Lecture course *Statistics II* Winter semester 2016/17 Ruprecht-Karls-Universität Heidelberg

Prof. Dr. Jan JOHANNES Xavier LOIZEAU

Exercise sheet 4

- **Exercise 1.** (a) Let $R : \mathbb{R} \to \mathbb{R}$ be continuous at zero with R(0) = 0. For each $n \in \mathbb{N}$ consider r.v.'s $X_{1,n}, \ldots, X_{n,n}$ satisfying $\max\{|X_{i,n}|, i \in [\![1,n]\!]\} = o_{\mathbb{P}}(1)$ as $n \to \infty$. Show that $\max\{|R(X_{i,n})|, i \in [\![1,n]\!]\} = o_{\mathbb{P}}(1)$ as $n \to \infty$.
 - (b) Consider functions f, f₁, f₂,... in L²_μ satisfying (i) lim sup_{n→∞} μf²_n ≤ μf² and (ii) f_n(x) → f(x) as n → ∞ for all x. Show that, f_n → f in L²_μ as n → ∞.
 Hint: Fatou's lemma (4 points)

Exercise 2. Consider a location model $(\mathbb{R}, \mathbb{B}, \mathcal{P}_{\mathbb{R}})$ with likelihood w.r.t.. the Lebegues measure given by $L_{\theta}(x) = \frac{1}{2} \exp(-|x-\theta|), x, \theta \in \mathbb{R}$. Show that $\mathcal{P}_{\mathbb{R}}$ is Hellinger-differentiable. *Hint: Employ* $\sqrt{L_{\theta+h}(x)} - \sqrt{L_{\theta}(x)} = \int_{0}^{1} \frac{1}{2}h \operatorname{sign}(x-\theta-uh)\sqrt{L_{0}(x-\theta-uh)}du$ and proceed as in the proof of Proposition §4.2.2. (4 points)

Exercise 3. Consider $(\mathbb{R}, \mathbb{B}, \mathcal{P}_{\mathbb{R}})$ with likelihood w.r.t.. the Lebegues measure given by $L_{\theta}(x) = \theta^{-1} \mathbb{1}_{[0,\theta]}(x), x, \theta \in \mathbb{R}$, i.e. $X \sim \mathbb{P}_{\theta}$ is uniformly distributed on the interval $[0,\theta]$. Show that $\mathcal{P}_{\mathbb{R}}$ is not Hellinger-differentiable. (4 points)

Exercise 4. Consider a statistical scale model $(\mathbb{R}, \mathbb{B}, \mathcal{P}_{(0,\infty)})$ with likelihood w.r.t.. the Lebegues measure for each $\theta \in (0,\infty)$ given by $L_{\theta}(x) = \theta^{-1}g(x/\theta), x \in \mathbb{R}$, where g is strictly positive.

- (i) Find conditions on g such that the sequence of product experiments $(\mathbb{R}^n, \mathbb{B}^{\otimes n}, \mathcal{P}_{(0,\infty)}^{\otimes n})$ is LAN for all $\theta \in (0, \infty)$ and determine the central sequence.
- (ii) Show that the sequence of Gaussian location experiments $(\mathbb{R}^n, \mathbb{B}^{\otimes n}, \{\mathfrak{N}^{\otimes n}(0, \theta^2), \theta \in (0, \infty)\}$ is LAN in every $\theta \in (0, \infty)$ and determine the central sequence.

Hint: If $X \sim \mathfrak{N}(0,1)$ then $\mathbb{E}(X^2 - 1)^2 = 2.$ (4 points)