
Ruprecht-Karls-Universität Heidelberg
Institut für Angewandte Mathematik

Prof. Dr. Jan JOHANNES

Outline of the lecture course

STATISTICS II

Winter semester 2016/17

Preliminary version: February 13, 2017

If you find errors in the outline, please send a short note
by email to johannes@math.uni-heidelberg.de

MΛTHEMΛTIKON, Im Neuenheimer Feld 205, 69120 Heidelberg
phone: +49 6221 54.14.190 – fax: +49 6221 54.53.31

email: johannes@math.uni-heidelberg.de
webpage: www.razbaer.eu/ag-johannes/vl/ST2-WS16/

mailto:johannes@math.uni-heidelberg.de
mailto:johannes@math.uni-heidelberg.de
https://www.razbaer.eu/ag-johannes/vl/ST2-WS16/




Table of contents
1 Preliminaries 1

1.1 Convergence of random variables . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Stochastic Landau notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 M- and Z-estimator 7
2.1 Introduction / motivation / illustration . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Testing procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Contiguity 19
3.1 Likelihood ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Local asymptotic normality (LAN) 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Hellinger-differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Limit distributions under alternatives . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Asymptotic power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Asymptotic relative efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Rank tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Asymptotic power of rank tests . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Non-parametric statistics: local smoothing 35
5.1 Non-parametric curve estimation . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Non-parametric regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Non-parametric statistics: orthogonal series estimation 43
6.1 Theoretical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Abstract smoothness condition . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Approximation by dimension reduction . . . . . . . . . . . . . . . . . . . . . 49
6.4 Stochastic process on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Statistical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Orthogonal series estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Minimax optimality 59
7.1 Minimax theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Deriving a lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Lower bound based on two hypothesis . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Examples - lower bound of a maximal Φ-risk . . . . . . . . . . . . . . 62
7.4 Lower bound based on m hypothesis . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1 Examples - lower bound of a maximal Hv-risk . . . . . . . . . . . . . . 65

Statistics II i





Chapter 1

Preliminaries

This chapter presents elements of the PROBABILITY THEORY along the
lines of the lecture course Probability theory II.

Here and subsequently, for µ a measure on a measurable space (Ω,A ) and f : Ω → Rk
a measurable function, µf denotes the integral

∫
fdµ. In particular, given a probability mea-

sure P and a random variable (r.v.) X distributed according to P the expectation of f(X)
w.r.t. P is denoted by Pf , EPf(X) or Ef(X) for short. For example, when applied to the
empirical measure Pn := 1

n

∑n
i=1 δXi of a sample X1, . . . , Xn, the discrete uniform mea-

sure on the sample values, this yields Pnf = 1
n

∑n
i=1 f(Xi). In other words, Pnf is an ab-

breviation for the average 1
n

∑n
i=1 f(Xi). Let M(Ω,A , µ) denote the set of all real-valued

Borel-measurable maps on a measure space (Ω,A , µ). Given f ∈ M(Ω,A , µ) let ‖f‖Lpµ :=

(µ|f |p)1/p, p ∈ [1,∞) and ‖f‖L∞µ := inf{c : µ(|f | > c) = 0}. Thereby, for p ∈ [1,∞]

we set Lpµ := Lpµ(Ω,A , µ) := {f ∈ M(Ω,A , µ) : ‖f‖Lpµ < ∞} or Lp := Lpµ for short.
In the sequel, a random vector in Rk or Rk-valued r.v. is a vector X = (X1, . . . , Xk) of real
valued r.v.’s defined on a common probability space (Ω,A ,P). We denote by ‖·‖ and 〈·, ·〉
the Euclidean norm and inner product on Rk, respectively, i.e, ‖x‖ = (

∑k
i=1 |xi|2)1/2 and

〈x, y〉 =
∑k

i=1 x
iyi, x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk. Obviously, for a Rk-valued r.v.

X = (X1, . . . , Xk), ‖X‖ is a real valued r.v. and ‖X‖ ∈ Lp is equivalent to X i ∈ LpP , i.e.,
‖X i‖LpP = (E|X i|p)1/p < ∞, for each i ∈ J1, kK := [1, k] ∩ Z. Moreover, for x, y ∈ R we
agree on the following notations bxc := max{k ∈ Z : k 6 x} (integer part), x∨y = max(x, y)
(maximum), x∧ y = min(x, y) (minimum), x+ = max(x, 0) (positive part), x− = max(−x, 0)
(negative part) and |x| = x− + x+ (modulus).

1.1 Convergence of random variables

§1.1.1 Definition. Given r.v.’s X,X1, X2, . . . on a probability space (Ω,A ,P) with values in
a metric space (X , d) equipped with its Borel-σ-field the sequence (Xn)n∈N converges to X:

(a) almost surely (a.s.), if P(limn→∞ d(Xn, X) = 0) = 1. We write Xn
n→∞−→ X a.s., or

briefly, Xn
a.s.−→ X .

(b) in probability, if limn→∞ P
(
d(Xn, X) > ε

)
= 0 for all ε > 0. We write Xn

n→∞−→ X in P,

or briefly, Xn
P→ X .

(c) in distribution, if EP
(
f(Xn)

) n→∞−→ EP
(
f(X)

)
for any continuous and bounded function

f : X → R. We write Xn
n→∞−→ X in distribution, or briefly, Xn

d→ X .

(d) in Lp or p-th mean, if limn→∞ E|d(Xn, X)|p = 0. We write Xn
n→∞−→ X in Lp, or briefly,

Xn
Lp−→ X .
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Chapter 1 Preliminaries 1.1 Convergence of random variables

§1.1.2 Remark. Considering Rk-valued r.v.’s X,X1, X2, . . . and the Euclidean norm ‖·‖ on
Rk convergence of (Xn)n∈N to X in p-th mean, that is, limn→∞ E ‖Xn −X‖p = 0 is equivalent
to the convergence of each component in Lp, i.e., limn→∞ ‖X i

n −X i‖Lp = 0, i ∈ J1, kK.

§1.1.3 Properties. Consider r.v.’s X,X1, X2, . . . on a probability space (Ω,A ,P) with values
in a metric space (X , d) equipped with its Borel-σ-field.

(a) We haveXn
a.s.−→ X if and only if supm>n d(Xm, Xn)

P→ 0 if and only if supj>n d(Xj, X)
P→

0 if and only if ∀ε, δ > 0, ∃N(ε, δ) ∈ N, ∀n > N(ε, δ), P
(⋂

j>n {d(Xj, X) 6 ε}
)
>

1− δ.

(b) If Xn
a.s.−→ X , then Xn

P→ X .

(c) If Xn
a.s.−→ X , then g(Xn)

a.s.−→ g(X) for any continuous function g.

(d) If Xn
P→ X , then g(Xn)

P→ g(X) for any continuous function g.

(e) Xn
a.s.−→ X ⇒ Xn

P→ X ⇐ Xn
Lp−→ X and Xn

P→ X ⇒ Xn
d→ X

§1.1.4 Properties (Portemanteau). LetX,X1, X2, . . . be r.v.’s on a probability space (Ω,A ,P)
with values in a metric space (X , d) equipped with its Borel-σ-field, then the following state-
ments are equivalent:

(i) Xn
d→ X;

(ii) lim inf
n→∞

P(Xn ∈ U) > P(X ∈ U) for all open U ⊂ X ;

(iii) lim sup
n→∞

P(Xn ∈ F ) 6 P(X ∈ F ) for all closed F ⊂ X ;

(iv) limn→∞ P(Xn ∈ B) = P(X ∈ B) for all measurable B with P(X ∈ ∂B) = 0 where B,
B
◦

and ∂B = B\B◦ is the closure, interior and the boundary of B, respectively.

§1.1.5 Property (Helly-Bray). For Rk-valued r.v.’s X,X1, X2, . . . defining distribution func-
tions for each x ∈ Rk by F(x) := P(X 6 x) and Fn(x) := P(Xn 6 x), n ∈ N, are equivalent:
(i) Xn

d→ X and (ii) limn→∞ Fn(x) = F(x) for all points of continuity x of F.

§1.1.6 Property (Continuous mapping theorem). Let (X1, d1) and (X2, d2) be metric spaces
equipped with their Borel-σ-fields and let ϕ : X1 → X2 be measurable. Denote by Uϕ the set
of points of discontinuity of ϕ. If X,X1, X2, . . . are X1-valued r.v.’s with P(X ∈ Uϕ) = 0 and

Xn
d→ X , then ϕ(Xn)

d→ ϕ(X).

§1.1.7 Property (Slutzky’s lemma). Let X,X1, X2, . . . and Y1, Y2, . . . be r.v.’s with values in
a common metric space (X , d) satisfying Xn

d→ X and d(Xn, Yn)
P→ 0. Then Yn

d→ X .

§1.1.8 Remark. If Xn
P→ X , then Xn

d→ X . The converse is false in general. Indeed, if
X,X1, X2, . . . are independent and identically distributed (i.i.d.) (with nontrivial distribution),
then trivially Xn

d→ X but Xn 6
P→ X .

§1.1.9 Examples. Consider Rk-valued r.v.’s X,X1, X2, . . . satisfying Xn
d→ X .

(i) If Y1, Y2, . . . are Rk-valued r.v.’s and c ∈ Rk such that Yn
d→ c, then Xn + Yn

d→ X + c.
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1.1 Convergence of random variables Chapter 1 Preliminaries

(ii) If Σ1,Σ2, . . . are k × k random matrices and Σ a k × k matrix such that Σn
d→ Σ,

then ΣnXn
d→ ΣX . If in addition Σ is strictly positive definite, and thus invertible, then

Σ−1
n Xn

d→ Σ−1X and Σ
−1/2
n Xn

d→ Σ−1/2X , respectively.

§1.1.10 Property (Law of Large Numbers). Let X,X1, X2, . . . be i.i.d. Rk-valued r.v.’s with
E ‖X‖ <∞. Then 1

n

∑n
i=1Xi

a.s.−→ E(X).

§1.1.11 Property. Let X be a Rk-valued r.v. with E ‖X‖2 <∞. If b ∈ Rk and A is a (k × k)-
dimensional matrix, then Y := AX + b is a Rk-valued r.v. with E ‖Y ‖2 < ∞. If we further
denote by µ := E(X) and Σ := Cov(X) = E(X−µ)(X−µ)t = E(XX t)−µµt the expectation
and covariance matrix of X , respectively, then E(Y ) = Aµ+ b and Cov(Y ) = AΣAt.

§1.1.12 Definition. A Rk-valued r.v. X with µ := E(X) and Σ := Cov(X) is multivari-
ate normal distributed, i.e., X ∼ N(µ,Σ), if for each c ∈ Rk the real valued r.v. 〈X, c〉 is
normal distributed with mean 〈µ, c〉 and variance 〈Σc, c〉, i.e., 〈X, c〉 ∼ N(〈µ, c〉, 〈Σc, c〉). If
Idk denotes the k-dimensional identity matrix, then X ∼ N(0, Idk) is called standard normal
distributed.

§1.1.13 Property. A r.v. X = (X1, . . . , Xk) is standard normal distributed, i.e.,X ∼ N(0, Idk)
if and only if X1, . . . , Xk are independent and identically N(0, 1)-distributed.

§1.1.14 Remark. In other words, a multivariate N(0, Idk)-distribution equals the product of its
marginal N(0, 1)-distributions, or N(0, Idk) = N⊗k(0, 1) :=

∏k
i=1 N(0, 1) for short.

§1.1.15 Property (Central Limit Theorem). Let X,X1, X2, . . . be i.i.d. Rk-valued r.v.’s in L2,
i.e., E ‖X‖2 <∞. Then 1√

n

∑n
i=1(Xi − E(X))

d→ N(0,Cov(X)).

§1.1.16 Property (Lindeberg-Feller CLT). For each n ∈ N let Yn,1, . . . , Yn,kn be indepen-
dent Rp-valued r.v.’s in L2 such that (i)

∑kn
i=1 E ‖Yn,i‖

2
1{‖Yn,i‖>ε}

n→∞−→ 0 for any ε > 0 and

(ii)
∑kn

i=1Cov(Yn,i)
n→∞−→ Σ. Then

∑kn
i=1(Yn,i − E(Yn,i))

d→ N(0,Σ).

§1.1.17 Example. Assume i.i.d. Rk-valued r.v.’s X,X1, X2, . . . in L2 with µ = E(X) and
Σ = Cov(X), which is strictly positive definite.

(i) (CLT) 1√
n

∑n
i=1(Xi − µ)

d→ N(0,Σ),

(ii) (LLN) Xn := 1
n

∑n
i=1Xi

P→ µ,

(iii) (LLN) 1
n

∑n
i=1XiX

t
i
P→ E(XX t),

(iv) Σn := 1
n

∑n
i=1(Xi − Xn)(Xi − Xn)t = 1

n

∑n
i=1 XiX

t
i − XnX

t

n
P→ E(XX t) − µµt =

Cov(X) = Σ (using (ii) and (iii), Slutzky’s lemma §1.1.7 and continuous mapping theo-
rem §1.1.6)

(v)
√
nΣ
−1/2
n (X − µ)

d→ N(0, Id) (using (i), (iv) and Slutzky’s lemma §1.1.7 as in the exam-
ples §1.1.9 (ii))

§1.1.18 Remark. A map φ : Rk → Rm, that is defined at least on a neighbourhood of θo, is
called differentiable at θo, if there exists a linear map (matrix) φ̇θo := φ̇(θo) : Rk → Rm such

Statistics II 3
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that

lim
θ→θo

∥∥∥φ(θ)− φ(θo)− φ̇θo(θ − θo)
∥∥∥

‖θ − θo‖
= 0.

The linear map x 7→ φ̇θox is called (total) derivative as opposed to partial derivatives. A
sufficient condition for φ to be (totally) differentiable is that all partial derivatives ∂φj(θ)/∂θl
exist for θ in a neighbourhood of θo and are continuous at θo.

§1.1.19 Property (Delta method). Let φ : Rk ⊃ Dφ → Rm be a map defined on a subset Dφ of
Rk and differentiable at θo. Let T, T1, T2, . . . be r.v.’s taking their values in the domain Dφ of

φ. If rn(Tn− θo)
d→ T for numbers rn →∞, then rn(φ(Tn)− φ(θo))

d→ φ̇θo(T ). Moreover, the
difference between rn(φ(Tn)−φ(θo)) and φ̇θo(rn(Tn− θo)) converges to zero in probability.

§1.1.20 Remark. Commonly,
√
n(Tn − θo)

d→ N(µ,Σ). Then applying the delta method it
follows that

√
n(φ(Tn)− φ(θo))

d→ N(φ̇θoµ, φ̇θoΣφ̇
t
θo

).

§1.1.21 Property (Markov’s inequality). If X is a Rk-valued r.v. in Lp for some p > 1, then
P(‖X‖ > c) 6 c−pE ‖X‖p.

§1.1.22 Property (Monotone convergence). Assume real-valued r.v.’s X,X1, X2, . . . such that
X1 6 X2 6 . . . a.s., or Xn ↑ for short. Then E limn→∞Xn = limn→∞ EXn.

§1.1.23 Property (Dominated convergence). Assume real-valued r.v.’sX,X1, X2, . . . such that
Xn

a.s.−→ X . If there exists Y ∈ L1 with supn>1 |Xn| 6 Y a.s., then limn→∞ E|Xn − X| = 0
which in turn implies X ∈ L1 and limn→∞ |EXn − EX| = 0.

§1.1.24 Definition. Let (X , d) be a metric space equipped with its Borel-σ-algebra. A sequence
of X -valued r.v.’s (Xn)n∈N is called (uniformly) tight (straff) or bounded in probability, if, for
any ε > 0, there exists a compact set Kε ⊂ X such that P(Xn ∈ Kε) > 1− ε for all n ∈ N.

§1.1.25 Remark. If (X , d) is Polish, i.e., separable and complete, then every X -valued r.v. X
is bounded in probability and thus so is every finite family.

§1.1.26 Example. A sequence (Xn)n∈N of Rk-valued r.v.’s is bounded in probability, if for any
ε > 0, there exists a constant Kε such that P(‖Xn‖ > Kε) 6 ε for all n ∈ N.

§1.1.27 Property (Prohorov’s theorem). Let (X , d) be a Polish space equipped with its Borel-
σ-algebra and let X,X1, X2, . . . be X -valued r.v.’s.

(i) If Xn
d→ X , then (Xn)n∈N is bounded in probability.

(ii) If (Xn)n∈N is bounded in probability, then there exists a sub-sequence (Xnk)k∈N which
converges in distribution.

1.2 Stochastic Landau notation

In the sequel, X1, X2, . . . are r.v.’s on a common probability space (Ω,A ,P) with values in
a metric space (X , d) equipped with its Borel-σ-algebra. Moreover, x1, x2, . . . belong to X and
a1, a2, . . . are numbers.
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1.2 Stochastic Landau notation Chapter 1 Preliminaries

§1.2.1 Notations. (a) Recall the Landau notations (i) xn = o(1), if xn
n→∞−→ 0, and (ii) xn =

O(1), if supn∈N d(xn, 0) < ∞, we write analogously (i) Xn = oP(1), if Xn
P→ 0, and

(ii) Xn = OP(1), if (Xn)n∈N is bounded in probability.

(b) More generally, given a sequence (an)n∈N of strictly positive numbers, keeping in mind
that (i) xn = o(an), if xn/an = o(1), and that (ii) xn = O(an), if xn/an = O(1),
we write analogously (i) Xn = oP(an), if Xn/an = oP(1), and (ii) Xn = OP(an), if
Xn/an = OP(1).

(c) Assuming a sequence (An)n∈N of strictly positive r.v.’s we write (i) Xn = oP(An), if
Xn/An = oP(1), and (ii) Xn = OP(An), if Xn/An = OP(1).

§1.2.2 Properties (Exercise). (a) oP(1) + oP(1) = oP(1) meaning if Xn = oP(1) and Yn =
oP(1) then Xn + Yn = oP(1);

(b) OP(1) + oP(1) = OP(1);

(c) OP(1) · oP(1) = oP(1);

(d) (1 + oP(1))−1 = OP(1);

(e) oP(Rn) = RnoP(1);

(f) OP(Rn) = RnOP(1);

(g) oP(OP(1)) = oP(1) meaning if Xn = OP(1) and Yn = oP(Xn) then Yn = oP(1).

Statistics II 5





Chapter 2

M- and Z-estimator

2.1 Introduction / motivation / illustration

§2.1.1 Example (Linear model). Describe the dependence of the variation of a real-valued r.v. Yi
(response) on the variation of an explanatory Rk-valued r.v. Xi = (X1

i , . . . , X
k
i )t (explanatory

variable) by a linear relationship E[Yi|Xi] = θ1
oX

1
i + · · · + θkoX

k
i = X t

iθo or equivalently
Yi = X t

iθo + εi where εi is a random error satisfying E[εi|Xi] = 0. The parameter θo ∈ Rk
is unknown, and our interest is inference on θo. Assuming that (Y1, X1), . . . , (Yn, Xn) form an
i.i.d. sample, we write Y = (Y1, . . . , Yn)t and X t = (X1, . . . , Xn) for short. Consequently, we
have E[Y |X] = Xθo. Consider a Least Squares Estimator (LSE) θ̂o satisfying

θ̂o ∈ arg inf
θ∈Rk

1

n

n∑
i=1

(Yi −X t
iθ)

2 = arg inf
θ∈Rk

1

n
‖Y −Xθ‖2 (2.1)

where arg inf denotes the set of points attaining the function’s smallest value. If X tX =∑n
i=1XiX

t
i is strictly positive definite, and hence, invertible, the unique LSE is given by

θ̂o = (X tX)−1X tY =
(

1
n

∑n
i=1XiX

t
i

)−1 1
n

∑n
i=1 YiXi. Under “usual“ regularity conditions

(see §1.1.17) we have 1
n

∑n
i=1XiX

t
i
P→ E(X1X

t
1) =: Ω (LLN). If in addition E(ε2

i |Xi) = σ2,

then 1√
n

∑n
i=1 εiXi

P→ N(0, σ2Ω) (CLT). Applying Slutzky’s lemma §1.1.7 and the continuous

mapping theorem §1.1.6 holds
√
n(θ̂o − θo)

d→ N(0, σ2(E(X1X
t
1))−1). A further inference

on θ̂o (hypothesis testing, confidence intervals, etc.) might typically based on this asymptotic
result. However, the essential assumption is the linear relationship θ 7→ E[Y |X] = Xθ.

§2.1.2 Example (Generalised linear model). Consider a real r.v. Yi and a Rk-valued r.v. X obey-
ing E[Yi|Xi] = g(X t

iθo) for a given link function g : R → R and an unknown parameter
θo ∈ Rk. As an illustration consider the effect of a three different drugs on the behaviour of cer-
tain animals. Therefore, each drug is given in different dose to certain animals and we count on
how many animals an effect occurred. The next table summarises the results of the experiment.

drug log-dose effect no effect drug log-dose effect no effect

1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Table 1.1: Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.
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Figure 1.1: Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: ◦; 3: -.

Let Yjk denote the counts of an effect among njk animals applying a log-dose Xjk, j ∈ J1, JkK
of the drug k ∈ J1, KK. Assuming an “independent and identical” behaviour of the njk animals
it seems reasonable to model Yjk as Binomial-Bin(njk, πjk)-distributed r.v. with unknown per-
centage πjk ∈ (0, 1). Typically, it is assumed that njkπjk = E[Yjk|Xjk] = g(θko + θ0

oxjk) where
θ1
o, . . . , θ

k
o is a drug specific factor and θ0

o is a common effect of the log-dose for all drugs. The
model is called “Probit” if g is the distribution function of a standard-normal distribution while
it is called “Logit” if g = ex

1+ex
is the logit-distribution function. Keeping in mind example

§2.1.1 a LSE θ̂o ∈ arg infθ∈Rk
∑K

k=1

∑Jk
j=1(Yjk − g(θko + θ0

oxjk))
2 might be considered.

§2.1.3 Example (Non-linear regression). Consider a real r.v. Yi and a Rk-valued r.v. X obeying
E[Yi|Xi] = g(X, θo) for a given link function g : Rk × Rp → R and an unknown parameter
θo ∈ Rp. The next figure shows, for example, the widely used Gompertz function g(x) =
a exp(−b exp(x log(c))).
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As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
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n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane

3,541 205,8 90,9 37,1 5,686 297,3 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 49,4 2,648 305,7 142 86
4,722 401,6 187,2 44,9 3,303 300,1 143,7 90,2
0,593 224,9 92,7 116,3 3,054 305,4 141,1 87,4
0,268 402,6 102,2 128,9 3,302 305,2 141,5 87
2,797 212,7 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33
3,196 133,3 140,8 87,6 2,002 417,2 83,9 32,9
2,021 470,9 144,2 86,9 9,604 251 294,4 41,5
0,896 300 68,3 81,7 7,754 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2

Table 1.3: Isomerisation reaction rate of an n-pentane into an isopentane.
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Figure 1.3: Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special

Statistics II 9
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case is given by

E[Yi|X1
i , X

2
i , X

3
i ] =

θ1
oθ

3
o(X

2
i −X3

i /1.632)

1 + θ2
oX

1
i + θ3

oX
2
i + θ4

oX
3
i

, i ∈ J1, nK, (2.2)

where X1
i , X2

i and X3
i is the partial pressure of hydrogen, isopentane and n-pentane, respec-

tively, and θ1
o, . . . , θ

4
o are unknown parameters. Aiming inference on θo we might again consider

a LSE θ̂o ∈ arg infθ∈Rk
∑n

i=1(Yi − g(Xi, θo))
2.

§2.1.4 Example (Quantile regression). Consider a Rp-valued r.v. Yi and a Rk-valued r.v. X
obeying Yi = X t

iθo + εi with P(εi 6 0|X) = α for a given value α ∈ (0, 1) for the quantile
or equivalently P(Yi 6 X t

iθo|Xi) = α meaning that the conditional-α-quantile of Yi given
Xi equals X t

iθo. Keeping in mind that qα is a α-quantile of Z if P(Z 6 qα) = α. Define1

τα(z) := (1−α)z−+αz+ where τα(z) = (1−α)|z| if z 6 0 and τα(z) = αz otherwise. Under
regularity conditions the function q 7→ E(τα(Z − q)) attains its minimum at the value q = qα.
Roughly, we have

∂

∂q
E(τα(Z − q)) = (1− α)

∂

∂q

∫ q

−∞
(q − z)f(z)dz + α

∂

∂q

∫ ∞
q

(z − q)f(z)dz

= (1− α)

∫ q

−∞
f(z)dz − α

∫ ∞
q

f(z)dz

= (1 − α)P(Z 6 q) − αP(Z > q) = P(Z 6 q) − α.

Consequently, the α-quantile satisfies 0 = ∂
∂q
E(τα(Z−q))

∣∣
q=qα

. Thereby, given an i.i.d. sample

(Y1, X1), . . . , (Yn, Xn) a reasonable estimator of θo is θ̂o ∈ arg infθ∈Rk
∑n

i=1 τα(Yi −X t
iθ).

§2.1.5 Example (Generalised Method of Moments). Given a r.v. Z and functions h1, . . . , hJ let
θo be a parameter of interest satisfying E[hj(Z, θo)] = 0 for j ∈ J1, JK or E[H(Z, θo)] = 0
where H(Z, θo) = (h1(Z, θo), . . . , hJ(Z, θo))

t for short. Supposing an i.i.d. sample Z1, . . . , Zn
of Z an estimator θ̂o is called a moment estimator if 1

n

∑n
i=1 hj(Zi, θ̂o) = 0 for j ∈ J1, JK, or

1
n

∑n
i=1H(Zi, θ̂o) = 0 for short. Since θ̂o does often not exist or is not unique setting Mn(θ) :=

( 1
n

∑n
i=1H(Zi, θ))

tWn( 1
n

∑n
i=1H(Zi, θ)) for a given weighting matrix Wn any estimator θ̂o ∈

arg infθ∈ΘMn(θ) is called a Generalised Method of Moments (GMM) estimator.

§2.1.6 Definition (Statistical experiment). Let PΘ := {Pθ, θ ∈ Θ} be a family of probability
measures on a measurable space (X ,B). The set of indices Θ is called parameter space. If
X is a r.v. taking values in (X ,B) with distribution Pθ for some θ ∈ Θ, i.e. X ∼ Pθ,
then we write X©∼ PΘ. The triple (X ,B,PΘ) is called a statistical experiment or statistical
model. If the r.v.’s X1, . . . , Xn form an independent and identically distributed (i.i.d.) sample
of X ∼ P, then P⊗n = ⊗nj=1P denotes its joint product probability measure on the product

measure space (X n,B⊗n). We write X1, . . . , Xn
i.i.d.∼ P or (X1, . . . , Xn) ∼ P⊗n for short.

More generally, if PnΘ = {Pnθ , θ ∈ Θ} denotes a family of probability measures on (X n,B⊗n)
we write (X1, . . . , Xn)©∼ PnΘ if (X1, . . . , Xn) ∼ Pnθ for some θ ∈ Θ. A statistical model
(X ,B,PΘ) or the family of probability measures PΘ is called dominated, if there exists a σ-
finite measure µ on B such that for each θ ∈ Θ the probability measure Pθ is absolutely

1We use the notation z+ = max(z, 0) = z ∨ 0 and z− = (−z) ∨ 0.
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2.2 Consistency Chapter 2 M- and Z-estimator

continuous w.r.t. µ, i.e. Pθ � µ. We write PΘ � µ for short. The Radon-Nikodym density
Lθ(x) := [dPθ/dµ](x) and its logarithm `θ(x) := log(Lθ(x)) parametrised by θ ∈ Θ is called
likelihood and log-likelihood function, respectively. Assuming (X1, . . . , Xn)©∼ P⊗nΘ , that is,
X1, . . . , Xn form an i.i.d. sample of X©∼ PΘ, its (joint) likelihood and log-likelihood fulfils
Lθ(x1, . . . , xn) =

∏n
i=1 Lθ(xi) and `θ(x1, . . . , xn) =

∑n
i=1 `θ(xi), respectively.

§2.1.7 Example (Maximum-Likelihood-Estimator (MLE)). Let X©∼ PΘ � µ. Consider the like-
lihood Lθ(x) and log-likelihood `θ(x) as a function of θ parametrised by x. An estimator
θ̂ := θ̂(X) is called Maximum-Likelihood-Estimator (MLE) for θ, if Lθ̂(x)(x) = supθ∈Θ Lθ(x)

or equivalently `θ̂(x)(x) = supθ∈Θ `θ(x) for µ-a.e. x ∈ X . Consequently, based on an i.i.d. sam-

ple X1, . . . , Xn of X©∼ PΘ or (X1, . . . , Xn)©∼ P⊗nΘ the MLE satisfies θ̂ ∈ arg supθ∈Θ Pn`θ by
using that Pn`θ = 1

n

∑n
i=1 `θ(Xi).

§2.1.8 Remark. Keep in mind that Pf and Pnf denotes the integral
∫
fdP and

∫
fdPn =

1
n

∑n
i=1 f(Xi) w.r.t. P and the empirical measure Pn = 1

n
δXi of a sample X1, . . . , Xn, respec-

tively. In all the examples the estimator is characterised either by θ̂ ∈ arg supθ∈Θ Pnmθ for a
given real-valued function mθ of the data or θ̂ is a zero of the mapping θ 7→ Pnψθ for a given
Rp-valued function ψθ of the data. Obviously, rather than maximising a criterion function we
might search for a zero of the associated normal or estimating equations.

§2.1.9 Definition (M- and Z-estimator). We call θ̂ an M-estimator, if θ̂ maximises a criterion
function Mn(θ) over the parameter space Θ or more generally, if it is a near maximum, that
is, Mn(θ̂n) > supθ∈Θ Mn(θ) − oP(1). We call θ̂ a Z-estimator, if it’s a zero of a normal or
estimating equation Ψn(θ) or more generally, if it is a near zero, that is, Ψn(θ̂n) = oP(1).

§2.1.10 Example. Consider (X1, . . . , Xn)©∼ PnΘ. Given a function mθ : X → R any θ̂ =

θ̂(X1, . . . , Xn) (nearly) maximising the map θ 7→ Mn(θ) := Pnmθ = 1
n

∑n
i=1mθ(Xi) is an

M-estimator. On the other hand given a function ψθ : X → Rk, any θ̂ = θ̂(X1, . . . , Xn) being
a (near) zero of the map θ 7→ Ψn(θ) := Pnψθ = 1

n

∑n
i=1 ψθ(Xi) is a Z-estimator.

2.2 Consistency

Here and subsequently, let (Θ, d) be a metric space. An estimator θ̂n of θo is called consistent
if the sequence (θ̂n)n∈N converges in probability to θo, i.e. d(θ̂n, θo) = oP(1). For instance, by
the LLN the sample mean Xn is consistent for the population mean EX .

Consider an M-estimator θ̂n for a random criterion function Mn(θ). Suppose there is a de-
terministic criterion function M(θ) such that Mn(θ)

P→ M(θ) holds point-wise for each θ ∈ Θ.
For example, due to the LLN Mn(θ) = Pnmθ

P→ Pmθ = M(θ) provided Pmθ exists. The hope
is that a maximiser of Mn then converges to the maximising value of M. However, in general
point-wise convergence will not be sufficient.

§2.2.1 Theorem. Consider real-valued random functionsMn on Θ, n ∈ N, and a deterministic
real-valued function M on Θ such that for any ε > 0

(i) supθ∈Θ|Mn(θ)−M(θ)| = oP(1) (uniform convergence in probability);
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Chapter 2 M- and Z-estimator 2.2 Consistency

(ii) supθ:d(θ,θo)>εM(θ) < M(θo) (identification).

Any sequence of estimators (θ̂n)n∈N of θo with Mn(θ̂n) > Mn(θo) − oP(1) is consistent, i.e.,
converges in probability to θo.

Proof of Theorem §2.2.1 is given in the lecture.

§2.2.2 Theorem. Consider Rk-valued random functions Ψn, n ∈ N, and a deterministic Rk-
valued function Ψ such that for any ε > 0

(i) supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ = oP(1) (uniform convergence in probability);

(ii) infθ:d(θ,θo)>ε ‖Ψ(θ)‖ > 0 = ‖Ψ(θo)‖ (identification).

Any sequence of estimators (θ̂n)n∈N of θo such that Ψn(θ̂n) = oP(1) is consistent, i.e., converges
in probability to θo.

Proof of Theorem §2.2.2 is given in the lecture.

§2.2.3 Lemma. Assume that (i) Θ is compact, (ii)M(θo) > M(θ), for all θ 6= θo, and (iii) θ 7→
M(θ) is continuous. Then, it holds supθ:d(θ,θo)>εM(θ) < M(θo) for all ε > 0.

Proof of Lemma §2.2.3 is left as an exercise.

§2.2.4 Example (MLE, §2.1.7 continued). Keep in mind that a MLE θ̂ maximises the map θ 7→
Pn`θ = 1

n

∑n
i=1 `θ(Xi) or equivalently θ 7→ Pn`θ − Pn`θo = Pn log(dPθ/dPθo) = Pn`θ,θo

where Lθ,θo(x) := [dPθ/dPθo ](x) = [dPθ/dµ](x)/[dPθo/dµ](x) = Lθ(x)/Lθo(x) assuming
Pθ � Pθo . Given `θ,θo := log(Lθ,θo) = log(dPθ/dPθo) considering Mn(θ) := Pn`θ,θo and
M(θ) := Pθo`θ,θo we have Mn(θ) = M(θ) +oPθo (1) for all θ ∈ Θ. The quantity KL(Pθo ,Pθ) =
Pθo log(dPθo/dPθ) = −Pθo`θ,θo is called Kullback-Leibler-divergence of Pθo and Pθ. Assume
here and subsequently that the parameter θ is identifiable, that is, from Pθ1 = Pθ2 follows
θ1 = θ2. Identifiability is a natural condition since it is a necessary condition for the existence
of a consistent estimator. However, if θ is identifiable then M(θ) = −KL(Pθo ,Pθ) attains its
maximum uniquely at θo. Precisly, keeping in mind that M(θo) = Pθo log(1) = 0 it holds
M(θ) < 0 for each θ 6= θo. Indeed, employing log x 6 2(

√
x− 1) for each x > 0 we have

Pθo`θ,θo 6 2Pθo(
√
Lθ,θo − 1) = 2〈

√
Lθ,
√
Lθo〉L2

µ
− 2 = −

∥∥∥√Lθ −
√
Lθo

∥∥∥2

L2
µ

where the right hand side equals zero, if θ = θo, and it is strictly negative, otherwise. The
quantity H(Pθ,Pθo) :=

∥∥√Lθ −√Lθo
∥∥
L2
µ

is called Hellinger-distance between Pθ and Pθo ,
which does not depend on the choice of the dominating measure. However, assuming in addition
that Θ is compact and θ 7→ Pθo`θ,θo is continuous then employing Lemma §2.2.3 the condition
(ii) of Theorem §2.2.1 is satisfied.

§2.2.5 Proposition. If the following conditions
(i) (Θ, d) is a compact metric space,

(ii) θ 7→M(θ) is continuous and Mn(θ) = M(θ) + oP(1) for all θ ∈ Θ,

(iii) lim
δ↓0

lim sup
n→∞

P
(

sup
θ1,θ2:d(θ1,θ2)6δ

|Mn(θ1)−Mn(θ2)| > ε
)

= 0 for all ε > 0,

hold, then supθ∈Θ |Mn(θ)−M(θ)| = oP(1).
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2.2 Consistency Chapter 2 M- and Z-estimator

Proof of Proposition §2.2.5 is given in the lecture.

§2.2.6 Example. Let (X1, . . . , Xn) ∼ P⊗n and let mθ : X → R be a function belonging to
L1
P for all θ ∈ Θ. Consider Mn(θ) = Pnmθ = 1

n

∑n
i=1 mθ(Xi) and M(θ) = Pmθ = Emθ(X)

where due to the LLN Mn(θ) = M(θ) + oP(1) for each θ ∈ Θ. Suppose in addition
(a) (Θ, d) is a compact metric space,

(b) θ 7→ mθ(x) is continuous for all x,

(c) there isH ∈ L1
P with supθ∈Θ |mθ(x)| 6 |H(x)| for all x, or equivalently, supθ∈Θ |mθ(X)|

belongs to L1
P .

hold. It follows (I) θ 7→ Pmθ = M(θ) is continuous and (II) supθ∈Θ|Mn(θ)−M(θ)| = oP(1).
Indeed, by employing dominated convergence (b) and (c) imply together (I). Consider (II).
Setting ∆n

δ := sup{|Mn(θ1) −Mn(θ2)| : d(θ1, θ2) 6 δ} we show below for all ε, η > 0 exists
δ > 0 such that lim supn→∞ P

(
∆n
δ > ε

)
6 η which in turn by Proposition §2.2.5 implies

the claim (II) and, whence condition (i) of Theorem §2.2.1 is satisfied. Given ε > 0 and
η > 0 from (b) and (c) by applying dominated convergence there is δ > 0 such that ρδ :=
E(sup{|mθ1(X) − mθ2(X)|, d(θ1, θ2) 6 δ}) 6 ηε which in turn implies E(∆n

δ ) 6 ρδ 6 ηε.
Employing Markov’s inequality the last estimate implies the claim (II).

If in addition M(θo) > M(θ), for all θ 6= θo, then due to Lemma §2.2.3 also the condition
(ii) of Theorem §2.2.1 holds true. Consequently, in this situation any estimator θ̂n of θo with
Mn(θ̂n) >Mn(θo)− oP(1) is consistent, i.e., converges in probability to θo.

§2.2.7 Remark. If Θ is not compact we eventually might choose Θo ⊂ Θ compact with θo ∈
Θo satisfying supθ∈Θ\ΘoMn(θ) < Mnθo and the conditions (b) and (c) in Example §2.2.6 where
Θ is replaced by Θo. Then still supθ∈Θ ‖Mn(θ)−M(θ)‖ = oP(1) holds true.

§2.2.8 Example. Let (X1, . . . , Xn) ∼ P⊗n and for each θ ∈ Θ let ψθ : X → Rk be a function
such that the real-valued r.v. ‖ψθ(X)‖ belongs to L1

P . Keeping in mind that more generally for
any function ψθ taking values in a separable normed vector space there exists Eψθ(X) = Pψθ
whenever E ‖ψθ(X)‖ < ∞. Consider Ψn(θ) = Pnψθ = 1

n

∑n
i=1 ψθ(Xi) and Ψ(θ) = Pψθ =

Eψθ(X) where due to the LLN Ψn(θ) = Ψ(θ) + oP(1) for each θ ∈ Θ. Suppose in addition
(a) (Θ, d) is a compact metric space,

(b) θ 7→ ψθ(x) is continuous for all x,

(c) supθ∈Θ ‖ψθ(X)‖ belongs to L1
P .

hold. It follows (i) θ 7→ Pψθ = Ψ(θ) is continuous and (ii) supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ = oP(1),
i.e. condition (i) of Theorem §2.2.2 is satisfied. If in addition ‖Ψ(θo)‖ = 0 < ‖Ψ(θ)‖, for
all θ 6= θo, then due to Lemma §2.2.3 also the condition (ii) of Theorem §2.2.2 holds true.
Consequently, in this situation any estimator θ̂n of θo with Ψn(θ̂n) = oP(1) is consistent, i.e.,
converges in probability to θo.

§2.2.9 Remark. The conditions (i) and (ii) of Theorem §2.2.2 being sufficient to ensure con-
sistency might be weakened in specific situations as we see next.

§2.2.10 Proposition. Let Θ ⊂ R and Ψn(θ) = Ψ(θ) + oP(1) for all θ ∈ Θ where Ψ is a
deterministic function. Assume, either

(i) θ 7→ Ψn(θ) is continuous and has exactly one zero θ̂n, or
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Chapter 2 M- and Z-estimator 2.3 Asymptotic normality

(ii) θ 7→ Ψn(θ) is non-decreasing with Ψn(θ̂n) = oP(1).

Let θo be a point such that Ψ(θo − ε) < 0 < Ψ(θo + ε) for every ε > 0. Then θ̂n = θo + oP(1).

Proof of Proposition §2.2.10 is given in the lecture.

§2.2.11 Example. Let (X1, . . . , Xn) ∼ P⊗n. The sample median θ̂n is a (near) zero of the
map θ 7→ Ψn(θ) = 1

n

∑n
i=1 sign(Xi − θ) where sign(x) := 1{x>0} − 1{x60}. Considering

Ψ(θ) = E sign(X − θ) = P(X > θ) − P(X < θ) we have obviously Ψn(θ) = Ψ(θ) + oP(1)
for each θ ∈ Θ. Keeping in mind that θ 7→ Ψn(θ) is non-increasing from Proposition §2.2.10
follows consistency of the sample median θ̂n, i.e., θ̂n = θo + oP(1), if for any ε > 0 in addition
Ψ(θo − ε) > 0 > Ψ(θo + ε) or equivalently P(X < θo − ε) < 1/2 < P(X < θo + ε). In
other words, the sample median θ̂n is a consistent estimator of the population median, if it is
unique.

2.3 Asymptotic normality

Consider (X1, . . . , Xn) ∼ P⊗n, Ψn(θ) = 1
n

∑n
i=1 ψθ(Xi) = Pnψθ and Ψ(θ) = Pψθ for

θ ∈ Θ. Let θ̂n be a zero of Ψn(θ), i.e., θ̂n is a Z-estimator. Assume in addition that θ̂n =
θo + oP(1) where θo is a zero of Ψ(θ). Heuristically, consider a Taylor expansion of a real-
valued Ψn(·) around θo ∈ Θ ⊂ R, that is, 0 = Ψn(θ̂n) = Ψn(θo) + (θ̂n − θo)Ψ̇n(θo) + 1

2
(θ̂n −

θo)Ψ̈n(θ̃n) for some θ̃n between θo and θ̂n. Thus, rewriting the last identity
√
n(θ̂n − θo) =

−
√
nΨn(θo)

(
Ψ̇n(θo) + 1

2
(θ̂n − θo)

2Ψ̈n(θ̃n)
)−1. If ψθo belongs to L2

P , then due to the CLT it

holds −
√
n(Ψn(θo) − Ψ(θo)) = −

√
n(Pnψθo − Pψθo)

d→ N(0,Pψ2
θo

). If moreover ψ̇θo ∈ L1
P ,

then by the LLN Ψ̇n(θo) = Pnψ̇θo = Pψ̇θo + oP(1). If in addition Ψ̈n(θ̃n) = OP(1) then
employing Slutzky’s lemma §1.1.7 it follows

√
n(θ̂n − θo)

d→ N(0, (Pψ̇θo)−2Pψ2
θo

). In the
sequel, θ is a vector and Ψ(·) vector-valued. Consequently, Ψ̇(θo) is matrix and we denote by
‖Ψ̇(θo)‖F its Frobenius norm, where ‖M‖F :=

(∑J
j=1

∑K
k=1M

2
jk

)1/2 for any J × K matrix
M = (Mjk)j,k.

§2.3.1 Theorem. Let the following conditions
(i) θ 7→ Ψn(θ) is differentiable in a neighbourhood U of θo ∈ Θ

◦

(ii) Ψ̇n(θ) := ∂
∂θ

Ψn(θ) satisfies supθ∈U‖Ψ̇n(θ) − Ψ̇(θ)‖ = oP(1) for some continuous
deterministic function Ψ̇(θ) with invertible Ψ̇(θo),

(iii)
√
nΨn(θo)

d→ N(0,Ωo) (CLT),

hold true. If in addition θ̂n = θo + oP(1) with Ψn(θ̂n) = oP(n−1/2) then
√
n(θ̂n − θo) +

√
n|Ψ̇(θo)|−1Ψn(θo) = oP(1), and hence

√
n(θ̂n − θo)

d→ N(0, |Ψ̇(θo)|−1Ωo|Ψ̇(θo)|−1).

Proof of Theorem §2.3.1 is given in the lecture.

§2.3.2 Theorem. Let the following conditions
(i) θ 7→Mn(θ) is twice differentiable in a neighbourhood U of θo ∈ Θ

◦

(ii) M̈n(θ) := ∂2

∂2θ
Mn(θ) satisfies supθ∈U‖M̈n(θ) − M̈(θ)‖ = oP(1) for some continuous

deterministic function M̈(θ) with invertible M̈(θo),
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(iii) Ṁn(θ) := ∂
∂θ
Mn(θ) fulfils

√
nṀn(θo)

d→ N(0,Ωo) (CLT),

hold true. If in addition θ̂n = θo + oP(1) with θ̂n = supθ∈ΘMn(θ) then
√
n(θ̂n − θo)

d→
N(0, |M̈(θo)|−1Ωo|M̈(θo)|−1).

Proof of Theorem §2.3.2 is given in the lecture.

§2.3.3 Example. Let (X1, . . . , Xn) ∼ P⊗n and let mθ : X → R be a function belonging to
L1
P for all θ ∈ Θ. Consider Mn(θ) = Pnmθ = 1

n

∑n
i=1 mθ(Xi) and M(θ) = Pmθ = Emθ(X)

where due to the LLN Mn(θ) = M(θ) + oP(1) for each θ ∈ Θ. Suppose in addition that
(a) θ 7→ mθ(x) is twice continuously differentiable in a neighbourhood U of θo ∈ Θ

◦ ,

(b) ṁθ := ∂
∂θ
mθ belongs to L2

P , fulfils Pṁθo = 0 and ensures the existence of Pṁθoṁ
t
θo

,

(c) m̈θ := ∂2

∂2θ
mθ satisfies supθ∈U ‖m̈θ‖F ∈ L1

P and Pm̈θ is strictly negative definite,

hold true. If θ̂n = θo + oP(1) then
√
n(θ̂n− θo)

d→ N(0, (Pm̈θ)
−1(Pṁθoṁ

t
θo

)(Pm̈θ)
−1). Indeed,

the claim follows from Theorem §2.3.2 if the conditions (i)-(iii) are satisfied, where (i) follows
directly from (a). Moreover, following Example §2.2.6, (b) implies the condition (ii) and due to
the CLT the condition (iii) follows from (c). We have shown

√
n(θ̂n−θo)

d→ N(0, H−1
o ΩoH

−1
o )

where Ho := Pm̈θo and Ωo := Pṁθoṁ
t
θo

. Thereby, if one wants to use the asymptotic distri-
bution to conduct inference then estimators of Ho and Ωo are needed. A typical approach to
obtain these estimators is as follows. First replacing P by Pn, the quantity Ĥ(θ) = Pnm̈θ and
Ω̂(θ) = Pnṁθṁ

t
θ is just an empirical counterpart of H(θ) = Pm̈θ and Ω(θ) = Pṁθṁ

t
θ, respec-

tively. Secondly, replace θo by its estimator θ̂n we obtain Ĥn := Ĥ(θ̂n) and Ω̂n := Ω̂(θ̂n) as
estimator of Ho := H(θo) and Ωo := Ω(θo), respectively. If in addition to (a)-(c) the conditions

(d) (Θ, d) is a compact metric space,

(e) supθ∈U ‖ṁθ‖ belongs to L2
P ,

are satisfied, then supθ∈U‖Ĥ(θ) − H(θ)‖F = oP(1) and supθ∈U‖Ω̂(θ) − Ω(θ)‖F = oP(1)
following line by line the arguments in Example §2.2.8. From these uniform convergences and
θ̂n = θo + oP(1) follows Ĥn = Ĥ(θ̂n) = H(θo) + oP(1) and Ω̂n = Ω̂(θ̂n) = Ω(θo) + oP(1)

which in turn implies V̂n := Ĥ−1
n Ω̂nĤ

−1
n = H−1

o ΩoH
−1
o + oP(1). Consequently, by applying

Slutzky’s lemma §1.1.7 we have
√
nV̂
−1/2
n (θ̂n − θo)

d→ N(0, Id).

§2.3.4 Example (MLE, §2.2.4 continued). Consider the MLE θ̂n which maximises the (joint)
log-likelihood θ 7→ Pn`θ = 1

n

∑n
i=1 `θ(Xi) given a sample (X1, . . . , Xn)©∼ P⊗nΘ with PΘ � µ.

If the following conditions
(a) (Θ, d) is a compact metric space,

(b) the parameter θ is identifiable, i.e., θ1 6= θ2 implies Pθ1 6= Pθ2
(c) the map θ 7→ `θ(x) is continuous for all x,

(d) supθ∈Θ |`θ| belongs to L1
Pθo

hold true, then combining the arguments in Example §2.2.4 and §2.2.6 the assumptions of
Theorem §2.2.1 are satisfied, which in turn implies consistency of the MLE θ̂n = θo + oPθo (1).
As shown in the lecture course Statistik 1 if in addition the following conditions

(e) the map θ 7→ `θ(x) is twice continuously differentiable in a neighbourhood U of
θo ∈ Θ

◦ ,
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Chapter 2 M- and Z-estimator 2.4 Testing procedures

(f) ˙̀
θ := ∂

∂θ
`θ satisfies supθ∈U‖ ˙̀

θ‖ ∈ L2
Pθo

and ῭
θ := ∂2

∂2θ
`θ fulfils supθ∈U‖ ῭

θ‖F ∈ L1
Pθo

,

(g) the Fisher-information matrix Iθo := Pθo ˙̀
θo

˙̀t
θo

is strictly positive definite,

are fulfilled, then the identity Iθo = −Pθo ῭
θo holds true and the MLE satisfies

√
n(θ̂n − θo) =

1√
n

∑n
i=1 I

−1
θo

˙̀
θo(Xi) + oPθo (1) and, consequently,

√
n(θ̂n − θo)

d→ N(0, I−1
θo

).

§2.3.5 Remark. The conditions (e) and (f) in the last example can be weakened replacing
differentiability by Hellinger-differentiability. More precisely, keeping in mind the Hellinger-
distance H(Pθ,Pθo) =

∥∥√Lθ −√Lθo
∥∥
L2
µ

the family PΘ is called Hellinger-differentiable in

θo ∈ Θ
◦ ⊂ Rk if there exists a map x 7→ ˙̀

θo(x) ∈ Rk such that∫
X

∣∣∣∣√Lθ(x)−
√
Lθo(x)− 1

2
〈 ˙̀θo(x), θ − θo〉

√
Lθo(x)

∣∣∣∣2µ(dx)

=
∥∥∥√Lθ −

√
Lθo − 1

2
〈 ˙̀θo , θ − θo〉

√
Lθo

∥∥∥2

L2
µ

= o
(
‖θ − θo‖2 ).

The map θ 7→ ˙̀
θo(x) is called score function. We note that Hellinger-differentiability implies

〈 ˙̀θo , θ − θo〉
√
Lθo ∈ L2

µ where
√
Lθo ∈ L2

µ using ‖
√
Lθo‖2

L2
µ

=
∫
Lθo(x)µ(dx) = 1 < ∞

and hence Pθo|〈 ˙̀θo , θ − θo〉|2 = ‖〈 ˙̀θo , θ − θo〉
√
Lθo‖2

L2
µ
<∞ which in turn implies ˙̀

θo ∈ L2
Pθo

.

Thereby, the Fisher-information matrix Iθo = Pθo ˙̀
θo

˙̀t
θo

is well-defined. Note that, the score
function and the Fisher-information matrix are independent of the dominating measure µ.

2.4 Testing procedures

Consider a parameter of interest θo ∈ Θ. Given a mapA : Θ→ Rp we eventually want to test
a hypothesis H0 : A(θo) = 0 against the alternative H1 : A(θo) 6= 0. Typical examples include
A(θo) = θo − θ∗ for a given value θ∗, or more generally, linear hypothesis A(θo) = Mθo − a∗
for a given value a∗ and matrix M which covers in particular testing of the j-th coordinate of
θo = (θ1

o, . . . , θ
k
o), i.e., A(θo) = θjo − aj∗. Under regularity conditions it seems reasonable to

assume an estimator θ̂n of θo having the property
√
n(A(θ̂n)−A(θo))

d→ N(0,Σ) with invertible
asymptotic covariance matrix Σ. If we have in addition an estimator Σ̂n = Σ + oP(1) at hand,
then under the hypothesis H0 a Wald test exploits the property Ŵn := nA(θ̂n)tΣ̂−1

n A(θ̂n)
d→ χ2

p

where χ2
p is a Chi-square-distribution with p degrees of freedom. Precisely, a Wald test rejects

the hypothesis H0 : A(θo) = 0 if Ŵn exceeds the 1-α-Quantile χ2
p,1−α of a χ2

p-distribution.
Obviously, the Wald test does exactly meets the asymptotic level α, i.e., limn→∞ P(Ŵn >
χ2
p,1−α) = P(W > χ2

p,1−α) = α where W ∼ χ2
p. However, the behaviour of the test statistic Ŵn

under the alternative H1 is still an open questions, which we intent to study in the next sections.

§2.4.1 Example (§2.3.3 continued). Consider a sample X1 . . . , Xn ∼ P⊗n and functions mθ :
X → R belonging to L1

P for all θ ∈ Θ ⊂ Rk. For each θ ∈ Θ let Mn(θ) = Pnmθ =
1
n

∑n
i=1mθ(Xi) and M(θ) = Pmθ. Under the conditions (a)-(e) given in Example §2.3.3 an

M-estimator θ̂n := arg maxθ∈Θ Mn(θ) satisfies
√
n(θ̂n − θo)

d→ N(0, H−1
o ΩoH

−1
o ). Moreover,

we have access to estimators Ĥn = Ho + oP(1) and Ω̂n = Ωo + oP(1). Let A be continu-
ously differentiable in a neighbourhood of θo then applying the delta method §1.1.19 we obtain
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√
n(A(θ̂n)−A(θo))

d→ N(0,Σo) with Σo := ȦθoH
−1
o ΩoH

−1
o Ȧtθo . From Ȧθ̂n = Ȧθo + oP(1) fol-

lows Σ̂n := Ȧθ̂nĤ
−1
n Ω̂nĤ

−1
n Ȧt

θ̂n
= Σ + oP(1) and, thus

√
nΣ̂
−1/2
n (A(θ̂n)− A(θo))

d→ N(0, Id)

which under H0 implies Ŵn := nA(θ̂n)tΣ̂−1
n A(θ̂n)

d→ χ2
p.
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Chapter 3

Contiguity

Motivation: Considering a parameter of interest θo ∈ Θ we eventually want to test a hypothe-
sis H0 : θo ∈ Θ0 against the alternative H1 : θo ∈ Θ1 = Θ\Θ0. Under regularity conditions we
may have at hand an estimator θ̂n of θo with the property

√
n(θ̂n − θo)

d→ N(0, I−1
θo

). Typically
based on θ̂n we can construct a test statistic Tn with known asymptotic distribution under H0

such that the associated test does not exceed asymptotically the given level on the hypothesis
H0. However, we like to invest also its power on the alternative which depends on the spe-
cific value of θ ∈ Θ1 commonly getting closer and closer to the hypothesis as the sample size
increases.

Here and subsequently, we restrict our attention to two sequences (Pn)n∈N and (Qn)n∈N of
probability measures. We aim to obtain the limiting distribution of a sequence (Tn)n∈N of (test)
statistics under Qn if its limiting distribution under Pn is known.

3.1 Likelihood ratios

§3.1.1 Definition. Let P and Q be measures on a common measurable space (Ω,A ). We say
Q is absolutely continuous w.r.t. P, if for any A ∈ A with P(A) = 0 follows Q(A) = 0. Write
Q � P. If Ω = ΩP ∪ΩQ with ΩP ∩ΩQ = ∅ andQ(ΩP) = P(ΩQ) = 0, then P andQ are called
orthogonal or singular. Write Q ⊥ P.

§3.1.2 Remark. Keep in mind that generally P andQ need to be neither absolutely continuous
nor singular. Assuming densities q and pw.r.t. some measure µ, we may consider ΩP = {p > 0}
and ΩQ = {q > 0} where P(Ω\Ωp) = P1{p=0} = 0. Keep in mind if µ(Ωp ∩ Ωq) > 0 then
Ωp∩Ωq receives positive measure from both P andQ. The measureQ can be written as the sum
Q = Qa+Q⊥ of the measuresQa(A) = Q(A∩{p > 0}) andQ⊥(A) = Q(A∩{p = 0}) which
is called Lebesgue decomposition of Q w.r.t. P. Where Qa � P and Q⊥ are called absolutely
continuous part and the orthogonal (or singular) part of Q w.r.t. P, respectively. Obviously, the
function q/p is a density of Qa w.r.t. P and we denote it dQ/dP (not: dQa/dP!). The density
dQ/dP is only P-almost surely unique by definition. We note that dQ/dP and the Lebesgue
decomposition are independent of the dominating measure. Here and subsequently, we consider
dQ/dP and dP/dQ as r.v.’s on (Ω,A ) with values in (R,B).

§3.1.3 Lemma. Let P andQ be probability measures with densities p and q w.r.t. a measure µ.
Then for the measure Qa(A) := Q1A1{p>0} and Q⊥(A) := Q1A1{p=0}

(i) Q = Qa +Q⊥, Qa � P, Q⊥ ⊥ P.

(ii) Qa(A) = Qa1A = P( q
p
1A) for every measurable set A.

(iii) Q � P if and only if Q1{p=0} = 0 if and only if P q
p

= 1.

Proof of Lemma §3.1.3 is given in the lecture.
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§3.1.4 Remark. For each measurable function f > 0 it holds generally

Qf > Qf1{p>0} = µfq1{p>0} = Pf q
p
.

In particular, for any f identity holds if and only if Q � P.

3.2 Contiguity

Consider two probability measures P and Q on a common measure space (Ω,A ) and let X
be a Rk-valued r.v. on Ω. If Q � P, then the Q-law of X , i.e., its induced probability measure
QX on Rk, can be calculated from the P-law of the random vector (X, V ) := (X, dQ/dP), i.e.,
its induced probability measure P(X,V ) on (Rk+1,B⊗(k+1)), through the formula

QXf = EQf(X) = EPf(X)dQ
dP = P(X,V )[f⊗id] setting [f⊗id](x, v) = f(x)v.

Obviously, this relationship could also be expressed as

Q(X ∈ B) = QX1B = EP1B(X)dQ
dP = P(X,V )[1B⊗id]

which is only valid under the assumption Q � P, since a part of Q orthogonal to P can’t be
recovered.

We introduce next an asymptotic version of absolute continuity. For n ∈ N let Qn and Pn be
probability measures on a measurable space (Ωn,An). Given for each n ∈ N a r.v. Xn defined
on (Ωn,An) we aim to derive conditions which allow to calculate the Qn-limit of Xn from a
suitable Pn-limit of (Xn, Vn) := (Xn, dQn/dPn).

§3.2.1 Definition. Let Pn and Qn be measures on a common measurable space (Ωn,An), n ∈
N. The sequence (Qn)n∈N is called contiguous w.r.t. (Pn)n∈N, if for any An ∈ An, n ∈ N, with
limn→∞ Pn(An) = 0 follows limn→∞Qn(An) = 0. Write Qn / Pn. The sequences (Qn)n∈N
and (Pn)n∈N are called mutually contiguous if both Qn / Pn and Pn /Qn. Write Qn / .Pn.

Next we characterise contiguity in terms of the asymptotic behaviour of the sequence of
likelihood ratios (dQn/dPn)n∈N and (dPn/dQn)n∈N. Keeping in mind that for each n ∈ N
both likelihood ratios dQn/dPn and dPn/dQn are non-negative and satisfy Pn dQn

dPn 6 1 and
Qn

dPn
dQn 6 1. Employing Markov’s inequality §1.1.21 for any K > 0 and all n ∈ N we

have Qn(dPn/dQn > K) 6 K−1Qn
dPn
dQn 6 K−1 and Pn(dQn/dPn > K) 6 K−1, whence

both sequences (dQn/dPn)n∈N and (dPn/dQn)n∈N are uniformly tight. Consequently, due to
Prohorov’s theorem §1.1.27 (ii) along a sub-sequence both, (dQn/dPn)n∈N and (dPn/dQn)n∈N,
converge in distribution. In analogy to Lemma §3.1.3 (iii) where absolute continuity is shown
to be equal toQ1{p=0} = 0 and P q

p
= 1 we establish below the equality of contiguity and “each

weak limit point of dPn/dQn under Qn gives mass zero to zero” and “each weak limit point of
dQn/dPn under Pn has mean one”. However, the next lemma gathers preliminary results used
in the proofs.

§3.2.2 Lemma. For each n ∈ N let Xn and Yn be (Rk,B⊗k)-valued r.v.’s on a common prob-
ability space (Ωn,An,Pn).

(i) If there is a Rk-valued r.v. X and a constant c ∈ Rk such that Xn
d→ X and Yn

d→ c

then (Xn, Yn)
d→ (X, c).
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(ii) Xn
d→ X holds if and only if lim inf

n→∞
Ef(Xn) > Ef(X) for any non-negative and

continuous function f (not necessarily bounded).

Proof of Lemma §3.2.2 is left as an exercise.

§3.2.3 Lemma. Let Pn and Qn be measures on a common measurable space (Ωn,An), n ∈ N.
The following statements are equivalent:

(i) Qn / Pn,

(ii) if Un := dPn/dQn
d→ U under Qn, i.e., QUn

n
d→ QU , along a sub-sequence, then

Q(U > 0) = EQ1{U>0} = 1,

(iii) if Vn := dQn/dPn
d→ V under Pn, i.e., PVnn

d→ PV , along a sub-sequence, then
EV = 1,

(iv) for any r.v. Tn : Ωn → Rk, n ∈ N, with Tn
Pn→ 0 follows Tn

Qn→ 0.

Proof of Lemma §3.2.3 is given in the lecture.

§3.2.4 Example. Let Pn andQn be measures on a common measurable space (Ωn,An), n ∈ N
satisfying dPn/dQn

d→ U = exp(W ) under Qn with W ∼ N(µ, σ2), then Qn / Pn. Indeed,
from U = exp(W ) > 0 a.s. and hence E1{U>0} = 1 follows the claim employing Lemma
§3.2.3 (ii). Furthermore, Qn / .Pn holds if and only if µ = −1

2
σ2. By using Lemma §3.2.3

(iii) with switched roles of Qn and Pn we have Pn /Qn if and only if 1 = EU = E exp(W ) =∫
exp(w) 1√

2πσ2
exp(− (w−µ)2

2σ2 )dw = exp( (µ+σ2)2

2σ2 − µ2

2σ2 ) which in turn implies the claim.

§3.2.5 Theorem. Let Pn and Qn be probability measures, and Xn be a (Rk,B⊗k)-valued r.v.
on a common measurable space (Ωn,An), n ∈ N. Suppose that Qn / Pn and for Vn := dQn/

dPn assume that (Xn, Vn)
d→ (X, V ) under Pn, i.e., P(Xn,Vn)

n
d→ P(X,V ). Considering the map

B⊗k 3 B 7→ QX(B) := PX,V [1B⊗id] = EP1B(X)V , then QX defines a probability measure
on (Rk,B⊗k) satisfying QXf = PX,V [f⊗id] = EPf(X)V for any QX-integrable function f
and Xn

d→ QX under Qn, i.e., QXn
n

d→ QX .

Proof of Theorem §3.2.5 is given in the lecture.

§3.2.6 Example (Le Cam’s third lemma). Let Pn and Qn be probability measures, and Xn be
a (Rk,B⊗k)-valued r.v. on a common measurable space (Ωn,An), n ∈ N. Setting Wn :=

log(dQn/dPn) suppose that P(Xn,Wn)
n

d→ PX,W where (X,W ) is jointly normal distributed with
marginalsX ∼ Nk(µ,Σ) andW ∼ N(−σ2/2, σ2). In other words setting τ := CovP(X,W ) =
EP(X − µ)(W + σ2/2) we assume that

P(Xn,Wn)
n

d→ P(X,W ) = Nk+1

((
µ

−σ2

2

)
,

(
Σ τ
τ t σ2

))
. (3.1)

Then, Xn
d→ Nk(µ+ τ,Σ) under Qn, that is, QXn

n
d→ Nk(µ+ τ,Σ). Indeed, by the continuous

mapping theorem §1.1.6 from (3.1) for Vn := exp(Wn) = dQn/dPn follows P(Xn,Vn)
n

d→ P(X,V )

with V = exp(W ). Since EPV = 1 following the arguments in Example §3.2.4 we have
Qn / .Pn and thus, from Theorem §3.2.5 follows QXn

n
d→ QX with QXf = PX,V [f⊗id] =

EPf(X)V . Thereby, it remains to show that QX = Nk(µ + τ,Σ). Keep in mind that for each
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t ∈ R the characteristic function ψZ(t) := E exp(i〈t, Z〉) of Z ∼ N(ν,Γ) satisfies ψz(t) =
exp(i〈t, ν〉 − 1

2
〈Γt, t〉). Considering the characteristic functions ψX and ψ(X,W ) of QX and

P(X,W ), respectively, the elementary identity ψ(t) = EQ exp(i〈t,X〉) = EP exp(i〈t,X〉)V =
EP exp(i〈t,X〉 + W ) = ψ(X,W )(t,−i) holds for each t ∈ R. Exploiting (3.1) it is easily seen
that ψ(X,W )(t,−i) = exp(i〈t, µ+τ〉− 1

2
〈Σt, t〉) holds for all t ∈ R, whenceQX = Nk(µ+τ,Σ),

which shows the claim.
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Chapter 4

Local asymptotic normality (LAN)

4.1 Introduction

For each n ∈ N let (Ωn,An,PnΘ = {Pnθ , θ ∈ Θ}) be a statistical experiment. Typically, we
may think of i.i.d. r.v.’s X,X1, X2, . . . taking values in some measurable space (X ,B) and
satisfying X©∼ PΘ for some parametrised familly PΘ = {Pθ, θ ∈ Θ} of probability measures
on (X ,B). In this situation, (X1, . . . , Xn)©∼ P⊗nΘ where P⊗nΘ = {P⊗nθ , θ ∈ Θ} is a family of
product measures on (X n,B⊗n), and thus, Ωn = X n, An = B⊗n and PnΘ = P⊗nΘ .

Aim: Approximate (Ωn,An,PnΘ) in a certain sense by a Gaussian location model after suit-
able reparametrisation.

§4.1.1 Definition. Consider on (Rk,B⊗k) the family N(Rk,Σ) := {N(h,Σ), h ∈ Rk} of
multivariate normal distributions with common covariance matrix Σ and varying mean h ∈ Rk.
Noting that for each h ∈ Rk the likelihood Lh of N(h,Σ) w.r.t. the Lebesgue measure satisfies
Lh(x) = L0(x − h) for all x ∈ Rk the statistical experiment (Rk,B⊗k,N(Rk,Σ)) is called a
Gaussian location model.

Consider a localised reparametrisation centred around a fixed value θo of the parameter which
is in the sequel regarded as known.

§4.1.2 Definition. Consider a sequence of statistical experiments (Ωn,An,PnΘ), n ∈ N, with
common parameter set Θ ⊆ Rk. Given a localising rate (δn)n∈N with δn = o(1) for each
n ∈ N define a local parameter set Θn

o := {δ−1
n (θ − θo) : θ ∈ Θ} ⊆ Rk. For each θ ∈ Θ and

associated local parameter h = δ−1
n (θ−θo) ∈ Θn

o rewriting Pnθ as Pnθo+δnh we obtain a sequence
of localised statistical experiment (Ωn,An,PnδnΘno+θo

:= {Pnθo+δnh, h ∈ Θn
o}), n ∈ N.

§4.1.3 Remark. In the sequel we eventually take the local parameter set Θn
o equal to Rk which

is not correct if the parameter set Θ is a strict subset of Rk. However, if θo is an inner point of
Θ, which is assumed throughout this section, then for each h ∈ Rk the parameter θ = θo + δnh
belongs to Θ for every sufficiently large n. In other words, the local parameter set Θn

o converges
to the whole of Rk as n → ∞, i.e., ∪n∈NΘn

o = Rk. Thereby, we tactically may either define
the probability measure Pθo+δnh arbitrarily if θo + δnh does not belong to Θ, or assume that n is
sufficiently large.

Aim: Show, for large n, that the localised statistical experiment (Ωn,An,PδnRk+θo) and the
Gaussian location model (Rk,B⊗k,N(Rk, I−1

θo
)) are similar in statistical properties whenever

the original experiments, i.e., θ 7→ Pθ, are “smooth”.

§4.1.4 Heuristic. Consider a µ-dominated family PΘ on (X ,B), i.e., PΘ � µ, with Θ ⊆ R
and likelihood function Lθ of Pθ w.r.t. µ. Assume that for all x ∈ X , the map θ 7→ `θ(x) =
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log(Lθ(x)) is twice differentiable with derivatives ˙̀
θ(x) and ῭

θ(x). For every fixed x a “Taylor
expansion of the log of the likelihood-ratio” leads to log([Lθ+h/Lθ](x)) = h ˙̀

θ(x)+ 1
2
h2 ῭

θ(x)+
ox(h

2) where the remainder term depends on x. Consequently, assuming a product experiment
(X n,B⊗n,P⊗nΘ ) eventually it holds log([Ln

θ+h/
√
n
/Lnθ ]) = h

√
nPn ˙̀

θ+ 1
2
h2 Pn ῭

θ+Rn where the

score ˙̀
θ has mean zero, i.e., Pθ ˙̀

θ = 0, and the Fisher information Iθ equals −Pθ ῭
θ = Pθ( ˙̀

θ)
2.

Setting Znθ :=
√
nI−1

θ Pn ˙̀
θ from the Central Limit Theorem §1.1.15 follows Znθ

d→ N(0, I−1
θ )

under P⊗nθ while due to the Law of Large Numbers §1.1.10 it holds Pn ῭
θ = −Iθ+oP⊗nθ

(1). If in
addition the remainder term is negligible, i.e., Rn = oP⊗nθ

(1), then the log of the likelihood-ratio
permits an expansion

log(dP⊗n
θ+h/

√
n
/dP⊗nθ ) = hIθZnθ − 1

2
h2Iθ + oP⊗nθ

(1)

which in the limit equals the log of the likelihood-ratio in a Gaussian location model. If the
likelihood process permits such an expansion in a neighbourhood of θ we call the sequence of
experiments “local asymptotic normal”.

§4.1.5 Definition. A sequence of statistical experiments (Ωn,An,PnH)n∈N converges to a limit
experiment (Ω,A ,PH) if for any finite subset I ⊂ H and each ho ∈ H holds weak convergence
of the finite dimensional distributions (dPnh/dPnho , h ∈ I)

d→ (dPh/dPho , h ∈ I) under Pnho .

§4.1.6 Definition. A sequence of statistical experiments (Ωn,An,PnΘ)n∈N with Θ ⊆ Rk is
called locally asymptotic normal (LAN) in θo ∈ Θ, if there is a localising rate (δn)n∈N with
δn = o(1), a sequence of r.v.’s (Znθo)n∈N and a strictly positive definite matrix Iθo such that for
every h ∈ Rk the following three statements hold true:

(i) θo + δnh ∈ Θ for all n sufficiently large n, i.e., n > no(h);

(ii) Znθo
d→ N(0, I−1

θo
) under Pnθo;

(iii) log(dP⊗nθo+δnh/dP
⊗n
θo

) = 〈IθoZnθo , h〉 −
1
2
〈Iθoh, h〉 +Rn,h where Rn,h = oP⊗nθ

(1).

The matrix Iθo is called Fisher information at θo and (Znθo)n∈N is called central sequence.

§4.1.7 Remark. In a Gaussian location model (Rk,B⊗k,N(Rk, I−1
θo

)) the log of the likelihood-
ratio is given by log

(
dN(h, I−1

θo
)/dN(0, I−1

θo
)
)

= 〈IθoZ, h〉− 1
2
〈Iθoh, h〉 where Z ∼ N(0, I−1

θo
)

under N(0, I−1
θo

). Consequently, if (Ωn,An,PnΘ)n∈N is LAN then for any finite I ⊂ Rk we

have
(

log(dP⊗nθo+δnh/dP
⊗n
θo

), h ∈ I)
d→
(

log
(
dN(h, I−1

θo
)/dN(0, I−1

θo
)
)
, h ∈ I

)
and whence(

dP⊗nθo+δnh/dP
⊗n
θo
, h ∈ I)

d→
(
dN(h, I−1

θo
)/dN(0, I−1

θo
), h ∈ I

)
due to the continuous mapping

theorem §1.1.6. In other words the sequence of statistical experiments (Ωn,An,PnΘ)n∈N has a
Gaussian location model as limit experiment.

§4.1.8 Definition. A LAN sequence of statistical experiments is called uniformly locally asymp-
totic normal (ULAN) in θo ∈ Θ, if the condition (iii) in definition §4.1.6 is replaced by
(iii’) for any sequence hn → h it holds log(dP⊗nθo+δnhn/dP

⊗n
θo

) = 〈IθoZnθo , h〉−
1
2
〈Iθoh, h〉+

Rn,hn where Rn,hn = oP⊗nθ
(1).

Keep in mind that a µ-dominated family PΘ with likelihood Lθ of Pθ w.r.t. µ is Hellinger-
differentiable in θo ∈ Θ◦, if there is ˙̀

θo ∈ L2
Pθo

, i.e., Pθo‖ ˙̀
θo‖2 <∞, such that for any h→ 0 it

holds ‖
√
Lθo+h −

√
Lθo − 1

2
〈 ˙̀θo , h〉

√
Lθo‖L2

µ
= o(‖h‖) (c.f. Remark §2.3.5).
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§4.1.9 Theorem. Let Θ be an open set in Rk and let PΘ be a µ-dominated family of probability
measures on a measurable space (X ,B) which is Hellinger-differentiable in θo ∈ Θ with score
˙̀
θo satisfying Pθo ˙̀

θo = 0, Pθo‖ ˙̀
θo‖2 <∞ and strictly positive definite Fisher information matrix

Iθo = Pθo( ˙̀
θo

˙̀t
θo

). Then the sequence of product experiments (X n,B⊗n,P⊗nΘ ) is ULAN in θo
with localising rate (δn := 1/

√
n)n∈N and central sequence (Znθo :=

√
nI−1

θo
Pn ˙̀

θo)n∈N, that is,
for any sequence hn → h it holds log(dP⊗n

θo+hn/
√
n
/dP⊗nθo ) = 〈IθoZnθo , h〉 −

1
2
〈Iθoh, h〉 + Rn,hn

where Rn,hn = oP⊗nθo
(1) and

√
nPn ˙̀

θo
d→ N(0, Iθo) under P⊗nθo .

Proof of Theorem §4.1.9 is given in the lecture.

4.2 Hellinger-differentiability

§4.2.1 Proposition. Given a statistical experiment (X ,B,PΘ) for all θ ∈ Θ ⊂ Rk in a neigh-
bourhood of θo ∈ Θ let Pθ � Pθo and let Lθ,θo(x) := [dPθ/dPθo ](x), x ∈ X , be the associated
likelihood function w.r.t. Pθo . If θ 7→ Lθ,θo(x) is L2

Pθo
-differentiable in θo, that is, there is a map

x 7→ L̇θo,θo(x) in L2
Pθo

(i.e., Pθo‖L̇θo,θo‖2 <∞), such that

‖Lθ,θo − Lθo,θo − 〈L̇θo,θo , θ − θo〉‖L2
Pθo

= o(‖θ − θo‖) as ‖θ − θo‖ → 0,

then PΘ is Hellinger-differentiable in θo with score function ˙̀
θo = L̇θo,θo .

Proof of Proposition §4.2.1 is given in the lecture.

§4.2.2 Proposition. Let PΘ be a µ-dominated family of probability measures on a measurable
space (X ,B) with open Θ ⊂ Rk and associated likelihood function Lθ(x) := [dPθ/dµ](x),
x ∈ X . Suppose the following conditions hold true:

(i) for each x ∈ X the map θ 7→ sθ(x) :=
√
Lθ(x) is continuously differentiable with

derivative ṡθ(x),

(ii) ṡθ belongs to L2
µ (i.e., µ‖ṡθ‖2 <∞), and hence Iθ = µ(ṡθṡ

t
θ) is well-defined for all

θ ∈ Θ,

(iii) the map θ 7→ Iθ is continuous.
Then PΘ is Hellinger-differentiable with score function ˙̀

θo = 2 ṡθ√
Lθ
1{Lθ(x)>0}.

Proof of Proposition §4.2.2 is given in the lecture.

§4.2.3 Example. Consider a statistical location model (R,B,PR) dominated by the Lebesgue
measure λ with likelihood function for each θ ∈ R given by Lθ(x) = g(x − θ), x ∈ R,
where g is a strictly positive density. If g is continuously differentiable with derivative ġ satis-
fying λ(|ġ|2/g) < ∞ then due to Proposition §4.2.2 the family PR is Hellinger-differentiable
with score function ˙̀

θ = − ġ(x−θ)
g(x−θ) . Indeed, setting sθ(x) :=

√
g(x− θ), we have ṡθ(x) =

∂
∂θ

√
g(x− θ) = −1

2
ġ(x − θ)/

√
g(x− θ) which is continuous in θ and hence condition (i) is

satisfied. Moreover conditions (ii) and (iii) hold true, since by assumption Iθ = λ(ṡθ)
2 =

λ(|ġ|2/g) < ∞ is constant in θ and thus continuous. Thereby, from Proposition §4.2.2 follows
the claim with ˙̀

θ = 2 ṡθ√
Lθ
1{Lθ(x)>0} = −ġ(x− θ)/g(x− θ).
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4.3 Limit distributions under alternatives

§4.3.1 Theorem. Let (Ωn,An,PnΘ)n∈N be LAN in θo ∈ Θ ⊂ Rk with localising rate (δn)n∈N,
central sequence (Znθo)n∈N and strictly positive definite Fisher information matrix Iθo . Then for
any h, h′ ∈ Rk the following statements hold true:

(i) (Pnθo+δnh)n∈N and (Pnθo+δnh′)n∈N are mutually contiguous, i.e., Pnθo+δnh / .P
n
θo+δnh′

;

(ii) Znθo
d→ N(h, I−1

θo
) under Pnθo+δnh.

If the sequence of statistical experiments is ULAN, then for any hn → h and h′n → h′ in Rk the
following statements hold true:
(i’) (Pnθo+δnhn)n∈N and (Pnθo+δnh′n)n∈N are mutually contiguous, i.e., Pnθo+δnhn/.P

n
θo+δnh′n

;

(ii’) Znθo
d→ N(h, I−1

θo
) under Pnθo+δnhn .

Proof of Theorem §4.3.1 is given in the lecture.

§4.3.2 Corollary. Let (X ,B,PΘ) be Hellinger-differentiable in θo with score function ˙̀
θo such

that the assumptions of Theorem §4.1.9 hold true. Given the sequence of product experi-
ments (X n,B⊗n,P⊗nΘ )n∈N let (θ̂n)n∈N be a sequence of estimators of θo allowing an expansion√
n(θ̂n − θo) =

√
n Pnψθo + oP⊗nθo

(1) for some Rk-valued function ψθo satisfying Pθoψθo = 0

and Pθo ‖ψθo‖
2 < ∞. For each h ∈ Rk holds

√
n(θ̂n − θo)

d→ N(Pθo(ψθo ˙̀t
θo

)h,Pθo(ψθoψtθo))
under P⊗n

θo+h/
√
n
.

Proof of Corollary §4.3.2. By Theorem §4.1.9 (X n,B⊗n,P⊗nΘ )n∈N is ULAN with localising
rate (δn := 1/

√
n)n∈N and under P⊗nθo holds

√
nPn ˙̀

θo
d→ N(0,Pθo ˙̀

θo
˙̀t
θo

). On the other hand

side, we have
√
n Pnψθo

d→ N(0,Pθoψθoψtθo). Employing Slutzky’s lemma §1.1.7 under P⊗nθo it
follows( √

n(θ̂n − θo)
log(dP⊗n

θo+h/
√
n
/dP⊗nθo )

)
d→ N

((
0

−1
2
Pθo|〈 ˙̀θo , h〉|2

)
,

(
Pθoψθoψtθo Pθoψθo〈 ˙̀θo , h〉

Pθo〈 ˙̀θo , h〉ψtθo Pθo|〈 ˙̀θo , h〉|2

))
.

The assertion follows now from le Cam’s third lemma as in Example §3.2.6, which completes
the proof.

§4.3.3 Example (§2.3.3 continued). Let θo = arg min{M(θ), θ ∈ Θ} with M(θ) := Pθmθ for
some function mθ ∈ LPθ . Considering an M-estimator θ̂n := arg min{Mn(θ), θ ∈ Θ} of θo
with Mn(θ) := Pnmθ as in Example §2.3.3 we have

√
n(θ̂n − θo) =

√
n(Pθom̈θo)

−1 Pnṁθo +

oP⊗nθo
(1), that is, ψθo := (Pθom̈θo)

−1ṁθo . Under P⊗n
θo+h/

√
n

it follows then
√
n(θ̂n − θo)

d→
N((Pθom̈θo)

−1Pθoṁθo〈 ˙̀θo , h〉, (Pθom̈θo)
−1(Pθoṁθoṁ

t
θo

)(Pθom̈θo)
−1). In the particular case of

an MLE θ̂n as in Example §2.3.4 setting mθ := `θ = log(Lθ) and Iθo := Pθo ˙̀
θo

˙̀t
θo

= −Pθo ῭
θo

we have
√
n(θ̂n − θo) = I−1

θo

√
n Pn ˙̀

θo + oP⊗nθo
(1) which together with Iθoh = Pθo〈 ˙̀θo , h〉 ˙̀

θo

under P⊗n
θo+h/

√
n

implies
√
n(θ̂n − θo)

d→ N(h, I−1
θo

).

§4.3.4 Remark. Supposing
√
n(θ̂n− θo) =

√
n Pnψθo + oP⊗nθo

(1) let us further assume a trans-
formation A : Θ → Rp that is “smooth”, and hence by employing the Delta method §1.1.19,
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for instance satisfies
√
n(A(θ̂n)−A(θo)) = Ȧθo

√
n Pnψθo +oP⊗nθo

(1) under P⊗nθo . Consequently,
√
n(A(θ̂n)−A(θo))

d→ N(ȦθoPθoψθo〈 ˙̀θo , h〉, ȦθoPθoψθoψtθoȦ
t
θo

) under P⊗n
θo+h/

√
n

and in the spe-

cial case of an MLE
√
n(A(θ̂n)− A(θo))

d→ N(Ȧθoh, ȦθoI−1
θo
Ȧtθo) under P⊗n

θo+h/
√
n
.

§4.3.5 Example (§2.4.1 continued). Under the conditions of Corollary §4.3.2 consider the test
problem H0 : A(θ) = 0 against the alternative H1 : A(θ) 6= 0 for some transformation A satis-
fying

√
n(A(θ̂n)− A(θo)) = Ȧθo

√
n Pnψθo + oP⊗nθo

(1) under P⊗nθo . As in section 2.4 let Ŵn :=

nA(θ̂n)tΣ̂−1
n A(θ̂n) where Σ̂n is under P⊗nθo a consistent estimator of Σ := ȦθoPθoψθoψtθoȦ

t
θo

, i.e.,
Σ̂n = Σ + oP⊗nθo

(1), then a Wald test is given by ϕn = 1{Ŵn>χ2
p,1−α}. Thereby, under Ho, that

is, A(θo) = 0, we have
√
nA(θ̂n) = Ȧθo

√
n Pnψθo + oP⊗nθo

(1) and Ŵn
d→ W ∼ χ2

p under P⊗nθo
which in turn implies P⊗nθo (Ŵn > χ2

p,1−α)
n→∞−→ P(W > χ2

p,1−α) = α. In other words, the Wald
test is asymptotically a level α test. Let us denote by βϕn(θ1) = P⊗nθ1 ϕn = P⊗nθ1 (ϕn = 1) =

P⊗nθ1 (Ŵn > χ2
p,1−α) the power function of the Wald-test ϕn evaluated at θ1 with A(θ1) 6= 0. In

the sequel we consider local alternatives of the form θo + h/
√
n and thus we are interested in

βϕn(θo + h/
√
n) = P⊗n

θo+h/
√
n
(Ŵn > χ2

p,1−α). Obviously, under P⊗n
θo+h/

√
n

we have
√
nA(θ̂n)

d→

N(ȦθoPθoψθo〈 ˙̀θo , h〉,Σ), or equivalently, Σ−1/2
√
nA(θ̂n)

d→ N(Σ−1/2ȦθoPθoψθo〈 ˙̀θo , h〉, Id),
and hence, nA(θ̂n)tΣ−1A(θ̂n)

d→ Wh ∼ χ2
p(‖Σ−1/2ȦθoPθoψθo〈 ˙̀θo , h〉‖2) where χ2

p(a) de-
notes a non-central χ2-distribution. Moreover, Ŵn − nA(θ̂n)tΣ−1A(θ̂n) = oP⊗nθo

(1) and thus

Ŵn − nA(θ̂n)tΣ−1A(θ̂n) = oP⊗n
θo+h/

√
n
(1) due to Lemma §3.2.3 by employing that P⊗nθo and

P⊗n
θo+h/

√
n

are mutually contiguous. Consequently, Ŵn
d→ Wh under P⊗n

θo+h/
√
n

and thus βŴn
(θo+

h/
√
n)

n→∞−→ P(Wh > χ2
p,1−α). Note that in the particular case of an MLE we have Wh ∼

χ2
p(h

tȦtθo(ȦθoI
−1
θo
Ȧtθo)

−1Ȧθoh).

4.4 Asymptotic power function

Let (Ωn,An,PnΘ) be LAN in θo ∈ Θ ⊂ Rp with localising sequence (δn)n∈N, central sequence
(Znθo)n∈N and strictly positive definite Fisher information matrix Iθo , that is, Z̃nθo := IθoZnθo

d→
N(0, Iθo) under P⊗nθo and Λn := log(dPnθo+δnh/dP

n
θo

) = 〈IθoZnθo , h〉 −
1
2
〈Iθoh, h〉 + oP⊗nθo

(1).

Denoting σ2
h := 〈Iθoh, h〉 from Z̃nθo

d→ N(0, Iθo) under Pnθo and Z̃nθo
d→ N(h, Iθo) under Pnθo+δnh

it follows Λn
d→ Zoh ∼ N(−1

2
σ2
h, σ

2
h) under Pnθo and Λn

d→ Z1
h ∼ N(1

2
σ2
h, σ

2
h) under Pnθo+δnh.

§4.4.1 Example (Neyman-Pearson test). Consider the elementary test problem Ho : Pnθo against
H1 : Pnθ1 . In this situation the most powerful level-α test is of Neyman-Pearson form, i.e.,
ϕ?n = 1{Λn>cn} if Pnθo(ϕ

?
n = 1) = α. Let us denote by βϕ?n(θ1) = Pnθ1ϕ

?
n = Pnθ1(ϕ?n = 1) =

Pnθ1(Λn > cn) the power function of ϕ?n evaluated at θ1. Keep in mind that the value βϕ?n(θ1)
equals the maximal size of the power in the class of all level-α tests, i.e., for any level-α test
ϕn holds βϕn(θ1) 6 βϕ?n(θ1). In particular, in case of local alternatives, i.e., Ho : Pnθo against
H1 : Pnθo+δnh, exploiting the LAN assumption we have α = Pnθoϕ

?
n = Pnθo(Λn > cn)

n→∞−→
P(Zoh > c1−α) = α which implies cn

n→∞−→ c1−α, and in addition βϕ?n(θo + δnh) = Pnθo+δnhϕ
?
n =

Pnθo+δnh(Λn > cn)
n→∞−→ P(Z1

h > c1−α) =: βϕ?(h).
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§4.4.2 Example. In a Gaussian location model, i.e. Y ©∼ N(Rp, I−1
θo

), consider the test prob-
lem Ho : N(0, I−1

θo
) against the alternative H1 : N(h, I−1

θo
). It is easily seen that in this situation

the log of the likelihood-ratio Λh := log(dN(h, I−1
θo

)/dN(0, I−1
θo

)) equals 〈IθoY, h〉 − 1
2
σ2
h and

thus Λh = Zoh ∼ N(−1
2
σ2
h, σ

2
h) under the hypothesis N(0, I−1

θo
) and Λh = Z1

h ∼ N(1
2
σ2
h, σ

2
h)

under the alternative N(h, I−1
θo

). Moreover, keeping in mind that P(Zoh > c1−α) = α the most
powerful level-α test ϕ? has again Neyman-Pearson form, i.e., ϕ? = 1{Λh>c1−α}, and its power
is given by Ph(Λh > c1−α) = P(Z1

h > c1−α) = βϕ?(h) which again is maximal.

§4.4.3 Remark. In a statistical LAN experiment the power function βϕ?n of a Neyman-Pearson
test ϕ?n for Ho : Pnθo against H1 : Pnθ1 converges point-wise as n→∞ to the power function βϕ?
of a Neyman-Pearson test ϕ? for Ho : N(0, I−1

θo
) against H1 : N(h, I−1

θo
).

§4.4.4 Theorem. Let Θ ⊂ R. Consider the one-sided test problem Ho : θ 6 θo against
H1 : θ > θo. Suppose that (Ωn,An,PnΘ) is LAN in θo ∈ Θ with localising sequence (δn)n∈N,
central sequence (Znθo)n∈N and strictly positive Fisher information Iθo > 0.

(i) Given any test statistic Tn satisfying (Tn, IθoZnθo)
d→ N(0,Σ) with Σ =

(
(σ2, ρ)t, (ρ, Iθo)t

)
consider a randomised test ϕn := 1{Tn>cn}+γn1{Tn=cn} with γn ∈ [0, 1] and cn ∈ R
such that βϕn(θo) := Pnθoϕn = Pnθo(Tn > cn)+γnPnθo(Tn = cn) = αn

n→∞−→ α. Choos-
ing z1−α such that FN(0,1)(z1−α) := P(Z 6 z1−α) = 1−α with Z ∼ N(0, 1) we have
βϕn(θo+δnh) = Pnθo+δnhϕn

n→∞−→ P(Z > z1−α−hρ/σ) = 1−FN(0,1)(z1−α−hρ/σ) =
FN(0,1)(−z1−α + hρ/σ).

(ii) In the special case Tn = IθoZnθo choosing γn = 0 and cn = z1−α
√
Iθo , i.e.,

ϕ?n = 1{IθoZnθo>z1−α
√
Iθo} we have βϕ?n(θo) = Pnθoϕ

?
n = Pnθo(

√
IθoZnθo > z1−α)

n→∞−→

P(Z > z1−α) = α and βϕ?n(θo + δnh) = Pnθo+δnhϕ
?
n
n→∞−→ P(Z > z1−α − h

√
Iθo) =

FN(0,1)(−z1−α + h
√
Iθo).

Proof of Theorem §4.4.4 is given in the lecture.

§4.4.5 Remark. (i) By using Theorem §3.2.5 directly it might still be possible to cal-
culate an asymptotic power of a test if Λn := log(dPnθo+δnh/dP

n
θo

)
d→ Q under Pnθo

where Q is not necessarily N(0, 1) distributed.

(ii) Keeping in mind that ρ2 = |Cov(Tn, IθoZnθo)|
2 6 Var(Tn)Var(IθoZnθo) = σ2Iθo

the test ϕ?n given in Theorem §4.4.4 (ii) maximises the asymptotic power when con-
sidering only tests Tn as given in part (i) of Theorem §4.4.4.

§4.4.6 Theorem. Let the assumptions of Theorem §4.4.4 be satisfied. For any test ϕn of the one-
sided test problem Ho : θ 6 θo against H1 : θ > θo satisfying βϕn(θo) := Pnθoϕn = αn

n→∞−→ α
it holds

(i) for any h > 0 we have lim sup
n→∞

βϕn(θo + δnh) 6 FN(0,1)(−z1−α + h
√
Iθo);

(ii) for any h < 0 we have lim inf
n→∞

βϕn(θo + δnh) > FN(0,1)(−z1−α + h
√
Iθo).

Proof of Theorem §4.4.6 is given in the lecture.

§4.4.7 Remark. Keeping in mind Theorem §4.4.6 we call the test (sequence) (ϕ?n)n∈N given in
Theorem §4.4.4 (ii) asymptotically uniformly most powerful level-α test (sequence) in the class
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of all asymptotic level-α test (sequences). Its asymptotic power function equals FN(0,1)(−z1−α+

h
√
Iθo) which is the power function of the uniformly most powerful test of Ho : h 6 0 against

H1 : h > 0 in the limit Gaussian location experiment (R,B,N(R, I−1
θo

)).

4.5 Asymptotic relative efficiency

Let (Ωn,An,PnΘ)n∈N be LAN with localising rate (δn := 1/
√
n)n∈N. Consider a test ϕan

satisfying the conditions of Theorem §4.4.4 (i) and hence, admitting an asymptotic power func-
tion such that βϕan(θo + h/

√
n)

n→∞−→ FN(0,1)(−z1−α + hρa/σa). Thereby, choosing η = h/
√
n

the approximation βϕan(θo + η) ≈ FN(0,1)(−z1−α + η
√
nρa/σa) is reasonable. In analogy, if

ϕbn is another test satisfying the conditions of Theorem §4.4.4 (i) we have βϕbn(θo + η) ≈
FN(0,1)(−z1−α + η

√
nρb/σb). Roughly speaking, this means, that at θo + η the power of the

test ϕana and ϕbnb with sample size na and nb, respectively, is approximately equal if naρ2
a/σ

2
a =

nbρ
2
b/σ

2
b . The quantity are(ϕana , ϕ

b
nb

) = (na/nb) = (ρ2
bσ

2
a)/(ρ

2
aσ

2
b ) is called asymptotic relative

efficiency. Meaning, that a sample of size na = are(ϕana , ϕ
b
nb

)nb is needed for the test ϕana
to attain the same asymptotic power as the test ϕbnb with sample size nb. More precisely, if
na = are(ϕana , ϕ

b
nb

)nb and nb →∞ then βϕbnb (θo + h/
√
na)

n→∞−→ FN(0,1)(−z1−α + hρa/σa) and

βϕana (θo + h/
√
na)

n→∞−→ FN(0,1)(−z1−α + hρa/σa). Comparing with ϕ?n as in Theorem §4.4.4
(ii) allows to have a notion of asymptotic absolute efficiency.

4.6 Rank tests

Consider a sample X1, . . . , Xn of independent and not necessarily identically distributed
real-valued r.v.’s. Denote by Sn the set of all permutations of the set J1, nK. Given a vector
(x1, . . . , xn) let (xs1 , . . . , xsn) denote its arrangement according to the permutation s ∈ Sn.
More generally, (XS1 , . . . , XSn) denotes the arrangement of the r.v. (X1, . . . , Xn) according to
a Sn-valued r.v. (random permutation) S. Precisely, given X1, . . . , Xn and S defined on a com-
mon probability space (Ω,A ,P) for each ω ∈ Ω letting (x1, . . . , xn) := (X1(ω), . . . , Xn(ω))
and s := S(ω) we set (XS1 , . . . , XSn)(ω) := (xs1 , . . . , xsn).

§4.6.1 Definition. A Sn-valued r.v. (random permutation) R is called a rank vector of a Rn-
valued r.v. (X1, . . . , Xn), if Xi = XRi , i ∈ J1, nK, and XR1 6 XR2 6 · · · 6 XRn . For each
i ∈ J1, nK, the component Ri is called the rank of the i-th component Xi.

Here and subsequently we assume that the law of each component of (X1, . . . , Xn) has a den-
sity with respect to the Lebesgue measure, i.e., the associated cumulative distribution function
(c.d.f.) is continuous, and we say the law is continuous, for short. Consequently, with proba-
bility one all components of (X1, . . . , Xn) differ and thus XR1 < XR2 < · · · < XRn . Thereby,
the rank vector (R1, . . . , Rn) is uniquely determined by Ri =

∑n
j=1 1{Xj6Xi}, i ∈ J1, nK. In

particular if Fn(x) := Pn1(−∞,x], x ∈ R, denotes the empirical c.d.f., then it is easily seen that
i = nFn(XRi) and Ri = nFn(Xi) for each i ∈ J1, nK.

§4.6.2 Lemma (Preliminary results). Let X = (X1, . . . , Xn) and the associated rank vector
R = (R1, . . . , Rn) be r.v.’s on a common probability space (Ω,A ,P). If X1, . . . , Xn are i.i.d.
real-valued r.v.’s with common continuous c.d.f. F and common density f w.r.t. the Lebesgue
measure, then the following statements hold true:
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(i) The Sn-valued r.v. R has an uniform (Laplace) distribution, i.e., for all s ∈ Sn it
holds PR(s) = P(R = s) = 1

n!
;

(ii) The rank vector R and the ordered vector (XR1 , . . . , XRn) are independent;

(iii) The ordered vector (XR1 , . . . , XRn) admits a density w.r.t. the Lebesgue measure
given by n!1B(x)

∏n
i=1 f(xi) with B := {(x1, . . . , xn) ∈ R, x1 < . . . < xn};

(iv) For each i ∈ J1, nK the Ri-th component XRi of the ordered vector admits a density
w.r.t. the Lebesgue measure given by i

(
n
i

)
|F(x)|i−1|1− F(x)|n−if(x);

(v) For each r.v. T ∈ L1
PX holds E[T (X1, . . . , Xn)|R = r] = E[T (Xr1 , . . . , Xrn)]

P-a.s..

Proof of Lemma §4.6.2 (i), (iv) and (v) is given in the lecture, while (ii) and (iii) is left as an
exercise.

§4.6.3 Definition. Let P and Q be probability measures on (R,B). We say P is stochastically
smaller than Q, or P � Q for short, if P((c,∞)) 6 Q((c,∞)) for all c ∈ R. If in addition
P 6= Q, then we write P ≺ Q.

§4.6.4 Remark. Roughly speaking, P � Q says that realisations of Q are typically larger than
realisations of P.

§4.6.5 Example. Consider on (R,B) two Gaussian distributions with common variance σ2 and
individual mean µ and µ′, respectively, i.e., N(µ, σ2) and N(µ′, σ2). Obviously, N(µ, σ2) ≺
N(µ′, σ2) if and only if µ � µ′. More generally, given a location family PR as introduced in
Example §4.2.3 with likelihood function for each θ ∈ R given by Lθ(x) = g(x− θ), x ∈ R for
some strictly positive Lebesgue-density g on R, then Pθ ≺ Pθ′ holds if and only if θ � θ′.

Aim: test the hypothesis Ho : P = Q against the alternative H1 : P ≺ Q. Loosely speak-
ing, this means, that we aim to reject the null hypothesis if realisations of P are significantly
smaller than realisation of Q. Therefore, consider a sample of n = k + l independent real-
valued r.v.’s X1, . . . , Xn where the first k r.v.’s have a common distribution P and the last l r.v.’s
are distributed according to a common distribution Q. Keep in mind that we want to reject if
realisations of the common distribution P of the first k r.v.’s are significantly smaller than reali-
sations of the common distribution of the last l r.v.’s. Given the rank vector R = (R1, . . . , Rn)
associated to the pooled sample (X1, . . . , Xn) it seems thus reasonable to reject the hypothesis
if the sum of ranks within the first group of k r.v.’s, i.e., WP :=

∑k
i=1Ri, takes sufficiently

smaller values then the sum of ranks within the second group of l r.v.’s, i.e., WQ :=
∑k+l

i=k+1Ri

where obviously WP +WQ =
∑n

i=1Ri =
∑n

i=1 i = n(n+1)
2

.

§4.6.6 Lemma. Defining Ukl :=
∑k

i=1

∑k+l
j=k+1 1{Xi>Xj} it holds WP = Ukl + k(k+1)

2
and

analogously WQ = kl − Ukl + l(l+1)
2

.

Proof of Lemma §4.6.6 is given in the lecture.

Keeping the last lemma in mind, we use the test statistic WP or equivalently Ukl to reject
the hypothesis H0 : P = Q against the alternative H1 : P ≺ Q, if Ukl < c or equivalently
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WP < c + k(k+1)
2

for a certain threshold 0 < c 6 kl. The test is called (one-sided) Mann-
Whitney U-test or Wilcoxon two-sample rank sum test1. The critical value has to be chosen
according to a pre-specified level α which under the null hypothesis necessitates the knowledge
of the distribution of Ukl or an asymptotic approximation. Interestingly the next proposition
shows that under the null hypothesis the distribution of Ukl is distribution free in the following
sense: If P = Q and P is continuous, then the distribution of Ukl is determined and it is
independent of the underlying distribution P.

§4.6.7 Proposition. For every continuous P and m ∈ J0, klK it holds P⊗(k+l)(Ukl = m) =
N(m; k, l)/

(
k+l
m

)
where N(m; k, l) denotes the number of all partitions

∑k
i=1mi = m of m in

k increasing ordered numbers m1 6 m2 6 · · · 6 mk taking from the set J0, lK. In particular, it
holds P⊗k+l(Ukl = m) = P⊗(k+l)(Ukl = kl −m).

Proof of Proposition §4.6.7 is given in the lecture.

For small values of m the partition number N(m; k, l) can be calculated by combinatorical
means and there exists tables gathering certain quantiles of the Ukl-distribution. However, for
large values of m the exact calculation of quantiles of the Ukl-distribution may be avoided by
using an appropriate asymptotic approximation. In the sequel we let k and l and thus n =
k + l tend to infinity, which formally means that we consider sequences (kn)n∈N and (ln)n∈N
satisfying kn + ln = n for any n ∈ N. Here and subsequently we assume that kn/n

n→∞−→ γ ∈
(0, 1) and hence ln/n

n→∞−→ 1 − γ. For sake of presentation, however, we drop the additional
index n and write shortly n = k + l with k/n n→∞−→ γ and hence l/n n→∞−→ 1− γ.

§4.6.8 Theorem. Let X1, X2, . . . be i.i.d. real-valued r.v.’s with common distribution P and
continuous c.d.f. F. Consider Ukl :=

∑k
i=1

∑k+l
j=k+1 1{Xi>Xj} and define

Tkl := l
k∑
i=1

F(Xi)− k
k+l∑

i=k+1

F(Xi) = l
k∑
i=1

(F(Xi)− 1/2)− k
k+l∑

i=k+1

(F(Xi)− 1/2).

Setting n = k + l, vkl := kl(n + 1)/12, T ?kl := Tkl/
√
vkl and U?

kl := (Ukl − kl/2)/
√
vkl if

k/n→ γ ∈ (0, 1) then U?
kl−T ?kl = oP⊗n(1), T ?kl

d→ N(0, 1) and thus U?
kl

d→ N(0, 1) as n→∞.

Proof of Theorem §4.6.8 is given in the lecture.

Keeping in mind the last assertion given a sample of n = k+ l independent r.v.’s X1, . . . , Xn

with X1, . . . , Xk
i.i.d.∼ P and Xk+1, . . . , Xk+l

i.i.d.∼ Q, consider a test which rejects the null hy-
pothesisHo : P = Q against the alternative P ≺ Q, if Ukl < kl/2+zα

√
vkl where FN(0,1)(zα) =

α. Note that, it is asymptotically a level-α test due to Theorem §4.6.8 since under the null hy-
pothesis P⊗n(Ukl < kl/2 + zα

√
vkl)

n→∞−→ FN(0,1)(zα) = α for k/n n→∞−→ γ ∈ (0, 1). Note
that the null hypothesis Ho : P = Q against the alternative P � Q is analogously rejected if
Ukl > kl/2 + z1−α

√
vkl. Next we study the (asymptotic) size of the power of the rank test under

1The version based on WP has been proposed by Wilcoxon [1945], while the Ukl-version has been independently
be introduced by Mann and Whitney [1947].
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local alternatives where we use that under the assumptions of Theorem §4.6.8 it holds

U?
kl = (Ukl − kl/2)/

√
vkl =

√
l
n

1√
k

k∑
i=1

F(Xi)−1/2√
1/12

−
√

k
n

1√
l

k+l∑
i=k+1

F(Xi)−1/2√
1/12

+ oP⊗n(1)

=
√

1− γ
√
k Pkg −

√
γ
√
l Qlg + oP⊗n(1) (4.1)

setting g :=
√

12(F−1/2), Pkg := 1
k

∑k
i=1 g(Xi) and Qlg := 1

l

∑k+l
i=k+1 g(Xi) where Pkg and

Qlg are independent, Pg = 0, and Pg2 = 1 by construction.

4.7 Asymptotic power of rank tests

Considering the test of the hypothesis Ho : P = Q against the alternative H1 : P � Q
we restrict our attention to the special case that P and Q belong to a location family PR as
introduced in Example §4.2.3. Precisely, we assume that the family PR of probability measures
on (R,B) is dominated by the Lebegues measure. For each θ ∈ R, Pθ admits a likelihood
function given by Lθ(x) = q(x−θ), x ∈ R, where q is a continuous and strictly positive density
on R. Recall that in this context Pθ ≺ Pθ′ holds if and only if θ � θ′ (see Example §4.6.5).
Observe further that we can assume thatQ = P0 (possibly after a reparametrisation). Supposing
independent r.v.’s X1, . . . , Xn with (X1, . . . , Xk)©∼ P⊗kR and (Xk+1, . . . , Xn) ∼ P⊗l0 their joint
distribution belongs to the two sample location family Pk+l

R := {Pk+l
θ := P⊗kθ ⊗ P

⊗l
0 , θ ∈ R}.

Summarising, based on the statistical two sample location experiment (Rn,B⊗n,Pk+l
R ) the aim

is to test the hypothesis H0 : θ = 0 against the alternative H1 : θ > 0.

§4.7.1 Regular location model. A location family PR of probability measures on (R,B) as
introduced in Example §4.2.3 is called regular if the density q is in addition continuously dif-
ferentiable with derivative q̇ satisfying λ(|q̇|2/q) <∞. Following the Example §4.2.3 a regular
location family PR is Hellinger-differentiable with score function ˙̀

θ = −q̇(x− θ)/q(x− θ)
and Fisher information I := λ(|q̇|2/q).

By applying Theorem §4.1.9 for a regular location model the associated product experiment
(Rk,B⊗k,P⊗kR ) is ULAN with localising rate (δk := 1/

√
k)k∈N and in θo = 0 with cen-

tral sequence (Zk0 := −
√
kI−1 Pk(q̇/q))k∈N. Precisely, for any sequence hk → h it holds

log(dP⊗k
hk/
√
k
/dP⊗k0 ) = −h

√
k Pk(q̇/q) − 1

2
h2I + oP⊗k0

(1) and
√
k Pk(q̇/q)

d→ N(0, I) under

P⊗k0 . Given a two sample location family Pk+l
R for any θ ∈ R the log of the likelihood-ratio

satisfies log(dPk+l
θ /dPk+l

0 ) = log(dP⊗kθ /dP⊗k0 ). Thereby, if the location family is regular and
k/n

n→∞−→ γ ∈ (0, 1), whence hk := h
√
k/n

n→∞−→ , h
√
γ, it follows

Λn := log(dPk+l
h/
√
n
/dPk+l

0 ) = log(dP⊗k
hk/
√
k
/dP⊗k0 )

= −h√γ
√
k Pk(q̇/q) − γ

2
h2I + oPn0 (1) (4.2)

§4.7.2 Theorem. Assume a two sample regular location model. Consider for the test problem
H0 : θ = 0 against H1 : θ > 0 the rank test ϕn = 1{Ukl>kl/2+z1−α

√
vkl} = 1{U?kl>z1−α} with

FN(0,1)(−z1−α) = α. If k/n n→∞−→ γ ∈ (0, 1), then the following statements hold true:

(i) Under the null hypothesis Ho : θ = 0 holds Pk+l
0 ϕn = P⊗k+l

0 (U?
kl > z1−α)

n→∞−→ α,
i.e., ϕn is an asymptotic level-α test;
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(ii) Its power function βϕn(θ) = Pk+l
θ ϕn satisfies under local alternatives βϕn(h/

√
n) =

Pk+l
h/
√
n
(U?

kl > z1−α)
n→∞−→ FN(0,1)(−z1−α + ρ) with ρ = h(λq2)

√
12γ(1− γ).

Proof of Theorem §4.7.2 is given in the lecture.

§4.7.3 Remark. Let us briefly consider the test ofH0 : θ = 0 against the alternativeH1 : θ < 0,
where an asymptotic level-α test is given by ϕn = 1{Ukl<kl/2+zα

√
vkl} = 1{U?kl<zα}. Its power

function satisfies for local alternatives βϕn(h/
√
n) = Pk+l

h/
√
n
(U?

kl < zα)
n→∞−→ FN(0,1)(zα−ρ).

§4.7.4 Gaussian two sample location model. Consider a two sample Gaussian location ex-
periment where X1, . . . , Xn are independent r.v.’s with common variance σ2 > 0 obeying
(X1, . . . , Xk) ∼ N⊗k(θ, σ2) for some θ ∈ R and (Xk+1, . . . , Xn) ∼ N⊗l(0, σ2). Consequently,
their joint distribution belongs to the two sample Gaussian location family Nk+l

R := {Nk+l
θ :=

N⊗k(θ, σ2)⊗N⊗l(0, σ2), θ ∈ R} which is obviously a regular.

§4.7.5 Example. In a Gaussian two sample location model consider testing of the hypothesis
Ho : θ = 0 against H1 : θ > 0 (or H1 : θ < 0). Define Tkl := l

∑k
i=1 Xi − k

∑k+l
i=k+1 Xi

and Vkl := kl(k+l)
(k+l)−2

{
∑k

i=1(Xi − 1
k

∑k
i=1Xi)

2 +
∑k+l

i=k+1(Xi − 1
l

∑k+l
i=k+1Xi)

2} then under the
null hypothesis, i.e., (X1, . . . , Xn) ∼ N⊗n(0, σ2), the t-statistic T ?kl := Tkl/

√
Vkl has a tn−2-

distribution with n − 2 degrees of freedom, or T ?kl ∼ tn−2 for short. Let us denote by tn−2,κ

its κ-quantile. Thereby, the t-test ϕ?n = 1{T ?kl>tn−2,1−α} (or ϕ?n = 1{T ?kl<tn−2,α} ) is a level-α
test for Ho : θ = 0 against H1 : θ > 0 (or H1 : θ < 0). Since a Gaussian location model
is regular we can directly apply Theorem §4.7.2 to derive its asymptotic power function under
local alternatives. However, Theorem §4.7.2 allows us to study a t-test in an arbitrary regular
location model with mean location and variance. More precisely, in a Gaussian location family
with common variance σ2 > 0 introducing gσ(x) := x/σ, x ∈ R the density q satisfies in
addition λ(gσq) = 0 and 1 = λ(g2

σq).

§4.7.6 Regular mean location and variance model. Let σ2 > 1 and gσ(x) := x/σ, x ∈ R. We
call a regular location family with density q satisfying in addition λ(gσq) = 0 and 1 = λ(g2

σq) a
regular mean location and variance model.

§4.7.7 Theorem. Assume a two sample regular mean location and variance model. Consider
for the test problem H0 : θ = 0 against H1 : θ > 0 the t-test ϕ?n = 1{T ?kl>tn−2,1−α} with

1− Ftn−2(tn−2,1−α) = α. If k/n n→∞−→ γ ∈ (0, 1), then the following statements hold true:

(i) Under the null hypothesis Ho : θ = 0 holds Pk+l
0 ϕ?n

n→∞−→ α, i.e., ϕ?n is an asymptotic
level-α test;

(ii) Its power function βϕ?n(θ) = Pk+l
θ ϕ?n satisfies under local alternatives βϕ?n(h/

√
n) =

Pk+l
h/
√
n
(T ?kl > tn−2,1−α)

n→∞−→ FN(0,1)(−z1−α + ρ) with ρ = hσ−1
√
γ(1− γ).

Proof of Theorem §4.7.7 is given in the lecture.

§4.7.8 Remark. Let us compare the asymptotic level-α rank-test ϕn = 1{Ukl>kl/2+z1−α
√
vkl}

and t-test ϕ?n = 1{T ?kl>tn−2,1−α}. Using their asymptotic power functions the asymptotic relative

efficiency between both tests equals are(ϕn, ϕ
?
n) = 12σ2(λq2)2. In the particular case of a

Gaussian location model, i.e., q(x) = 1√
2πσ

exp(−x2/(2σ2)) if follows λq2 = 1/(2
√
πσ) and
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hence are(ϕn, ϕ
?
n) = 3/π ≈ 0.955. On the other hand side, if we denote by Q the class of all

Lebesgue-densities on R satisfying λ(gσq) = 0 and λ(g2
σq) = 1, then Hodges and Lehmann

[1956] have shown that infq∈Q 12σ2(λq2)2 = 0.864 and supq∈Q 12σ2(λq2)2 =∞.
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Chapter 5

Non-parametric statistics: local smoothing

This chapter presents elements of the non-parametric inference for curves
along the lines of the textbooks by Tsybakov [2009] and Comte [2015]
where far more details, examples and further discussions can be found.

5.1 Non-parametric curve estimation

Non-parametric density estimation. Consider a family P of probability measures on
(R,B) which contains the distribution of an observation X , i.e., X©∼ P . The class P captures
the prior knowledge about the distribution of the observation. Considering a class containing
just a singleton, i.e., P = {P} for some probability measure P, means that the data generating
process is known in advance. On the contrary taking P equal to the set P(R) of all possible
probability measures on (R,B) reflects a lack of prior knowledge. In a certain sense a para-
metric model P = PΘ for some parameter set Θ ⊂ Rk provides then a usual trade-off between
both extremes. On the other hand side, for an arbitrary probability measure P with c.d.f. F
given an i.i.d. sample X1, . . . , Xn with common distribution P a reasonable estimator of F
is the empirical c.d.f. Fn(t) = Pn1(−∞,t], t ∈ R. Obviously, for each t ∈ R, Fn(t) is an
unbiased estimator of Ft with variance Var(Fn(t)) = 1

n
F(t)(1 − F(t)) and hence Fn(t) con-

verges in probability to F(t). Moreover, by the Law of Large Numbers §1.1.10 almost sure
convergence holds true point-wise and even uniformly due to Glivenko-Cantelli’s Theorem,
i.e.,

∥∥Fn − F∥∥L∞ = supt∈R |Fn(t) − F(t)| a.s.−→ 0. If we assume in addition that P admits

a Lebesgue density then Fn is the unbiased estimator with minimal variance employing the
Theorem of Lehman-Scheffé. However, comparing different probability measures using their
associated c.d.f.’s is visually difficult and hence typically other measures for dissimilarities are
used. Consider, for instance, for two probability measures P and Q on (R,B) their total vari-
ation distance given by ‖P −Q‖TV := sup{|P(B) − Q(B)|, B ∈ B}. Noting that for any
continuous probability measure P on (R,B),

∥∥P − Pn∥∥TV
> 1 a.s. for any n ∈ N, the em-

pirical probability measure Pn is not a consistent estimator of P in terms of the total variation
distance. In other words, the estimator will usually depend on the measure (metric, topology,
etc.) we use to quantify its accuracy as an estimator of P.

§5.1.1 Proposition (Scheffé’s theorem). Let P and Q be two probability measures on (R,B)
absolute continuous w.r.t. the Lebesgue measure λ with densities p and q, respectively. Then
‖P −Q‖TV = λ(p − q)+ = 1

2
λ|p − q| = 1

2
‖p − q‖L1 .

Proof of Proposition §5.1.1 is given, for example, in Tsybakov [2009], Lemma 2.1, p.70.

In the sequel D denotes a family of Lebesgue-densities on (R,B) and for each density p ∈ D
let P and Ep be its associated probability measure and expectation, respectively. We consider

Statistics II 35



Chapter 5 Local smoothing 5.2 Kernel density estimation

the statistical product experiment (Rn,B⊗n,P⊗nD = {P⊗n,p = dP/dλ ∈ D}) and we write
X1, . . . , Xn

i.i.d.∼ p ∈ D for short. Moreover, E⊗np denotes the expectation w.r.t. P⊗n. Typically,
given an estimator p̂ of p we consider for p > 1 either E⊗np |p̂(t)− p(t)|p, for each t ∈ R, and
E⊗np ‖p̂ − p‖

p
Lp = E⊗np (λ|p̂ − p |p) as, respectively, a local and global measure of its accuracy

with a special focus on p = 1 or p = 2.

Non-parametric regression. Describe the dependence of the variation of a real-valued r.v.
Y (response) on the variation of an explanatory real-valued random or deterministic variable
Z by a functional relationship Y = f(Z) + ε where f is the unknown functional parameter
of interest. Typically, it is assumed that the error term ε either is centred, i.e., Eε = 0, in
case of deterministic explanatory variables Z, or satisfies E(ε|Z) = 0, in case of random Z.
For a detailed discussion of the deterministic case we refer to Tsybakov [2009]. Here and
subsequently, we restrict our attention to the case that X := (Y, Z) is a random vector with
values in a measure space (X ,B) and our aim is statistical inference on f(Z) = E(Y |Z).
Typically, the distribution of X = (Y, Z) is parametrised by the regression function f only,
i.e., X ∼ Pf , and the dependence on the marginal distribution of the regressor Z and the
conditional distribution of the error term ε given Z is not made explicit. For sake of simplicity,
let us in addition suppose that Z takes its values in R and the joint distribution of X = (Y, Z)
admits a joint Lebesgue density p

Y,Z
. Denoting by p

Z
the marginal density of Z we use the

identity `(z) := f(z)p
Z
(z) =

∫
yp

Y,Z
(y, z)dy which as usual holds a.s. only. Given an i.i.d.

sample of X a widely used estimation strategy is then based on a separate estimation of the
function ` and the marginal density p

Z
, say by ̂̀ and p̂

Z
, and forming a possibly regularised

estimator f̂ = (̂̀/p̂
Z
)1{p̂Z>0} for the function of interest f = `/p

Z
. However, there are

many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel F
denotes a family of regression functions and for each f ∈ F let Pf and Ef be the associated
probability measure of X = (Y, Z) and its expectation, respectively. We denote by PF the
family of all possible distributions of X , but keep in mind, that generally the distribution of X
is not uniquely determined by f ∈ F only. However, an i.i.d. sample ofX = (Y, Z) obeying the
regression model we denote by X1, . . . , Xn©∼ P⊗nF or (Y1, Z1), . . . , (Yn, Zn)©∼ P⊗nF for short.
Typically, given an estimator f̂ of f we consider again for p > 1 either E⊗nf |f̂(z)− f(z)|p, for

each z ∈ R, and E⊗nf ‖f̂ − f‖
p
Lp = E⊗nf (λ|f̂ − f |p) as, respectively, a local and global measure

of its accuracy.

5.2 Kernel density estimation

Throughout this section letX1, . . . , Xn
i.i.d.∼ P be real-valued r.v.’s with c.d.f. F and Lebesgue-

density p = dP/dλ.

§5.2.1 Definition. An integrable map K : R → R, i.e., λ|K| < ∞, with λK = 1 is called a
kernel. Given h > 0, typically called bandwidth, the kernel density estimator of p(x) evaluated
at a point x ∈ R is defined as p̂

h
(x) := 1

n

∑n
i=1

1
h
K
(
Xi−x
h

)
= PnKx

h using the abbreviation
Kx
h(X) := 1

h
K
(
X−x
h

)
for x,X ∈ R.

§5.2.2 Remark. Starting with F(x + h)− F(x− h) = λ(1]x−h,x+h]p) for any h > 0 we have
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for h sufficiently small F(x+ h)− F(x− h) ≈ p(x)2h. Replacing the unknown c.d.f. F by its
empirical counter part Fn Rosenblatt [1956] proposed for p(x) the following estimator

p̂
h
(x) :=

Fn(x+ h)− Fn(x− h)

2h
= 1

2h
Pn1]x−h,x+h] = 1

n

n∑
i=1

1
2h
1]−1,1]

(
Xi−x
h

)
= 1

n

n∑
i=1

1
h
K
(
Xi−x
h

)
= 1

n

n∑
i=1

Kx
h(Xi) = PnKx

h

setting K(x) := 1
2
1]−1,1](x) and Kx

h(X) := 1
h
K
(
X−x
h

)
for x,X ∈ R. Observe that K is

a density, which in turn implies that f̂h is a density for each h > 0 as well. Parzen [1962]
introduces a kernel K and a bandwidth h as in Definition §5.2.1 and studies the more general
kernel density estimator p̂

h
(x) = 1

n

∑n
i=1

1
h
K
(
Xi−x
h

)
= PnKx

h . Note that λp̂
h

= 1 since
λK = 1. If the kernel is in addition positive, then p̂

h
is a density. An alternative motivation for

a kernel density estimator provides the following lemma.

§5.2.3 Proposition (Bochner’s lemma). Let g : R → R be bounded, i.e., ‖g‖L∞ < ∞, and
continuous in a neighbourhood of x ∈ R. If Q : R → R is integrable, i.e., λ|Q| < ∞, and
Qx
h := 1

h
Q(•−x

h
), then lim

h→0
λ(Qx

hg) = lim
h→0

1
h

∫
Q( z−x

h
)g(z)dz = g(x)

∫
Q(z)dz = g(x)λQ

Proof of Proposition §5.2.3 is given in the lecture.

§5.2.4 Example. Typically considered is a rectangular kernelK(u) := 1
2
1{[−1,1]}(u), a triangu-

lar kernelK(u) := (1−|u|)1{[−1,1]}(u), an Epanechnikov kernelK(u) := 3
4
(1−u2)1{[−1,1]}(u)

or a Gaussian kernel K(u) := 1√
2π

exp(−u2/2).

Local measure of accuracy. For a kernel density estimator p̂
h

we consider first its mean
squared error at a point x ∈ R, that is, R(p̂

h
(x),p(x)) = E⊗np |p̂h(x) − p(x)|2 =: MSE(x).

Observe that MSE(x) = Varp (p̂
h
(x))+ |biasp (x)|2 with biasp (x) := E⊗np p̂

h
(x)−p(x) where

we study separately the variance and the bias term, i.e., Varp (p̂
h
(x)) and biasp (x).

§5.2.5 Lemma. If ‖p‖L∞ < ∞ and ‖K‖2
L2 = λK2 < ∞, then for each x ∈ R it holds

Varp (p̂
h
(x)) 6 (nh)−1 ‖p‖L∞ ‖K‖

2
L2 .

Proof of Lemma §5.2.5 is given in the lecture.

§5.2.6 Remark. Let p be bounded and continuous, and suppose that K belongs to L1 ∩ L2

with λK = 1. From Lemma §5.2.5 follows then Varp (p̂
h
(x)) 6 (nh)−1 ‖p‖L∞ ‖K‖

2
L2 .

On the other hand, since biasp (x) = λ(Kx
hp) − p(x) from Bochner’s lemma §5.2.3 follows

|biasp (x)| = o(1) as h → 0. By combining both results, we obtain for any sequence (hn)n∈N
of bandwidths satisfying nhn → ∞ and hn = o(1) that R(p̂

hn
(x),p(x)) = o(1) as n → ∞.

Consequently, the kernel density estimator is consistent, but its rate of convergence might be
arbitrarily slow. Here and subsequently the bandwidth depends on n but we drop from now on
the additional index n and write shortly nh n→∞−→ ∞ or h = o(1) as n→∞. .

§5.2.7 Lemma. Let p be twice-differentiable with bounded second derivative p̈ , i.e., ‖p̈‖L∞ <

∞ and let the kernel K satisfy in addition λ(idK) = 0 and λ(id2 |K|) < ∞ with id(u) := u,
u ∈ R. Then for each x ∈ R, h > 0 and n ∈ N it holds |biasp (x)| 6 h2 1

2
‖p̈‖L∞ λ(id2 |K|).
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Proof of Lemma §5.2.7 is given in the lecture.

§5.2.8 Remark. Let p be bounded and twice-differentiable with bounded second derivative p̈
and suppose that K belongs to L1 ∩ L2 with λK = 1, λ(idK) = 0 and λ(id2 |K|) < ∞. By
combination of Lemma §5.2.5 and §5.2.7 follows uniformly for all x ∈ R

R(p̂
h
(x),p(x)) 6 (nh)−1 ‖p‖L∞ ‖K‖

2
L2 + h4 1

4
‖p̈‖2

L∞ (λ(id2 |K|))2,

where the first and second right hand side term is increasing and decreasing, respectively, as h
tends to zero. Therefore, let us minimise the right hand side as a function of h. Keep in mind that
M(h) := a(nh)−1 + bh2β , h > 0, attains its minimum M(ho) = b

(
a

2βb
)1/(2β+1)n−2β/(2β+1) at

ho =
(
a

2βb
)1/(2β+1)n−1/(2β+1). Therefore, choosing ho =

( ‖p‖L∞‖K‖
2
L2

‖p̈‖2L∞ (λ(id2 |K|))2 )1/5n−1/5 we obtain

sup
x∈R
R(p̂

ho
(x),p(x)) 6 1

4

(
‖p̈‖2

L∞ (λ(id2 |K|))2
)4/5( ‖p‖L∞ ‖K‖2

L2)1/5 n−4/5.

We shall emphasise that the optimal bandwidth ho depends not only on the Kernel but also on
characteristics of the unknown density p , and hence, is in general not feasible in practise.

§5.2.9 Proposition. Let p be bounded and continuous in x and let K ∈ L1 ∩ L2 be bounded
with λK = 1. If hn→∞ and h = o(1) then

√
nh(p̂

h
(x)− Ep p̂h(x))

d→ N(0,p(x)λK2).

Proof of Proposition §5.2.9 is given in the lecture.

§5.2.10 Remark. Let p be bounded and twice-differentiable with continuous in x and bounded
second derivative p̈ . If K satisfies λ(idK) = 0 and λ(id2 |K|) <∞ in addition to the assump-
tions of Proposition §5.2.9 then h−2biasp (x) = 1

2
p̈(x)λ(id2K)+o(1) as h→ 0. Consequently,

choosing hn1/5 → c > 0 it follows
√
nhbiasp (x) = c5/2

2
p̈(x)λ(id2K) + o(1) and hence

√
nh(p̂

h
(x)− p(x))

d→ N( c
5/2

2
p̈(x)λ(id2K),p(x)λK2) due Proposition §5.2.9. On the other

hand side, if hn1/5 = o(1) it follows in analogy
√
nh(p̂

h
(x)− p(x))

d→ N(0,p(x)λK2).

§5.2.11 Definition. For l ∈ N a map K : R → R is called a kernel of order l if the functions
idjK, j ∈ J0, lK, are integrable and satisfy λK = 1 and λ(idjK) = 0, j ∈ J1, lK.

§5.2.12 Remark. For arbitrary l ∈ N the construction of a kernel of order l and several ex-
amples are given, for instance, in Tsybakov [2009], section 1.2.2, or Comte [2015] section
3.2.4.

§5.2.13 Definition. For two positive numbers β and L the Hölder class H(β, L) on R is a set
of l = bβc times differentiable functions f : R → R whose derivative f (l) for any x, y ∈ R
satisfies |f (l)(x)− f (l)(y)| 6 L|x− y|β−l.

§5.2.14 Lemma. Let p ∈ H(β, L) and let K be a kernel of order l = bβc satisfying
λ(|id|β|K|) <∞. Then for each x ∈ R, h > 0 and n ∈ N it holds |biasp (x)| 6 hβ L

l!
λ(|id|β|K|).

Proof of Lemma §5.2.14 is given in the lecture.
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§5.2.15 Remark. Let p ∈ H(β, L) be bounded and suppose thatK is a kernel of order l = bβc
satisfying λK2 < ∞ and λ(|id|β|K|) < ∞. By combination of Lemma §5.2.5 and §5.2.14
follows uniformly for all x ∈ R

R(p̂
h
(x),p(x)) 6 (nh)−1 ‖p‖L∞ ‖K‖

2
L2 + h2β

(
L
l!
λ(|id|β|K|)

)2
,

therefore minimising the right hand side as a function of h leads to an optimal bandwidth

ho = c n−1/(2β+1) with constant c2β+1 =
‖p‖L∞‖K‖

2
L2

2β(
L
l!
λ(|id|β |K|))2

. Consequently, by choosing the opti-

mal bandwidth ho we have supx∈RR(p̂
ho

(x),p(x)) = O(n−2β/(2β+1)). However, the optimal
bandwidth ho depends again on characteristics of the unknown density p , and hence, is in gen-
eral not feasible in practise.

Global measure of accuracy. Assuming a density p ∈ L2 we consider next the integrated
mean squared error (MISE) of the kernel density estimator p̂

h
, that is, MISE := R(p̂

h
,p) =

E⊗np ‖p̂h − p‖
2
L2 = E⊗np λ|p̂

h
−p |2. Observe that MISE =

∫
RVarp (p̂

h
(x))dx+

∫
R bias2

p (x)dx

with biasp (x) = λ(Kx
hp) − p(x) where we study now separately the integrated variance and

bias term.

§5.2.16 Lemma. IfK ∈ L2, then for any density p holds
∫
RVarp (p̂

h
(x))dx 6 (nh)−1 ‖K‖2

L2 .

Proof of Lemma §5.2.16 is given in the lecture.

§5.2.17 Definition. For two positive numbers β and L the Nikol’ski classN (β, L) on R is a set
of l = bβc times differentiable functions f : R→ R whose derivative f (l) for all t ∈ R satisfies( ∫
|f (l)(x+ t)− f (l)(x)|2dx

)1/2
6 L|t|β−l.

§5.2.18 Lemma. Let p ∈ N (β, L) and let K be a kernel of order l = bβc satisfying
λ(|id|β|K|) < ∞. Then for each x ∈ R, h > 0 and n ∈ N it holds

∫
|biasp (x)|2dx 6

h2β{L
l!
λ(|id|β|K|)}2.

Proof of Lemma §5.2.18 is given in the lecture.

§5.2.19 Remark. Let p ∈ L2 ∩ N (β, L) and let K be a kernel of order l = bβc satisfying
λK2 <∞ and λ(|id|β|K|) <∞. By combination of Lemma §5.2.16 and §5.2.18 follows

R(p̂
h
,p) 6 (nh)−1 ‖K‖2

L2 + h2β
(
L
l!
λ(|id|β|K|)

)2
,

therefore minimising the right hand side as a function of h leads to an optimal bandwidth
ho = c n−1/(2β+1) with constant c2β+1 = λK2

2β(
L
l!
λ(|id|β |K|))2

. Consequently, by choosing the opti-

mal bandwidth ho we have R(p̂
ho
,p) = O(n−2β/(2β+1)). However, the optimal bandwidth ho

depends again on characteristics of the unknown density p , and hence, is in general not feasible
in practise.

Data-driven bandwidth selection. Considering a kernel density estimator p̂
h

the choice
of the bandwidth h is crucial. An ideal value of the bandwidth is, for instance, given by
hid = arg min{R(p̂

h
,p), h > 0}. Note that for a given density p , the estimator p̂

hid
, if

hid exists, has minimal MISE within the family {p̂
h
, h > 0} of all kernel density estimators

Statistics II 39



Chapter 5 Local smoothing 5.3 Non-parametric regression

with fixed kernel and varying bandwidth. Unfortunately, the value hid and hence p̂
hid

remains
purely theoretical and thus is often called oracle, since R(p̂

h
,p) depends on unknown charac-

teristics of the density p . A common idea is to use unbiased estimation of the risk R(p̂
h
,p)

and to minimise the unbiased estimator of the risk rather than the unknown risk itself. Note
that R(p̂

h
,p) = E⊗np {λp̂2

h
− 2λ(p̂

h
p)} + λp2. Since the integral λp2 does not depend on h

the minimiser hid ofR(p̂
h
,p) also minimises the function J(h) = E⊗np {λp̂2

h
− 2λ(p̂

h
p)}. We

construct now an unbiased estimator of J(h). For this purpose it is sufficient to find an unbiased
estimator for each of the quantities E⊗np λp̂2

h
and E⊗np λ(p̂

h
p). A trivial unbiased of E⊗np λp̂2

h
is

λp̂2
h
. Define further p̂−i

h
(x) = 1

(n−1)

∑
j 6=iK

x
h(Xj), then 1

n

∑n
i=1 p̂

−i
h

(Xi) is an unbiased estima-
tor of E⊗np λ(p̂

h
p). Consequently, CV (h) := λp̂2

h
− 2

n

∑n
i=1 p̂

−i
h

(Xi) is an unbiased estimator
of J(h), where CV stands for “cross-validation”. The function CV is called the leave-one-
out cross-validation criterion or simply the cross-validation criterion. Keeping in mind, that
the functions h 7→ R(p̂

h
,p) and h 7→ E⊗np {CV (h)} have the same minimiser. In turn, the

minimizers of E⊗np {CV (h)} can be approximated by those of the function CV which can be
computed from the sample: hcv = arg min{CV (h), h > 0} whenever the minimum is attained.
Finally, we define the cross-validation estimator p̂

hcv
. Note that this is a kernel estimator with

random bandwidth hcv depending on the sample only. It can be proved that under appropriate
conditions the risk of the estimator p̂

hcv
is asymptotically equivalent to that of the ideal kernel

pseudo-estimator (oracle) p̂
hid

.

5.3 Non-parametric regression

Here and subsequently, consider i.i.d. r.v.’s (Y, Z), (Y1, Z1), (Y2, Z2), . . . obeying a non-
parametric regression model Ef (Y |Z) = f(Z) for some unknown regression function f ∈ F as
introduced in section 5.1, i.e., (Y1, Z1), . . . , (Yn, Zn)©∼ P⊗nF .

§5.3.1 Assumptions and notations. (i) The centred error term ε := Y −f(Z), i.e., Ef (ε) = 0,
has a finite second moment σ2

ε := Ef (ε2). (ii) ε and the real-valued explanatory variable Z are
independent. (iii) The joint distribution PY,Zf of (Y, Z) admits a Lebesgue density pY,Z . The
marginal Lebesgue density of Z is denoted by pZ . (iv) Define ` := fpZ =

∫
ypY,Z (y, •)dy.

Consider a kernel density estimator p̂Y,Z
h

(y, z) = 1
n

∑n
i=1 K

y
h(Yi)K

z
h(Zi) of the joint density

pY,Z (y, z) with Kx
h(X) := 1

h
K(X−x

h
) for some kernel function K and bandwidth h > 0. Keep-

ing in mind that ` =
∫
ypY,Z (y, •)dy and pZ =

∫
pY,Z (y, •)dy their estimators are obtained

by replacing the unknown density pY,Z by its kernel density estimator p̂Y,Z
h

. If the kernel K
satisfies λK = 1 and λ(idK) = 0, then ̂̀

h
(z) :=

∫
yp̂Y,Z

h
(y, z)dy = 1

n

∑n
i=1 YiK

z
h(Zi) and

p̂Z
h
(z) :=

∫
p̂Y,Z
h

(y, z)dy = 1
n

∑n
i=1K

z
h(Zi) is the usual kernel density estimator of pZ .

§5.3.2 Definition. Given a kernel K and a bandwidth h, the Nadaraya–Watson estimator of
f(z) evaluated at a point z ∈ R is defined as

f̂
h
(z) :=

̂̀
h
(z)

p̂Z
h
(z)

=
1
n

∑n
i=1 YiK

z
h(Zi)

1
n

∑n
j=1 K

z
h(Zj)

=
n∑
i=1

Yi
Kz
h(Zi)∑n

j=1K
z
h(Zj)

, if p̂Z
h
(z) 6= 0

and f̂
h
(z) = 0 otherwise, using the abbreviation Kz

h(Z) := 1
h
K
(
Z−z
h

)
for z, Z ∈ R.
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Local measure of accuracy. Keeping in mind that p̂Z
h

is a kernel density estimator of
pZ we can apply the results obtained in the last section. Therefore, it remains to consider the
estimator ̂̀

h
of ` . We consider first its mean squared error at a given point z ∈ R , that is,

R(̂̀
h
(z), `(z)) = E⊗nf |̂̀h(z)−`(z)|2 = MSE(z) = Varf (̂̀

h
(z))+ |bias` (z)|2 with bias` (z) :=

Ef ̂̀h(z)−`(z) = λ(Kz
h`)−`(z) where we study separately the variance and the bias term, i.e.,

Varf (̂̀
h
(z)) and bias` (z). Obviously, as in the density estimation case replacing the density

p by ` Bochner’s lemma §5.2.3, Lemma §5.2.7 and §5.2.14 provide bounds for bias` (z) =
λ(Kz

h`)− `(z).

§5.3.3 Lemma. If ‖f‖L∞ <∞, ‖pZ‖L∞ <∞ and ‖K‖2
L2 = λK2 <∞, then for each z ∈ R

it holds Varf (̂̀
h
(z)) 6 (nh)−1(‖f‖2

L∞ + σ2
ε)‖p‖L∞‖K‖2

L2 .

Proof of Lemma §5.3.3 is given in the lecture.

§5.3.4 Remark. Let f and pZ , and hence, ` = fpZ , be bounded. Suppose that the function `
belongs to the Hölder class H(β, L) defined in §5.2.13 and that K is a kernel of order l = bβc
as defined in §5.2.11 satisfying λK2 < ∞ and λ(|id|β|K|) < ∞. By combination of Lemma
§5.3.3 and §5.2.14 applied to ` rather than pZ follows uniformly for all z ∈ R

R(̂̀
h
(z), `(z)) 6 (nh)−1(‖f‖2

L∞ + σ2
ε)‖p‖L∞‖K‖2

L2 + h2β
(
L
l!
λ(|id|β|K|)

)2
.

Therefore minimising the right hand side as a function of h leads to an optimal bandwidth

ho = c n−1/(2β+1) with constant c2β+1 =
(‖f‖2L∞+σ2

ε )‖p‖L∞‖K‖2L2

2β(
L
l!
λ(|id|β |K|))2

. Consequently, by choosing

the optimal bandwidth ho we have supz∈RR(̂̀
ho

(z), `(z)) = O(n−2β/(2β+1)). However, the
optimal bandwidth ho depends again on characteristics of the unknown function ` .

Global measure of accuracy. Assuming ` ∈ L2 we consider next the integrated mean
squared error (MISE) of the kernel estimator ̂̀

h
, that is, MISE := R(̂̀

h
, `) = E⊗nf ‖̂̀h−`‖2

L2 =

Efλ|̂̀h − `|2 =
∫
RVarf (̂̀

h
(z))dz +

∫
R bias2

` (z)dz with bias` (z) = λ(Kz
h`) − `(z) where

we study now separately the integrated variance and bias term. Note that, as in the density
estimation case replacing the density p by ` Lemma §5.2.18 provides a bound for bias` (z) =
λ(Kz

h`)− `(z).

§5.3.5 Lemma. If K ∈ L2 and λ(pZf 2) <∞, and hence σ2
Y := EfY 2 = λ(pZf 2) + σ2

ε <∞,
then

∫
RVarf (̂̀

h
(z))dz 6 (nh)−1σ2

Y ‖K‖
2
L2 .

Proof of Lemma §5.3.5 is given in the lecture.

§5.3.6 Remark. Let λ(pZf 2) < ∞, ` ∈ L2 ∩ N (β, L) and K be a kernel of order l = bβc
satisfying λK2 < ∞ and λ(|id|β|K|) < ∞. By combination of Lemma §5.3.5 and §5.2.18
follows

R(̂̀
h
, `) 6 (nh)−1σ2

Y ‖K‖
2
L2 + h2β

(
L
l!
λ(|id|β|K|)

)2
,

therefore minimising the right hand side as a function of h leads to an optimal bandwidth
ho = c n−1/(2β+1) with constant c2β+1 =

σ2
Y λK

2

2β(
L
l!
λ(|id|β |K|))2

. Consequently, by choosing the opti-

mal bandwidth ho we have R(̂̀
ho
,p) = O(n−2β/(2β+1)). However, the optimal bandwidth ho

depends again on characteristics of the unknown function ` .
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Under regularity conditions we have shown that the MSE of ̂̀
h

and p̂Z
h

tend to zero as n→∞

provided the bandwidth is chosen appropriately. In this situation, it follows directly ̂̀
h
(z)

P⊗nf→

`(z) and p̂Z
h
(z)

P⊗nf→ pZ (z) which in turn implies f̂
h
(z) = ̂̀

h
(z)/p̂Z

h
(z)

P⊗nf→ `(z)/pZ (z) = f(z).
Moreover, it is straightforward to show that under similar assumption as used in Proposition
§5.2.9 the asymptotic normality of ̂̀

h
(z) holds true, which due to Slutky’s lemma §1.1.7 allows

then to establish the asymptotic normality of f̂
h
(z). In order to derive an upper bound for the

MISE we use in the next assertion a regularised version of f̂
h
(z) which makes use of a stronger

assumption, that is, pZ (z) > po, z ∈ R, for some known constant po > 0.

§5.3.7 Lemma. Suppose that pZ (z) > po, z ∈ R, for some known constant po > 0. Con-

sider the regularised Nadaraya–Watson estimator f̂ o
h

:=
̂̀
h

p̂Zh
1{p̂Zh >po/2}. If ‖f‖L∞ < ∞ then

R(f̂ o
h
, f) = E⊗nf ‖f̂ oh − f‖

2
L2 6 8

p2
o
E⊗nf ‖̂̀h − `‖2

L2 +
12‖f‖2L∞

p2
o

E⊗nf ‖p̂Zh − pZ‖
2
L2 .

Proof of Lemma §5.3.7 is given in the lecture.

Local polynomial estimators. Let the kernel K take only non-negative values. It is easily
verified, that the Nadaraya–Watson estimator f̂

h
satisfies

f̂
h
(z) = arg min

θ∈R

n∑
i=1

(Yi − θ)2Kz
h(Zi).

Therefore, f̂
h

is obtained by a local constant least squares approximation of the responses {Yi}.
The locality is determined by a kernel K that downweights all the Zi that are not close to z
whereas θ plays the role of a local constant to be fitted. More generally, we may define a
local polynomial least squares approximation, replacing the constant θ by a polynomial of a
pre-specified degree.

§5.3.8 Definition. For l ∈ R consider U : R→ Rl+1, z 7→ U(z) = (1, z, z2/2!, . . . , zl/l!). Let
K : R→ R be a kernel and h > 0 be a bandwidth. A vector θ̂(z) ∈ Rl+1 satisfying

θ̂(z) = arg min
θ∈Rl+1

n∑
i=1

(Yi − θtU(Zi−z
h

))2Kz
h(Zi).

is called a local polynomial estimator of order l of θ(z) = (f(z), hḟ(z), h2f̈(z), . . . , hlf (l)(z)).
The statistic f̂

h
(z) = U t(0)θ̂(z) is called local polynomial estimator of order l of f(z).

Note that f̂
h
(z) is simply the first coordinate of the vector θ̂(z). Obviously, the Nadaraya–

Watson estimator with non-negative kernel is just a local polynomial estimator of order zero,
Furthermore, properly normalised coordinates of θ̂(z) provide estimators of the derivatives
ḟ(z), f̈(z), . . . , f (l)(z). For theoretical properties of local polynomial estimators and their de-
tailed discussion we refer to Tsybakov [2009], section 1.6.
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Chapter 6

Non-parametric statistics: orthogonal series estimation

We study non-parametric estimation of a functional parameter of interest
f based on a noisy version f̂ = f + n−1/2Ẇ of f contaminated by an
additive random error Ẇ with noise level n−1/2. The quantity n ∈ N
is usually called sample size referring to statistical problems where the
noisy version f̂ is constructed using a sample of size n. For convenience,
we suppose that the function of interest f belongs to an Hilbert space and
thus permits an orthogonal series expansion. We briefly recall theoreti-
cal basics and terminologies from functional analysis which allow us to
formalise the statistical experiment as a sequence space model. Through-
out the following chapters we illustrate the results using three particular
models, namely, non-parametric regression with uniformly distributed
random design, non-parametric density estimation and a Gaussian se-
quence space model.

6.1 Theoretical basics and terminologies

For a detailed and extensive survey on functional analysis we refer the reader, for example,
to Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§6.1.1 Definition. A normed vector space (H, ‖·‖H) over K ∈ {R,C} that is complete (in a
Cauchy-sense) is called a (real or complex) Hilbert space if there exists an inner product 〈·, ·〉H
on H×H with |〈h, h〉H|1/2 = ‖h‖H for all h ∈ H.

§6.1.2 Property.

(Cauchy-Schwarz inequality) |〈h1, h2〉H| 6 ‖h1‖H · ‖h2‖H for all h1, h2 ∈ H.

§6.1.3 Examples. (i) For k ∈ N the Euclidean space Kk endowed with the Euclidean inner
product 〈x, y〉 := ytx and the induced Euclidean norm ‖x‖ = (xtx)1/2 for all x, y ∈ Kk

is a Hilbert space. More generally, given a strictly positive definite (k × k)-matrix W , Kk

endowed with the weighted inner product 〈x, y〉W := ytWx for all x, y ∈ Kk is also a
Hilbert space.

(ii) Given J ⊆ Z, denote by KJ the vector space of all K-valued sequences over J where
we refer to any sequence (xj)j∈J ∈ KJ as a whole by omitting its index as for example
in «the sequence x» and arithmetic operations on sequences are defined element-wise, i.e.,
xy := (xjyj)j∈J . In the sequel, let ‖x‖`p := (

∑
j∈J |xj|p)1/p, for p ∈ [1,∞), and ‖x‖`∞ :=

supj∈J |xj|. Thereby, for p ∈ [1,∞], consider `p(J ) :=
{

(xj)j∈J ∈ KJ , ‖x‖`p <∞
}

, or
`p for short, endowed with the norm ‖·‖`p . In particular, `2(J ) is the usual Hilbert space of
square summable sequences overJ endowed with the inner product 〈x, y〉`2 :=

∑
j∈J xjyj
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for all x, y ∈ `2(J ).

(iii) For a strictly positive sequence v consider the weighted norm ‖x‖2
v :=

∑
j∈J v2

j |xj|2. We
define `2

v(J ), or `2
v for short, as the completion of `2(J ) w.r.t. ‖·‖v which is a Hilbert space

endowed with the inner product 〈x, y〉v := 〈vx, vy〉`2 =
∑

j∈J v2
jxjyj for all x, y ∈ `2

v.

(iv) Let B be the Borel-σ-algebra on K. Given a measure space (Ω,A , µ) denote by KΩ the
vector space of all K-valued functions f : Ω → K. Recall that ‖f‖Lpµ = (µ|f |p)1/p, for
p ∈ [1,∞), and ‖f‖L∞µ := inf{c : µ(|f | > c) = 0}, where for p ∈ [1,∞], we write
Lp(Ω,A , µ) := {f ∈ KΩ,A -B-measurable , ‖f‖Lp < ∞}, Lpµ(Ω), Lpµ or Lp for short,
which is endowed with the norm ‖·‖Lpµ or ‖·‖Lp for short. L2(Ω,A , µ), L2

µ(Ω), L2
µ or L2

for short, is the usual Hilbert space of square µ-integrable, A -B-measurable functions on
Ω endowed with the inner product 〈f, g〉L2 := µ(fg) for all f, g ∈ L2

µ.

(v) For a strictly positive function v consider the weighted norm ‖f‖2
v := µ(v2f 2). We define

L2
v(Ω,A , µ), or L2

v for short, as the completion of L2(Ω,A , µ) w.r.t. ‖·‖v, which is a
Hilbert space endowed with 〈f, g〉v := 〈vf, vg〉L2 = µ(v2fg) for all f, g ∈ L2

v.

(vi) Let X be a random variable (r.v.) on a probability space (Ω,A ,P) taking its values in a
measurable space (X ,B). For p ∈ [1,∞] we set LpX := Lp(X ,B,PX) where L2

X is a
Hilbert space endowed with 〈f, g〉L2

X
= PX(fg) for all f, g ∈ L2

X .

§6.1.4 Definition. A subset U of a Hilbert space (H, 〈·, ·〉H) is called orthogonal if

∀u1, u2 ∈ U , u1 6= u2 : 〈u1, u2〉H = 0

and orthonormal system (ONS) if in addition ‖u‖H = 1, ∀u ∈ U . We say U is an orthonormal
basis (ONB) if U ⊂ U ′ and U ′ is ONS, then U = U ′, i.e., if it is a complete ONS.

§6.1.5 Examples. (i) Consider the real Hilbert space L2([0, 1]) w.r.t. the Lebesgue measure.
The trigonometric basis {ψj, j ∈ N} given for t ∈ [0, 1] by

ψ1(t) := 1, ψ2k(t) :=
√

2 cos(2πkt), ψ2k+1(t) :=
√

2 sin(2πkt), k = 1, 2, . . . ,

is orthonormal and complete, i.e. an ONB.

(ii) Consider the complex Hilbert space L2([0, 1)), then the exponential basis {ej, j ∈ Z} with

ej(t) := exp(−ι2πjt) for t ∈ [0, 1) and j ∈ Z,

is orthonormal and complete, i.e. an ONB.

§6.1.6 Properties.

(Pythagorean formula) If h1, . . . , hn ∈ H are orthogonal, then ‖
∑n

j=1 hj‖2
H =

∑n
j=1 ‖hj‖

2
H.

(Bessel’s inequality) If U ⊂ H is an ONS, then ‖h‖2
H >

∑
u∈U |〈h, u〉H|2 for all h ∈ H.

(Parseval’s formula) An ONS U ⊂ H is complete if and only if ‖h‖2
H =

∑
u∈U |〈h, u〉H|2 for

all h ∈ H.

§6.1.7 Definition. Let U be a subset of a Hilbert space (H, 〈·, ·〉H). Denote by U := lin(U) the
closure of the linear subspace spanned by the elements of U and its orthogonal complement in
(H, 〈·, ·〉H) by U⊥ :=

{
h ∈ H : 〈h, u〉H = 0,∀u ∈ lin(U)

}
where H = U⊕ U⊥.
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§6.1.8 Remark. If U ⊂ H is an ONS, then there exists an ONS V ⊂ H such that H =
lin(U)⊕ lin(V) and for all h ∈ H it holds h =

∑
u∈U〈h, u〉Hu+

∑
v∈V〈h, v〉Hv (in a L2-sense).

In particular, if U is an ONB then h =
∑

u∈U〈h, u〉Hu for all h ∈ H.

§6.1.9 Definition. Given J ⊂ Z, a sequence (uj)j∈J in H is said to be orthonormal and
complete (i.e. orthonormal basis) if the subset U = {uj, j ∈ J } is a complete ONS (i.e. ONB).
The Hilbert space H is called separable, if there exists a complete orthonormal sequence.

§6.1.10 Examples. The Hilbert space (Rk, 〈·, ·〉v), (`2
v, 〈·, ·〉v) and (L2

µ(Ω), 〈·, ·〉L2
µ
) with σ-finite

measure µ are separable. On the contrary, given λ ∈ R define the function fλ : R → C with
fλ(x) := eιλx and set H = lin {fλ, λ ∈ R}. Observe that 〈f, g〉 = limt→∞

1
2t

∫ t
−t f(s)g(s)ds

defines an inner product on H. The completion of H w.r.t. the induced norm ‖f‖ = |〈f, f〉|1/2
is a Hilbert space which is not separable, since ‖fλ − fλ′‖ =

√
2 for all λ 6= λ′.

§6.1.11 Definition. Given J ⊆ Z we call a (possibly finite) sequence (Jm)m∈M,M ⊆ N, a
nested sieve in J , if (i) Jk ⊂ Jm, for any k 6 m, k,m ∈ M, (ii) |Jm| < ∞, m ∈ M, and
(iii) ∪m∈MJm = J . We write J c

m := J \Jm, m ∈ M. Denoting Ja, bK := [a, b] ∩ Z we use
typically the nested sieve (J1,mK)m∈N and (J−m,mK)m∈N in J = N and J = Z, respectively.
Analogously, given an ONS U = {uj, j ∈ J } and setting Um := lin {uj, j ∈ Jm}, m ∈ M,
for a nested sieve (Jm)m∈M in J we call the (possibly finite) sequence (Um)m∈M a nested
sieve in U := lin {uj, j ∈ J }. We write U⊥m := lin {uj, j ∈ J c

m} where U = Um ⊕ U⊥m. For
convenient notations we set further 1Jm := (1Jm(j))j∈J with 1Jm(j) = 1 if j ∈ Jm and
1Jm(j) = 0 otherwise, and analogously 1J cm := (1J cm(j))j∈J

§6.1.12 Definition. We call an ONS U = {uj, j ∈ J } in L2
µ (respectively, in `2)

(i) regular w.r.t. the nested sieve (Jm)m∈M in J and the weight sequence v if there is a finite
constant τuv > 1 satisfying ‖

∑
j∈Jm v2

j |uj|2‖L∞µ 6 τ 2
uv

∑
j∈Jm v2

j for all m ∈M;

(ii) regular w.r.t. the weight sequence a if there exists a finite constant τua > 1 such that
‖
∑

j∈J a2
j |uj|2‖L∞µ 6 τ 2

ua.

§6.1.13 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L2 a regular
ONS {uj, j ∈ N} w.r.t. the nested sieve (J1,mK)m∈N and v ≡ 1 is exactly equivalent to follow-
ing property: there exists a finite constant τu > 1 such that for any h belonging to the subspace
Um, spanned by the first m functions {uj}mj=1, holds ‖h‖L∞ 6 τu

√
m ‖h‖L2 . Typical example

are bounded basis, such as the trigonometric basis, or basis satisfying the assertion, that there ex-
ists a positive constantC∞ such that for any (c1, . . . , cm) ∈ Rm, ‖

∑m
j=1 cjuj‖L∞ 6 C∞

√
m|c|∞

where |c|∞ = max16j6m cj . Birgé and Massart [1997] have shown that the last property is sat-
isfied for piece-wise polynomials, splines and wavelets.

§6.1.14 Example (§6.1.5 (i) continued). Consider the trigonometric basis {ψj, j ∈ N} in the
real Hilbert space L2([0, 1]). Since supj∈N ‖ψj‖L∞ 6

√
2 setting τ 2

ψv := 2 the trigonometric
basis is regular w.r.t. any nested Sieve (Jm)m∈M and sequence v, i.e., §6.1.12 (i) holds with
‖
∑

j∈Jm v2
j |ψj|2‖L∞ 6 τ 2

ψv

∑
j∈Jm v2

j . In the particular case of the nested sieve (J1, 1 + 2mK)m∈N
and v ≡ 1, we have

∑1+2m
j=1 |ψj|2 = 1[0,1] +

∑m
j=1{2 sin2(2πj•) + 2 cos2(2πj•)} = 1 + 2m

and thus, the trigonometric basis is regular with τ 2
ψ := 1. Moreover, the trigonometric basis is

regular w.r.t. any square-summable weight sequence a, i.e., ‖a‖`2 <∞. Indeed, in this situation
we have ‖

∑
j∈N a

2
j |ψj|2‖`∞ 6 2 ‖a‖2

`2 and hence §6.1.12 (ii) holds with τ 2
ψa = 2 ‖a‖2

`2 .
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§6.1.15 Definition. A map T : H → G between Hilbert spaces H and G is called linear
operator if T (ah1 + bh2) = aTh1 + bTh2 for all h1, h2 ∈ H, a, b ∈ K. Its domain will be
denoted by D(T ), its range byR(T ) and its null space by N (T ).

§6.1.16 Property. Let T : H → G be a linear operator, then the following assertions are
equivalent: (i) T is continuous in zero. (ii) T is bounded, i.e., there is M > 0 such that
‖Th‖G 6M ‖h‖H for all h ∈ H. (iii) T is uniformly continuous.

§6.1.17 Definition. The class of all bounded linear operators T : H → G is denoted by
L (H,G), or L and in case of H = G, L (H) for short. For T ∈ L (H,G) define its (uniform)
norm as ‖T‖L := ‖T‖L (H,G) := sup{‖Th‖G ; ‖h‖H 6 1, h ∈ H}.

§6.1.18 Examples. (i) LetM be a (m×k) matrix, thenM ∈ L (Rk,Rm). We write ‖M‖s :=
‖M‖L (Rk,Rm) for short. (spectral norm)

(ii) Let U = {uj, j ∈ J } be an ONS in H and for any f ∈ H consider its sequence of gen-
eralised Fourier coefficients [f ] := ([f ]j)j∈J given by [f ]j := 〈f, uj〉H, j ∈ J . The
associated (generalised) Fourier series transform U defined by f 7→ Uf := [f ] belongs to
L (H, `2(J )) with ‖U‖L = 1.

(iii) For a sequence λ = (λj)j∈J consider the multiplication operator Mλ : KJ → KJ given
by x 7→ Mλx := (λjxj)j∈J . For any bounded sequence λ, i.e, ‖λ‖`∞ < ∞, we have
‖Mλ‖L 6 ‖λ‖`∞ and hence, Mλ ∈ L (`2(J )). Analogously, given a function λ : Ω → K
the multiplication operator Mλ : KΩ → KΩ is defined as f 7→ Mλf := fλ where for
any bounded function λ holds ‖Mλ‖L (L2

µ) 6 ‖λ‖L∞µ < ∞ and, hence Mλ ∈ L (L2
µ).

On the other hand side, if λ is real-valued, µ-a.s. finite and non zero, then the subset
D(Mλ) :=

{
f ∈ L2

µ : λf ∈ L2
µ

}
is dense in L2

µ. In this situation the multiplication operator
Mλ : L2

µ ⊃ D(Mλ)→ L2
µ is densely defined (and self-adjoint).

§6.1.19 Definition. A (linear) map Φ : H ⊃ D(Φ)→ K is called (linear) functional and given
an ONS {uj, j ∈ J } in H which belongs to D(Φ) we set [Φ] = ([Φ]

j
)j∈J with the slight abuse

of notations [Φ]
j

:= Φ(uj). In particular, if Φ ∈ L (H,K) then D(Φ) = H.

§6.1.20 Property. Let Φ ∈ L (H,K).

(Fréchet-Riesz representation) There exists a function φ ∈ H such that Φ(h) = 〈φ, h〉H for
all h ∈ H, and hence, given an ONS {uj, j ∈ J } inH we have [Φ]

j
= [φ]j for all j ∈ J .

§6.1.21 Example. Consider an ONB U = {uj, j ∈ J } in L2(Ω) (or analogously in `2(J )).
By evaluation at a point to ∈ Ω we mean the linear functional Φto mapping h ∈ L2(Ω) to
h(to) := Φto(h) =

∑
j∈J [h]juj(to). Obviously, a point evaluation of h at to is well-defined, if∑

j∈J |[h]juj(to)| <∞. Observe that the point evaluation at to is generally not bounded on the
subset {h ∈ L2(Ω) :

∑
j∈J |[h]juj(to)| <∞}.

§6.1.22 Definition. If T ∈ L (H,G), then there exists a uniquely determined adjoint operator
T ? ∈ L (G,H) satisfying 〈Th, g〉G = 〈h, T ?g〉H for all h ∈ H, g ∈ G.

§6.1.23 Properties. Let S, T ∈ L (H1,H2) and R ∈ L (H2,H3). Then we have
(i) (S + T )? = S? + T ?, (RS)? = S?R?.

(ii) ‖S?‖L = ‖S‖L , ‖SS?‖L = ‖S?S‖L = ‖S‖2
L .
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(iii) N (S) = R(S?)⊥, N (S?) = R(S)⊥.

§6.1.24 Examples. (i) The adjoint of a (k×m) matrix M is its (m×k) transpose matrix M t.

(ii) Let Mλ ∈ L (L2(Ω, µ)) be a multiplication operator, then its adjoint operator M?
λ = Mλ?

is a multiplication operator with λ?(t) = λ(t), t ∈ Ω.

§6.1.25 Definition. (i) The identity in L (H) is denoted by IdH.

(ii) Let T ∈ L (H,G). Obviously, T : N (T )⊥ → R(T ) is bijective and continuous whereas its
inverse T−1 : R(T )→ N (T )⊥ is continuous (i.e. bounded) if and only if R(T ) is closed.
In particular, if T : H → G is bijective (invertible) then its inverse T−1 ∈ L (G,H)
satisfies IdG = TT−1 and IdH = T−1T .

(iii) U ∈ L (H,G) is called unitary, if U is invertible with UU? = IdG and U?U = IdH.

(iv) V ∈ L (H,G) is called partial isometry, if V : N (V )⊥ → R(V ) is unitary.

(v) T ∈ L (H) is called self-adjoint, if T = T ?, i.e., 〈Th, g〉H = 〈h, T ?g〉H for all h, g ∈ H.

(vi) T ∈ L (H) is called normal, if TT ? = T ?T , i.e., 〈Th, Tg〉H = 〈T ?h, T ?g〉H for all
h, g ∈ H.

(vii) A self-adjoint T ∈ L (H) is called non-negative or T > 0 for short, if 〈Th, h〉H > 0 for
all h ∈ H and strictly positive or T > 0 for short, if 〈Th, h〉H > 0 for all h ∈ H\{0}.

(viii) Π ∈ L (H) is called projection if Π2 = Π. For Π 6= 0 are equivalent: (a) Π is an
orthogonal projection (H = R(Π)⊕N (Π)); (b) ‖Π‖L = 1; (c) Π is non-negative.

§6.1.26 Examples (§6.1.18 continued). (i) The (generalised) Fourier series transform U (see
§6.1.18 (ii)) is a partial isometry with adjoint operator U?x =

∑
j∈J xjuj for x ∈ `2(J ).

Moreover, the orthogonal projection ΠU onto U satisfies ΠUf = U?Uf =
∑

j∈J [f ]juj
for all f ∈ H. If U = {uj, j ∈ J } is complete (i.e. ONB), then U is invertible with
UU? = Id`2 and U?U = IdH due to Parseval’s formula, and hence U is unitary.

(ii) A multiplication operator Mλ ∈ L (L2
µ) (see §6.1.18 (iii)) is normal. If λ is in addition

real, it is self-adjoint and if λ is non-negative, then it is non-negative.

6.2 Abstract smoothness condition

§6.2.1 Notations. Let U = {uj, j ∈ J } be an ONS with U = lin {uj, j ∈ J } ⊆ H. For
h, g ∈ H we denote by [h] := ([h]j)j∈J = Uh the sequence of generalised Fourier coefficients
[h]j := 〈h, uj〉H and given a strictly positive sequence of weights v = (vj)j∈J , we define
〈h, g〉2v := 〈v[h], v[g]〉`2 =

∑
j∈J v2

j [h]j[g]j and ‖h‖2
v :=

∑
j∈J v2

j |[h]j|2. Obviously, 〈·, ·〉v
and ‖·‖v restricted on U defines on U a weighted inner product and it induced weighted norm,
respectively. We denote by Uv the completion of U w.r.t. ‖·‖v. If (uj)j∈J is complete in H then
let Hv be the completion of H w.r.t. ‖·‖v.

§6.2.2 Example (§6.1.14 continued). Consider the real Hilbert space L2([0, 1]) and the trigono-
metric basis {ψj, j ∈ N}. Define further a weighted norm ‖·‖v w.r.t. the trigonometric basis,
that is, ‖h‖v :=

∑
j∈N v

2
j |〈h, ψj〉L2|2. Denote by L2

v([0, 1]) or L2
v for short, the completion of

L2([0, 1]) w.r.t. ‖·‖v.
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(P) If we set v1 = 1, v2k = v2k+1 = jp, p ∈ N, k ∈ N, then L2
v([0, 1]) is a subset of the

Sobolev space of p-times differentiable periodic functions. Moreover, up to a constant, for
any function h ∈ L2

v([0, 1]), the weighted norm ‖h‖2
v equals the L2-norm of its p-th weak

derivative h(p) (Tsybakov [2009]).

(E) If, on the contrary, vj = exp(−1 + j2p), p > 1/2, j ∈ N, then L2
v([0, 1]) is a class of

analytic functions (Kawata [1972]).
Note that, the trigonometric basis is regular w.r.t. the weight sequence 1/v = v−1 = (v−1

j ) as in
§6.1.12 (ii), i.e., ‖1/v‖`2 <∞, in case (P) whenever p > 1/2 and in case (E) if p > 0.

§6.2.3 Definition (Abstract smoothness condition). Given a strictly positive sequence of weights
a = (aj)j∈J and an ONS U = {uj, j ∈ J } in H consider the associated weighted norm ‖·‖1/a

and the completion U1/a of U. Let r > 0 be a constant. We assume in the following that the
function of interest f belongs to the ellipsoid Fra := {h ∈ U1/a : ‖h‖2

1/a 6 r2} and hence,
ΠU⊥f = 0.

§6.2.4 Lemma. Let Fra be a class of functions w.r.t. an ONS U = {uj, j ∈ J } in L2
µ (or

analogously in `2) as given in §6.2.3. If the ONS is regular w.r.t. the weight sequence a as in
§6.1.12 (ii) for some finite constant τua > 1, then for each f ∈ Fra holds ‖f‖L∞µ 6 τua ‖f‖1/a 6
rτua.

Proof of Lemma §6.2.4 is given in the lecture.

§6.2.5 Examples (§6.2.2 continued). ConsiderL2
v([0, 1]) w.r.t. the trigonometric basis {ψj, j ∈ N}

and a weight sequence v satisfying either §6.2.2 (P) with p > 1/2 or §6.2.2 (E) with p > 0.
In both cases setting τ 2

ψv = 2 ‖1/v‖2
`2 < ∞ the trigonometric basis is regular w.r.t. the weight

sequence 1/v. Consequently, setting a = 1/v from Lemma §6.2.4 follows sup{‖f‖2
L∞ , f ∈

L2
1/a([0, 1])} 6 2 ‖f‖2

1/a ‖a‖
2
`2 .

§6.2.6 Definition (Regular linear functionals). Consider an ONS U = {uj, j ∈ J } in H which
belongs to the domain D(Φ) of a linear functional Φ. In order to guarantee that U1/a and
hence the class Fra of functions of interest as in §6.2.3 are contained in D(Φ) and that Φ(f) =∑

j∈J [Φ]
j
[f]j holds for all f ∈ Fra, it is sufficient that ‖[Φ]‖2

a :=
∑

j∈J |[Φ]
j
|2a2

j <∞. Indeed,
|Φ(f)|2 6 ‖f‖2

1/a ‖[Φ]‖2
a for any f ∈ U1/a and hence Φ ∈ L (U1/a,K) with ‖Φ‖L 6 ‖[Φ]‖a.

We denote by La the set of all linear functionals with ‖[Φ]‖2
a <∞.

§6.2.7 Remark. We may emphasise that we neither impose that the sequence [Φ] = ([Φ]
j
)j∈J

tends to zero nor that it is square summable. The assumption Φ ∈ La, however, enables us in
specific cases to deal with more demanding functionals, such as in §6.2.8 below the evaluation
of the solution at a given point.

§6.2.8 Example (§6.1.21 continued). Consider an ONB U = {uj, j ∈ J } in L2(Ω) and the
evaluation at a point to ∈ Ω given by Φto(h) =

∑
j∈J [h]juj(to). Consider the completion

L2
1/a(Ω) of L2(Ω) w.r.t. a weighted norm ‖·‖1/a derived from U and a strictly positive sequence

a. Since |Φto(h)|2 6 ‖h‖2
1/a

∑
j∈J a2

j |uj(to)|2 the point evaluation in to is bounded on L2
1/a(Ω)

and, thus, belongs to L (L2
1/a(Ω),K), if

∑
j∈J a2

j |uj(to)|2 < ∞. Consequently, if the ONS U
is regular w.r.t. the weight sequence a, i.e., §6.1.12 (ii) holds for some finite constant τua > 1,
then ‖Φto‖L (L2

1/a
(Ω),K) 6 τua uniformly for any to ∈ Ω. Revisiting the particular situation of
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Example §6.2.2 and its continuation in §6.2.5, that is, L2
v([0, 1]) w.r.t. the trigonometric basis

{ψj, j ∈ N} and weight sequence v satisfying either §6.2.2 (P) with p > 1/2 or §6.2.2 (E)
with p > 0, recall that the trigonometric basis is regular w.r.t. a = 1/v and hence, the point
evaluation Φto belongs to L (L2

1/a([0, 1]),R), i.e., ‖Φto‖L 6
√

2 ‖a‖`2 for each to ∈ [0, 1].

6.3 Approximation by dimension reduction

Here and subsequently, we consider a class of functions Fra as given in §6.2.3 w.r.t. an ONS
{uj, j ∈ J } in H and a strictly positive sequence a = (aj)j∈J . Moreover, we assume a nested
sieve (Jm)m∈M in J and its associated nested sieve (Um)m∈M in U (see §6.1.11). For f ∈ U
we consider the orthogonal projection fm = ΠUmf of f onto Um. Observe, that we have
f = U?[f] while fm =

∑
j∈J ([f]j1Jm(j))uj = U?([f]1Jm) by using the sequence of indicators

1Jm := (1Jm(j))j∈J . We shall measure the accuracy of the approximation fm of f by its
distance dist(fm, f) where dist(·, ·) is a certain semi metric. Note that in general dist(fm, f) is
not monotone in m and hence we define biasm(f) := sup{dist(f, fk), k > m, k ∈ M} as the
approximation error. We are particularly interested in the following two cases.

§6.3.1 Definition. For f ∈ Fa, and hence ΠU⊥f = 0, let fm = ΠUmf ∈ Um denote its orthog-
onal projection onto Um. Keep in mind that U⊥ and U⊥m denotes the orthogonal complement of
U and Um in H and U, respectively.
(global) Given the ONS {uj, j ∈ J } and a strictly positive sequence v consider the comple-

tion Uv of U w.r.t. a weighted norm ‖·‖v. If Fa ⊂ Uv, then dvist(h1, h2) := ‖h1 − h2‖v,
h1, h2 ∈ Uv defines a global distance on Uv and for f ∈ Fa we denote by biasvm(f) :=
‖ΠUmf − f‖v =

∥∥ΠU⊥mf
∥∥
v

= sup{dvist(f, fk), k > m, k ∈ M} the global approxima-
tion error.

(local) Let Φ be a linear functional and Fa ⊂ D(Φ), then dΦ
ist(h1, h1) := |Φ(h1−h2)|, h1, h2 ∈

D(Φ), defines a local distance and we denote by biasΦ
m(f) := sup{|Φ(ΠU⊥k

f)|, k >
m, k ∈M} = sup{dΦ

ist(f, fk), k > m, k ∈M} the local approximation error.

§6.3.2 Lemma. Consider the orthogonal projection fm = ΠUmf ∈ Um as theoretical approx-
imation of f ∈ Fra. For each m ∈ M let (av)(m) := ‖av1J cm‖`∞ = sup{ajvj, j ∈ J c

m}, then
biasvm(f) 6 r (av)(m). On the other hand if Φ ∈ La as in §6.2.6, then for each m ∈ M,∑

j∈J cm
|[Φ]

j
|2a2

j = ‖[Φ]1J cm‖2
a 6 ‖[Φ]‖2

a <∞ and (biasΦ
m(f))2 6 r2 ‖[Φ]1J cm‖2

a.

Proof of Lemma §6.3.2 is given in the lecture.

§6.3.3 Notations. (i) For f ∈ H considering the sequence of generalised Fourier coefficients
[f] as in §6.2.1 introduce its sub-vector [f]m := ([f]j)j∈Jm , where [ΠUmf ]m = [f]m.

(ii) For T ∈ L (H) denote by [T] the (infinite) matrix with generic entries [T]
k,j

:= 〈uk, Tuj〉H.
For m ∈ M, let [T]m denote the (|Jm| × |Jm|)-sub-matrix of [T] given by [T]m :=
([T]

k,j
)j,k∈Jm . Note that [T ?]m = [T ]tm. Clearly, if we restrict ΠUmTΠUm to an opera-

tor from Um to itself, then it can be represented by the matrix [T]m .

(iii) Given the identity Id ∈ L (H) the |Jm|-dimensional identity matrix is denoted by [Id]m.

(iv) Consider the generalised Fourier series transform U ∈ L (H, `2(J )) as in §6.1.26 (i). Let
Mv : KJ → KJ denote the multiplication operator x 7→ Mvx = v · x, define ∇v :=
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U?MvU : H ⊃ D(∇v) → H and denote by [∇v]m the |Jm|-dimensional diagonal matrix
with diagonal entries (vj)j∈Jm . Note that, [∇v]

s
m = [∇vs ]m, s ∈ R.

(v) Keep in mind the Euclidean norm ‖·‖ of a vector and the weighted norm ‖·‖v w.r.t. an ONS
{uj, j ∈ J } in H. For all f ∈ Um we have ‖f‖2

v = [f]tm[∇v]
−1
m [f]m = ‖[∇v]

−1/2
m [f]m‖2.

6.4 Stochastic process on Hilbert spaces

Here and subsequently, (H, 〈·, ·〉H) and U denotes a separable Hilbert space and a subset of
H, respectively. Considering the product spacesKH = h∈HK andKU = u∈U K the mapping
ΠU : KH → KU given by y = (yh, h ∈ H) 7→ (yu, u ∈ U) =: ΠUy is called canonical projection
and for each h ∈ H in particular Πh : KH → K given by y = (yh′ , h

′ ∈ H) 7→ yh =: Πhy is
called coordinate map. Moreover, B denotes the Borel-σ-algebra onK andKH is equipped with
the product Borel-σ-algebra B⊗H :=

⊗
h∈HB. Recall that B⊗H equals the smallest σ-algebra

such that all coordinate maps Πh, h ∈ H are measurable. i.e., B⊗H = σ(Πh, h ∈ H).

§6.4.1 Definition (Stochastic process on H). Let {Yh, h ∈ H} be a family of K-valued r.v.’s on a
common probability space (Ω,A ,P), that is, Yh : Ω → K is a A -B-measurable mapping for
each h ∈ H. Consider the KH-valued r.v. Y := (Yh, h ∈ H) where Y : Ω→ KH is a A -B⊗H-
measurable mapping given by ω 7→ (Yh(ω), h ∈ H) =: Y (ω). Y is called a stochastic process
on H. Its distribution PY := P ◦ Y −1 is the image probability measure of P under the map Y .
Further, denote by PΠUY the distribution of the stochastic process ΠUY = (Yu, u ∈ U) on U .
The family

{
PΠUY ,U ⊂ H finite

}
is called family of the finite-dimensional distributions of Y

or PY . In particular, PYh := PΠhY denotes the distribution of Yh = ΠhY . Furthermore, we write
E(Yh) and Cov(Yh, Yh′) := E((Yh − E(Yh))(Yh′ − E(Yh′))), if it is exists, for the expectation
of Yh w.r.t. PYh and the covariance of Yh and Yh′ w.r.t. PΠ{h,h′}Y , respectively.

§6.4.2 Definition. Let Y := (Yh, h ∈ H) be a stochastic process on H. If E|Yh| <∞ for each
h ∈ H then the functional µ : H → K with h 7→ E(Yh) =: µ(h) is called mean function of Y .
If the mean function µ is in addition linear and bounded, that is, µ ∈ L (H,K), then due to the
Fréchet-Riesz representation theorem §6.1.20 there exists µY ∈ H such that µ(h) = 〈µY , h〉H
for all h ∈ H. The element E(Y ) := µY is called mean or expectation of Y or PY . If E|Yh|2 <
∞ for each h ∈ H then the mapping cov : H × H → K with (h, h′) 7→ Cov(Yh, Yh′) =:
cov(h, h′) is called covariance function of Y . If the covariance function cov is in addition a
bounded bilinear form, then there is ΓY ∈ L (H) such that cov(h, h′) = 〈ΓY h, h′〉H = 〈h,ΓY h′〉H
for all h, h′ ∈ H. The operator ΓY is called covariance operator of Y or PY . If Y admits a mean
function µ and a covariance function cov then we write shortly Y ∼ L(µ, cov). Analogously,
Y ∼ L(µY ,Γ) if there is an expectation µY ∈ H and a covariance operator ΓY ∈ L (H).

§6.4.3 Property. A covariance operator ΓY ∈ L (H) associated with a stochastic process Y
on H is self-adjoint and non-negative definite.

§6.4.4 Example (Non-parametric density estimation). Let X be a r.v. taking its values in the
interval [0, 1] with distribution P, c.d.f. F and admitting a Lebesgue-density p = dP/dλ (see
section 5.2). Given h ∈ L1

X as introduced in §6.1.3 (vi) denote by Ep (h(X)) = Ph = λ(hp)
the expectation of h(X) w.r.t. P. For convenience we suppose that the density p is square
integrable, i.e., p belongs to the real Hilbert space L2 := L2([0, 1]) equipped with its usual inner
product 〈·, ·〉L2 (compare §6.1.3 (iv)). Thereby, for any h ∈ L2 we have 〈p , h〉L2 = λ(ph) =
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Ph = Ep (h(X)). Assuming an i.i.d. sample Xi ∼ p , i ∈ J1, nK, let Y = (Yh, h ∈ L2)
be the stochastic process on L2 defined for each h ∈ L2 by Yh := Pnh = 1

n

∑n
i=1 h(Xi).

Obviously, the mean function µ of Y satisfies µ(h) = E(Yh) = P⊗n(Pnh) = Ph = 〈p , h〉L2

and hence, Yh = 〈p , h〉L2 + 1√
n
Ẇh with Ẇh := n1/2(Pnh − Ph). Moreover, the stochastic

process Ẇ := (Ẇh, h ∈ L2) of error terms admits a covariance function given for all h, h′ ∈ L2

by Cov(Ẇh, Ẇh′) = P(hh′)−PhPh′ = P((h−Ph)(h′−Ph′)) = Cov(h(X), h(X ′)). Observe
that PhPh′ = 〈Mph,1[0,1]〉L2〈1[0,1],Mph

′〉L2 = 〈Π{1[0,1]}Mph,Mph
′〉L2 and P(hh′)−PhPh′ =

〈Γph, h′〉L2 with Γp = Mp −MpΠ{1[0,1]}Mp , and thus, Ẇ ∼ L(0,Γp ) and consequently, Y =

p + 1
n
Ẇ ∼ L(p , 1

n
Γp ).

§6.4.5 Example (Non-parametric regression). Let (X,Z) obey a non-parametric regression model
Ef (X|Z) = f(Z) satisfying the Assumptions §5.3.1 (see section 5.3). For convenience, in
addition the regressor Z is supposed to be uniformly distributed on the interval [0, 1], i.e.,
Z ∼ U[0, 1], and the regression function f is assumed to be square integrable, i.e., f ∈ L2 :=
L2([0, 1]). Keep in mind that by Assumption §5.3.1 (ii) the centred error term ε = X−f(Z) and
the explanatory variable Z are independent. Given h ∈ L2 denote by Ef (Xh(Z)) = Pf [id⊗h]
with [id⊗h](X,Z) = Xh(Z) the expectation of Xh(Z) = {f(Z) + ε}h(Z) w.r.t. the joint
distribution Pf of (X,Z), where Ef [εh(Z)] = 0 and hence, Ef [Xh(Z)] = Ef [f(Z)h(Z)] =
λ(fh) = 〈f, h〉L2 . Assuming an i.i.d. sample (Xi, Zi), i ∈ J1, nK, from Pf , let Y = (Yh)h∈L2 be
the stochastic process on L2 given for each h ∈ L2 by Yh := n−1

∑n
i=1 Xih(Zi) = Pn[id⊗h].

Obviously, the mean function µ of Y satisfies µ(h) = E(Yh) = Ef [Xh(Z)] = 〈f, h〉L2 and
hence, Yh = 〈f, h〉L2 + 1√

n
Ẇh where Ẇh := n1/2(Pn[id⊗h]−Pf [id⊗h]) is centred. The stochas-

tic process Ẇ := (Ẇh, h ∈ L2) of error terms admits a covariance function given for all h, h′ ∈
L2 by Cov(Ẇh, Ẇh′) = Pf ([id⊗h][id⊗h′]) − Pf [id⊗h]Pf [id⊗h′] = Cov(Xh(Z), Xh′(Z)) =

σ2
ε〈h, h′〉L2 +〈Mfh,Mfh

′〉L2−〈Π{1[0,1]}Mfh,Mfh
′〉L2 = σ2

ε〈h, h′〉L2 +〈MfΠ
⊥
{1[0,1]}Mfh, h

′〉L2 =

〈Γfh, h′〉L2 with Γf = σ2
ε IdL2 +MfΠ

⊥
{1[0,1]}Mf , and hence, Ẇ ∼ L(0,Γf ) and consequently,

Y = f + 1
n
Ẇ ∼ L(f, 1

n
Γf ).

§6.4.6 Definition (White noise process on H). Let Y := (Yh, h ∈ H) be a stochastic process on
H. If {Yu, u ∈ U} for an ONS U in H is a family of K-valued, independent and identically
L(0, 1)-distributed r.v.’s, i.e., PΠUY = ⊗u∈UPYu = ⊗u∈UL(0, 1) = L⊗U(0, 1), where each Yh
has zero mean and variance one, then we write shortly ΠUY ∼ L⊗U(0, 1) and call ΠUY a white
noise process on U . If ΠUY for any ONS U is a white noise process on U then we call Y a white
noise process on H.

§6.4.7 Remark. Considering in example §6.4.4 or §6.4.5 the centred stochastic process Ẇ :=
(Ẇh, h ∈ L2) of error terms we note that generally there does not exists an ONB U in L2 such
that ΠUẆ is a white noise process on U .

§6.4.8 Property. Let Y := (Yh, h ∈ H) be a stochastic process on H admitting an expectation
µY ∈ H and a covariance operator Γ ∈ L (H), i.e., Y ∼ L(µY ,Γ). If there exists an ONB
U in H such that ΠUY is a white noise process on U , i.e., ΠUY ∼ L⊗U(0, 1). Then we have
µY = 0 ∈ H and Γ = IdH since µY =

∑
u∈U〈µY , u〉Hu =

∑
u∈U E(Yu)u = 0 and 〈Γ·, ·〉H =∑

u,u′∈U〈u, ·〉H〈Γu, u′〉H〈u′, ·〉H =
∑

u,u′∈U〈u, ·〉H〈u, u′〉H〈u′, ·〉H = 〈·, ·〉H. Consequently, for
each ONB V in H the r.v.’s {Yv, v ∈ V} are pairwise uncorrelated.
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§6.4.9 Definition (Gaussian process on H). A stochastic process Y = (Yh, h ∈ H) on H with
mean function µ and covariance function cov is called a Gaussian process on H, if the family
of finite-dimensional distributions

{
PΠUY ,U ⊂ H finite

}
of Y consists of normal distributions,

that is, ΠUY = (Yu)u∈U is normally distributed with mean vector (µ(u))u∈U and covariance
matrix (cov(u, u′))u,u′∈U . We write shortly Y ∼ N(µ, cov) or Y ∼ N(µY ,Γ), if in addition
there exist an expectation µY ∈ H and a covariance operator Γ ∈ L (H) associated with Y .
The Gaussian process Y ∼ N(0, IdH) with mean 0 ∈ H and covariance operator IdH is called
iso-Gaussian process or Gaussian white noise process on H.

§6.4.10 Property. Let Y := (Yh, h ∈ H) be a Gaussian process onH admitting an expectation
µY ∈ H and a covariance operator Γ∈ L (H), i.e., Y ∼ N(µY ,Γ). If there exists an ONB U in
H such that ΠUY is a Gaussian white noise process on U , i.e., ΠUY ∼ N⊗U(0, 1), then due to
§6.4.8 we have Y ∼ N(0, IdH) and for each ONS V inH the standard normally distributed r.v.’s
{Yv, v ∈ V} are pairwise uncorrelated, and hence, independent, i.e., ΠVY ∼ N⊗V(0, 1).

§6.4.11 Definition (Random function inH). Let (H, 〈·, ·〉H) be an Hilbert space equipped with its
Borel-σ-algebra BH, which is induced by its topology. An A -BH-measurable map Y : Ω→ H
is called an H-valued r.v. or a random function in H.

§6.4.12 Lemma. Let U = {uj, j ∈ N} be an ONS inH. There does not exist a random function
Y in H such that ΠUY is a Gaussian white noise process on U .

Proof of Lemma §6.4.12 is given in the lecture.

6.5 Statistical experiment

Given a pre-specified ONS U = {uj, j ∈ J } in H we base our estimation procedure on
the expansion of the function of interest f ∈ U = lin(U). The choice of an adequate ONS
is determined by the presumed information on the function of interest f formalised by the
abstract smoothness conditions given in §6.2.3. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far
beyond the scope of this lecture.

§6.5.1 Definition (Sequence space model (SSM)). Let Ẇ = (Ẇh, h ∈ H) be a centred stochastic
process on H and n ∈ N be a sample size. The stochastic process f̂ = f + 1√

n
Ẇ on H is called

a noisy version of f ∈ H. We denote by Pnf the distribution of f̂. If Ẇ admits a covariance
operator (possibly depending on f ), say Γf , then we eventually write f̂ ∼ L(f, 1

n
Γf) for short.

To be precise, given an ONS U = {uj, j ∈ J } in H considering the family of K-valued r.v.’s{
[Ẇ ]j := Ẇuj , j ∈ J

}
the observable quantities take the form

[f̂]
j

= 〈f, uj〉H + 1√
n
Ẇuj = [f]j + 1√

n
[Ẇ ]j, j ∈ J . (6.1)

We denote by Pn[f] , or L([f], 1
n
[Γf ]), the distribution of the observable stochastic process [f̂] =

([f̂]
j
)j∈J on U which obviously is determined by the distribution Pnf , or L(f, 1

n
Γf), of f̂. The

reconstruction of the sequence [f] = ([f]j)j∈J and whence the function f = U?[f] from the
noisy version f̂ ∼ Pnf is called a (direct) sequence space model (SSM). Given a class Fra of
functions of interests as in §6.2.3 define the associated family of distributions PnFra := {Pnf , f ∈
Fra}, and set PFra := (PnFra )n∈N.
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§6.5.2 Example (Gaussian sequence space model (GSSM)). Consider a Gaussian white noise pro-
cess Ẇ = (Ẇh, h ∈ H) ∼ N(0, IdH) on H as defined in §6.4.9 and a noisy version f̂ =
f + 1√

n
Ẇ ∼ N(f, 1

n
IdH) = Pnf of a function f ∈ H. Considering the projection onto an ONS

U = {uj, j ∈ J } the observable quantities take consequently the form [f̂]
j

= [f]j + 1√
n
[Ẇ ]

j
,

j ∈ J , where the error terms
{

[Ẇ ]
j

= Ẇuj , j ∈ J
}

are independent and N(0, 1)-distributed,
i.e., [Ẇ ] = ([Ẇ ]

j
)j∈J ∼ N⊗J (0, 1) = N(0, IdJ ), and thus, [f̂] = ([f̂]

j
)j∈J is a sequence of

independent Gaussian random variables having mean [f]j and variance n−1, i.e., [f̂] ∼ Pn[f] =
N([f], 1

n
IdJ ). The reconstruction of the sequence [f] and whence the function f = U?[f]

which we assume belongs to an ellipsoid Fra derived from the ONS U and some weight se-
quence (aj)j∈J (compare §6.2.3) from f̂ ∼ N(f, 1

n
IdH) is called a Gaussian (direct) sequence

space model (GSSM). The associated family of joint distributions of sequences of Gaussian
random variables is denoted by N(Fra, 1

n
IdH) := {N(f, 1

n
IdH), f ∈ Fra}.

§6.5.3 Example (Non-parametric density estimation §6.4.4 continued). For n ∈ N consider an i.i.d.
sample Xi ∼ P, i ∈ J1, nK, where P admits a Lebesgue-density p ∈ L2 = L2([0, 1]) and P⊗n
denotes the associated joint product distribution. Consider the centred stochastic process Ẇ =
(Ẇh, h ∈ L2) ∼ L(0,Γp ) of error terms with Γp = Mp −MpΠ{1[0,1]}Mp as introduced in §6.4.4.
The non-parametric estimation of a density p ∈ L2 from an i.i.d. sample of size n may thus be
based on the noisy version p̂ = p + 1√

n
Ẇ ∼ L(p , 1

n
Γp ) of the density of interest p . In other

words, given a pre-specified ONS {uj, j ∈ J } the observable quantity [p̂ ] = ([p̂ ]
j
)j∈J ∼ Pn[p ]

takes for each j ∈ J with [Ẇ ]j := Ẇuj the form [p̂ ]
j

= [p ]
j
+ 1√

n
[Ẇ ]j = Pnuj . Consequently,

non-parametric estimation of a density can be covered by a sequence space model, where the
error process Ẇ , however, is generally not a white noise process. For convenient notations let
{1[0,1]} ∪ {uj, j ∈ N} be an ONB of L2 for some ONS U = {uj, j ∈ N}. Keeping in mind that
p is a density, it admits an expansion p = 1[0,1] + U?[p ] = 1[0,1] +

∑
j∈N[p ]

j
uj where [p ] =

Up = ([p ]
j
)j∈N with [p ]

j
= Ep (uj(X)) for j ∈ N is a sequence of unknown coefficients,

and hence, f := ΠUp = U?[p ] is the function of interest. Given the pre-specified ONS U the
observable quantity [p̂ ] = ([p̂ ]

j
)j∈N ∼ Pn[p ] takes for each j ∈ N the form [p̂ ]

j
= Pnuj . Note

that the distribution Pn[p ] of the observable quantity [p̂n ] is determined by the distribution P⊗n of
the sample X1, . . . , Xn. Our aim is the reconstruction of the density p = 1[0,1] + f assuming
that f = ΠUp belongs to an ellipsoid Fra derived from the ONS U = {uj, j ∈ N} and some
weight sequence (aj)j∈N (compare §6.2.3). Denoting by D the set of all densities on [0, 1] let
Dra := {p ∈ D : f = ΠUp ∈ Fra}, and the family of probability measures associated with the
observations is given by P⊗nDra

= {P⊗n,p ∈ Dra}.

§6.5.4 Example (Non-parametric regression §6.4.5 continued). Consider (X,Z) ∼ Pf obeying
Ef (X|Z) = f(Z) and Z ∼ U[0, 1] with f ∈ L2 = L2([0, 1]). Given an i.i.d.. sample (Xi, Zi) ∼
Pf , i ∈ J1, nK, their joint distribution is denoted by P⊗nf . Consider the centred stochastic process
Ẇ = (Ẇh, h ∈ L2) ∼ L(0,Γf ) of error terms as introduced in §6.4.5. The non-parametric
estimation of a regression function f ∈ L2 from an i.i.d. sample of size n may thus be based
on the noisy version f̂ = f + 1√

n
Ẇ ∼ L(f, 1

n
Γf ) of the regression function f . In other words,

given a pre-specified ONS {uj, j ∈ J } the observable quantity [f̂ ] = ([f̂ ]
j
)j∈J ∼ Pn[f ] takes

for each j ∈ J the form [f̂ ]
j

= Pn[id⊗uj]. Consequently, non-parametric regression can also
be covered by a sequence space model, where the error process Ẇ , however, is generally not a
white noise process. Our aim is the reconstruction of the regression function f assuming that it
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belongs to an ellipsoid Fra derived from an ONB {uj, j ∈ N} of L2 and some weight sequence
(aj)j∈N (compare §6.2.3). We denote by P⊗nFra

= {P⊗nf , f ∈ Fra} the family of probability
measures associated with the sample (Xi, Ui), i ∈ J1, nK.

6.6 Orthogonal series estimation

Here and subsequently we estimate the function of interest f ∈ H using a dimension reduc-
tion. To be more precise, let U = (uj)j∈J be an ONS in H and for a nested sieve (Jm)m∈M
in J let (Um)m∈M be its associated nested sieve in U. For f = U?[f] ∈ U we consider its
orthogonal projection fm = ΠUmf = U?([f]1Jm) onto Um. We assume a noisy version f̂ ∼ Pnf
obeying an sequence space model as in §6.5.1.

§6.6.1 Definition. Given the orthogonal projection fm = U?([f]1Jm) of f = U?[f] onto Um
its estimator f̂m = U?([f̂]1Jm) is called orthogonal series estimator (OSE) of f based on an
observable quantity [f̂] .

We shall measure the accuracy of the OSE f̂m = U?([f̂]1Jm) of f by its mean squared
distance Enf |dist(f̂m, f)|2 w.r.t. the distribution Pnf of the noisy version f̂ where dist(·, ·) as
in §6.3.1 is a certain semi metric, to be specified below. Moreover, we call the quantity
Enf |dist(f̂m, f)|2 = Pnf |dist(f̂m, f)|2 risk of the estimator f̂m = U?([f̂]1Jm).

§6.6.2 Definition. Given a family of OSE’s
{
f̂m,m ∈ M

}
of a function of interest f we call

a rate (Rn
d (f))n∈N, i.e., Rn

d = o(1), a dimension parameter (mn
d )n∈N and an OSE (f̂mnd )n∈N,

respectively, oracle rate, oracle dimension and oracle optimal (up to a constant C > 1), if

C−1Rn
d (f) 6 inf

m∈M
Enf |dist(f̂m, f)|2 6 Enf |dist(f̂mnd , f)|2 6 CRn

d (f)

for all n ∈ N. Consequently, up to the constant C2 the estimator (f̂mnd )n∈N attains the lower risk
bound within the family of OSE’s, that is, Enf |dist(f̂mnd , f)|2 6 C2 infm∈M Enf |dist(f̂m, f)|2.

§6.6.3 Remark. Consider a family of OSE’s
{
f̂m,m ∈M

}
of a function of interest f . Assume

that the risk of the OSE f̂m can be decomposed as follows

Enf |dist(f̂m, f)|2 = Enf |dist(f̂m, fm)|2 + |dist(fm, f)|2 (6.2)

where Enf |dist(f̂m, fm)|2 = o(1) as n → ∞ for each m ∈ M, and |dist(fm, f)|2 = o(1) as
m→∞. SettingRn

d (m, f) := max
(
|dist(fm, f)|2,Enf |dist(f̂m, fm)|2

)
it follows that,

Rn
d (m, f) 6 Enf |dist(f̂m, f)|2 6 2Rn

d (m, f). (6.3)

Let us select mn
d := arg min{Rn

d (m, f),m ∈M} and set Rn
d (f) := Rn

d (mn
d , f). We shall

emphasise that Rn
d (f) = min{Rn

d (m, f),m ∈M} = o(1) as n → ∞. Observe that for all
δ > 0 there exists mδ ∈ M and nδ ∈ N such that for all n > nδ holds |dist(fmδ , f)|2 6 δ and
Enf |dist(f̂mδ , f)|2 6 δ, and whenceRn

d (f) 6 Rn
d (mδ, f) 6 δ. However, using the dimension mn

d

it follows immediately

Rn
d (f) 6 inf

m∈M
Enf |dist(f̂m, f)|2 6 Enf |dist(f̂mnd , f)|2

6 2Rn
d (f) 6 2 inf

m∈M
Enf |dist(f̂m, f)|2 (6.4)
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Consequently, the rate (Rn
d (f))n∈N, the dimension parameter (mn

d )n∈N and the OSE (f̂mnd )n∈N,
respectively, is an oracle rate, an oracle dimension and oracle optimal (up to the constant 2).
However, the dimension parameter and thus the estimator depends on the unknown function of
interest f .

§6.6.4 Proposition. Consider an ONS U = (uj)j∈J in H and a nested sieve (Jm)m∈M in J .
Given for each n ∈ N a noisy version f̂ ∼ L(f, 1

n
Γf) of f = U?[f] ∈ U as in §6.5.1 let the

associated family of OSE’s be
{
f̂m = U?([f̂]1Jm),m ∈M

}
.

(global Hv-risk) Let f ∈ Hv, i.e., ‖v[f]‖2
`2 < ∞. Given the sequence of variances v2 :=

(v2
j = 〈uj,Γfuj〉H)j∈N denote for all m ∈M and n ∈ N

R̃n
v (m, f) := max

(
‖v[f]1J cm‖

2
`2 ,

1
n
‖vv1Jm‖2

`2

)
,

m̃n
v := arg min{R̃n

v (m, f),m ∈M}, and R̃n
v (f) := R̃n

v (m̃n
v , f). (6.5)

Then, R̃n
v (f) 6 infm∈M Enf‖f̂m − f‖2

v 6 Enf‖f̂m̃nv − f‖2
v 6 2 R̃n

v (f) for all n ∈ N,
i.e., the rate (R̃n

v (f))n∈N, the dimension parameter (m̃n
v )n∈N and the OSE (f̂m̃nv )n∈N is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local Φ-risk) Let ‖[Φ][f]‖`1 < ∞, and hence f ∈ D(Φ), where Φ(f) =
∑

j∈J [Φ]
j
[f]j.

Given the sequence of covariance matrices V := (Vm = (〈uj,Γful〉L2)j,l∈Jm)m∈M de-
note for all m ∈M and n ∈ N

R̃n
Φ(m, f) := max

( ∥∥[Φ][f]1J cm
∥∥2

`1
, 1
n

∥∥[Φ]m
∥∥2

Vm

)
,

m̃n
Φ := arg min{R̃n

Φ(m, f),m ∈M}, and R̃n
Φ(f) := R̃n

Φ(m̃n
Φ, f). (6.6)

Then, R̃n
Φ(f) 6 infm∈M Enf |Φ(f̂m − f)|2 6 Enf |Φ(f̂m̃nΦ − f)|2 6 2 R̃n

Φ(f) for all n ∈ N,
i.e., the rate (R̃n

Φ(f))n∈N, the dimension parameter (m̃n
Φ)n∈N and the OSE (f̂m̃nΦ)n∈N is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Proposition §6.6.5 is given in the lecture.

§6.6.5 Corollary (GSSM, §6.5.2 continued). Under the assumption of Proposition §6.6.4 con-
sider for each n ∈ N a Gaussian noisy version f̂ ∼ N(f, 1

n
IdU).

(global Hv-risk) Let ‖v[f]‖2
`2 <∞, i.e., f ∈ Hv. Denote for all m ∈M and n ∈ N

Rn
v (m, f) := max

(
‖v[f]1J cm‖

2
`2 ,

1
n
‖v1Jm‖2

`2

)
,

mn
v := arg min{Rn

v (m, f),m ∈M}, and Rn
v (f) := Rn

v (mn
v , f). (6.7)

Then, Rn
v (f) 6 infm∈M Enf‖f̂m − f‖2

v 6 Enf‖f̂mnv − f‖2
v 6 2Rn

v (f) for all n ∈ N,
i.e., the rate (Rn

v (f))n∈N, the dimension parameter (mn
v )n∈N and the OSE (f̂mnv )n∈N is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local Φ-risk) Let ‖[Φ][f]‖`1 < ∞, and hence f ∈ D(Φ), where Φ(f) =
∑

j∈J [Φ]
j
[f]j.

Denote for all m ∈M and n ∈ N

Rn
Φ(m, f) := max

(
|〈[Φ] , [f]1J cm〉`2|

2, 1
n
‖[Φ]1Jm‖

2
`2

)
,

mn
Φ := arg min{Rn

Φ(m, f),m ∈M}, and Rn
Φ(f) := Rn

Φ(mn
Φ, f). (6.8)
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Then,Rn
Φ(f) 6 infm∈M Enf |Φ(f̂m − f)|2 6 Enf |Φ(f̂mnΦ − f)|2 6 2Rn

Φ(f) for all n ∈ N,
i.e., the rate (Rn

Φ(f))n∈N, the dimension parameter (mn
Φ)n∈N and the OSE (f̂mnΦ)n∈N is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Corollary §6.6.5 is given in the lecture.

§6.6.6 Corollary (Non-parametric density estimation §6.5.3 continued). Consider an ONB
{1[0,1]} ∪ U in L2[0, 1] with U = {uj, j ∈ N} and a nested sieve (Jm)m∈M in N. Given for
each n ∈ N a noisy version p̂ ∼ L(p , 1

n
Γp ) with Γp = Mp −MpΠ{1[0,1]}Mp as in §6.4.4 based

on an i.i.d. sample Xi ∼ p , i ∈ J1, nK, let
{
p̂m = 1[0,1] + U?([p̂ ]1Jm),m ∈ M

}
be a family

of OSE’s of p = 1[0,1] + U?[p ] ∈ L2([0, 1]).

(global L2
v-risk) Let ‖v[p ]‖2

`2 <∞, i.e., U?[p ] ∈ L2
v. Given the sequence of variances v2 :=

(v2
j = 〈uj,Γpuj〉L2)j∈N for all m ∈ M and n ∈ N consider R̃n

v (m, f), m̃n
v , and R̃n

v (f)

as in (6.5). Then, R̃n
v (p) 6 infm∈M E⊗np ‖p̂m − p‖2

v 6 E⊗np ‖p̂m̃nv − p‖2
v 6 2 R̃n

v (p)

for all n ∈ N, i.e., the rate (R̃n
v (p))n∈N, the dimension parameter (m̃n

v )n∈N and the OSE
(p̂

m̃nv
)n∈N is an oracle rate, an oracle dimension and oracle optimal (up to the constant

2), respectively.

(local Φ-risk) Let ‖[Φ][p ]‖`1 <∞, whencep ∈ D(Φ) with Φ(p) = Φ(1[0,1])+
∑

j∈J [Φ]
j
[p ]

j
.

Given the sequence of covariance matrices V := (Vm = (〈uj,Γpul〉L2)j,l∈Jm)m∈M
for all m ∈ M and n ∈ N consider R̃n

Φ(m, f), m̃n
Φ, and R̃n

Φ(f) as in (6.6). Then,
R̃n

Φ(p) 6 infm∈M E⊗np |Φ(p̂m − p)|2 6 E⊗np |Φ(p̂
m̃n

Φ
− p)|2 6 2 R̃n

Φ(p) for all n ∈ N,

i.e., the rate (R̃n
Φ(p))n∈N, the dimension parameter (m̃n

Φ)n∈N and the OSE (p̂
m̃n

Φ
)n∈N is

an oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respec-
tively.

Proof of Corollary §6.6.6 is given in the lecture.

§6.6.7 Remark. Let the assumptions of Corollary §6.6.6 be satisfied. Interestingly, in case of a
local Φ-risk if the sequence V := (Vm)m∈M satisfies sup{max(‖Vm‖s , ‖V−1

m ‖s),m ∈ M} 6
C for some constant C > 1, i.e., the smallest and the largest eigenvalue of Vm is uniformly
bounded from below by C−1 and above by C, respectively, then it follows immeditately that
C−1 ‖[Φ]1Jm‖

2
`2 6

∥∥[Φ]m
∥∥2

Vm
6 C ‖[Φ]1Jm‖

2
`2 . Consequently, choosingRn

Φ(m,p) as in (6.8),
then the associated rate (Rn

Φ(p))n∈N, dimension parameter (mn
Φ)n∈N and OSE (p̂

mn
Φ

)n∈N is
also, respectively, an oracle rate, an oracle dimension and oracle optimal (up to the constant
2C). On the other hand side, in case of a (global L2

v-risk) if the sequence of variances v2 =
(v2

j )j∈N satisfy C−1 6 v2
j 6 C for all j ∈ J and for some constant C > 1, i.e., the sequence

is uniformly bounded from below by C−1 and above by C, respectively, then it follows that
C−1‖v1Jm‖2

`2 6 ‖vv1Jm‖2
`2 6 C‖v1Jm‖2

`2 . Consequently, choosing Rn
v (m,p) as in (6.7),

then the associated rate (Rn
v (p))n∈N, dimension parameter (mn

v )n∈N and OSE (p̂
mnv

)n∈N is also,
respectively, an oracle rate, an oracle dimension and oracle optimal (up to the constant 2C).

§6.6.8 Lemma. Under the assumptions of §6.6.6 let in addition 0 < p−1
0

6 p 6 p0 < ∞
λ-a.s. for some finite constant p0 > 1.

(global L2
v-risk) Choosing Rn

v (m,p) as in (6.7), then the associated rate (Rn
v (p))n∈N, di-

mension parameter (mn
v )n∈N and OSE (p̂

mnv
)n∈N is also, respectively, an oracle rate, an

oracle dimension and oracle optimal (up to the constant 2p0).
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(local Φ-risk) ChoosingRn
Φ(m,p) as in (6.8), then the associated rate (Rn

Φ(p))n∈N, dimen-
sion parameter (mn

Φ)n∈N and OSE (p̂
mnv

)n∈N is also, respectively, an oracle rate, an
oracle dimension and oracle optimal (up to the constant 2p0).

Proof of Lemma §6.6.8 is given in the lecture.

§6.6.9 Corollary (Non-parametric regression §6.5.4 continued). Consider an ONB {uj, j ∈ N}
in L2[0, 1] and a nested sieve (Jm)m∈M in N. Given for each n ∈ N a noisy version f̂ ∼
L(f, 1

n
Γf ) with Γf = σ2

ε IdL2 +MfΠ
⊥
{1[0,1]}Mf as in §6.4.5 based on an i.i.d. sample (Xi, Zi) ∼

Pf , i ∈ J1, nK, obeying the Assumption §5.3.1 (section 5.3) let
{
f̂m = U?([f̂ ]1Jm),m ∈M

}
be

a family of OSE’s of f = U?[f] ∈ L2([0, 1]).

(global L2
v-risk) Let ‖v[f ]‖2

`2 < ∞, i.e., f ∈ L2
v. Given the sequence of variances v2 :=

(v2
j = 〈uj,Γfuj〉L2)j∈N for all m ∈ M and n ∈ N consider R̃n

v (m, f), m̃n
v , and R̃n

v (f)

as in (6.5). Then, R̃n
v (f) 6 infm∈M E⊗nf ‖f̂m − f‖2

v 6 E⊗nf ‖f̂m̃nv − f‖
2
v 6 2 R̃n

v (f) for

all n ∈ N, i.e., the rate (R̃n
v (f))n∈N, the dimension parameter (m̃n

v )n∈N and the OSE
(f̂

m̃nv
)n∈N is an oracle rate, an oracle dimension and oracle optimal (up to the constant

2), respectively.

(local Φ-risk) Let ‖[Φ][f ]‖`1 < ∞, whence f ∈ D(Φ) and Φ(f) =
∑

j∈J [Φ]
j
[f ]

j
. Given

the sequence of covariance matrices V := (Vm = (〈uj,Γful〉L2)j,l∈Jm)m∈M consider
for all m ∈ M and n ∈ N, R̃n

Φ(m, f), m̃n
Φ, and R̃n

Φ(f) as in (6.6). Then, R̃n
Φ(f) 6

infm∈M E⊗nf |Φ(f̂m − f)|2 6 E⊗nf |Φ(f̂
m̃n

Φ
− f)|2 6 2 R̃n

Φ(f) for all n ∈ N, i.e., the rate

(R̃n
Φ(f))n∈N, the dimension parameter (m̃n

Φ)n∈N and the OSE (f̂
m̃n

Φ
)n∈N is an oracle rate,

an oracle dimension and oracle optimal (up to the constant 2), respectively.

Proof of Corollary §6.6.9 is given in the lecture.

§6.6.10 Remark. Comparing Proposition §6.6.6 and §6.6.9 we obtain immediatly analogous
claims as in Remark §6.6.10 replacing the density p by the regression function f .

§6.6.11 Lemma. Under the assumptions of §6.6.9 let in addition ‖f‖2
L∞ <∞ and σ2

ε > 0.

(global L2
v-risk) Choosing Rn

v (m, f) as in (6.7), then the associated rate (Rn
v (f))n∈N, di-

mension parameter (mn
v )n∈N and OSE (f̂

mnv
)n∈N is also, respectively, an oracle rate, an

oracle dimension and oracle optimal (up to the constant 2 max(σ−2
ε , σ2

ε + ‖f‖2
L∞)).

(local Φ-risk) Choosing Rn
Φ(m, f) as in (6.8), then the associated rate (Rn

Φ(f))n∈N, dimen-
sion parameter (mn

Φ)n∈N and OSE (f̂
mnv

)n∈N is also, respectively, an oracle rate, an ora-

cle dimension and oracle optimal (up to the constant 2 max(σ−2
ε , σ2

ε + ‖f‖2
L∞)).

Proof of Lemma §6.6.8 is given in the lecture.
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Chapter 7

Minimax optimality

7.1 Minimax theory: a general approach

For each n ∈ N suppose that the observations are distributed according to a probability
measure Pnf which belongs to a family of probability measures PnF . Here and subsequently, we
assume that the function of interest f is identifiable, i.e., f1 6= f2 implies Pnf1 6= Pnf2 . However,
in general it does not hold that f1 = f2 implies Pnf1 = Pnf2 . Denote by Enf the expectation w.r.t. a
measure Pnf in Pn

F
and set PF := (PnF )n∈N.

§7.1.1 Example (Non-parametric density estimation §6.5.3 continued). Consider the family P⊗nDra
=

{P⊗n,p ∈ Dra}. The parametrisiation using the marginal density p is one-to-one, since p = q

holds if and only if P⊗n = Q⊗n.

§7.1.2 Example (Non-parametric regression §6.5.4 continued). Consider the family PnFra of proba-
bility measures. The regression function f is identified, i.e., from f1 6= f2 follows Pnf1 6= Pnf2 ,
but it is not an one-to-one parametrisation. However, if Assumption §?? holds true and in ad-
dition the error term is N(0, σ2

ε)-distributed with an in advanced known variance σ2
ε , then the

parametrisatiuon is one-to-one.

Assume furthermore, that given an observable quantity with distribution Pnf ∈ PnF there is
an estimator of f available that takes its values in H, but it does not necessarily belong to F.
We shall measure the accuracy of any estimator f̃ of f by its distance dist(f̃ , f) where dist(·, ·)
as in §6.3.1 is a certain semi metric, to be specified below. Moreover, we call the quantity
Enf |dist(f̃ , f)|2 = Pnf |dist(f̃ , f)|2 risk of the estimator f̃ of f .

§7.1.3 Definition. Given an observable quantity with probability measure Pnf ∈ PnF the maximal
risk of an estimator f̃ of the function of interest f over the family PnF is defined by

Rd

[
f̃ |PnF

]
:= sup{Enf |dist(f̃ , f)|2, Pnf ∈ PnF }.

(global) Consider the completion Hv of H wrt. a weighted norm ‖·‖v. If F ⊂ Hv then
dvist(h1, h2) := ‖h1 − h2‖v, h1, h2 ∈ Hv, defines a global distance. We call Hv-risk the
associated global risk Enf‖f̃ −f‖2

v and set Rv

[
f̃ |PnF

]
:= sup{Enf‖f̃ −f‖2

v, Pnf ∈ PnF }.
(local) Let Φ be a linear functional and F ⊂ D(Φ), then dΦ

ist(h1, h2) := |Φ(h1 − h2)|,
h1, h2 ∈ D(Φ), denotes a local distance. Its associated local risk Enf |Φ(f̃ − f)|2

we call Φ-risk and we set RΦ

[
f̃ |PnF

]
:= sup{Enf |Φ(f̃)− Φ(f)|2, Pnf ∈ PnF }.

§7.1.4 Remark. An advantage of taking a maximal risk instead of a risk is that the former does
not depend on the unknown function f . Imagine we would have taken a constant estimator, say
f̃ = h, of f . This would be the perfect estimator if by chance f = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
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the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view.

§7.1.5 Definition. Let Rd

[
· |PnF

]
be a maximal risk over a class PnF of probability measures

PF = (PnF )n∈N. If there exist an estimator f̂ and constants C− := C−(PF), C+ := C+(PF) and a
rateRn

d := Rn
d (PnF ), n ∈ N, with limn→∞Rn

d = 0, depending on the sequence PF such that

(lower) the rate (Rn
d )n∈N is a lower bound up to the constant C− of the maximal risk over all

possible estimators of f , that is

inf
f̃
Rd

[
f̃ |PnF

]
PF > C−Rn

d , for all n ∈ N,

where the infimum is taken over all possible estimators of f ;

(upper) the rate (Rn
d )n∈N is an upper bound up to the constant C+ of the maximal risk associ-

ated with an estimator f̂ of f , that is

Rd

[
f̂ |PnF

]
PF 6 C+Rn

d , for all n ∈ N.

Then we call (Rn
d )n∈N, orRn

d for short, minimax-optimal rate of convergence and the estimator
f̂ minimax-optimal (up to a constant).

§7.1.6 Remark. It is worth noting that a minimax-optimal rate is not unique since every other
rate that is equivalent of order is also minimax-optimal.

7.2 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

§7.2.1 Definition. Let P and Q be two probability measures on a common measurable space
(Ω,A ), which are absolutely continuous wrt. to a σ-finite measure µ, or P,Q � µ for short.
We write p := dP/dµ and q := dQ/dµ.
(i) The Kullback-Leibler divergence between P and Q is defined by

KL(P,Q) :=

{
P log(p/q), if P � Q;
∞, otherwise.

(ii) The Hellinger distance between P and Q is defined by

H(P,Q) := (µ(
√
p −√q)2)1/2 =

∥∥√p −√q∥∥
L2
µ

which does not depend on the choice of the dominating measure µ.

(iii) The Hellinger affinity is given by

ρ(P,Q) := µ(
√
p
√
q) = 〈√p ,√q〉L2

µ

§7.2.2 Lemma. (a) 0 6 H2(P,Q) 6 2; (b) ρ(P,Q) = 1 − 1
2
H2(P,Q); and (c) H2(P,Q) 6

KL(P,Q).

Proof of Lemma §7.2.2 is given in the lecture.
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§7.2.3 Lemma. Let f̃ be an estimator and, let P and Q be probability measures. For all
f1, f2 ∈ F we have

P(|dist(f̃ , f1)|2) +Q(|dist(f̃ , f2)|2) >
1

2
|dist(f1, f2)|2 ρ2(P,Q). (7.1)

Proof of Lemma §7.2.3 is given in the lecture.

7.3 Lower bound based on two hypothesis

§7.3.1 Lemma (Lower bound based on two hypothesis). Consider a family of probability mea-
sures Pn

F
. For probability measures Pnf1 and Pnf2 in Pn

F
with Hellinger affinitiy ρ2(Pnf1 ,Pnf2 ) holds

inf
f̃
Rd

[
f̃ |PnF

]
>

1

4
|dist(f1, f2)|2ρ2(Pnf1 ,Pnf2 ). (7.2)

Proof of Lemma §7.3.1 is given in the lecture.

§7.3.2 Remark (Statistically indistinguishable). On the one hand if Pnf1 and Pnf2 are statistically
indistinguishable in the sense that H(Pnf1 ,Pnf2 ) 6 1, then using the relationship §7.2.2 (b) we
bound the Hellinger affinity from below by ρ(Pnf1 ,Pnf2 ) > 1/2, and whence due to Lemma §7.3.1
(7.2) we have

inf
f̃
Rd

[
f̃ |PnF

]
>

1

16
|dist(f1, f2)|2. (7.3)

On the other hand if two poduct measures P⊗nf1
and P⊗nf2

are statistically indistinguishable in the
sense that H2(Pf1 ,Pf2 ) 6 2/n, then using the independence, i.e., ρ(P⊗nf1

,P⊗nf2
) = ρ(Pf1 ,Pf2 )n

togehter with the relationship §7.2.2 (b) it follows ρ(P⊗nf1
,P⊗nf2

) > (1 − n−1)n > 1/4 for all
n > 2, and whence

inf
f̃
Rd

[
f̃ |P⊗nF

]
>

1

64
|dist(f1, f2)|2. (7.4)

§7.3.3 Remark (Lower bound for a maximal Φ-risk). Let the class of functions of interest be an
ellipsoid Fra. Consider a local Φ-risk associated with a regular linear functional Φ (see §6.2.6).
If we consider furthermore candidates f1 := f∗ and f2 = −f∗ for some f∗ ∈ Fra, then trivially
f1, f2 ∈ Fra and |dist(f1, f2)|2 = |Φ(f1 − f2)|2 = 4|Φ(f∗)|2. On the one hand if in addition Pnf∗
and Pn−f∗ are statistically indistinguishable in the sense that H(Pnf∗ ,Pn−f∗ ) 6 1, then due to (7.3)
in Remark §7.3.2 it holds

inf
f̃
RΦ

[
f̃ |Pn

F

]
> 1

4
|Φ(f∗)|2 for all n > 1. (7.5)

On the other hand if two poduct measures P⊗nf∗ and P⊗n−f∗ are statistically indistinguishable in the
sense that H2(Pf∗ ,P−f∗ ) 6 2/n, then from (7.4) in Remark §7.3.2 it follows

inf
f̃
Rd

[
f̃ |P⊗nF

]
>

1

16
|Φ(f∗)|2 for all n > 2. (7.6)

However, often a minimax-optimal lower bound can be found by constructing a candidate
f∗ ∈ Fra that has the largest possible |Φ(f∗)|-value but Pnf∗ and Pn−f∗ are still statistically in-
distinguishable.
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7.3.1 Examples - lower bound of a maximal Φ-risk

Assuming that the function of interest f with generalised Fourier coefficients [f] = ([f]j)j∈J
belongs to the class of solutions Fra as in §6.2.3 we derive below a lower bound of a maximal
Φ-risk considering the three examples: (i) Gaussian sequence space model (GSSM) §6.5.2,
(ii) non-parametric regression §7.1.2, and (iii) density estimation §7.1.1. Let Φ be a regular
linear functional belonging to the class La as given in §6.2.6 and define in analogy to (6.8) for
all n ∈ N and m ∈M,

Rn
Φ(m, a) := max

(
‖[Φ]a1J cm‖

2
`2 ,max(a2

(m), n
−1)‖[Φ]1Jm‖2

`2

)
,

mn
Φ := arg min{Rn

Φ(m, a),m ∈M} and Rn
Φ(a) := Rn

Φ(mn
Φ, a). (7.7)

Keep in mind the quantitiesRn
Φ(m, f) andRn

Φ(f) given in (6.8), for any f ∈ Fra by applying the
Cauchy-Schwarz inequaltiy we have for all m ∈ M, |〈[Φ] , [f]1J cm〉`2|2 6 r2‖[Φ]a1J cm‖2

`2 and
hence, Rn

Φ(m, f) 6 (1 ∨ r2)Rn
Φ(m, a) for all n ∈ N. Consequently, Rn

Φ(f) 6 (1 ∨ r2)Rn
Φ(a)

where Rn
Φ(f) is eventually the oracle rate (see, for instance, Proposition §6.6.5). We show

below that Rn
Φ(a) eventually is a minimax rate. We impose a minimal regularity of the linear

functional Φ and the weight sequence a, which is formalised in the next assumption.

§7.3.4 Assumption. Consider a pre-specified ONS {uj, j ∈ J } inH, a nested sieve (Jm)m∈M
in J and a strictly positive, monotonically non-increasing sequence a = (aj)j∈J , that is,
min{aj, j ∈ Jm, } > sup{aj, j ∈ J c

m} =: a(m) > 0 for any m ∈ M. Suppose further

that Φ ∈ La such that η := inf
{

min(n−1a−2
(mnΦ), na

2
(mnΦ)), n ∈ N

}
> 0.

In the proof of the next propositions we intend to apply the result presented in (7.5) or (7.6)
in Remark §7.3.3 to two special choices of f? ∈ Fra which we specify next.

§7.3.5 Lemma. Consider η as in Assumption §7.3.4 and for n ∈ N let m∗ := mn
Φ as in

(7.7). Define K∗ := max(a2
(m∗)

, n−1), and ζ := ηmin(r2, c) for some c > 0. Consider ei-
ther the function (i) f∗ := (ζα∗)

1/2
∑

j∈Jm∗
[Φ]

j
uj with α∗ := K∗‖[Φ]1Jm∗‖

−2
`2 , or the func-

tion (ii) f∗ := (ζα∗)
1/2
∑

j∈J cm∗
[Φ]

j
a2
juj with α∗ := ‖[Φ]a1J cm∗‖

−2
`2 . In both cases we have

‖f∗‖2
1/a 6 min(r2, c), i.e., f? ∈ Fra, and n ‖f?‖2

H 6 c.

Proof of Lemma §7.3.5 is given in the lecture.

§7.3.6 Corollary. Let the assumptions of Lemma §7.3.5 be satisfied. If the ONS U is in addition
regular w.r.t. the weigth sequence a as in §6.1.12 (ii), i.e., ‖

∑
j∈J a2

j |uj|2‖L∞ 6 τ 2
ua for some

τua > 1, then it holds ‖f∗‖2
L∞ 6 τ 2

uac.

Proof of Corollary §7.3.6 is given in the lecture.

§7.3.7 Proposition (GSSM, §6.5.2 continued). Consider the reconstruction of f = U?[f] ∈ Fra
given for each n ∈ N an observable quantity f̂©∼ N(Fra, 1

n
Id). Under Assumption §7.3.4 holds

inf
f̃
RΦ

[
f̃ |N(Fra, 1

n
Id)
]
>
η

8
min(2r2, 1) Rn

Φ(a), for all n ∈ N. (7.8)

Proof of Proposition §7.3.7 is given in the lecture.
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§7.3.8 Corollary. Under the assumptions of Proposition §7.3.7 for each n ∈ N consider the
OSE f̂mnΦ = U?([f̂]1Jmn

Φ
) withmn

Φ as in (7.7). Then, RΦ

[
f̂mnΦ |N(Fra, 1

n
IdH)

]
6 (1+r2)Rn

Φ(a)

for all n ∈ N, i.e., the rate (Rn
Φ(a))n∈N and the OSE (f̂mnΦ)n∈N are minimax-optimal (up to a

constant).

Proof of Corollary §7.3.8 is given in the lecture.

§7.3.9 Proposition (Non-parametric density estimation §6.5.3 continued). Let {1[0,1]} ∪ U be
an ONB in L2[0, 1] with U = {uj, j ∈ N}. Consider the reconstruction of a density p =
1[0,1] + U?[f] in Dra, i.e., f ∈ Fra, given for each n ∈ N an i.i.d. sample (X1, . . . , Xn)©∼ P⊗nDra

.
Let the ONS U be in addition regular w.r.t. the weigth sequence a as in §6.1.12 (ii), i.e.,
‖
∑

j∈J a2
j |uj|2‖L∞ 6 τ 2

ua for some τua > 1. Under Assumption §7.3.4 we have

inf
p̃

RΦ

[
p̃ |P⊗nDra

]
>

η

16
min(r2, (4τ 2

ua)
−1) Rn

Φ(a), for all n > 2. (7.9)

Proof of Proposition §7.3.9 is given in the lecture.

§7.3.10 Remark. We shall emphasise that assuming in Proposition §7.3.9 in addition a regular
ONS U ensures that the specific choices p∗ = 1[0,1] + f∗ with f∗ as specified in Lemma §7.3.5
are indeed densities belonging to Dra. Moreover, the specific choices satisfy 1/2 6 p∗ 6
1 + 1/2 6 2, λ-a.s.. Thereby, due to Lemma §6.6.8 Rn

Φ(p∗) as given in (6.8) is an oracle rate,
whereRn

Φ(p∗) 6 (1 ∨ r2)Rn
Φ(a), andRn

Φ(a) is a minimax-rate as formalised next.

§7.3.11 Corollary. Under the assumptions of Proposition §7.3.9 for each n ∈ N consider a
noisy version p̂ ∼ L(p , 1

n
Γp ) with Γp = Mp −MpΠ{1[0,1]}Mp as in §6.4.4 and an observable

quantity [p̂ ] = (Pnuj)j∈N using an i.i.d. sample (X1, . . . , Xn)©∼ P⊗nDra
. Let p̂

mn
Φ

= 1[0,1] +

U?([p̂ ]1Jmn
Φ

) be the OSE with mn
Φ as in (7.7). Then, RΦ

[
p̂
mn

Φ
|P⊗nDra

]
6 (1 + rτua + r2)Rn

Φ(a)

for all n ∈ N, i.e., the rate (Rn
Φ(a))n∈N and the OSE (p̂

mn
Φ

)n∈N are minimax-optimal (up to a
constant).

Proof of Corollary §7.3.11 is given in the lecture.

§7.3.12 Proposition (Non-parametric regression §6.5.4 continued). Consider the reconstruc-
tion of a regression function f ∈ Fra given for each n ∈ N an i.i.d. sample (X1, Z1), . . . , (Xn, Zn)
with joint distribution belonging to P⊗nFra

and obeying the Assumption §5.3.1 (see section 5.3). If
the error term is N(0, σ2

ε)-distributed, then under Assumption §7.3.4 we have

inf
f̃
RΦ

[
f̃ |P⊗nFra

]
>
η

8
min(2r2, σ2

ε) Rn
Φ(a), for all n ∈ N. (7.10)

Proof of Proposition §7.3.12 is given in the lecture.

§7.3.13 Remark. We shall emphasise that assuming in Proposition §7.3.12 in addition normal-
distributed error terms is only needed to simplify the calculation of the distance between dis-
tributions corresponding to different regression functions. On the other hand, below we derive
an upper bound under Assumption §5.3.1 (see section 5.3) only. In this situation, Proposition
§7.3.12 obviously provides a lower bound for any estimator since the family P⊗nFra

contains this
specific Gaussian-error case. Moreover, if the ONS U is in addition regular w.r.t. the weight
sequence a, then the specific choice f∗ given by Lemma §7.4.4 satisfies ‖f∗‖

2
L∞ < ∞ and due
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to Lemma §6.6.11 Rn
Φ(f∗) as given in (6.8) is an oracle rate, where Rn

Φ(f∗) 6 (1 ∨ r2)Rn
Φ(a),

andRn
Φ(a) is a minimax-rate as formalised next.

§7.3.14 Corollary. For each n ∈ N using an i.i.d. sample (X1, Z1), . . . , (Xn, Zn)©∼ P⊗nFra

obeying the Assumption §5.3.1 (see section 5.3) consider a noisy version f̂ ∼ L(f, 1
n
Γf ) with

Γf = σ2
ε IdH +M|f |2 as in §6.5.4 and an observable quantity [f̂ ] = (Pn[id⊗uj])j∈N. Let the ONS

U be in addition regular w.r.t. the sequence a as in §6.1.12 (ii), i.e., ‖
∑

j∈J a2
j |uj|2‖L∞ 6 τ 2

ua. If
f̂
mn

Φ
= U?([f̂ ]1Jmn

Φ
) is the OSE with mn

Φ as in (7.7), then RΦ

[
f̂
mn

Φ
|P⊗nFra

]
6 (σ2

ε + r2τ 2
ua)Rn

Φ(a)

for all n ∈ N, i.e., the rate (Rn
Φ(a))n∈N and the OSE (p̂

mn
Φ

)n∈N are minimax-optimal (up to a
constant).

Proof of Corollary §7.3.14 is given in the lecture.

7.4 Lower bound based on m hypothesis

§7.4.1 Lemma (Assouad’s cube technique). Consider a family PnF of probability measures. For
|Jm| < ∞ let d(j)

ist (·, ·), j ∈ Jm, be distances such that |dist(·, ·)|2 >
∑

j∈Jm |d
(j)
ist (·, ·)|2. Let

θ := (θj)j∈Jm ∈ {−1, 1}|Jm| =: Θ and for each θ ∈ Θ introduce θ(j) ∈ Θ by θ(j)
l = θl for j 6= l

and θ(j)
j = −θj . For each θ ∈ Θ let Pnfθ be a probability measure in PnF , then

inf
f̃
Rd

[
f̃ |PnF

]
>

1

2|Jm|

∑
θ∈Θ

1

4

∑
j∈Jm

|d(j)

ist (fθ, fθ(j))|2ρ2(Pnfθ ,P
n
f
θ(j)

).

Proof of Lemma §7.4.1 is given in the lecture.

§7.4.2 Remark (Lower bound for a maximal Hv-risk). Consider a global Hv-risk with weighted
norm ‖·‖v derived from an ONS U and some weight sequence (vj)j∈J . In this situation the last
assertion states

inf
f̃
Rv

[
f̃ |PnFra

]
>

1

2|Jm|

∑
θ∈Θ

1

8

∑
j∈Jm

v2
j |[fθ]j − [fθ(j) ]j|2ρ2(Pnfθ ,P

n
f
θ(j)

).

Let us assume that for each θ ∈ Θ and j ∈ Jm the probability measures Pnfθ and Pnf
θ(j)

are
uniformely statistically indistinguishable in the sense that ρ(Pnfθ ,P

n
f
θ(j)

) > c for some c > 0. If
we consider furthermore candidates fθ :=

∑
j∈Jm θj[f∗]juj , θ ∈ Θ, for some f∗ ∈ Fra, then it

is easily verified that {fθ, θ ∈ Θ} ⊂ Fra and
∑

j∈Jm v2
j |[fθ]j − [fθ(j) ]j|2 = 4

∑
j∈Jm v2

j |[f∗]j|2 =

4 ‖ΠUmf∗‖
2
v which in turn implies

inf
f̃
Rv

[
f̃ |PnFra

]
>

1

2|Jm|

∑
θ∈Θ

c2 ‖ΠUmf∗‖
2
v = c2 ‖ΠUmf∗‖

2
v . (7.11)

Often a minimax-optimal lower bound can be found by choosing the parameter m and the
function f∗ that have the largest possible ‖ΠUmf∗‖

2
v-value although that the associated Pnfθ ∈ PnF ,

θ ∈ Θ, are still uniformely statistically indistinguishable.
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7.4.1 Examples - lower bound of a maximal Hv-risk

Assuming that the function of interest f with generalised Fourier coefficients [f] = ([f]j)j∈J
belongs to the class of solutions Fra as in §6.2.3 we derive below a lower bound of a maximal
Hv-risk considering the three examples: (i) Gaussian sequence space model (GSSM) §6.5.2,
(ii) non-parametric regression §6.5.4, and (iii) density estimation §6.5.4. Define for n ∈ N and
m ∈M,

Rn
v (m, a) := max

(
(av)2

(m), n
−1‖v1Jm‖2

`2

)
,

mn
v := arg min{Rn

v (m, a),m ∈M} and Rn
v (a) := Rn

v (mn
v , a). (7.12)

Keep in mind the quantities Rn
v (m, f) and Rn

v (f) given in (6.7), where for any f ∈ Fra and
m ∈ M we have

∥∥v[f]1J cm
∥∥
`2

6 r(va)(m), and hence, Rn
v (m, f) 6 (1 ∨ r2)Rn

v (m, a) for all
n ∈ N. Consequently, Rn

v (f) 6 (1 ∨ r2)Rn
v (a) where Rn

v (f) is eventually the oracle rate (see,
for instance, Proposition §6.6.5). We show below that Rn

v (a) eventually is a minimax rate. We
impose a minimal regularity of the weight sequences a and v, which is formalised in the next
assumption.

§7.4.3 Assumption. Consider a pre-specified ONS {uj, j ∈ J } inH, a nested sieve (Jm)m∈M
in J and strictly positive sequences v and a such that va = (vjaj)j∈J is monotonically non-
increasing, i.e., min{vjaj, j ∈ Jm, } > sup{vjaj, j ∈ J c

m} = (va)(m) > 0 for any m ∈ M.

Suppose further that η := inf
{
|Rn

v (a)|−1 min((av)2
(mnv ),

1
n
‖v1Jmnv ‖

2
`2), n ∈ N

}
> 0.

Keep in mind, that under Assumption §7.4.3 we have Fa ⊂ Hv. In the proof of the next
propositions we intend to apply the result presented in (7.11) in Remark §7.4.2 to a specific
choice of f? ∈ Fra which we specify next.

§7.4.4 Lemma. Consider η as in Assumption §7.4.3 and for n ∈ N let m∗ := mn
v as in (7.12).

Define α∗ := (‖v1Jm∗‖2
`2/n)−1Rn

v (a) 6 η−1 and ζ := ηmin(r2, c) for some c > 0. Consider
the function f∗ := (ζα∗/n)1/2

∑
j∈Jm∗

uj . Then we have ‖f∗‖2
1/a 6 min(r2, c), i.e., f? ∈ Fra,

and nmax{|[f?]2j |, j ∈ Jm} 6 c.

Proof of Lemma §7.4.4 is given in the lecture.

§7.4.5 Corollary. Let the assumptions of Lemma §7.4.4 be satisfied. If the ONS U is in addition
regular w.r.t. the weigth sequence a as in §6.1.12 (ii), i.e., ‖

∑
j∈J a2

j |uj|2‖L∞ 6 τ 2
ua for some

τua > 1, then it holds ‖f∗‖2
L∞ 6 τ 2

uac.

Proof of Corollary §7.4.5 follows along the lines of the proof of Corollary §7.3.6.

§7.4.6 Proposition (GSSM, §6.5.2 continued). Consider the reconstruction of f = U?[f] ∈ Fra
given for each n ∈ N an observable quantity f̂©∼ N(Fra, 1

n
Id). Under Assumption §7.4.3 we

have

inf
f̃
Rv

[
f̃ |N(Fra, 1

n
Id)
]
>
η

8
min(2r2, 1) Rn

v (a), for all n ∈ N. (7.13)

Proof of Proposition §7.4.6 is given in the lecture.
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§7.4.7 Corollary. Under the assumptions of Proposition §7.4.6 for each n ∈ N consider the
OSE f̂mnv = U?([f̂]1Jmnv ) withmn

v as in (7.12). Then, Rv

[
f̂mnv |N(Fra, 1

n
IdH)

]
6 (1+r2)Rn

v (a)

for all n ∈ N, i.e., the rate (Rn
v (a))n∈N and the OSE (f̂mnv )n∈N are minimax-optimal (up to a

constant).

Proof of Corollary §7.4.7 is given in the lecture.

§7.4.8 Proposition (Non-parametric density estimation §6.5.3 continued). Consider the recon-
struction of a density p = 1[0,1] + f with f ∈ Fra given for each n ∈ N an i.i.d. sample
(X1, . . . , Xn)©∼ P⊗nDra

. Let the ONS U be in addition regular w.r.t. the weigth sequence a as in
§6.1.12 (ii), i.e., ‖

∑
j∈J a2

j |uj|2‖L∞ 6 τ 2
ua for some τua > 1. Under Assumption §7.4.3 we have

inf
f̃
Rv

[
f̃ |P⊗nDra

]
>

η

16
min(r2, (4τ 2

ua)
−1) Rn

v (a), for all n > 2. (7.14)

Proof of Proposition §7.4.8 is given in the lecture.

§7.4.9 Remark. We shall emphasise that assuming in Proposition §7.4.8 in addition a regular
ONS U ensures that the specific choice p∗ = 1[0,1] + f∗ with f∗ as specified in Lemma §7.4.4 is
indeed a density belonging to Dra. Moreover, the specific choice satisfy 1/2 6 p∗ 6 1 + 1/2 6
2, λ-a.s.. Thereby, due to Lemma §6.6.8 Rn

v (p∗) as given in (6.7) is an oracle rate, where
Rn

v (p∗) 6 (1 ∨ r2)Rn
v (a), andRn

v (a) is a minimax-rate.

§7.4.10 Corollary. Under the assumptions of Proposition §7.4.8 for each n ∈ N consider a
noisy version p̂ ∼ L(p , 1

n
Γp ) with Γp = Mp −MpΠ{1[0,1]}Mp as in §6.4.4 and an observable

quantity [p̂ ] = (Pnuj)j∈N using an i.i.d. sample (X1, . . . , Xn)©∼ P⊗nDra
. Let p̂

mnv
= 1[0,1] +

U?([p̂ ]1Jmnv ) be the OSE with mn
v as in (7.12). Then, Rv

[
p̂
mnv
|P⊗nDra

]
6 (1 + rτua + r2)Rn

v (a)

for all n ∈ N, i.e., the rate (Rn
v (a))n∈N and the OSE (p̂

mnv
)n∈N are minimax-optimal (up to a

constant).

Proof of Corollary §7.4.10 is given in the lecture.

§7.4.11 Proposition (Non-parametric regression §6.5.4 continued). Consider the reconstruc-
tion of a regression function f ∈ Fra given for each n ∈ N an i.i.d. sample (X1, Z1), . . . , (Xn, Zn)
with joint distribution belonging to P⊗nFra

and obeying the Assumption §5.3.1 (see section 5.3). If
the error term is N(0, σ2

ε)-distributed, then under Assumption §7.4.3 we have

inf
f̃
Rv

[
f̃ |P⊗nFra

]
>
η

8
min(2r2, σ2

ε) Rn
v (a), for all n ∈ N. (7.15)

Proof of Proposition §7.4.11 is given in the lecture.

§7.4.12 Remark. We shall emphasise that assuming in Proposition §7.4.11 in addition normal-
distributed error terms is only needed to simplify the calculation of the distance between dis-
tributions corresponding to different regression functions. On the other hand, below we derive
an upper bound under Assumption §5.3.1 (see section 5.3) only. In this situation, Proposition
§7.4.11 obviously provides a lower bound for any estimator since the family P⊗nFra

contains this
specific Gaussian-error case. Moreover, if the ONS U is in addition regular w.r.t. the weight
sequence a, then the specific choice f∗ given by Lemma §7.4.4 satisfies ‖f∗‖

2
L∞ < ∞ and due

to Lemma §6.6.11 Rn
v (f∗) as given in (6.8) is an oracle rate, where Rn

v (f∗) 6 (1 ∨ r2)Rn
v (a),

andRn
v (a) is a minimax-rate.
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§7.4.13 Corollary. For each n ∈ N using an i.i.d. sample (X1, Z1), . . . , (Xn, Zn)©∼ P⊗nFra

obeying the Assumption §5.3.1 (see section 5.3) consider a noisy version f̂ ∼ L(f, 1
n
Γf ) with

Γf = σ2
ε IdH +M|f |2 as in §6.5.4 and an observable quantity [f̂ ] = (Pn[id⊗uj])j∈N. Let the ONS

U be in addition regular w.r.t. the sequence a as in §6.1.12 (ii), i.e., ‖
∑

j∈J a2
j |uj|2‖L∞ 6 τ 2

ua. If
f̂
mnv

= U?([f̂ ]1Jmnv ) is the OSE with mn
v as in (7.12), then Rv

[
f̂
mnv
|P⊗nFra

]
6 (σ2

ε +r2τ 2
ua)Rn

v (a)

for all n ∈ N, i.e., the rate (Rn
v (a))n∈N and the OSE (p̂

mnv
)n∈N are minimax-optimal (up to a

constant).

Proof of Corollary §7.4.13 is given in the lecture.
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