Lecture course Statistics II
Winter semester 2016/17
Ruprecht-Karls-Universität Heidelberg
Prof. Dr. Jan JOHANNES
Xavier LOIZEAU

Exercise sheet 8

Exercise 1. Consider i.i.d. r.v.'s $(Y, Z),\left(Y_{1}, Z_{1}\right),\left(Y_{2}, Z_{2}\right), \ldots$ obeying a non-parametric regression model $\mathbb{E}_{f}(Y \mid Z)=f(Z)$ and satisfying the Assumptions ${ }^{2} 5.3 .1$. Denote by \mathbb{F} the c.d.f. of Z and assume that \mathbb{F} is continuous and admits an inverse denoted by \mathbb{F}^{-1}. We set $\ell:=f \circ \mathbb{F}^{-1}(z)$ and note, that $f=\ell \circ \mathbb{F}$. Given a kernel K and a bandwidth h consider the kernel estimator $\widehat{\ell}_{h}(z)=\frac{1}{n h} \sum_{i=1}^{n} Y_{i} K\left(\frac{\mathbb{F}\left(Z_{i}\right)-z}{h}\right)$ of f.
(a) Derive an upper bound for $\operatorname{bias}(z)=\mathbb{E}\left(\widehat{\ell}_{h}(z)\right)-\ell(z)$ if f belongs to an Hölder class and K is a kernel of appropriate order.
(b) Derive an upper bound for $\operatorname{Var}\left(\widehat{\ell}_{h}(z)\right)$ assuming that $\left\|L^{\infty}\right\| f<\infty$ and $\|K\|_{L^{2}}<\infty$.
(c) Find an upper bound for $\operatorname{MSE}(z)=\mathbb{E}\left|\widehat{\ell}_{h}(z)-\ell(z)\right|^{2}$ depending on the bandwidth. Select an optimal value for the bandwidth and derive the associated upper bound.
(d) Propose an estimator of f if \mathbb{F} is known and if it isn't.

Exercise 2. Consider i.i.d. r.v.'s $(X, U),\left(X_{1}, U_{1}\right),\left(X_{2}, U_{2}\right), \ldots$ where U is uniformly distributed on the interval $[0,1]$, i.e., $U \sim \mathfrak{U}([0,1])$ and X is non-negative with unknown density p . Moreover, X and U are independent. Let p^{y} denote the common density of the r.v.'s $Y:=X U, Y_{1}=X_{1} U_{1}, \ldots$ Given a kernel K with derivative \dot{K} and a bandwidth h consider the kernel estimator $\widehat{\mathbb{P}}_{h}(z)=\frac{1}{n h} \sum_{i=1}^{n}\left\{\frac{Y_{i}}{h} \dot{K}\left(\frac{Y_{i}-x}{h}\right)+K\left(\frac{Y_{i}-x}{h}\right)\right\}$ of p .
(a) Let g be a function with derivative \dot{g} such that $g, y \mapsto \operatorname{Id}(y) g(y):=y g(y)$ and $\operatorname{Id} \dot{g}$ are bounded. Show that, $\mathbb{E}(Y \dot{g}(Y)+g(Y))=\mathbb{E}(g(X))$.
Hint: First show $\left.\mathbb{E}(g(Y))=\int_{0}^{\infty} g(v) \int_{v}^{\infty} \frac{\mathfrak{p}(x)}{x} d x\right) d v$ and conclude $\mathbb{p}^{y}(y)=\int_{y}^{\infty} \frac{\mathrm{p}(x)}{x} d x$ and $\dot{\mathrm{p}}^{y}(y)=-\frac{\mathrm{p}(y)}{y}$.
(b) Derive an upper bound for $\operatorname{bias}(x)$ if \mathbb{p} is three-times differentiable with bounded third derivative and the kernel is of order 2 such that $\int|u|^{3}|K(u)| d u<\infty$.
(c) Derive an upper bound for $\mathbb{V a r}(\widehat{\mathbb{p}}(x))$ assuming that $\left\|\mathbb{p}^{y}\right\|_{L^{\infty}}<\infty,\|K\|_{L^{2}}<\infty$, $\left\|\mathrm{Id}^{2} \mathbb{p}^{y}\right\|_{L^{\infty}}<\infty,\|\dot{K}\|_{L^{2}}<\infty$.
(d) Find an upper bound for the $\operatorname{MSE}(x)$ depending on the bandwidth. Select an optimal value for the bandwidth and derive the associated upper bound of the $\operatorname{MSE}(x)$. What do you notice?
(4 points)

Exercise 3. Consider r.v.'s $Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \llbracket 1, n \rrbracket$, where x_{1}, \ldots, x_{n} are \mathbb{R}^{d}-valued deterministic covariates, $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. real-valued centred r.v.'s with finite variance
σ^{2}, and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an unknown regression function. Denote by $\|\cdot\|$ the Euclidean norm on \mathbb{R}^{d}. Given a bandwidth $h>0$ and the kernel $K:=\mathbb{1}_{[0,1]}$ for each $x \in \mathbb{R}^{d}$ such that $\sum_{i=1}^{n} K\left(\frac{\left\|x_{i}-x\right\|}{h}\right)>0$, define a locally constant estimator of $f(x)$ by:

$$
\widehat{f}_{h}(x)=\underset{a \in \mathbb{R}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-a\right)^{2} K\left(\frac{\left\|x_{i}-x\right\|}{h}\right) .
$$

(a) Give an explicit form for $\widehat{f}_{h}(x)$.
(b) Let f be Lipschitz with constant $L>0$, i.e. $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant L\left\|x_{1}-x_{2}\right\|$, for all $x_{1}, x_{2} \in \mathbb{R}^{d}$. Show that $\left|\mathbb{E}\left[\widehat{f}_{h}(x)\right]-f(x)\right| \leqslant L h$, for all $x \in \mathbb{R}^{d}$.
(c) Given a ball $B_{h}:=\left\{u \in \mathbb{R}^{d}:\|u\| \leqslant h\right\}$ in \mathbb{R}^{d} and denoting by $\operatorname{Vol}\left(B_{h}\right)$ its volume suppose that there exist a constant $C>0$ such that $\sum_{i=1}^{n} \mathbb{1}_{B_{h}}\left(x_{i}-x\right) \geqslant C n \operatorname{Vol}\left(B_{h}\right)$. Show that there is D depending on C and d such that $\operatorname{Var}\left[\widehat{f}_{h}(x)\right] \leqslant\left(n h^{d}\right)^{-1} D \sigma^{2}$.
(d) Deduce from (b) and (c) an upper bound for the $\operatorname{MSE}(x)$ depending on the bandwidth. Select an optimal value for the bandwidth and compute the value of the associated $\operatorname{MSE}(x)$. How does d influences this bound ? Give an interpretation for this.
Hint : you may show $\left\{\mathbb{E}\left[\widehat{f}_{h}(x)\right]-f(x)\right\} \sum_{i=1}^{n} K\left(\frac{\left\|x_{i}-x\right\|}{h}\right)=\sum_{i=1}^{n}\left\{f\left(x_{i}\right)-f(x)\right\} K\left(\frac{\left\|x_{i}-x\right\|}{h}\right)$ and $\mathbb{V} \operatorname{ar}\left[\widehat{f}_{h}(x)\right] \sum_{i=1}^{n} K\left(\frac{\left\|x_{i}-x\right\|}{h}\right) \leqslant \sigma^{2}$.

Exercise 4. Consider r.v.'s $Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}, i \in \llbracket 1, n \rrbracket$, where X_{1}, \ldots, X_{n} are \mathbb{R}^{d}-valued r.v.'s, $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. real-valued centred r.v.'s with finite variance σ^{2} and $f: \mathbb{R}^{d} \rightarrow$ \mathbb{R} is an unknown regression function. Suppose that f admits at least l derivatives with Lipschitz property with constant $L>0$. Given a bandwidth $h>0$, a kernel K and $U(x):=$ $\left(1, x, \ldots, \frac{x^{l}}{l!}\right)$ define a local polynomial estimator of degree l by $\widehat{f}_{h}(x):=\widehat{\theta}^{t} U(0)$ where

$$
\widehat{\theta}=\underset{\theta \in \mathbb{R}^{l+1}}{\arg \min } \sum_{i=1}^{n}\left|Y_{i}-\theta^{t} U\left(\frac{X_{i}-x}{h}\right)\right|^{2} K\left(\frac{X_{i}-x}{h}\right) .
$$

(a) Give an explicit form for $W_{i}(x)$ such that $\widehat{f}_{h}(x)=\sum_{i=1}^{n} Y_{i} W_{i}(x)$.
(b) Show that $\widehat{f}_{h}(x)$ reproduces polynomials of order lower or equal to l, that is to say, if Q is a polynomial of order lower that l, then $\sum_{i=1}^{n} Q\left(X_{i}\right) W_{i}(x)=Q(x)$.
(c) Deduce from this that $\sum_{i=1}^{n} W_{i}(x)=1$ and $\sum_{i=1}^{n}\left(X_{i}-x\right)^{k} W_{i}(x)=0$ for all $k \in \llbracket 1, l \rrbracket$.
(d) Suggest an estimator of the $k^{t h}$ derivative of f depending on $U, \widehat{\theta}$ and h.
(4 points)

