Lecture course *Statistics II* Winter semester 2016/17 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES Xavier LOIZEAU

Exercise sheet 9

Exercise 1. Given $(X_1, \ldots, X_n) \sim \mathbb{P}^{\otimes n}$ and for each $\theta \in \Theta$ a function $m_{\theta} : \mathcal{X} \to \mathbb{R}$ belonging to $L^1_{\mathbb{P}}$ consider $M_n(\theta) = \overline{\mathbb{P}}_n m_{\theta} = \frac{1}{n} \sum_{i=1}^n m_{\theta}(X_i)$ and $M(\theta) = \mathbb{P}m_{\theta}$. Show that any estimator $\widehat{\theta}_n$ such that $M_n(\widehat{\theta}_n) \leq M_n(\theta_o) + o_{\mathbb{P}}(1)$ converges in probability to θ_o , if the following conditions are satisfied

- (a) Θ is compact,
- (b) $M(\theta_o) < M(\theta)$ for all $\theta \neq \theta_o$,
- (c) $\theta \to m_{\theta}(x)$ is continuous for all x,
- (d) $\sup\{|m_{\theta}(X)| : \theta \in \Theta\}$ belongs to $L^{1}_{\mathbb{P}}$.

Exercise 2. Consider a real-valued r.v. X and a r.v. $Z \sim \mathfrak{U}([0,1])$ obeying a nonlinear regression model $\mathbb{E}_{f_{\theta}}(X|Z) = f_{\theta}(Z)$, where the regression function f_{θ} belongs to a parametric subset $\{f_{\theta}, \theta \in \Theta\}$ of $L^2([0,1])$. We assume further that $\varepsilon = X - f_{\theta}(Z)$ has a finite second moment and it is independent of Z. Given for each $n \in \mathbb{N}$ i.i.d. copies $(X_i, Z_i), i \in [\![1, n]\!]$, of (X, Z) denote by $\hat{\theta}_n = \arg \min_{\theta \in \Theta} \sum_{i=1}^n (X_i - f_{\theta}(Z_i))^2$ the least squares estimator (LSE), if it exists. Determine sufficient conditions on the parametric family $\{f_{\theta}, \theta \in \Theta\}$ to ensure the consistency of the LSE.

Exercise 3. For $n \in \mathbb{N}$ consider the uniform distributions $\mathbb{P}_n = \mathfrak{U}([0,1])$ and $\mathbb{Q}_n = \mathfrak{U}([0,1+\frac{1}{n}])$ on the common measurable space $(\mathbb{R}, \mathscr{B})$. Show that $\mathbb{P}_n \triangleleft \triangleright \mathbb{Q}_n$ holds. Is this also true for the product probability measures $\mathbb{P}_n = \mathfrak{U}^{\otimes n}([0,1])$ and $\mathbb{Q}_n = \mathfrak{U}^{\otimes n}([0,1+\frac{1}{n}])$ on the common measurable space $(\mathbb{R}^n, \mathscr{B}^{\otimes n})$?

Exercise 4. Considering the product experiment $(\mathbb{R}^n, \mathscr{B}^{\otimes n}, \{\mathfrak{Exp}^{\otimes n}(\theta), \theta > 0\})$ test the null hypothesis $H_0: \theta = \theta_o$ against the alternative $H_1: \theta > \theta_o$ using the test $\phi_n = \mathbb{1}_{\{Z_n > c_n\}}$ with $Z_n := -\frac{1}{n} \sum_{i=1}^n X_i^2$.

- (i) Show that the sequence of product experiments is LAN for each $\theta_o > 0$ and derive its central sequence.
- (ii) Determine a sequence c_n such that ϕ_n is an asymptotic level α test.
- (iii) Show that the asymptotic power of ϕ_n under a local alternative $\theta_o + h/\sqrt{n}$ is given by $\lim_{n\to\infty} \beta_{\varphi_n}(\theta_o + h/\sqrt{n}) = \mathbb{F}_{\mathfrak{N}(0,1)}(-z_{1-\alpha} + h\frac{2}{\theta_o\sqrt{5}}).$
- (iv) Calculate the relative asymptotic efficiency of ϕ_n w.r.t. an asymptotic optimal test ϕ_n^* . Which sample size *n* is needed, such that ϕ_n has the same asymptotic power than $\phi_{n'}^*$ with sample size n' = 100.

Hint: If $X \sim \mathfrak{E}xp(\theta)$, then $\mathbb{E}(X^k) = \frac{k!}{\lambda^k}$ for each $k \in \mathbb{N}$.

Exercise 5. Given an i.i.d. sample $X_1, \ldots, X_n \sim \mathbb{P}$ consider a kernel density estimator $\widehat{\mathbb{P}}_h = \frac{1}{hn} \sum_{i=1}^n K(\frac{X_i - x}{h})$ of $\mathbb{P}(x)$ at a given point x, where K is a kernel and h is bandwidth. Assuming that \mathbb{P} belongs to the Hölder class $\mathcal{H}(\beta, L)$ and that K is a kernel of order $l = \lfloor \beta \rfloor$ with $\lambda(|\mathrm{id}|^\beta |K|) < \infty$, show that for each $x \in \mathbb{R}$, h > 0 and $n \in \mathbb{N}$ it holds $|\mathrm{bias}_{\mathbb{P}}(x)| \leq h^{\beta} \frac{L}{n} \lambda(|\mathrm{id}|^{\beta} |K|)$.

Exercise 6. Consider r.v.'s Y and Z obeying $Y = \sigma(Z)\varepsilon$, where ε is centred with variance 1 and independent of $Z \sim \mathfrak{U}([0,1])$. Let $(X_i, Z_i), i \in [\![1,n]\!]$, be an i.i.d. sample of (X, Z). Given a kernel K and a bandwidth h consider at a point $z \in [0,1]$ the kernel estimator $\widehat{\sigma}_h^2(z) = \frac{1}{nh} \sum_{i=1}^n Y_i^2 K(\frac{Z_i-z}{h})$ of the variance function $\sigma^2(z)$.

- (a) Derive an upper bound for $bias(z) = \mathbb{E}(\widehat{\sigma}_h^2(z)) \sigma^2(z)$ if σ^2 belongs to an Hölder class and K is a kernel of appropriate order.
- (b) Derive an upper bound for Var(∂²_h(z)) assuming that E(ε⁴) < ∞, ||σ²||_{L∞} < ∞ and ||K||_{L²} < ∞.</p>
- (c) Find an upper bound for $MSE(z) = \mathbb{E}|\widehat{\sigma}_h^2(z) \sigma^2(z)|^2$ depending on the bandwidth. Select an optimal value for the bandwidth and derive the associated upper bound.

Exercise 7. Consider an ONB $\{\mathbb{1}_{[0,1]}\} \cup \{u_j, j \in \mathbb{N}\}$ in $L^2[0,1]$ and the sieve $(\llbracket 1, m \rrbracket)_{m \in \mathbb{N}}$ in \mathbb{N} . Given for each $n \in \mathbb{N}$ an observable quantity $[\widehat{\mathbb{p}}] = (\overline{\mathbb{P}}_n u_j)_{j \in \mathbb{N}}$ using an i.i.d. sample $X_i \sim \mathbb{p}, i \in \llbracket 1, n \rrbracket$, let $\{\widehat{\mathbb{p}}_m = \mathbb{1}_{[0,1]} + \sum_{j=1}^m [\widehat{\mathbb{p}}]_j u_j, m \in \mathbb{N}\}$ be a family of OSE's of $\mathbb{p} = \mathbb{1}_{[0,1]} + \sum_{j \in \mathbb{N}} [\mathbb{p}]_j u_j \in L^2([0,1])$. Assuming that $0 < \mathbb{p}_0^{-1} \leq \mathbb{p} \leq$ $\mathbb{p}_0 < \infty \lambda$ -a.s. for some finite constant $\mathbb{p}_0 \ge 1$ show that the OSE $(\widehat{\mathbb{p}}_{m_n})_{n \in \mathbb{N}}$ with $m_n := \arg \min\{\max(n^{-1}m, \sum_{j>m} |[\mathbb{p}]_j|^2), m \in \mathbb{N}\}$ is oracle optimal (up to a constant) for the integrated means squared error, i.e., $\mathbb{E} \|\widehat{\mathbb{p}} - \mathbb{p}\|_{L^2}^2$.

Exercise 8. Consider r.v.'s Y and Z obeying $Y = \sigma(Z)\varepsilon$, where ε is centred with variance 1 and independent of $Z \sim \mathfrak{U}([0,1])$. Let (X_i, Z_i) , $i \in \llbracket 1, n \rrbracket$, be an i.i.d. sample of (X, Z). Given an ONB $\{u_j, j \in \mathbb{N}\}$ in $L^2[0,1]$, the sieve $(\llbracket 1,m \rrbracket)_{m\in\mathbb{N}}$ in \mathbb{N} , and for $j \in \mathbb{N}$ the observable quantity $[\widehat{\sigma}^2]_j = \frac{1}{n} \sum_{i=1}^n Y_i^2 u_j(Z_i)$ let $\{\widehat{\sigma}_m^2 := \sum_{j=1}^m [\widehat{\sigma}^2]_j u_j, m \in \mathbb{N}\}$ be a family of OSE's of $\sigma^2 = \sum_{j \in \mathbb{N}} [\sigma^2]_j u_j \in L^2([0,1])$. Assuming for some finite constant $\sigma_o^2 \ge 1$ that $0 < \sigma_o^{-2} \le \sigma^2 \le \sigma_o^2 < \infty \lambda$ -a.s. show that the OSE $(\widehat{\sigma}_{m_n}^2)_{n\in\mathbb{N}}$ with $m_n := \arg\min\{\max(n^{-1}m, \sum_{j>m} |[\sigma^2]_j|^2), m \in \mathbb{N}\}$ is oracle optimal (up to a constant) for the integrated means squared error, i.e., $\mathbb{E} \|\widehat{\sigma}^2 - \sigma^2\|_{L^2}^2$.