Lecture course Statistics II
Winter semester 2016/17
Ruprecht-Karls-Universität Heidelberg
Prof. Dr. Jan JOHANNES
Xavier LOIZEAU


## Exercise sheet 1

Exercise 1. Prove the following statements about stochastic Landau symbols:
(a) $o_{\mathbb{P}}(1)+o_{\mathbb{P}}(1)=o_{\mathbb{P}}(1)$
(b) $\left(1+o_{\mathbb{P}}(1)\right)^{-1}=O_{\mathbb{P}}(1)$
(c) $o_{\mathbb{P}}(1)=O_{\mathbb{P}}(1)$
(d) $O_{\mathbb{P}}(1)+O_{\mathbb{P}}(1)=O_{\mathbb{P}}(1)$
(e) $O_{\mathbb{P}}(1) o_{\mathbb{P}}(1)=o_{\mathbb{P}}(1)$
(f) $o_{\mathbb{P}}\left(O_{\mathbb{P}}(1)\right)=o_{\mathbb{P}}(1)$

Hints: The equations mean that sequences of r.v.'s in $o_{\mathbb{P}}(1)$ or $O_{\mathbb{P}}(1)$ combined according to the left hand side of the equations, yield a sequence with the property on the right hand side. For instance, (e) means that if $X_{n}=O_{\mathbb{P}}(1)$ and $Y_{n}=o_{\mathbb{P}}(1)$ then $X_{n} \cdot Y_{n}=o_{\mathbb{P}}(1)$. For (b) and (e) you may consider real valued r.v.'s only.

Exercise 2. Let $k \in \mathbb{N}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ with $g(0)=0$. Assume $\left(X_{n}\right)_{n \in \mathbb{N}}$ to be a sequence of $\mathbb{R}^{k}$-valued r.v.'s with $X_{n}=o_{\mathbb{P}}(1)$. Show the following statements:
(a) If $g(x)=o\left(\|x\|^{r}\right)$ as $x \rightarrow 0$, then $g\left(X_{n}\right)=o_{\mathbb{P}}\left(\left\|X_{n}\right\|^{r}\right)$.
(b) If $g(x)=O\left(\|x\|^{r}\right)$ as $x \rightarrow 0$ then $g\left(X_{n}\right)=O_{\mathbb{P}}\left(\left\|X_{n}\right\|^{r}\right)$.

Hints: We say that $g(x)=o\left(\|x\|^{r}\right)$ as $x \rightarrow 0$ if $\frac{g(x)}{\|x\|^{r}} \rightarrow 0$ as $x \rightarrow 0$, and that $g(x)=$ $O\left(\|x\|^{r}\right)$ as $x \rightarrow 0$, if there exists $\varepsilon>0$ with $\sup _{\|x\|<\varepsilon} \frac{g(x)}{\|x\|^{r}}<\infty$.

Exercise 3. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of r.v.'s and $\left(A_{n}\right)_{n \in \mathbb{N}}$ a sequence of events. We say that " $X_{n}=o_{\mathbb{P}}(1)$ on $A_{n}$ ", if for all $\varepsilon>0, \mathbb{P}\left(\left|X_{n}\right|>\varepsilon, A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that $X_{n}=o_{\mathbb{P}}(1)$ if $\mathbb{P}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.

Exercise 4. (Lemma §5.2.3) Assume that (i) $\Theta$ is compact, (ii) $M: \Theta \rightarrow \mathbb{R}$ is continuous and (iii) $M$ has a unique maximum $\theta_{0}$, i.e., there exists $\theta_{0} \in \Theta$ such that for all $\theta \in \Theta$ : $M(\theta)<M\left(\theta_{0}\right)$. Show that $\sup _{\theta \in \Theta: d\left(\theta, \theta_{0}\right)>\varepsilon} M(\theta)<M\left(\theta_{0}\right)$, for all $\varepsilon>0$.
(4 points)

Handing in on Friday, November 04, 2016 in fixed groups of two.

