Lecture course *Statistics II* Winter semester 2016/17 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES Xavier LOIZEAU

Exercise sheet 6

Exercise 1. Given $\Theta \subset \mathbb{R}^k$ let \mathbb{P}_{Θ} be an exponential family on (Ω, \mathscr{A}) with natural parametrisation and statistic $T : \Omega \to \mathbb{R}^k$ where for each $\theta \in \Theta$, \mathbb{P}_{θ} admits a likelihood function $L_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - H(\theta)) \cdot h(x), x \in \Omega$, w.r.t. a σ -finite measure μ and $\Theta = \{\theta \in \mathbb{R}^k : \mu(\exp(\langle \theta, T \rangle h) < \infty\}$ is the natural parameter space.

- (i) Show that the sequence of product experiments $(\Omega^n, \mathscr{A}^{\otimes n}, \mathbb{P}_{\Theta}^{\otimes n})$ is LAN for each inner point θ_o of Θ and derive its central sequence.
- (ii) Given $\mu_0 \in \mathbb{R}$ let $\{\mathbb{P}_b, b > 0\}$ be a family of Laplace distributions on $(\mathbb{R}, \mathscr{B})$ centred at μ_o where \mathbb{P}_b has a Lebesgue-likelihood $L_b(x) = \frac{1}{2b} \exp\left(-|x-\mu_0|/b\right)$, $x \in \mathbb{R}$, for each b > 0. Show with (i) that the sequence of product experiments $(\Omega^n, \mathscr{A}^{\otimes n}, \{\mathbb{P}_b^{\otimes n}, b > 0\})$ is LAN in every $b_o > 0$ and determine the central sequence.

Hint: Given an exponential family with natural parametrisation the map $\theta \mapsto H(\theta)$ is infinite many times differentiable at each inner point of Θ . Moreover, it holds $\dot{H}(\theta) = \mathbb{P}_{\theta}T$ and $\ddot{H}(\theta) = \mathbb{P}_{\theta}(T - \mathbb{P}_{\theta}T)(T - \mathbb{P}_{\theta}T)^{t}$. (4 points)

Exercise 2. Considering the product experiment $(\mathbb{R}^n, \mathscr{B}^{\otimes n}, \{\mathfrak{U}^{\otimes n}[0,\theta], \theta > 0\})$ test the null hypothesis $H_0: \theta = \theta_o$ against the alternative $H_1: \theta < \theta_o$ using the (uniformly most powerful) test $\phi_n = \mathbb{1}_{\{Z_n > c_n\}}$ with $Z_n := n(\theta_o - X_{(n)})$ and $X_{(n)} = \max\{X_i, i \in [\![1,n]\!]\}$.

- (i) Show that $Z_n \xrightarrow{d} Z \sim \mathfrak{Exp}(1/\theta_o)$ under $\mathfrak{U}^{\otimes n}[0, \theta_o]$. *Hint: The c.d.f. of* $X_{(n)}$ *satisfies* $\mathbb{F}_{X_{(n)}}(z) = (z/\theta_o)^n$ for $z \in [0, \theta_o]$.
- (ii) For each h > 0 show that $d\mathfrak{U}^{\otimes n}[0, \theta_o h/n]/d\mathfrak{U}^{\otimes n}[0, \theta_o] \xrightarrow{d} \exp(h/\theta_o) \mathbb{1}_{\{Z \ge h\}}$ under $\mathfrak{U}^{\otimes n}[0, \theta_o]$ and conclude that $\mathfrak{U}^{\otimes n}[0, \theta_o h/n] \triangleleft \mathfrak{U}^{\otimes n}[0, \theta_o]$.
- (iii) Exploit the abstract version of Le Cam's third Lemma (Theorem §3.2.5) to show that $Z_n \xrightarrow{d} L$ under $\mathfrak{U}^{\otimes n}[0, \theta_o h/n]$ and determine the distribution of L.
- (iv) Assume that $c_n \to c$ (it is not necessary to determine the sequence of critical values). Calculate the limit of the power $\beta_{\phi_n} (\theta_o - h/n)$. *Hint: If a sequence of c.d.f.'s converges point-wise, i.e.*, $\mathbb{F}_n(x) \xrightarrow{n \to \infty} \mathbb{F}(x)$ for all $x \in \mathbb{R}$, then it converges also uniformly, i.e., $\sup_{x \in \mathbb{R}} |\mathbb{F}_n(x) - \mathbb{F}(x)| \xrightarrow{n \to \infty} 0$.

(4 points)

Exercise 3. Consider a family of Pareto-distributions $\{\mathbb{P}_{\beta}, \beta > 2\}$ with likelihood $L_{\beta}(x) = \beta x^{-\beta-1}\mathbb{1}_{\{x>1\}}$ w.r.t. the Lebesgue measure on \mathbb{R} . Given $(X_1, \ldots, X_n) \bigotimes \mathbb{P}_{\beta}^{\otimes n}$ test the null hypothesis $H_0: \beta = 3$ against the alternative $H_1: \beta > 3$ using the test $\phi_n = \mathbb{1}_{\{-\overline{X}_n > d_n\}}$

with $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Determine a sequence d_n such that ϕ_n is an asymptotic level α test. Calculate the relative asymptotic efficiency of ϕ_n w.r.t. an asymptotic optimal test ϕ_n^* . Which sample size n is needed, such that ϕ_n has the same asymptotic power than $\phi_{n'}^*$ with sample size n' = 100.

Hint: You may use results obtained in Exercise 2. (4 points)

Exercise 4. Let X_1, \ldots, X_n be i.i.d. r.v.'s with common density f w.r.t. the Lebesgue measure on \mathbb{R} and let $R = (R_1, \ldots, R_n)$ be the associated rank vector.

- (i) Show that the rank vector R and the ordered vector $(X_{R_1}, \ldots, X_{R_n})$ are independent.
- (ii) Prove that the ordered vector (X_{R1},..., X_{Rn}) admits a density w.r.t. the Lebesgue measure given by n!1_B(x) ∏ⁿ_{i=1} f(x_i) with B := {(x₁,..., x_n) ∈ ℝ, x₁ < ... < x_n}. (4 points)