* = MSE(2) = Var;(¢, (2)) + [bias, (2)|* with bias, (z) :=
Esl, (zA) —{(z) = MK}l) —£(z) where we study separately the variance and the bias term, i.e.,
Varg (¢, (2)) and bias,(z). Obviously, as in the density estimation case replacing the density
P by ¢ Bochner’s lemma §5.2.3, Lemma §5.2.7 and §5.2.14 provide bounds for bias,(z) =
MNEGC) —0(2).

§5.3.3 Lemma. If||f|| o < 00, |p?||z~ < 00 and ||K|3, = AK? < oo, then for each z € R
it holds Var; (¢, (2)) < (nh) = (|[flIZe + o2) P [z K|72-

Proof of Lemma §5.3.3 1is given in the lecture. O

§5.3.4 Remark. Let f and pZ, and hence, ¢ = fpZ, be bounded. Suppose that the function ¢
belongs to the Holder class H (5, L) defined in §5.2.13 and that K is a kernel of order | = ||
as defined in §5.2.11 satisfying AK? < oo and A(|id|®|K|) < oo. By combination of Lemma
§5.3.3 and §5.2.14 applied to ¢ rather than pZ follows uniformly for all z € R

R(0,(2),£(2)) < (nh) (1117 + 02) [l 1K (172 + 02 (FA(1d]°|K)) .

Therefore minimising the right hand side as a function of % leads to an optimal bandwidth
(£ 0 +e)lIpllLoe 1K]17
2B(H A(id|?|K1))?
the optimal bandwidth h, we have sup, g R(Zho (2),£(2)) = O(n=28/2+1)) However, the
optimal bandwidth h, depends again on characteristics of the unknown function /. O

h, = ¢n V@) with constant ¢2°+! =

. Consequently, by choosing

Global measure of accuracy. Assuming ¢ € L? we consider next the integrated mean
squared error (MISE) of the kernel estimator /, , that is, MISE := R(¢,,£) = EY"||(, —(||7, =
E A, — (2 = Jz Var,(C, (2))dz + [ biasy (2)dz with bias,(z) = MKj{) — €(z) where
we study now separately the integrated variance and bias term. Note that, as in the density
estimation case replacing the density p by ¢ Lemma §5.2.18 provides a bound for bias,(z) =

NEG) — ((2).

§5.3.5 Lemma. If K € L? and \(p? f?) < oo, and hence o3 :=E;Y? = \(p? f?) + 02 < o0,
then J Vary (0, (2))d= < (nh) 1% [ K2

Proof of Lemma §5.3.5 1is given in the lecture. O

§5.3.6 Remark. Let A\(pZf?) < oo, ¢ € L>* NN (B, L) and K be a kernel of order [ = |f3]
satisfying AK? < oo and A(]id|?|K|) < oo. By combination of Lemma §5.3.5 and §5.2.18
follows

R(L, ) < (nh) "o | K[+ 12 (A1 KD)),
therefore minimising the right hand side as a function of A leads to an optimal bandwidth

he = cn~Y/@+1) with constant 20+ = — YA
28(77 A(lid| P K[))?

mal bandwidth h, we have R(EA,M,]p) = O(n~2A/(26+1)) However, the optimal bandwidth h,
depends again on characteristics of the unknown function /. O

. Consequently, by choosing the opti-
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Under regularity conditions we have shown that the MSE of lﬁh and pZ tend to zero as n — o0

-~ pE™

provided the bandwidth is chosen appropriately. In this situation, it follows directly ¢, (z) ER

pPe™ ~ —~ pe™

0(2) and P?(2) > p?(z) which in turn implies f, (2) = £, (2)/D?(2) = £(2)/p?(2) = f(2),
Moreover, it is straightforward to show that under similar assumption as used in Proposition
§5.2.9 the asymptotic normality of ¢, (z) holds true, which due to Slutky’s lemma §1.1.7 allows
then to establish the asymptotic normality of f, (2). In order to derive an upper bound for the

MISE we use in the next assertion a regularised version of f, (z) which makes use of a stronger
assumption, that is, p#(z) > p,, z € R, for some known constant p, > 0.

§5.3.7 Lemma. Suppose that p%(z) > p,, z € R, for some known constant p, > 0. Con-

sider the regularised Nadaraya—Watson estimator ]?}0 = é—’}ﬂ (37 >po/2} If || fllLe < oo then
1 h h o

121113 0 ~
B n 5z — pe|2,.

R(F2, £) = EZIIT - fI2. < SEZ"(7, - €2 +

R’

Proof of Lemma §5.3.7 is given in the lecture. O

Local polynomial estimators. Let the kernel K take only non-negative values. It is easily
verified, that the Nadaraya—Watson estimator f, satisfies

ﬁ(z) = arg min Z(Y; — 02 K{(Z;).

25—

Therefore, f; is obtained by a local constant least squares approximation of the responses {Y;}.
The locality is determined by a kernel K that downweights all the Z; that are not close to z
whereas 6 plays the role of a local constant to be fitted. More generally, we may define a
local polynomial least squares approximation, replacing the constant ¢ by a polynomial of a
pre-specified degree.

§5.3.8 Definition. For [ € R consider U : R — R, 2 — U(z) = (1, 2,22/2!,...,2!/1!). Let
K : R — R be akernel and i > 0 be a bandwidth. A vector 6(z) € R!*! satisfying

0(z) = argmin Y (V; — 0'U(%:2))2 K} (Z:).

feRi+1

is called a local polynomial estimator of order | of 0(z) = (f(2), hf(2), B2f(2),... K f®(2)).
The statistic f, (z) = U*(0)6(z) is called local polynomial estimator of order | of f(z). O

Note that fh (z) is simply the first coordinate of the vector @\(z) Obviously, the Nadaraya—
Watson estimator with non-negative kernel is just a local polynomial estimator of order zero,
Furthermore, properly normalised coordinates of 6(z) provide estimators of the derivatives
f (2), f (2),..., fW(2). For theoretical properties of local polynomial estimators and their de-
tailed discussion we refer to Tsybakov [2009], section 1.6.
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Chapter 6

Non-parametric statistics: orthogonal series estimation

We study non-parametric estimation of a functional parameter of interest
f based on a noisy version fA =f4+nV 21y of f contaminated by an
additive random error W with noise level n=/2. The quantity n € N
is usually called sample size referring to statistical problems where the
noisy version f is constructed using a sample of size n. For convenience,
we suppose that the function of interest f belongs to an Hilbert space and
thus permits an orthogonal series expansion. We briefly recall theoreti-
cal basics and terminologies from functional analysis which allow us to
Jormalise the statistical experiment as a sequence space model. Through-
out the following chapters we illustrate the results using three particular
models, namely, non-parametric regression with uniformly distributed
random design, non-parametric density estimation and a Gaussian se-
quence space model.

6.1 Theoretical basics and terminologies

For a detailed and extensive survey on functional analysis we refer the reader, for example,
to Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§6.1.1 Definition. A normed vector space (H, ||-||m) over K € {R,C} that is complete (in a
Cauchy-sense) is called a (real or complex) Hilbert space if there exists an inner product (-, -)y
on H x H with |(h, h)g|"/? = |||y for all b € H. O

§6.1.2 Property.
(Cauchy-Schwarz inequality) |(hy, ho)u| < [[Ri|lg - ||h2||lg for all hy, hy € HL O

§6.1.3 Examples. (i) For k& € N the Euclidean space KF endowed with the Euclidean inner

(ii)

product (x,y) := 7'z and the induced Euclidean norm ||z|| = (z'z)/? for all z,y € K*
is a Hilbert space. More generally, given a strictly positive definite (k x k)-matrix W, K*
endowed with the weighted inner product (z, y)y = 7'Waz for all z,y € K* is also a
Hilbert space.

Given J C Z, denote by K the vector space of all K-valued sequences over J where
we refer to any sequence (z;);cs € K7 as a whole by omitting its index as for example
in «the sequence x» and arithmetic operations on sequences are defined element-wise, i.e.,
ry = (2;y;)jes- Inthe sequel, let |||, = (32;c 7 |2;|P)1/P, forp € [1,00), and || 7| o0 =
sup,c 7 |z;|. Thereby, for p € [1, oc], consider 7(T) = {(z;);e7 € K7, |||, < oo}, or
¢? for short, endowed with the norm ||-||¢». In particular, ¢*(7) is the usual Hilbert space of
square summable sequences over J endowed with the inner product (z, y)s;2 1= > 7 TiY;
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forall z,y € *(7).

(iii) For a strictly positive sequence v consider the weighted norm ||z|> == 3" eq O3lTP. We
define ¢2(J), or £2 for short, as the completion of ¢*(7) w.r.t. ||-||, which is a Hilbert space
endowed with the inner product (z,y), := (vx,vy), = Y., 032,y forall z,y € (7.

(iv) Let 2 be the Borel-o-algebra on K. Given a measure space (£2,.27, i) denote by K the
vector space of all K-valued functions f : 2 — K. Recall that || f|| = (p| f|P)Y/P, for
p € [1,00), and HfHLzo = inf{c : u(|f| > ¢) = 0}, where for p € [1, 00|, we write
LP(Q, o ) = {f € K? &/-FB-measurable , || f|| , < oo}, LE(S2), L%, or LP for short,
which is endowed with the norm ||-|| .z or [|-|| z» for short. L*(Q, o7, u), L%(Q2), L7 or L?
for short, is the usual Hilbert space of square ji-integrable, <f -%B-measurable functions on
Q2 endowed with the inner product (f, g) > := p(fg) forall f,g € L7.

(v) For a strictly positive function v consider the weighted norm | f||2 == (0 f?). We define
L%(Q, o, ), or L2 for short, as the completion of L*(Q, <7, ) w.rt. ||-||o, which is a
Hilbert space endowed with (f, g), := (vf, 0g) 2 = u(v?fg) forall f,g € L2.

(vi) Let X be a random variable (r.v.) on a probability space ({2, o7, P) taking its values in a
measurable space (X, %). For p € [1,00] we set L5 := LP(X, %, PX) where L% is a
Hilbert space endowed with (f, g);2 = PX(fg) forall f,g € L%. O

§6.1.4 Definition. A subset U/ of a Hilbert space (H, (-, -)g) is called orthogonal if
Vul,uz c L{, U1 7£ U - <U1,U2>H =0

and orthonormal system (ONS) if in addition |[ul|y = 1, Vu € U. We say U is an orthonormal
basis (ONB) it U4 C U' and U’ is ONS, then U/ = U’, i.e., if it is a complete ONS.

§6.1.5 Examples. (i) Consider the real Hilbert space L*([0, 1]) w.r.t. the Lebesgue measure.
The trigonometric basis {1;, j € N} given for t € [0, 1] by

Y (t) := 1, Yop(t) == V2 cos(2mkt), hopsr(t) == V2sin(2mkt), k=1,2,...,
is orthonormal and complete, i.e. an ONB.
(ii) Consider the complex Hilbert space L?([0, 1)), then the exponential basis {e;, j € Z} with
e;(t) := exp(—i2mjt) fort € [0,1) and j € Z,
is orthonormal and complete, i.e. an ONB. 0

§6.1.6 Properties.

(Pythagorean formula) If hy, ..., h, € H are orthogonal, then ||3_7_, hill3 = S th”%l.

(Bessel’s inequality) — IfU C H is an ONS, then Hh“éI > 3" | (b wyu|? for all h € H.

(Parseval’s formula) — An ONS U C H is complete if and only zf||h||12HI = uers |, wyw]? for
all h € H. .

$6.1.7 Definition. Let U be a subset of a Hilbert space (H, (-, -)g). Denote by U := lin(i) the
closure of the linear subspace spanned by the elements of ¢/ and its orthogonal complement in
(H, (-, -yu) by U+ := {h € H: (h,u)n = 0,Yu € lin(U) } where H = U @ U*. O
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&l .8 Reﬂark. If Y C H is an ONS, then there exists an ONS V C H such that H =
lin(U) @ lin(V) and forall h € Hitholds h = >, o, (h, u)gu+ Y, o\, (h, v)gv (in a L*-sense).
In particular, if // is an ONB then i = ), (h,u)gu for all h € H. O

§6.1.9 Definition. Given J C Z, a sequence (u;);es in H is said to be orthonormal and
complete (i.e. orthonormal basis) if the subset i = {u;, j € J} is a complete ONS (i.e. ONB).
The Hilbert space H is called separable, if there exists a complete orthonormal sequence. O

§6.1.10 Examples. The Hilbert space (R*, (-, -),), (£, (-, -)o) and (L3(Q), -, ) 13 ) with o-finite
measure /4 are separable. On the contrary, given A € R define the function f, : R — C with
fi(z) == e and set H = lin {f\, A € R}. Observe that (f,g) = limy o % fjtf(s)@ds
defines an inner product on . The completion of 7 w.r.t. the induced norm || f|| = [(f, f)|"/?
is a Hilbert space which is not separable, since || f\ — fv| = v/2 forall X # X' O

§6.1.11 Definition. Given J C Z we call a (possibly finite) sequence (J,,)merm, M C N, a
nested sieve in J,if (i) Ji, C Jm, forany k < m, k,m € M, (ii) |T,| < oo, m € M, and
(1) UnemTIm = J. We write TS := T \Tm, m € M. Denoting [a,b] := [a,b] N Z we use
typically the nested sieve ([1,m])men and ([—m, m])men in J = N and J = Z, respectively.
Analogously, given an ONS U = {u;,j € J} and setting U, := lin {u;,j € T}, m € M,
for a nested sieve (J,,)mem in J we call the (possibly finite) sequence (U,,)men a nested
sieve in U := lin {u;,j € J}. We write U := lin {u;,j € J¢} where U = U,, ® UL. For
convenient notations we set further 1, := (1, (j))jes With 17 (j) = 1if j € J,, and
17, (j) = 0 otherwise, and analogously 1 7. := (1< (j));jcs m

§6.1.12 Definition. We call an ONS U = {u;,j € J} in Li (respectively, in £?)

(1) regular w.r.t. the nested sieve (T )mer in J and the weight sequence v if there is a finite

constant 7, > 1 satisfying |37, ; 03|u;|?|| e < 73, D, 07 forallm € M;

(i1) regular w.r.t. the weight sequence a if there exists a finite constant 7,, > 1 such that

132 ez 051l e < T 0

§6.1.13 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L? a regular
ONS {u;, j € N} w.r.t. the nested sieve ([1,m]),en and v = 1 is exactly equivalent to follow-
ing property: there exists a finite constant 7, > 1 such that for any h belonging to the subspace
U,,, spanned by the first m functions {u;}7,, holds ||h|| . < 7u/m[|h]| .. Typical example
are bounded basis, such as the trigonometric basis, or basis satisfying the assertion, that there ex-

ists a positive constant C, such that forany (cy, ..., ¢;n) € R™, |37 cjujl1e < Cogy/mica
where |c|o, = max;<j<,, ¢;. Birgé and Massart [1997] have shown that the last property is sat-
isfied for piece-wise polynomials, splines and wavelets. O

§6.1.14 Example (§6.1.5 (i) continued). Consider the trigonometric basis {1;,j € N} in the
real Hilbert space L*([0,1]). Since sup,cy |1l < v/2 setting The = 2 the trigonometric
basis is regular w.r.t. any nested Sieve (7,,)merm and sequence v, i.e., §6.1.12 (i) holds with
122 e, 03105l < 734 D7 c 7, 03 Inthe particular case of the nested sieve ([1, 1 + 2m])nen

_ 142 . . )
and v = 1, we have ) .7 |4 = Ly + D71 {2 sin?(2mje) + 2cos?(2mje)} = 1+ 2m
and thus, the trigonometric basis is regular with Tj := 1. Moreover, the trigonometric basis is
regular w.r.t. any square-summable weight sequence a, i.e., ||al[,» < oc. Indeed, in this situation

we have |3y 3[4 ]|l < 2 ||a||7 and hence §6.1.12 (ii) holds with Toa =2 |2 O
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§6.1.15 Definition. A map 7" : HI — G between Hilbert spaces H and G is called linear
operator if T'(ahy + bhy) = aThy + bThy for all hy,hy € H,a,b € K. Its domain will be
denoted by D(T'), its range by R(T') and its null space by N (T'). O

§6.1.16 Property. Let T' : H — G be a linear operator, then the following assertions are
equivalent: (1) 1" is continuous in zero. (i1) 1" is bounded, i.e., there is M > 0 such that
|Th| < M ||h||y for all h € H. (iii) T is uniformly continuous. O

§6.1.17 Definition. The class of all bounded linear operators T : H — G is denoted by
Z(H,G), or £ and in case of H = G, .Z(H) for short. For T € Z(H, G) define its (uniform)
norm as || T| y = |7 sy = supd| Thllg: [l < 1.1 € H). -

§6.1.18 Examples. (i) Let M be a (m x k) matrix, then M € Z(R* R™). We write | M ||, :=
| M| o my for short. (spectral norm)

(i) LetUd = {u;,j € J} be an ONS in H and for any f € H consider its sequence of gen-
eralised Fourier coefficients [f] := ([f];)jes given by [f]; == (f,uj)m, j € J. The
associated (generalised) Fourier series transform U defined by f — U f := [f] belongs to
ZL(H, *(J)) with [|U] , = 1.

(iii) For a sequence A\ = ()\;) e consider the multiplication operator M, : K — K7 given
by z — M,z := (\;z;)jey. For any bounded sequence )\, i.e, |[Al,« < 00, we have
IM,|| & < ||\l and hence, M, € Z(¢*(J)). Analogously, given a function A : Q — K
the multiplication operator M, : K® — K% is defined as f — M, f := f\ where for
any bounded function A\ holds ||MA||_$(L3) < “)‘HL,‘f < oo and, hence M, € Z(L7).
On the other hand side, if A is real-valued, p-a.s. finite and non zero, then the subset
D(M,) :={f € L2 : \f € L2 } isdense in L?. In this situation the multiplication operator
M, : L2 D D(M,) — L2 is densely defined (and self-adjoint). O

§6.1.19 Definition. A (linear) map ® : H D D(®) — Kiis called (linear) functional and given
an ONS {u;, j € J} in H which belongs to D(®) we set [®] = ([®].);c s with the slight abuse

J

of notations [®], := ®(u;). In particular, if ® € Z(H, K) then D(®) = H. O

§6.1.20 Property. Let ® € £ (H, K).

(Fréchet-Riesz representation) There exists a function ¢ € H such that ®(h) = (¢, h)y for
all h € H, and hence, given an ONS {u;, j € J } inH we have [®], = [¢]; forall j € J. ©

§6.1.21 Example. Consider an ONB U = {u;,j € J} in L*(Q) (or analogously in ¢*(7)).
By evaluation at a point t, € ) we mean the linear functional ®;, mapping h € L*() to
h(to) == 1, (h) = > ;e 7[h]ju;(t,). Obviously, a point evaluation of h at ¢, is well-defined, if
> jer [hlju;(t,)] < oo. Observe that the point evaluation at ¢, is generally not bounded on the
subset {h € L*(Q) : 3. ; |[h]u;(t,)] < oo} O

§6.1.22 Definition. If 7" € .Z(H, G), then there exists a uniquely determined adjoint operator
T* € Z(G,H) satisfying (Th, g)g = (h,T*g)g forall h € H, g € G. O

§6.1.23 Properties. Let S,T € £ (H;,Hs) and R € £ (H,, H3). Then we have
(i) (S+T)" = S*+T* (RS)" = S*R".
(i) [15*lly = 1S1lgr [155*12 = 15751l & = 1S 1%-
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(i) N(S) = R(S*)E, N (S*) = R(S)*. O
§6.1.24 Examples. (i) The adjoint of a (k x m) matrix M is its (m X k) transpose matrix M".

(i) Let M, € Z(L*(, u)) be a multiplication operator, then its adjoint operator M} = M,
is a multiplication operator with \*(t) = A(¢), t € Q. O

§6.1.25 Definition. (i) The identity in £ (H) is denoted by Idy.

(ii) LetT € Z(H,G). Obviously, T : N(T)* — R(T) is bijective and continuous whereas its
inverse T™1 : R(T) — N(T)* is continuous (i.e. bounded) if and only if R(7') is closed.
In particular, if 7 : H — G is bijective (invertible) then its inverse T~ € £(G,H)
satisfies [dg = 77 ' and Idy = T~'7.

(i) U € Z(H,G) is called unitary, if U is invertible with UU* = Idg and U*U = Idy.
(iv) V € Z(H,G) is called partial isometry,if V : N'(V)+ — R(V) is unitary.
(v) T € Z(H) is called self-adjoint, if T = T*, i.e., (Th, g)u = (h,T*g)u for all h, g € H.

(vi) T € Z(H) is called normal, if TT* = T*T, ie., (Th,Tg)g = (T*h,T*g) for all
h,g € H.

(vii) A self-adjoint T' € .Z(H) is called non-negative or T' > 0 for short, if (T"h, h)g > 0 for
all h € H and strictly positive or T > 0 for short, if (T'h, h)y > 0 for all h € H\{0}. ©

(viii) IT € Z(H) is called projection if I* = TI. For II # 0 are equivalent: (a) II is an
orthogonal projection (H = R(1I) & N (I1)); (b) ||IT|| , = 1; (¢) II is non-negative.

§6.1.26 Examples (§6.1.18 continued). (1) The (generalised) Fourier series transform U (see
§6.1.18 (i1)) is a partial isometry with adjoint operator U*z = >, ; z;u; for z € 2(T).
Moreover, the orthogonal projection Il onto U satisfies Iy f = UUf = >, ;[fl;u;
forall f € H. If U = {u;,j € J} is complete (i.e. ONB), then U is invertible with
UU* = 1dp and U*U = Idy due to Parseval’s formula, and hence U is unitary.

(i1) A multiplication operator M, € Z(LZ) (see §6.1.18 (ii1)) is normal. If A is in addition
real, it is self-adjoint and if \ is non-negative, then it is non-negative. O

6.2 Abstract smoothness condition

§6.2.1 Notations. Let U/ = {u;,j € J} be an ONS with U = lin{u;,j € J} C H. For
h,g € H we denote by [h] := ([h];)jes = Uh the sequence of generalised Fourier coefficients
[h]; = (h,u;)n and given a strictly positive sequence of weights v = (v;),;c7, we define
(h.)? = (olh],olgl): = 3,0, v2 A, [g]; and [ = 5, o?[[A], |2 Obviously. (-},
and ||-||, restricted on U defines on U a weighted inner product and it induced weighted norm,
respectively. We denote by U, the completion of U w.r.t. ||-||,. If (u;),c7 is complete in H then
let H, be the completion of H w.r.t. ||-||,. O

§6.2.2 Example (§6.1.14 continued). Consider the real Hilbert space L*([0, 1]) and the trigono-
metric basis {1);, j € N}. Define further a weighted norm ||-||, w.r.t. the trigonometric basis,
that is, [[h|[, := 3=,y 03[(h,¢;) 12|>. Denote by Lg([0,1]) or L for short, the completion of
L2([0,1]) w.r.t. [|]]o-
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(P) If we set by = 1, by = boy1 = j7, p € N, k € N, then L2([0,1]) is a subset of the
Sobolev space of p-times differentiable periodic functions. Moreover, up to a constant, for
any function h € L2([0, 1]), the weighted norm ||h||> equals the L?-norm of its p-th weak
derivative h(P) (Tsybakov [2009]).

(E) If, on the contrary, v; = exp(—1+ j*), p > 1/2, j € N, then L2([0,1]) is a class of
analytic functions (Kawata [1972]).

Note that, the trigonometric basis is regular w.r.t. the weight sequence 1/b = v~ = (0371) as in

§6.1.12 (ii), i.e., ||1/v]| 2 < 0o, in case (P) whenever p > 1/2 and in case (E) if p > 0. O

§6.2.3 Definition (Abstract smoothness condition). Given a strictly positive sequence of weights
a = (a;)jes and an ONS U = {u;,j € J} in H consider the associated weighted norm ||-||1/,
and the completion U/, of U. Let 7 > 0 be a constant. We assume in the following that the
function of interest f belongs to the ellipsoid F := {h € U, : ||h|? o < 7°} and hence,
HUJ_f =0. |

§6.2.4 Lemma. Let T, be a class of functions w.rt. an ONS U = {u;,j € J} in L, (or

analogously in (?) as given in $6.2.3. If the ONS is regular w.r.t. the weight sequence a as in

§6.1.12 (ii) for some finite constant T,, > 1, then for each f € Fg holds | f| oo < Tua || f]]1 /4 <
m

T"Tua-

Proof of Lemma §6.2.4 is given in the lecture. O

§6.2.5 Examples (§6.2.2 continued). Consider L2([0, 1]) w.r.t. the frigonometric basis {1;, j € N}
and a weight sequence v satisfying either §6.2.2 (P) with p > 1/2 or §6.2.2 (E) with p > 0.
In both cases setting 77, = 2|1/ v||% < oo the trigonometric basis is regular w.r.t. the weight

sequence 1/v. Consequently, setting a = 1/v from Lemma §6.2.4 follows sup{||f||> , f €
L3 (10, 1))} < 21 £113 6 llallze- =

§6.2.6 Definition (Regular linear functionals). Consider an ONS U = {u;,j € J} in H which
belongs to the domain D(®) of a linear functional ®. In order to guarantee that U/, and
hence the class F? of functions of interest as in §6.2.3 are contained in D(®) and that ®(f) =
> ic7[®],[f]; holds for all f € Iy, it is sufficient that ||[®] (|7 := Y., |[®], [a? < occ. Indeed,
(N> < 1136 @I for any f € Uy/q and hence @ € .2 (Uy e, K) with ||, < [|[@]]l,.

We denote by L, the set of all linear functionals with ||[®]]|> < co. O
§6.2.7 Remark. We may emphasise that we neither impose that the sequence [®] = ([®],);cs
tends to zero nor that it is square summable. The assumption & € L,, however, enables us in
specific cases to deal with more demanding functionals, such as in §6.2.8 below the evaluation
of the solution at a given point. O

§6.2.8 Example (§6.1.21 continued). Consider an ONB U = {u;,j € J} in L*(Q2) and the
evaluation at a point t, € Q given by ®; (h) = > . ;[h];u;(t,). Consider the completion
L2 /a(§2) of L*(Q) w.r.t. a weighted norm ||-||; /, derived from ¢/ and a strictly positive sequence
a. Since |9y, (h)]* < Hth/a > ieq 05lu;(t,)|? the point evaluation in ¢, is bounded on L7 ()
and, thus, belongs to (L7, (2),K), if 3, ; a}|u;(,)|> < oo. Consequently, if the ONS ¢
is regular w.r.t. the weight sequence a, i.e., §6.1.12 (ii) holds for some finite constant 7,,, > 1,
then ||y, || & 12, (@)) < Tuq uniformly for any ¢, € 2. Revisiting the particular situation of
1/a ’
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Example $6.2.2 and its continuation in §6.2.5, that is, L2([0, 1]) w.r.t. the trigonometric basis
{¢;,j € N} and weight sequence v satisfying either §6.2.2 (P) with p > 1/2 or §6.2.2 (E)
with p > 0, recall that the trigonometric basis is regular w.r.t. a = 1/b and hence, the point
evaluation ¢, belongs to .Z(Lf/a([(), 1]),R), ie., [|®:, ]|, < V2 ||a|| foreacht, € [0,1]. ©

6.3 Approximation by dimension reduction

Here and subsequently, we consider a class of functions [}, as given in §6.2.3 w.r.t. an ONS
{uj,7 € J} in H and a strictly positive sequence a = (a;),c7. Moreover, we assume a nested
sieve (Jm)mem in J and its associated nested sieve (U,,) e in U (see §6.1.11). For f € U
we consider the orthogonal projection f,, = Ily, f of f onto U,,. Observe, that we have
f=Uf] while f, = . 7([fl;17,(5))u; = U*([f]Lz,) by using the sequence of indicators
17, := (14,(j))jes. We shall measure the accuracy of the approximation f,, of f by its
distance 0 (f., f) where d_(+,) is a certain semi metric. Note that in general _(f,,, f) is
not monotone in m and hence we define bias,,(f) := sup{0,(f, fx),k = m,k € M} as the
approximation error. We are particularly interested in the following two cases.

§6.3.1 Definition. For f € F,, and hence Il f = 0, let f,,, = Ily,, f € U,, denote its orthog-
onal projection onto U,,,. Keep in mind that U+ and U denotes the orthogonal complement of
U and U,, in H and U, respectively.
(global) Given the ONS {u;,j € J} and a strictly positive sequence v consider the comple-
tion U, of U w.r.t. a weighted norm ||-||,. If Fy C U, then 8} (1, hs) := |1 — hal,,
hy, ho € U, defines a global distance on U, and for f € F, we denote by bias) (f) :=
My, f — fll, = HHUTLanU = sup{0}(f, fx), k = m, k € M} the global approxima-
tion error.

(local) Let ® be a linear functional and F, C D(®), then 02 (hy, hy) := |®(hy — hy)|, hy, hy €

ist

D(®), defines a local distance and we denote by bias® (f) := sup{|(Ily. )], k >
m, k € M} =sup{02(f, fx), k = m, k € M} the local approximation error. m

st

§6.3.2 Lemma. Consider the orthogonal projection f,, = Iy, f € U, as theoretical approx-

imation of f € F. For each m € M let (av) () := |lavl s || = sup{a;v;,j € J5}, then

biasy,(f) < 7(av)g. On the other hand if ® € Ly as in §6.2.6, then for each m € M,
2 .

Yieqs [[@],17a5 = [[@] 1z |7 < [@] 5 < o0 and (biasy,(£))* < 7 |[@] L I3

Proof of Lemma §6.3.2 is given in the lecture. O

§6.3.3 Notations. (i) For f € H considering the sequence of generalised Fourier coefficients
[f] as in §6.2.1 introduce its sub-vector [f],, := ([f];);jez., Where [Ily,, flm = [flm-

(ii) For T € .Z(H) denote by [T] the (infinite) matrix with generic entries [17, ; := (ug, Tu;)n.
For m € M, let [T], denote the (|7,,| X |Jn|)-sub-matrix of [7] given by [T], =

m

([7,,)jred,. Note that [T*],, = [T]¢,. Clearly, if we restrict ITy, TTly,, to an opera-

m
tor from U, to itself, then it can be represented by the matrix 7] ,.

(iii) Given the identity Id € .Z(H) the |7,,,|-dimensional identity matrix is denoted by [Id],,,.

(iv) Consider the generalised Fourier series transform U € £ (H, (?(J)) as in §6.1.26 (i). Let
M, : K7 — K denote the multiplication operator x +— M,z = v - z, define V, :=
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U*M,U : H D D(V,) — H and denote by [V,],, the |7,,|-dimensional diagonal matrix
with diagonal entries (v;);e,,. Note that, [V,]? = [Vi:],., s € R.

(v) Keep in mind the Euclidean norm ||-|| of a vector and the weighted norm ||-||, w.r.t. an ONS
{u;.j € T} inH. Forall f € U,, we have || f||; = [/, [V, [/l = [V 2/l ©

m m

6.4 Stochastic process on Hilbert spaces

Here and subsequently, (H, (-, -)g) and U denotes a separable Hilbert space and a subset of
HI, respectively. Considering the product spaces K& = X,cy K and KY = X, K the mapping
I : K¥ — KY given by y = (ys, h € H) — (yu, u € U) =: Iy is called canonical projection
and for each h € H in particular 1T, : K¥ — K given by y = (yus, i/ € H) — y;, =: I,y is
called coordinate map. Moreover, % denotes the Borel-c-algebra on K and K* is equipped with
the product Borel-o-algebra 2" := ), .y 2. Recall that Z°™ equals the smallest o-algebra
such that all coordinate maps I1,, h € H are measurable. i.e., Z%" = o(II;,, h € H).

§6.4.1 Definition (Stochastic process on H). Let {Y},, h € H} be a family of K-valued r.v.’s on a
common probability space (2, .o, P), that is, Y}, : Q — K is a .&/-Z-measurable mapping for
each h € H. Consider the K®-valued r.v. Y := (Y}, h € H) where Y : Q — K is a .o7- B%H-
measurable mapping given by w — (Y, (w),h € H) =: Y (w). Y is called a stochastic process
on H. Its distribution PY := P o Y ! is the image probability measure of P under the map Y.
Further, denote by P'Y" the distribution of the stochastic process II;Y = (Y,,u € U) on U.
The family {P™Y ¢/ C H finite} is called family of the finite-dimensional distributions of ¥’
or PY. In particular, P¥» := P"»Y denotes the distribution of Y}, = II,Y. Furthermore, we write
E(Y}) and Cov(Yy, Vi) := E((Y, — E(YR)) (Y — E(Yy))), if it is exists, for the expectation
of Y}, w.r.t. P¥» and the covariance of Y}, and Y}, w.r.t. PHnnyY respectively. ]

§6.4.2 Definition. Let Y := (Y}, h € H) be a stochastic process on H. If E|Y},| < oo for each
h € H then the functional x : H — K with h — E(Y},) =: u(h) is called mean function of Y.
If the mean function p is in addition linear and bounded, that is, i € Z(H, K), then due to the
Fréchet-Riesz representation theorem §6.1.20 there exists uy € H such that u(h) = (uy, h)g
for all h € H. The element E(Y) := py is called mean or expectation of Y or PY . If E|Y},|* <
oo for each h € H then the mapping cov : H x H — K with (h,h') — Cov(Y},Yy) =:
cov(h, ') is called covariance function of Y. If the covariance function cov is in addition a
bounded bilinear form, then there is [, € .2 (H) such that cov(h, h') = (I, h, k' )y = (h, L W)k
for all h, ' € H. The operator I}, is called covariance operator of Y or PY . If Y admits a mean
function  and a covariance function cov then we write shortly Y ~ £(u, cov). Analogously,
Y ~ £(uy,T) if there is an expectation py € H and a covariance operator I3, € Z(H). m

§6.4.3 Property. A covariance operator I\, € £ (H) associated with a stochastic process Y
on H is self-adjoint and non-negative definite. m

§6.4.4 Example (Non-parametric density estimation). Let X be a r.v. taking its values in the
interval [0, 1] with distribution PP, c.d.f. F and admitting a Lebesgue-density p = dP/d\ (see
section 5.2). Given h € L as introduced in §6.1.3 (vi) denote by Ej, (h(X)) = Ph = A(hp)
the expectation of h(X) w.rt. P. For convenience we suppose that the density p is square
integrable, i.e., p belongs to the real Hilbert space L? := L%([0, 1]) equipped with its usual inner
product (-, )2 (compare §6.1.3 (iv)). Thereby, for any i € L? we have (p,h);: = A\(ph) =
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Ph = Ep(h(X)). Assuming an iid. sample X; ~ p,i € [1,n], letY = (Y,h € L?)
be the stochastic process on L? defined for each h € L? by Y, := P,h = %Z?:l h(X5).
Obviously, the mean function y of Y satisfies ju(h) = E(Y},) = P®"(P,h) = Ph = (p,h) ;>
and hence, Y, = (p,h)r2 + \%Wh with W, := n'/2(P,h — Ph). Moreover, the stochastic
process W = (Wh, h € L?) of error terms admits a covariance function given for all h, b’ € L?
by Cov(W,, W) = P(hh') —PRPh' = P((h—Ph)(h —Ph')) = Cov(h(X), h(X"')). Observe
that PAPh' = <Mp h, ]1[0,1]>L2<]1[0,1]7 M, hl)LQ = <H{]1[071]}M]ph, M, hl)]ﬁ and P(h,h/) —PhPR =
(Lo, By e with I, = M, — M Iy M, and thus, W ~ £(0,1},) and consequently, Y =
P+ W~ L, L), 0

§6.4.5 Example (Non-parametric regression). Let (X, Z) obey a non-parametric regression model
Ef(X|Z) = f(Z) satisfying the Assumptions §5.3.1 (see section 5.3). For convenience, in
addition the regressor Z is supposed to be uniformly distributed on the interval [0, 1], i.e.,
Z ~ 4]0, 1], and the regression function f is assumed to be square integrable, i.e., f € L? :=
L?([0, 1]). Keep in mind that by Assumption §5.3.1 (ii) the centred error term ¢ = X — f(Z) and
the explanatory variable Z are independent. Given h € L? denote by E;(Xh(Z)) = B [id®A]
with [id®h|(X, Z) = Xh(Z) the expectation of Xh(Z) = {f(Z) + e}h(Z) w.rt. the joint
distribution IP; of (X, Z), where E¢[ch(Z)] = 0 and hence, E([Xh(2)] = E/[f(Z2)h(Z)] =
A(fh) = (f, h)r2. Assuming an i.i.d. sample (X;, Z;), ¢ € [1,n], from P}, let Y = (Y})per2 be
the stochastic process on L? given for each h € L2 by Yy, := n~ 23" X;h(Z;) = P,[id®h].
Obviously, the mean function p of Y satisfies pu(h) = E(Y},) = E¢f[Xh(Z)] = (f, h)r2 and
hence, Y}, = (f, h) L2+\/L5Wh where W), := n'/?( P, [id®h] —P, [id®h)]) is centred. The stochas-

tic process W = _(Wh, h € L?) of error terms admits a covariance function given for all h, i/ €
L? by Cov(Wy,, Wy) = P ([id®h][ideh’]) — P [ideh|P [ideh’] = Cov(Xh(Z), XE (Z)) =

O-€2<h7 h/>L2+<th, th,>L2 _<H{]1[0’1]}th, th/>L2 = O’g <h, h,>L2+<Mfoﬂ[0’1]}th7 h/>L2 =
(Tyh, B2 with T, = 021dge —i—MfH{lﬂ[O My and hence, W ~ £(0,T,) and consequently,
Y =f+ i~ g(f,i1)). 0

§6.4.6 Definition (White noise process on H). Let Y := (Y}, h € H) be a stochastic process on
H. If {Y,,u € U} for an ONS U in H is a family of K-valued, independent and identically
£(0,1)-distributed r.v.’s, i.e., PIY = @, PY = ®,,£(0,1) = £54(0, 1), where each Y,
has zero mean and variance one, then we write shortly II;;Y ~ £%¢ (0,1) and call I1,,Y" a white
noise process onU. If I1;,Y for any ONS U is a white noise process on U then we call Y a white
noise process on H. m

§Q.4.7 Remark. Considering in example §6.4.4 or §6.4.5 the centred stochastic process W=
(Wh,h € L?) of error terms we note that generally there does not exists an ONB I/ in L? such
that 11,V 1s a white noise process on Uf. m|

§6.4.8 Property. LetY := (Y}, h € H) be a stochastic process on H admitting an expectation
py € H and a covariance operator I' € £ (H), i.e, Y ~ £(uy,L). If there exists an ONB
U in H such that 11,;Y is a white noise process on U, i.e., II;Y ~ £54(0,1). Then we have
py =0 € Hand I' = Idy since py = Y, (v, wau = Yo, EYy)u = 0 and (I, - )y =

Zu,u’eu<u> DT, whm(e, Jn = Zu,u/GL{(u’ Dmulu, ' )u(, Jm = (-, )u. Consequently, for
each ONBV in H the rv.’s {Y,,v € V} are pairwise uncorrelated. O
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§6.4.9 Definition (Gaussian process on H). A stochastic process Y = (Y}, h € H) on H with
mean function y and covariance function cov is called a Gaussian process on H, if the family
of finite-dimensional distributions {PH“Y, UuUcH ﬁnite} of Y consists of normal distributions,
that is, II;Y = (Y, )uew is normally distributed with mean vector (14(u)),eys and covariance
matrix (cov(u, u’))ywey. We write shortly Y ~ D(u, cov) or Y ~ MN(uy,I), if in addition
there exist an expectation py € H and a covariance operator I' € Z(H) associated with Y.
The Gaussian process Y ~ 91(0, Idy) with mean 0 € H and covariance operator Idy is called
iso-Gaussian process or Gaussian white noise process on H. O

§6.4.10 Property. LetY := (Y}, h € H) be a Gaussian process on H admitting an expectation
wy € H and a covariance operator I' € £ (H), i.e., Y ~ N(uy, ). If there exists an ONB U in
H such that 1Y is a Gaussian white noise process on U, i.e., IlyY ~ M®U(0, 1), then due to
§6.4.8we have Y ~ N(0,1dy) and for each ONS'V in H the standard normally distributed r.v.’s
{Y,,v € V} are pairwise uncorrelated, and hence, independent, i.e., II,Y ~ NV (0, 1). O

§6.4.11 Definition (Random function in H). Let (H, (-, -)x) be an Hilbert space equipped with its
Borel-c-algebra %y, which is induced by its topology. An o7 -ZAy-measurable map Y : (2 — H
is called an H-valued r.v. or a random function in H. i

§6.4.12 Lemma. LetU = {u;,j € N} be an ONS in H. There does not exist a random function
Y in H such that 11,,Y is a Gaussian white noise process on U.

Proof of Lemma §6.4.12 1is given in the lecture. O

6.5 Statistical experiment

Given a pre-specified ONS &/ = {u;,j € J} in H we base our estimation procedure on
the expansion of the function of interest f € U = lin(U). The choice of an adequate ONS
is determined by the presumed information on the function of interest f formalised by the
abstract smoothness conditions given in §6.2.3. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far
beyond the scope of this lecture.

$6.5.1 Definition (Sequence space model (SSM)). Let W = (Wh, h € H) be a centred stochastic
process on H and n € N be a sample size. The stochastic process f = f + \/iﬁW on H is called
a noisy version of f € H. We denote by " the distribution of f If W admits a covariance

operator (possibly depending on f), say I}, then we eventually write fw L(f, £T}) for short.
To be precise, given an ONS U = {u;,j € J} in H considering the family of K-valued r.v.’s

{[W]; :=W.,,,j € J} the observable quantities take the form
A, = (Fu)e+ =W, = [/, + =W, jed. (6.1)

We denote by 7, or £([f], 2[I}]), the distribution of the observable stochastic process [ﬂ =
([f]] )jes on U which obviously is determined by the distribution P7*, or £(f, £I}), of f. The
reconstruction of the sequence [f] = ([f];);jes and whence the function f = U*[f] from the

noisy version f ~ B is called a (direct) sequence space model (SSM). Given a class I} of
functions of interests as in $6.2.3 define the associated family of distributions B? := {P/", f €
F7},and set B, := (B?)nen. O
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§6.5.2 Example (Gaussian sequence space model (GSSM)). Consider a Gaussian white noise pro-
cess W = (Wi, h 6 H) ~ 91(0,1dg) on H as defined in §6.4.9 and a noisy version f=
f + \FW N(f, 2 Idg) = P of a function f € H. Considering the projection onto an ONS

= {u;,j € J} the observable quantities take consequently the form [f] ;= U+ \/LE[W]J,
Jj € J, where the error terms { = Wuj JedJ } are independent and 9%(0, 1)-distributed,
ie., [W] = ([W]J)JGJ ~ N®7(0, 1) 2(0,1d7), and thus, [ﬂ = ([ﬂj)jej is a sequence of
independent Gaussian random variables having mean [f]; and variance n™!, i.e., [ﬂ ~ Py =
N([f], £1dy). The reconstruction of the sequence [f] and whence the function f = U*[f]
which we assume belongs to an ellipscﬁd [}, derived from the ONS U/ and some weight se-
quence (a;)je7 (compare §6.2.3) from f ~ N(f, L Idy) is called a Gaussian (direct) sequence

space model (GSSM). The associated family of joint distributions of sequences of Gaussian
random variables is denoted by N(F;, £ Idy) := {N(f, + Idr), f € Fy}. O

§6.5.3 Example (Non-parametric density estimation §6.4.4 continued). Forn € N consider ani.i.d.
sample X; ~ P, i € [1,n], where P admits a Lebesgue-density p € L? = L?([0, 1]) and P*"
denotes the associated joint product distribution. Consider the centred stochastic process W=
(Wh, h € L?) ~ £(0,1.,) of error terms with I, = M, —M H{H[O 1M, as introduced in §6.4.4.
The non-parametric estimation of a density p € L? from an i.i.d. sample of size n may thus be
based on the noisy version p = p + \FW S(Jp, it ) of the density of interest p. In other

words, given a pre-specified ONS {uj, j € J} the observable quantity [p] = ([p];)jes ~ By
takes for each j € J with [W]; := W, the form [p], = [p], —|—\/LE[W] = P,u;. Consequently,

non-parametric estimation of a den31ty can be covered by a sequence space model, where the
eITor process W, however, is generally not a white noise process. For convenient notations let
{11} U{u;,j € N} be an ONB of L? for some ONS U = {u;, j € N}. Keeping in mind that
p is a density, it admits an expansion p = Lo + U*[p] = Ljo1) + D_ en[p],u; where [p] =
Up = ([p],)jen with [p], = E;(u;(X)) for j € Nis a sequence of unknown coefficients,
and hence, f := Ilyp = U*[p] is the function of interest. Given the pre-specified ONS U/ the

observable quantity [p] = ([p],)jen ~ B takes for each j € N the form [p], = P,u;. Note
that the distribution B, of the observable quantity [p, ] is determined by the distribution P®" of
the sample X, ..., X,,. Our aim is the reconstruction of the density p = Tp 1) + f assuming

that f = Ilyp belongs to an ellipsoid F derived from the ONS &/ = {u;,j € N} and some
weight sequence (a;);en (compare §6.2.3). Denoting by ID the set of all densities on [0, 1] let
DI :={p € D: f=Ilyp € F,}, and the family of probability measures associated with the
observations is given by BY" = {P*", p € D }. O

§6.5.4 Example (Non-parametric regression §6.4.5 continued). Consider (X, Z) ~ P; obeying
E;(X|Z) = f(Z)and Z ~ U0, 1] with f € L* = L*([0, 1]). Given an i.i.d.. sample (X;, Z;) ~

Py, i € [[1,n], their joint distribution is denoted by IP’®” Consider the centred stochastic process
W = (Wy,h € L?) ~ £(0,T}) of error terms as 1ntr0duced in §6.4.5. The non-parametric
estimation of a regression function f € L? from an i.i.d. sample of size n may thus be based
on the noisy version f: f+ \/iﬁW ~ L£(f, %Ff) of the regression function f. In other words,

given a pre-specified ONS {u;, j € J} the observable quantity [f] = ([ﬂj)je g ~ P} takes
for each j € J the form [ﬂj =P, [id®u;]. Consequently, non-parametric regression can also

be covered by a sequence space model, where the error process W, however, is generally not a
white noise process. Our aim is the reconstruction of the regression function f assuming that it
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belongs to an ellipsoid F", derived from an ONB {u;, j € N} of L? and some weight sequence
(aj)jen (compare §6.2.3). We denote by BY" = {P®", f € F;} the family of probability
measures associated with the sample (X, U;), ¢ € [1,n]. O

6.6 Orthogonal series estimation

Here and subsequently we estimate the function of interest f € H using a dimension reduc-
tion. To be more precise, let i/ = (u;);jc7 be an ONS in H and for a nested sieve (J,,)mem
in J let (U,,)menr be its associated nested sieve in U. For f = U*[f] € U we consider its
orthogonal projection f,,, = Iy, f = U*([f]17,) onto U,,. We assume a noisy version fr P
obeying an sequence space model as in §6.5.1.

§6.6.1 Definition. Given the orthogonal projection f,,, = U*([f]1, ) of f = U*[f] onto U,,
its estimator f,, = U*([f]17,) is called orthogonal series estimator (OSE) of f based on an
observable quantity [f]. O

We shall measure the accuracy of the OSE fm =U *([ﬂ 17,) of f by its mean squared

distance E’ Dm(fm, f)|> wrt. the distribution P of the noisy version f where d,(-,-) as

in §6.3.1 is a certain semi metric, to be specified below. Moreover, we call the quantity

~

E2 0, (fons F)I? = BP0, (fm, f)? risk of the estimator f,, = U*([f]1,,).

§6.6.2 Definition. Given a family of OSE’s {fm, m € M} of a function of interest f we call

arate (RY(f))nen, i.6., Ry = o(1), a dimension parameter (m7),cn and an OSE (fmg)neN,
respectively, oracle rate, oracle dimension and oracle optimal (up to a constant C' > 1), if

CTRY(S) < inf EFR(Fu NI SEFRL(Fug. SIIP < ORG(S)

for all n € N. Consequently, up to the constant C? the estimator (fmg)neN attains the lower risk
bound within the family of OSE’s, that is, E} Dm(fmg, FIP < C?infrepm EY o.(fm 2. o

§6.6.3 Remark. Consider a family of OSE’s {fm, m € M} of afunction of interest f. Assume
that the risk of the OSE f,,, can be decomposed as follows

E2 0 (Frns PP = ER0, (Fis ) [ + [0 (Foms ) (6.2)

0. (fous fm)|2 = 0(1) as n — oo for each m € M, and [d_(fm, f)|> = o(1) as
m — oo. Setting Ry (m, f) := max ([0,,(fm. f)|* E} 0..(fms fm)|?) it follows that,

RE(m, f) < E3o,(frs [P < 2R2(m, f). (6.3)

Let us select my := arg min{Ry(m, f),m € M} and set RY(f) := RZ(my, f). We shall
emphasise that R} (f) = min{R3(m, f),m € M} = o(1) as n — oo. Observe that for all
§ > 0 there exists ms € M and n; € N such that for all n > ns holds [0, (f;, f)]* < 0 and
E2[0,,(fms» f)I? < 0, and whence R} (f) < Rjy(ms, f) < 0. However, using the dimension 1}
it follows immediately

Ry (f) < inf Ej

where IE?

Dist(fmg7 f)‘Q
<2RY(f) < 2 ol B3, (fu. P (64)

Disl(-]/c.\mJ f)|2 < E;"L
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Consequently, the rate (R} (f))nen, the dimension parameter (m}),cy and the OSE (fmg)neN»
respectively, is an oracle rate, an oracle dimension and oracle optimal (up to the constant 2).
However, the dimension parameter and thus the estimator depends on the unknown function of
interest f. O

§6.6.4 Proposition. Consider an ONS U = (u;) ;e in H and a nested sieve (Jp)mem in J.
Given for each n € N a noisy version f ~ £(f,<I}) of f = U*[f] € Uas in §6.5.1 let the
associated family of OSE’s be { f,, = U*([f]17,.),m € M}.
(global Hy-risk) Let f € Hy, ie., |o[f]|2 < oco. Given the sequence of variances v* :=
(v} = (uj, Tyu;)u) jen denote for all m € M and n € N

Ry (m, f) = max (|[o[f] 17 172, llovig,|[Z),
m = arg min{R™(m, f),m € M}, and RI(f):=RNm>, f). (6.5)

Then, R2(f) < infmen B fon — FI2 < B2 frg — fI2 < 2RE(f) forall n € N,

i.e., the rate (R7(f))nen, the dimension parameter () nen and the OSE ( [z Jnen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local D-risk) Let [|[®][f]llx < oo, and hence f € D(®), where ®(f) = > ;[®];[f];-
Given the sequence of covariance matrices V = (V,,, = ((u;, [yw)12) 17, )merm de-
note for allm € M andn € N

2 1

Rig(m, £) = masx (||[@) /115 [[7 . 2 2L,
mi = arg min{R%(m, f),m € M}, and RL(f):= Ri(mk, f). (6.6)

Then, Ry (f) < infmept B (fon — f)I? < EHQ(fap — f)I* < 2R4(f) foralln € N,
i.e., the rate (R2(f))nen, the dimension parameter (%) ex and the OSE (fﬁg)neN is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Proposition $§6.6.5 is given in the lecture. O

§6.6.5 Corollary (GSSM, §6.5.2 continued). Under the assumption of Proposition §0.6.4 con-
sider for each n € N a Gaussian noisy version f ~ N(f, % Idy).

(global H,-risk) Let ||o[f]||% < oo, i.e., f € Hy. Denote for allm € M andn € N

Ry (m, f) = max ([[o[f]Lzg [z, 7101z, [132).
my = arg min{Ry (m, f),m € M}, and Ry(f):=Ry(my, f). (6.7)

Then, R2(f) < infest B for — FI2 < B[ frg — FII2 < 2RU(f) forall n € N,

i.e., the rate (R} (f))nen, the dimension parameter (my )nen and the OSE ( frn )nen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local D-risk) Let ||[®][f]lx < oo, and hence f € D(®), where ®(f) = > ;[®];[f];-
Denote for allm € M andn € N

R(m, f) :=max (|([®], [ )eel*s 5 ([P 1 .12 )
myg = arg min{Rg(m, f),m € M}, and RE(f):=Ri(mg, f). (6.8)
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Then, Ry (f) < infremt EF®(frn — )P S EHO(frg — /)P < 2RE(f) foralln € N,
i.e., the rate (R (f))nen, the dimension parameter (mg)nen and the OSE ( fyun )nen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Corollary §6.6.5 1is given in the lecture. O

§6.6.6 Corollary (Non-parametric density estimation §6.5.3 continued). Consider an ONB
{Tj0} U U in L?[0,1] withU = {u;, j € N} and a nested sieve (Jn)mer in N. Given for
eachn € N a noisy version p ~ £(p, 1I,,) with I, = M, — M o {1} M, as in §6.4.4 based
on an i.id. sample X; ~ p, i € [1,n], let {p,, = 1 + U*([D]17,),m € M} be a family
of OSE’s of p = 1y + U*[p] € L*([0, 1]).
(global L;-risk) Let ||o[p]||% < oo, i.e., U*[p] € L3. Given the sequence of variances v* :=
(v} = (u;, T uy) 12) jen for all m € M and n € N consider R} (m, f), my, and R;(f)
as in (6.5). Then, Ry(p) < infrem EF"D,, — Pl < EF"ID,, — Pl < 2R3 (p)

foralln €N, i.e., the rate (R™(p))nen, the dimension parameter (i ( "nen and the OSE

(P... Jnen is an oracle rate, an oracle dimension and oracle optimal (up to the constant
2), respectlvely

(local d-risk) Let||[®][p]|lx < oo, whencep € D(®) with ®(p) = ®(1j1)+)_;c 7[P]; [P],-
Given the sequence of covariance matrices V. := (V,, = ((uJ,F w)r2)je jm)me M
forallm € M and n € N consider R (m, f), M, and Rg(@ as in (6.6). Then,
Ri(p) < infrem BEM|R(D,, — p)I* < EF"@(D,, — )" < 2Ry (p) foralln €N,

i.e., the rate (R2(D))nen the dimension parameter (%) ey and the OSE (lﬁﬁg)neN is
an oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respec-
tively.

Proof of Corollary §6.6.6 1is given in the lecture. O

§6.6.7 Remark. Let the assumptions of Corollary §6.6.6 be satisfied. Interestingly, in case of a
local d-risk if the sequence V := (V,,,) e satisfies sup{max(||V,, |, [V,.],),m € M} <
C for some constant C' > 1, i.e., the smallest and the largest eigenvalue of V,, is uniformly
bounded from below by C'~! and above by C, respectively, then it follows immeditately that

@] 1,015 < | (@] m”;m < C||[®] 1z, ||7. Consequently, choosing R%(m,p) as in (6.8),
then the associated rate (R (p))nen, dimension parameter (my)nen and OSE (D, Jnew is
also, respectively, an oracle rate, an oracle dimension and oracle optimal (up to the constant
2C"). On the other hand side, in case of a (global LZ risk) if the sequence of variances v? =
(v ])]eN satisfy C~1 < wf < Cfor all j € J and for some constant C' > 1, i.e., the sequence
is uniformly bounded from below by C~! and above by C, respectively, then it follows that
CHolz, |2 < |lovlg, |2 < C|oly,||%. Consequently, choosing Ry (m,p) as in (6.7),
then the associated rate (R (] ))nen, dimension parameter (my),en and OSE (P, , Jnen is also,
respectively, an oracle rate, an oracle dimension and oracle optimal (up to the constant 2C). ©

§6.6.8 Lemma. Under the assumptions of $6.6.6 let in addition 0 < ]p;1 <p <p, <
A-a.s. for some finite constant p, > 1.

(global LZ-risk) Choosing R (m,p) as in (6.7), then the associated rate (R?(p))nen, di-
mension parameter (my)nen and OSE (D, ., )nen is also, respectively, an oracle rate, an
oracle dimension and oracle optimal (up to the constant 2p,,).
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(local -risk) Choosing Rig(m,p) as in (6.8), then the associated rate (R (p))nen, dimen-
sion parameter (mg)nen and OSE (D, ., )nen IS also, respectively, an oracle rate, an
oracle dimension and oracle optimal (up to the constant 2p,, ).

Proof of Lemma §6.6.8 1is given in the lecture. O

§6.6.9 Corollary (Non-parametric regression §6.5.4 continued). Consider an ONB {u;, j € N}
in L?[0,1] and a nested sieve (Jn)mem in N. Given for each n € N a noisy version ]/C\ ~
L(f, £T}) with Ty = 02 1d2 +M H{n }Mf as in §6.4.5 based on an i.i.d. sample (X;, Z;) ~
B, i € [1,n], obeying the Assumption §5.3.1 (section 5.3) let {J?m =U*([f]1z,),m € M} be
a family of OSE’s of f = U*[f] € L*([0,1]).

(global L-risk) Let ||o[f]||% < oo, ie, f € L. Given the sequence of variances v* :=
(v} = (uy,Tyuj) 2)jen for all m € M and n € N consider ﬁ”(m, f), my, and ﬁg(f)
as in (6.5). Then, RY(f) < infrne BS"|1 £, — fII2 < EF"IIF,, — fI? < 2R2(f) for
alln € N, ie., the rate (R™(f))nen, the dimension parameter (m)nen and the OSE
(]?mg Jnen is an oracle rate, an oracle dimension and oracle optimal (up to the constant
2), respectively.

(local D-risk) Let [[[®][f]][,, < oo, whence f € D(®) and (f) = >, ;[®],[f],. Given

the sequence of covariance matrices V = (V,, = ((u;,[yw)2);1e7, )mem consider
forallm € M andn € N, R (m, ), mg, and Ry (f) as in (6.6). Then, Ry(f) <
inf,,epm JE®”|(I>( - NI < I['E®"|<I>(f~ D> <2RL(f) foralln €N, i.e., the rate

(R (f))nen, the dimension parameter (mq))neN and the OSE ( f Jnen is an oracle rate,
<I>
an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Corollary §6.6.9 1is given in the lecture. O

§6.6.10 Remark. Comparing Proposition §6.6.6 and §6.6.9 we obtain immediatly analogous
claims as in Remark §6.6.10 replacing the density p by the regression function f. O

§6.6.11 Lemma. Under the assumptions of §6.6.9 let in addition || f||3 < oo and % > 0.
(global L2-risk) Choosing R"(m, f) as in (6.7), then the associated rate (R?(f))nen, di-
mension parameter (my )nen and OSE (f ., )nen is also, respectively, an oracle rate, an

oracle dimension and oracle optimal (up to the constant 2max(c=2, 02 + || f||7))-

(local -risk) Choosing Rg(m, f) as in (6.8), then the associated rate (Rg(f))nen, dimen-
sion parameter (m@)nen and OSE ( f )neN is also, respectlvely, an oracle rate, an ora-

cle dimension and oracle optimal (up to the constant 2 max (o2, 02 + ||f||Loo)

Proof of Lemma §6.6.8 is given in the lecture. O
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Chapter 7

Minimax optimality

7.1 Minimax theory: a general approach

For each n € N suppose that the observations are distributed according to a probability
measure /" which belongs to a family of probability measures [*. Here and subsequently, we
assume that the function of interest f is identifiable, i.e., f; # fo implies P} # P7). However,
in general it does not hold that f; = f, implies I} = I;}. Denote by EY; the expectation w.r.t. a
measure 7" in P and set P, := (B")pen.

§7.1.1 Example (Non-parametric density estimation §6.5.3 continued). Consider the family I%%" =
{P®", p € DI}. The parametrisiation using the marginal density p is one-to-one, since p = q
holds if and only if P®" = Q®". O

§7.1.2 Example (Non-parametric regression $6.5.4 continued). Consider the family 2 of proba-
bility measures. The regression function f is identified, i.e., from f, # f, follows P" # T,
but it is not an one-to-one parametrisation. However, if Assumption §?? holds true and in ad-
dition the error term is 91(0, o2)-distributed with an in advanced known variance o2, then the
parametrisatiuon is one-to-one. O

Assume furthermore, that given an observable quantity with distribution F* € B" there is
an estimator of f available that takes its values in H, but it does not necessarily belong to F.
We shall measure the accuracy of any estimator f of f by its distance d_(f, f) where d_(-,-)
as in §6.3.1 is a certam semi metric, to be specified below. Moreover, we call the quantity
E}[o o.(f, NI =Pro(f, f)|? risk of the estimator f of f.

§7.1.3 Definition. Given an observable quantity with probability measure F/* € B" the maximal

risk of an estimator fof the function of interest f over the family B" is defined by

Ro[f|B"] := sup{E}o, (f, f)]?, B" € B"}.

(global) Consider the completion H, of H wrt. a weighted norm ||-||,. If F C H, then
05 (b1, ho) i= [[h1 = hally, B, ho € Hi, defines a global distance. We call Hy-risk the

associated global risk E”Hf f|1? and set R, [f | B := sup{E”Hf flI2, Br € B},

(local) Let ® be a linear functional and F C D(®), then 02 (hy, hy) = |®(h 1 — ha)l,
hi,hy € D(®), denotes a local distance. Tts associated local risk E}|®(f — f)[?
we call ®-risk and we set R [f | B"] := sup{Eﬁ(I)(f) —®(f)]?, B* € B}, O

§7.1.4 Remark. An advantage of taking a maximal risk instead of a risk is that the former does
not depend on the unknown function f. Imagine we would have taken a constant estimator, say
f = h, of f. This would be the perfect estimator if by chance f = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
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the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. O

§7.1.5 Definition. Let fﬁa[ | B } be a maximal risk over a class B" of probability measures

P. = (B")nen. If there exist an estimator f and constants C_ := C_(P. ), C4 == C4(B) and a
rate R} := R (B"), n € N, with lim,,_,. Ry = 0, depending on the sequence . such that

(lower) the rate (R}),en is a lower bound up to the constant C'_ of the maximal risk over all
possible estimators of f, that is

1nf9%[f|]}%] >C_Ry, forall neN,

where the infimum is taken over all possible estimators of f;

(upper) the rate (RY),en is an upper bound up to the constant C';. of the maximal risk associ-
ated with an estimator f of f, that is

S%[f]]P)”] < Cy Ry, forall neN.

Then we call (R} )nen, or Ry for short, minimax-optimal rate of convergence and the estimator
f minimax-optimal (up to a constant). O

§7.1.6 Remark. It is worth noting that a minimax-optimal rate is not unique since every other
rate that is equivalent of order is also minimax-optimal. O

7.2 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

§7.2.1 Definition. Let P and Q be two probability measures on a common measurable space
(2, o), which are absolutely continuous wrt. to a o-finite measure p, or P,Q < p for short.
We write p := dP/dp and ¢ := dQ/dp.

(i) The Kullback-Leibler divergence between P and () is defined by

KL(P,Q) := { Plog(p/q), if P < Q;

0, otherwise.
(i) The Hellinger distance between P and QQ is defined by
H(P,Q) == (n(vP = va))'"* = |vp - vl

which does not depend on the choice of the dominating measure .

(ii1) The Hellinger affinity is given by

p(P,Q) == p(vPva) = (VP vz

§7.2.2 Lemma. (2) 0 < H*(P,Q) < 2; (b) p(P,Q) = 1 — $H*(P,Q); and (c) H*(P,Q) <
KL(P,Q).

Proof of Lemma §7.2.2 1is given in the lecture. O
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§7.2.3 Lemma. Let ]7 be an estimator and, let P and Q be probability measures. For all
f1, f2 € F we have

0. 1P+ QU £)P) > 5 0u(f 1)1 (P, Q). 7.1

Proof of Lemma §7.2.3 is given in the lecture. O

B(

7.3 Lower bound based on two hypothesis

§7.3.1 Lemma (Lower bound based on two hypothesis). Consider a family of probability mea-
sures P". For probability measures P} and Ty} in P! with Hellinger affinitiy p* (P, P holds

0. (f1. fo) Po” (B, BR). (7.2)

~ 1

inf R B > -

11% 0 |:f | F i| 4
Proof of Lemma §7.3.1 is given in the lecture. O

§7.3.2 Remark (Statistically indistinguishable). On the one hand if I}/ and I}, are statistically
indistinguishable in the sense that H (P7,[P?) < 1, then using the relationship §7.2.2 (b) we
bound the Hellinger affinity from below by p(B?, ) > 1/2, and whence due to Lemma §7.3.1
(7.2) we have

. 1
inf R, [f|IP]%n} > E|aist(f17f2)|2' (7.3)
f

On the other hand if two poduct measures P*" and P2 are statistically indistinguishable in the
sense that H2(B,,,P,,) < 2/n, then using the independence, i.e., p(BS", BS") = p(B,,B,)"
togehter with the relationship §7.2.2 (b) it follows p(PZ™, BPE") > (1 — n~)™ > 1/4 for all
n > 2, and whence

ol f1, f2)I* (7.4)

O

~ 1
1T]{f Ro [fHEF@n] P 6_4
§7.3.3 Remark (Lower bound for a maximal ®-risk). Let the class of functions of interest be an
ellipsoid . Consider a local ®-risk associated with a regular linear functional ® (see $6.2.6).
If we consider furthermore candidates f, := f. and f; = — f, for some f, € [, then trivially
f1, f2 € Frand [0,,(f1, f2)]? = |®(f1 — f2)|* = 4/®(f.)]?. On the one hand if in addition P
and P, are statistically indistinguishable in the sense that H (P, P, ) < 1, then due to (7.3)
in Remark §7.3.2 it holds

inf Re[f|P"] = L|®(f.)* foralln > 1. (7.5)
f

On the other hand if two poduct measures PZ" and P%" are statistically indistinguishable in the
sense that H?(P, ,P;,) < 2/n, then from (7.4) in Remark §7.3.2 it follows

~ 1
inf R, [ f | B*"] > 1—6|<I>(f*)|2 for all n > 2. (7.6)
f
However, often a minimax-optimal lower bound can be found by constructing a candidate

f« € T that has the largest possible |®(f,)|-value but P and P, are still statistically in-
distinguishable. O
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7.3.1 Examples - lower bound of a maximal ®-risk

Assuming that the function of interest f with generalised Fourier coefficients [f] = ([f];) ez
belongs to the class of solutions [F} as in §6.2.3 we derive below a lower bound of a maximal
®-risk considering the three examples: (i) Gaussian sequence space model (GSSM) §6.5.2,
(1) non-parametric regression §7.1.2, and (iii) density estimation §7.1.1. Let ® be a regular
linear functional belonging to the class £, as given in §6.2.6 and define in analogy to (6.8) for
alln € Nand m € M,

Ri(m, a) := max ([[[®]alyzg ||z, max(ag,), n~)[[®] Lz, [%),
mg = arg min{Rg(m, a),m € M} and Rg(a) :== Rg(mg, a). (7.7)

Keep in mind the quantities R (m, f) and R (f) given in (6.8), for any f € [, by applying the
Cauchy-Schwarz inequaltiy we have for all m € M, [([®],[f]17e)e|* < 72||[®]al s ||7. and
hence, R%(m, f) < (1 V r?)R%(m,a) for all n € N. Consequently, R%(f) < (1 V r*)R%(a)
where R (f) is eventually the oracle rate (see, for instance, Proposition §6.6.5). We show
below that R} (a) eventually is a minimax rate. We impose a minimal regularity of the linear
functional ® and the weight sequence a, which is formalised in the next assumption.

§7.3.4 Assumption. Consider a pre-specified ONS {u;, j € J} in H, a nested sieve (7, )mem
in J and a strictly positive, monotonically non-increasing sequence a = (a;);c7, that is,
min{a;,j € Jn,} = sup{a;,j € TS} = auny > 0 for any m € M. Suppose further

that ® € L, such that ) := inf {min(nflu(ﬁg),na%mg)), n e N} > 0.

In the proof of the next propositions we intend to apply the result presented in (7.5) or (7.6)
in Remark §7.3.3 to two special choices of f, € F, which we specify next.

§7.3.5 Lemma. Consider n as in Assumption §7.3.4 and for n € N let m, = myg as in
(7.7). Define K, = max(a?m*),n’l), and ¢ := nmin(r?, c) for some ¢ > 0. Consider ei-
ther the function (i) f, := ((a,)/? dejm [®],u; with a, = K.||[®] 1, ||,° or the func-
tion (i) f. := (Ca.)'? Y0, ;o [®],adu; with o, = [|[[®]al g, |2° In both cases we have
| £ellY /e < min(r?,¢), ie., fo € Fr, and n | fi]l5 <

Proof of Lemma §7.3.5 1is given in the lecture. O

§7.3.6 Corollary. Let the assumptions of Lemma §7.3.5 be satisfied. If the ONS U is in addition
regular w.r.t. the weigth sequence aasin §6.1.12 (ii), i.e., a?|uj|?||z < T2, for some

Tua = 1, then it holds || f.]| 3 < T24C.

jeT J

Proof of Corollary §7.3.6 1is given in the lecture. O

§7.3.7 Proposition (GSSM, §6.5.2 continued). Consider the reconstruction of f = U*[f] € F},
given for each n € N an observable quantity f  J(F7, % Id). Under Assumption §7.3.4 holds

inf Ry [ | N(FL, L1d)] > g min(2r%, 1) R%(a), foralln € N. (7.8)
f
Proof of Proposition §7.3.7 1s given in the lecture. O
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§7.3.8 Corollary. Under the assumptions of Proposition §7.3.7 for each n € N consider the
OSE fuy = U*([f1g,, ) withmi as in (7.7). Then, Rq [frn | N(FL, L1dg)| < (14+7%) Ry (a)

foralln € N, i.e., the rate (R} (a))nen and the OSE (fm%)nEN are minimax-optimal (up to a
constant).

Proof of Corollary §7.3.8 is given in the lecture. O

§7.3.9 Proposition (Non-parametric density estimation §6.5.3 continued). Let {11} U U be
an ONB in L*[0,1] withtd = {u;,j € N}. Consider the reconstruction of a density p =
Loy + U*[f] in D, ie., f € F}, given for eachn € N an i.i.d. sample (X1,...,X,) ® B;".
Let the ONS U be in addition regular w.r.t. the weigth sequence a as in §6.1.12 (ii), i.e.,
1>7,e7 @luiPllLe < 72, for some T4 > 1. Under Assumption §7.3.4 we have

inf Re [p | BE"] > 177—6 min(r2, (472)7") Ri(a), foralln > 2. (7.9)
b
Proof of Proposition §7.3.9 is given in the lecture. O

§7.3.10 Remark. We shall emphasise that assuming in Proposition §7.3.9 in addition a regular
ONS U ensures that the specific choices p, = 1o 1) + f. with f, as specified in Lemma §7.3.5
are indeed densities belonging to D. Moreover, the specific choices satisfy 1/2 < p, <
1+ 1/2 < 2, A-a.s.. Thereby, due to Lemma §6.6.8 R%(p, ) as given in (6.8) is an oracle rate,
where R (p,) < (1Vr?)R%(a), and R (a) is a minimax-rate as formalised next. O

§7.3.11 Corollary. Under the assumptions of Proposition §7.3.9 for each n € N consider a
noisy version p ~ £(p, L) with T, = M, — M, I, 3 M, as in §6.4.4 and an observable
quantity [p] = (P,u;)jen using an iid. sample (X1,...,X,) @ BY". Let D, = Lo +
a m¢ 9
U*([p] 17, ) be the OSE with m¥, as in (7.7). Then, Re [D, ., | BZ"] < (1 + r7uq + 1) Rip(a)
@ @ a

foralln € N, ie., the rate (Rg(a))nen and the OSE (D, , )nen are minimax-optimal (up to a
2

constant).

Proof of Corollary §7.3.11 is given in the lecture. O

§7.3.12 Proposition (Non-parametric regression $6.5.4 continued). Consider the reconstruc-
tion of a regression function f € F7, given for eachn € Nani.i.d. sample (X1, 2Z1),...,(Xn, Zy)
with joint distribution belonging to E}‘?" and obeying the Assumption §5.3.1 (see section 5.3). If
the error term is (0, 02)-distributed, then under Assumption §7.3.4 we have

inf Re[f| BE"] > g min(2r%,02) Ri(a), foralln € N. (7.10)
!

Proof of Proposition §7.3.12 is given in the lecture. O

§7.3.13 Remark. We shall emphasise that assuming in Proposition §7.3.12 in addition normal-
distributed error terms is only needed to simplify the calculation of the distance between dis-
tributions corresponding to different regression functions. On the other hand, below we derive
an upper bound under Assumption §5.3.1 (see section 5.3) only. In this situation, Proposition
§7.3.12 obviously provides a lower bound for any estimator since the family E}?" contains this
specific Gaussian-error case. Moreover, if the ONS I/ is in addition regular w.r.t. the weight
sequence a, then the specific choice f, given by Lemma §7.4.4 satisfies || f, iw < 0o and due
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to Lemma §6.6.11 R2(f.) as given in (6.8) is an oracle rate, where R (f,) < (1 V r?)R%(a),
and R (a) is a minimax-rate as formalised next. O

§7.3.14 Corollary. For each n € N using an i.i.d. sample (X1,7Z),...,(Xn, Z )@ BZ"
obeying the Assumption $5.3.1 (see section 5.3) consider a nozsy version f £( f [}) with

[, = 02 1dy +M,, as in §6.5.4 and an observable quantity [f] (P, [1d®u]])j€N Let the ONS
U be in addition regular w.r.t. the sequence a.as in §6.1.12 (i), i.e., |3 ;¢ 7 a7|u;]? HLoo <o If

fmn = U*([f] 1y . ) is the OSE with myg as in (7.7), then Re [A |BS"] < (0247127 )Rn( )
2 o

foralln € N, i.e., the rate (R (a)),en and the OSE (P )neN are minimax-optimal (up to a

constant).

Proof of Corollary §7.3.14 is given in the lecture. O

7.4 Lower bound based on m hypothesis

§7.4.1 Lemma (Assouad’s cube technique). Consider a family B" of probability measures. For
|Tin| < 00 Let 9(-,-), j € Tin, be distances such that [0,(-,-)]* = >2,c, [P9(-,)]%. Let

ist ist

0 :=(0;)jes., € {-1, 1}Vl —. © and for each 6 € © introduce 09 € © by «91]) =0, forj#1
and 91(4 ) = —0;. For each 0 € © let ;) be a probability measure in &, then

ir}fﬂ%[ | B le >

0cO ]6«7777,

Dz(st) f97f9<7) | P ( fo 0(3))

Proof of Lemma §7.4.1 is given in the lecture. O

§7.4.2 Remark (Lower bound for a maximal H,-risk). Consider a global Hl,-risk with weighted
norm ||-||, derived from an ONS I/ and some weight sequence (v;),;cs. In this situation the last
assertion states

1nf9‘iu[f| ZWZ > ofllfols — Lo 0* (B B, )-

0O JE€EIm

Let us assume that for each § € © and j € [J,, the probability measures P}, and IP}Z(]_) are
uniformely statistically indistinguishable in the sense that p(IP7, ]P’” ) > c for some ¢ > 0. If
we consider furthermore candidates fy := .., 0; [ filug, 6 € @ for some f, € I, then it

is easily verified that { fy,0 € ©} C F}, and dejm Afels = fowl,I? = Z]Gjm SIS =
4 ||y, f« Hi which in turn implies

n;fzm [FIBy] > 2\3 Dy, folly = & [y, £l - (7.11)
fcO

Often a minimax-optimal lower bound can be found by choosing the parameter m and the
function f, that have the largest possible ||TIy,, f.||>-value although that the associated Pr c B,
0 € O, are still uniformely statistically indistinguishable. O
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7.4.1 Examples - lower bound of a maximal H,-risk

Assuming that the function of interest f with generalised Fourier coefficients [f] = ([f],) e
belongs to the class of solutions [} as in §6.2.3 we derive below a lower bound of a maximal
H,-risk considering the three examples: (i) Gaussian sequence space model (GSSM) §6.5.2,
(1) non-parametric regression §6.5.4, and (iii) density estimation §6.5.4. Define for n € N and
m e M,

Ry (m,a) := max ((an)?m), n~ols, 7).,

my = arg min{Ry(m,a),m € M} and Ry (a) :== Ry(my,a). (7.12)

Keep in mind the quantities R} (m, f) and R} (f) given in (6.7), where for any f € F! and
m € M we have |[o[f]1ze||,, < 7(00)(m), and hence, Ry (m, f) < (1 V r?)Ry(m, a) for all
n € N. Consequently, R7(f) < (1 V r?)R7(a) where R”(f) is eventually the oracle rate (see,
for instance, Proposition §6.6.5). We show below that R} (a) eventually is a minimax rate. We
impose a minimal regularity of the weight sequences a and v, which is formalised in the next
assumption.

§7.4.3 Assumption. Consider a pre-specified ONS {u;, j € J} in H, a nested sieve (7;,)mem
in J and strictly positive sequences v and a such that ba = (v;a;),c7 is monotonically non-
increasing, i.e., min{v;a;,j € Jn, } = sup{v;a;,j € J;} = (vba)m > 0 forany m € M.
Suppose further that 77 := inf {|R{}(a)|*1 min((av)? ., %Hblljmg 17.),n € N} > 0.

Keep in mind, that under Assumption §7.4.3 we have I, C H,. In the proof of the next
propositions we intend to apply the result presented in (7.11) in Remark §7.4.2 to a specific
choice of f, € F; which we specify next.

§7.4.4 Lemma. Consider 1 as in Assumption §7.4.3 and for n € N let m, := mJ as in (7.12).
Define o, := (|01, ||%/n) 'R (a) < 5! and ¢ := nmin(r?, ¢) for some ¢ > 0. Consider
the function f. := (o /n)/? Y., u;. Then we have Hf*H?/a < min(r? ¢), ie., f, € F,
and nmax{|[f.]?,j € Tn} < c.

Proof of Lemma §7.4.4 is given in the lecture. O

§7.4.5 Corollary. Let the assumptions of Lemma §7.4.4 be satisfied. If the ONS U is in addition
regular w.r.t. the weigth sequence a as in §6.1.12 (i), i.e., |32, 7 a3|u;|?| L= < T3, for some

Tua = 1, then it holds || f.|5 < T2.c.
Proof of Corollary §7.4.5 follows along the lines of the proof of Corollary §7.3.6. O

§7.4.6 Proposition (GSSM, §6.5.2 continued). Consider the reconstruction of f = U*[f] € F,

given for each n € N an observable quantity f@ N(F7, % Id). Under Assumption §7.4.3 we
have

inf R, [f|N(F:, L1d)] > g min(2r2,1) R™a), foralln € N (7.13)
f

Proof of Proposition §7.4.6 is given in the lecture. O
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§7.4.77 Corollary. Under the assumptions of Proposition §7.4.6 for each n € N consider the
OSE fup = U*([f]17,,) withm as in (7.12). Then, Ry | frmp | N(FL, L 1dy)| < (147%) Ri(a)

foralln € N, i.e., the rate (R} (a))nen and the OSE (fm{})nEN are minimax-optimal (up to a
constant).

Proof of Corollary §7.4.7 is given in the lecture. O

§7.4.8 Proposition (Non-parametric density estimation §6.5.3 continued). Consider the recon-
struction of a density p = Lo + f with f € F given for each n € N an i.i.d. sample
(X1,..,Xn)® IP;)%". Let the ONS U be in addition regular w.r.t. the weigth sequence a as in
§6.1.12 (ii), i.e.,

diea a?|u;|?|| L < 72, for some T.q > 1. Under Assumption §7.4.3 we have
inf R, [f|BE"] > % min(r?, (472)°Y) R (a), foralln > 2. (7.14)

!
Proof of Proposition §7.4.8 is given in the lecture. O

§7.4.9 Remark. We shall emphasise that assuming in Proposition §7.4.8 in addition a regular
ONS U ensures that the specific choice p, = 1 1) + f« with f, as specified in Lemma §7.4.4 is
indeed a density belonging to D7. Moreover, the specific choice satisfy 1/2 < p, <1+ 1/2 <
2, A-a.s.. Thereby, due to Lemma §6.6.8 R}'(p,) as given in (6.7) is an oracle rate, where
RM(p.) < (1V7r?)R(a), and R?(a) is a minimax-rate. O

§7.4.10 Corollary. Under the assumptions of Proposition §7.4.8 for each n € N consider a
noisy version p ~ £(p,~I,) with T, = M, — M, i, M, as in §6.4.4 and an observable
quantity [p] = (P,u;)jen using an i.i.d. sample (X1,...,X,)® IP,?)%”. Let @mg = I +
U*([p]1y,,) be the OSE with my as in (7.12). Then, Ry [@:} |BY"] < (L4 77w+ 72) Ri(a)

foralln € N, i.e., the rate (R} (a))nen and the OSE (D, ,, )nen are minimax-optimal (up to a
constant).
Proof of Corollary §7.4.10 is given in the lecture. O

§7.4.11 Proposition (Non-parametric regression §6.5.4 continued). Consider the reconstruc-
tion of a regression function f € F} given for eachn € Nani.i.d. sample (X1, Z1),...,(Xn, Zy)
with joint distribution belonging to IE?;?" and obeying the Assumption §5.3.1 (see section 5.3). If
the error term is (0, 02)-distributed, then under Assumption §7.4.3 we have

inf R, [f|BE"] > g min(2r2, 02) R™(a), foralln € N. (7.15)
!
Proof of Proposition §7.4.11 is given in the lecture. O

§7.4.12 Remark. We shall emphasise that assuming in Proposition §7.4.11 in addition normal-
distributed error terms is only needed to simplify the calculation of the distance between dis-
tributions corresponding to different regression functions. On the other hand, below we derive
an upper bound under Assumption §5.3.1 (see section 5.3) only. In this situation, Proposition
§7.4.11 obviously provides a lower bound for any estimator since the family E}?” contains this
specific Gaussian-error case. Moreover, if the ONS I/ is in addition regular w.r.t. the weight
sequence a, then the specific choice f, given by Lemma §7.4.4 satisfies || f, ioo < oo and due
to Lemma $6.6.11 R?(f,) as given in (6.8) is an oracle rate, where R?(f.) < (1 V 7?)R%(a),
and R} (a) is a minimax-rate. O
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§7.4.13 Corollary. For each n € N using an iid. sample (X1, Z),..., (X, Z,) © BZ"

obeying the Assumption $5.3.1 (see section 5.3) consider a noisy version f ~ £(f, %Ff) with
[, = 021dy +M,, 2 as in §6.5.4 and an observable quantity [f] = (P,[id®u;])en. Let the ONS
U be in addition regular w.r.t. the sequence a.as in §6.1.12 (ii), i.e., |3 c ;7 03 |uj[* || oo < 730 If
Frp = U ([f1g,,) is the OSE with m! as in (7.12), then Ry [, | BE"] < (02 +7272,) R2(a)
foralln € N, i.e., the rate (R} (a))nen and the OSE (D, .. )nen are minimax-optimal (up to a
constant). ’

Proof of Corollary §7.4.13 is given in the lecture. O
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