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There are 5 exercises with a total of 30 points on this sheet. 14 points are counted as bonus.

Exercise 1. A common elementary density estimator is an histogram estimator. Let p be
a density with support in the interval [0, 1] and X1, . . . , Xn

i.i.d.∼ p . For m ∈ N define bins
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)
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with bin-width h = 1/m. Furthermore let Yi be the number of observations in bin Bi,
f̂i := Yi/n and fi := λ(p1Bi

), where 1Bi
denotes the indicator function on the interval Bi.

The histogram estimator is defined by

p̂
h
(x) =

m∑
i=1

f̂i

h
1Bi

(x).

(a) Let m and x be fixed with x ∈ Bj . Find expressions for the expectation and variance
of p̂

h
(x) in dependence of fi.

(b) Show that limh→0 E(p̂h
(x)) = p(x), if p is continuous.

(c) Let p be differentiable with absolute continuous derivative ṗ satisfying λ(ṗ2) < ∞.
Show that

MISE =
h2

12
λ(ṗ2) +

1

nh
+ o(h2) + o

(
1

n

)
.

Find a value h∗ for the bin-width which minimises the last expression.
Hint: Calculate first the bias and then the variance of the estimator. Considering the
bias term use a Taylor development with appropriate expression for the reminder term
and integrate it by decomposing the integral into sum of integrals over the bins. For
the variance term a mean-value theorem for integrals might be helpful.

(d) Show that the MISE with value h∗ derived in (c) for large sample sizes n equals
approximately Cn−2/3 with C = (3/4)2/3

(
λ(ṗ2)

)1/3. Compare it with the MISE(ho)
for the kernel density estimator. Which estimator would you choose, if you want to
attain the fastest decay of the MISE? (8 points)

Exercise 2. Consider the Bart Simpson density

p
Bart

(x) =
1

2
φ(x; 0, 1) +

1

10

4∑
i=0

φ(x; (i/2)− 1, 1/10),



where φ(x;µ, σ2) denotes the density of a N(µ, σ2) normal-distribution with mean µ and
variance σ2.

(a) Use the software package R and the commands dnorm and plot, to define and to
plot the density. The plot explains the name of the density.

(b) Use the command rnorm to generate a sample from a normal-distribution. Describe
first theoretically an algorithm, how it can be used to generate a sample from the
density p

Bart
and secondly, implement the algorithm.

(c) With the command hist can you create histograms in R. Generate sufficiently many
i.i.d. r.v.’s with common density p

Bart
and calculate a histogram. Select appropriately

the parameter breaks of the function hist and plot in addition the theoretical den-
sity. (6 points)

Exercise 3. In the following we study empirically kernel density estimation and its robust-
ness using the software package R.

(a) Create a data set from a normal distribution of appropriate size using the command
rnorm. The kernel density estimator is implemented as function density. Have
a look at its possible parameters using the command ?density. Plot the kernel
density estimator selecting two different kernels. Compare the estimated densities
with the density of the data-generating normal distribution by using the command
curve which allows to add the true density to your plotted estimators.

(b) Visualise the behaviour of the kernel density estimator for different bandwidths. There-
fore, generate three data sets from a normal distribution with sample size n = 50, 500,
and 5000, respectively. Select the bandwidth by using the rule of thumb (Silverman).
Select in addition two other interesting bandwidths and plot each estimator together
with the true density.

(c) Study the behaviour of the estimator if some of the data points are outliers. Therefore,
generate six data sets each of size n = 5000 such that, respectively, 1%, 5% and 10%
of the data is not generated by a normal distribution but a Cauchy distribution with
location parameter 0.5 and scale parameter 1 and a χ2

5(0.5)-distribution. How does
the kernel density estimator behave? Would you say, that it is robust in the sense that
it is stable w.r.t. outliers? (6 points)

In the next two exercises we develop theory for multivariate kernel density estimators.

Exercise 4. Let X1, . . . be i.i.d. Rd-valued r.v.’s with common density p . For i ∈ J1, dK let
Ki be a kernel, i.e., Ki : R→ R is integrable with λKi = 1, we call K(x) =

∏d
i=1Ki(x

i),
x = (x1, . . . , xd) ∈ Rd, a product kernel. Given a product kernel K and a diagonal ma-
trix H := diag(h1, . . . , hd) with bandwidth-vector h = (h1, . . . , hd)a multivariate kernel
density estimator of p(x) for x ∈ Rd is defined by

p̂
H
(x) :=

1

n det(H)

n∑
i=1

K(H−1(Xi − x)).

Let p be twice continuous partial-differentiable in a neighbourhood of a point x ∈ Rd.



Consider a product kernel K with symmetric, bounded, compactly supported kernels Ki,
i ∈ J1, dK. Show that for n

∏d
i=1 h

i →∞ and hi = o(1) as n→∞ holds
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)
.

(5 points)

Exercise 5. LetK be kernel as in exercise 4,H =: diag(h1, . . . , hd) with bandwidth-vector
h = (h1, . . . , hd), and let the density p be continuous in a neighbourhood of x ∈ Rd. Show
that for n

∏d
i=1 h

i →∞ and hi = o(1) as n→∞ holds√√√√n
d∏
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)
.

(5 points)

A HAPPY NEW YEAR.

Handing in during the lecture on Friday, January 13, 2017 in fixed groups of two.


