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Chapter 1

Preliminaries

Elements of the PROBABILITY THEORY are recalled along the lines of
the lecture Statistik 1. For a detailed exposition with many examples we
refer to the text book Klenke [2008].

§01 Fundamentals

§01.01 Notation. For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x}
(integer part), x ∨ y = max(x, y) (maximum), x ∧ y = min(x, y) (minimum), x+ = max(x, 0)
(positive part), x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).

(i) We set R+ := [0,∞), R+
\0 := (0,∞), R\0 := R \ {0}, R := [−∞,∞], R+

:= [0,∞].

(ii) For a, b ∈ R with a < b we write Ja, bK := [a, b] ∩ Z, Ja, bJ := [a, b) ∩ Z and Ka, bK :=
(a, b] ∩ Z. Moreover, let JnK := J1, nK and JnJ := J1, nJ for n ∈ N.

(iii) For an = (ai)i∈JnK, b
n = (bi)i∈JnK ∈ R

n we write an < bn, if ai < bi for all i ∈ JnK. For
an < bn, define the open rectangle as the Cartesian product (an, bn) :=

n
i=1(ai, bi) :=

(a1, b1)× (a2, b2)× · · · × (an, bn). Analogously, we define [an, bn], (an, bn] and [an, bn).

(iv) We call B:= BR the Borel-σ-field over the compactified real line R, where the sets {−∞},
{∞} and R are in R closed and open, respectively, and hence Borel-measurable. In partic-
ular, the trace B := BR = B ∩ R of B over R is the Borel-σ-field over R. Furthermore,
we write B

+
:= B ∩R

+, B+ := B ∩R+ and B+
\0 := B ∩R+

\0.

(v) Given a measurable space (Ω,A ) a Borel-measurable function g : Ω→ R and f : Ω→ R

is called real and numerical, respectively, and we write g ∈ A and f ∈ A for short. g
respectively f is called positive if g(Ω) ∈ R+ respectively f(Ω) ∈ R

+, then we write
g ∈ A + and f ∈ A

+
- We call a Borel-measurable function fk = (fi)i∈JkK : Ω→ R

k, that
is fi ∈ A for each i ∈ JkK, and gk = (gi)i∈JkK : Ω→ Rk, numerical and real, respectively
and we write fk ∈ A

k
and gk ∈ A k for short.

§01.02 Property.

(i) For X, Y ∈ A and a ∈ R holds: aX ∈ A (with convention 0 × ∞ = 0); X ∨ Y :=
max(X, Y ), X ∧Y := min(X, Y ) ∈ A and particularly X+ := X ∨ 0, X− := (−X)+ ∈
A

+
, |X| ∈ A

+
, {X < Y }, {X 6 Y }, {X = Y } ∈ A , and bXc ∈ A

+
.

(ii) For Xn = (Xi)i∈JnK ∈ A n, i.e., Xi ∈ A , i ∈ JnK, and Borel-measurable h : Rn → Rm

holds h(Xn) ∈ A m, and in particular X1 +X2, X1 −X2, X1X2 ∈ A , and X1/X2 ∈ A .

(iii) Let (Xn)n∈N be a sequence in A . Then supn∈NXn ∈ A , infn∈NXn ∈ A , X? =
lim inf
n→∞

Xn ∈ A and X? = lim sup
n→∞

Xn ∈ A . If X := lim
n→∞

Xn exists, then X ∈ A .
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Chapter 1 Preliminaries §01 Fundamentals

(iv) Let S : (Ω,A ) → (S,S ) be measurable, σ(S) := S−1(S ) ⊆ A the sub-σ-field gener-
ated by S and Y : Ω → R. Then the following conditions are equivalent: (a) Y is σ(S)-
measurable, symbolically Y ∈ σ(S); (b) There exists a measurable ϕ : (S,S )→ (R,B),
in short ϕ ∈ S , with Y = ϕ(S). If Y is real, bounded or positive, then ϕ has each of those
properties too.

(Ω,A ) (S,S )

(R,B)

S

Y = ϕ(S) ∈ σ(S)
ϕ ∈ S

The function ϕ is uniquely determined by Y on S(Ω), and for all s 6∈ S(Ω) it can be
arbitrarily be extended.

(v) For every X ∈ A
+

the sequence of simple random variables (Xn)n∈N in A
+

given by
Xn := (2−nb2nXc) ∧ n satisfies (a) Xn ↑ X; (b) Xn 6 X ∧ n; (c) For each c ∈ R+ holds
limn→∞Xn = X uniformly on {X 6 c}.

§01.03 Notation. For a measure µ on (Ω,A ) we denote the integral of f ∈ A with respect to µ
by µf :=

∫
fdµ, if it exists. For s ∈ R+

\0 define ‖f‖Ls(µ) := (µ|f |s)1/s, and ‖f‖L∞(µ) :=

inf{c ∈ R+ : µ(|f | > c) = 0}. For s ∈ R
+

\0 := (0,∞] a function f ∈ A is called Ls(µ)
Ls(µ)-integrable, if ‖f‖Ls(µ) < ∞. We denote the set of all Ls(µ)-integrable functions by
Ls(µ) := Ls(A , µ) := {f ∈ A : ‖f‖Ls(µ) < ∞}. Note that ‖·‖Ls(µ) is a seminorm on
Ls(µ) for each s ∈ [1,∞]. Given a metric space (X , d) equipped with its Borel-σ-field BX
we denote by Cb := Cb(X ) the set of all bounded and continuous functions mapping X into
R. For any finite measure µ on (X ,BX ) we have ‖h‖L∞(µ) < ∞ for all h ∈ Cb and thus
Cb ⊆ L∞(BX , µ) in equal. We denote by λ the Lebesgue measure on (R,B) and write shortly
Ls(:) = Ls(B) := Ls(B, λ).

§01.04 Notation. We understand a vector ak = (ai)i∈JkK as a column vector, i.e., ak = (a1 · · · ak)t ∈
R
k and hence we identify R

k and R
(k,1). We denote by ‖·‖ and 〈·, ·〉 the Euclidean norm and

inner product on Rk, respectively, i.e, ‖ak‖ = (
∑

i∈JkK |ai|2)1/2 and 〈ak, bk〉 =
∑

i∈JkK aibi =

(bk)tak for all ak, bk ∈ R
k. For s ∈ R+

\0 we define ‖ak‖s := (
∑

i∈JkK |ai|s)1/s and ‖ak‖∞ :=

maxi∈JkK |ai|. Note that fk ∈ A
k

and gk ∈ A k imply ‖fk‖s ∈ A and ‖gk‖s ∈ A for any
s ∈ R

+

\0. We call fk = (fi)i∈JkK Lk

s(µ)-integrable if ‖fk‖s ∈ Ls(µ) or equivalently fi ∈ Ls(µ)
for each i ∈ JkK. We define ‖fk‖Lk

s(µ) := ‖‖fk‖p‖Ls(µ) and Lk

s(µ) := Lk

s(A , µ) := {fk ∈
A

k
: ‖fk‖Lk

s(µ) <∞} with a slight abuse of notation.

§01.05 Notation. Let X be a random variable, i.e. a measurable function, defined on a probabil-
ity space (Ω,A ,P) with values in a measurable space (X ,X ). The probability measure on
(X ,X ) induced by X is denoted by PX := P ◦ X−1 and we write X ∼ PX for short. For
f ∈ X the expectation of f with respect to PX or equivalently of f(X) with respect to P (if
it exists) is denoted by EXf := PXf = Pf(X) =: Ef(X) for short. For example, when ap-
plied to the empirical measure P̂n given by P̂n(x

n) := 1
n

∑
i∈JnK δxi for xn = (xi)i∈JnK ∈ X n this

yields P̂nf ∈ X with xn 7→ (P̂nf)(xn) := 1
n

∑
i∈JnK f(xi). In other words, for each xn ∈ X n,

(P̂nf)(xn) is an abbreviation for the average 1
n

∑
i∈JnK f(xi). We denote by W(X ) the set of
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§02 Convergence of random variables Chapter 1 Preliminaries

all probability measures on (X ,X ) and for Rn equipped with its Borel-σ-field Bn := BRn

byWs(Bn) ⊆ W(Bn) the subset of all probability measures on (Rn,Bn) with finite s ∈ R+

absolute mean, that is, for all P ∈ Ws(Bn) the identity mapping idn : Rn → Rn belongs to
Ln

s(P). Furthermore, for Y ∼ P we write E(Y ) = P(Y ) := P(idn) =
(
P(Π

i
)
)
i∈JnK using for

i ∈ JnK the coordinate map Π
i
: Rn → R with xn = (xi)i∈JnK 7→ Π

i
(xn) := xi.

§01.06 Property. Let X ∈ Lk

2(P), i.e. ‖X‖2
Lk

2(P) = P(‖X‖2) <∞. For each b ∈ Rn and A ∈ R(n,k)

we have Y := AX + b ∈ Ln

2(P). If we further denote by µ := PX ∈ Rk and Σ := Cov(X) =
P(X −µ)(X −µ)t = P(XX t)−µµt ∈ R(k,k) expectation vector and covariance matrix of X ,
respectively, then P(Y ) = Aµ+ b ∈ Rn and Cov(Y ) = AΣAt ∈ R(n,n).

§01.07 Definition. A Lk

2(P)-random vector X with µ := P(X) and Σ := Cov(X) is multivariate
normally distributed, X ∼ N(µ,Σ) for short, if for each c ∈ Rk the real random variable 〈X, c〉
is normally distributed with mean 〈µ, c〉 and variance 〈Σc, c〉, i.e., 〈X, c〉 ∼ N(〈µ,c〉,〈Σc,c〉). If
Idk denotes the k-dimensional identity matrix, then X ∼ N(0,Idk) is called a standard normal
random vector.

§01.08 Property. A random vector X = (Xi)i∈JkK is standard normal, i.e., X ∼ N(0,Idk) if and only if
its components {Xi, i ∈ JkK} are independent and identically N(0,1)-distributed.

§01.09 Remark. In other words, a multivariate N(0,Idk)-distribution equals the product of its marginal
N(0,1)-distributions, or N(0,Idk) = N⊗k(0,1) :=

⊗
i∈JkK N(0,1) for short.

§02 Convergence of random variables

Here and subsequently, a metric space is equipped with its Borel-σ-field.

§02.01 Definition. Let X and Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X , d). The sequence (Xn)n∈N converges to X:
(a) almost surely (P-a.s.), if P(limn→∞ d(Xn, X) = 0) = 1. We write Xn

n→∞−−−→ X P-a.s., or
briefly, Xn

P-a.s.−−−→ X .

(b) almost completely (P-a.c.), if
∑

n∈N P(d(Xn, X) > ε) < ∞ for all ε ∈ R+
\0. We write

Xn
n→∞−−−→ X P-a.c., or briefly, Xn

P-a.c.−−−→ X .

(c) in probability, if limn→∞ P
(
d(Xn, X) > ε

)
= 0 for all ε ∈ R+

\0. We write Xn
n→∞−−−→ X in

P, or briefly, Xn
P−→ X .

(d) in distribution, if limn→∞ PXnf = PXf for any f ∈ Cb(X ). We write Xn
n→∞−−−→ X in

distribution, or briefly, Xn
d−→ X and with a slight abuse of notation also Xn

d−→ PX .

(e) in Ls(P) or s-th mean, if limn→∞ P(d(Xn, X)s) = 0. We write Xn
n→∞−−−→ X in Ls(P), or

briefly, Xn
Ls(P)−−−→ X .

§02.02 Remark. Let X and Xn, n ∈ N, be random vectors in Rk, i.e., (Rk,Bk)-valued random
variables, and ‖·‖s as in Notation §01.04. Convergence of (Xn)n∈N to X in s-th mean, that is,
P‖Xn −X‖ss = ‖Xn −X‖sLk

s(P)

n→∞−−−→ 0, equals the component-wise convergence of (X i
n)n∈N

to X i in Ls(P), i.e., P|X i
n −X i|s = ‖X i

n −X i‖sLs(P)

n→∞−−−→ 0 for each i ∈ JkK.
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Chapter 1 Preliminaries §02 Convergence of random variables

§02.03 Property. Let X and Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X , d).

(i) The following statements are equivalent: (a) Xn
P-a.s.−−−→ X; (b) supm>n d(Xm, Xn)

P−→
0; (c) ∀ε, δ ∈ R+

\0 : ∃N ∈ N : ∀n > N : P
(⋂

j>n {d(Xj, X) 6 ε}
)

> 1 − δ and

(d) supm>n d(Xm, X)
P−→ 0.

(ii) (Continuous mapping theorem) Let g : X → R be continuous and let (Xn)n∈N converge
to X P-a.s. (respectively, in probability or in distribution). Then (g(Xn))n∈N converges to
g(X) P-a.s. (respectively, in probability or in distribution).

(iii) Counter examples show, that the converse (in gray) of the following direct implications (in
red) do not hold.

Xn
L∞(P)−−−−→ X

Xn
Ls(P)−−−→ X Xn

P-a.c.−−−→ X

Xn
Lr(P)−−−→ X Xn

P-a.s.−−−→ X

Xn
P−→ X

Xn
d−→ X

inf{ε ∈ R+
\0 : P(d(Xn, X) > ε) = 0} n→∞−−−−−→ 0

r < s

P
(
d(Xn, X)s

) n→∞−−−−−→ 0
∀ ε ∈ R+

\0 :
∑

n∈N

P
(
d(Xn, X) > ε

)
<∞

P(lim sup
n→∞

d(Xn, X) = 0) = 1

∀ ε ∈ R+
\0 : lim

n→∞
P
(
d(Xn, X) > ε

)
= 0

∀h ∈ Cb : lim
n→∞

PXnh = PXh

§02.04 Definition. A family of {Xn,j, j ∈ JknK, n ∈ N} of real L2-random variables is called a stan-
dardised array, if for every n ∈ N the family {Xn,j, j ∈ JknK} is independent, centred and
normed, i.e., E(Xn,j) = 0, j ∈ JknK and

∑
j∈JknK Var(Xn,j) = 1. A standardised array

{Xn,j, j ∈ JknK, n ∈ N} is said to satisfy
(a) the Lindeberg condition, if limn→∞

∑
j∈JknK E

(
X2
n,j1{|Xn,j |>δ}

)
= 0 for every δ ∈ R+

\0;

(b) the Lyapunov condition, if there is δ ∈ R+
\0 such that limn→∞

∑
j∈JknK E|Xn,j|2+δ = 0.

§02.05 Property. Let (Xn)n∈N be a sequence of independent real random variables.
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§02 Convergence of random variables Chapter 1 Preliminaries

(i) (Law of Large Numbers) Let Xn, n ∈ N, be identically distributed. Then X1 ∈ L1(P) if
and only if limn→∞

1
n

∑
i∈JnKXi = P(X1) P-a.s. (and then also in L1(P)).

(ii) (Lévy’s equivalence theorem) For partial sums (Sn :=
∑

i∈JnKXi)n∈N P-a.s. convergence
is equivalent to convergence in probability. Otherwise, they diverge with probability one.
(Kolmogorov’s three-series theorem) (Sn)n∈N converges P-a.s. if and only if there is ε ∈ R+

\0

such that each of the following three conditions holds: (a)
∑

n∈N P(|Xn| > ε) < ∞;
(b)

∑
n∈N E(Xn1{|Xn|6ε}) converges; and (c)

∑
n∈N Var(Xn1{|Xn|6ε}) <∞.

Let {Xn,j, j ∈ JknK, n ∈ N} be a standardised array.
(iii) The Lyapunov condition implies the Lindeberg condition.

(iv) (Central Limit Theorem of Lindeberg (1922)) If the Lindeberg condition hold, then (for the
row sum) S∗n =

∑
j∈JknKXnj

d−→ N(0,1).

§02.06 Remark (Law of Large Numbers). Let Xk
n , n ∈ N, be i.i.d. random vector in Rk. Then

‖Xk
1 ‖Lk

1(P) = P‖Xk
1 ‖1 <∞ if and only if 1

n

∑
i∈JnKX

k
i

P-a.s.−−−→ E(Xk
1 ) (then also in Lk

1(P)).

§02.07 Property (Portemanteau). Let X and Xn, n ∈ N, be random variables on a probability space
(Ω,A ,P) with values in a metric space (X , d). The following statements are equivalent:

(i) Xn
d−→ X;

(ii) lim infn→∞ P(Xn ∈ U) > P(X ∈ U) for all open U ⊆ X ;

(iii) lim supn→∞ P(Xn ∈ F ) 6 P(X ∈ F ) for all closed F ⊆ X ;

(iv) limn→∞ P(Xn ∈ B) = P(X ∈ B) for all measurable B with P(X ∈ ∂B) = 0 where B,
B
◦

and ∂B = B\B◦ is the closure, interior and the boundary of B, respectively.

§02.08 Property (Helly-Bray). Let X and Xn, n ∈ N, be random vectors in Rk with cumulative distri-
bution function (c.d.f.) for each x ∈ Rk given by F(x) := P(X 6 x) and Fn(x) := P(Xn 6 x).
Then the following statements are equivalent: (i) Xn

d−→ X and (ii) limn→∞ Fn(x) = F(x) for
all points of continuity x of F .

§02.09 Property (Continuous mapping theorem). Let (X1, d1) and (X2, d2) be metric spaces and let ϕ :
X1 → X2 be measurable. Denote by Uϕ the set of points of discontinuity of ϕ. If X and

Xn, n ∈ N, are X1-valued random variables with P(X ∈ Uϕ) = 0 and Xn
d−→ X , then

ϕ(Xn)
d−→ ϕ(X).

§02.10 Property (Slutzky’s lemma). Let X and Xn, Yn, n ∈ N, be random variables taking values in a
common metric space (X , d) and satisfying Xn

d−→ X and d(Xn, Yn)
P−→ 0. Then Yn

d−→ X .

§02.11 Example. Let X and Xn, n ∈ N, be a random vector in Rk satisfying Xn
d−→ X .

(a) If Yn, n ∈ N, are random vector in Rk and c ∈ Rk such that Yn
d−→ c, thenXn+Yn

d−→ X+c.

(b) If Σn, n ∈ N are random matrices in R(k,k) and Σ is a matrix in R(k,k) such that Σn
d−→ Σ,

then ΣnXn
d−→ ΣX . If in addition Σ is strictly positive definite, and thus invertible, then

Σ−1
n Xn

d−→ Σ−1X and Σ
−1/2
n Xn

d−→ Σ−1/2X .

Statistics 2 5



Chapter 1 Preliminaries §02 Convergence of random variables

§02.12 Property (Cramér-Wold device). Let Xn, n ∈ N, be random vectors in Rk. Then, the following
are equivalent: (a) There is a random vector X with Xn

d−→ X . (b) For any v ∈ Rk, there is a
real Xv with 〈v,Xn〉

d−→ Xv. If (a) and (b) hold, then Xv and 〈v,X〉 are identically distributed
(i.d.), Xv d

= 〈v,X〉 for short, for all v ∈ Rk.

§02.13 Property (Lindeberg-Feller CLT). For each n ∈ N let {Yn,j, j ∈ JknK} be independent and cen-
tred L p

2 -random vectors such that (i)
∑

j∈JknK E‖Yn,j‖21{‖Yn,j‖>ε}
n→∞−−−→ 0 for any εR+

\0 and

(ii)
∑

j∈JknK E(Yn,jY
t
n,j)

n→∞−−−→ Σ. Then
∑

j∈JknK Yn,j
d−→ N(0,Σ).

§02.14 Example. Let X and Xn, n ∈ N, be i.i.d. Lk

2(P)-random vectors with µ = P(X) and strictly
positive definite Σ = Cov(X).

(a) (CLT) 1√
n

∑
i∈JnK(Xi − µ)

d−→ N(0,Σ),

(b) (LLN) Xn := 1
n

∑
i∈JnKXi

P−→ µ,

(c) (LLN) 1
n

∑
i∈JnKXiX

t
i

P−→ E(XX t),

(d) Σ̂n := 1
n

∑
i∈JnK(Xi −Xn)(Xi −Xn)t = 1

n

∑
i∈JnKXiX

t
i −XnX

t

n
P−→ E(XX t) − µµt =

Cov(X) = Σ (using (b) and (c) and continuous mapping theorem §02.03)

(e)
√
nΣ
−1/2
n (X − µ)

d−→ N(0,Idk) (using (a), (d) and Slutzky’s lemma §02.10 as in the Exam-
ple §02.11 (b))

§02.15 Remark. A map φ : Rk → Rm, that is defined at least in a neighbourhood of θo, is called
differentiable at θo, if there exists a linear map (matrix) φ̇θo : Rk → Rm such that

lim
θ→θo

‖φ(θ)− φ(θo)− φ̇θo(θ − θo)‖
‖θ − θo‖

= 0.

The linear map x 7→ φ̇θo(x) is called (total) derivative as opposed to partial derivatives. A
sufficient condition for φ to be (totally) differentiable is that all partial derivatives ∂φj(θ)/∂θl
exist for θ in a neighbourhood of θo and are continuous at θo.

§02.16 Property (Delta method). Let φ : Rk ⊃ Dφ → Rm be a map defined on a subset Dφ of Rk

and differentiable at θo. Let T and Tn, n ∈ N be random variables taking their values in the
domain Dφ of φ. If rn(Tn− θo)

d−→ T for numbers rn →∞, then rn(φ(Tn)− φ(θo))
d−→ φ̇θo(T ).

Moreover, the difference between rn(φ(Tn)− φ(θo)) and φ̇θo(rn(Tn − θo)) converges to zero in
probability.

§02.17 Remark. Commonly,
√
n(Tn − θo)

d−→ N(µ,Σ). Then applying the delta method it follows that
√
n(φ(Tn)− φ(θo))

d−→ N(φ̇θoµ,φ̇θoΣφ̇tθo ).

§02.18 Property (Markov’s inequality). IfX is a Lk

s(P)-random vector for some s > 1, then P(‖X‖s >
c) 6 c−sP(‖X‖ss) = c−s‖X‖sLk

s(P).

§02.19 Property (Monotone convergence). Let (Xn)n∈N be a sequence of monotonically increasing real
L1(P)-random variables converging P-a.s. to a numerical random variable X , for short Xn ↑
X P-a.s.. Then PX = limn→∞ PXn.

6 Statistics 2
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§02.20 Property (Dominated convergence). Let (Xn)n∈N be a sequence of real L1(P)-random variables
converging P-a.s. to a numerical random variable X , i.e., Xn

P-a.s.−−−→ X . If there is a real
L1(P) random variable Y with supn∈N |Xn| 6 Y P-a.s. (and thus supn∈N |Xn| ∈ L1(P)), then

X ∈ L1(P) and Xn
L1(P)−−−→ X .

§02.21 Definition. A sequence of random variables (Xn)n∈N with values in a metric space (X , d) is
called (uniformly) tight (straff) or bounded in probability, if, for any ε ∈ R+

\0, there exists a
compact set Kε ⊆ X such that P(Xn ∈ Kε) > 1− ε for all n ∈ N.

§02.22 Remark. If (X , d) is Polish, i.e., separable and complete, then everyX -valued random variable
is bounded in probability and thus so is every finite family.

§02.23 Example. A sequence (Xn)n∈N of random vectors in Rk is bounded in probability, if for any
ε > 0, there exists a constant Kε such that P(‖Xn‖ > Kε) 6 ε for all n ∈ N.

§02.24 Property (Prohorov’s theorem). Let X and Xn, n ∈ N, be random variables with values in a
Polish space.

(i) If Xn
d−→ X , then (Xn)n∈N is bounded in probability.

(ii) If (Xn)n∈N is bounded in probability, then there exists a sub-sequence (Xnk)k∈N which
converges in distribution.

§02.25 Landau notation. Let Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X , d) and let xn, n ∈ N, belong to X .
(i) We write (a) xn = o(1), if d(xn, 0)

n→∞−−−→ 0, and (b) xn = O(1), if supn∈N d(xn, 0) < ∞,
and analogously (a) Xn = oP(1), if Xn

P−→ 0, and (b) Xn = OP(1), if (Xn)n∈N is bounded
in probability

(ii) Let an, n ∈ N, be strictly positive numbers. We write (a) xn = o(an), if d(xn, 0)/an =
o(1), and that (b) xn = O(an), if d(xn, 0)/an = O(1), and analogously (a) Xn = oP(an),
if d(Xn, 0)/an = oP(1), and (b) Xn = OP(an), if d(Xn, 0)/an = OP(1).

(iii) Let An, n ∈ N, be strictly positive random variables on (Ω,A ,P). We write (a) Xn =
oP(An), if d(Xn, 0)/An = oP(1), and (b) Xn = OP(An), if d(Xn, 0)/An = OP(1).

§02.26 Property (Exercise). For real random variables the following properties hold:
(i) oP(1) + oP(1) = oP(1) meaning if Xn = oP(1) and Yn = oP(1) then Xn + Yn = oP(1);

(ii) OP(1) + oP(1) = OP(1);

(iii) OP(1) · oP(1) = oP(1);

(iv) (1 + oP(1))−1 = OP(1);

(v) oP(OP(1)) = oP(1) meaning if Xn = OP(1) and Yn = oP(Xn) then Yn = oP(1).

§03 Conditional expectation

In the reminder of this section let (Ω,A ,P) be a probability space, E be the expectation with
respect to P and F ⊆ A be a sub-σ-field of A .
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§03.01 Notation. We write shortly X ∈ A
+

, if X is a positive numerical random variable on (Ω,A ),
i.e., X : Ω → R

+ is a A -B
+

-measurable function. In particular, we have F
+ ⊆ A

+
and for

Y ∈ F
+

its expectation E(Y ) is well-defined.

§03.02 Property. For every X ∈ A
+

exists Y ∈ F
+

with E(1FY ) = E(1FX) for all F ∈ F , where
Y is unique up to P-a.s. equality.

§03.03 Definition. A map Y : Ω→ R
+ is called a (version of the) conditional expectation ofX ∈ A

+

given F , symbolically E
(
X
∣∣F) := Y , if

(CE1) Y is F -B
+

-measurable, hence Y ∈ F
+

and

(CE2) E(1FY ) = E(1FX) for any F ∈ F .

Any map E
(
•
∣∣F) : A

+ → F
+

with X 7→ E
(
X
∣∣F) is called (version of the) condi-

tional expectation with respect to P given F . It implies a map P
(
•
∣∣F) : A → F

+
with

A 7→ P
(
A
∣∣F) := E

(
1A
∣∣F) called (version of the) conditional distribution of P given F .

Exploiting (CE2) every version satisfies E(1FP
(
A
∣∣F)) =

∫
F
P
(
A
∣∣F)dP = P(F ∩ A) for all

F ∈ F and A ∈ A .

§03.04 Reminder. Let X ∈ A be a numerical random variable. Considering the decomposition
X = X+ −X− with X+, X− ∈ A

+
we define for X with P(|X|) < ∞, hence E(X+) < ∞

and E(X−) <∞, the expectation E(X) := E(X+)−E(X−). Keep in mind that L1(A ,P) :=
{X ∈ A : E(|X|) <∞} and E : L1(A ,P)→ R denotes the uniquely determined expectation
with respect to P. Note that F ⊆ A implies L1(F ,P) ⊆ L1(A ,P). Let X ∈ L1(A ,P),
and hence E(X+) < ∞ and for any version E

(
X+
∣∣F) holds (CE1), E

(
X+
∣∣F) ∈ F

+

and (CE2), E(1FE
(
X+
∣∣F)) = E(1FX

+) for all F ∈ F , in particular with F = Ω also
E(E

(
X+
∣∣F)) = E(X+) < ∞. Therewith, E

(
X+
∣∣F) ∈ L1(F ,P) and analogously also for

any version E
(
X−
∣∣F) ∈ L1(F ,P). Consequently, E

(
X+
∣∣F) − E

(
X−
∣∣F) ∈ L1(F ,P)

satisfies (CE2) too.

§03.05 Definition. For X ∈ L1(A ,P) and each version E
(
X+
∣∣F),E(X−∣∣F) ∈ L1(F ,P) we call

E
(
X
∣∣F) := E

(
X+
∣∣F) − E

(
X−
∣∣F) ∈ L1(F ,P) a (version of the) conditional expectation

of X given F . Any map

E
(
•
∣∣F) : L1(A ,P)→ L1(F ,P) with X 7→ E

(
X
∣∣F) := E

(
X+
∣∣F)− E

(
X−
∣∣F)

is called a (version of the) conditional expectation with respect to P given F .

§03.06 Remark. Due to Property §03.02 versions of the conditional expectation of X ∈ A
+

or X ∈
L1(A ,P) given F differ only on null sets. This property does in generally not extend to the
version of the conditional expectation with respect to P given F , since for each X we obtain a
null set, and their union in general is not a null set.

§03.07 Definition. Let (Ω1,A1), (Ω2,A2) be measurable spaces. A map κ : Ω1 ×A2 → R+ is called
Markov kernel (from (Ω1,A1) to (Ω2,A2)), if
(MK1) A2 7→ κ(ω1, A2) is for all ω1 ∈ Ω1 a probability measure on (Ω2,A2), symbolically

κ(ω1, •) ∈ W(A2);

(MK2) ω1 7→ κ(ω1, A2) is A1-B-measurable for all A2 ∈ A2, symbolically κ(•, A2) ∈ A +
1 .
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§03.08 Notation. Consider a probability space (Ω1,A1,P), a measurable space (Ω2,A2) and a Markov
kernel κ (from (Ω1,A1) to (Ω2,A2)). Then there exists an unique probability measure κ � P

on (Ω2 × Ω1,A2 ⊗A1) determined by

κ� P(A2 × A1) =

∫
A1

κ(ω1, A2)P(dω1), for all A1 ∈ A1, A2 ∈ A2.

If f ∈ A2 ⊗A1
+

or f ∈ L1(κ� P) then

κ� Pf =

∫
Ω2×Ω1

f(ω2, ω1)κ� P(dω2, dω1) =

∫
Ω1

∫
Ω2

f(ω2, ω1)κ(ω1, dω2)P(dω1).

Furthermore, we denote by κP the marginal distribution on (Ω2,A2) induced by κ � P, i.e.
κP(A2) = κ� P(A2 × Ω1) =

∫
Ω1
κ(ω1, A2)P(dω1) for all A2 ∈ A2.

§03.09 Definition.
(a) P

(
•
∣∣F) is called regular (version of the) conditional distribution of P given F , if

(ω,A) 7→ P
(
A
∣∣F)(ω) satisfies the conditions (MK1) and (MK2), i.e. P

(
•
∣∣F) is a Markov

kernel (from (Ω,F ) to (Ω,A )).

(b) E
(
•
∣∣F) is called regular (version of the) conditional expectation with respect to P given

F , if the implied conditional distribution P
(
•
∣∣F) of P given F is regular, and for each

ω ∈ Ω is X 7→ E
(
X
∣∣F)(ω) the expectation with respect to P

(
•
∣∣F)(ω).

§03.10 Property.
(i) Each regular conditional distribution of P given F is implied by a regular conditional

expectation with respect to P given F .

(ii) For any probability measure P on a polish space (Ω, d) endowed with its Borel-σ-algebra
BΩ and sub-σ-field F ⊆ BΩ exists a regular conditional distribution of P given F .

§03.11 Notation.
(i) Let X be a random variable on (Ω,A ,P) with values in a measurable space (X ,X ). For

h ∈ L1(X ,PX) denotes EX
(
h
∣∣F) := E

(
h(X)

∣∣F) ∈ L1(F ,P) a conditional expecta-
tion of h(X) given F and EX

(
•
∣∣F) : L1(X ,PX)→ L1(F ,P) with h 7→ EX

(
h
∣∣F) a

(regular) (version of the) conditional expectation with respect to PX given F .

(ii) Let S be a random variable on (Ω,A ,P) with values in a measurable space (S,S ). For
h ∈ L1(A ,P) we call E

(
h
∣∣σ(S)

)
∈ L1(σ(S),P) be a conditional expectation of h given

F = σ(S). Keeping E
(
h
∣∣σ(S)

)
∈ σ(S) in mind and applying Property §01.02 (iv) there

is ϕ ∈ S with E
(
h
∣∣σ(S)

)
= ϕ(S), that is, E

(
h
∣∣σ(S)

)
(ω) = ϕ(S(ω)), ω ∈ Ω. Then

E
(
h
∣∣S) := ϕ ∈ L1(S ,PS) and E

(
h
∣∣S = s

)
:= ϕ(s) ∈ R is called a (version of the)

conditional expectation of h given S respectively S = s, and E
(
•
∣∣S) : L1(A ,P) →

L1(S ,PS) with X 7→ E
(
X
∣∣S) a (regular) (version of the) conditional expectation with

respect to P given S.

(iii) Let (X,S) : (Ω,A ) → (X × S,X ⊗ S ) with joint distribution P(X,S). We denote by
Π
X

: X × S → X and Π
S

: X × S → S with (x, s) 7→ Π
X
(x, s) := x and (x, s) 7→

Π
S
(x, s) := s, respectively, the corresponding coordinate maps. The marginal distribution

ofX respectively S is given by PX = P◦X−1 = P◦Π−1
X

(X,S) = P(X,S)◦Π−1
X

respectively
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PS = P(X,S) ◦Π−1
S

. For each version P(X,S)
(
•
∣∣σ(Π

S
)
)

of the conditional distribution with
respect to P(X,S) given σ(ΠS), the map

PX
(
•
∣∣S) : X → S with B 7→ PX

(
B
∣∣S) := ϕ determined by

PX
(
B
∣∣σ(Π

S
)
)

= P(X,S)
(
Π−1
X

(B)
∣∣σ(Π

S
)
)

= ϕ(Π
S
)

and analogously PX
(
•
∣∣S = s

)
is called (version of the) conditional distribution of X

given S respectively S = s. We call a version regular, if (s, B) 7→ PX
(
B
∣∣S = s

)
is

a Markov kernel (from (S,S ) to (X ,X )), where due to Definition §03.03 (CE2) PX
(
•∣∣S) � PS = P(X,S) (see Notation §03.08). Analogously, for h ∈ L1(X ,PX) we define a

(regular) version EX
(
h
∣∣S) ∈ L1(S ,PS) and EX

(
h
∣∣S = s

)
∈ R of the conditional expec-

tation of h given S respectively S = s. If PX
(
•
∣∣S) is a regular conditional distribution

of X given S and for s ∈ S the probability measure PX
(
•
∣∣S = s

)
has for example a

finite first absolute moment, i.e., PX
(
•
∣∣S = s

)
∈ W1(Bn) (see Notation §01.05) then

E
(
X
∣∣S = s

)
= EX

(
idX
∣∣S = s

)
=
∫
X xP

X
(
dx
∣∣S = s

)
.

(iv) Suppose the joint distribution P(X,S) is dominated by a product measure µ ⊗ ν where µ
and ν is a σ-finite measure on X and S , respecitively, µ ∈Mσ(X ) and ν ∈Mσ(S ) for
short. Let f(X,S) denote a (µ⊗ν)-density of P(X,S). A µ- and ν-density of the marginal distri-
bution PX and PS is given by fX : x 7→

∫
S f

(X,S)(x, s)ν(ds) and fS : s 7→
∫
X f(X,S)(x, s)µ(dx),

respectively. The fX|S : S × X → R
+ with

(s, x) 7→ fX|S=s(x) =
f(X,S)(x, s)

fS(s)
1{fS(s)>0} + fX(x)1{fS(s)=0}

belongs to S ⊗X
+

and it is a µ-density of the Markov kernel PX|S from (S,S ) to
(X ,X ) defined by (s, B) 7→ PX|S=s(B) :=

∫
B
fX|S=s(x)µ(dx). We call fX|S=s conditional

density of X given S = s.

(v) As an example let (X,S) ∈ Bk+l be multivariate normally distributed with Cov(X,S) =
ΣXS and marginal distributions X ∼ N(µX ,ΣX) and S ∼ N(µS ,ΣS), i.e.,(

X
S

)
∼ N(µ,Σ) with µ =

(
µX
µS

)
∈ Rk+l and Σ =

(
ΣX ΣXS

Σt
XS ΣS

)
.

Assuming Σ > 0 the joint distribution P(X,S) admits a density with respect to the Lebesgue
measure λk+l on (Rk+l,Bk+l). For each s ∈ Rl the conditional density fX|S=s as in (iv) is
a density of the multivariate normal distribution N(µX|S=s,ΣX|S=s)-distribution with

µX|S=s := µX + ΣXSΣ−1
S (s− µS) ∈ Rk und ΣX|S=s := ΣX − ΣXSΣ−1

S ΣSX > 0

which is thus a regular conditional distribution of X given S = s.

§03.12 Property. Let X, Y ∈ L1(A ,P) and F ⊆ A be a sub-σ-field. Any version of the conditional
expectation satisfies the following properties P-a.s.:
(i) For all a, b ∈ R holds E

(
aX + bY

∣∣F) = aE
(
X
∣∣F)+ bE

(
Y
∣∣F); (linear)

(ii) For X 6 Y holds E
(
X
∣∣F) 6 E

(
Y
∣∣F); (monotone)

(iii) |E
(
X
∣∣F)| 6 E

(
|X|
∣∣F); (triangular inequality)

(iv) For S ∈ A with E
(
|S|
∣∣F) <∞ holds P(|S| <∞) = 1. (finite)
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(v) For φ : R→ R convex with φ(X) ∈ L1(A ,P) (Jensen’s inequality)
holds φ

(
E
(
X
∣∣F)) 6 E

((
φ(X)

)∣∣F).
(vi) For Xn ↑ X P-a.s. holds supn∈N E

(
Xn

∣∣F) = E
(
X
∣∣F). (monotone convergence)

(vii) For Xn → X P-a.s. with |Xn| 6 Y , n ∈ N, (dominated convergence)
holds limn→∞ E

(
Xn

∣∣F) = E
(
X
∣∣F) P-a.s. and in L1(A ,P).

If the version is regular, i.e., E
(
•
∣∣F)(ω) is an expectation for all ω ∈ Ω, then the statements

(i)-(vii) holds for all ω ∈ Ω.

§03.13 Property. Let X, Y ∈ L1(A ,P) and G ⊆ F ⊆ A sub-σ-fields. Any version of the condi-
tional expectation satisfies the following properties P-a.s.:
(i) For E(|XY |) <∞ and Y ∈ F holds

E
(
XY

∣∣F) = Y E
(
X
∣∣F) and E

(
Y
∣∣F) = E

(
Y
∣∣σ(Y )

)
= Y ;

(ii) E
(
E
(
X
∣∣F)∣∣G ) = E

(
E
(
X
∣∣G )∣∣F) = E

(
X
∣∣G ); (tower property)

(iii) If σ(X) and F are independent, then E
(
X
∣∣F) = E(X); (independence)

(iv) E(E
(
X
∣∣F)) = E(X). (total probability)

(v) For T :=
{
A ∈ A |P(A) ∈ {0, 1}

}
holds E

(
X
∣∣T ) = E(X).

§03.14 Property. Let F ⊆ A be a sub-σ-field and E
(
•
∣∣F) be a conditional expectation.

(i) E
(
•
∣∣F) : L2(A ,P) → L2(F ,P) is an orthogonal projection, that is, for all X ∈

L2(A ,P) and Y ∈ L2(F ,P) holds

‖X − Y ‖2
L2(P) = E(|X − Y |2) > E(|X − E

(
X
∣∣F)|2) = ‖X − E

(
X
∣∣F)‖2

L2(P),

where equality holds if and only if Y = E
(
X
∣∣F) P-a.s..

(ii) E
(
•
∣∣F) : Ls(A ,P)→ Ls(F ,P) is a contraction for s ∈ [1,∞], i.e., ‖E

(
X
∣∣F)‖Ls(P) 6

‖X‖Ls(P), and thus bounded and continuous. If (Xn)n∈N converges in Ls(A ,P), then
(E
(
Xn

∣∣F))n∈N converges in Ls(F ,P).
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Chapter 2

Asymptotic properties of M- and Z-estimators

Asymptotic properties of M - and Z-estimators are presented generalising
the minimum contrast approach introduced in the lecture Statistik 1. For
a more detailed exposition we refer to the text book van der Vaart [1998].

§04 Introduction / motivation / illustration

§04.01 Example (Linear model). The dependence of the variation of a real random variable Y1 (re-
sponse) on the variation of a random vector X1 = (X1j)j∈JkK in Rk (explanatory variable) is
often described by a linear relationship E

(
Y1

∣∣X1

)
=
∑

j∈JkK γjX1j = X t
1γ or equivalently

Y1 = X t
1γ + ε1 where ε1 is a real random error satisfying E

(
ε1

∣∣X1

)
= 0. We aim to infer on

the unknown parameter of interest γ ∈ Rk from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK. Writing
Y := (Yi)i∈JnK and X t = (X1 · · ·Xn) we have E

(
Y
∣∣X) = Xγ. Any (measurable) choice

γ̂ ∈ arg inf
γ∈Rk

M̂n(γ) with M̂n(γ) := 1
n

∑
i∈JnK

(Yi −X t
iγ)2 = 1

n
‖Y −Xγ‖2 (04.1)

is called a Least Squares Estimator (LSE), where arg inf denotes the subset of vectors in Rk at-
taining the function’s smallest value. IfX tX =

∑
i∈JnKXiX

t
i is strictly positive definite (hence,

invertible) then γ̂ = (X tX)−1X tY =
(∑

i∈JnKXiX
t
i

)−1∑
i∈JnK YiXi is the unique LSE. Under

“usual“ conditions (Example §02.14) holds 1
n

∑
i∈JnKXiX

t
i

P−→ E(X1X
t
1) =: Ω (LLN). If in

addition E(ε2
i |Xi) = σ2, then 1√

n

∑
i∈JnK εiXi

d−→ N(0,σ2Ω) (CLT). Applying Slutzky’s lemma

§02.10 and the continuous mapping theorem §02.09 holds
√
n(γ̂ − γ)

d−→ N(0,σ2Ω−1) for Ω > 0.
Further inference on γ̂ (hypothesis testing, confidence intervals, etc.) is typically based on this
asymptotic result. However, a linear relationship E

(
Y
∣∣X) = Xγ is often too restrictive.

§04.02 Example (Generalised linear model). Consider a real random variable Y1 and a random vector
X1 in Rk obeying E

(
Y1

∣∣X1

)
= g(X t

1γ) for a known link function g : R → R. We aim to
infer on the unknown parameter of interest γ ∈ Rk from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK.
As an illustration let us consider the effect of three different drugs on the behaviour of certain
animals. In a trial each drug is given in different dose to certain animals and the number of
effected animals is counted. The Table 1.1 summarises the results. Let Yjk denote the counts of
an effect among njk animals applying a log-dose Xjk, j ∈ JJkK of the drug k ∈ JKK. Assuming
an “independent and identical” behaviour of the njk animals it seems reasonable to model Yjk as
Binomial-distributed random variable, Yjk ∼ Bin(njk,πjk) for short, with unknown percentage
πjk ∈ (0, 1). It may be reasonable to assume that njkπjk = E

(
Yjk
∣∣Xjk

)
= g(γk + γ0Xjk)

where (γk)k∈JKK is a drug specific factor and γ0 is a common effect of the log-dose for all drugs.
The model is called “probit” and “logit”, respectively, if g is the standard-normal distribution
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function and the logit-distribution function (x 7→ ex

1+ex
). As in Example §04.01 inference on

γ = (γk)k∈J0,KK is often based on a LSE, i.e., any (measurable) choice γ̂ ∈ arg infγ∈RK+1 M̂n(γ)

with M̂n(γ) := 1
K

∑
k∈JKK

1
JK

∑
j∈JJkK(Yjk − g(γk + γ0Xjk))

2.

drug log-dose effect no effect drug log-dose effect no effect

1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Table 1.1: Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.
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Figure 1.1: Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: ◦; 3: -.

§04.03 Example (Nonlinear regression). Consider a real random variable Y1 and a random vector X1 in
Rk obeying E

(
Y1

∣∣X1

)
= g(X1, γ) for a given link function g : Rk ×Rp → R. We aim to infer

on the unknown parameter γ ∈ Rp from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK. The next figure
shows the widely used Gompertz function g(x, (a, b, c)) = a exp(−b exp(x log(c))).
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As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane

3,541 205,8 90,9 37,1 5,686 297,3 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 49,4 2,648 305,7 142 86
4,722 401,6 187,2 44,9 3,303 300,1 143,7 90,2
0,593 224,9 92,7 116,3 3,054 305,4 141,1 87,4
0,268 402,6 102,2 128,9 3,302 305,2 141,5 87
2,797 212,7 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33
3,196 133,3 140,8 87,6 2,002 417,2 83,9 32,9
2,021 470,9 144,2 86,9 9,604 251 294,4 41,5
0,896 300 68,3 81,7 7,754 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2

Table 1.3: Isomerisation reaction rate of an n-pentane into an isopentane.
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Figure 1.3: Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special
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case is given by

E
(
Yi
∣∣(Xi1, Xi2, Xi3)

)
=

γ1γ3(Xi2 −Xi3/1.632)

1 + γ2Xi1 + γ3Xi2 + γ4Xi3

, i ∈ JnK, (04.2)

where Xi1, Xi2 and Xi3 is the partial pressure of hydrogen, isopentane and n-pentane, re-
spectively, and (γj)j∈J4K is the unknown parameter of interest. As in Example §04.01 infer-
ence on γ is often based on a LSE, i.e., any (measurable) choice γ̂ ∈ arg infγ∈R4 M̂n(γ) with
M̂n(γ) := 1

n

∑
i∈JnK(Yi − g(Xi, γ))2.

§04.04 Example (Quantile regression). Consider a real random variable Y1 and a random vector X1 in
Rk obeying Y1 = X t

1γ + ε1 with quantile condition P
(
ε1 6 0

∣∣X1

)
= α for a given probability

α ∈ (0, 1) or equivalently P
(
Y1 6 X t

1γ
∣∣X1

)
= α meaning that the conditional-α-quantile of

Y1 given X1 equals X t
1γ. Let qα denote the α-quantile of PZ ∈ W(B), i.e., P(Z 6 qα) = α.

Define τα(z) := (1−α)z−+αz+ where τα(z) = (1−α)|z| if z 6 0 and τα(z) = αz otherwise.
Under regularity conditions the function q 7→ E(τα(Z − q)) attains its minimum at the value
q = qα. Roughly, the α-quantile satisfies 0 = ∂

∂q
E(τα(Z − q))

∣∣
q=qα

, since

∂

∂q
E(τα(Z − q)) = (1− α)

∂

∂q

∫ q

−∞
(q − z)f(z)dz + α

∂

∂q

∫ ∞
q

(z − q)f(z)dz

= (1− α)

∫ q

−∞
f(z)dz − α

∫ ∞
q

f(z)dz

= (1 − α)P(Z 6 q) − αP(Z > q) = P(Z 6 q) − α.

Thereby, a reasonable estimator of γ is any (measurable) choice γ̂ ∈ arg infγ∈Rk M̂n(γ) with
M̂n(γ) = 1

n

∑
i∈JnK τα(Yi −X t

iγ).

§04.05 Example (Generalised Method of Moments). Given a random vector Z1 in Rp and a function hJ =
(hj)j∈JJK : Rk × Rp → RJ let the unknown parameter of interest γ ∈ Rk satisfy PZ1hj(γ) =
E
(
hj(γ, Z1)

)
= 0 for all j ∈ JJK, or PZ1hJ(γ) = E

(
hJ(γ, Z1)

)
= 0 for short. Supposing an

i.i.d. sample (Zi)i∈JnK any (measurable) choice γ̂ satisfying P̂nhj(γ̂) = 1
n

∑
i∈JnK hj(γ̂, Zi) = 0

for all j ∈ JJK, or Ĥn(γ̂) = 0 with Ĥn(γ) := P̂nh
J(γ) = 1

n

∑
i∈JnK hJ(γ, Zi), γ ∈ Rk, for

short, is called moment estimator. In case a moment estimator does not exist, setting M̂n(γ) :=
(P̂nh

J(γ))tWn(P̂nh
J(γ)) for a given weighting matrix Wn one might consider any (measurable)

choice γ̂ ∈ arg infγ∈Rk M̂n(γ) called a Generalised Method of Moments (GMM) estimator.

§04.06 Reminder. Denote byW(X ) the set of all probability measures on a measurable space (X ,X ).
For a non-empty index set Θ a family PΘ := (Pθ)θ∈Θ of probability measures on X is formally
defined by the map Θ → W(X ) with θ 7→ Pθ. Here and subsequently, for each θ ∈ Θ denotes
Eθ the expectation with respect to Pθ. For a random variable X taking its values in (X ,X ) we
write shortly X©∼ PΘ, if X ∼ Pθ for some θ ∈ Θ. If the random variables {Xi, i ∈ JnK} form
an independent and identically distributed (i.i.d.) sample of X ∼ P with values in (X ,X ),
then P⊗n = ⊗j∈JnKP denotes the joint product probability measure of the family (Xi)i∈JnK tak-

ing its values in the measurable product space (X n,X ⊗n). We write {Xi, i ∈ JnK} i.i.d.∼ P or
(Xi)i∈JnK ∼ P⊗n for short. We denote by P⊗nΘ := (P⊗nθ )θ∈Θ a family of product probability
measures on X ⊗n. Any random variable S on (X ,X ) taking values in a measurable space
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(S,S ), i.e., X -S -measurable function S : X → S, is called observation or statistic. We
denote by PSΘ := (PSθ )θ∈Θ the family of probability measures on (S,S ) induced by S. A map γ
: Θ→ Γ and its value γ(θ) for each θ ∈ Θ is called parameter and parameter value of interest,
respectively. A parameter of interest γ : Θ → Γ is called identifiable, if for any θ1, θ2 ∈ Θ
from γ(θ1) 6= γ(θ2) follows Pθ1 6= Pθ2 .

§04.07 Definition. The triple (X ,X ,PΘ) is called a statistical experiment or statistical model. The
non-empty set Θ and X is called parameter and sample space, respectively. A statistical model
(X ,X ,PΘ) is called adequate for a random variable X , if X©∼ PΘ. Given a family P⊗nΘ of
product probability measures (X n,X ⊗n,P⊗nΘ ) is called a statistical product experiment. We
denote by (S,S ,PSΘ ) the statistical model induced by a (S,S )-valued statistic S on (X ,X ).
A statistic γ̂ on (X ,X ) with values in the measurable space (Γ,G ) is called estimator or
estimation function for the identifiable parameter of interest γ. A statistical model (X ,X ,PΘ)
(and the family PΘ) is called dominated, if a σ-finite measure µ on X exists, µ ∈ Mσ(X ) for
short, such that for each θ ∈ Θ the probability measure Pθ is absolutely continuous with respect
to µ, i.e., Pθ � µ. We write shortly PΘ � µ. Any version of the Radon-Nikodym densities

L(θ, x) :=
dPθ
dµ

(x) x ∈ X , θ ∈ Θ

considered as function of θ parametrised by x is called likelihood or likelihood function where
typically it is understand as a random function L : Θ → X

+
with θ 7→ L(θ) := L(θ, •). Its

logarithm ` := log L (with convention log(0) := −∞) is called log-likelihood or log-likelihood
function. The likelihood and log-likelihood in the corresponding dominated product experiment
(X n,X ⊗n,P⊗nΘ ) are

∏
i∈JnK L(θ, xi) and

∑
i∈JnK `(θ, xi), θ ∈ Θ, xn ∈ X n, respectively.

§04.08 Reminder. Let (X ,X ,PΘ) be dominated by µ ∈ Mσ(X ). If µ is finite, then µ � Pµ :=
1

µ(X )
µ ∈ W(X ) and hence PΘ is also dominated by Pµ . If µ is not finite, then there exists a

countable and measurable partition {Xm,m ∈ N} of X with 0 < µ(Xm) < ∞ for all m ∈ N.
For each m ∈ N define Pµ(•|Xm) ∈ W(X ) with A 7→ Pµ(A|Xm) := µ(A∩Xm)

µ(Xm)
. Then holds

µ � Pµ :=
∑

m∈N 2−mPµ(•|Xm) ∈ W(X ), since Pµ(A) = 0 implies µ(A ∩ Xm) = 0 for all
m ∈ N and thus µ(A) = 0. Therewith, we have shown, that for each µ ∈ Mσ(X ) there is
Pµ ∈ W(X ) with µ � Pµ which automatically dominates PΘ too. On the other hand, there is a
probability measure Po =

∑
i∈N ciPθi with ci ∈ R+, θi ∈ Θ for all i ∈ N and

∑
i∈N ci = 1,

and thus Po � µ, such that Pθ � Po for all θ ∈ Θ (e.g. Statistik 1, Satz §11.04). We call any such
probability measure Po privileged dominating measure. Therefore, we eventually assume with
out loss of generality that the dominating measure is indeed a probability measure.

§04.09 Example (MLE). Let (X ,X ,PΘ) be a statistical model dominated by µ ∈Mσ(X ) with likeli-
hood L(θ) = dPθ/dµ and log-likelihood `(θ) = log L(θ) for θ ∈ Θ and let (Θ,T ) be a measur-
able space. Any statistic θ̂ on (X ,X ) with values in (Θ,T ) is called Maximum-Likelihood-
Estimator (MLE) for θ, if L(θ̂) = supθ∈Θ L(θ) µ-a.s. meaning L(θ̂(x), x) = supθ∈Θ L(θ, x) for
µ-a.e. x ∈ X , or equivalently `(θ̂) = supθ∈Θ `(θ) µ-a.s.. Considering a statistical product ex-
periment (X n,X ⊗n,P⊗nΘ ) dominated by µ⊗n ∈Mσ(X ⊗n) and setting M̂n(θ) := −P̂n`(θ), i.e.
M̂n(θ, xn) = − 1

n

∑
i∈JnK `(θ, xi) for xn ∈ X n, the MLE θ̂ is determined by θ̂ ∈ arg infθ∈Θ M̂n(θ)

µ-a.s.. However, in general it is not guaranteed that MLE is unique or even exits. The MLE
depends on the version of the likelihood, but there exists often a canonical choice. Furthermore,
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γ(θ̂) is called MLE for a parameter of interest γ : Θ → Γ, if γ(θ̂) is a statistic on (X n,X ⊗n)
with values in (Γ,G ).

§04.10 Remark. In all the examples the estimator γ̂ of the parameter of interest γ is determined by
γ̂ ∈ arg infγ∈Γ M̂n(γ) for some random function γ 7→ M̂n(γ) ∈ X of the data. Obviously,
rather than minimising (or maximising) a criterion function we might search for a zero of the
associated normal or estimating equations, that is, γ̂ is determined as a zero of a random vector
function γ 7→ Ĥn(γ) ∈ X

k
. Note that estimator is defined PΘ-a.s. only, meaning that one can

change the estimator on a PΘ-zero set N , i.e., Pθ(N) = 0 for all θ ∈ Θ.

§04.11 Definition. Let (Xn,Xn,P
n

Θ = (Pnθ )θ∈Θ) for all n ∈ N be a statistical model over the same
parameter space Θ and let γ : Θ→ Γ be a parameter of interest. We call a function M : Θ×Γ→
R and H : Θ × Γ → R

k
criterion function, if for all θ ∈ Θ the function M(θ) : γ 7→ M(θ, γ),

respectively H(θ) : γ 7→ H(θ, γ), has in γ(θ) an unique minimum, respectively an unique zero.
A sequence (M̂n)n∈N and (Ĥn)n∈N of functions M̂n : Γ × Xn → R and Ĥn : Γ × Xn → R

k

is called random criterion function or criterion process, if the following two conditions are
satisfied:

(CP1) For all γ ∈ Γ is M̂n(γ) : x 7→ M̂n(γ, x), respectively Ĥn(γ) : x 7→ Ĥn(γ, x), a statistic,
that is, M̂n(γ) ∈Xn, respectively Ĥn(γ) ∈Xn

k
.

(CP2) For all γ ∈ Γ and θ ∈ Θ it holds M̂n(γ)
Pnθ−→ M(θ, γ), respectively Ĥn(γ)

Pnθ−→ H(θ, γ).

Every (measurable) choice γ̂n : Xn → Γ (if it exists) is called a M -estimator, respectively a
Z-estimator, if it satisfies

M̂n(γ̂n) = inf
γ∈Γ

M̂n(γ) PnΘ -a.s., respectively Ĥn(γ̂n) = 0 PnΘ -a.s.,

or more generally, if it is, respectively, a near minimum and near zero, that is, M̂n(γ̂n) 6
infγ∈Γ M̂n(γ) + oPnθ

(1) and Ĥn(γ̂n) = oPnθ
(1).

§04.12 Remark. There exists a measurable version of a minimum of an almost surely continuous
function on a compact set (see Witting and Müller-Funk [1995], Satz 6.7). Note that in Defini-
tion §04.11 the criterion process M̂n (respectively Ĥn) is defined for each n ∈ N on a different

measurable space. We write, however, shortly M̂n(γ)
Pnθ−→ M(θ, γ), if for each ε ∈ R+

\0 holds
Pnθ (|M̂n(γ) −M(θ, γ)| > ε)

n→∞−−−→ 0. Let us briefly consider a sample (Xi)i∈JnK©∼ P⊗nΘ of a
random variable X©∼ PΘ. Keeping Notation §01.05 in mind Pf and P̂nf denotes the integral of
f ∈ L1(X ,P) with respect to P and the empirical measure P̂n(x) = 1

n

∑
i∈JnK δxi , x ∈ X n, re-

spectively. Revisiting each of the Examples §04.01 to §04.04 there is a function m : Γ×X → R

with m(γ) ∈ L1(X ), γ ∈ Γ, such that the criterion process M̂n and the associated criterion
function M is for each γ ∈ Γ given by M̂n(γ) = P̂nm(γ), i.e. M̂n(γ, xn) = 1

n

∑
i∈JnK m(γ, xi),

xn ∈ X n, and M(θ, γ) = Pθm(γ) =
∫
X m(γ, x)Pθ(dx), respectively. Analogously, a moment

estimator as in Example §04.05 is a Z-estimator. By construction in each example is the condi-
tion (CP1) and with the help of the LLN (see Remark §02.06) also the condition (CP2) satisfied.
Note that the GMM estimator in Example §04.05 is also a M -estimator with criterion process
satisfying (CP1) and (CP2).
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§04.13 Definition. For two probability measure P and Q on a measurable space (X ,X ) is the function

KL(P|Q) =

{
P
(

log dP
dQ

)
=
∫

log
(

dP
dQ

)
dP, if P � Q,

+∞, otherwise

called Kullback-Leibler-divergence of P with respect to Q.

§04.14 Reminder. The Kullback-Leibler-divergence satisfies KL(P|Q) > 0 as well as KL(P|Q) = 0
if and only if P = Q, but KL(•|•) is not symmetric. Moreover, for product measures holds
KL(P1 ⊗ P2|Q1 ⊗Q2) = KL(P1|Q1) + KL(P2|Q2) (e.g. Statistik 1, Lemma §20.03).

§04.15 Example (MLE, §04.09 continued.). Let (X n,X ⊗n,P⊗nΘ ) be a statistical product experiment
dominated by a privileged measure Po ∈ W(X ) (see Reminder §04.08) with likelihood L(θ) =
dPθ/dPo, log-likelihood ` = log(L) and parameter of interest θ (i.e., γ = idΘ). Furthermore, for
all θ, θo ∈ Θ let Pθ and Pθo be mutually dominated (i.e. Pθ � Pθo and Pθo � Pθ, for short Pθ �� Pθo),
which implies Pθo �� Po, and hence −KL(Pθo |Po) = KL(Po|Pθo). Then M̂n(θ) := −P̂n`(θ) ∈ X ⊗n

with

xn 7→ M̂n(θ, xn) = − 1

n

∑
i∈JnK

`(θ, xi)

is a criterion process associated to the criterion function M(θo, θ) := KL(Pθo|Pθ) − KL(Pθo |Po)
assuming here and subsequently that the parameter θ is identifiable, that is, from Pθ1 = Pθ2
follows θ1 = θ2. Identifiability is a natural condition since it is a necessary condition for the
existence of a consistent estimator. However, if θ is identifiable then θ 7→ M(θo, θ) attains its
minimum M(θo, θo) = −KL(Pθo|Po) uniquely at θo (keeping Reminder §04.14 in mind). The
corresponding M -estimator is thus just a MLE.

§05 Consistency

Here and subsequently, let (Γ, d) be a metric space endowed with its Borel-σ-algebra G := BΓ,
let (Xn,Xn,P

n
Θ = (Pnθ )θ∈Θ) for all n ∈ N be a statistical model over the parameter space Θ and

let γ : Θ→ Γ be an identifiable parameter of interest.

§05.01 Reminder. For each n ∈ N let γ̂n be an estimator of γ, i.e. a statistic on (Xn,Xn) with values
in (Γ,G ). The sequence (γ̂n)n∈N of estimators is called (weakly) consistent, if for all ε ∈ R+

\0

holds Pnθ (d(γ̂n, γ(θ)) > ε)
n→∞−−−→ 0 for all θ ∈ Θ. Note that the estimator γ̂n can be defined

for each n ∈ N on a different measurable space. We write, however, shortly d(γ̂n, γ(θ))
Pnθ−→ 0.

Moreover, saying „γ̂n is consistent“ always means the sequence (γ̂n)n∈N is (weakly) consistent.

Consider an M-estimator γ̂n for a random criterion function M̂n with associated criterion

function M, that is, M̂n(γ)
Pnθ−→ M(θ, γ) holds point-wise for each γ ∈ Γ. For example, due to

the LLN M̂n(γ) = P̂nm(γ)
P⊗nθ−−→ Pθm(γ) = M(θ, γ) provided m(γ) ∈ L1(X ,Pθ). The hope is

that a minimising value of M̂n(γ) then converges to the minimising value of M(θ, γ). However,
in general point-wise convergence will not be sufficient.
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§05.02 Theorem. Under the assumptions and notations of Definition §04.11 any M -estimator γ̂n of γ,
i.e., M̂n(γ̂n) 6 M̂n(γ(θ)) + oPnθ

(1), is consistent, i.e., d(γ̂n, γ(θ)) = oPnθ
(1), if in addition the

following two conditions are satisfied:

(CO1) sup
γ∈Γ
|M̂n(γ)−M(θ, γ)| = oPnθ

(1) (uniform convergence in probability);

(CO2) inf
γ∈Γ:d(γ,γ(θ))>ε

M(θ, γ) > M(θ, γ(θ)) for any ε ∈ R+
\0 (identification).

§05.03 Proof of Theorem §05.02. is given in the lecture.

§05.04 Corollary. Under the assumptions and notations of Definition §04.11 any Z-estimator γ̂n of γ,
i.e., Ĥn(γ̂n) = oPnθ

(1), is consistent, i.e., d(γ̂n, γ(θ)) = oPnθ
(1), if in addition the following two

conditions are satisfied:

(CO1) sup
γ∈Γ
‖Ĥn(γ)− H(θ, γ)‖ = oPnθ

(1) (uniform convergence in probability);

(CO2) inf
γ∈Γ:d(γ,γ(θ))>ε

‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖ for any ε ∈ R+
\0 (identification).

§05.05 Proof of Corollary §05.04. Setting M̂n(γ) = ‖Ĥn(γ)‖ and M(θ, γ) = ‖H(θ, γ)‖ the claim
follows directly from Theorem §05.02.

§05.06 Lemma. If (i) Γ is compact, (ii) M(θ, γ) > M(θ, γ(θ)) for all γ ∈ Γ\{γ(θ)}, and (iii) γ 7→
M(θ, γ) is continuous, then (CO2) in Theorem §05.02 holds.

§05.07 Proof of Lemma §05.06. is left as an exercise.

§05.08 Example (MLE, §04.15 continued). Assuming in addition that the parameter space Θ is compact
and that the criterion function θ 7→ M(θo, θ) := KL(Pθo |Pθ) − KL(Pθo|Po) is continuous then
employing Lemma §05.06 the condition (CO2) of Theorem §05.02 is satisfied.

§05.09 Lemma. (CO1) in Theorem §05.02 is satisfied, if the following conditions hold:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ M(θ, γ) is continuous and M̂n(γ) = M(θ, γ) + oPnθ
(1) for all γ ∈ Γ, and

(iii) lim
δ↓0

lim sup
n→∞

Pnθ
(

sup
γ1,γ2∈Γ:d(γ1,γ2)6δ

|M̂n(γ1)− M̂n(γ2)| > ε
)

= 0 for all ε ∈ R+
\0.

§05.10 Proof of Lemma §05.09. is given in the lecture.

§05.11 Example. Given (X n,X ⊗n,P⊗nΘ ) and γ : Θ → Γ for each γ ∈ Γ let m(γ) ∈ X be a real
function x 7→ m(γ, x) belonging to L1(X ,Pθ). Consider M̂n(γ) := P̂nm(γ), i.e. M̂n(γ, xn) =
1
n

∑
i∈JnK m(γ, xi), xn ∈ X n, and M(θ, γ) := Pθm(γ) where due to the LLN §02.06 M̂n(γ) =

M(θ, γ) + oP⊗nθ
(1) for each γ ∈ Γ. Suppose in addition the following conditions:

(i) (Γ, d) is a compact metric space,

(ii) γ 7→ m(γ, x) is continuous for Pθ-a.e. x ∈ X ,

(iii) there is H ∈ L1(X ,Pθ) with supγ∈Γ |m(γ, x)| 6 |H(x)| for Pθ-a.e. x ∈ X , or equivalently,
supγ∈Γ |m(γ)| belongs to L1(X ,Pθ).
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Then, (I) γ 7→ Pθm(γ) = M(θ, γ) is continuous and (CO1) supγ∈Γ|M̂n(γ)−M(θ, γ)| = oP⊗nθ
(1).

Indeed, by dominated convergence (see §02.20) (ii) and (iii) imply together (I). Consider (CO1).
Define the random variable ∆n

δ := supγ1,γ2∈Γ:d(γ1,γ2)6δ |M̂n(γ1) − M̂n(γ2)| ∈ X ⊗n. We show
below for all ε, η ∈ R+

\0 exists δ ∈ R+
\0 with lim supn→∞ P⊗nθ

(
∆n
δ > ε

)
6 η which in

turn by Lemma §05.09 implies the claim (CO1). Let ε, η ∈ R+
\0. Keeping ∆1

δ ∈ X with
x 7→ ∆1

δ(x) = supγ1,γ2∈Γ:d(γ1,γ2)6δ |m(γ1, x) − m(γ2, x)| in mind and applying the elemen-
tary triangular inequality we have ∆n

δ 6 P̂n∆
1
δ point-wise on X n. Moreover, due to (i) and

(ii) for Pθ-a.e. x ∈ X the function γ 7→ m(γ, x) is uniformly continuous on Γ, and thus
limδ→0 ∆1

δ(x) = 0. Therewith, dominated convergence (see §02.20), which can be applied
due to (iii), implies limδ→0 Pθ∆

1
δ = 0. In particular there is δ ∈ R+

\0 such that Pθ∆1
δ 6 ηε,

which in turn implies P⊗nθ ∆n
δ 6 P⊗nθ (P̂n∆

1
δ) = Pθ∆

1
δ 6 ηε. Employing Markov’s inequal-

ity §02.18 the last estimate implies the claim, that is, for all ε, η ∈ R+
\0 exists δ ∈ R+

\0 with
lim supn→∞ P⊗nθ

(
∆n
δ > ε

)
6 η. If in addition to (i)-(iii) and, hence (I)

(iv) there is γ(θ) ∈ Γ with M(θ, γ) > M(θ, γ(θ)) for all γ ∈ Γ\{γ(θ)},
then applying Lemma §05.06 it holds (CO2) inf

γ∈Γ:d(γ,γ(θ))>ε
M(θ, γ) > M(θ, γ(θ)). To summarise,

with (CO1) and (CO2) the conditions of Theorem §05.02 are satisfied. Consequently, any M -
estimator γ̂n, i.e., M̂n(γ̂n) 6 infγ∈Γ M̂n(γ)+oP⊗nθ

(1), and thus M̂n(γ̂n) 6 M̂n(γ(θ))+oP⊗nθ
(1),

is a consistent estimator of γ, i.e., d(γ̂n, γ(θ)) = oP⊗nθ
(1).

§05.12 Lemma. (CO1) in Corollary §05.04 is satisfied, if the following conditions hold:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ H(θ, γ) is continuous and ‖Ĥn(γ)− H(θ, γ)‖ = oPnθ
(1) for all γ ∈ Γ, and

(iii) lim
δ↓0

lim sup
n→∞

Pnθ
(

sup
γ1,γ2∈Γ:d(γ1,γ2)6δ

‖Ĥn(γ1)− Ĥn(γ2)‖ > ε
)

= 0 for all ε ∈ R+
\0.

§05.13 Proof of Lemma §05.12. is left as an exercise.

§05.14 Example. Given (X n,X ⊗n,P⊗nΘ ), γ : Θ → Γ and (Xi)i∈JnK ∼ P⊗nθ for θ ∈ Θ, for each
γ ∈ Γ let h(γ) ∈ X

k
be a numerical function belonging to Lk

1(Pθ) for all γ ∈ Γ. Consider
Ĥn(γ) := P̂nh(γ), i.e. Ĥn(γ, xn) = 1

n

∑
i∈JnK h(γ, xi), xn ∈ X n, and H(θ, γ) := Pθh(γ) where

due to the LLN §02.06 ‖Ĥn(γ)− H(θ, γ)‖ = oP⊗nθ
(1) for each γ ∈ Γ. Suppose in addition the

following conditions:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ h(γ, x) is continuous for Pθ-a.e. x ∈ X ,

(iii) supγ∈Γ‖h(γ)‖ belongs to L1(Pθ).
Then, arguing line by line as in Example §05.11 (I) γ 7→ Pθh(γ) = H(θ, γ) is continuous and
(CO1) supγ∈Γ‖Ĥn(γ)− H(θ, γ)‖ = oP⊗nθ

(1). If in addition to (i)-(iii) and hence (I)

(iv) there is γ(θ) ∈ Γ with ‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖ for all γ ∈ Γ\{γ(θ)},
then applying Lemma §05.06 it holds (CO2) inf

γ∈Γ:d(γ,γ(θ))>ε
‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖.

To summarise, with (CO1) and (CO2) the conditions of Corollary §05.04 are satisfied. Con-
sequently, any Z-estimator γ̂n, i.e., Ĥn(γ̂n) = oP⊗nθ

(1) is a consistent estimator of γ, i.e.,
d(γ̂n, γ(θ)) = oP⊗nθ

(1).
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§05.15 Remark. The conditions (CO1) and (CO2) of Corollary §05.04 (respectively, (CO1) and (CO2)
of Theorem §05.02) being sufficient to ensure consistency might be weakened in specific situa-
tions as we see next.

§05.16 Proposition. Let Γ ⊆ R and Ĥn(γ) = H(θ, γ)+oPnθ
(1) for all γ ∈ Γ where H is a deterministic

function. Assume in addition that either

(Ia) γ 7→ Ĥn(γ) is continuous and has exactly one zero γ̂n, or

(Ib) γ 7→ Ĥn(γ) is non-decreasing with Ĥn(γ̂n) = oPnθ
(1),

and that (II) H(θ, γ(θ)− ε) < 0 < H(θ, γ(θ) + ε) for every ε ∈ R+
\0. Then, γ̂n = γ(θ) + oPnθ

(1).

§05.17 Proof of Proposition §05.16. is given in the lecture.

§05.18 Example. Consider P ∈ W(B) and h(γ, t) := sign(t − γ) with sign(t) := 1{t>0} − 1{t60}

for all γ, t ∈ R. The sample median γ̂n is a (near) zero of the map γ 7→ Ĥn(γ) := P̂nh(γ),
i.e. Ĥn(γ, xn) = 1

n

∑
i∈JnK h(γ, xi), xn ∈ Rn. Considering H(γ) = Ph(γ) = P((γ,∞)) −

P((−∞, γ)) we have obviously Ĥn(γ) = H(γ) + oP⊗n(1) for each γ ∈ Γ. Keeping in mind
that γ 7→ Ĥn(γ) is non-increasing from Proposition §05.16 follows consistency of the sample
median γ̂n, i.e., γ̂n = γo + oP⊗n(1), if for any ε ∈ R+

\0 in addition H(γo − ε) > 0 > H(γo + ε)
or equivalently P((−∞, < γo − ε)) < 1/2 < P((−∞, γo + ε)). In other words, the sample
median γ̂n is a consistent estimator of the population median, if it is unique.

§06 Asymptotic normality

Here and subsequently, for k, n ∈ N let Γ ⊆ Rk be endowed with its Borel-σ-algebra G := BΓ,
let (X n,X ⊗n,P⊗nΘ ) be a statistical product experiment over the parameter space Θ and let
γ : Θ→ Γ be an identifiable parameter of interest.

§06.01 Heuristics. Consider Ĥn(γ) = P̂nh(γ), i.e. Ĥn(γ, xn) = 1
n

∑
i∈JnK h(γ, xi), xn ∈ X n, and

H(θ, γ) = Pθh(γ) for γ ∈ Γ and θ ∈ Θ. Let γ̂n be a zero of γ 7→ Ĥn(γ), i.e., γ̂n is a Z-estimator.
Assume in addition that γ̂n = γ(θ)+oP⊗nθ

(1) where γ(θ) is a zero of γ 7→ H(θ, γ). Heuristically,

consider a Taylor expansion of a real-valued H around γ(θ) ∈ Γ ⊆ R, that is, 0 = Ĥn(γ̂n) =

Ĥn(γ(θ))+(γ̂n−γ(θ))
˙̂
Hn(γ(θ))+ 1

2
(γ̂n−γ(θ))2 ¨̂

Hn(γ̃n) for some γ̃n between γ(θ) and γ̂n. Thus,

rewriting the last identity
√
n(γ̂n−γ(θ)) = −

√
nĤn(γ(θ))

( ˙̂
Hn(γ(θ))+ 1

2
(γ̂n−γ(θ))

¨̂
Hn(γ̃n)

)−1.
If h(γ(θ)) belongs to L2(Pθ), then due to the CLT it holds −

√
n(Ĥn(γ(θ)) − H(θ, γ(θ))) =

−
√
n(P̂nh(γ(θ)) − Pθh(γ(θ)))

d−→ N(0,Pθh2(γ(θ))). If moreover ḣ(γ(θ)) ∈ L1(Pθ), then by the LLN
˙̂
Hn(γ(θ)) = P̂nḣ(γ(θ)) = Pθḣ(γ(θ))+oP⊗nθ

(1). If in addition ¨̂
Hn(γ̃n) = OP⊗nθ

(1) then employing

Slutzky’s lemma §02.10 it follows
√
n(γ̂n − γ(θ))

d−→ N(0,(Pθḣ(γ(θ)))−2Pθh2(γ(θ))). In the sequel, γ is
a vector and h vector-valued. Consequently, ḣ(γ(θ)) is a matrix and we denote by ‖ḣ(γ(θ))‖F
its Frobenius norm, where ‖M‖F :=

(∑
j∈JJK

∑
k∈JKKM

2
jk

)1/2 for any matrix M = (Mjk) ∈
R(J,K).

§06.02 Theorem. Under the assumptions and notations of Definition §04.11 with Γ ⊆ Rk let γ̂n be a
consistent Z-estimator of γ, i.e. γ̂n = γ(θ) + oP⊗nθ

(1), with Ĥn(γ̂n) = oP⊗nθ
(n−1/2). Assume the
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criterion process Ĥn is continuous differentiable in a neighbourhood U of γ(θ) ∈ int(Γ) with

derivative ˙̂
Hn := ∂

∂γ
Ĥn ∈X

(k,k)
and satisfies the following two conditions:

(AN1)
√
nĤn(γ(θ))

d−→ N(0,Ωθ) under P⊗nθ for some positive semidefinite Ωθ ∈ R(k,k),

(AN2) supγ∈U‖
˙̂
Hn(γ)−Ḣ(θ, γ)‖F = oP⊗nθ

(1) for some continuous matrix-valued function γ 7→
Ḣ(θ, γ) with regular Ḣ(θ, γ(θ)) having Ḣ−1

θ as inverse.

Then
√
n(γ̂n − γ(θ)) +

√
nḢ−1

θ Ĥn(γ(θ)) = oP⊗nθ
(1) and

√
n(γ̂n − γ(θ))

d−→ N(0,Ḣ−1
θ Ωθ(Ḣ−1

θ )t).

§06.03 Proof of Theorem §06.02. is given in the lecture.

§06.04 Corollary. Under the assumptions and notations of Definition §04.11 with Γ ⊆ Rk let γ̂n be a
consistent M -estimator of γ, i.e. γ̂n = γ(θ) + oP⊗nθ

(1), with M̂n(γ̂n) = infγ∈Γ M̂n(γ). Assume

the criterion process M̂n is twice continuously differentiable in a neighbourhood U of γ(θ) ∈
int(Γ) with derivatives ˙̂

Mn := ∂
∂γ

M̂n ∈ X
k

(score function) and ¨̂
Mn := ∂2

∂2γ
M̂n ∈ X

(k,k)
and

satisfies in addition the following two conditions:

(AN1)
√
n

˙̂
Mn(γ(θ))

d−→ N(0,Ωθ) under P⊗nθ for some positive semidefinite Ωθ > 0,

(AN2) supγ∈U‖
¨̂
Mn(γ) − M̈(θ, γ)‖F = oP⊗nθ

(1) for some continuous matrix-valued function

γ 7→ M̈(θ, γ) with regular M̈(θ, γ(θ)) having M̈−1

θ as inverse.

Then
√
n(γ̂n − γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ ).

§06.05 Proof of Corollary §06.04. is given in the lecture.

§06.06 Example (§05.11 continued). Given (X n,X ⊗n,P⊗nΘ ) and γ : Θ → Γ for each γ ∈ Γ let
m(γ) ∈ L1(Pθ) be a real function. Consider M̂n(γ) = P̂nm(γ) and M(θ, γ) = Pθm(γ) where due
to the LLN M̂n(γ) = M(θ, γ) + oP⊗nθ

(1) for each γ ∈ Γ. Suppose in addition that
(i) Γ is compact,

(ii) γ 7→ m(γ, x) is twice continuously differentiable in a neighbourhood U of γ(θ) ∈ int(Γ)
for Pθ-a.e. x ∈ X with derivatives ṁ := ∂

∂γ
m and m̈ := ∂2

∂2γ
m

(iii) ṁ(γ(θ)) ∈ L2(Pθ) with Pθṁ(γ(θ)) = 0 and Ωθ := Pθṁ(γ(θ))ṁ(γ(θ))t > 0,

(iv) supγ∈U‖m̈(γ)‖F ∈ L1(Pθ) and M̈θ := Pθm̈(γ(θ)) is regular with inverse M̈−1

θ .

hold true. If the M-estimator satisfies γ̂n = γ(θ)+oP⊗nθ
(1) then

√
n(γ̂n−γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ )

due to Corollary §06.04 since the conditions (AN1)-(AN2) are satisfied. Indeed, following Ex-
ample §05.11, (iv) implies the condition (AN2) and due to the CLT the condition (AN1) follows
from (iii). However, estimators of M̈θ and Ωθ are necessary in order to use the asymptotic dis-
tribution to conduct inference. A typical approach to obtain these estimators is as follows. First

replacing Pθ by P̂n, the quantity ̂̈Mn(γ) := P̂nṁ(γ) and Ω̂n(γ) = P̂nṁ(γ)ṁ(γ)t is just an empirical
counterpart of M̈γ(γ) = Pθṁ(γ) and Ωθ(γ) = Pθṁ(γ)ṁ(γ)t, respectively. Secondly, replace γ

by its estimator γ̂n we obtain ̂̈Mn := ̂̈Mn(γ̂n) and Ω̂n := Ω̂n(γ̂n) as estimator of M̈θ = M̈θ(γ(θ))
and Ωθ = Ωθ(γ(θ)), respectively. If in addition to (i)-(iv) the following condition holds
(v) supγ∈U‖ṁ(γ)‖ belongs to L2(Pθ).
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Then supγ∈U‖
̂̈Mn(γ)−M̈θ(γ)‖F = oP⊗nθ

(1) and supγ∈U‖Ω̂n(γ)−Ωθ(γ)‖F = oP⊗nθ
(1) following

line by line the arguments in Example §05.11. From these uniform convergences and γ̂n =

γ(θ) + oP⊗nθ
(1) follows ̂̈Mn = M̈θ + oP⊗nθ

(1) and Ω̂n = Ωθ + oP⊗nθ
(1) which in turn implies

V̂n := ̂̈M−1

n Ω̂n
̂̈M−1

n = M̈−1
θ ΩθM̈

−1
θ + oP⊗nθ

(1). Consequently, by applying Slutzky’s lemma

§02.10 we have
√
nV̂
−1/2
n (γ̂n − γ(θ))

d−→ N(0,Idk).

§06.07 Example (MLE, §04.15 continued). Let (X n,X ⊗n,P⊗nΘ ) with Pθ �� Po for all θ ∈ Θ, likelihood
L(θ) = dPθ/dPo, log-likelihood ` = log L and parameter of interest θ (i.e., γ = idΘ) as in
Example §04.15. Consider the MLE θ̂n which maximises the (joint) log-likelihood θ 7→ P̂n`(θ).
Let the following conditions be satisfied:
(i) (Θ, d) is a compact metric space,

(ii) the parameter θ is identifiable, i.e., θ1 6= θ2 implies Pθ1 6= Pθ2

(iii) the map θ 7→ `(θ, x) is continuous for Pθ-a.e. x ∈ X ,

(iv) supθ∈Θ |`(θ)| belongs to L1(Pθ).
Then combining the arguments in the Examples §05.08 and §05.11 the conditions (CO1) and
(CO2) of Theorem §05.02 are satisfied, which in turn implies consistency of the MLE θ̂n =
θ + oP⊗nθ

(1). In addition let the following conditions be fulfilled

(v) for Pθ-a.e. x ∈ X the map θ 7→ `(θ, x) is twice continuously differentiable in a neighbour-
hood U of θ ∈ Θ with derivatives ˙̀ := ∂

∂θ
` and ῭ := ∂2

∂2θ
`,

(vi) supθ∈U‖ ˙̀(θ)‖ ∈ L2(Pθ) and supθ∈U‖῭(θ)‖F ∈ L1(Pθ),

(vii) the Fisher-information matrix Iθ := Pθ ˙̀(θ) ˙̀(θ)t is strictly positive definite.
Then the conditions (AN1) and (AN2) of Corollary §06.04, and the identity Iθ = −Pθ ῭(θ) are
satisfied (for details see Satz §20.20 in the lecture notes Statistik 1). Therewith, the MLE
satisfies

√
n(θ̂n− θ) =

√
nI−1

θ P̂n ˙̀(θ) + oP⊗nθ
(1) and, consequently,

√
n(θ̂n− θo)

d−→ N(0,I−1
θ ).

§06.08 Remark. The conditions (v) and (vi) in Example §06.07 can be weakened replacing differen-
tiability by Hellinger-differentiability. Keeping the Hellinger-distance H(Pθ,Pθo) = ‖L1/2(θ) −
L1/2(θo)‖L2(Po) in mind, where L1/2(θ) ∈ L2(Po) using ‖L1/2(θ)‖2

L2(Po)
= Po(L(θ)) = 1 < ∞,

the family PΘ is called Hellinger-differentiable with derivative ˙̀
θo in θo ∈ int(Θ) ⊆ Rk, if

˙̀
θo ∈ Lk

2(Pθo) and hence ˙̀
θoL

1/2(θo) ∈ Lk

2(Po) such that

lim
θ→θo

∫
X

∣∣∣∣L1/2(θ, x)− L1/2(θo, x)− 1
2
〈 ˙̀θo(x), θ − θo〉L1/2(θo, x)

‖θ − θo‖

∣∣∣∣2Po(dx)

= lim
h→0

‖L1/2(θo + h)− L1/2(θo)− 1
2
〈 ˙̀θo , h〉L1/2(θo)‖2

L2(Po)

‖h‖2
= 0

The map x 7→ ˙̀
θo(x) is also called score function. Keeping ˙̀

θo ∈ Lk

2(Pθo) in mind the Fisher-
information matrix Iθo = Pθo

˙̀
θo

˙̀t
θo

is well-defined. Note that, the score function and the Fisher-
information matrix are independent of the dominating measure Po.

Testing procedures
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§06.09 Heuristics. Let (Xn,Xn,P
n

Θ ) for all n ∈ N be a statistical model over the parameter space Θ
and let γ : Θ → Γ be an identifiable parameter of interest. Given a map A : Γ → Rp we
eventually test the hypothesis H0 : A(γ) = 0 against the alternative H1 : A(γ) 6= 0. Typical
examples include A(γ) = γ − γo for a given value γo, or more generally, linear hypothesis
A(γ) = Mγ − ao for a given value ao and matrix M . It covers in particular testing the j-th co-
ordinate of γ = (γj)j∈JkK, i.e., A(γ) = γj−γjo . Under regularity conditions it seems reasonable

to assume an estimator γ̂n of γ having under Pnθ the property
√
n(A(γ̂n)− A(γ(θ)))

d−→ N(0,Σθ)

with invertible asymptotic covariance matrix Σθ. If we have in addition an estimator Σ̂n =
Σθ + oPnθ

(1) at hand. Then under the hypothesis H0, i.e., for Pnθ with A(γ(θ)) = 0, a Wald test

exploits the property Ŵn := nA(γ̂n)tΣ̂−1
n A(γ̂n)

d−→ χ2
p where χ2

p is a Chi-square-distribution
with p degrees of freedom. Precisely, a Wald test rejects the hypothesis H0 : A(γ) = 0 if Ŵn

exceeds the 1-α-Quantile χ2
p,1−α of a χ2

p-distribution. Obviously, the Wald test does exactly
meets the asymptotic level α, i.e., limn→∞ Pnθ (Ŵn > χ2

p,1−α) = P(W > χ2
p,1−α) = α where

W ∼ χ2
p. However, the behaviour of the test statistic Ŵn under the alternative H1 is still an

open questions, which we intent to study in the next sections.

§06.10 Example (§06.06 continued). Let (X n,X ⊗n,P⊗nΘ ), γ : Θ → Γ be an identifiable parame-
ter of interest and let m(γ) ∈ L1(Pθ) for all γ ∈ Γ. For each γ ∈ Γ let M̂n(γ) = P̂nm(γ)
and M(θ, γ) = Pθm(γ). Under the conditions (i)-(v) in Example §06.06 an M-estimator γ̂n ∈
arg infγ∈Γ M̂n(γ) satisfies

√
n(γ̂n−γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ ) under P⊗nθ . Moreover, we have even-

tually access to estimators ̂̈Mn = M̈θ + oP⊗nθ
(1) and Ω̂n = Ωθ + oP⊗nθ

(1). Let A : Γ → Rp be
continuously differentiable in a neighbourhood of γ(θ) then applying the delta method §02.16
we obtain

√
n(A(γ̂n) − A(γ(θ)))

d−→ N(0,Σθ) under P⊗nθ with Σθ := Ȧγ(θ)M̈
−1
θ ΩθM̈

−1
θ Ȧtγ(θ).

From Ȧγ̂n = Ȧγ(θ) + oP⊗nθ
(1) follows Σ̂n := Ȧγ̂n

̂̈M−1

n Ω̂n
̂̈M−1

n Ȧtγ̂n = Σθ + oP⊗nθ
(1) and, thus

√
nΣ̂
−1/2
n (A(γ̂n)−A(γ(θ)))

d−→ N(0,Idp) which underH0, i.e., for P(n)
θ withA(γ(θ)) = 0, implies

Ŵn := nA(γ̂n)tΣ̂−1
n A(γ̂n)

d−→ χ2
p.
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Chapter 3

Asymptotic properties of tests

Asymptotic properties of tests under local alternatives are presented com-
plementing the Neyman-Pearson theory introduced in the lecture Statistik
1. For a more detailed exposition we refer to the text books Witting and
Müller-Funk [1995] and van der Vaart [1998].

§07 Contiguity

§07.01 Preliminaries: likelihood ratios and differentiable models

§07.01 Motivation. Considering a statistical model (Xn,Xn,P
n

Θ ), a parameter of interest γ : Θ→ Γ, a
partition {H 0,H 1} of the parameter values of interests Γ = H 0

⊎
H 1 (i.e. Γ = H 0 ∪H 1,

∅ = H 0 ∩ H 1 and H 0 6= ∅ 6= H 1) we are interested in a (randomised) test ϕn ∈ X +
n

(i.e. ϕn : Xn → [0, 1]) of the hypothesis H0 : H 0 against the alternative H1 : H 1. Under
regularity conditions we may have at hand an estimator γ̂n of γ with known asymptotic distribu-
tion. Typically the estimator γ̂n allows us to construct a test statistic Tn with known asymptotic
distribution under H0, i.e. under Pnθ with γ(θ) ∈H 0. Exploiting the asymptotic distribution an
associated test ϕn = 1{Tn 6∈Cα} does eventually not exceed asymptotically a given level α ∈ (0, 1)
under the hypothesis H0. However, we like to investigate also its power under the alternative
H1, i.e. under a specific Pnθ with γ(θ) ∈H 1.

§07.02 Reminder. Let ν and µ be measures on (X ,X ).

(a) For any positive numerical function f ∈ X
+

the map B 7→ fµ(B) := µ(1Bf) =
∫
B
f dµ

defines a measure fµ on (X ,X ). Any f ∈ X
+

satisfying ν = fµ is called density of ν
with respect to µ, or µ-density for short.

(b) We say ν is dominated by µ, symbolically ν � µ, if for each B ∈ X with µ(B) = 0
follows ν(B) = 0. The measures µ and ν are called equivalent or mutually dominated,
symbolically µ �� ν, if both ν � µ and µ � ν.

(c) We say ν and µ are orthogonal or singular, symbolically ν ⊥ µ, if there exists X =
Xµ
⊎
Xν with Xµ ,Xν ∈X and µ(Xν) = 0 = ν(Xµ).

We note that g ∈ L1(fµ) if and only if gf ∈ L1(µ). In this case holds fµ(g) =
∫
g d(fµ) =∫

(gf) dµ = µ(gf) (Klenke [2012], Satz 4.15, p. 93). Let additionally ν ∈ Mσ(X ) be a σ-finite
measure on (X ,X ). If f1µ = ν = f2µ for f1, f2 ∈ X

+
, then f1 = f2 µ-a.e.. In other words

a density is unique up to µ-a.e. equivalence (Klenke [2012], Satz 7.29, p. 159). If in addition
µ ∈ Mσ(X ), then by Lebesgue’s decomposition theorem there exists νa, ν⊥ ∈ Mσ(X )

such that ν = νa + ν⊥ with ν⊥ ⊥ µ and νa = fµ where f ∈ X
+

and f < ∞ µ-a.e..
(Klenke [2012], Satz 7.33, p. 160) Furthermore, there is a Radon-Nikodym-density f ∈ X

+

with ν = fµ and f < ∞ µ-a.e. if and only if ν � µ (Klenke [2012], Korollar 7.34, p. 161). If
f ∈ X

+
is a Radon-Nikodym-density of ν with respect to µ, i.e. ν = fµ, then the positive real
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function f1{f∈R+} ∈X + is it too. Consequently, without loss of generality we consider here and
subsequently a positive real version of the Radon-Nikodym-density.

§07.03 Definition. Let P0,P1 ∈ W(X ) be probability measures on (X ,X ). Any positive numerical
random variable L ∈X

+
satisfying

P0(L <∞) = 1 and P1(B) = LP0(B) + P1(B ∩ {L =∞}) for all B ∈X (07.1)

is called a likelihood ratio (LR) of P1 with respect to P0, symbolically dP1/dP0 := L.

Here and subsequently, let P0,P1 ∈ W(X ) and L := dP1/dP0 be a likelihood ratio of P1 with
respect to P0. We first note that P0(L) = P1(L < ∞) ∈ [0, 1] and P0(L = ∞) = 0 by definition,
and also P1(L = 0) = LP0(L = 0) + P1({L = 0} ∩ {L =∞}) = 0.

§07.04 Property.
(i) P0 ⊥ P1 ⇔ ∃B ∈ X : P0(B) = 0 (hence LP0(B) = 0) and P1(B) = 1 (hence P1(B ∩ {L =
∞}) = 1)⇔ P1(L =∞) = 1⇔ P0(L) = 0;

(ii) P0 6⊥ P1 ⇔ ∀B ∈ X : P0(B) = 0 implies P1(B) < 1 (particularly for B = {L = ∞})⇔
P1(L =∞) < 1⇔ P0(L) > 0;

(iii) P1 � P0 ⇔ ∀B ∈ X : P0(B) = 0 implies P1(B) = 0 (particularly for B = {L = ∞})⇔
P1(L =∞) = 0⇔ P0(L) = 1.

§07.05 Remark. Note that both P0 and P1 are dominated by Pµ := 1
2
(P0 + P1) ∈ W(X ). Let fi ∈ X +

denote a Pµ-density of Pi, i ∈ {0, 1} (c.f. Reminder §07.02), then

L∗ =
f1

f0

1{f0∈R+
\0} +∞1{f0=0}∩{f1∈R+

\0} (07.2)

is a likelihood ratio of P1 with respect to P0, i.e., L∗ = dP1/dP0. Indeed, L∗ ∈ X
+

satisfies
P0(L∗ =∞) 6 P0(f0 = 0) = 0 and for all B ∈X

L∗P0(B) + P1(B ∩ {L∗ =∞}) = f0Pµ
(
f1

f0
1B∩{f0∈R+

\0}

)
+ P1(B ∩ {f0 = 0} ∩ {f1 ∈ R+

\0})
= f1Pµ(B ∩ {f0 ∈ R+

\0}
)

+ P1(B ∩ {f0 = 0}) = P1(B).

Consequently, L∗ is always a version of the likelihood ratio dP1/dP0. In general the likeli-
hood ratio dP1/dP0 (and similar dP0/dP1) is uniquely determined by (07.1) up to (P0 + P1)-a.e.
equivalence (Witting [1985] Satz 1.110 a), p. 112). Moreover, the positive numerical random
variable L−1

∗ = f0

f1
1{f1∈R+

\0} +∞1{f1=0}∩{f0∈R+
\0} is a version of the likelihood ratio dP0/dP1 switch-

ing the roles of P0 and P1. Consequently, (iii) can equivalently be written as P1 � P0 ⇔ P1(dP0/
dP1 = 0) = P1(L

−1
∗ = 0) = P1(L∗ = ∞) = 0. However, given any version L = dP1/dP0 of

the likelihood ratio the measure P1 can be written as a sum P1 = Pa1 + P⊥1 of two measures
Pa1 ,P

⊥
1 ∈ Mσ(X ) where Pa1 := LP0 and P⊥1 := 1{L=∞}P1 with P⊥1 (B) = P1(B ∩ {L = ∞}),

B ∈ X is, respectively, the absolute continuous and singular part of P1 with respect to P0
(Lebesgue decomposition).

§07.06 Property. The two measures Pa1 := LP0 and P⊥1 := 1{L=∞}P1 inMσ(X ) satisfy
(i) P1 = Pa1 + P⊥1 , Pa1

� P0, and P⊥1 ⊥ P0;

(ii) P1(f) > Pa1 (f) = LP0(f) = P0(Lf) = P1(f1{L<∞}) for all f ∈X
+

;
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(iii) P0 � P1 if and only if P0(L) = 1 if and only if P1(dP0/dP1 = 0) = P1(L = ∞) = 0 if and only
if for all f ∈X

+
holds P1(f) = P0(Lf).

§07.07 Reminder. Consider a Rk-valued statistic S defined on (X ,X ), i.e. S ∈ X k. If P1 � P0, then
the probability measure PS1 = P1 ◦ S−1 ∈ W(Bk) induced by S under P1 can be calculated from
the probability measure P

(S,L)
0 = P0 ◦ (S,L)−1 induced by the random vector (S,L) under P0

through the formula

P1(S ∈ B) = PS1 (1B) = P0
(
1B(S)L

)
= P(S,L)

0

(
1B(Π

S
)Π

L

)
for all B ∈ Bk

using the coordinate maps Π
L
(S,L) = L and Π

S
(S,L) = S. The formula, however, is only valid

under the assumption P1 � P0, since a part of P1 orthogonal to P0 can’t be recovered.

Here and subsequently, let PΘ = (Pθ)θ∈Θ with Θ ⊆ Rk be a family of probability measures on
a measurable space (X ,X ), and for each θo, θ ∈ Θ let Lθo(θ) := dPθ/dPθo denote a likelihood
ratio of Pθ with respect to Pθo . Keep in mind, that Lθo(θo) = 1(= 1X ).

§07.08 Definition. Let s > 1 and θo ∈ int(Θ). The statistical model (X ,X ,PΘ) (and the family PΘ) is
called Ls(θo)-differentiable with derivative ˙̀

θo , if ˙̀
θo ∈ Lk

s(Pθo) and for all θ → θo hold

‖s(L1/s
θo

(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖Ls(Pθo ) = o(‖θ − θo‖) (07.3)

and Pθ(Lθo(θ) =∞) = o(‖θ − θo‖s).

§07.09 Remark. In case s = 1 the defining condition Pθ(Lθo(θ) = ∞) = o(‖θ − θo‖) follows
from (07.3) (Witting [1985], Hilfssatz 1.178, p164). We note that L1(θo)-differentiability implies
L1(Pθo)-continuity of θ 7→ Lθo(θ) in θo, i.e., ‖Lθo(θ)− Lθo(θo)‖L1(Pθo ) = o(1) as θ → θo. Since
Lθo(θ) is unique up to Pθ + Pθo-a.e.-equivalence Ls(θo)-differentiability does not depend on the
version Lθo(θ) of the likelihood ratio dPθ/dPθo .

§07.10 Lemma. If PΘ is L1(θo)-differentiable with derivative ˙̀
θo , then it holds Pθo( ˙̀

θo) = 0. For any
s > r > 1 if PΘ is Ls(θo)-differentiable with derivative ˙̀

θo , then PΘ is also Lr(θo)-differentiable
with derivative ˙̀

θo .

§07.11 Proof of Lemma §07.10. see Witting [1985] (Hilfssatz 1.178, p164 and Satz 1.190, p.164).

In order to avoid additional integrability conditions in Definition §07.08 the function θ 7→
s(L

1/s
µ (θ) − 1) is considered. The next assertion formulates differentiability under additional

integrability conditions.

§07.12 Lemma. Let s > 1 and θo ∈ int(Θ). The family PΘ is Ls(θo)-differentiable with derivative ˙̀
θo ,

if ˙̀
θo ∈ Lk

s(Pθo) , Lθo(θ) ∈ Ls(Pθo) for all θ ∈ U(θo) and for all θ → θo hold

‖(Lθo(θ)− 1)− 〈 ˙̀θo , θ − θo〉‖Ls(Pθo ) = o(‖θ − θo‖)

and Pθ(Lθo(θ) =∞) = o(‖θ − θo‖s).

§07.13 Proof of Lemma §07.12. see Witting [1985] (Satz 1.199, p.183).
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Let us assume in addition, that the family PΘ is dominated by µ ∈ Mσ(X ). For each θ ∈ Θ
denote by Lµ(θ) := dPθ/dµ ∈ X + a Radon-Nikodym density of Pθ with respect to µ. Keeping
Remark §07.05 in mind L∗,θo(θ) = Lµ (θ)

Lµ (θo)
1{Lµ (θo)∈R+

\0} +∞1{Lµ (θo)=0}∩{Lµ (θ)∈R+
\0} as in (07.2) is for

each θo, θ ∈ Θ a version of the likelihood ratio dPθ/dPθo . We note that

{L∗,θo(θ) =∞} =
{
{Lµ(θo) = 0} ∩ {Lµ(θ) ∈ R+

\0}
}
⊆ {Lµ(θo) = 0} =: Nθo ,

where Pθo(Nθo) = 0, and for all θ ∈ Θ holds Lµ (θ)

Lµ (θo)
1N cθo = L∗,θo(θ)1N cθo < ∞ and Pθ(Nθo) =

Pθ(Nθo ∩ {Lµ(θ) ∈ R+
\0}) = Pθ(L∗,θo(θ) = ∞) = Pθ(dPθ/dPθo = ∞). Decomposing the integral

with respect to X = Nθo
⊎
N c
θo

it follows

‖2(L1/2
µ (θ)− L1/2

µ (θo))− 〈 ˙̀θo , (θ − θo)〉L1/2
µ (θo)‖2

L2(µ)

= ‖2(L
1/2
∗,θo(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2

L2(Pθo ) + ‖1Nθo2L1/2
µ (θ)‖2

L2(µ)

= ‖2(L
1/2
∗,θo(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2

L2(Pθo ) + 4Pθ(L∗,θo(θ) =∞)

= ‖2(L
1/2
θo

(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2
L2(Pθo ) + 4Pθ(Lθo(θ) =∞). (07.4)

Keeping Remark §06.08 in mind for θo ∈ int(Θ) the family PΘ is Hellinger-differentiable with
derivative ˙̀

θo , if ˙̀
θo ∈ Lk

2(Pθo), hence ˙̀
θoL

1/2
µ (θo) ∈ Lk

2(µ), and for θ → θo

‖L1/2
µ (θ)− L1/2

µ (θo)− 1
2
〈 ˙̀θo , θ − θo〉L1/2

µ (θo)‖L2(µ) = o(‖θ − θo‖).

Exploiting the identity (07.4) we obtain immediately the next property.

§07.14 Property. Let PΘ � µ ∈ Mσ(X ) and θo ∈ int(Θ). The family PΘ is Hellinger-differentiable
with derivative ˙̀

θo if and only if PΘ is L2(θo)-differentiable with derivative ˙̀
θo .

§07.15 Proposition. Let PΘ � µ ∈ Mσ(X ) with open Θ ⊆ Rk. If the likelihood Lµ(θ) := dPθ/dµ,
θ ∈ Θ, satisfies in addition the following conditions:

(i) for each x ∈ X the map θ 7→ s(θ, x) := L
1/2
µ (θ, x) is continuously differentiable

with derivative ṡ := ∂
∂θ
s,

(ii) ṡ(θ) ∈ L2(µ) for all θ ∈ Θ, and hence Iθ := 4µ(ṡ(θ)ṡ(θ)t) ∈ R
(k,k)
> ,

(iii) the map θ 7→ Iθ is continuous.
Then PΘ is for all θ0 ∈ Θ Hellinger-differentiable with score function ˙̀

θo = 2 ṡ(θo)
s(θo)

1{s(θo)∈R+
\0}.

§07.16 Proof of Proposition §07.15. is given in the lecture.

§07.17 Example. Consider a statistical location model (R,B,PR) dominated by the Lebesgue mea-
sure λ ∈ Mσ(B) with likelihood for each θ ∈ R given by L(θ, x) = g(x − θ), x ∈ R,
where g is a strictly positive density. If g is continuously differentiable with derivative ġ sat-
isfying λ(|ġ|2/g) < ∞ then due to Proposition §07.15 the family PR is Hellinger-differentiable
with score function ˙̀

θ = −ġ(x− θ)/g(x− θ). Indeed, setting s(θ, x) :=
√
g(x− θ), we have

ṡ(θ, x) = ∂
∂θ

√
g(x− θ) = −1

2
ġ(x− θ)/

√
g(x− θ) which is continuous in θ and hence condi-

tion (i) is satisfied. Moreover conditions (ii) and (iii) hold true, since θ 7→ Iθ = 4λ(ṡ(θ))2 =
λ(|ġ|2/g) < ∞ is constant and thus continuous. Applying Proposition §07.15 the family PR is
Hellinger-differentiable with score function ˙̀

θo = 2 ṡ(θo)
s(θo)

1{s(θo)∈R+
\0} = −ġ(x− θo)/g(x− θo).
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§07.02 Contiguity

We introduce next an asymptotic version of absolute continuity. In this section we restrict
our attention to probability measures Pn0 ,Pn1 ∈ W(Xn), n ∈ N, in short (Pn0 )n∈N, (P

n
1 )n∈N ∈

(W(Xn))n∈N. We aim to obtain the limiting distribution of (test) statistics Sn ∈ X k
n , n ∈ N,

under Pn1 if its limiting distribution under Pn0 is known.

§07.18 Definition. Let Pn0 ,Pn1 ∈ W(Xn), n ∈ N. The sequence (Pn1 )n∈N is called contiguous with
respect to (Pn0 )n∈N, symbolically Pn1 / Pn0 , if for any sequence (Bn)n∈N ∈ (Xn)n∈N with
limn→∞ Pn0 (Bn) = 0 holds limn→∞ Pn1 (Bn) = 0. The sequences (Pn1 )n∈N and (Pn0 )n∈N are
called mutually contiguous, symbolically Pn0 / . Pn1 , if both Pn1 / Pn0 and Pn0 / Pn1 .

§07.19 Lemma. Let Pn0 ,Pn1 ∈ W(Xn), n ∈ N.

(i) Pn1 / Pn0 ⇔ for all (Sn)n∈N ∈ (X k
n )n∈N holds: Sn

Pn0−→ 0⇒ Sn
Pn1−→ 0;

(ii) For any statistic Sn : (Xn,Xn)→ (S,S ), n ∈ N, holds: Pn1 / Pn0 ⇒ Pn1 ◦S−1
n / Pn0 ◦S−1

n ;

(iii) For any sub-sequence (nk)k∈N in N holds: Pn1 / Pn0 ⇒ Pnk1 / Pnk0 ;

(iv) Pn1 / Pn0 ⇔ for any ε ∈ R+
\0 exists δ ∈ R+

\0 such that for all (Bn)n∈N ∈ (Xn)n∈N holds:
lim supn→∞ Pn0 (Bn) < δ⇒ lim supn→∞ Pn1 (Bn) < ε;

(v) Let (Sn)n∈N ∈ (X k
n )n∈N and Pn1 / Pn0 , then:

(v-a) Pn0 ◦ S−1
n

d−→ P0 and Pn1 ◦ S−1
n

d−→ P1⇒ P1 � P0;

(v-b) (Pn0 ◦ S−1
n )n∈N tight⇒ (Pn1 ◦ S−1

n )n∈N tight.

§07.20 Proof of Lemma §07.19. (i) „⇒“ and its converse follows applying the definition on Bn =
{‖Sn‖ > ε} for any ε ∈ R+

\0 and Sn = 1Bn, n ∈ N, respectively. (ii) and (iii) follow immediately
from the definition. For the proof of (iv) and (v-a) we refer to Witting and Müller-Funk [1995]
(Hilfssatz 6.111, p.294 and Satz 6.113, p.295). The proof of (v-b) is given in the lecture.

§07.21 Remark. Next we characterise contiguity in terms of the asymptotic behaviour of the likeli-
hood ratio Ln = dPn1 /dPn0 ∈ Xn

+
, n ∈ N. First recall that Pn1 (Ln < ∞) = Pn0 (Ln) ∈ [0, 1]

and Pn0 (Ln = ∞) = Pn1 (Ln = 0) = 0 for each n ∈ N. Consequently, the probability measure
Pn0 ◦ L−1

n ∈ W(B) is concentrated in R+ meaning that Pn0 ◦ L−1
n (R+) = Pn0 (Ln ∈ R+) = 1

for each n ∈ N. Moreover, (Pn0 ◦ L−1
n )n∈N is tight, since for any ε ∈ R+

\0 and c > 1/ε holds
Pn0 (Ln > c) 6 1

c
Pn0 (Ln) 6 1

c
< ε by Markov’s inequality. However, Pn1 ◦ L−1

n is generally not
concentrated in R+, but under Pn1 / Pn0 holds Pn1 (Ln =∞)→ 0 since Pn0 (Ln =∞) = 0 for all
n ∈ N. Thereby, the limit distribution of Pn1 ◦ L−1

n (if it exists) is concentrated in R+.

Formally, we write Ln = Ln1{Ln<∞} +∞1{Ln=∞}, where the second summand is negligible in
the sense of Slutzky’s lemma under contiguity Pn1 / Pn0 .

§07.22 Definition. (Tn)n∈N ∈ (X n)n∈N converges in distribution to PT ∈ W(B) under Pn, shortly
Tn

d−→ PT under Pn, if

Pn ◦ T−1
n

d−→ PT :⇔ Pn ◦ (Tn1{Tn∈R})
−1 d−→ PT and Pn(Tn 6∈ R)→ 0. (07.5)

We note that any family of probability measures on (R,B) is tight, since R is compact. A
non trivial formulation of tightness for probability measures provides the next definition.
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§07.23 Definition. A sequence (Pn)n∈N ∈ W(B) is called asymptotically tight if for all ε ∈ R+
\0 exists

M ∈ R+
\0 and no ∈ N such that for all n > no holds Pn([−M,M ]c) < ε.

§07.24 Remark. Asymptotic tightness of (Pn)n∈N ∈ W(B) is equivalently characterised by: for any
(Mn)n∈N in R with Mn ↑ ∞ holds Pn([−Mn,Mn]c)

n→∞−−−→ 0. In particular, we have im-
mediately Pn({−∞,∞}) n→∞−−−→ 0. The concept of asymptotic tightness and tightness as in
Definition §02.21 coincide if Pn(R) = 1 for all n ∈ N. Furthermore, it can be shown that
the claim of Prohorov’s theorem Property §02.24 holds also for families of asymptotically tight
probability measures.

§07.25 Theorem. For each n ∈ N let Pn0 ,Pn1 ∈ W(Xn), let Ln := dPn1 /dPn0 ∈ Xn
+

be a likelihood
ratio of Pn1 with respect to Pn0 and let PL

0 ,PL
1 ∈ W(B). Then the following statements are

equivalent:

(a1) Pn1 / Pn0 ;

(a2) Pn0 (Ln)
n→∞−−−→ 1 and for any ε ∈ R+

\0 exists M ∈ R+
\0 with supn∈N P

n
0 (Ln1{Ln>M}) < ε, i.e.

(Pn0 ◦ L−1
n )n∈N is uniformly integrable;

(a3) (Pn1 ◦ L−1
n )n∈N is asymptotically tight.

If in addition Ln
d−→ PL

0 under Pn0 , i.e. Pn0 ◦ L−1
n

d−→ PL
0 , then the following statements are

equivalent:

(b1) Pn1 / Pn0 ;

(b2) 1 =
∫
R
yPL

0 (dy) = PL
0 (idR) = PL

0 (idR1R);

(b3) Ln
d−→ PL

1 under Pn1 with PL
1 (B) = PL

0 (idR1B) =
∫
B
yPL

0 (dy) for all B ∈ B.

§07.26 Proof of Theorem §07.25. is given in the lecture.

Since Pn0 (Ln) = Pn1 (Ln < ∞) it holds Pn0 (Ln) → 1⇔ Pn1 (Ln = ∞) → 0. Keeping (07.1)
in mind the mass of the absolute continuous part of Pn1 with respect to Pn0 converges two 1, if
and only if, the singular part vanishes.

§07.27 Corollary. Under the notations of Theorem §07.25 the following statements are equivalent:

(i) Pn1 / Pn0 ;

(ii) if Pnk0 ◦ L−1
nk

d−→ PL
0 ∈ W(B) along a sub-sequence (nk)k∈N, then PL

0 (idR) = 1;

(iii) if Pnk0 ◦ L−1
nk

d−→ PL
0 ∈ W(B) along a sub-sequence (nk)k∈N, then Pnk1 ◦ L−1

nk

d−→ PL
1 , with

PL
1 (B) = PL

0 (idR1B) for all B ∈ B.

§07.28 Proof of Corollary §07.27. Since (Pn0 ◦ L−1
n )n∈N is tight (Remark §07.21) the claim follows

from Theorem §07.25 (b1)-(b3) by applying Prohorov’s theorem §02.24.

We are particularly interested in mutual contiguity (Pn0 /. Pn1 ) of (Pn0 )n∈N and (Pn1 )n∈N, which
can be characterised by applying Theorem §07.25 and its analogous formulation switching the
roles of Pn0 and Pn1 . However, for n ∈ N the transformation of a likelihood ratio Ln = dPn1 /
dPn0 into a log-likelihood ratio (LLR) `n := log Ln = log

(
dPn1 /dPn0

)
∈ X captures equally

both orthogonal events {Ln = 0} and {Ln =∞}. Generally, `n takes the value −∞ and +∞
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with positive Pn0 - and Pn1 -probability, respectively. In other words Pn0 ◦ `−1
n and Pn1 ◦ `−1

n is
concentrated in [−∞,∞) and (−∞,∞], respectively, since by Definition §07.03 of Ln it holds

Pn0 (`n =∞) = 0 and Pn1 (`n = −∞) = 0 for all n ∈ N. (07.6)

Thereby, similar to Remark §07.21 under mutual contiguity Pn0 / . Pn1 it follows

Pn1 (`n =∞)→ 0 and Pn0 (`n = −∞)→ 0 as n→∞. (07.7)

Consequently, the limit distribution of `n under both Pn0 and Pn1 , if it exists, is concentrated
in R. Keeping Definition §07.22 in mind under mutual contiguity Pn0 / . Pn1 convergence in
distribution of `n under Pn0 and Pn1 to P`0 ,P

`
1 ∈ W(B), respectively, is equivalently characterised

by

Pn0 ◦ `−1
n

d−→ P`0 ⇔ Pn0 ◦ (`n1{`n>−∞})
−1 d−→ P`0 and

Pn1 ◦ `−1
n

d−→ P`1 ⇔ Pn1 ◦ (`n1{`n<∞})
−1 d−→ P`1 . (07.8)

If L−1
n = dPn0 /dPn1 is a likelihood ratio of Pn0 with respect to Pn1 , as for example in Re-

mark §07.05, then making use of the identity log L−1
n = − log Ln = −`n the convergence in

distribution of `n under Pn0 respectively Pn1 implies immediately the corresponding convergence
of log L−1

n . Similar to Theorem §07.25 (b1)-(b3) the next result characterises mutual contiguity
in terms of the log-likelihood ratio `n.

§07.29 Theorem. For each n ∈ N let Pn0 ,Pn1 ∈ W(Xn), let `n := log Ln = log(dPn1 /dPn0 ) ∈ Xn be
a log-likelihood ratio such that also L−1

n = dPn0 /dPn1 ∈ Xn
+

and let P`0 ,P
`

1 ∈ W(B). If in
addition `n

d−→ P`0 under Pn0 , i.e. Pn0 ◦ `−1
n

d−→ P`0 , then the following statements are equivalent:
(b’1) Pn1 / . Pn0 ;

(b’2) 1 =
∫
R

exp(z)P`0 (dz) = P`0 (exp) = P`0 (exp1R)

(b’3) `n
d−→ P`1 under Pn1 with P`1 (B) = P`0 (exp1B) =

∫
B

exp(z)P`0 (dz) for all B ∈ B.

§07.30 Proof of Theorem §07.29. is given in the lecture.

§07.31 Remark. Let f`0 and f`1 denote, respectively, a µ-density of P`0 and P`1 with respect to a measure
µ ∈Mσ(B) dominating P`0 , and hence P`1 . The measure P`1 in Theorem §07.29 (b’3) is equally
defined by f`1(z) = exp(z)f`0(z) for µ-a.e. z ∈ R.

§07.32 Corollary. Under the notations of Theorem §07.29 if Pn0 ◦ `−1
n

d−→ N(µ,σ2) for (µ, σ) ∈ R ×R+

then the following statements are equivalent:
(b”1) Pn1 / . Pn0 ;

(b”2) µ = −σ2/2

(b”3) `n
d−→ N(σ2/2,σ2) under Pn1 .

§07.33 Proof of Corollary §07.32. is given in the lecture.

§07.34 Example (Le Cam’s first lemma). For n ∈ N let Pn0 ,Pn1 ∈ W(Xn) and Ln := dPn1 /dPn0 ∈
Xn

+
. If `n := log Ln

d−→ N(−σ2/2,σ2) under Pn0 , then Pn1 / . Pn0 and `n
d−→ N(σ2/2,σ2) under Pn1
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due to Corollary §07.32. For σ > 0 from σ−1(`n + σ2/2)
d−→ N(0,1) under Pn0 follows thus

σ−1(`n + σ2/2)
d−→ N(σ,1) under Pn1 . In other words in this situation there is asymptotically a

location shift by σ.

For each n ∈ N let Pn0 ,Pn1 ∈ W(Xn), let Ln := dPn1 /dPn0 ∈ Xn
+

be a likelihood ratio of
Pn1 with respect to Pn0 , let `n := log Ln and let Sn ∈ X k

n be a Rk-valued statistic defined on
(Xn,Xn). We search conditions which allow to calculate the limiting distribution of (Sn,Ln) re-
spectively (Sn, `n) under Pn1 , from the limiting distribution of (Sn,Ln) respectively (Sn, `n) un-
der Pn0 . Keeping again (§07.22) in mind under mutual contiguity Pn0 /. Pn1 the joint convergence
in distribution of (Sn,Ln)

d−→ P
(S,L)

1 ∈ W(Bk+1) under Pn1 , (Sn, `n)
d−→ P

(S,`)
0 ∈ W(Bk+1) un-

der Pn0 and (Sn, `n)
d−→ P

(S,`)
1 ∈ W(Bk+1) under Pn1 , respectively, is equally characterised

by

Pn1 ◦ (Sn,Ln)−1 d−→ P(S,L)
1 ⇔ Pn1 ◦ (Sn,Ln1{Ln<∞})

−1 d−→ P(S,L)
1 ,

Pn0 ◦ (Sn, `n)−1 d−→ P(S,`)
0 ⇔ Pn0 ◦ (Sn, `n1{`n>−∞})

−1 d−→ P(S,`)
0 and

Pn1 ◦ (Sn, `n)−1 d−→ P(S,`)
1 ⇔ Pn1 ◦ (Sn, `n1{`n<∞})

−1 d−→ P(S,`)
1 . (07.9)

Denote by Π
L

:= Π
k+1
∈ Bk+1, i.e. yk+1 = (yi)i∈Jk+1K 7→ Π

L
(yk+1) := yk+1 (respec-

tively Π
`

:= Π
k+1
∈ Bk+1) the coordinate map which allows us to write

∫
C
yP

(S,L)
1 (ds, dy) =∫

Rk+1 1C(s, y)Π
L
(s, y)P

(S,L)
1 (ds, dy) = P

(S,L)
1 (1CΠ

L
) for all C ∈ Bk+1.

§07.35 Theorem. For each n ∈ N let Pn0 ,Pn1 ∈ W(Xn), let `n = log Ln = log(dPn1 /dPn0 ) ∈ Xn be a
log-likelihood ratio, and let Sn ∈X k

n be a Rk-valued statistic. Then, we have

(i) If (Sn,Ln)
d−→ P

(S,L)
0 ∈ W(Bk+1) under Pn0 and P

(S,L)
0 (Π

L
1Rk+1) = P

(S,L)
0 (Π

L
) = 1, then

(Sn,Ln)
d−→ P

(S,L)
1 under Pn1 with P

(S,L)
1 (C) := P

(S,L)
0 (Π

L
1C) for all C ∈ Bk+1.

(ii) If (Sn, `n)
d−→ P

(S,`)
0 ∈ W(Bk+1) under Pn0 and P

(S,`)
0 (exp(Π

`
)1Rk+1) = P

(S,`)
0 (exp(Π

`
)) =

1, then (Sn, `n)
d−→ P

(S,`)
1 under Pn1 with P

(S,`)
1 (C) := P

(S,`)
0 (exp(Π

`
)1C) for all C ∈ Bk+1.

§07.36 Proof of Theorem §07.35. is given in the lecture.

§07.37 Example (Le Cam’s third lemma). For each n ∈ N let Pn0 ,Pn1 ∈ W(Xn), let `n = log Ln =
log(dPn1 /dPn0 ) ∈ Xn be a log-likelihood ratio, and let Sn ∈ X k

n be a Rk-valued statistic.
Suppose that the limit distribution of (Sn, `n) under Pn0 is multivariate normal, that is

Pn0 ◦ (Sn, `n)−1 d−→ P(S,`)
0 = N(v,M) with v =

(
µ

−σ2

2

)
and M =

(
Σ τ
τ t σ2

)
. (07.10)

Then it holds (Sn, `n)
d−→ P

(S,`)
1 = N(v′,M) under Pn1 with v′ = (µ + τ, σ2/2)t. Indeed, since

P
(S,`)

0 (exp(Π
`
)) = 1 both assumptions of Theorem §07.35 (ii) are satisfied and hence it remains

to calculate the limit distribution P
(S,`)

1 (C) := P
(S,`)

0 (exp(Π
`
)1C) for all C ∈ Bk+1. Suppose

first M > 0, or equivalently Σ > 0 and σ > 0, then P
(S,`)

0 has a density f
(S,`)

0 with respect
to the Lebesgue-measure λk+1 ∈ Mσ(Bk+1) and (see Remark §07.31) the Lebesgue-density
f
(S,`)

1 of P
(S,`)

1 satisfies f
(S,`)

1 (s, z) = exp(z)f(S,`)0 (s, z) for λk+1-a.e. (s, z) ∈ Rk+1. Keeping
the coordinate map Π

`
in mind we denote by f`0 and f`1 the marginal density of P(S,`)

0 ◦ Π
`

and
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P
(S,`)

1 ◦ Π
`
, respectively. Denoting by f

S|`=z
0 and f

S|`=z
1 , respectively, a conditional density of S

given ` = z under the joint distribution P
(S,`)

1 and P
(S,`)

1 (see Notation §03.11 (iv)) we have
f
S|`=z
1 (s)f`1(z) = exp(z)fS|`=z0 (s)f`0(z) for λk+1-a.e. (s, z) ∈ Rk+1. Exploiting Theorem §07.29

(b’3) it holds f`1(z) = exp(z)f`0(z) for λ-a.e. z ∈ R (see Remark §07.31). Consequently, it
remains to verify that N(v,M) and N(v′,M) have the same conditional distribution given ` = z.
Indeed, both are again multivariate normal (see Notation §03.11 (v)) with equal covariance
matrix Σ − σ2ττ t and conditional mean P

S|`=z
0 (idRk) = µ + σ−2τ(z + σ2/2) = µ + τ +

σ−2τ(z − σ2/2) = P
S|`=z

1 (idRk). The case of a positive semi-definite Σ and σ2 > 0 follows
by similar arguments when considering the projection onto the image of Σ. If σ = 0 the claim
follows from Lemma §07.19 (i) together with Slutzky’s lemma §02.10. In particular, note that
Sn

d−→ N(µ,Σ) under Pn0 and Sn
d−→ N(µ+τ,Σ) under Pn1 (see Reminder §07.07).

§08 Local asymptotic normality (LAN)

§08.01 Aim. For each n ∈ N let (Xn,Xn,P
n

Θ = (Pnθ )θ∈Θ) with Θ ⊆ Rk be a statistical experiment. We
aim to approximate (Xn,Xn,P

n
Θ ) in a certain sense by a Gaussian location model after suitable

reparametrisation.

§08.02 Reminder. Consider on (Rk,Bk) the family NRk×{Σ} := (N(h,Σ))h∈Rk of multivariate normal
distributions with common strictly positive definite covariance matrix Σ ∈ R

(k,k)
> and log-

likelihood ratio log
(
dN(h,Σ)/dN(0,Σ)

)
(z) = 〈Σ−1h, z〉 − 1

2
〈Σ−1h, h〉, z ∈ Rk. Noting that

for each h ∈ Rk the likelihood L(h) = dN(h,Σ)/dλ
k of N(h,Σ) with respect to the Lebesgue

measure λk on Rk satisfies L(h, x) = L(0, x − h) for all x ∈ Rk the statistical experiment
(Rk,Bk,NRk×{Σ}) is called a Gaussian location model.

Consider a localised reparametrisation centred around a parameter value θo ∈ int(Θ) which
is in the sequel regarded as fixed.

§08.03 Definition. Consider a sequence of statistical experiments (Xn,Xn,P
n

Θ ), n ∈ N, with common
parameter set Θ ⊆ Rk. Given a localising rate (δn)n∈N with δn = o(1) for each n ∈ N define a
local parameter set Θn

o := {δ−1
n (θ − θo) : θ ∈ Θ} ⊆ Rk. For each θ ∈ Θ and associated local

parameter h = δ−1
n (θ − θo) ∈ Θn

o rewriting Pnθ as Pnθo+δnh
we obtain a sequence of localised

statistical experiment (Xn,Xn,P
n
δnΘno+θo

:= (Pnθo+δnh
)h∈Θno ), n ∈ N.

§08.04 Remark. In the sequel we eventually take the local parameter set Θn
o equal to Rk which is not

correct if the parameter set Θ is a strict subset of Rk. However, if θo ∈ int(Θ) is an inner
point of Θ, which is assumed throughout this section, then for each h ∈ Rk the parameter
θ = θo + δnh belongs to Θ for every sufficiently large n. In other words, the local parameter
set Θn

o converges to the whole of Rk as n → ∞, i.e., ∪n∈NΘn
o = Rk. Thereby, we tactically

may either define the probability measure Pθo+δnh arbitrarily if θo + δnh does not belong to Θ, or
assume that n is sufficiently large.

§08.05 Aim. We show, for large n, that the localised statistical experiment (Xn,Xn,P
n
δnRk+θo

) and a
Gaussian location model (Rk,Bk,NRk×{I−1

θo }) are similar in statistical properties whenever the
original experiments, i.e., θ 7→ Pθ, are “smooth”.

§08.06 Heuristics. Consider a statistical experiment (X ,X ,PΘ) dominated by µ ∈ Mσ(X ), i.e.,
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PΘ � µ, with Θ ⊆ R, positive real likelihood L(θ) = dPθ/dµ ∈ X + and log-likelihood ` =
log L. Assume that for all x ∈ X , the map θ 7→ `(θ, x) is twice differentiable with derivatives
˙̀ := ∂

∂θ
` and ῭ := ∂2

∂2θ
`. A Taylor expansion of the log-likelihood ratio leads to `(θ + h, x) −

`(θ, x) = h ˙̀(θ, x)+ 1
2
h2 ῭(θ, x)+ox(h

2) where the remainder term depends on x. Considering a
product experiment (X n,X ⊗n,P⊗nΘ ) eventually it holds log(dP⊗nθ+h/

√
n/dP

⊗n
θ ) = h

√
nP̂n
(

˙̀(θ)
)
+

1
2
h2P̂n

(
῭(θ)

)
+Rn where the score ˙̀ has mean zero, i.e., Pθ

(
˙̀(θ)
)

= 0, and the Fisher information
Iθ equals −Pθ

(
῭(θ)

)
= Pθ

(
| ˙̀(θ)|2

)
. Setting Znθ :=

√
nP̂n
(

˙̀(θ)
)

from the central limit theorem

§02.13 follows Znθ
d−→ N(0,Iθ) under P⊗nθ while due to the law of large numbers §02.06 it holds

P̂n ῭(θ) = −Iθ + oP⊗nθ
(1). If in addition the remainder term is negligible, i.e., Rn = oP⊗nθ

(1),
then the log-likelihood ratio permits an expansion

log(dP⊗nθ+h/
√
n/dP

⊗n
θ ) = hZnθ − 1

2
h2Iθ + oP⊗nθ

(1)

which in the limit equals the log-likelihood ratio in a Gaussian location model.

§08.07 Definition. A sequence of statistical experiments (Xn,Xn,P
n

Θ )n∈N with Θ ⊆ Rk is called local
asymptotic normal (LAN) in θo ∈ int(Θ), if there is a localising rate (δn)n∈N with δn = o(1),
a sequence of statistics (Znθo)n∈N ∈ (X k

n )n∈N and a matrix Iθo ∈ R(k,k) such that for every
h ∈ Rk the following three statements hold true:
(a) θo + δnh ∈ Θ for all sufficiently large n, i.e., n > no(h);

(b) Znθo
d−→ N(0,Iθo ) under Pnθo , i.e., Pnθo ◦ (Znθo)

−1 d−→ N(0,Iθo );

(c) log(dPnθo+δnh
/dPnθo ) = 〈Znθo , h〉 −

1
2
〈Iθoh, h〉 +Rn,h where Rn,h = oPnθo

(1).

The matrix Iθo and the sequence of statistics (Znθo)n∈N is called, respectively, Fisher information
at θo and central sequence.

§08.08 Comment. If we assume in addition a strictly positive definite matrix Iθo ∈ R
(k,k)
> with in-

verse I−1
θo

the sequence of statistics (Z̃nθo := I−1
θo
Znθo)n∈N ∈ (X k

n )n∈N is equally a central se-

quence satisfying Z̃nθo
d−→ N(0,I−1

θo
) under Pnθ and log(dPnθo+δnh

/dPnθo ) = 〈Iθoh, Z̃nθo〉−
1
2
〈Iθoh, h〉+

oPnθo
(1). In other words the likelihood ratio dPnθo+δnh

/dPnθo equals approximately the likelihood ra-
tio dN(h,I−1

θo
)/dN(0,I−1

θo
) as in the Reminder §08.02. Consequently, the localised statistical model

(Xn,Xn,P
n
δnΘno+θo

) is similar to a Gaussian location model (Rk,B⊗k,NRk×{I−1
θo
}) in the sense of

Definition §08.07.

§08.09 Definition. A LAN sequence of statistical experiments is called uniformly local asymptotic
normal (ULAN) in θo ∈ Θ, if the condition (c) in Definition §08.07 is replaced by
(c’) for hn → h it holds log(dPnθo+δnhn

/dPnθo ) = 〈Znθo , h〉 −
1
2
〈Iθoh, h〉 + oPnθo

(1).

§08.10 Theorem. Let (Xn,Xn,P
n

Θ )n∈N be LAN in θo ∈ Θ ⊆ Rk with localising rate (δn)n∈N, central
sequence (Znθo)n∈N and Fisher information matrix Iθo ∈ R(k,k). Then for any h, h′ ∈ Rk the
following statements hold true:
(i) (Pnθo+δnh

)n∈N and (Pn
θo+δnh

′)n∈N are mutually contiguous, i.e., Pnθo+δnh
/ . Pn

θo+δnh
′ ;

(ii) Znθo
d−→ N(Iθoh,Iθo ) under Pnθo+δnh

.
If the sequence of statistical experiments is ULAN, then for any hn → h and h′n → h′ in Rk the
following statements hold true:
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(i’) (Pnθo+δnhn
)n∈N and (Pn

θo+δnh
′
n
)n∈N are mutually contiguous, i.e., Pnθo+δnhn

/ .Pn
θo+δnh

′
n
;

(ii’) Znθo
d−→ N(Iθoh,Iθo ) under Pnθo+δnhn

.

§08.11 Proof of Theorem §08.10. is given in the lecture.

§08.12 Theorem. Let PΘ � µ ∈ Mσ(X ) with open Θ ⊆ Rk be Hellinger-differentiable in θo ∈ Θ

with derivative ˙̀
θo and Fisher information matrix Iθo = Pθo( ˙̀

θo
˙̀t
θo

) ∈ R
(k,k)
> . Then the sequence

of product experiments (X n,X ⊗n,P⊗nΘ ) is ULAN in θo with localising rate δn := n−1/2 and
central sequence Znθo :=

√
n P̂n( ˙̀

θo), n ∈ N, that is,

(i)
√
n P̂n( ˙̀

θo)
d−→ N(0,Iθo ) under P⊗nθo

and

(ii) for hn → h it holds log(dP⊗nθo+hn/
√
n/dP

⊗n
θo

) = 〈Znθo , h〉 −
1
2
〈Iθoh, h〉 + oP⊗nθo

(1).

§08.13 Proof of Theorem §08.12. is given in the lecture.

§08.14 Corollary. Under the assumptions of Theorem §08.12 consider for each n ∈ N a statistical
product experiment (X n,X ⊗n,P⊗nΘ ) and an estimator γ̂n ∈ (X ⊗n)p of a parameter of interest
γ : Θ→ Rp allowing an expansion

√
n(γ̂n− γ(θo)) =

√
n P̂n(ψθo) + oP⊗nθo

(1) for some function

ψθo ∈ L p
2 (Pθo) with Pθo(ψθo) = 0. Then,

√
n(γ̂n − γ(θo))

d−→ N(0,Σo) under P⊗nθo
with Σo :=

Pθo(ψθoψ
t
θo

) and for each h ∈ Rk holds
√
n(γ̂n − γ(θo))

d−→ N(τh,Σo) under P⊗nθo+h/
√
n with τh :=

Pθo(ψθo ˙̀t
θo

)h.

§08.15 Proof of Corollary §08.14. is given in the lecture.

§08.16 Example (Example §06.06 continued). Under the assumptions of Theorem §08.12 let γ : θ → Rp

be a parameter of interest. Consider m(γ) ∈ L1(Pθ) for all γ ∈ Rp, a criterion process M̂n(γ) =

P̂n
(
m(γ)

)
, a criterion function M(θ, γ) = Pθ

(
m(γ)

)
and a M-estimator γ̂n ∈ arg infγ∈Γ{M̂n(γ)}

of {γo := γ(θo)} = arg infγ∈Γ{M(θo, γ)}. Under regularity conditions as in Example §06.06
we have

√
n(γ̂n−γo) =

√
nP̂n
(
ψθo
)

+oP⊗nθo
(1) with ψθo := −M̈−1

o ṁ(γo) assuming a regular ma-

trix M̈o := Pθo
(
m̈(γo)

)
. Consequently, setting Σo = Pθo(ψθoψ

t
θo

) = M̈−1
o Pθo(ṁ(γo)ṁ(γo)

t)M̈−1
o

from Corollary §08.14 it follows

√
n(γ̂n − γo)

d−→ N(τh,Σo) under P⊗nθo+h/
√
n with τh = −M̈−1

o Pθo(ṁ(γo) ˙̀t
θo)h.

In the particular case of a MLE θ̂n of θ, i.e., (γ = idRk), as in Example §06.07 setting m :=
− log(dPθ/dPo) we have ṁ(θo) = − ˙̀

θo , Iθo = Pθo
(
ṁ(θo)ṁ(θo)

t
)

= Pθo
(
m̈(θo)

)
= M̈o and thus

Σo = M̈−1
o Pθo(ṁ(γo)ṁ(γo)

t)M̈−1
o = I−1

θo
and τh := −M̈−1

o Pθo(ṁ(θo) ˙̀t
θo

)h = h. Therewith,
√
n(θ̂n − θo)

d−→ N(h,I−1
θo

) under P⊗nθo+h/
√
n.

§08.17 Remark. Supposing
√
n(θ̂n − θo) =

√
n P̂n(ψθo) + oP⊗nθo

(1) let us further assume a transfor-
mation A : Θ → Rp that is “smooth”, and hence by employing the delta method §02.16,
for instance satisfies

√
n(A(θ̂n) − A(θo)) = Ȧθo

√
n P̂n(ψθo) + oP⊗nθo

(1). Consequently, it fol-

lows
√
n(A(θ̂n) − A(θo))

d−→ N(τh,Σo) under P⊗nθo+h/
√
n with τh = ȦθoPθo(ψθo ˙̀t

θo
)h and Σo =

ȦθoPθo(ψθoψ
t
θo

)Ȧtθo . In the special case of a MLE we have
√
n(A(θ̂n)−A(θo))

d−→ N(Ȧθoh,ȦθoI
−1
θo
Ȧtθo )

under P⊗nθo+h/
√
n.
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§09 Asymptotic relative efficiency

§09.01 Heuristics (§06.09 and §06.10 continued). Under the conditions of Corollary §08.14 consider
the statistical testing task H0 : A(θo) = 0 against the alternative H1 : A(θo) 6= 0 for some
transformation A : Θ → Rp satisfying

√
n(A(θ̂n) − A(θo)) = Ȧθo

√
n P̂n(ψθo) + oP⊗nθo

(1). As

in §06.09 let Ŵn := nA(θ̂n)tΣ̂−1
n A(θ̂n) where Σ̂n = Σ + oP⊗nθo

(1) is a consistent estimator of

Σ = ȦθoPθo(ψθoψ
t
θo

)Ȧtθo , then a Wald test is given by ϕn := 1{Ŵn>χ2
p,1−α}. Thereby, under H0,

i.e. A(θo) = 0, we have
√
nA(θ̂n) = Ȧθo

√
n P̂n(ψθo) + oP⊗nθo

(1) and Ŵn
d−→ χ2

p under P⊗nθo

which in turn implies P⊗nθo
(ϕn = 1)

n→∞−−−→ χ2
p((χ

2
p,1−α,∞)) = α. In other words, the Wald

test is asymptotically a level α test. For each θ ∈ Θ let us denote βϕn(θ) := P⊗nθ (ϕn) =

P⊗nθ (ϕn = 1) = P⊗nθ (Ŵn > χ2
p,1−α) which equals the power of the Wald test ϕn under

H1, i.e. θ ∈ Θ with A(θ) 6= 0. In the sequel we consider local alternatives of the form
θ = θo + h/

√
n and thus we are interested in βϕn(θo + h/

√
n) = P⊗nθo+h/

√
n(Ŵn > χ2

p,1−α).

Keeping Remark §08.17 under P⊗nθo+h/
√
n we have

√
nA(θ̂n)

d−→ N(ȦθoPθo (ψθo
˙̀t
θo

)h,Σ), assuming addi-

tionally Σ > 0 also Σ−1/2
√
nA(θ̂n)

d−→ N(ah,Idp) with ah := Σ−1/2ȦθoPθo(ψθo ˙̀
θo)

th, and hence,

nA(θ̂n)tΣ−1A(θ̂n)
d−→ χ2

p(‖ah‖2). Here χ2
p(c) denotes a non-central χ2-distribution with p de-

grees of freedom and non-centrality parameter c ∈ R+. Moreover, Ŵn − nA(θ̂n)tΣ−1A(θ̂n) =

oP⊗nθo
(1) and thus Ŵn − nA(θ̂n)tΣ−1A(θ̂n) = oP⊗n

θo+h/
√
n
(1) due to Lemma §07.19 (ii) by em-

ploying that P⊗nθo
/ . P⊗nθo+h/

√
n are mutually contiguous. Consequently, Ŵn

d−→ χ2
p(‖ah‖2) under

P⊗nθo+h/
√
n and thus βϕn(θo + h/

√
n)

n→∞−−−→ χ2
p(‖ah‖2)

(
(χ2

p,1−α,∞)
)
. Note that ah simplifies to

htȦtθo(ȦθoI
−1
θo
Ȧtθo)

−1Ȧθoh in the particular case of a MLE θ̂n.

§09.02 Reminder (Gauß test). In a Gaussian location model, i.e. Y ©∼ NRk×{I−1
θo
} with Iθo ∈ R

(k,k)
> ,

consider the binary testing task H0 : {N(0,I−1
θo

)} against the alternative H1 : {N(h,I−1
θo

)} for
some h ∈ Rk. In this situation the log-likelihood ratio `h = log(dN(h,I−1

θo
)/dN(0,I−1

θo
)) satisfies

`h(y) = 〈Iθoy, h〉 − 1
2
σ2
h for all y ∈ Rk with σ2

h := 〈Iθoh, h〉. Consequently, `h ∼ N(−σ2
h/2,σ

2
h)

under N(0,I−1
θo

), i.e. under the hypothesis H0, and `h ∼ N(σ2
h/2,σ

2
h) under N(h,I−1

θo
), i.e. under the

alternative H1. For α ∈ (0, 1) let ch,1−α ∈ R satisfy N(−σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
= α and thus

N(0,I−1
θo

)(`h > ch,1−α) = N(−σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
= α. Keeping in mind that any most powerful

level-α test has Neyman-Pearson form and the Gauß test ϕ? := 1{`h>ch,1−α} is a Neyman-Pearson
level-α test. Its power given by βϕ?(h) := N(h,I−1

θo
)(ϕ

? = 1) = N(h,I−1
θo

)(`h > ch,1−α) =

N(σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
is maximal in the class of all level-α tests, i.e., for any level-α test ϕ

holds βϕ(h) 6 βϕ?(h). In other words, ϕ? is a most powerful level-α test (Statistik 1, Satz
§21.16, p.100).

§09.03 Example (Neyman-Pearson test). Assume local asymptotic normality as in Definition §08.07
where `h,n := log(dPnθo+δnh

/dPnθo )
d−→ N(−σ2

h/2,σ
2
h) under Pnθo with σ2

h := 〈Iθoh, h〉 for h ∈ Rk.

Hence by Le Cam’s first lemma (Example §07.34)mutual contiguity Pnθo+δnh
/ . Pnθo and `h,n

d−→
N(σ2

h/2,σ
2
h) under Pnθo+δnh

hold. Consider the binary testing task of the hypothesis H0 : {Pnθo }
against a local alternative H1 : {Pnθo+δnh

}. In this situation ϕ?n = 1{`h,n>ch,n,1−α} is a Neyman-
Pearson test, which is a most powerful level-α test, if Pnθo (ϕ?n = 1) = α. Keeping its power
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function βϕ?n(θ) = Pnθ (ϕ?n) = Pnθ (ϕ?n = 1) = Pnθ (`h,n > ch,n,1−α) evaluated at θ in mind
the value βϕ?n(θo + δnh) equals the maximal size of the power in the class of all level-α
tests. Considering ch,1−α ∈ R as in Reminder §09.02 under local asymptotic normality it
follows α = Pnθo (ϕ?n) = Pnθo (`h,n > ch,n,1−α)

n→∞−−−→ N(−σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
= α which im-

plies ch,n,1−α
n→∞−−−→ ch,1−α, and in addition βϕ?n(θo + δnh) = Pnθo+δnh

(ϕ?n) = Pnθo+δnh
(`h,n >

ch,n,1−α)
n→∞−−−→ N(σ2

h/2,σ
2
h)

(
(ch,1−α,∞)

)
= βϕ?(h) with Neyman-Pearson test ϕ? in a Gaussian

location model as in Reminder §09.02.

§09.04 Theorem. Let Θ ⊆ R. Consider a one-sided test task H0 : (−∞, θo] against H1 : (θo,∞).
Suppose that (Xn,Xn,P

n
Θ ) is LAN in θo ∈ Θ with localising sequence (δn)n∈N, central sequence

(Znθo)n∈N ∈ (Xn)n∈N and strictly positive Fisher information Iθo ∈ R+
\0.

(i) Given a sequence (Tn)n∈N ∈ (Xn)n∈N of test statistics satisfying (Tn,Znθo)
d−→ N(0,M) with

M =
(
(σ2, ρ)t, (ρ, Iθo)t

)
consider the randomised test ϕn := 1{Tn>cn} + γn1{Tn=cn} with

γn ∈ [0, 1] and cn ∈ R such that βϕn(θo) = Pnθo (ϕn) = Pnθo (Tn > cn) + γnP
n
θo

(Tn = cn) =

αn
n→∞−−−→ α. Choosing z1−α ∈ R with 1− FN(0,1)

(z1−α) := N(0,1)

(
(z1−α,∞)

)
= α we have

βϕn(θo + δnh) = Pnθo+δnh
(ϕn)

n→∞−−−→ FN(0,1)
(−z1−α + hρ/σ).

(ii) In case Tn = Znθo consider ϕ?n = 1{Znθo>z1−αI
1/2
θo
}, i.e. γn = 0 and cn = z1−αI1/2

θo
. Then

βϕ?n(θo) = Pnθo (ϕ?n) = Pnθo (I−1/2
θo
Znθo > z1−α)

n→∞−−−→ 1− FN(0,1)
(z1−α) = α and

βϕ?n(θo + δnh) = Pnθo+δnh
(ϕ?n)

n→∞−−−→ FN(0,1)
(−z1−α + hI1/2

θo
).

§09.05 Proof of Theorem §09.04. is given in the lecture.

§09.06 Remark.
(a) By using Theorem §07.35 directly it could be possible to calculate an asymptotic power of

a test if log(dPnθo+δnh
/dPnθo )

d−→ P under Pnθo where P equals not necessarily N(0,1).

(b) Let (Y1, Y2) ∼ N(0,M) with M =
(
(σ2, ρ)t, (ρ, Iθo)t

)
as in Theorem §09.04 (i), then

ρ2 = |Cov(Y1, Y2)|2 6 Var(Y1)Var(Y2) = σ2Iθo . Consequently, the test ϕ?n given in
(ii) maximises the asymptotic power when considering only a randomised test ϕn as given
in part (i) of Theorem §09.04.

§09.07 Theorem. Let the assumptions of Theorem §09.04 be satisfied. Any test ϕn of the one-sided
testing task H0 : (∞, θo] against H1 : (θo,∞) with βϕn(θo) := Pnθo (ϕn) = αn

n→∞−−−→ α fulfils

(i) lim supn→∞ βϕn(θo + δnh) 6 FN(0,1)
(−z1−α + h

√
Iθo) for all h ∈ R+

\0;

(ii) lim infn→∞ βϕn(θo − δnh) > FN(0,1)
(−z1−α − h

√
Iθo) for all h ∈ R+

\0.

§09.08 Proof of Theorem §09.07. is given in the lecture.

§09.09 Remark. Keeping Theorem §09.07 in mind we call the test (sequence) (ϕ?n)n∈N given in The-
orem §09.04 (ii) asymptotically uniformly most powerful level-α test (sequence) in the class
of all asymptotic level-α test (sequences). Its asymptotic power function equals FN(0,1)

(−z1−α +

h
√
Iθo) which is the power function of the uniformly most powerful test of H0 : (−∞, 0]

against H1 : (0,∞) in the limit Gaussian location experiment (R,B,NR×{I−1
θo
}).
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§09.10 Asymptotic relative efficiency. Let (Xn,Xn,P
n

Θ )n∈N be LAN with localising rate (δn :=
n−1/2)n∈N. Consider a test ϕan satisfying the conditions of Theorem §09.04 (i) and hence, ad-
mitting an asymptotic power function such that βϕan(θo+h/

√
n)

n→∞−−−→ FN(0,1)
(−z1−α+hρa/σa).

Thereby, choosing η = h/
√
n the approximation βϕan(θo + η) ≈ FN(0,1)

(−z1−α + η
√
nρa/σa) is

reasonable. In analogy, if ϕbn is another test satisfying the conditions of Theorem §09.04 (i) and
admitting βϕbn(θo+η) ≈ FN(0,1)

(−z1−α+η
√
nρb/σb). Roughly speaking, this means, that at θo+η

the power of the test ϕana and ϕbnb with sample size na and nb, respectively, is approximately
equal if naρ2

a/σ
2
a = nbρ

2
b/σ

2
b . The quantity are(ϕana , ϕ

b
nb

) = (na/nb) = (ρ2
bσ

2
a)/(ρ

2
aσ

2
b ) is called

asymptotic relative efficiency. Meaning, that a sample of size na = are(ϕana , ϕ
b
nb

)nb is needed
for the test ϕana to attain at θo + η approximately the same power FN(0,1)

(−z1−α + η
√
naρa/σa) =

FN(0,1)
(−z1−α + η

√
nbρb/σb) as the test ϕbnb with sample size nb. A comparison with the test

ϕ?n as in Theorem §09.04 (ii) allows analogously to introduce a notion of asymptotic absolute
efficiency.

§10 Rank tests

§10.01 Reminder. Consider on the sample space (Rn,Bn) the statistic T : Rn → Rn with x 7→
T (x) = (Ti(x))i∈JnK and Ti(x) := min{c ∈ R :

∑
j∈JnK 1{xj6c} > i}, i ∈ JnK. Since T1(x) 6

T2(x) 6 · · · 6 Tn(x) for all x ∈ Rn the statistic T (and any other statistic with this property)
is called an order statistic. Denote by Sn the symmetric group of order n, i.e. the set of all
permutations of the set JnK. We identify as usual a vector s = (si)i∈JnK ∈ JnKn with the map
s : JnK → JnK, i 7→ s(i) := si, and hence Sn ⊆ JnKn. Let s− ∈ Sn denote the inverse
permutation of s ∈ Sn, i.e. idSn = s ◦ s− = s− ◦ s. For a permutation s = (si)i∈JnK ∈ Sn and
a vector x = (xi)i∈JnK ∈ Rn we write shortly xs := (xsi)i∈JnK. A Borel-measurable map S :
Rn → Sn, i.e. S−1(s) ∈ Bn for all s ∈ Sn, is called a random permutation on (Rn,Bn). The
associated map S− : Rn → Sn satisfying idSn = S−(x)◦S(x) = S(x)◦S−(x) for all x ∈ X is
trivially again Borel-measurable, and hence called random inverse permutation of S. Moreover
the statistic XS : Rn → Rn with x 7→ XS(x) := (xSi(x))i∈JnK = xS(x) =

∑
s∈Sn xs1{s}(S(x)) (a

finite sum of Borel-measurable functions x 7→ xs1S−1(s)(x)) is called a random arrangement.

§10.02 Definition. A random permutation O = (Oi)i∈JnK on (Rn,Bn) is called order permutation, if
the associated random arrangement XO : Rn → Rn with x 7→ xO(x) is an order statistic, i.e.
xO1(x) 6 xO2(x) 6 · · · 6 xOn(x) for all x ∈ Rn. A random permutation R = (Ri)i∈JnK on
(Rn,Bn) is called rank permutation, if its random inverse permutation O := R− is an order
permutation. For i ∈ JnK the i-th component Ri(x) of R(x) is called the rank of the i-th
component of x ∈ Rn.

§10.03 Comment. An order permutation O is uniquely determined on the Borel-set {xi 6= xj} :=
{(xi)i∈JnK ∈ Rn : xi 6= xj,∀ j ∈ JnK\{i},∀ i ∈ JnK} only. However, for x ∈ Rn, the
permutation o := O(x) ∈ Sn and i ∈ JnK the value at the i-th position in the ordered vector xo
equals the value at the oi-th position in the original vector x. Conversely, for the permutation
r := R(x) ∈ Sn of the rank permutation R := O− the value at the ri-th position in the ordered
vector xo equals the value at the i-th position in the original vector x.

§10.04 Remark. The map R∗ = (R∗i )i∈JnK : Rn → Sn with x 7→ R∗i (x) :=
∑

j∈JiK 1{xi=xj} +∑
j∈JnK 1{xi>xj} for each i ∈ JnK is a rank permutation. Indeed, for each x ∈ Rn we have
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r := R∗(x) ∈ Sn (r : JnK → JnK is injective and hence bijective) and its inverse permutation
o := r− satisfies xo1 6 xo2 6 · · · 6 xon . Furthermore, each component of R∗ is B-2JnK-
measurable, and hence R∗ is a rank permutation. On the Borel-set {xi 6= xj} each rank permu-
tation R = (Ri)i∈JnK is uniquely determined by Ri(x) =

∑
j∈JnK 1{xj6xi} = R∗i (x), i ∈ JnK. For

each y ∈ R define F̂n(y) := P̂n(1(−∞,y]) with F̂n(y, x) := 1
n

∑
j∈JnK 1{xj6y} ∈ [0, 1] for all x ∈ Rn.

F̂n is called empirical cumulative distribution function. If in addition r := R(x) and o := r− for
x ∈ {xi 6= xj} then i = nF̂n(xoi , x) and ri = nF̂n(xi, x) for each i ∈ JnK.

§10.05 Comment. We assume a product probability measure Pn =
⊗

j∈JnK Pj on the sample space
(Rn,Bn) where for each j ∈ JnK the marginal probability measure Pj ∈ W(B) admits a
Lebesgue density fj = dPj/dλ and hence Pn � λn ∈ Mσ(Bn) with Lebesgue density dPn/
dλn =

∏
j∈JnK fj. Noting that the complement {xi = xj} := {xi 6= xj}c of the Borel-set

{xi 6= xj} is a λn null set, and hence it is also a Pn null set. Thereby, each rank permuta-
tion R on (Rn,Bn) with corresponding order permutation O := R− satisfies xO1(x) < xO2(x) <
· · · < xOn(x) for Pn-a.e. x ∈ Rn. Moreover, for Pn-a.e. x ∈ Rn the vector of ranks R(x) (and
the rang permutation R) is determined by Ri(x) =

∑
j∈JnK 1{xj6xi} = nF̂n(xi, x), i ∈ JnK.

§10.06 Lemma. Consider a product probability measure P⊗n on (Rn,Bn) with identical marginal
distribution P ∈ W(B), cumulative distribution function F (y) := P(1(−∞,y]), y ∈ R, and
Lebesgue density f = dP/dλ. Let R and XO with O = R− be a rang permutation on (Rn,Bn)
and the corresponding order statistic, respectively.
(i) R is under P⊗n uniformly distributed on the symmetric group Sn, precisely, (P⊗n)R({s}) =

(P⊗n ◦R−1)({s}) = P⊗n(R = s) = 1
n!

, s ∈ Sn, in short R ∼ (P⊗n)R = USn .

(ii) R and XO are independent under P⊗n.

(iii) The distribution ofXO admits under P⊗n a Lebesgue density fXO(x) = n!1B(x)
∏

i∈JnK f(xi),
x ∈ Rn, with B := {(xi)i∈JnK ∈ Rn, x1 < . . . < xn}.

(iv) For each i ∈ JnK the distribution of the i-th component ofXO admits under P⊗n a Lebesgue
density fi(x) = i

(
n
i

)
|F(x)|i−1|1− F(x)|n−if(x), x ∈ R.

§10.07 Proof of Lemma §10.06. see Statistik 1 (Lemma §24.05, p.115).

§10.08 Definition. Let Po and P be probability measures on (R,B). We say Po is stochastically smaller
than P, or Po � P for short, if Po((c,∞)) 6 P((c,∞)) for all c ∈ R. If in addition Po 6= P, then
we write Po ≺ P.

§10.09 Remark. Roughly speaking, Po � P says that realisations of Po are typically smaller than reali-
sations of P.

§10.10 Example. For σ ∈ R+ consider on (R,B) a Gaussian location family NR×{σ2}. Then for all
a, b ∈ R holds N(a,σ2) ≺ N(b,σ2) if and only if a � b. More generally, given a location family
PR on (R,B) as introduced in Example §07.17 with likelihood function L(θ, x) = g(x − θ),
θ, x ∈ R, for some strictly positive Lebesgue-density g on R. Then for all a, b ∈ R holds
Pa ≺ Pb if and only if a � b.

§10.11 Heuristics. Given a sample from each distribution Po,P ∈ W(B) we consider the testing task
Ho : P = Po against the alternative H1 : Po ≺ P. Loosely speaking, this means, that we
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aim to reject the null hypothesis if realisations of Po are significantly smaller than realisation
of P. More precisely, we assume a sample of n = m + l independent real random variables
{Xi, i ∈ JnK} where the first m and the last l have as common marginal distribution Po and
P, respectively. In other words X = (Xi)i∈JnK takes its values in the pooled sample space
(Rn,Bn). Considering a rank permutation R on (Rn,Bn) and an observation x ∈ Rn it seems
reasonable to reject the hypothesis if the sum of ranks within the first group of m random
variables, i.e. Wo(x) :=

∑
i∈JmKRi(x), takes sufficiently smaller values then the sum of ranks

within the second group of l random variables, i.e. W (x) :=
∑

i∈JlKRi+m(x) where obviously

Wo(x) +W (x) =
∑

i∈JnKRi(x) =
∑

i∈JnK i = n(n+1)
2

.

§10.12 Lemma. For m, l ∈ N and n := m + l let R = (Ri)i∈JnK be a rang permutation on (Rn,Bn),
Wo :=

∑
i∈JmKRi, W :=

∑
i∈JlKRi+m and Uml : Rn → J0,mlK with x 7→ Uml(x) :=∑

i∈JmK
∑

j∈JlK 1{xi>xj+m}. Then for each x ∈ {xi 6= xj} it holds Wo(x) = Uml(x) + m(m+1)
2

and consequently W (x) = ml − Uml(x) + l(l+1)
2

.

§10.13 Proof of Lemma §10.12. see Statistik 1 (Lemma §24.11, p.116).

§10.14 Comment. Keeping Lemma §10.12 in mind, we use the test statistic Wo or equivalently Uml to
reject the hypothesis H0 : P = Po against the alternative H1 : Po ≺ P, if Uml < c or equivalently
Wo < c + m(m+1)

2
for a certain threshold c ∈ (0,ml]. The test is called (one-sided) Mann-

Whitney U-test or Wilcoxon two-sample rank sum test1. The critical value has to be chosen
according to a pre-specified level α ∈ (0, 1) which under the null hypothesis necessitates the
knowledge of the distribution of Uml or an asymptotic approximation. Interestingly the next
proposition shows that under the null hypothesis the distribution of Uml is distribution free in
the following sense: If Po = P and P admits a Lebesgue density, then the distribution of Uml is
determined and it is independent of the underlying distribution P.

§10.15 Proposition. For m, l ∈ N and n := m + l let P⊗n ∈ W(Bn) with identical marginal
distribution P � λ. For all k ∈ J0,mlK it holds P⊗n(Uml = k) = N(k;m, l)/

(
n
k

)
where

N(k;m, l) denotes the number of all partitions
∑

i∈JmK ki = k of k in m increasingly or-
dered numbers k1 6 k2 6 · · · 6 km taking from the set J0, lK. In particular, it holds
P⊗n(Uml = k) = P⊗n(Uml = ml − k).

§10.16 Proof of Proposition §10.15. see Georgii [2015] (Satz 11.26, p.342).

§10.17 Remark. For small values of k the partition number N(k;m, l) can be calculated by com-
binatorical means and there exists tables gathering certain quantiles of the Uml-distribution.
However, for large values of k the exact calculation of quantiles of the Uml-distribution may be
avoided by using an appropriate asymptotic approximation. In the sequel we let m and l and
thus n = m + l tend to infinity, which formally means that we consider sequences (mn)n∈N
and (ln)n∈N satisfying mn + ln = n for any n ∈ N. Here and subsequently we assume that
mn/n

n→∞−−−→ γ ∈ (0, 1) and hence ln/n
n→∞−−−→ 1 − γ. For sake of presentation, however,

we drop the additional index n and write shortly n = m + l with m/n n→∞−−−→ γ and hence
l/n

n→∞−−−→ 1− γ.

1The version based on Wo has been proposed by Wilcoxon [1945], while the Uml-version has been independently
be introduced by Mann and Whitney [1947].
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§10.18 Theorem. Form, l ∈ N and n := m+ l let P⊗n ∈ W(Bn) with identical marginal distribution
P � λ, and hence continuous cumulative distribution function F. Consider Uml : Rn → J0,mlK
and Tml : Rn → R with x 7→ Uml(x) :=

∑
i∈JmK

∑
j∈JlK 1{xi>xj+m} and

x 7→ Tml(x) := l
∑
i∈JmK

F(xi)−m
∑
i∈JlK

F(xi+m) = l
∑
i∈JmK

(F(xi)−1/2)−m
∑
i∈JlK

(F(xi+m)−1/2).

Define further vml := ml(n+ 1)/12, T ?ml := Tml/
√
vml and U?

ml := (Uml −ml/2)/
√
vml. If in

addition m/n → γ ∈ (0, 1) then U?
ml − T ?ml = oP⊗n(1) and T ?ml

d−→ N(0,1) under P⊗n, and thus

U?
ml

d−→ N(0,1) under P⊗n.

§10.19 Proof of Theorem §10.18. see Georgii [2015] (Satz 11.29, p.344).

§10.20 Remark. Considering two independent samples (Xi)i∈JmK ∼ P⊗mo and (Xi+m)i∈JlK ∼ P⊗l set
n := m+ l and X := (Xi)i∈JnK. Keeping Theorem §10.18 in mind we reject the null hypothesis
Ho : Po = P against the alternative H1 : Po ≺ P, if Uml(X) < ml/2 + zα

√
vml with FN(0,1)

(zα) =
α ∈ (0, 1). This test is asymptotically a level-α test due to Theorem §10.18 by exploiting that
under the null P⊗n(Uml < ml/2 + zα

√
vml)

n→∞−−−→ FN(0,1)
(zα) = α for m/n n→∞−−−→ γ ∈ (0, 1).

Note that we reject similarly the null hypothesis Ho : Po = P against the alternative H1 : P ≺ Po
if Uml > ml/2 + z1−α

√
vml. Next we study the (asymptotic) size of the power of the rank test

under local alternatives where we use that under the assumptions of Theorem §10.18 it holds

U?
ml =

Uml −ml/2√
vml

=
√

l
n+1

1√
m

∑
i∈JmK

F(Xi)−1/2√
1/12

−
√

m
n+1

1√
l

∑
i∈JlK

F(Xi+m)−1/2√
1/12

+ oP⊗n(1)

=
√

1− γ
√
m P̂m(g) −√γ

√
l P̂l(g) + oP⊗n(1) (10.1)

setting g :=
√

12(F − 1/2), P̂m(g) := 1
m

∑
i∈JmK g(Xi) and P̂l(g) := 1

l

∑
i∈JlK g(Xi+m) where

P̂m(g) and P̂l(g) are independent, P(g) = 0, and P(g2) = 1 by construction.
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Chapter 4

Nonparametric estimation

This chapter presents an introduction to nonparametric estimation of
curves along the lines of the textbooks by Tsybakov [2009] and Comte
[2015] where far more details, examples and further discussions can be
found.

§12 Introduction

Nonparametric density estimation. Consider for a non-empty set of parameters Θ a
family PΘ of probability measures on (R,B) which contains the distribution of an observable
real random variable, X©∼ PΘ. The family PΘ captures the prior knowledge about the distribu-
tion of the observation. For example, a family given by a set of parameters Θ containing only
one singleton, i.e., Θ = {θo}, and hence X ∼ Pθo for some probability measure Pθo ∈ W(B),
means, the data generating process is known to us in advance. On the contrary, a parameter
set Θ = W(B) reflects a lack of prior knowledge. A parametric model PΘ for some parameter
set Θ ⊆ Rk provides in a certain sense a trade-off between both extremes. In this chapter our
aim is to avoid an assumption of a finite dimensional set of parameters. For example, consider
{Xi, i ∈ JnK} i.i.d.∼ P ∈ W(B), that is, an independent and identically distributed sample with
common probability measure P ∈ W(B). A reasonable estimator of the associated cumulative
distribution function (c.d.f.) F(t) := P((−∞, t]), t ∈ R, is the empirical cumulative distri-
bution function (e.c.d.f.) F̂n(t) := P̂n((−∞, t]), t ∈ R. For each t ∈ R, F̂n(t) is an unbiased
estimator of F(t) with variance Var(F̂n(t)) = 1

n
F(t)(1− F(t)). Consequently, F̂n(t) converges in

probability to F(t), and thus it is a consistent estimator. Moreover, by the law of large numbers
(Property §02.05 (i)) the convergence holds almost surely in any point and also uniformly, by
Glivenko-Cantelli’s theorem, i.e., ‖F̂n − F‖L∞ = o(1) P-a.s.. If we assume in addition that P
admits a Lebesgue density then F̂n is a unbiased estimator with minimal variance, by Lehman-
Scheffé’s theorem. However, comparing different probability measures using their associated
c.d.f.’s is visually difficult and as a consequence, other measures for dissimilarities are typi-
cally used. Consider, for instance, for two probability measures P and Po on (R,B) their total
variation distance given by ‖P − Po‖TV := sup{|P(B) − Po(B)|, B ∈ B}. We note that for
any probability measure P ∈ W(B) admitting a Lebesgue-density we have ‖P − P̂n‖TV = 1
P-a.s. for any n ∈ N. As a consequence the empirical probability measure P̂n is not a consistent
estimator of P in terms of the total variation distance. In other words, dependending on the
measure of accuracy (metric, topology, etc.) a different estimator of P might be reasonable.

§12.01 Lemma (Scheffé’s theorem). Let P,Po ∈ W(B) admit a µ-density p and po, respectively, for
some µ ∈Mσ(B). Then ‖P − Po‖TV = 1

2
µ(|p − po|) = 1

2
‖p − po‖L1(µ).

§12.02 Proof of Lemma §12.01. see Tsybakov [2009] (Lemma 2.1, p.70).

In the sequel let D be the set of Lebesgue densities on (R,B), and hence D ⊆ L1 =
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L1(B, λ). P
p

= pλ and E
p

denote for each density p ∈ D the associated probability measure
and expectation, respectively. We consider the statistical product experiment (Rn,Bn,P⊗nD =
(P⊗n

p
)p∈D) and (Xi)i∈JnK©∼ P⊗nD . Typically, for s > 1 we access the accuracy of an estimator p̂

of p either by a local measure, e.g. P⊗n
p

(|p̂(t)− p(t)|s), for t ∈ R, or by a global measure, e.g.
P⊗n
p

(‖p̂ − p‖sLs
) = P⊗n

p
(λ(|p̂ − p|s)), with a focus on the special cases s = 1 and s = 2.

Nonparametric regression. We describe the dependence of the variation of a real-valued
random variable Y (response) on the variation of an explanatory random variable X by a func-
tional relationship E

(
Y
∣∣X = x

)
= f(x) where f is an unknown functional parameter of in-

terest. For a detailed discussion of the case of a deterministic explanatory variable we refer to
Tsybakov [2009]. Here and subsequently, we restrict our attention to the special case of a real-
valued explanatory variable X , and hence, a random vector (Y,X) taking values in (R2,B2).
The joint distribution of (Y,X) is uniquely determined by the functional parameter of interest
f, the conditional distribution of the error ε := Y −f(X) given X and the marginal distribution
of X which are generally all not known in advance. However, the joint distribution is typically
parametrised by the regression function f only and we write shortly (Y,X) ∼ Pf . Thereby, the
dependence on the marginal distribution PX of the regressor X and the conditional distribution
of the error term ε given X is usually not made explicit. For sake of simplicity, suppose in
addition that the joint distribution Pf of (Y,X) admits a joint Lebesgue density p. Denoting by
pX the marginal density of X we use for the conditional density pY |X of Y given X the Pf -a.s.
identity pXpY |X = p (see Notation §03.11 (iii)) which allows for Pf -a.e. x ∈ R to write

q(x) := f(x)pX(x) = E
(
Y
∣∣X = x

)
pX(x)

=

∫
R

ypY |X=x(y)dypX(x) =

∫
R

yp(y, x)dy. (12.1)

Consequently, the function of interest is Pf -a.s. given by f = q/pX which motivates the follow-
ing estimation strategy. Given a sample of (Y,X) estimate separately q and pX , say by q̂ and
p̂
X , and then form a estimator f̂ = q̂/p̂X (possibly in addition to be regularised). There are

many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel let
F be a family of regression functions and for each f ∈ F denote by Pf and Ef the associated
probability measure of (Y,X) and its expectation, respectively. We denote by PF the family of
possible distributions of (Y,X), but keep in mind, that the distribution Pf of (Y,X) is gener-
ally not uniquely determined by f ∈ F only. If {(Yi, Xi), i ∈ JnK} form an independent and
identically distributed (i.i.d.) sample of (Y,X) ∼ Pf then P⊗nf = ⊗j∈JnKPf denotes the joint

product probability measure of the family ((Yi, Xi))i∈JnK. We write {(Yi, Xi), i ∈ JnK} i.i.d.∼ Pf
or ((Yi, Xi))i∈JnK ∼ P⊗nf for short. We denote by P⊗nF := (P⊗nf )f∈F the corresponding family
of product probability measures. For s > 1 we access also the accuracy of an estimator f̂ of
f either by a local measure, e.g. P⊗nf (|f̂(t) − f(t)|s), for t ∈ R, or by a global measure, e.g.
P⊗nf (‖f̂ − f‖sLs

) = P⊗nf (λ(|f̂ − f|s)) with a focus on the special cases s = 1 and s = 2.

§13 Kernel density estimation

Throughout this section we consider the statistical product model (Rn,Bn,P⊗nD = (P⊗n
p

)p∈D)
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and let {Xi, i ∈ JnK} i.i.d.∼ P
p

= pλ ∈ W(B) be real-valued random variables with Lebesgue
density p ∈ D ⊆ L1 = L1(B, λ) and c.d.f. F.

§13.01 Definition. A function K ∈ L1 with λ(K) = 1 is called a kernel. Given a bandwidth b ∈ R+
\0

and an evaluation point xo ∈ R define Kb(xo) ∈ L1 with x 7→ Kb(xo, x) := 1
b
K
(
x−xo

b

)
. The

statistic p̂b(xo) := P̂nKb(xo) ∈ Bn satisfying

xn = (xi)i∈JnK 7→ p̂b(xo, x
n) =

1

n

∑
i∈JnK

Kb(xo, xi) =
1

nb

∑
i∈JnK

K
(xi − xo

b

)
is called kernel density estimator of p(xo).

§13.02 Remark. Since F(x+ b)− F(x−b) = pλ(]x−b, x+ b]) for any b ∈ R+
\0 we have F(x+ b)−

F(x− b) ≈ p(x)2b for b sufficiently small. Replacing the unknown F by its empirical counter
part F̂n Rosenblatt [1956] proposed for p(x) the estimator p̂b(x) ∈ Bn given by

xn = (xi)i∈JnK 7→ p̂b(x, x
n) :=

F̂n(x+ b, xn)− F̂n(x− b, xn)

2b

= 1
n

∑
i∈JnK

1
2b
1(−1,1]

(
xi−x

b

)
= 1

n

∑
i∈JnK

1
b
K
(
xi−x

b

)
= 1

n

∑
i∈JnK

Kb(x, xi)

setting K(t) := 1
2
1]−1,1](t) for t ∈ R. Observe that K is a density, which in turn implies that

x 7→ p̂b(x, x
n) is a density for each h ∈ R+

\0 and xn ∈ Rn as well. Parzen [1962] introduces a
kernel K and a bandwidth b as in Definition §13.01 and studies the more general kernel density
estimator p̂b(x) = P̂nKb(x), x ∈ R. Note that λ(p̂b) = 1 since λ(K) = 1 by assumption. If the
kernel K is in addition positive, i.e. K ∈ B+, then p̂b is a density. An alternative motivation
for a kernel density estimator provides the following lemma.

§13.03 Lemma (Bochner’s lemma). For b ∈ R+
\0, xo ∈ R and Q ∈ L1 define Qb(xo) ∈ L1 with

Qb(xo, x) := 1
b
Q(x−xo

b
), x ∈ R. If g ∈ B is bounded, i.e., ‖g‖L∞ <∞, and continuous in xo,

then limb→0 λ
(
gQb(xo)

)
= g(xo)λ(Q).

§13.04 Proof of Lemma §13.03. is given in the lecture.

§13.05 Example. Kernels typically considered are the rectangular kernel K(u) := 1
2
1[−1,1](u), the tri-

angular kernelK(u) := (1−|u|)1[−1,1](u), the Epanechnikov kernelK(u) := 3
4
(1−u2)1[−1,1](u)

or the Gaussian kernel K(u) := 1√
2π

exp(−u2/2).

Local measure of accuracy.

§13.06 Definition. The mean squared error of a kernel density estimator p̂h(xo) satisfies

mse(xo) := E⊗n
p
|p̂b(xo)− p(xo)|2 = var(xo) + |bias(xo)|2 at a point xo ∈ R

by introducing a variance and a bias term, respectively,

var(xo) := E⊗n
p
|p̂b(xo)− E⊗n

p
p̂b(xo)|2 and bias(xo) := E⊗n

p
p̂b(xo)− p(xo).

In the sequel we analyse separately the variance and bias term.
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§13.07 Lemma. Let p ∈ L∞ and K ∈ L1 ∩L2 with λ(K) = 1. For each xo ∈ R, h ∈ R+
\0 and n ∈ N

we have var(xo) 6 (nb)−1‖p‖L∞‖K‖2
L2

.

§13.08 Proof of Lemma §13.07. is given in the lecture.

§13.09 Remark. Let p ∈ L∞ be continuous, and suppose that K ∈ L1 ∩ L2 satisfies λ(K) = 1.
By Lemma §13.07 var(xo) 6 (nb)−1‖p‖L∞‖K‖2

L2
. On the other hand, since bias(xo) =

λ(pKb(xo)) − p(xo) from Bochner’s Lemma §13.03 follows |bias(xo)| = o(1) as b → 0.
By combining both results, we obtain for any sequence (bn)n∈N of bandwidths satisfying 1 =
o(nbn), i.e. nbn →∞, and bn = o(1) that mse(xo) = o(1) as n→∞. As a consequence, the
kernel density estimator is consistent, but its rate of convergence might be arbitrarily slow. Here
and subsequently the bandwidth depends on n but we drop from now on the additional index n
and write shortly 1 = o(nb) or b = o(1) as n→∞. .

§13.10 Lemma. Let p be twice-differentiable with second derivative p̈ ∈ L∞. If K, id2
RK ∈ L1,

λ(K) = 1 and λ(idRK) = 0, then |bias(xo)| 6 b2 1
2
‖p̈‖L∞λ(id2

R |K|) for all xo ∈ R, b ∈ R+
\0.

§13.11 Proof of Lemma §13.10. is given in the lecture.

§13.12 Remark. Let p ∈ L∞ be twice-differentiable with second derivative p̈ ∈ L∞ and suppose
that K ∈ L1 ∩ L2 satisfies id2

RK ∈ L1, λK = 1 and λ(idRK) = 0. By combination of
Lemmata §13.07 and §13.10 follows for all b ∈ R+

\0, n ∈ N and uniformly for all xo ∈ R

mse(xo) 6 (nb)−1‖p‖L∞‖K‖2
L2

+ b4 1
4
‖p̈‖2

L∞(λ(id2
R|K|))2.

The first and second term on the right hand side is increasing and decreasing, respectively, as h
tends to zero. Therefore, let us minimise the right hand side as a function of b. Keep in mind
thatM(b) := a(nb)−1+cb2β , b ∈ R+

\0, attains its minimumM(bo) = b
(
a

2βc
)1/(2β+1)n−2β/(2β+1)

at bo =
(
a

2βc
)1/(2β+1)n−1/(2β+1). Thus, choosing bo =

( ‖p‖L∞‖K‖2L2

‖p̈‖2L∞ (λ(id2
R |K|))2 )1/5n−1/5 we obtain

sup
xo∈R

mse(xo) 6 1
4

(
‖p̈‖2

L∞(λ(id2
R |K|))2

)4/5(‖p‖L∞‖K‖2
L2

)1/5 n−4/5.

We shall emphasise that the optimal bandwidth bo depends not only on the kernel but also on
characteristics of the unknown density p, and hence, it is in general not feasible in practise.

§13.13 Lemma. Let p ∈ L∞ be continuous in xo and K ∈ L1 ∩L2 ∩L∞ with λK = 1. If 1 = o(nb)

and b = o(1) as n→∞, then
√
nb(p̂b(xo)− E⊗n

p
p̂b(xo))

d−→ N(0,σ2) with σ2 := p(xo)λ(K2).

§13.14 Proof of Lemma §13.13. is given in the lecture.

§13.15 Remark. In addition to the assumptions of Lemma §13.13 let p be twice-differentiable with
second derivative p̈ ∈ L∞ continuous in xo, and let id2

RK ∈ L1 with λ(idRK) = 0. Then,
b−2bias(xo) = 1

2
p̈(xo)λ(id2

RK) + o(1) as b → 0 by Bochner’s Lemma §13.03. Therefore,
setting µ := c5/2

2
p̈(xo)λ(id2

RK) we have
√
nbbias(xo) = µ + o(1) as bn1/5 → c ∈ R+

\0, and

thus
√
nb(p̂b(xo) − p(xo))

d−→ N(µ,σ2) due Lemma §13.13. Moreover, we conclude similarly
√
nb(p̂b(xo)− p(xo))

d−→ N(0,σ2), if bn1/5 = o(1).

§13.16 Definition. A kernel K satisfying in addition idjRK ∈ L1 and λ(idjRK) = 0 for each j ∈ JlK is
called a kernel of order l ∈ N.
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§13.17 Remark. For arbitrary l ∈ N the construction of a kernel of order l and several examples are
given, for instance, in Tsybakov [2009], section 1.2.2, or Comte [2015] section 3.2.4.

§13.18 Notation. We denote by bβc the greatest integer strictly less than the real number β.

§13.19 Definition. For β, L ∈ R+
\0 the Hölder class H(β, L) on R is a set of l = bβc times differen-

tiable functions f : R→ R whose derivative f (l) satisfies |f (l)(x)− f (l)(y)| 6 L|x− y|β−l for
all x, y ∈ R.

§13.20 Lemma. Suppose that p ∈ H(β, L) and let K be a kernel of order l = bβc satisfying
|idR|βK ∈ L1. Then, |bias(xo)| 6 bβ L

l!
λ(|idR|β|K|) for each xo ∈ R, b ∈ R+

\0 and n ∈ N.

§13.21 Proof of Lemma §13.20. is given in the lecture.

§13.22 Remark. Let p ∈ H(β, L) and suppose that K ∈ L2 is a kernel of order l = bβc satisfying
in addition |idR|βK ∈ L1. By combination of Lemmata §13.07 and §13.20 we conclude that
uniformly for all xo ∈ R

mse(xo) 6 (nb)−1‖p‖L∞λ(|K|2) + b2β
(
L
l!
λ(idR|β|K|)

)2
.

Minimising the right hand side as a function of h leads to an optimal bandwidth bo = c n−1/(2β+1)

with constant given by c2β+12β(L
l!
λ(|idR|β|K|))2 = ‖p‖L∞λ(|K|)2. Consequently, by choosing

the optimal bandwidth bo we have supxo∈R mse(xo) = O(n−2β/(2β+1)). However, the optimal
bandwidth bo depends again on characteristics of the unknown density p, and hence, it is gen-
erally not feasible in practise.

§13.23 Theorem. Suppose that p ∈ H(β, L) and let K ∈ L2 be a kernel of order l = bβc satisfying
in addition |idR|βK ∈ L1. Fix c ∈ R+

\0 and set bo := cn−1/(2β+1) then for all n ∈ N

sup
xo∈R

sup
p∈H(β,L)∩D

E⊗n
p
|p̂bo(xo)− p(xo)|2 6 Cn−2β/(2β+1),

where C ∈ R+
\0 is a constant depending only on β, L, c and on the kernel K.

§13.24 Proof of Theorem §13.23. is given in the lecture.

Global measure of accuracy.

§13.25 Definition. The mean integrated squared error of a kernel density estimator p̂b ∈ L2 satisfies

mise := E⊗n
p
‖p̂b − p‖2

L2
= λ(var) + λ(|bias|2) for a density p ∈ L2

using the variance and bias term as in Definition §13.06.

We study now separately the integrated variance and bias term.

§13.26 Lemma. Let K ∈ L1 ∩L2 with λ(K) = 1. We have λ(var) 6 (nb)−1‖K‖2
L2

for any density
p, b ∈ R+

\0 and n ∈ N.

§13.27 Proof of Lemma §13.26. is given in the lecture.
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§13.28 Definition. For β, L ∈ R+
\0 the Nikol’ski class N (β, L) on R is a set of l = bβc times differen-

tiable functions f : R → R whose derivative f (l) satisfies ‖f (l)(• + t) − f (l)‖L2
6 L|t|β−l for

all t ∈ R.

§13.29 Lemma. Suppose that p ∈ L2 ∩ N (β, L) and let K be a kernel of order l = bβc satisfying
|idR|βK ∈ L1. Then we have ‖bias‖L2

6 bβ L
l!
λ(|idR|β|K|) for each b ∈ R+

\0 and n ∈ N.

§13.30 Proof of Lemma §13.29. is given in the lecture.

§13.31 Remark. Let p ∈ L2 ∩ N (β, L) and let K ∈ L2 be a kernel of order l = bβc satisfying
|idR|βK ∈ L1. By combination of Lemmata §13.26 and §13.29 follows

mise 6 (nb)−1‖K‖2
L2

+ b2β
(
L
l!
λ(|idR|β|K|)

)2
.

Minimising the right hand side as a function of b leads to an optimal bandwidth bo = c n−1/(2β+1)

with constant given by c2β+12β(L
l!
λ(|idR|β|K|))2 = λ(K2). Consequently, by choosing an op-

timal bandwidth bo we have mise = O(n−2β/(2β+1)). However, the optimal bandwidth bo de-
pends again on characteristics of the unknown density p, and hence, is in general not feasible
in practise.

§13.32 Theorem. Suppose that p ∈ L2 ∩ N (β, L) and let K ∈ L2 be a kernel of order l = bβc
satisfying in addition |idR|βK ∈ L1. Fix c ∈ R+

\0 and set bo = cn−1/(2β+1) then for all n ∈ N

E⊗n
p
‖p̂bo − p‖2

L2
6 Cn−2β/(2β+1),

where C ∈ R+
\0 is a constant depending only on β, L, c and on the kernel K.

§13.33 Proof of Theorem §13.32. is given in the lecture.

Data-driven bandwidth selection.

§13.34 Oracle choice. Considering mise(b) := E⊗n
p
‖p̂b − p‖2

L2
of a kernel density estimator p̂b the

choice of the bandwidth b is crucial. For instance, an ideal value bo of the bandwidth satisfies
mise(bo) = inf{mise(b) : b ∈ R+

\0}. Note that for a given density p, the estimator p̂b0
, if bo

exists, has minimal mise(bo) within the family {p̂b : b ∈ R+
\0} of all kernel density estimators

with fixed kernel and varying bandwidth. Unfortunately, mise(b) = E⊗n
p
‖p̂b − p‖2

L2
depends

on unknown characteristics of the density p. Therefore, both the bandwidth bo and the kernel
density estimator p̂bo remain purely theoretical and thus they are often called oracle.

§13.35 Cross validation. A common idea is to minimise a unbiased estimator rather than mise(b) =
J(b) + λ(p2) with J(b) := E⊗n

p
{λ(p̂2

b
) − 2λ(pp̂b)}. We observe that λ(p2) does not depend

on the bandwidth b and hence, the oracle choice bo, if it exists, satisfies J(bo) = min{J(b) :
b ∈ R+

\0}. To construct a unbiased estimator of J(b) it is sufficient to estimate E⊗n
p
λ(p̂2

b
) and

E⊗n
p
λ(p̂bp) without bias. Obviously, λ(p̂2

b
) is a unbiased estimator of E⊗np λ(p̂2

b
). For x ∈ R,

i ∈ JnK and xn = (xi)i∈JnK ∈ Rn we consider p̂−i
b

(x, xn) := 1
n−1

∑
j∈JnK\{i}Kb(x, xj), and(

P̂n(p̂
−i
b

)
)
(xn) = 1

n

∑
i∈JnK p̂

−i
b

(xi, x
n), hence p̂−i

b
(x) ∈ Bn and P̂n(p̂

−i
b

) ∈ Bn, where the latter
by construction is an unbiased estimator of E⊗n

p
λ(p̂bp). Note that for each i ∈ JnK the i-th

coordinate map xn 7→ Π
i
(xn) := xi and p̂−i

b
are independent in a statistical product experiment,
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which in tun implies, that xn 7→ p̂−i
b

(xi, x
n) is a unbiased estimator of E⊗n

p
λ(p̂bp). To sum-

marise, for each b ∈ R+
\0 the (leave-one-out) cross-validation criterion Ĵ(b) := λ(p̂2

b
)− 1

2
P̂n(p̂

−i
b

)

is an unbiased estimator of J(b), i.e., J(b) = E⊗n
p
Ĵ(b). Recall, that the oracle bo minimises

both mise(b) and E⊗n
p
{Ĵ(b)} over b ∈ R+

\0. Therefore, a reasonable and feasible choice b̂ of
the bandwidth, if it exists, satisfies Ĵ(b̂) = min{Ĵ(b), b ∈ R+

\0}. Finally, we define the cross-
validation estimator p̂b̂. Note that p̂b̂ is a kernel density estimator with random bandwidth b̂
depending on the sample only. Under appropriate conditions the mise of the estimator p̂b̂ is
asymptotically equivalent to that of the oracle kernel density (pseudo)-estimator p̂bo.

§14 Nonparametric regression by local smoothing

Here and subsequently, we consider a statistical product experiment (R2n,B2n,P⊗nF ) as intro-
duced in Section §12. Let {(Yi, Xi), i ∈ JnK} be an i.i.d. sample of (Y,X) ∼ Pf . Introducing
the coordinate maps Π

Y
,Π

X
∈ B2 with (y, x) 7→ Π

Y
(y, x) := y and (y, x) 7→ Π

X
(y, x) := x

we tactically identify Y and X with Π
Y

and Π
X
, respectively, and thus, (Y,X) with the iden-

tity idR2 . We denote by PX the marginal distribution of the regressor X and by Ef
(
Y
∣∣X) a

conditional expectation of Y given X (see Section §03).

§14.01 Assumption. The random vector (Y,X) ∈ (B2)2 obeys PX-a.e. a nonparametric regression
model Ef

(
Y
∣∣X) = f for some unknown regression function f ∈ F .

(NPR1) The error term ε := Y − f(X) has a finite second moment, i.e., ε ∈ L2(Pf ), and hence,
Ef(ε) = 0. We set σ2

ε := Ef(ε
2). The error term ε and the explanatory variable X are

independent.

(NPR2) The joint distribution Pf of (Y,X) admits a joint Lebesgue density p ∈ (B2)+, i.e.
p = dPf /dλ

2 and Pf = pλ2. Denote by pX the marginal density of X . Using for the
conditional density pY |X of Y given X the Pf -a.s. identity pXpY |X = p (see Notation §03.11
(iii)) define q := fpX as in (12.1).

§14.02 Heuristics. Given a bandwidth b ∈ R+
\0 and evaluation points yo, xo ∈ R define Kb(yo) and

Kb(xo) as in Definition §13.01. The statistic p̂b(yo, xo) := P̂n
(
Kb(yo, Y )Kb(xo, X)) ∈ B2n,

(y, x)n = ((yi, xi))i∈JnK 7→ p̂b(yo, xo, (y, x)n) = 1
n

∑
i∈JnK

Kb(yo, yi)Kb(xo, xi)

is a kernel density estimator of the joint density p ∈ L1(λ
2) evaluated at (yo, xo). Exploiting

λ(K) = 1 the marginal p̂X
b
(xo) := P̂nKb(xo, X) :=

∫
R
p̂b(yo, xo)dyo ∈ Bn is a kernel density

estimator of the marginal density pX ∈ L1 evaluated at xo ∈ R. Keeping (12.1) in mind we
estimate q(xo) by replacing the unknown density p by its kernel estimator p̂b, that is, q̂b(xo) :=∫
R
yop̂b(yo, xo)dyo ∈ B2n. If the kernel K is in addition of order 1, i.e. λ(idRK) = 0, then we

have q̂b(xo) = P̂n(Y Kb(xo, X)) where q̂b(xo, (y, x)n) = 1
n

∑
i∈JnK yiKb(xo, xi) for all (y, x)n =

((yi, xi))i∈JnK ∈ R2n.

§14.03 Definition. Given a kernel K of order 1, a bandwidth b ∈ R+
\0, and an evaluation point xo ∈ R
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the statistic f̂b(xo) := q̂b(xo)

p̂Xb (xo)
1R+

\0
(|p̂X

b
(xo)|) ∈ B2n defined for all (y, x)n ∈ R2n by

f̂b(xo, (y, x)n) =
q̂b(xo, (y, x)n)

p̂X
b
(xo, (y, x)n)

=
∑
i∈JnK

yi
Kb(xo, xi)∑

j∈JnKKb(xo, xj)
, if |p̂X

b
(xo, (y, x)n)| ∈ R+

\0

and f̂(xo, (y, x)n) = 0 otherwise, is called Nadaraya–Watson estimator of f(xo).

Local measure of accuracy.

§14.04 Comment. We make use of the properties of a kernel density estimator derived in Section §13
in order to analyse the estimator p̂X

b
of pX . As a consequence, it remains to consider the estima-

tor q̂b of q. We consider first its mean squared error at a given point xo ∈ R , that is,

mseq(xo) = E⊗nf |q̂b(xo)− q(xo)|2 = varq(xo) + |biasq(xo)|2

by introducing a variance and a bias term, respectively,

varq(xo) := E⊗nf |q̂b(xo)− E⊗nf q̂b(xo)|2 and biasq(xo) := E⊗nf q̂b(xo)− q(xo).

In the sequel we analyse separately the variance and bias term.

§14.05 Lemma. Under Assumption §14.01 let f,pX ∈ L∞ and K ∈ L1 ∩ L2 with λ(K) = 1. For
each xo ∈ R, b ∈ R+

\0 and n ∈ N we have varq(xo) 6 (nb)−1(‖f‖2
L∞

+ σ2
ε) ‖pX‖L∞ ‖K‖

2
L2

.

§14.06 Proof of Lemma §14.05. is given in the lecture.

Recall the Definitions §13.16 and §13.19 of a Hölder class and a higher order kernel.

§14.07 Corollary. Under Assumption §14.01 let q ∈ H(β, L) and let K be a kernel of order l = bβc
with |idR|βK ∈ L1. Then, |biasq(xo)| 6 bβ L

l!
λ(|idR|β|K|) for each xo ∈ R, b ∈ R+

\0, n ∈ N.

§14.08 Proof of Corollary §14.07. Due to the identity biasq(xo) = λ(Kb(xo)q)− q(xo) the assertion
follows immediately from Lemma §13.20 (replace the density p by q).

§14.09 Remark. We note that f,pX ∈ L∞ implies q = fpX ∈ L∞. Suppose that q ∈ H(β, L) and
let K ∈ L2 be a kernel of order l = bβc with |idR|βK ∈ L1. Combining Lemma §14.05
and Corollary §14.07 we have

sup
xo∈R

mseq(xo) 6 (nb)−1(‖f‖2
L∞ + σ2

ε)‖pX‖L∞‖K‖2
L2

+ b2β
(
L
l!
λ(|idR|β|K|)

)2
. (14.1)

Suppose further that pX ∈ H(β, L), then combining Lemmata §13.07 and §13.20 an upper
bound of msepX (xo) := E⊗nf |p̂Xb (xo)− pX(xo)|2 is given by (see Remark §13.22)

sup
xo∈R

msepX (xo) 6 (nb)−1‖pX‖L∞‖K‖2
L2

+ b2β
(
L
l!
λ(idR|β|K|)

)2
. (14.2)

Therefore minimising the right hand side in eqs. (14.1) and (14.2) as a function of b leads to an
optimal bandwidth bo = c n−1/(2β+1) with constant c ∈ R+

\0 depending on f, pX and K.

§14.10 Proposition. Under Assumption §14.01 suppose that q,pX ∈ H(β, L) and let K ∈ L2 be a
kernel of order l = bβc with |idR|βK ∈ L1. Fix c ∈ R+

\0 and set bo = cn−1/(2β+1). If pX(xo) > 0

then |f̂bo(xo)− f(xo)|2 = OP⊗nf
(n−2β/(2β+1)).
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§14.11 Proof of Proposition §14.10. is given in the lecture.

§14.12 Remark. It is straightforward to show that under similar assumption as used in Lemma §13.13
the asymptotic normality of q̂b(xo) holds true, which due to Slutky’s lemma §02.10 allows then
to establish the asymptotic normality of f̂b(xo). .

Global measure of accuracy.

§14.13 Comment. We make use of the properties of a kernel density estimator derived in Section §13
in order to analyse the mean integrated squared error of the estimator p̂X

b
under the additional

assumption pX ∈ L2. As a consequence, it remains to study the estimator q̂b of q ∈ L2, where

miseq = E⊗nf ‖q̂b − q‖2
L2

= λ(varq) + λ(|biasq|2)

using the variance and bias term as in Comment §14.04.

We study now separately the integrated variance and bias term.

§14.14 Lemma. Under Assumption §14.01 let f ∈ L2(PX) and K ∈ L1 ∩L2 with λ(K) = 1. For all
b ∈ R+

\0 and n ∈ N we have λ(varq) 6 (nb)−1σ2
Y ‖K‖2

L2
with σ2

Y := EfY
2 = PX(f 2) + σ2

ε .

§14.15 Proof of Lemma §14.14. is given in the lecture.

Recall the Definitions §13.16 and §13.28 of a Nikol’ski class and a higher order kernel.

§14.16 Corollary. Under Assumption §14.01 let q ∈ L2 ∩ N (β, L) and let K be a kernel of order
l = bβc with |idR|βK ∈ L1. Then, ‖biasq‖L2

6 bβ L
l!
λ(|idR|β|K|) for all b ∈ R+

\0, n ∈ N.

§14.17 Proof of Corollary §14.16. Making use of the identity biasq(xo) = λ(Kb(xo)q) − q(xo) and
replacing q by the density p the assertion follows immediately from Lemma §13.29.

§14.18 Remark. Let f ∈ L2(PX), q ∈ L2 ∩ N (β, L) and let K ∈ L2 be a kernel of order l = bβc
satisfying |idR|βK ∈ L1. Combining Lemma §14.14 and Corollary §14.16 we have

miseq 6 (nb)−1σ2
Y ‖K‖2

L2
+ b2β

(
L
l!
λ(|idR|β|K|)

)2
. (14.3)

Suppose further that pX ∈ L2∩N (β, L), then combining Lemmata §13.26 and §13.29 an upper
bound of misepX := E⊗nf ‖p̂Xb − pX‖2

L2
is given by (see Remark §13.31)

misepX 6 (nb)−1‖K‖2
L2

+ b2β
(
L
l!
λ(|idR|β|K|)

)2
. (14.4)

Therefore minimising the right hand side in eqs. (14.3) and (14.4) as a function of b leads to an
optimal bandwidth bo = c n−1/(2β+1) with constant c ∈ R+

\0 depending on f, pX and K.

In order to derive an upper bound for the mise of f̂b we use in the next assertion a regularised
version which makes use of a stronger assumption, that is, pX(x) > po for all x ∈ A, for some
known constant po > 0 and measurable support A ∈ B.

§14.19 Proposition. Under Assumption §14.01 suppose that f ∈ L2(PX), q,pX ∈ L2 ∩ N (β, L) and
let K ∈ L2 be a kernel of order l = bβc satisfying |idR|βK ∈ L1. Assume in addition that
pX(x) > po for all x ∈ A, for some known constant po > 0 and set A ∈ B. Consider the
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regularised Nadaraya–Watson estimator f̂ o
b
(x) := q̂b(x)

p̂Xb (x)
1{p̂Xb (x)>po/2} for all x ∈ A. Fix c ∈ R+

\0

and set bo = cn−1/(2β+1) then for all n ∈ N

E⊗nf ‖(f̂ obo − f)1A‖2
L2

6 Cn−2β/(2β+1),

where C ∈ R+
\0 is a constant depending only on β, L, c, po and on the kernel K.

§14.20 Proof of Proposition §14.19. is given in the lecture.

Local polynomial estimators.

§14.21 Heuristics. Let the kernelK take only values in R+. It is then easily verified, that the Nadaraya–
Watson estimator f̂b ∈ B2n as in Definition §14.03 satisfies

f̂b(xo, (y, x)n) ∈ arg inf
θ∈R

∑
i∈JnK

(yi − θ)2Kb(xo, xi).

Therefore, f̂b is obtained by a local constant least squares approximation of the responses {yi}.
The locality is determined by the kernel K that downweights all the xi that are not close to
xo whereas θ plays the role of a local constant to be fitted. More generally, we may define a
local polynomial least squares approximation, replacing the constant θ by a polynomial of a
pre-specified degree.

§14.22 Definition. For m ∈ R consider U : R → Rl+1, z 7→ U(z) = (1, z, z2/2!, . . . , zm/m!). Let
K : R→ R be a kernel and b ∈ R+

\0 be a bandwidth. A random vector θ̂(xo) ∈ Bm+1 satisfying

θ̂(xo, (y, x)n) ∈ arg inf
θ∈Rm+1

∑
i∈JnK

(yi − θtU(xi−xo
b

))2Kb(xo, xi).

is called a local polynomial estimator of order m of θ(xo) = (f(xo), bḟ(xo), . . . , b
mf (m)(xo)).

The statistic f̂b(xo) = U t(0)θ̂(xo) is called local polynomial estimator of order m of f(xo).

§14.23 Remark. Note that f̂b(xo) is simply the first coordinate of the vector θ̂(xo). Obviously, the
Nadaraya–Watson estimator with non-negative kernel is just a local polynomial estimator of
order zero. Furthermore, properly normalised coordinates of θ̂(xo) provide estimators of the
derivatives ḟ(xo), f̈(xo), . . . , f

(m)(xo). For theoretical properties of local polynomial estimators
and their detailed discussion we refer to Tsybakov [2009], section 1.6.

§15 Sequence space models

In the sequel we study nonparametric estimation of a functional parameter of interest θ based
on a noisy version θ̂ = θ + n−1/2Ẇ of θ contaminated by an additive random error Ẇwith
noise level n−1/2. The quantity n ∈ N is usually called sample size referring to statistical
problems where the noisy version θ̂ is constructed using a sample of size n. For convenience, we
eventually consider the measure space ([0, 1],B[0,1], λ[0,1]) where λ[0,1] denotes the restriction of the
Lebesgue measure to B[0,1]. We exemplary suppose that the function of interest θ : [0, 1] → R

is Borel-measurable, i.e. θ ∈ B[0,1]. In addition we assume that θ ∈ L2 := L2(B[0,1], λ[0,1])
and thus θ permits an orthogonal series expansion. With a slight abuse of notations we write
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shortly λ := λ[0,1] and Ls := Ls(B[0,1], λ) for s > 1 (see Notation §01.03). In Section §17
below we briefly recall theoretical basics and terminologies from functional analysis which
allow us to formalise the statistical experiment as a sequence space model. Throughout the
following sections we illustrate the results using three particular models, namely, nonparametric
regression with uniformly distributed random design, nonparametric density estimation and a
Gaussian sequence space model.

§15.01 Nonparametric density estimation. Let D2 be a set of square-integrable Lebesgue densities
on ([0, 1],B[0,1]), and hence D2 ⊆ L2 = L2(B[0,1], λ). P

p
= pλ and E

p
denote for each density

p ∈ D2 the associated probability measure and expectation, respectively. We consider the
statistical product experiment ([0, 1]n,Bn

[0,1]
,P⊗nD2

= (P⊗n
p

)p∈D2
). Since p ∈ L2 we have P

p
(|h|) =

λ(|h|p) 6 ‖h‖L2
‖p‖L2

< ∞ for all h ∈ L2 and thus L2 ⊆ L1(Pp ) in equal. We write shortly
ph := λ(hp) = pλ(h) = P

p
(h). We note that p ∈ L2 is uniquely determined by the family

(ph)h∈L2
up to λ-a.s. equality (see Example §17.03 (d)). For each h ∈ L2 the statistic p̂h :=

P̂nh ∈ Bn
[0,1]

with xn = (xi)i∈JnK 7→ p̂h(x
n) = 1

n

∑
i∈JnK h(xi) is an unbiased estimator of ph. The

centred statistic Ẇh := n1/2(P̂nh−P
p
(h)) ∈ Bn

[0,1]
, i.e. Ẇh ∈ L1(P

⊗n
p

) with P⊗n
p

(Ẇh) = 0, satisfies
p̂h = ph +n−1/2Ẇh by construction. Considering the families p̂ := (p̂h)h∈L2

and Ẇ := (Ẇh)h∈L2

of real-valued random variables defined on the common probability space ([0, 1]n,Bn
[0,1]
,P⊗n

p
)

we write shortly p̂ = p + n−1/2Ẇ, meaning that, p̂h = ph + n−1/2Ẇh for all h ∈ L2.

§15.02 Nonparametric regression. Let (Y,X) ∈ (B2)2 obey PX-a.e. a nonparametric regression
model Ef

(
Y
∣∣X) = f satisfying the Assumption §14.01 (see section §14). For convenience,

in addition the regressor X is supposed to be uniformly distributed on the interval [0, 1], i.e.
X ∼ U[0,1]. As a consequence, we have pX = 1[0,1] and L2(PX) = L2(B[0,1], λ) = L2. Let
us denote in this situation by Uf the joint distribution of (Y,X), but keep in mind, that the
conditional distribution of the error term given X is still no specified. The regression function
f ∈ B[0,1] is assumed to be square integrable, i.e., f ∈ L2. Recall that by Assumption §14.01
(NPR1) the centred error term ε = Y − f(X) and the explanatory variable X are indepen-
dent. Identifying again Y and X with the coordinate map Π

Y
and Π

X
, respectively, we have

fh := λ(hf) = PX(fh) = Uf(Y h(X)). We note that f ∈ L2 is uniquely determined by the
family (fh)h∈L2

up to λ-a.s. equality (see Example §17.03 (d)). For each h ∈ L2 the statistic
f̂h := P̂n(Y h(X)) ∈ B2n with (y, x)n = ((yi, xi))i∈JnK 7→ f̂h((y, x)n) = 1

n

∑
i∈JnK yih(xi) is an

unbiased estimator of fh. The centred statistic Ẇh := n1/2(P̂n(Y h(X)) − Uf(Y h(X))) ∈ B2n,
i.e. Ẇh ∈ L1(U

⊗n
f ) with U⊗nf (Ẇh) = 0, satisfies f̂h = fh +n−1/2Ẇh by construction. Considering

the families f̂ := (f̂h)h∈L2
and Ẇ := (Ẇh)h∈L2

of real-valued random variables defined on the
common probability space

(
R2n,B2n,U⊗nf ) we write shortly f̂ = f + n−1/2Ẇ, meaning that,

f̂h = fh + n−1/2Ẇh for all h ∈ L2.

Stochastic process on Hilbert spaces.

Here and subsequently, (H, 〈·, ·〉H) and U denotes a separable real Hilbert space and a subset
of H, respectively. Considering the product spaces RH = h∈H R and RU = u∈U R the
mapping ΠU : RH → RU given by y = (yh)h∈H 7→ (yu)u∈U =: ΠUy is called canonical
projection. In particular, for each h ∈ H the coordinate map Π

h
:= Π{h} : RH → R is given

by y = (yh′)h′∈H 7→ yh =: Π
h
y. Moreover, RH is equipped with the product Borel-σ-algebra

B⊗H :=
⊗

h∈H B. Recall that B⊗H equals the smallest σ-algebra on RH such that all coordinate
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maps Π
h
, h ∈ H are measurable. i.e., B⊗H = σ(Π

h
, h ∈ H).

§15.03 Stochastic process on H. Let (Yh)h∈H be a family of real random variables on a common
probability space (Ω,A ,P), that is, Yh ∈ A for each h ∈ H. Consider the RH-valued random
variable Y := (Yh)h∈H where Y : Ω → RH is a A -B⊗H-measurable map given by ω 7→
(Yh(ω))h∈H =: Y(ω). Y is called a stochastic process on H. Its distribution PY := P ◦ Y −1 is
the image probability measure of P under the map Y, i.e. Y ∼ PY for short. Further, denote by
PYU = P ◦ Y −1

U = PY ◦ Π−1
U the distribution of the stochastic process YU := ΠUY = (Yu)u∈U

on U . The family (PYU )U⊆H finite is called family of finite-dimensional distributions of Y or PY .
In particular, PYh = PΠhY = PY ◦ Π−1

h
denotes the distribution of Yh = Π

h
Y . Furthermore, for

h, ho ∈ H we write P(Yh) = PY(Π
h
) and Cov(Yh, Yho) := PY((Π

h
− PY(Π

h
))(Π

ho
− PY(Π

ho
))), if

it exists, for the expectation of Yh and the covariance of Yh and Yho with respect to PY .

§15.04 Definition. Let Y := (Yh)h∈H ∼ PY be a stochastic process on H. If P(|Yh|) < ∞, i.e.
Yh ∈ L1(P) or Π

h
∈ L1(P

Y) in equal, for each h ∈ H, then the functional m : H → R

with h 7→ m(h) := P(Yh) is called mean function of Y. If the mean function is in addition
linear and bounded, that is, m ∈ L(H,R) (see Definition §17.22), then due to the Fréchet-Riesz
representation theorem (Property §17.23) there exists θ ∈ H such that m(h) = 〈θ, h〉H for all
h ∈ H. The element P(Y ) := PY(idH) := θ is called H-mean or expectation of Y (or PY). If
P(|Yh|2) < ∞, i.e., Yh ∈ L2(P) or Π

h
∈ L2(P

Y) in equal, for each h ∈ H, then the mapping
cov : H2 → R with (h, ho) 7→ cov(h, ho) := Cov(Yh, Yho) is called covariance function of Y.
If the covariance function is in addition a bounded bilinear form, then there is Γ ∈ L(H) such
that cov(h, ho) = 〈Γh, ho〉H = 〈h,Γho〉H for all h, ho ∈ H. The operator Γ is called covariance
operator of Y or PY . If Y admits a mean function m and a covariance function cov then we write
shortly Y ∼ P(m,cov). If there is a H-mean θ = P(Y) ∈ H and a covariance operator Γ ∈ L(H) we
write Y ∼ P(θ,Γ), where for h, ho ∈ H the covariance of Yh and Yho equals Γ

h,ho
:= 〈h,Γho〉H, and

Yh − 〈h, θ〉H has mean zero and variance Γ
h,h

, i.e. Yh − 〈h, θ〉H ∼ P(0,Γ
h,h

).

§15.05 Remark. A covariance operator Γ ∈ L(H) associated with a stochastic process Y ∼ PY on H is
self-adjoint and non-negative definite, i.e. Γ ∈ L+(H) (see Definition §17.28 (e)).

§15.06 Notation. Given a measurable space (Ω,A , µ) introduce the µ-equivalence class {h}µ :=

{ho ∈ A : h = ho µ-a.e.} for h ∈ A . For s ∈ R
+ define the set of equivalence classesLs(µ) :=

Ls(A , µ) := {{h}µ : h ∈ Ls(A , µ)} and ‖{h}µ‖Ls(µ) := ‖h‖Ls(µ) for {h}µ ∈ Ls(µ). For
s > 1, (Ls(µ), ‖·‖Ls(µ)) is a normed vector space. Formally, we denote by {•}µ : Ls(µ) →
Ls(µ) the natural injection h 7→ {h}µ . In case s = 2 the norm ‖{h}µ‖L2(µ) := ‖h‖L2(µ) =
(µ(|h|2)1/2 is induced by the inner product ({h}µ , {ho}µ) 7→ 〈{h}µ , {ho}µ〉L2(µ) := µ(hho),
and hence (L2(µ), 〈·, ·〉L2(µ)) is a Hilbert space. If λ = µ is the Lebesgue-measure then we write
shortly (Ls, 〈·, ·〉Ls) and {•} : Ls → Ls. Similarly, given a set D2 ⊆ L2 = L2(B[0,1], λ[0,1]) of
square-integrable Lebesgue densities on ([0, 1],B[0,1]), we write D2 := {{p},p ∈ D2} ⊆ L2 =
L2(B[0,1], λ[0,1]) for short.

§15.07 Nonparametric density estimation (§15.01 continued). Consider on L2 the stochastic process
p̂ = (p̂h)h∈L2

of real random variables defined on ([0, 1]n,Bn
[0,1]
,P⊗n

p
) by p̂h := P̂nh ∈ Bn

[0,1]
for

each h ∈ L2. We introduce a stochastic process (p̂{h}){h}∈L2
on L2 given by p̂{h} := p̂h ∈ Bn

[0,1]

for {h} ∈ L2. Note that for each ho ∈ {h} we have p̂h = p̂ho λ
n-a.s. and thus also P⊗n

p
-a.s..

As usual we identify h with its equivalence class {h} and write shortly p̂ = (p̂h)h∈L2
with

p̂h := P̂nh ∈ Bn
[0,1]

for each h ∈ L2. Meaning, that for each h ∈ L2 there is ho ∈ {h} ⊆ L2
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with p̂h = P̂nho ∈ Bn
[0,1]

, and hence p̂h is unique only up to λn-a.s. equality. However, given
the image probability measure P⊗n

p
◦ p̂−1 for each h ∈ L2 we have p̂h = P̂nh ∈ L1(P

⊗n
p

)

since L2 ⊆ L1(Pp ) due to p ∈ D2 ⊆ L2 . As a consequence, p̂ = (p̂h)h∈L2
admits a mean

function mp : L2 → R satisfying mp(h) = P⊗n
p

(p̂h) = P⊗n
p

(P̂nh) = pλ(h) = 〈p, h〉L2
= ph

for all h ∈ L2. Moreover, p (more precisely the λ-equivalence class {p}) is the L2-mean of
the stochastic process p̂ = (p̂h)h∈L2

. Introduce similarly the stochastic process Ẇ := (Ẇh)h∈L2

on L2 given by Ẇh := n1/2(p̂h − 〈p, h〉L2
) ∈ Bn

[0,1]
for h ∈ L2, which allows us to write shortly

p̂ = p + n−1/2Ẇ, meaning that, p̂h = ph + n−1/2Ẇh for all h ∈ L2. Since Ẇh ∈ L1(P
⊗n

p
) has

mean zero for each h ∈ L2, the L2-mean of Ẇequals zero. If in addition ‖p‖L∞ <∞ , then we
have P

p
(|h|2) = λ(|h|2p) 6 ‖p‖L∞‖h‖2

L2
< ∞ for all h ∈ L2 and thus L2 ⊆ L2(Pp ) in equal.

As a consequence for each h ∈ L2 we obtain p̂h = P̂nh ∈ L2(P
⊗n

p
) and, hence Ẇh ∈ L2(P

⊗n
p

)

by construction. The covariance function of Ẇ := (Ẇh)h∈L2
is given by

(h, ho) 7→ covp(h, ho) := Cov(Ẇh, Ẇho) = λ(phho)− λ(ph)λ(pho)

= P
p
((h − 〈p, h〉L2

)(ho − 〈p, ho〉L2
)) = nCov(p̂h, p̂ho).

Consequently, we have Ẇ ∼ P(0,covp) and p̂ = p + n−1/2Ẇ ∼ P(mp ,n−1 covp) Introduce the multi-
plication operator Mp : B[0,1] → B[0,1] given by h 7→ Mp(h) := hp. If ‖p‖L∞ <∞ , then
Mp ∈ L(L2) (see Example §17.21 (b)). This allows us to write λ(phho) = 〈Mph, ho〉L2

for all
h, ho ∈ L2. Moreover, consider 1 := 1[0,1] ∈ B[0,1] which trivially belongs to Ls for any s ∈ R

+.
In particular, since L2 ⊆ L1 (indeed λ(|h|) 6 ‖1‖L2

‖h‖L2
= ‖h‖L2

< ∞ for all h ∈ L2) we
have 〈h,1〉L2

= λ(h) for all h ∈ L2 and R1 := {a1, a ∈ R} = lin{1}. Consider further
the operator Π

R1
∈ L(L2) defined by Π

R1
h := 〈h,1〉L2

1 = λ(h)1 for all h ∈ L2, which is an
orthogonal projection (see Definition §17.28 (f) and Example §17.30 (a)). This allows us to
write λ(ph)λ(pho) = 〈Mph,1〉L2

〈1,Mpho〉L2
= 〈Π

R1
Mph,Mpho〉L2

= 〈MpΠR1
Mph, ho〉L2

. Sum-
marising, if p ∈ D2 ∩ L∞ then Γp := Mp − MpΠR1

Mp ∈ L+(L2) is the covariance operator of
Ẇ, since covp(h, ho) = 〈Γph, ho〉L2

for all h, ho ∈ L2. We note that ‖Γp‖L(L2) 6 ‖p‖L∞ by using
〈Γph, h〉L2

= pλ((h − pλ(h))2) = pλ(h2) − (pλ(h))2 6 λ(ph2) 6 ‖p‖L∞ for all h ∈ L2

with ‖h‖2
L2

6 1 together with Property §17.29 (i). Consequently, we have Ẇ ∼ P(0,Γp) and
p̂ = p + n−1/2Ẇ∼ P(p,n−1Γp).

§15.08 Nonparametric regression (§15.02 continued). Consider the stochastic process f̂ = (f̂h)h∈L2
on

L2 of real valued random variables defined on
(
R2n,B2n,U⊗nf ) by f̂h := P̂n(Y h(X)) ∈ B2n

for each h ∈ L2. Here, we identify h again with its equivalence class {h} as discussed in
details in Example §15.07. Given the image probability measure U⊗nf ◦ f̂−1 for each h ∈ L2

we have f̂h = P̂n(Y h(X)) ∈ L1(U
⊗n
f ) by using Y h(X) = (ε + f(X))h(X) ∈ L1(Uf) under

Assumption §14.01 (NPR1). Indeed, since f ∈ L2 ⊆ L1 we have fh ∈ L1 for each h ∈ L2

and Uf(|εh(X)|) = Uf(|ε|)λ(|h|) < ∞ by Assumption §14.01 (NPR1). As a consequence f̂
admits a mean function mf : L2 → R satisfying mf(h) = U⊗nf (f̂h) = U⊗nf (P̂n(Y h(X))) =
λ(fh) = 〈f, h〉L2

for all h ∈ L2. Moreover, f (more precisly the λ-equivalence class {f}) is
the L2-mean of the stochastic process f̂ = (f̂h)h∈L2

. Introduce similarly the stochastic process
Ẇ := (Ẇh)h∈L2

on L2 given by Ẇh := n1/2(f̂h − 〈f, h〉L2
) ∈ B2n for h ∈ L2, which allows

us to write shortly f̂ = f + n−1/2Ẇ, meaning that, f̂h = fh + n−1/2Ẇh for all h ∈ L2. Since
Ẇh ∈ L1(U

⊗n
f ) has mean zero for each h ∈ L2, the L2-mean of Ẇequals zero. If in addition
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‖f‖L∞ <∞ , then we have Y h(X) = (ε + f(X))h(X) ∈ L2(Uf) under Assumption §14.01
(NPR1). Indeed, we have Uf(f

2(X)h2(X)) = λ(f 2h2) 6 ‖f‖2
L∞
‖h‖2

L2
< ∞ for all h ∈ L2

and Uf(ε
2h2(X)) = σ2

ε‖h‖2
L2
< ∞ by Assumption §14.01 (NPR1). As a consequence for all

h ∈ L2 we have f̂h = P̂n(Y h(X)) ∈ L2(U
⊗n
f ) and, hence Ẇh ∈ L2(U

⊗n
f ) by construction. The

covariance function of Ẇ := (Ẇh)h∈L2
is under Assumption §14.01 given for all h, ho ∈ L2 by

covf(h, ho) := Cov(Ẇh, Ẇho) = Uf(Y
2h(X)ho(X))− Uf(Y h(X))Uf(Y ho(X))

= σ2
ε〈h, ho〉2L2

+ 〈fh, fho〉L2
− 〈f, h〉L2

〈f, ho〉L2
= nCov(f̂h, f̂ho).

Consequently, if ‖f‖L∞ <∞ , then we have Ẇ∼ P(0,covf) and f̂ = f + n−1/2Ẇ∼ P(mf ,n−1 covf).
Moreover, as in Example §15.07 both the multiplication operator Mf due to ‖f‖L∞ < ∞ and
the projection operator Π

R1
belong to L(L2). Furthermore, introducing the orthogonal projection

Π⊥
R1

:= idL2
− Π

R1
∈ L(L2) allows us to write

covf(h, ho) = σ2
ε〈h, ho〉2L2

+ 〈Mfh,Mfho〉L2
− 〈Π

R1
Mfh,Mfho〉L2

= 〈σ2
ε idL2

h, ho〉2L2
+ 〈Π⊥

R1
Mfh,Mfho〉L2

= 〈(σ2
ε idL2

+ MfΠ
⊥
R1

Mf)h, ho〉2L2
.

Summarising, under Assumption §14.01 if f ∈ L2 ∩ L∞ then Γf := σ2
ε idL2

+MfΠ
⊥
R1

Mf ∈ L+(L2)

is the covariance operator of Ẇ, since covf(h, ho) = 〈Γfh, ho〉L2
for all h, ho ∈ L2. We note

that ‖Γf‖L(L2) 6 σ2
ε + ‖f‖2

L∞
by using 〈Γfh, h〉L2

= σ2
ε‖h‖2

L2
+ ‖Π⊥

R1
Mfh‖2

L2
6 σ2

ε + ‖Mf‖2
L(L2)

for all h ∈ L2 with ‖h‖L2
6 1, and ‖Mf‖L(L2) 6 ‖f‖L∞ (see Example §17.21 (b)) together with

Property §17.29 (i). Consequently, we have Ẇ∼ P(0,Γf) and f̂ = f + n−1/2Ẇ∼ P(f,n−1Γf).

§15.09 Notation. In the sequel we exploit the Hilbert space structure of L2 which guarantees the exis-
tence of an orthonormal basis (ONB) U ⊆ L2. An ONB is an orthonormal system (ONS) which
is complete (see Definition §17.04). Moreover, since L2 is separable, any ONS is countable,
and thus there is an orthonormal sequence (ONS) u• = (uj)j∈N in L2 (see Definition §17.09).
Rather than a stochastic process Y := (Yh)h∈L2

on L2 we consider its canonical projection
Yu• = (Yuj)j∈N := ΠUY on U = {uj, j ∈ N}.

§15.10 White noise process on H. Let Y := (Yh)h∈H be a stochastic process on H. For an ONS
u• = (uj)j∈N in H we call the canonical projection Yu• = (Yuj)j∈N a white noise process, if
{Yuj , j ∈ N} is a family of independent and identically distributed random variables, where
each Yuj has zero mean and variance one, Yuj ∼ P(0,1) and Yu• ∼ P⊗N(0,1) in short. We call Y a white
noise process on H, if Yu• ∼ P⊗N(0,1) yields for any ONS u• in H.

§15.11 Notation. In other words, the distribution PYu• of a white noise process Yu• = (Yuj)j∈N equals
the product of its marginal P(0,1)-distributions, i.e. PYu• = ⊗j∈NPYuj = ⊗j∈NP(0,1) = P⊗N(0,1) .

§15.12 Remark. Consider the centred stochastic process Ẇ := (Ẇh)h∈L2
of error terms in the Exam-

ples §15.07 and §15.08. In general there does not exists an ONB u• = (uj)j∈N in L2 such that
the canonical projection Yu• is a white noise process.

§15.13 Property. Let Y := (Yh)h∈H ∼ PY be a stochastic process on H admitting a H-mean θ ∈ H

and a covariance operator Γ ∈ L+(H), i.e., Y ∼ P(θ,Γ). If there exists an ONB u• = (uj)j∈N in
H such that Yu• is a white noise process, i.e. Yu• ∼ P⊗N(0,1) . Then we have θ =

∑
j∈N〈θ, uj〉Huj =∑

j∈N P(Yuj)uj = 0 and 〈Γh, ho〉H =
∑

j,jo∈N〈uj, h〉H〈Γuj, ujo〉H〈ujo, ho〉H = 〈h, ho〉H, and thus
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θ = 0 ∈ H and Γ = idH. As a consequence, for each ONS V in H the random variables
{Yv, v ∈ V} are pairwise uncorrelated.

§15.14 Gaussian process on H. A stochastic process Y = (Yh)h∈H on H with mean function m and
covariance function cov is called a Gaussian process on H, if the family of finite-dimensional
distributions (PYU )U⊆H finite consists of normal distributions, that is, YU = (Yu)u∈U is normally
distributed with mean vector (m(u))u∈U and covariance matrix (cov(u, u′))u,u′∈U . We write
shortly Y ∼ N(m,cov) or Y ∼ N(θ,Γ), if in addition there exist a H-mean θ ∈ H and a covariance
operator Γ ∈ L+(H) associated with Y. The Gaussian process Y ∼ N(0,idH) with H-mean zero and
covariance operator idH is called iso-Gaussian process or Gaussian white noise process on H.

§15.15 Property. Let Y ∼ N(θ,Γ) be a Gaussian process on H admitting a H-mean θ ∈ H and a
covariance operator Γ ∈ L+(H). If there exists an ONB u• = (uj)j∈N in H such that Yu• = (Yuj)j∈N
is a Gaussian white noise process, i.e., Yu• ∼ N⊗N(0,1), then due to Property §15.13 we have
Y ∼ N(0,idH) and for each ONS V in H the standard normally distributed random variables
{Yv, v ∈ V} are pairwise uncorrelated, and hence, independent, i.e., ΠVY ∼ N⊗V(0,1).

§15.16 Definition (Random function in H). Let (H, 〈·, ·〉H) be an Hilbert space equipped with its Borel-
σ-algebra BH, which is induced by its topology. An A -BH-measurable map Y : Ω → H is
called an H-valued random variable or a random function in H.

§15.17 Lemma. Let u• = (uj)j∈N be an ONS in H. There does not exist a non-zero random function Y
in H such that Yu• = (Yuj = 〈Y, uj〉H)j∈N is a Gaussian white noise process.

§15.18 Proof of Lemma §15.17. For j ∈ N and r > 0 define Arj := {h ∈ H : |〈h, uj〉H| 6 r}, and
Ar∞ = ∩{Arj , j ∈ N}. Obviously, it holds H = limr→∞Ar∞ and hence, 1 = PY (H) =
limr→∞ PY (Ar∞) for each random function Y in H. Assume that there is a Gaussian white
noise process ΠUY , then for each n ∈ N it holds PY (Ar∞) 6 PY (∩{Arj , j ∈ J1, nK}) =
|PYu1 (Ar1)|n = |P(|Z| 6 r)|n where Z ∼ N(0,1). Thereby, as n → ∞ we get PY (Ar∞) = 0 for
all r > 0 and hence it follows the contradiction PY (H) = 0, which completes the proof.

Sequence space model.

Given a pre-specified ONS u• = (uj)j∈N in H we base our estimation procedure on the expansion
of the function of interest θ ∈ U = lin(uj, j ∈ N). More precisly, we consider the sequence of
generalised Fourier coefficients Uθ = θu• = (θuj = 〈θ, uj〉H)j∈N which allow to reconstruct θ =
U?θu• =

∑
j∈N θujuj (see Example §17.30 (a)). The choice of an adequate ONS u• = (uj)j∈N is

determined by the presumed information on the function of interest θ formalised by an abstract
smoothness conditions given in Definition §16.15. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far
beyond the scope of this lecture.

§15.19 Notation. Given a pre-specified ONS u• = (uj)j∈N in H and a stochastic process Y ∼ P(θ,Γ) on
H admitting a H-mean θ ∈ H and a covariance operator Γ ∈ L+(H), the canonical projection
Yu• = (Yuj)j∈N admits a mean sequence θu• = (θuj)j∈N ∈ `2 and a covariance operator Γ

u•,u•
∈

L+(`2) with (infinite) matrix representation Γ
u•,u•

= (Γ
uk,uj

)j,l∈N ∈ R(N,N) having generic entries
Γ
uk,uj

:= 〈uk,Γuj〉H = Cov(Yuk, Yuj) for k, j ∈ N. By construction for each a•, ao• ∈ `2, and
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hence h := U?a•, ho := U?ao• ∈ U we have Γ
u•,u•
a• = (Γ

uj ,h
)j∈N = (

∑
k∈N Γ

uj ,uk
ak)j∈N ∈ `2 and

〈b•,Γu•,u•a•〉`2 = Γ
h,ho

.

§15.20 Sequence space model (SSM). Let Ẇ= (Ẇh)h∈H be a stochastic process on H with H-mean
zero and let n ∈ N be a sample size. The stochastic process θ̂ = θ + n−1/2Ẇon H with H-
mean θ ∈ H is called a noisy version of θ. We denote by Pn

θ the distribution of θ̂. If Ẇadmits
a covariance operator (possibly depending on θ), say Γθ ∈ L+(H), then we eventually write
θ̂ ∼ P(θ,n−1Γθ) for short. Given an ONS u• = (uj)j∈N in H the canonical projection θ̂u• = (θ̂uj)j∈N,
a sequence of observable quantities, takes the form of a sequence space model (SSM)

θ̂uj = 〈θ, uj〉H + n−1/2Ẇuj = θuj + n−1/2Ẇuj , j ∈ N. (15.1)

We denote by Pn
θu•

, respectively P(θu• ,n
−1Γθ

u•,u•
), the distribution of the stochastic process θ̂u• which is

determined by the distribution Pn
θ , respectively P(θ,n−1Γθ), of the noisy version θ̂.

§15.21 Gaussian sequence space model. Consider a separable real Hilbert space (H, 〈·, ·〉H). The
parameter of interest θ ∈ H is uniquely determined by the family (θh := 〈θ, h〉H)h∈H. Let Ẇ :=
(Ẇh)h∈H ∼ N(0,idH) be a Gaussian white noise process on H. The observable stochastic process
θ̂ := (θ̂h)h∈H on H satisfies θ̂ = θ + n−1/2Ẇ, meaning that, θ̂h = θh + n−1/2Ẇh ∼ N(θh ,n−1‖h‖2H)

for all h ∈ H. In other words θ̂ ∼ N(θ,n−1idH) is a Gaussian process on H with H-mean θ
and covariance operator n−1idH. Given an ONS u• = (uj)j∈N in H the canonical projection
θ̂u• = (θ̂uj)j∈N takes the form of a Gaussian sequence space model (SSM)

θ̂uj = 〈θ, uj〉H+n−1/2Ẇuj = θuj +n
−1/2Ẇuj , j ∈ N with

{
Ẇuj , i ∈ N

} i.i.d.∼ N(0,1).(15.2)

We denote by N(θu• ,n
−1id`2 ) the distribution of the stochastic process θ̂u• which is determined by

the distribution N(θ,n−1idH) of the noisy version θ̂.

§16 Orthogonal series estimation

Here and subsequently, u• = (uj)j∈N denotes a pre-specified orthonormal sequence in a sepa-
rable Hilbert space (H, 〈·, ·〉H). Given a noisy version θ̂ = θ + n−1/2Ẇof a function of interest
θ ∈ H as in Definition §15.20 we study an estimator using a dimension reduction. To be more
precise, given a nested sieve (JmK)m∈M, M ⊆ N, as in Definition §17.11 we introduce a se-
quence of approximation spaces (Um := lin(uj, j ∈ JmK))m∈M which form a nested sieve in
U = lin(uj, j ∈ N). If θ ∈ U, which is assumed from here on, then θ permits an expansion
as generalised Fourier series θ = U?θu• =

∑
j∈N θujuj (see Example §17.30 (a)). For m ∈ M

we approximate θ by its orthogonal projection θm := Π
Um
θ onto Um (see Definition §17.28 (f)).

Introducing the sequence of indicators 1m• := (1mj )j∈N with 1mj := 1JmK(j) for j ∈ N we have
the identities θm =

∑
j∈JmK θujuj =

∑
j∈N 1

m
j θujuj = U?(θu•1

m
• ). Given the noisy version θ̂ we

replace the unknown sequence θu• of generalised Fourier coefficients by the canonical projection
θ̂u• = (θ̂uj)j∈N obeying a SSM as in Definition §15.20 (15.1).

§16.01 Definition. Given a SSM θ̂u• ∼ Pn
θu•

as in (15.1) we call θ̂m := U?(θ̂u•1
m
• ) orthogonal series

estimator (OSE) of θ for each m ∈M.
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Global measure of accuracy.

We shall measure the accuracy of the OSE θ̂m = U?(θ̂u•1
m
• ) of θ first by a global risk with respect

to the distribution Pn
θ of the noisy version θ̂.

§16.02 Definition. Given a noisy version θ̂ ∼ Pn
θ of θ admitting a H-mean θ ∈ H the global H-risk of

a OSE θ̂m = U?(θ̂u•1
m
• ) satisfies

Pn

θ ‖θ̂m − θ‖2
H = varθ + bias2

θ

by introducing a variance term varθ := Pn
θ ‖θ̂m − θm‖2

H and a bias term biasθ := ‖θm − θ‖H.

In the sequel we analyse separately the variance and bias term. We consider a noisy version
θ̂ = θ+n−1/2Ẇ∼ Pn

θ of θ admitting a H-mean θ ∈ H and a covariance operator n−1Γθ ∈ L+(H),
i.e. θ̂ ∼ P(θ,n−1Γθ), as in Definition §15.20, where the error process Ẇ∼ P(0,Γθ) has H-mean zero
and covariance operator Γθ ∈ L+(H) (see Definition §15.04). As a consequence, given an ONS
u• = (uj)j∈N in H for each m ∈M the Rm-valued random vector (Ẇuj)j∈JmK has mean zero and
covariance matrix (Γθ

uk,uj
)k,j∈JmK ∈ R(m,m) (Notation §15.19).

§16.03 Notation. Let m ∈ N. For a• ∈ RN and T•,• = (Tk,j)k,j∈N ∈ R(N,N) we introduce, respectively,
its sub-vector [a•]m := (aj)j∈JmK ∈ Rm and its sub-matrix [T•,•]m := (Tk,j)k,j∈JmK ∈ R(m,m). We
denote the trace of [T•,•]m by tr([T•,•]m) :=

∑
j∈JmK Tj,j and for a• ∈ RN with minimal value in

B ⊆ N we define arg min {an, n ∈ B} := min{m ∈ B : am 6 an, ∀n ∈ B}.

§16.04 Property. Let θ̂ = θ + n−1/2Ẇ∼ Pn
θ = P(θ,n−1Γθ), then for all m ∈M we have

varθ = Pn
θ ‖U?(1m• (θ̂u• − θu•))‖2

H = n−1Pn
θ ‖1m• Ẇu•‖2

`2
= n−1 tr([Γθ

u•,u•
]m).

§16.05 Definition. Let C ∈ R+
\0 and for each n ∈ N let R◦n ∈ R+

\0 and m◦n ∈ N satisfy

C−1 R◦n 6 inf
m∈M

Enθ ‖θ̂m − θ‖2
H 6 Enθ ‖θ̂m

◦
n − θ‖2

H 6 C R◦n.

Then we call R◦n oracle bound, m◦n oracle dimension and θ̂m◦n oracle optimal (up to the constant
C). As a consequence, up to the constant C2 the statistik θ̂m◦n attains the lower H-risk bound
within the family of OSE’s, that is, Enθ ‖θ̂m

◦
n − θ‖2

H 6 C2 infm∈M Enθ ‖θ̂m − θ‖2
H.

§16.06 Oracle inequality. If θ̂ ∼ Pn
θ = P(θ,n−1Γθ) then setting for n ∈ N and m ∈M

Rm
n (θ) := [‖θm − θ‖2

H ∨ n−1 tr([Γθ
u•,u•

]m)], m◦n := m◦n(θ) := arg min {Rm
n (θ),m ∈M}

and R◦n(θ) := Rm◦n
n (θ) = min {Rm

n (θ),m ∈M}

we have Rm
n (θ) 6 Pn

θ ‖θ̂m − θ‖2
H = n−1 tr([Γθ

u•,u•
]m) + ‖θm − θ‖2

H 6 2Rm
n (θ) for all m ∈ M and

n ∈ N. As a consequence we immediately obtain the following oracle inequality

R◦n(θ) 6 inf
m∈M

Pn

θ ‖θ̂m − θ‖2
H 6 Pn

θ ‖θ̂m
◦
n − θ‖2

H 6 2R◦n(θ) 6 2 inf
m∈M

Pn

θ ‖θ̂m − θ‖2
H,

and hence, R◦n(θ),m
◦
n and the statistic θ̂m◦n , respectively, is an oracle bound, an oracle dimension

and oracle optimal (up to the constant 2).
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§16.07 Remark. We shall emphasise that for each m ∈M we have n−1 tr([Γθ
u•,u•

]m) = o(1) as n→∞.
As a consequence, if ‖θm − θ‖2

H = o(1) as m → ∞ then we obtain R◦n(θ) = o(1) as n → ∞,
and thus, R◦n(θ) is also called an oracle rate. Indeed, for all δ ∈ R+

\0 there exists mδ ∈ M and
nδ ∈ N such that we have both ‖θmδ − θ‖2

H 6 δ and n−1 tr([Γθ
u•,u•

]mδ) 6 δ for all n > nδ, and
whence R◦n(θ) 6 Rmδ

n (θ) 6 δ. However, note that the oracle dimension m◦n = m◦n(θ) as defined
in Property §16.06 depends on the unknown parameter of interest θ, and thus also the oracle
optimal statistic θ̂m◦n . In other words θ̂m◦n is not a feasible estimator.

§16.08 Oracle inequality. If θ̂ ∼ Pn
θ = P(θ,n−1Γθ) and if in addition there exists vθ ∈ R+

\0 satisfying

∀h ∈ U : v−1
θ ‖h‖2

H 6 〈h,Γθh〉H 6 vθ‖h‖2
H (16.1)

then setting for n ∈ N and m ∈M

Rm
n (θ) := [‖θm − θ‖2

H ∨ n−1m], m◦n := m◦n(θ) := arg min {Rm
n (θ),m ∈M}

and R◦n(θ) := Rm◦n
n (θ) = min {Rm

n (θ),m ∈M} (16.2)

we have v−1
θ Rm

n (θ) 6 Pn
θ ‖θ̂m − θ‖2

H = n−1 tr([Γθ
u•,u•

]m) + ‖θm − θ‖2
H 6 (vθ + 1)Rm

n (θ) for all
m ∈M and n ∈ N. As a consequence we immediately obtain the following oracle inequality

v−1
θ R◦n(θ) 6 inf

m∈M
Pn

θ ‖θ̂m − θ‖2
H 6 Pn

θ ‖θ̂m
◦
n − θ‖2

H 6 2vθR
◦
n(θ) 6 2v2

θ inf
m∈M

Pn

θ ‖θ̂m − θ‖2
H,

and, hence R◦n(θ),m
◦
n and the statistic θ̂m◦n , respectively, is an oracle bound, an oracle dimension

and oracle optimal (up to the constant 2v2
θ ).

§16.09 GSSM (§15.21 continued). If θ̂ ∼ N(θ,n−1idH) is a Gaussian process on H with H-mean θ and
covariance operator n−1idH ∈ L+(H), then (16.1) is satisfied with vθ = 1. Thereby, the statistic
θ̂m

◦
n = U?(θ̂u•1

m◦n
• ) with oracle dimension m◦n as in (16.2) is oracle optimal (up to the constant 2)

by Property §16.08.

§16.10 Nonparametric density estimation (§15.07 continued). Consider on L2 the stochastic process
p̂ = (p̂h)h∈L2

of real random variables defined on ([0, 1]n,Bn
[0,1]
,P⊗n

p
) by p̂h := P̂nh ∈ Bn for

each h ∈ L2. If p ∈ D2 ∩ L∞ then p̂ = p+n−1/2Ẇ∼ P(p,n−1Γp) is a stochastic process on L2 with
L2-mean p and covariance operator n−1Γp ∈ L+(L2) where Γp = Mp−MpΠR1

Mp. Let u• = (uj)j∈N
be an ONS in L2 and let U⊥ denote the orthogonal complement of U = lin(uj, j ∈ N) in L2

(see Definition §17.07). Assume that 1 := 1[0,1] ∈ U⊥ , and thus 〈1, h〉L2
= 0 for all h ∈ U.

Note that p1 = 1 (thus Π
R1
p = 1), and hence Γp1 = 0, which can equally be deduced from

p̂1 = 1 ∼ P(p1,0). As a consequence, we assume in the sequel an expansion p = 1 + U?pu• ,

which is trivially satisfied whenever {1} ∪ {uj, j ∈ N} is an ONB. If in addition p−1 ∈ L∞ ,
then (16.1) is satisfied with vp = ‖p‖L∞ ∨ ‖p−1‖L∞ . Indeed, we have λ(p(h − pλ(h))2) =
〈Γph, h〉L2

(see Example §15.07), λ((h − pλ(h))2) 6 vpλ(p(h − pλ(h))2) by definition, for
each h ∈ U, λ((h − pλ(h))2) = ‖h − pλ(h)1‖2

L2
= ‖h‖2

L2
+ ‖pλ(h)1‖2

L2
since 1 ∈ U⊥.

Combining the bounds we obtain vp〈Γph, h〉L2
> ‖h‖2

L2
, which shows the lower bound in (16.1).

As for the upper bound we use ‖Γp‖L(H) 6 ‖p‖L∞ 6 vp (see Example §15.07) together with
Property §17.29 (i). Thereby, considering the canonical projection p̂u• = (p̂uj)j∈N the statistic
p̂m

◦
n = 1+ U?(p̂u•1

m◦n
• ) (and hence p̂m

◦
n − p = U?(p̂u•1

m◦n
• )− U?pu•) with oracle dimension m◦n as

in (16.2) is oracle optimal (up to the constant 2(‖p‖2
L∞
∨ ‖p−1‖2

L∞
)) by Property §16.08.
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§16.11 Nonparametric regression (§15.08 continued). Consider the stochastic process f̂ = (f̂h)h∈L2
on

L2 of real valued random variables defined on
(
R2n,B2n,U⊗nf ) by f̂h := P̂n(Y h(X)) ∈ B2n for

each h ∈ L2. Under Assumption §14.01 if in addition f ∈ L2 ∩ L∞ then f̂ = f + n−1/2Ẇ∼
P(f,n−1Γf) is a stochastic process on L2 with L2-mean f and covariance operator n−1Γf ∈ L+(L2)

where Γf = σ2
ε idL2

+ MfΠ
⊥
R1

Mf . Moreover, (16.1) is satisfied with vf = (σ2
ε + ‖f‖2

L∞
) ∨ σ−2

ε .
Indeed, since 〈Γfh, h〉L2

= σ2
ε‖h‖2

L2
+ ‖Π⊥

R1
Mfh‖2

L2
the lower bound follows immediatly, while

for the upper bound we use ‖Γf‖L(L2) 6 σ2
ε + ‖f‖2

L∞
6 vf (see Example §15.08) together with

Property §17.29 (i). Thereby, considering the canonical projection f̂u• = (f̂uj)j∈N the statistic
f̂m

◦
n = U?(f̂u•1

m◦n
• ) with oracle dimension m◦n as in (16.2) is oracle optimal (up to the constant

2((σ2
ε + ‖f‖2

L∞
)2 ∨ σ−4

ε )) by Property §16.08.

§16.12 Illustration. Here and subsequently, we use for two sequences a•, b• ∈ (R+
\0)

N the notation
an ∼ bn if the sequence a•/b• is bounded away both from zero and infinity. We illustrate the
last results considering usual behaviour for the bias terms (‖θm− θ‖2

H)m∈M. We distinguish the
following two cases
(p) there is K ∈ N with ‖θK−1 − θ‖2

H > 0 and ‖θK − θ‖2
H = 0,

(np) for all m ∈ N holds ‖θm − θ‖2
H > 0.

Note that the expansion of θ is in case (p) finite, i.e., θ =
∑

i∈JKK θujuj for some K ∈ N while
in the opposite case (np), it isn’t. Interestingly, in case (p) the oracle bound is parametric, that
is, nR◦n(θ) = O(1), in case (np) the oracle bound is nonparametric, i.e. limn→∞ nR◦n(θ) = ∞.
In case (np) consider the following two specifications:

(P) If ‖θm − θ‖2
H ∼ m−2s, s > 0, then m◦n ∼ n

1
2s+1 and R◦n(θ) ∼ n

−2s
2s+1 .

(E) If ‖θm − θ‖2
H ∼ exp(−m2s), s > 0, then m◦n ∼ (log n)

1
2s and R◦n(θ) ∼ (log n)

1
2sn−1.

§16.13 Notation. Recall that u• = (uj)j∈N is an ONS with U = lin {uj, j ∈ N} ⊆ H and for h ∈ H

denotes hu• := (huj)j∈N = Uh its generalised Fourier coefficients. U ∈ L(U, `2) is a unitary
operator with inverse U? (see Example §17.30 (a)). For a strictly positive sequence of weights
w• ∈ (R+

\0)
N consider the Hilbert space `2(w

2
• ) :=

{
a• ∈ RN, ‖a•‖`2(w2

• ) <∞
}

with inner prod-
uct 〈a•, b•〉`2(w2

• ) =
∑

j∈Nw
2
j ajbj and induced norm ‖·‖`2(w2

• ) (see Example §17.03 (c)). Let
‖w−1

• ‖`∞ < ∞, then `2(w
2
• ) ⊆ `2, and hence the image U?(`2(w

2
• )) = {U?a• : a• ∈ `2(w

2
• )}

of `2(w
2
• ) under U is a subset of U. Moreover, Uw• := U?(`2(w

2
• )) is a Hilbert space with inner

product 〈U?a•, U?ao• 〉u•,w• := 〈a•, ao• 〉`2(w2
• ) and induced norm ‖·‖u•,w• . If u• is complete in H, i.e.

H = U, then we eventually write (Hw•, 〈·, ·〉u•,w•).

§16.14 Example. Consider the real Hilbert space L2 = L2(B[0,1], λ[0,1]) and the trigonometric basis ψ• =
(ψj)j∈N (see Example §17.05). Define further the Hilbert space (Lw•2 , 〈·, ·〉ψ•,w•) with respect to
the trigonometric basis as in Notation §16.13.
(P) If we set w1 = 1, w2k = w2k+1 = ks, s ∈ N, k ∈ N, then Lw•2 is a subset of the Sobolev space

of s-times differentiable periodic functions. Moreover, up to a constant, for any function
h ∈ Lw•2 , the weighted norm ‖h‖2

ψ•,w• equals the L2-norm of its s-th weak derivative h(s)

(Tsybakov [2009]).

(E) If, on the contrary, wj = exp(−1 + j2s), s > 1/2, j ∈ N, then Lw•2 is a class of analytic
functions (Kawata [1972]).

Note that, the trigonometric basis is w−1
• -regular as in Definition §17.12 (b) whenever w−1

• ∈ `2
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(see Example §17.14), and thus in the case (P) for s > 1/2 and in the case (E) for s > 0.

§16.15 Abstract smoothness condition. Given a sequence of weights f• = (fj)j∈N ∈ (R+
\0)

N with
‖f•‖`∞ < ∞ and an ONS u• = (uj)j∈N in H consider (U1/f•, ‖·‖u•,f−1

• ) as in Notation §16.13. Let
r ∈ R+

\0 be a constant. We assume in the following that the function of interest belongs to the
ellipsoid F r

u•,f•
:= {h ∈ Uf−1

• : ‖h‖2
u•,f−1

•
6 r2} ⊆ U.

§16.16 Lemma. For m ∈M consider the approximation θm = U?(θu•1
m
• ) ∈ Um of θ = U?(θu•1•) ∈ U

and set f(m) := ‖f•(1• − 1m• )‖`∞ = supj∈JmKc fj . If θ ∈ F r
u•,f•

, then biasθ = ‖θm − θ‖H 6 r f(m).

§16.17 Proof of Lemma §16.16. is given in the lecture.

§16.18 Proposition. Let θ̂ ∼ Pn
θ = P(θ,n−1Γθ). Setting for m ∈M and n ∈ N

Rm
n (f•) := [f2(m) ∨ n−1m], m?

n := m?
n(f•) := arg min {Rm

n (f•),m ∈M}
and R?

n(f•) := Rm?
n

n (f•) = min {Rm
n (f•),m ∈M} (16.3)

we have Pn
θ ‖θ̂m

?
n − θ‖2

H 6 (‖Γθ‖L(H) + r2) R?
n(f•) for all θ ∈ F r

u•,f•
and n ∈ N.

§16.19 Proof of Proposition §16.18. is given in the lecture.

§16.20 Remark. Arguing similarly as in Remark §16.07 we note that R?
n(f•) = o(1) as n → ∞,

whenever f(m) = o(1) as m → ∞. The latter is satisfied, for example, if f• ∈ `2. Note that
the dimension m?

n := m?
n(f•) as defined in 16.3 does not depend on the unknown parameter of

interest θ but on the class F r
u•,f•

only, and thus also the statistic θ̂m?
n. In other words, if the regularity

of θ known in advance, then the OSE θ̂m
?
n is a feasible estimator.

§16.21 GSSM (§16.09 continued). If θ̂ ∼ N(θ,n−1idH), where ‖idH‖L(H) = 1. From Proposition §16.18 we
obtain immediately, sup{Pn

θ ‖θ̂m
?
n − θ‖2

H, θ ∈ F r
u•,f•
} 6 (1 + r2) R?

n(f•) for all n ∈ N. In other
words the global H-risk of the OSE with optimally choosen dimension is not larger than R?

n(f•)

(up to a constant) uniformely for all functions of interest belonging to F r
u•,f•

.

§16.22 Nonparametric density estimation (§16.10 continued). Consider on L2 the stochastic process
p̂ = (p̂h)h∈L2

of real random variables defined on ([0, 1]n,Bn
[0,1]
,P⊗n

p
) by p̂h := P̂nh ∈ Bn for

each h ∈ L2. If p ∈ D2 ∩ L∞ then p̂ ∼ P(p,n−1Γp) with ‖Γp‖L(L2) 6 ‖p‖L∞ (see Example §15.07).
From Proposition §16.18 we obtain immediately un upper bound for the gobal L2-risk (mise)
which still depends on ‖p‖L∞ . If we assume in addition that the ONS u• is f•-regular as in
Definition §17.12 (b), i.e. ‖

∑
j∈N f

2
j |uj|2‖L∞ 6 τ 2

u•,f• for some τu•,f• ∈ R+
\0. Then, we have

‖p‖L∞ 6 rτu•,f• for all p ∈ F r
u•,f•

by Lemma §17.15. As a consequence, considering the
OSE p̂m

?
n = U?(p̂u•1

m?
n

• ) with dimension m?
n as in (16.3) from Proposition §16.18 we obtain,

sup{P⊗n
p
‖p̂m?

n − p‖2
L2
,p ∈ D2 ∩ F r

u•,f•
} 6 (rτu•,f• + r2) R?

n(f•) for all n ∈ N. Consider the
trigonometric basis ψ• = (ψj)j∈N defined in Example §17.05 and w• ∈ (R+

\0)
N given either in

Example §16.14 (P) or in (E). If we set f• := w−1
• , then ψ• is f•-regular (see Example §17.14)

with τ 2
u•,f• = 2‖f•‖2

`2
which is finite in case (P) for s > 1/2 and in case (E) for s > 0. In this

situation we sup{P⊗n
p
‖p̂m?

n − p‖2
L2
,p ∈ D2 ∩ F r

ψ•,f•
} 6 (

√
2r‖f•‖`2 + r2) R?

n(f•) for all n ∈ N,
where R?

n(f•) = o(1) as n→∞ (Remark §16.20).
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§16.23 Nonparametric regression (§16.11 continued). Consider the stochastic process f̂ = (f̂h)h∈L2

on L2 of real valued random variables defined on
(
R2n,B2n,U⊗nf ) by f̂h := P̂n(Y h(X)) ∈

B2n for each h ∈ L2. Under Assumption §14.01 if f ∈ L2 ∩ L∞ then f̂ ∼ P(f,n−1Γf) with
‖Γf‖L(L2) 6 σ2

ε + ‖f‖2
L∞

(see Example §15.08). From Proposition §16.18 we obtain immediately
un upper bound for the gobal L2-risk (mise) which still depends on ‖f‖L∞ . If we assume in
addition that the ONS u• is f•-regular as in Definition §17.12 (b), then ‖f‖L∞ 6 rτu•,f• for

all f ∈ F r
u•,f•

by Lemma §17.15. As a consequence, considering the OSE f̂m
?
n = U?(f̂u•1

m?
n

• )

with dimension m?
n as in (16.3) from Proposition §16.18 we obtain, sup{U⊗nf ‖f̂m

?
n − f‖2

L2
, f ∈

F r
u•,f•
} 6 (σ2

ε + r2τ 2
u•,f• + r2) R?

n(f•) for all n ∈ N. Consider the trigonometric basis ψ• = (ψj)j∈N
defined in Example §17.05 and f−1

• := w• ∈ (R+
\0)

N given either in Example §16.14 (P) or
(E). In this situation, similar to Example §16.22, we obtain sup{U⊗nf ‖f̂m

?
n − f‖2

L2
, f ∈ F r

ψ•,f•
} 6

(σ2
ε + 2r2‖f•‖2

`2
+ r2) R?

n(f•) for all n ∈ N, where R?
n(f•) = o(1) as n→∞ (Remark §16.20).

§16.24 Illustration. Let us consider the following two specifications:

(P) If f2m ∼ m−2s, s > 0, then m?
n ∼ n

1
2s+1 and R?

n(f•) ∼ n
−2s
2s+1 .

(E) If f2m ∼ exp(−m2s), s > 0, then m?
n ∼ (log n)

1
2s and R?

n(f•) ∼ (log n)
1
2sn−1.

Local measure of accuracy.

Consider a linear functional Φ : H ⊃ D(Φ)→ R, e.g. the point evaluation in Example §17.24.
We assume from here on that the ONS u• = (uj)j∈N and hence for eachm ∈M also the orthog-
onal projection θm = U?(θu•1

m
• ) =

∑
j∈JmK θujuj and the OSE θ̂m = U?(θ̂u•1

m
• ) =

∑
j∈JmK θ̂ujuj

belong to the domain D(Φ) of Φ. As a consequence Φ(θm) and Φ(θ̂m) are well-defined. As-
suming in addition θ ∈ D(Φ) we measure the accuracy of θ̂m by a local Φ-risk with respect to
the distribution Pn

θ of the noisy version θ̂. Keep in mind, if θ̂ admits an H-mean θ ∈ D(Φ),
then Φ(θ̂m) is an unbiased estimator of Φ(θm), i.e. Pn

θ Φ(θ̂m) = Φ(θm), due to the linearity of the
expectation and Φ.

§16.25 Definition. Given a noisy version θ̂ ∼ Pn
θ of θ admitting a H-mean θ ∈ D(Φ) ⊆ H the local

Φ-risk of a OSE θ̂m = U?(θ̂u•1
m
• ) satisfies

Pn

θ

(
|Φ(θ̂m)− Φ(θ)|2

)
= varθ + bias2

θ

with variance term varθ := Pn
θ

(
|Φ(θ̂m)− Φ(θm)|2

)
and bias term biasθ := Φ(θm)− Φ(θ).

In the sequel we analyse separately the variance and bias term. We consider a noisy version
θ̂ = θ+n−1/2Ẇ∼ Pn

θ of θ admitting a H-mean θ ∈ H and a covariance operator n−1Γθ ∈ L+(H),
i.e. θ̂ ∼ P(θ,n−1Γθ) as in Definition §15.20. Since the error process Ẇ∼ P(0,Γθ) has H-mean zero
and covariance operator Γθ ∈ L+(H) (see Definition §15.04) for each m ∈ M the Rm-valued
random vector [Ẇu•]m = (Ẇuj)j∈JmK has mean zero and covariance matrix [Γθ

u•,u•
]m = (Γθ

uk,uj
)k,j∈JmK,

i.e. [Ẇu•]m ∼ P(0,[Γθ
u•,u•

]m) (Notation §16.03).

§16.26 Notation. Let m ∈ N. We set Φu• := (Φuj)j∈N with the slight abuse of notations Φuj :=
Φ(uj), j ∈ N. If Φ ∈ L(H,R) then D(Φ) = H, and by Fréchet-Riesz representation theorem
(Property §17.23) there is φ ∈ H with Φu• = φu•, and thus Φu• ∈ `2. Recall that [Φu•]m ∈ Rm and
[φu•]m ∈ Rm denotes a sub-vector of Φu• and φu•, respectively.
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§16.27 Property. Let θ̂ = θ + n−1/2Ẇ∼ Pn
θ = P(θ,n−1Γθ) and θ ∈ D(Φ), then for all m ∈M we have

varθ = n−1Pn

θ

(
|〈Φu•1

m
• , Ẇu•〉`2|2

)
= n−1〈Γθ

u•,u•
(Φu•1

m
• ),Φu•1

m
• 〉`2

= n−1‖Φu•1
m
• ‖2

Γθ
u•,u•

= n−1[Φu•]
t
m[Γθ

u•,u•
]m[Φu•]m.

§16.28 Definition. Let C ∈ R+
\0 and for each n ∈ N let R◦n ∈ R+

\0 and m◦n ∈ N satisfy

C−1 R◦n 6 inf
m∈M

Pn

θ

(
|Φ(θ̂m)− Φ(θ)|2

)
6 Pn

θ

(
|Φ(θ̂m

◦
n)− Φ(θ)|2

)
6 C R◦n.

Then we call R◦n oracle bound, m◦n oracle dimension and θ̂m◦n oracle optimal (up to the constant
C). As a consequence, up to the constant C2 the statistik θ̂m◦n attains the lower Φ-risk bound
within the family of OSE’s, i.e. Enθ (|Φ(θ̂m

◦
n)− Φ(θ)|2) 6 C2 infm∈M Pn

θ (|Φ(θ̂m)− Φ(θ)|2).

§16.29 Oracle inequality. If θ̂ ∼ Pn
θ = P(θ,n−1Γθ) then setting for n,m ∈ N

Rm
n (θ) := [|Φ(θm − θ)|2 ∨ n−1‖Φu•1

m
• ‖Γθ

u•,u•
], m◦n := m◦n(θ) := arg min {Rm

n (θ),m ∈M}
and R◦n(θ) := Rm◦n

n (θ) = min {Rm
n (θ),m ∈M}

we have Rm
n (θ) 6 Pn

θ

(
|Φ(θ̂m)− Φ(θ)|2

)
6 2Rm

n (θ) for all m ∈M and n ∈ N. It follows

R◦n(θ) 6 inf
m∈M

Pn

θ

(
|Φ(θ̂m)− Φ(θ)|2

)
6 Pn

θ

(
|Φ(θ̂m

◦
n)− Φ(θ)|2

)
6 2R◦n(θ) 6 2 inf

m∈M
Pn

θ

(
|Φ(θ̂m) − Φ(θ)|2

)
As a consequence, R◦n(θ), m

◦
n and the statistic θ̂m◦n, respectively, is an oracle bound, an oracle

dimension and oracle optimal (up to the constant 2).

§16.30 Remark. Arguing similarly as in Remark §16.07 we note that R◦n(θ) = o(1) as n → ∞,
whenever |Φ(θm− θ)| = o(1) as m→∞. The latter is satisfied, for example, if Φu•θu• ∈ `1 (see
Definition §16.36). The oracle dimension m◦n = m◦n(θ) as defined in Property §16.29 depends
again on the unknown parameter of interest θ, and thus also the oracle optimal statistic θ̂m◦n. In
other words θ̂m◦n is not a feasible estimator.

§16.31 Oracle inequality. Let θ̂ ∼ Pn
θ = P(θ,n−1Γθ). If vθ ∈ R+

\0 satisfies (16.1), then setting for n,m ∈ N

Rm
n (θ) := [|Φ(θm − θ)|2 ∨ n−1‖Φu•1

m
• ‖2
`2 ], m◦n := m◦n(θ) := arg min {Rm

n (θ),m ∈M}
and R◦n(θ) := Rm◦n

n (θ) = min {Rm
n (θ),m ∈M} (16.4)

we have v−1
θ Rm

n (θ) 6 Pn
θ (|Φ(θ̂m − θ)|2) 6 (vθ + 1)Rm

n (θ) for all m ∈M and n ∈ N. It follows

v−1
θ R◦n(θ) 6 inf

m∈M
Pn

θ (|Φ(θ̂m − θ)|2) 6 Pn

θ (|Φ(θ̂m
◦
n − θ)|2)

6 2vθR
◦
n(θ) 6 2v2

θ inf
m∈M

Pn

θ (|Φ(θ̂m − θ)|2).

As a consequence, R◦n(θ), m
◦
n and the statistic θ̂m◦n, respectively, is an oracle bound, an oracle

dimension and oracle optimal (up to the constant 2v2
θ ).
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§16.32 GSSM (§16.09 continued). If θ̂ ∼ N(θ,n−1idH), then (16.1) is satisfied with vθ = 1. The statistic
θ̂m

◦
n = U?(θ̂u•1

m◦n
• ) with oracle dimension m◦n as in (16.4) is oracle optimal (up to the constant 2)

by Property §16.31.

§16.33 Nonparametric density estimation (§16.10 continued). Consider on L2 the stochastic process
p̂ = (p̂h)h∈L2

of real random variables defined on ([0, 1]n,Bn
[0,1]
,P⊗n

p
) by p̂h := P̂nh ∈ Bn for

each h ∈ L2. If p ∈ D2 ∩ L∞ , p−1 ∈ L∞ and 1[0,1] ∈ U⊥ then we have p̂ ∼ Pn
p

= P(p,n−1Γp)

and vp = ‖p‖L∞ ∨ ‖p−1‖L∞ satisfies (16.1) (see Example §16.10) Thereby, considering the
canonical projection p̂u• = (p̂uj)j∈N the statistic p̂m

◦
n = 1 + U?(p̂u•1

m◦n
• ) with oracle dimension

m◦n as in (16.4) is oracle optimal for p = 1 + U?pu• (up to the constant 2(‖p‖2
L∞
∨ ‖p−1‖2

L∞
))

by Property §16.31.

§16.34 Nonparametric regression (§16.11 continued). Consider the stochastic process f̂ = (f̂h)h∈L2
on

L2 of real valued random variables defined on
(
R2n,B2n,U⊗nf ) by f̂h := P̂n(Y h(X)) ∈ B2n

for each h ∈ L2. Under Assumption §14.01 if f ∈ L2 ∩ L∞ then we have f̂ ∼ Pn
f = P(f,n−1Γf)

and vf = (σ2
ε + ‖f‖2

L∞
) ∨ σ−2

ε satisfies (16.1) (see Example §16.11). Thereby, considering the
canonical projection f̂u• = (f̂uj)j∈N the statistic f̂m◦n = U?(f̂u•1

m◦n
• ) with oracle dimension m◦n as

in (16.4) is oracle optimal (up to the constant 2((σ2
ε + ‖f‖2

L∞
)2 ∨ σ−4

ε )) by Property §16.31.

§16.35 Illustration. We illustrate the last results considering usual behaviour for both the variance
term n−1‖Φu•1

m
• ‖2
`2

and the bias term |Φ(θm − θ)|2. Recalling the two cases (p) and (np) in
Illustration §16.12 we distinguish the following two cases
(p) Φu• ∈ `2 or there is K ∈ N with |Φ(θK−1 − θ)|2 ∈ R+

\0 and supm>K |Φ(θm − θ)|2 = 0,

(np) Φu• 6∈ `2 and for all m ∈ N holds |Φ(θm − θ)|2 ∈ R+
\0.

In case (p) the oracle bound is again parametric, i.e. nR◦n(θ) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. limn→∞ nR◦n(θ) =∞. In case (np) with Φ2

uj
∼ j2a, 2a > −1

and hence ‖Φu•1
m
• ‖2
`2
∼ m2a+1 consider the following two specifications:

(P) If θ2
uj
∼ j−2s−2, s > 0, and hence |Φ(θm − θ)|2 ∼ m−2(s−a), then m◦n ∼ n

1
2s+1 and

R◦n(θ) ∼ n
−2(s−a)

2s+1 , where R◦n(θ) = o(1) as n→∞ for s > a.

(E) If θ2
uj
∼ j2s−2a−2 exp(−j2s), s > 0, and hence |Φ(θm − θ)|2 ∼ exp(−m2s), then m◦n ∼

(log n)
1
2s and R◦n(θ) ∼ (log n)

2a+1
2s n−1.

§16.36 Regular linear functional. Consider an ONS u• = (uj)j∈N in H and an ellipsoid F r
u•,f•

as in
Definition §16.15. We call a linear functional Φ : H ⊃ D(Φ) → R regular if u• belongs to
the domain D(Φ) of Φ and the sequence Φu• = (Φuj)j∈N (see Notation §16.26) satisfies either
Φu•θu• ∈ `1 or Φu•f• ∈ `2.

§16.37 Remark. We may emphasise that we neither impose that the sequence Φu• = (Φuj)j∈N tends
to zero nor that it is square summable. However, if Φu• ∈ `2 then Φ ∈ L(U,R) and Φu• = φu•,
where φu• denotes the sequence of generalised Fourier coefficients of the representer φ of Φ
given by Fréchet-Riesz representation theorem Property §17.23. Assuming a regular functional,
however, enables us in specific cases to deal with more demanding functionals, such as in
Example §17.24 the evaluation of the solution at a given point. We note that Φu• ∈ `2(f

2
• )

implies Φu•θu• ∈ `1 for all θ ∈ F r
u•,f•

applying the Cauchy-Schwarz-inequality (Property §17.02).

Statistics 2 67



Chapter 4 Nonparametric estimation §16 Orthogonal series estimation

Moreover, if Φu•θu• ∈ `1 then Φ(θ) =
∑

j∈N Φujθuj and |Φ(θm − θ)| 6 ‖Φu•θu•(1• − 1m• )‖`1 =∑
j∈JmKc |Φujθuj | = o(1) asm→∞. As a consequence, for a regular linear functional the oracle

bound given in Property §16.31 satisfies R◦n(θ) = o(1) as n→∞ (Remark §16.30).

§16.38 Lemma. Let θ = U?(θu•1•) ∈ U. For m ∈ M set θm := U?(θu•1
m
• ) ∈ Um and (Φu•f•)(m) :=

‖Φu•f•(1• − 1m• )‖`∞ = supj∈JmKc(Φujfj). If θ ∈ F r
u•,f•

, then biasθ = |Φ(θm − θ)| 6 r (Φu•f•)(m).

§16.39 Proof of Lemma §16.38. is given in the lecture.

§16.40 Proposition. Let θ̂ ∼ Pn
θ = P(θ,n−1Γθ). Setting for n,m ∈ N

Rm
n (f•) := [(Φu•f•)

2
(m) ∨ n−1‖Φu•1

m
• ‖2
`2 ], m?

n := m?
n(f•) := arg min {Rm

n (f•),m ∈M}
and R?

n(f•) := Rm?
n

n (f•) = min {Rm
n (f•),m ∈M} (16.5)

we have Pn
θ (|Φ(θ̂m

?
n − θ)|2) 6 (‖Γθ‖L(H) + r2) R?

n(f•) for all θ ∈ F r
u•,f•

and n ∈ N.

§16.41 Proof of Proposition §16.40. is given in the lecture.

§16.42 Remark. Arguing similarly as in Remark §16.07 we note that R?
n(f•) = o(1) as n → ∞,

whenever (Φu•f•)(m) = o(1) as m → ∞. The latter is satisfied, for example, if Φu•f• ∈ `2, i.e.
Φ is a regular linear functional. Note that the dimension m?

n := m?
n(f•) as defined in 16.5 does

not depend on the unknown parameter of interest θ but on the class F r
u•,f•

only, and thus also the
statistic θ̂m?

n. In other words, if the regularity of θ is known in advance, then the OSE θ̂m
?
n is a

feasible estimator.

§16.43 GSSM (§16.32 continued). If θ̂ ∼ N(θ,n−1idH), where ‖idH‖L(H) = 1. From Proposition §16.40 we
obtain immediately, sup{Pn

θ (|Φ(θ̂m
?
n − θ)|2), θ ∈ F r

u•,f•
} 6 (1 + r2) R?

n(f•) for all n ∈ N. In other
words the local Φ-risk of the OSE with optimally choosen dimension is not larger than R?

n(f•)

(up to a constant) uniformely for all functions of interest belonging to F r
u•,f•

.

§16.44 Nonparametric density estimation (§16.33 continued). Consider on L2 the stochastic process
p̂ = (p̂h)h∈L2

of real random variables defined on ([0, 1]n,Bn
[0,1]
,P⊗n

p
) by p̂h := P̂nh ∈ Bn for

each h ∈ L2. If p ∈ L2 ∩ L∞ and u• is f•-regular (Definition §17.12 (b)) then p̂ ∼ P(p,n−1Γp)

with ‖Γp‖L(L2) 6 ‖p‖L∞ (see Example §15.07) and ‖p‖L∞ 6 rτu•,f• for all p ∈ F r
u•,f•

(see Ex-
ample §16.10). As a consequence, the OSE p̂m

?
n = U?(p̂u•1

m?
n

• ) with dimension m?
n as in (16.5)

satisfies sup{P⊗n
p

(|Φ(p̂m
?
n − p)|2),p ∈ F r

u•,f•
} 6 (rτu•,f• + r2) R?

n(f•) for all n ∈ N by from
Proposition §16.40. Consider as in Example §16.22 the trigonometric basis ψ• = (ψj)j∈N
and f−1

• := w• ∈ (R+
\0)

N given either in Example §16.14 (P) or (E). In this situation we
sup{P⊗n

p
(|Φ(p̂m

?
n − p)|2),p ∈ D2 ∩ F r

ψ•,f•
} 6 (

√
2r‖f•‖`2 + r2) R?

n(f•) for all n ∈ N, where
R?
n(f•) = o(1) as n→∞ if in addition Φu•f• ∈ `2 (Remark §16.42).

§16.45 Nonparametric regression (§16.34 continued). Consider the stochastic process f̂ = (f̂h)h∈L2

on L2 of real valued random variables defined on
(
R2n,B2n,U⊗nf ) by f̂h := P̂n(Y h(X)) ∈

B2n for each h ∈ L2. Under Assumption §14.01 if f ∈ L2 ∩ L∞ then f̂ ∼ P(f,n−1Γf) with
‖Γf‖L(L2) 6 σ2

ε + ‖f‖2
L∞

(see Example §15.08). From Proposition §16.18 we obtain immediately
un upper bound for the gobal L2-risk (mise) which still depends on ‖f‖L∞ . If we assume in
addition that the ONS u• is f•-regular as in Definition §17.12 (b), then ‖f‖L∞ 6 rτu•,f• for
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all f ∈ F r
u•,f•

by Lemma §17.15. As a consequence, considering the OSE f̂m
?
n = U?(f̂u•1

m?
n

• )

with dimension m?
n as in (16.3) from Proposition §16.18 we obtain, sup{P⊗nf ‖f̂m

?
n − θ‖2

L2
, θ ∈

F r
u•,f•
} 6 (σ2

ε+r2τ 2
u•,f•+r

2) R?
n(f•) for all n ∈ N. Consider as in Example §16.23 the trigonometric

basis ψ• = (ψj)j∈N and f−1
• := w• ∈ (R+

\0)
N given either in Example §16.14 (P) or (E). In this

situation we sup{P⊗nf (|Φ(f̂m
?
n − f)|2), f ∈ F r

ψ•,f•
} 6 (σ2

ε + r2τ 2
u•,f• + r2) R?

n(f•) for all n ∈ N,
where R?

n(f•) = o(1) as n→∞ if in addition Φu•f• ∈ `2 (Remark §16.42).

§16.46 Illustration. Let us consider Φ2
uj
∼ j2a, 2a > −1 and hence ‖Φu•1

m
• ‖2
`2
∼ m2a+1, and the

following two specifications:

(P) If f2j ∼ j−2s, s > 0, and hence (Φu•f•)
2
(m) ∼ m−2(s−a) for s > a, then m?

n ∼ n
1

2s+1 and

R?
n(f•) ∼ n

−2(s−a)
2s+1 .

(E) If f2j ∼ j−2a exp(−j2s), s > 0, and hence (Φu•f•)
2
(m) ∼ exp(−m2s), then m?

n ∼ (log n)
1
2s

and R?
n(f•) ∼ (log n)

2a+1
2s n−1.

§17 Supplementary materials

For a detailed and extensive survey on functional analysis we refer the reader, for example, to
Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§17.01 Definition. A normed real vector space (H, ‖·‖H) that is complete (in a Cauchy-sense) is called
a real Hilbert space if there exists an inner product 〈·, ·〉H on H × H with |〈h, h〉H|1/2 = ‖h‖H
for all h ∈ H.

§17.02 Property.

(Cauchy-Schwarz inequality) |〈h1, h2〉H| 6 ‖h1‖H‖h2‖H for all h1, h2 ∈ H.

§17.03 Example.
(a) For k ∈ N the Euclidean space Rk endowed with the Euclidean inner product 〈x, y〉 := ytx

and the induced Euclidean norm ‖x‖ = (xtx)1/2 for all x, y ∈ Rk is a Hilbert space. More
generally, given a strictly positive definite (k×k)-matrixW , Rk endowed with the weighted
inner product 〈x, y〉W := ytWx for all x, y ∈ Rk is also a Hilbert space.

(b) Denote by RN the vector space of all R-valued sequences over N where we refer to any
sequence (aj)j∈N ∈ RN as a whole by a• as for example in «the sequence a•» and arithmetic
operations on sequences are defined component-wise, i.e., a•b• = (ajbj)j∈N, a• ∨ b• =
(aj ∨ bj := max(aj, bj))j∈N a• ∧ b• = (aj ∧ bj := min(aj, bj))j∈N or a• 6 cb• with c ∈
R+, if aj 6 cbj for all j ∈ N, for sequences a•, b• ∈ RN. In the sequel, let ‖a•‖`s :=
(
∑

j∈N |aj|s)1/s, for s ∈ [1,∞), and ‖a•‖`∞ := sup{|aj|, j ∈ N}. Thereby, for s ∈ [1,∞],
consider `s(N) := {a• ∈ RN, ‖a•‖`s <∞}, or `s for short, endowed with the norm ‖·‖`s .
In particular, `2 is the usual Hilbert space of square summable sequences over N endowed
with the inner product 〈a•, b•〉`2 :=

∑
j∈N ajbj for all a•, b• ∈ `2.

(c) For a strictly positive sequence w• ∈ (R+
\0)

N consider the weighted norm ‖a•‖2
`2(w2

• ) :=∑
j∈Nw

2
j |aj|2. We define `2(w

2
• ) :=

{
a• ∈ RN, ‖a•‖`2(w2

• ) <∞
}

, which is a Hilbert space
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endowed with the inner product 〈a•, b•〉`2(w2
• ) := 〈w•a•, w•a•〉`2 =

∑
j∈Nw

2
j ajbj for all

a•, b• ∈ `2(w•).

(d) For a measure space (Ω,A , µ) recall the set of all Ls(µ)-integrable functions given in
Notation §01.03 for s ∈ [1,∞]. The set of equivalence classes Ls(µ) := Ls(A , µ) :=
{{h}µ : h ∈ Ls(A , µ)} is a vector space endowed with the norm ‖{h}µ‖Ls(µ) := ‖h‖Ls(µ)

for {h}µ ∈ Ls(µ) (see Notation §15.06). As usual we identify a function h ∈ Ls(µ) with
its equivalence class {h}µ . For instance, L2(A , µ) = {h ∈ A : ‖h‖L2(µ)}, or L2(µ) for
short, denotes the usual Hilbert space of square µ-integrable in A endowed with the inner
product 〈h, ho〉L2(µ) := µ(hho) for all h, ho ∈ L2(µ).

§17.04 Definition. A subset U of a Hilbert space (H, 〈·, ·〉H) is called orthogonal if

∀u1, u2 ∈ U , u1 6= u2 : 〈u1, u2〉H = 0

and orthonormal system (ONS) if in addition ‖u‖H = 1, ∀u ∈ U . We say U is an orthonormal
basis (ONB) if U ⊆ U ′ and U ′ is ONS, then U = U ′, i.e., if it is a complete ONS.

§17.05 Example. Consider the real Hilbert space L2(B[0,1], λ[0,1]) with respect to the restriction λ[0,1] of
the Lebesgue measure to B[0,1]. With a slight abuse of notations we write shortly λ := λ[0,1] and
L2 := L2(B[0,1], λ). The trigonometric basis given for t ∈ [0, 1] by

ψ1(t) := 1, ψ2k(t) :=
√

2 cos(2πkt), ψ2k+1(t) :=
√

2 sin(2πkt), k ∈ N,

is orthonormal and complete, i.e. an ONB.

§17.06 Property.
(Pythagorean formula) If {hj, j ∈ JnK} ⊆ H are orthogonal, then ‖

∑
j∈JnK hj‖2

H =
∑

j∈JnK‖hj‖2
H.

(Bessel’s inequality) If U ⊆ H is an ONS, then ‖h‖2
H >

∑
u∈U |〈h, u〉H|2 for all h ∈ H.

(Parseval’s formula) An ONS U ⊆ H is complete if and only if ‖h‖2
H =

∑
u∈U |〈h, u〉H|2 for

all h ∈ H.

§17.07 Definition. Let U be a subset of a Hilbert space (H, 〈·, ·〉H). Denote by U := lin(U) the closure
of the linear subspace spanned by the elements of U . Its orthogonal complement in (H, 〈·, ·〉H)
is defined by U⊥ := {h ∈ H : 〈h, u〉H = 0,∀u ∈ U} where H = U⊕ U⊥.

§17.08 Remark. If U ⊆ H is an ONS, then there exists an ONS V ⊆ H such that H = lin(U)⊕ lin(V)
and for all h ∈ H it holds h =

∑
u∈U〈h, u〉Hu+

∑
v∈V〈h, v〉Hv (in a L2-sense). In particular, if

U is an ONB then h =
∑

u∈U〈h, u〉Hu for all h ∈ H.

§17.09 Definition. A sequence u• = (uj)j∈N in H is said to be an orthonormal sequence (ONS), re-
spectively, an orthonormal basis (ONB) if the subset {uj, j ∈ N} is an ONS, respectively ONB.
The Hilbert space H is called separable, if there exists a complete orthonormal sequence.

§17.10 Example. The Hilbert space (Rk, 〈·, ·〉W ), (`2(w•), 〈·, ·〉`2(w•)) and (L2(µ), 〈·, ·〉L2(µ)) with σ-
finite measure µ are separable.

§17.11 Definition. A family (JmK)m∈M, M ⊆ N, is called a nested sieve in N, if ∪m∈MJmK = N.
We write JmKc := N\JmK = (m,∞) ∩ N for m ∈ M. Similarly, given an ONS u• = (uj)j∈N
and setting Um := lin {uj, j ∈ JmK} for m ∈M we call the family (Um)m∈M a nested sieve in
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U := lin {uj, j ∈ N}. We write U⊥m := lin {uj, j ∈ JmKc} where U = Um⊕U⊥m. For convenient
notations we set further 1m• := (1mj )j∈N with 1mj := 1JmK(j) for j ∈ N. and 1• := (1)j∈N.

§17.12 Definition. We call an ONS u• = (uj)j∈N in L2(µ) (respectively, in `2) regular
(a) with respect to a nested sieve (JmK)m∈M, if there is a finite constant τu > 1 satisfying
‖
∑

j∈JmK |uj|2‖L∞(µ) 6 τ 2
um for all m ∈M;

(b) with respect to a weight sequence w•, w•-regular in short, if there exists a finite constant
τuw• > 1 such that ‖

∑
j∈Nw

2
j |uj|2‖L∞µ 6 τ 2

uw• .

§17.13 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L2 a regular ONS
(uj)j∈N the nested sieve (JmK)m∈N is exactly equivalent to following property: there exists a
finite constant τu > 1 such that for any h ∈ Um we have ‖h‖L∞ 6 τu

√
m‖h‖L2

. Typical exam-
ple are bounded basis, such as the trigonometric basis, or basis obeying the following property:
there is C∞ ∈ R+

\0 such that for any cm ∈ Rm yields ‖
∑

j∈JmK cjuj‖L∞ 6 C∞
√
mmaxj∈JmK cj .

Birgé and Massart [1997] have shown that the last property is satisfied for piece-wise polyno-
mials, splines and wavelets.

§17.14 Example (Example §17.05 continued). Consider the trigonometric basis ψ• = (ψj)j∈N in the real
Hilbert space L2 = L2(B[0,1], λ[0,1]). Since supj∈N‖ψj‖L∞ 6

√
2 setting τ 2

u := 2 the trigonomet-
ric basis is regular w.r.t. any nested Sieve (JmK)m∈M, i.e., Definition §17.12 (a) holds with
‖
∑

j∈JmK ψ
2
j ‖L∞ 6 2m. In the particular case of the nested sieve (J1 + 2mK)m∈N, we have∑

j∈J1+2mK ψ
2
j = 1 +

∑
j∈JmK{2 sin2(2πj•) + 2 cos2(2πj•)} = 1 + 2m and thus, the trigono-

metric basis is regular with τu := 1. Moreover, the trigonometric basis is regular with respect
to any w• ∈ `2. Indeed, in this situation we have ‖

∑
j∈Nw

2
jψ

2
j ‖`∞ 6 2‖w•‖2

`2
and hence Defini-

tion §17.12 (b) holds with τ 2
uw• = 2‖w•‖2

`2
.

§17.15 Lemma. Let F r
u•,f•

be a class of functions an ONS u• = (uj)j∈N in L2(µ) (or analogously
in `2) as given in Definition §16.15. If the ONS is regular wrt the weight sequence f• as
in Definition §17.12 (b) for some finite constant τu•f• > 1, then for each f ∈ F r

u•,f•
holds

‖f‖L∞(µ) 6 τuw•‖f‖1/f• 6 rτuw• .

§17.16 Proof of Lemma §17.15. Due to the Cauchy-Schwarz inequality (Property §17.02) for each
f ∈ F r

u•,f•
we have ‖f‖2

L∞(µ) 6 ‖f‖2
1/f•
‖
∑

j∈N f
2
ju

2
j ‖L∞(µ), which in turn implies the assertion by

employing the Definition §17.12 (b) of τu•f• and r.

§17.17 Example (Example §16.14 continued). Consider Lw•2 with respect to the trigonometric basis ψ• =
(ψj)j∈N and a weight sequence w• satisfying either Example §16.14 (P) with p > 1/2 or Exam-
ple §16.14 (E) with p > 0. In both cases setting τ 2

ψ•,w• = 2‖1/w•‖2
`2
<∞ the trigonometric basis

is regular w.r.t. the weight sequence 1/w•. Consequently, setting f• = 1/w• from Lemma §17.15
follows sup{‖f‖2

L∞
, θ ∈ L

1/f•

2 } 6 2‖θ‖2
ψ•,1/f•

‖f•‖2
`2

.

§17.18 Definition. A map T : H → G between Hilbert spaces H and G is called linear operator if
T (ah1 +bh2) = aTh1 +bTh2 for all h1, h2 ∈ H, a, b ∈ R. Its domain will be denoted byD(T ),
its range byR(T ) and its null space by N (T ).

§17.19 Property. Let T : H → G be a linear operator, then the following assertions are equivalent:
(i) T is continuous in zero. (ii) T is bounded, i.e., there is M > 0 such that ‖Th‖G 6 M‖h‖H
for all h ∈ H. (iii) T is uniformly continuous.
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§17.20 Definition. The class of all bounded linear operators T : H → G is denoted by L(H,G) and
in case of H = G, L(H) for short. For T ∈ L(H,G) define its (uniform) norm as ‖T‖L(H,G) :=
sup{‖Th‖G; ‖h‖H 6 1, h ∈ H}.

§17.21 Example.
(a) Let u• = (uj)j∈N be an ONS in H, for any h ∈ H and j ∈ N we call huj := 〈h, uj〉H gener-

alised Fourier coefficient. We write hu• := (huj)j∈N for short. The associated (generalised)
Fourier series transform U : H → RN defined by h 7→ Uh := hu• belongs to L (H, `2)
with ‖U‖L(H,`2) = 1.

(b) Consider a measure space (Ω,A , µ) and a function f ∈ A the map Mf : A → A
with h 7→ Mfh := hf is called multiplication operator. If ‖f‖L∞(µ) < ∞ then we have
Mf ∈ L(L2(µ)) with ‖Mf‖L(L2(µ)) 6 ‖f‖L∞(µ) <∞.

§17.22 Definition. A (linear) map Φ : H ⊃ D(Φ) → R is called (linear) functional and given an
ONS u• = (uj)j∈N in H which belongs to D(Φ) we set Φu• := (Φuj)j∈N with the slight abuse of
notations Φuj := Φ(uj), j ∈ N. In particular, if Φ ∈ L(H,R) then D(Φ) = H.

§17.23 Property. Let Φ ∈ L(H,R).

(Fréchet-Riesz representation) There exists φ ∈ H such that Φ(h) = 〈φ, h〉H for all h ∈ H,
and hence, given an ONS u• = (uj)j∈N in H we have Φuj = Φ(uj) = 〈φ, uj〉H = φuj for all
j ∈ N, or Φu• = φu• for short.

§17.24 Example. Consider an ONB u• = (uj)j∈N in L2(Ω,A , µ) (or analogously in `2(N)). By eval-
uation at a point to ∈ Ω we mean the linear functional Φto : L2(µ) ⊃ D(Φto) → R with
h 7→ h(to) := Φto(h) =

∑
j∈N hujuj(to). Obviously, a point evaluation of h at to is well-

defined, if
∑

j∈N |hujuj(to)| < ∞. Observe that the point evaluation at to is generally not
bounded on the subset {h ∈ L2(µ) :

∑
j∈N |hujuj(to)| <∞}.

§17.25 Definition. For each T ∈ L(H,G) there is a uniquely determined adjoint operator T ? ∈ L(G,H)

satisfying 〈Th, g〉G = 〈h, T ?g〉H for all h ∈ H, g ∈ G.

§17.26 Property. Let S, T ∈ L(H1,H2) and R ∈ L(H2,H3). Then we have
(i) (S + T )? = S? + T ?, (RS)? = S?R?.

(ii) ‖S?‖L(H2,H1) = ‖S‖L(H1,H2), ‖SS?‖L(H2,H2) = ‖S?S‖L(H1,H1) = ‖S‖2
L(H1,H2)

.

(iii) N (S) = R(S?)⊥, N (S?) = R(S)⊥.

§17.27 Example.
(a) The adjoint of a (k ×m) matrix M is its (m× k) transpose matrix M t.

(b) Let Mf ∈ L(L2(µ)) be a multiplication operator, then its adjoint equals also a multiplication
with f , i.e. M?

f = Mf .

§17.28 Definition. Let H and G be Hilbert spaces.
(a) The identity in L(H) is denoted by idH.

(b) If T ∈ L(H,G), then T : N (T )⊥ → R(T ) is bijective and continuous whereas its inverse
T−1 : R(T ) → N (T )⊥ is continuous (i.e. bounded) if and only if R(T ) is closed. In
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particular, if T : H → G is bijective (invertible) then its inverse T−1 ∈ L(G,H) satisfies
idG = TT−1 and idH = T−1T .

(c) U ∈ L(H,G) is called unitary, if U is invertible with UU? = idG and U?U = idH.

(d) T ∈ L(H) is called self-adjoint, if T = T ?, i.e., 〈Th, ho〉H = 〈h, T ?ho〉H for all h, ho ∈ H.

(e) A self-adjoint T ∈ L(H) is called non-negative, T ∈ L+(H) for short, if 〈Th, h〉H > 0 for all
h ∈ H and strictly positive or T ∈ L+

\0(H) for short, if 〈Th, h〉H > 0 for all h ∈ H\{0}.
(f) Π ∈ L(H) is called projection if Π2 = ΠΠ = Π. For Π 6= 0 are equivalent: (i) Π is an

orthogonal projection (H = R(Π)⊕N (Π)); (ii) ‖Π‖L(H) = 1; (iii) Π ∈ L+(H).

§17.29 Property.
(i) If T ∈ L(H) is self-adjoint, then ‖T‖L(H) = sup{|〈Th, h〉H| : ‖h‖H 6 1, h ∈ H}.

(ii) If T ∈ L+(H) then there exists T 1/2 ∈ L+(H) with T = T 1/2T 1/2.

§17.30 Example (Example §17.21 continued).
(a) Let u• = (uj)j∈N be an ONS in H and set U := lin {uj, j ∈ N}. The (generalised) Fourier

series transform U ∈ L(H, `2) (see Example §17.21 (a)) is a partial isometry with adjoint
U? ∈ L(H, `2) satisfying U?a• =

∑
j∈N ajuj for a• ∈ `2(N), i.e., U : U → `2(N) is uni-

tary. Moreover, the orthogonal projection Π
U
∈ L(H) onto U satisfies Π

U
h = U?Uh =∑

j∈N hujuj for all h ∈ H. If u• = (uj)j∈N is complete (i.e. ONB), then U is invertible with
UU? = id`2(N) and U?U = idH due to Parseval’s formula, and hence U is unitary.

(b) A multiplication operator Mf ∈ L(L2(µ)) (see Example §17.21 (b)) is self-adjoint and if
f ∈ A is non-negative, i.e. f ∈ A +, then Mf is non-negative, i.e, Mf ∈ L+

\0(L2(µ)).
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