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Chapter 1

Preliminaries

Elements of the PROBABILITY THEORY are recalled along the lines of
the lecture Statistik 1. For a detailed exposition with many examples we
refer to the text book Klenke [2008].

§01 Fundamentals

§01.01 Notation. For z,y € R we agree on the following notations |z| := max{k € Z : k < z}
(integer part), = V y = max(x,y) (maximum), z A y = min(x, y) (minimum), z* = max(z, 0)
(positive part), 2~ = max(—x,0) (negative part) and |z| = x~ + 2% (modulus).

(i) Weset R := [0,00), R, := (0,00), Ry := R\ {0}, R := [—o0, 00], R :=[0,00].

(i1) For a,b € R with a < b we write [a,b] := [a,b] N Z, [a,b] := [a,b) N Z and [a,b] =
(a,b] N Z. Moreover, let [n] := [1,n] and [n[ := [1,n[ forn € N.

(iii) For a™ = (a;)icn], 0" = (bi)icp] € R" we write o < 1", ifa; < b; forall i € [n]. For
a™ < b, define the open rectangle as the Cartesian product (o, 0") = X" (a;, b;) =
(a1,b1) % (ag,by) X -+ X (an, b,). Analogously, we define [a", b"], (a",0"] and [a", b").

(iv) We call %:= % the Borel-o-field over the compactified real line R, where the sets { —cc},
{00} and R are in R closed and open, respectively, and hence Borel-measurable. In partic-
ular, the trace B = %’R = ZANR of Z over R is the Borel-o-field over R. Furthermore,
we write 7 = ZNR", #' := ZNR* and A= BNRL

(v) Given a measurable space (£, .27) a Borel-measurable function g : Q@ — Rand f : Q2 — R
is called real and numerical, respectively, and we write ¢ € </ and [ € ./ for short. g
respectively f is called positive if g(2) € RT respectively f(§2) € R, then we write
gc /" and [ € «/ - We call a Borel-measurable function f* = (fi)ieps) - Q@ — R", that
is f; € o foreachi € [k], and g* = (g:)icpy : Q@ — R¥, numerical and real, respectively
and we write /" ¢ /" and ¢ € /" for short. 0

§01.02 Property.

(i) For X,Y € o and a € R holds: aX € o (with convention 0 x co = 0); X VY :=
max(X,Y), X AY :=min(X,Y) € & and particularly X+ := X V0, X~ := (—X)" €

(i) For X" = (X,)icn) € &", i.e., X; € o7, i € [n], and Borel-measurable h : R" — R™
holds h(X™) € /™, and in particular X| + Xo, X1 — Xy, X1 X5 € &7, and X,/ X, € <.

(iii) Let (X,)nen be a sequence in <. Then N SUD,eny Xn € o, infpen X, € o, X, =
lim inf X,, € o and X* =lim sup X,, € . If X := lim X,, exists, then X € .

n—o0 n—oo n—oo
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(iv) Let S : (Q, o) — (S,.7) be measurable, o(S) := S™1() C o the sub-o-field gener-
ated by S andY : Q) — R. Then the following conditions are equivalent: (a) Y is o(S)-
measurable, symbolically Y € o(S); (b) There exists a measurable ¢ : (S,.%) — (R, A),
inshort p € ., withY = o(S). IfY is real, bounded or positive, then @ has each of those
properties too.

(@) —> (5.7)
Y = (S) € al9) P -
(R, A)

The function ¢ is uniquely determined by Y on S(Q2), and for all s ¢ S(Q) it can be
arbitrarily be extended.

(v) For every X € " the sequence of simple random variables (X,,)nen in " given by
X, = (272" X |) A n satisfies (a) X,, T X, (b) X,, < X Any (c) For each ¢ € R™ holds
lim,, oo X, = X uniformly on {X < c}. 0

$01.03 Notation. For a measure y on (2, .7) we denote the integral of f € .o/ with respect to y
by 1of = [ fdp, if it exists. For s € RY, define || /||~ () = (u[f|*)"/*, and | f||~ () =
inf{c € R™ : u(|f| > ¢) = 0}. Fors € @TO := (0,00] a function f € .o/ is called .Z,(11)
Z,(p)-integrable, if || f||# ) < oo. We denote the set of all .Z,(11)-integrable functions by
L) =LA ) = {f € & : |flleey < oo}. Note that ||| ) is a seminorm on
Z.(u) for each s € [1,00]. Given a metric space (X, d) equipped with its Borel-o-field A~
we denote by C, := C,(X') the set of all bounded and continuous functions mapping X" into
R. For any finite measure ;. on (X, %x) we have ||h]|#_(,) < oo forall h € Cp and thus

Cy C Z (A, 1) in equal. We denote by A the Lebesgue measure on (R, %) and write shortly
L) = LUA) = LB, N). O

§01.04 Notation. We understand a vector a* = (a;);epy as a column vector, i.e., a* = (a;---ay)' €

R" and hence we identify R" and R"". We denote by ||-|| and (-, -) the Euclidean norm and
inner product on R*, respectively, i.e, [|a*[| = (32, g lail*)"/? and (a*,0%) = 37, g aibs =

(b5)ta* for all a*,b* € R". For s € Ry we define ||, == (3;cq lail®)* and [|a"] . =

max;e[x) |a;|. Note that f* € 7" and g" € % imply ||f*||s € & and ||g*||s € & for any

s € R We call f* = (f,)icpy £ (n)-integrable if || f*||s € Z. (1) or equivalently f; € Z.(u)
for each i € [K]. We define | /"], = ||/¥lllzgn and 24 () — (/1) = {f* €
AR | f¥]| () < oo} with a slight abuse of notation. O

§01.05 Notation. Let X be a random variable, i.e. a measurable function, defined on a probabil-
ity space (€2, <7, P) with values in a measurable space (X, Z"). The probability measure on
(X, Z) induced by X is denoted by P¥X := P o X! and we write X ~ P~ for short. For
f € 2 the expectation of f with respect to PX or equivalently of f(X) with respect to P (if
it exists) is denoted by F* / := P* [ = P f(X) =: E f(X) for short. For example, when ap-
plied to the empirical measure [? given by P2 (2") := % > ic[n] Ow: fOr 2" = (7)icpn) € X this

yields Bf € Z with 2" — (Bf)(z") := % > icpny /(%) In other words, for each 2" € X™,

T on

(B f)(z™) is an abbreviation for the average 2 > icpny f (%:). We denote by WW(27) the set of
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all probability measures on (X, .2") and for R" equipped with its Borel-o-field 4" := %=
by W.(A") C (") the subset of all probability measures on (R", ") with finite s € R*
absolute mean, that is, for all P € W;(%") the identity mapping id,, : R™ — R™ belongs to
Z(P). Furthermore, for Y ~ P we write E(Y) = P(Y) := P(id,) = (P(Hi))ieﬂn]] using for
i € [n] the coordinate map I : R" — R with 2™ = (z;)ic[y — IL(2") == 2. O

§01.06 Property. Let X € Z(P), i.e. | X% py = P(||X||*) < oc. Foreachb € R" and A € R (k)

we have Y 1= AX + b € Z(P). If we further denote by j1 :== PX € R¥ and ¥ := Cov(X) =
P(X —u)(X — p)t = P(XX?) — put € RER) expectation vector and covariance matrix of X,
respectively, then P(Y) = Ay +b € R" and Cov(Y) = AL A* € R, m

§01.07 Definition. A Z(P)-random vector X with p := P(X) and ¥ := Cov(X) is multivariate
normally distributed, X ~ N, , for short, if for each ¢ € R* the real random variable (X c)
is normally distributed with mean (1, ¢) and variance (Xc, c), ie., (X,¢) ~ N0 sea) If
Id;, denotes the k-dimensional identity matrix, then X ~ N1q,) is called a standard normal
random vector. O

§01.08 Property. A random vector X = (X;)icp is standard normal, i.e., X ~ N, if and only if
its components {X;,i € [k]} are independent and identically N, 1,-distributed. O

§01.09 Remark. In other words, a multivariate N g 14,)-distribution equals the product of its marginal

N(o)-distributions, or N(g1a,) = N} := ®,cpeq Nowy) for short. 0

§02 Convergence of random variables

Here and subsequently, a metric space is equipped with its Borel-o-field.

§02.01 Definition. Let X and X,,, n € N, be random variables on a probability space (€2, o7, ) with
values in a metric space (X', d). The sequence (X, ),en converges to X:

(a) almost surely (P-a.s.), if P(lim,,_,o, d(X,, X) = 0) = 1. We write X, 2% X P-as., or
briefly, X, —* X.

(b) almost completely (P-a.c.), if ) _P(d(X,,X) > ¢) < oo forall ¢ € R}. We write
X, 22 X P-a.c., or briefly, X,, —% X.

(¢c) in probability, if lim,,_,, IP(d(Xn, X) > E) =0 foralle € R}.
P, or briefly, X,, — X.

(d) in distribution, if lim,,_,.. PX"f = PXf for any f € Cy(X). We write X,, — X in
distribution, or briefly, X, 4 X and with a slight abuse of notation also X, 4, px,

(e) in Z,(P) or s-th mean, if lim,,_, o, P(d(X,, X)*) = 0. We write X, 7% X in Z.(P), or

briefly, X, 2 x. o

neN

We write X, 7% X in

§02.02 Remark. Let X and X,, n € N, be random vectors in R¥, i.e., (R* %")-valued random
variables, and ||-||s as in Notation §01.04. Convergence of (X,,),en to X in s-th mean, that is,
PlIXn — XI5 = 1Xn — X% @) 2%, 0, equals the component-wise convergence of (X ),en

to X' in Z(P),ie., P|X] — X'|* = || X} — X*||%, ») = 0 for each i € [k]. 0
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Chapter 1 Preliminaries §02 Convergence of random variables

§02.03 Property. Let X and X, n € N, be random variables on a probability space (), <7 ,P) with
values in a metric space (X, d).

(i) The following statements are equivalent: (a) X, Paso x; (b) sup,,>, d(Xn, X5) i

0; (c) Ve,6 € RY, : AN € N:Vn > N : P(ﬂ]>n{d( )<5}) > 1—0and
(d) sup,,>,, d(Xom, X) 2.

(ii) (Continuous mapping theorem) Let g : X — R be continuous and let (X,,),en converge
to X P-a.s. (respectively, in probability or in distribution). Then (g(X,,))nen converges to
g(X) P-a.s. (respectively, in probability or in distribution).

(i1i1)) Counter examples show, that the converse (in gray) of the following direct implications (in
red) do not hold. O

n— oo

inf{e € Rf : P(d(Xp,X) >e) =0} =50

B(d(Xn, X)*) 222, o /\ /\ Ve e RY : z P(d(Xn, X) > &) < o0
/

P-as.
—> Xy —
r<s \/ \/ P(hmsuden X)=0)=1

1 Ve €RY, : lim P(d(Xn,X)>e) =0

T VhEC, : lim pXnp =pXph

§02.04 Definition. A family of {X, ;,j € [k,],n € N} of real .Z,-random variables is called a stan-
dardised array, if for every n € N the family {X, ;,j € [k,]} is independent, centred and
normed, ie., E(X,;) = 0, j € [k,] and 37, Var(X,;) = 1. A standardised array
{X,;,7 € [kn],n € N} is said to satisfy
(a) the Lindeberg condition, if 1imy, 0o 35 g 1 E(X2 1x,,25) = 0 forevery 6 € RY;

(b) the Lyapunov condition, if there is § € R such that limy, o0 D ey E|X,.,;*7=0. o

§02.05 Property. Let (X,)nen be a sequence of independent real random variables.
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§02 Convergence of random variables Chapter 1 Preliminaries

(i) (Law of Large Numbers) Let X,, n € N, be identically distributed. Then X, € £ (P) if
and only if lim,,_,. * > icpay Xi = P(X1) P-as. (and then also in Z,(P)).

(ii) (Lévy’s equivalence theorem) For partial sums (S, := Ziew Xi)nen P-a.s. convergence
is equivalent to convergence in probability. Otherwise, they diverge with probability one.
(Kolmogorov’s three-series theorem) (Sy, )nen converges P-a.s. if and only if there is € € RY,
such that each of the following three conditions holds: (a) _(P(|X,| > ¢) < oo,
(b) > ,en E(Xnlyx, <) converges; and (¢) Y Var(X,1yx, ) < oc.

Let {X, ;,j € [kn],n € N} be a standardised array.

(i1i1)) The Lyapunov condition implies the Lindeberg condition.

(iv) (Central Limit Theorem of Lindeberg (1922)) If the Lindeberg condition hold, then (for the
N d
row sum) Sy =3 icr 1 Xnj — N O

§02.06 Remark (Law of Large Numbers). Let X¥, n € N, be i.i.d. random vector in R*. Then

I XF] 2 @) = PIIXFIh < oo ifand only if 37, 1 4 XF 2% E(XF) (then also in £ (P)). ©

§02.07 Property (Portemanteau). Let X and X,, n € N, be random variables on a probability space
(Q, o7, P) with values in a metric space (X ,d). The following statements are equivalent:

(i) Xo % X;
(i) lim inf, .o P(X,, € U) 2 P(X € U) forall open U C X;
(iii) lim sup,,_, . P(X, € F) < P(X € F) forall closed F C X;

(iv) lim, o P(X,, € B) = P(X € B) for all measurable B with P(X € 0B) = 0 where B,
B” and OB = B\ B’ is the closure, interior and the boundary of B, respectively. O

$02.08 Property (Helly-Bray). Let X and X,,, n € N, be random vectors in R¥ with cumulative distri-
bution function (c.d.f.) for each x € R* given by F(z) := P(X < ) and F,(z) := P(X,, < 7).
Then the following statements are equivalent: (i) X, 9 X and (i) lim,, o F,(z) = F(z) for
all points of continuity x of F. O

§02.09 Property (Continuous mapping theorem). Let (X1, dy) and (Xs, dy) be metric spaces and let ¢ :
X1 — Xy be measurable. Denote by U, the set of points of discontinuity of . If X and

X, n € N, are Xy-valued random variables with P(X € U@) = 0 and X, i) X, then
d
P(Xn) = p(X). O

§02.10 Property (Slutzky’s lemma). Let X and X,,,Y,, n € N, be random variables taking values in a
common metric space (X, d) and satisfying X, % X and d(X,, Y,) 50 ThenY, & X. o

$02.11 Example. Let X and X,,, n € N, be a random vector in R satisfying X, NS'e
(a) IfY,, n € N, are random vector in R* and ¢ € R* such that Y;, % ¢, then X, +Y, % X +c.
(b) If X, n € N are random matrices in R and ¥ is a matrix in R**) such that &, % ¥,

then >, X, 4 S X. If in addition ¥ is strictly positive definite, and thus invertible, then
S-1x, & 21X and £, Y2, & 92X, O
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Chapter 1 Preliminaries §02 Convergence of random variables

$02.12 Property (Cramér-Wold device). Let X,,, n € N, be random vectors in R¥. Then, the following
are equivalent: (a) There is a random vector X with X, 4 X, (b) For any v € RF, there is a
real X" with (v, X,,) NS If (a) and (b) hold, then X" and (v, X') are identically distributed
(id.), X° L (0. X) for short, for all v € RF. O

§02.13 Property (Lindeberg-Feller CLT). For eachn € N let{Y, ;,j € [k,]} be independent and cen-
tred £} -random vectors such that (i) > EN Yo, 12 gy, ine ——> O for any eRY and

0
n—oo

JE[kn]

d

§02.14 Example. Let X and X,,, n € N, be i.i.d. £ (P)-random vectors with ;o = P(X) and strictly
positive definite 3 = Cov(X).

(@) (CLT) == 3y (Xi — 1) % N,
— P
() LLN) X, = 130 X B
P
(©) (LLN) 2 Y0,y XoX! 5 E(X XY),

S - - — 5t P

(d) By = 5 Y (Xi = Xo) (X = X)) = ¢ Dicpuy XiX§ — XX, = E(XX') — ' =
Cov(X) = ¥ (using (b) and (c) and continuous mapping theorem §02.03)

(e) v/nXyn Y 2(7 — ) 4, N(o.14,) (using (a), (d) and Slutzky’s lemma §02.10 as in the Exam-
ple §02.11 (b)) O

$02.15 Remark. A map ¢ : R¥ — R™, that is defined at least in a neighbourhood of 6,, is called
differentiable at 6, if there exists a linear map (matrix) ¢y, : R* — R™ such that

lim H(b(e) - (b(eo) B é@o (9 - 90)”

=0.
60, 16 = 6o

The linear map x — ¢y, (x) is called (fotal) derivative as opposed to partial derivatives. A
sufficient condition for ¢ to be (totally) differentiable is that all partial derivatives 0¢;(f)/06),
exist for # in a neighbourhood of ¢, and are continuous at 6,,. ]

§02.16 Property (Delta method). Let ¢ : R¥ D D, — R™ be a map defined on a subset D, of R*
and differentiable at 6,. Let T and T,, n € N be random variables taking their values in the
domain Dy of ¢. If r,,(T,, — 6,) % T for numbers r, — oo, then ro((T) — ¢(6,)) N o, (T).
Moreover, the difference between r,,(d(T},) — ¢(6,)) and g, (ro (T, — ,)) converges to zero in

probability. O

§02.17 Remark. Commonly, \/n(7T,, — 6,) 4, N(..s). Then applying the delta method it follows that
d

Vi(o(T,) — ¢(0,)) — N(égou,d}gowgu)- o

§02.18 Property (Markov’s inequality). If X is a £ (P)-random vector for some s > 1, then P (|| X||s >

c) < P([X]3) = ¢ X% p)- =

§02.19 Property (Monotone convergence). Let (X, )nen be a sequence of monotonically increasing real
Z,(P)-random variables converging P-a.s. to a numerical random variable X, for short X,, 1
X P-as.. Then PX = lim,,_,., PX,,. O

6 Statistics 2



§03 Conditional expectation Chapter 1 Preliminaries

§02.20 Property (Dominated convergence). Let (X,,)nen be a sequence of real £,(P)-random variables

. . . . P-as. .
converging P-a.s. to a numerical random variable X, i.e., X, — X. If there is a real

Z,(P) random variable Y with sup, .y | X,,| <Y P-a.s. (and thus sup,,cy | X,| € Z(P)), then
X € Z(P) and X, 275 x. .
§02.21 Definition. A sequence of random variables (X,,),en With values in a metric space (X, d) is

called (uniformly) tight (straff) or bounded in probability, if, for any ¢ € R, there exists a
compact set K. C X suchthat P(X,, € K.) > 1 —cforalln € N. O

§02.22 Remark. If (X, d) is Polish, i.e., separable and complete, then every X'-valued random variable
is bounded in probability and thus so is every finite family. O

§02.23 Example. A sequence (X,,),en of random vectors in R* is bounded in probability, if for any
e > 0, there exists a constant K such that P(|| X, || > K.) < eforall n € N. m

§02.24 Property (Prohorov’s theorem). Let X and X, n € N, be random variables with values in a
Polish space.
1) If X, N X, then (X,,)nen is bounded in probability.
(i) If (X,)nen is bounded in probability, then there exists a sub-sequence (X, )xen Which

converges in distribution. O

§02.25 Landau notation. Let X,,, n € N, be random variables on a probability space ({2, .o/, P) with

values in a metric space (X, d) and let x,,, n € N, belong to X'.
n—oo

(i) We write (a) z,, = o(1), if d(z,,,0) —— 0, and (b) x,, = O(1), if sup,,cn d(z,0) < 00,
and analogously (a) X, = op(1),if X, L 0, and (b) X,, = Op(1), if (X,,)nen is bounded
in probability

(i) Let an, n € N, be strictly positive numbers. We write (a) x, = o(a,), if d(z,,0)/a, =
o(1), and that (b) z,, = O(a,), if d(x,,0)/a, = O(1), and analogously (a) X,, = op(a,),
if d(X,,0)/a, = op(1), and (b) X, = Op(a,), if d(X,,0)/a, = Op(1).

(iii) Let A,, n € N, be strictly positive random variables on (2, &7, ). We write (a) X, =

0 (A,), if d(X,, 0) /A, = 0p(1), and (b) X, = Op(A,), if d(X,,0)/A, = Op(1).  ©
§02.26 Property (Exercise). For real random variables the following properties hold:

(i) op(1) 4+ op(1) = op(1) meaning if X,, = op(1) and Y,, = op(1) then X,, +Y,, = op(1);

(i) Op(1) +op(1) = Op(1);

(111) O[p(l) . Op(l) = Op(l),’

(lV) (1 + O[p(l))_l = O[p)(l),

(v) op(Op(1)) = op(1) meaning if X,, = Op (1) and Y,, = op(X,,) then Y,, = op(1). O

§03 Conditional expectation

In the reminder of this section let (€2, .27, P) be a probability space, E be the expectation with
respect to P and .% C .o/ be a sub-o-field of .o7.

Statistics 2 7



Chapter 1 Preliminaries §03 Conditional expectation

§03.01 Notation. We write shortly X' & ?+ if X is a positive numerical random variable on (£, <),
ie, X :Q — R isa .o —@+—measurable function. In particular, we have §+ C EJF and for
Y eZF its expectation E(Y') is well-defined. O

503.02 Property. Forevery X € o ' exists Y € F ' with E(1,Y)=E(1,X) forall F € F, where
Y is unique up to P-a.s. equality. O

§03.03 Definition. AmapY : 2 — R iscalled a (version of the) conditional expectation of X &€ A
given .%, symbolically E (X ’35 ) =Y, if
(CEl) Yis & -@+-measurable, hence Y € ?Jr and
(CE2) E(1;Y) =E(1,X) forany F' € .Z.
Any map [E( . }ﬁ ) . — F with X — [E(X !ﬁ’ ) is called (version of the) condi-
tional expectation with respect to P given .#. It implies a map P (e |.7) : &/ — 7" with
A P(A]F) := E(1,|F) called (version of the) conditional distribution of P given .Z.

Exploiting (CE2) every version satisfies E(1,P(A|.#)) = [, P(A]|.#)dP = P(F N A) for all
FeZandAecd. O

$03.04 Reminder. Let X € ./ be a numerical random variable. Considering the decomposition
X =X+ — X~ with X+, X~ € & we define for X with P(]X]|) < oo, hence E(XT) < o0
and E(X ) < oo, the expectation E(X) := E(X*) — E(X ™). Keep in mind that £, (&, P) :=
{X € o : E(|X]) < oo} and E : %, (<7, P) — R denotes the uniquely determined expectation
with respect to P. Note that .# C o7 implies .Z,(.#,P) C % (</,P). Let X € ZL(«,P),
and hence E(XT) < oo and for any version E(X*|.%) holds (CEl), E(X*|.#) € F'
and (CE2), E(1,E(XT|.#)) = E(1,X") for all F € .Z, in particular with F =  also
E(E(X*|.#)) = E(X') < co. Therewith, E(X*|.#) € £ (Z,P) and analogously also for
any version [E(X”ﬁ) € Z(Z,P). Consequently, [E(X*L@) — [E(Xﬂﬁ) € Z(7,P)
satisfies (CE2) too. O

$03.05 Definition. For X € % («/,P) and each version E(X*|.#),E(X~|.#) € Z(F,P) we call
E(X|F):=E(XT|.Z) - E(X"|#) € Z(Z,P) a(version of the) conditional expectation
of X given .#. Any map

E(e|F): L(d,P)— L(F,P)with X — E(X|.F) =E(X"|.Z) —E(X|F)
is called a (version of the) conditional expectation with respect to P given .#. O

§03.06 Remark. Due to Property §03.02 versions of the conditional expectation of X &€ o orX e
Z (4, P) given # differ only on null sets. This property does in generally not extend to the
version of the conditional expectation with respect to P given .#, since for each X we obtain a
null set, and their union in general is not a null set. O

§03.07 Definition. Let (Q1,.27), (€22, 9% ) be measurable spaces. A map « : ); x % — R7 is called

Markov kernel (from (Qq, o) to (Qs, 94)), if

(MK1) Ay — rk(wq, Ag) is for all w; € €y a probability measure on ({2, o7 ), symbolically
k(w1 @) € W(h);

(MK2) w; — k(wy, Ay) is o7 -%B-measurable for all A, € o7, symbolically x(e, Ay) € &7, O
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§03.08 Notation. Consider a probability space (€);, <7, P), a measurable space ()2, 2% ) and a Markov
kernel x (from (€2, 7)) to (€s, 2%)). Then there exists an unique probability measure » ) P
on (2y X y, o ® o) determined by

[FD(AQ X Al) = / m(wl,Ag)P(dwl), forall A, € M,AQ € %
Ay
If f € @ orfeZL(k®P)then

KOPS = / flwz,wi)k © P(dws, dw,) = / J(wa, wi)k(wr, dws)P(dwy).
Qo x Q1 JQo

Furthermore, we denote by [P the marginal distribution on ({2, o%) induced by k © P, i.e.
(AQ) =kOP A2 X Q fQ wl, A2 (dwl) for all AQ € 5272 |

§03.09 Definition.

(a) P( o |.%) is called regular (version of the) conditional distribution of P given .7, if
(w, A) = P(A|F)(w) satisfies the conditions (MK1) and (MK2), i.e. P (e|.%) is a Markov
kernel (from (€2, %) to (Q, &)).

(b) [E( ° ‘ﬁ ) is called regular (version of the) conditional expectation with respect to P given
7, if the implied conditional distribution P( e |.%) of P given .7 is regular, and for each
weis X — E (X‘ﬁ) ) the expectation with respect to [P’( . ‘ ) (w). m

§03.10 Property.
(i) Each regular conditional distribution of P given .F is implied by a regular conditional
expectation with respect to P given 7.

(ii) For any probability measure P on a polish space (£, d) endowed with its Borel-c-algebra
PBq and sub-o-field F C Bq exists a regular conditional distribution of P given .F. O

§03.11 Notation.
(i) Let X be a random variable on (€2, <7, P) with values in a measurable space (X', Z"). For
h € Z(Z,PY) denotes E* (1.7 ) = E(h(X)|.7) € L(F,P) a conditional expecta—
tion of A(X) given Z and E* (o |.7 ) : Z(Z,PX) — Z(F,P) with h — E* (h|F)
(regular) (version of the) conditional expectation with respect to PX given .Z.

(i) Let S be a random variable on (€2, .o/, P) with values in a measurable space (S,.¥). For
h e L (o ,P) wecall E(h|o(S)) € Z(o(S),P) be a conditional expectation of h given
F = 0(S). Keeping E(h|o(S)) € o(S) in mind and applying Property §01.02 (iv) there
is ¢ € 7 with E(h|o(S)) = ¢(S), that is, E(h|o(5))(w) = ¢(S(w)), w € Q. Then
E(h|S) =¢ € L(S,P%) and E(h]S = s) = p(s) € Ris called a (version of the)
conditional expectation of h given S respectively S = s, and E( o |5) : L (o, P) —
Z (S, P%) with X — E (X ‘S ) a (regular) (version of the) conditional expectation with
respect to P given S.

(iii) Let (X,9) : (,.27) = (X x S, 2 ®.#) with joint distribution P*X>%), We denote by
I, : xS - Xand I, : X xS — S with (z,s) — Il (z,s) := z and (z,s) —
I (x,s) := s, respectively, the corresponding coordinate maps. The marginal distribution
of X respectively S is given by P¥ = Po X! = Poll;'(X, S) = P& oIl ! respectively
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P = PXS o I1;". For each version P*) (‘e |o(IL,)) of the conditional distribution with
respect to P(*5) given o (Ils), the map

P (e|S): 2 — & with B — P¥(B|S) := ¢ determined by
P*(Blo(1L)) = P (I (B)|o(IL)) = o(I1,)

and analogously P (e |5 = s) is called (version of the) conditional distribution of X
given S respectively S = s. We call a version regular, if (s, B) — PX(B|S = s) is
a Markov kernel (from (S,.7) to (X, Z7)), where due to Definition §03.03 (CE2) P* (e
’S) © P = PX9) (see Notation §03.08). Analogously, for b € Z,(2,P¥) we define a
(regular) version £ (1] 5) € Z(.,P%) and E* (1|5 = s) € R of the conditional expec-
tation of A given S respectively S = s. If IP’X( ° |S) is a regular conditional distribution
of X given S and for s € S the probability measure PX ( ) !S = s) has for example a
finite first absolute moment, i.e., PX ( ° }S = s) € Wi(A") (see Notation §01.05) then
E(X‘S =5) = [EX(idX‘S =5) = fX:EPX(dx|S =s).

(iv) Suppose the joint distribution P*-%) is dominated by a product measure 1 @ v where
and v is a o-finite measure on 2~ and ., respecitively, u € M,(Z") and v € M, () for
short. Let f** denote a (1 ®v)-density of P(X>%) . A i- and v-density of the marginal distri-
bution PX and P¥ is given by * : z — [ 9 (z, s)v(ds) and F : s — [, £ (z, s)u(dx),
respectively. The ' : S x X — R with

S=s ) ) X
(5.0 75 097 (0) = B g + P )T )

belongs to .¥ @ 2~ " and it is a ji-density of the Markov kernel P~ from (S,.7) to
(X, Z) defined by (s, B) — PXI5=5(B) := [ B (2) p(dr). We call 5= conditional
density of X given S = s.

(v) As an example let (X, S) € %" be multivariate normally distributed with Cov(X, S) =
Y xs and marginal distributions X ~ N, v yand S ~ N, s, i.€.,

X o (B kit _ [ Xx Xxs
(S) Nx) with p = (MS) € R"" and ¥ = S N )

Assuming ¥ > 0 the joint distribution P(X+%) admits a density with respect to the Lebesgue
measure \**! on (R¥*! **!). For each s € R! the conditional density '*=* as in (iv) is

a density of the multivariate normal distribution N, . v, . )-distribution with

Hx|S=s ‘= X + Exgzgl(s — ,ug) € Rk und ZX\S:S = EX — Exgzglzgx >0

which is thus a regular conditional distribution of X given .S = s. 0

§03.12 Property. Let X,Y € Z(</,P) and F C o be a sub-o-field. Any version of the conditional
expectation satisfies the following properties P-a.s.:

(i) Foralla,b € R holds E(aX + bY|.#) = aE (X |F) + bE(Y|.F); (linear)
(i) For X <Y holds [E(X‘?) < [E(Y|9); (monotone)
(i) [E(X|Z)| <E(|X]|]|.%); (triangular inequality)
(iv) For S € o with E(|S||.#) < oo holds P(|S| < o0) = 1. (finite)
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(v) For ¢ : R — R convex with $(X) € £, (< ,P) (Jensen’s inequality)
holds ¢ (E(X|.7)) < E((¢(X))|-Z).

(vi) For X,, 1 X P-as. holds sup,,y E (Xn|ﬁ) =E (X}ff) (monotone convergence)

(vii) For X,, — X P-as. with | X,,| <Y, n €N, (dominated convergence)

holds lim,,_, E (Xn‘ﬁ) =E (X‘ﬁ) P-a.s. and in £ (<, P).
If the version is regular, i.e., [E( ° ‘ﬁ ) (w) is an expectation for all w € , then the statements
(1)-(vii) holds for all w € (. O

§03.13 Property. Let X,Y € Z(«/,P)and 9 C F C o sub-o-fields. Any version of the condi-
tional expectation satisfies the following properties P-a.s.:

(i) ForE(|XY]) <ocandY € .Z holds
E(XY|.Z) =YE(X|ZF) andE(Y|F) =E(Y|o(Y)) =Y;

(i) E(E(X|.#)|¥9) = E(E(X|¥9)|.7) = E(X|9); (tower property)
(i) If o(X) and .F are independent, then E(X |.F) = E(X); (independence)
(iv) E(E(X|Z)) = E(X). (total probability)
(v) For 7 :={A e o |P(A) € {0,1}} holds E(X|T) = E(X). 0

§03.14 Property. Let % C o be a sub-o-field and [E( ° ‘9 ) be a conditional expectation.

(i) E( o |F) : L(o,P) - Z(F,P) is an orthogonal projection, that is, for all X €
Z( P)andY € Z,(F,P) holds

IX = Y@ = E(X = Y?) > E(X - E(X[Z)]?) = IX — E(X|Z) @),
where equality holds if and only if Y = E (X‘ﬁ) P-a.s..
(ii) E(o].7) : L(,P) = Z(F,P)isacontractionfor s € [1,00), i.e.,

E(X|Z)|z@) <

| X ||z ®), and thus bounded and continuous. If (X,)nen converges in L, (o ,P), then
([E(X,Jﬁ))ne,\, converges in Z.(F ,P). m
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Chapter 2

Asymptotic properties of M- and Z-estimators

Asymptotic properties of M - and Z -estimators are presented generalising
the minimum contrast approach introduced in the lecture Statistik 1. For
a more detailed exposition we refer to the text book van der Vaart [ 1998)].

§04 Introduction / motivation / illustration

§04.01 Example (Linear model). The dependence of the variation of a real random variable Y; (re-
sponse) on the variation of a random vector X; = (X3,) je[k] In R* (explanatory variable) is
often described by a linear relationship E (V1| X1) = Y, p,17;X1; = X{v or equivalently
Y1 = X!y + e; where ¢, is a real random error satisfying E (51 ‘Xl) = (0. We aim to infer on
the unknown parameter of interest ¥ € R* from n € N i.i.d. copies (Y;, X;), i € [n]. Writing
Y = (¥)ie[s) and X' = (X; --- X,,) we have E(Y|X) = Xv. Any (measurable) choice

7 €arg inf M,(y)  with M, (7) =1 Y~ (¥; = X[9)? = 1|y — X~ (04.1)
VERE i€[n]
is called a Least Squares Estimator (LSE), where arg inf denotes the subset of vectors in R* at-

taining the function’s smallest value. If X'X = 37, , X; X} is strictly positive definite (hence,
invertible) then 7 = (X'X) 7' XY = ( > icln] X XY}) - > ic[n) YiXi is the unique LSE. Under
“usual conditions (Example §02.14) holds + % ﬂXiXit N E(X;X!) =: Q (LLN). If in

addition E(£?|X;) = o2, then \/LE Zie[[nﬂ € X, LN N,20) (CLT). Applying Slutzky’s lemma

i€[n

§02.10 and the continuous mapping theorem §02.09 holds \/n(y — ) 4 Ng,o20-1) for Q@ > 0.
Further inference on 7 (hypothesis testing, confidence intervals, etc.) is typically based on this
asymptotic result. However, a linear relationship E (Y‘X ) = X is often too restrictive. O

§04.02 Example (Generalised linear model). Consider a real random variable Y; and a random vector
X, in R* obeying [E(Y1|X1) = ¢g(X!v) for a known link function g : R — R. We aim to
infer on the unknown parameter of interest ¥ € R* from n € N i.i.d. copies (V;, X;), i € [n].
As an illustration let us consider the effect of three different drugs on the behaviour of certain
animals. In a trial each drug is given in different dose to certain animals and the number of
effected animals is counted. The Table 1.1 summarises the results. Let Y}, denote the counts of
an effect among n,;, animals applying a log-dose X, j € [Ji] of the drug k € [K]. Assuming
an “independent and identical” behaviour of the n;, animals it seems reasonable to model Y, as
Binomial-distributed random variable, Yj, ~ Bin,,, ) for short, with unknown percentage
T € (0,1). It may be reasonable to assume that njmy, = E(Yie| Xje) = (v + 10X;%)
where (Vi )rexq 18 a drug specific factor and +y, is a common effect of the log-dose for all drugs.
The model is called “probit” and “logit”, respectively, if ¢ is the standard-normal distribution

Statistics 2 13


https://sip.math.uni-heidelberg.de/vl/st1-ss19/src/Skript-ST1-SS19.pdf

Chapter 2 Asymptotic properties of M- and Z-estimators§04 Introduction / motivation / illustration

function and the logit-distribution function (z

e.fC
1+e*

). As in Example §04.01 inference on

¥ = (V) kefo, k7 is often based on a LSE, i.e., any (measurable) choice 7 € arg inf, g1 M,(v)

with My () = % Yyerry 7 2ojerng (Yie — 900 + 7%Xn))*.

drug log-dose | effect noeffect | drug log-dose | effect no effect

1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Table 1.1: Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.
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Figure 1.1: Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: 0;3: -.

§04.03 Example (Nonlinear regression). Consider a real random variable Y7 and a random vector X in
R* obeying E (V1| X1) = g(Xi,~) for a given link function g : R¥ x R? — R. We aim to infer
on the unknown parameter v € R? from n € N i.i.d. copies (Y;, X;), i € [n]. The next figure
shows the widely used Gompertz function g(x, (a, b, ¢)) = aexp(—bexp(zlog(c))).

14
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As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane

3,541 205,8 90,9 37,1 5,686 2973 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 49,4 2,648 305,7 142 86

4,722 401,6 187,2 44,9 3,303 300,1 143,7 90,2
0,593 2249 92,7 116,3 3,054 305,4 141,1 874
0,268 402,6 102,2 128,9 3,302 305,2 141,5 87

2,797 2127 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33

3,196 133,3 140,8 87,6 2,002 417,2 83,9 329
2,021 470,9 1442 86,9 9,604 251 2944 41,5
0,896 300 68,3 81,7 7,754 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2

Table 1.3: Isomerisation reaction rate of an n-pentane into an isopentane.
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Figure 1.3: Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special
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case is given by

’71’73<Xi2 - X13/1632)

E (Y;|(X“’ Xi2’ ng)) - 1+ ’YQXH + 73Xi2 + '74Xz'3’

i € [n], (04.2)

where X;;, X;3 and X3 is the partial pressure of hydrogen, isopentane and n-pentane, re-
spectively, and (7;);c4 is the unknown parameter of interest. As in Example §04.01 infer-

ence on 7y is often based on a LSE, i.e., any (measurable) choice 7 € arg inf, cps 1\//\[n(7) with
M (7y) = %Zie[[n]](yi —9(Xi,7))% =

§04.04 Example (Quantile regression). Consider a real random variable Y; and a random vector X in
R* obeying Y; = X!v + &; with quantile condition P (81 < O}X 1) = « for a given probability
a € (0,1) or equivalently P (Y; < X{v|X;) = a meaning that the conditional-c-quantile of
Y; given X; equals X!v. Let g, denote the a-quantile of PZ € W(4%), i.e., P(Z < qo) = a.
Define 7,(z) := (1 — )z~ +az" where 7,(2) = (1—a)|z|if 2 < 0 and 7,(z) = a2 otherwise.
Under regularity conditions the function ¢ — E(7,(Z — ¢)) attains its minimum at the value
¢ = ¢.. Roughly, the a-quantile satisfies 0 = %[E(TQ(Z —q)) ]q:qa, since

gq[E(Ta(Z—q)):(l—a)ag/q (g—2)f( dz—i—oz—/ z—q)f

1—a/ f(z dz—a/ f(z

(1—-a)P q) —aP(Z >q) =P(Z < q) — «a.

Thereby, a reasonable estimator of 7 is any (measurable) choice 7 € arg inf, g 1\A/In(7) with
Mn(V) = %Zze[[n]] Ta(}/i - thf}/) U

$04.05 Example (Generalised Method of Moments). Given a random vector Z; in R and a function h’/ =
() jepsy - R* x R? — R let the unknown parameter of interest v € R* satisfy P#1h;(v) =
E(hj(v, Z1)) = 0forall j € [J], or P*h’(v) = E(h/(y, Z1)) = 0 for short. Supposing an
i.i.d. sample (Z;);cn) any (measurable) choice 7 satisfying @hj (7) = %Zie[[n]] h;(7,Z;) =0
for all j € [J]. or H,(3) = 0 with H,(7) :== Bh/(y) = L3, 07 (7. Z). v € R, for
short, is called moment estimator. In case a moment estimator does not exist, setting M,, () :=
(Bh? (7)) W, (Bh7 (7)) for a given weighting matrix W, one might consider any (measurable)

choice ¥ € arg inf, cpr My () called a Generalised Method of Moments (GMM) estimator. 0

§04.06 Reminder. Denote by W(.Z") the set of all probability measures on a measurable space (X, Z).
For a non-empty index set © a family 2 := (B)yco of probability measures on 2~ is formally
defined by the map © — W(Z") with § — B. Here and subsequently, for each § € © denotes
E, the expectation with respect to . For a random variable X taking its values in (X, Z") we
write shortly X ® R, if X ~ B for some § € O. If the random variables {X;,i € [n]} form
an independent and identically distributed (ii.d.) sample of X ~ P with values in (X, Z),
then P®" = ;)P denotes the joint product probability measure of the family (X )ze[[n]} tak-

ing its values in the measurable product space (X™, 2°®"). We write {X,,i € [n]} '~ “por
(Xi)iepn) ~ P for short. We denote by R“" := (BP®")gce a family of product probability
measures on 2 “". Any random variable S on (X, Z") taking values in a measurable space
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(S,7), ie., Z'--measurable function S : X — S, is called observation or statistic. We
denote by 2°:= (P*)gco the family of probability measures on (S,.#) induced by S. A map ~

: © — I" and its value (¢) for each 6 € O is called parameter and parameter value of interest,
respectively. A parameter of interest v : © — I is called identifiable, if for any 6,0, € ©
from v(6;) # v(6,) follows B, # B,. O

§04.07 Definition. The triple (X, 2", B) is called a statistical experiment or statistical model. The
non-empty set © and X’ is called parameter and sample space, respectively. A statistical model
(X, Z,B) is called adequate for a random variable X, if X ® R. Given a family R®" of
product probability measures (X", 2°®", B®") is called a statistical product experiment. We
denote by (S,.7, P°) the statistical model induced by a (S, .7)-valued statistic S on (X, 2").
A statistic 7 on (X, 2") with values in the measurable space (I',¥) is called estimator or
estimation function for the identifiable parameter of interest . A statistical model (X', 2", R)
(and the family B) is called dominated, if a o-finite measure p on 2" exists, u € M, (Z") for
short, such that for each 6 € © the probability measure B is absolutely continuous with respect
to u, i.e., B < p. We write shortly B < . Any version of the Radon-Nikodym densities

L0, z) = j—ﬂi(x) reX, 00O

considered as function of # parametrised by x is called likelihood or likelihood function where
typically it is understand as a random function L : © — Z " with 0 — L(0) := L(0,e). Its
logarithm ¢ := log L. (with convention log(0) := —o0) is called log-likelihood or log-likelihood
function. The likelihood and log-likelihood in the corresponding dominated product experiment
(X, 27em o) are [ [icq,y L(0, 2) and 32, g, (0, 24), 0 € ©, 2™ € X™, respectively. O
§04.08 Reminder. Let (X, 2, B) be dominated by u € M,(2"). If p is finite, then p <P :=

ﬁ,u € W(Z") and hence B is also dominated by P. If y is not finite, then there exists a
countable and measurable partition {X,,,,m € N} of X with 0 < p(X,,) < oo forall m € N.
For each m € N define P(e|X,,) € W(Z") with A — BR(A|X,,) = %. Then holds
p<LBi=3 27"R(e|Xn) € W(Z), since P(A) = 0 implies p1(A N A&,,) = 0 for all
m € N and thus p(A) = 0. Therewith, we have shown, that for each © € M, (2") there is
P € W(Z") with u < P which automatically dominates [ too. On the other hand, there is a
probability measure 2 = 3. ;R with ¢; € R*, 0; € © foralli € Nand ), ¢ = 1,
and thus P2 < p, such that B < P for all € O (e.g. Statlstlk 1, Satz §11.04). We call any such
probability measure B privileged dominating measure. Therefore, we eventually assume with

out loss of generality that the dominating measure is indeed a probability measure. O

§04.09 Example (MLE). Let (X, 2", B) be a statistical model dominated by y € M, (Z") with likeli-
hood L(#) = dR/dy and log-likelihood £(0) = log L(¢) for 6 € © and let (O, 7") be a measur-
able space. Any statistic § on (X, Z") with values in (0, .7) is called Maximum-Likelihood-
Estimator (MLE) for 6, if L(8) = SUPgee L(#) p1-a.s. meaning L(0(z),z) = SUpgee L(0, ) for
p-a.e. v € X, or equivalently é(é\) = SUpyep ¢(0) p-a.s.. Considering a statistical product ex-
perlment (A", 27", B®") dominated by u®" € M, (2 ®") and setting M [, (0) := —I]SK(G) i

M, (0, 2") = -1 Zzem 000, x;) for ™ € X™, the MLE @ is determined by 6 € arg infy o M (9)
[4-2.S.. However in general it is not guaranteed that MLE is unique or even exits. The MLE
depends on the version of the likelihood, but there exists often a canonical choice. Furthermore,
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~ ~

v(#) is called MLE for a parameter of interest v : © — T, if (6) is a statistic on (X", 2°®")
with values in (I', ¥). O

§04.10 Remark. In all the examples the estimator 7 of the parameter of interest ~y is determined by
7 € arg inf, . M,,(7) for some random function v +— M, () € Z of the data. Obviously,
rather than minimising (or maximising) a criterion function we might search for a zero of the
associated normal or estimating equations, that is, 7 is determined as a zero of a random vector
function vy — I:In(v) € Z". Note that estimator is defined R-a.s. only, meaning that one can
change the estimator on a B-zero set N, i.e., B(N) = 0 forall 6 € ©. O

§04.11 Definition. Let (X, 2,,R" = (B")sco) for all n € N be a statistical model over the same
parameter space © and let v : © — 1" be a parameter of interest. We call a function M : © xI" —
RandH: 0O x T — R" criterion function, if for all § € © the function M(0) : v — M(0,~),
respectively H(6) : v — H(0,~), has in () an unique minimum, respectively an unique zero.
A sequence (Mn)neN and (ﬁn)neN of functions l\A/In :I'x X, - R and ﬁn I'x X, — R"
is called random criterion function or criterion process, if the following two conditions are
satisfied:

(CP1) Forall y € Tis M, (y) : @ — M,(v, %), respectively H, (v) : s H, (v, z), a statistic,
that is, 1\A/In('y) € 4., respectively ﬁn('y) € Tnk

(CP2) Forally € I"and § € © it holds M,,(v) ¥, M(6, ~), respectively H, (7) ¥, H(0, ).

Every (measurable) choice 7, : X,, — I' (if it exists) is called a M -estimator, respectively a
Z-estimator, if it satisfies

M, (Fn) = #léllfﬁ M,(y) BR™as., respectively H,(3,)=0 B as.,

or more generally, if it is, respectively, a near minimum and near zero, that is, 1(\/[,1(%) <
inf,er My, (7) + opn (1) and H,(7,) = opn (1). O

§04.12 Remark. There exists a measurable version of a minimum of an almost surely continuous
function on a compact set (see WiAtting and Miiller-Funk [1995], Satz 6.7). Note that in Defini-

tion §04.11 the criterion process M,, (respectively H,,) is defined for each n € N on a different

measurable space. We write, however, shortly A\AI,,,(A,) E—> M(0. ), if for each ¢ € R} holds

n—oo

[E;”(|1\A/[n(7) — M(6,v)| > ) —— 0. Let us briefly consider a sample (X;);c[,] © R®" of a
random variable X © R. Keeping Notation §01.05 in mind P f and P f denotes the integral of
f € L(Z,P) with respect to P and the empirical measure B (z) = 1 D icln) 0z T € AT, e
spectively. Revisiting each of the Examples §04.01 to §04.04 there is a functionm : ' x X — R
with m(y) € Z(2), v € T, such that the criterion process M, and the associated criterion
function M is for each v € T given by M, (7) = Pm(q), ie. M, (7, ") = %Ziem m(7y, z;),
" € X", and M(0,7) = Bm(y) = [, m(y,z)B(dx), respectively. Analogously, a moment
estimator as in Example §04.05 is a Z-estimator. By construction in each example is the condi-
tion (CP1) and with the help of the LLN (see Remark §02.06) also the condition (CP2) satisfied.
Note that the GMM estimator in Example §04.05 is also a M -estimator with criterion process
satisfying (CP1) and (CP2). O

18 Statistics 2



§05 Consistency Chapter 2 Asymptotic properties of M- and Z-estimators

§04.13 Definition. For two probability measure P and Q on a measurable space (X', 2") is the function

Py _ dP .
KL(P|Q) = { P(log §5) = [log (§5)dP, ifP <<Q’
00, otherwise
called Kullback-Leibler-divergence of P with respect to Q. .

§04.14 Reminder. The Kullback-Leibler-divergence satisfies KL(P|Q) > 0 as well as KL(P|Q) =0
if and only if P = Q, but KL(e|e) is not symmetric. Moreover, for product measures holds
KL(P ® B|Q; ® Q2) = KL(R|Q;) + KL(B|Q,) (e.g. Statistik 1, Lemma §20.03). O

§04.15 Example (MLE, §04.09 continued.). Let (X", Z"®" R®") be a statistical product experiment
dominated by a privileged measure 2 € W(.Z") (see Reminder §04.08) with likelihood L(#) =
dB/dR, log-likelihood ¢ = log(L) and parameter of interest 0 (i.e., 7 = idg). Furthermore, for
all 0,0, € © let B and B, be mutually dominated (i.e. B <R, and B, < B, for short B} <> ),
which implies B, <> P, and hence —KL(R,|B) = KL(R|R,). Then M, (§) := —R((0) € Z®"
with

2 s N (0, 27) — —% D

i€[n]

is a criterion process associated to the criterion function M(6,,0) := KL(B |R) — KL(B,|R)
assuming here and subsequently that the parameter 0 is identifiable, that is, from B, = B,

follows ¢, = 6,. Identifiability is a natural condition since it is a necessary condition for the
existence of a consistent estimator. However, if ¢ is identifiable then 6 — M(6,, #) attains its
minimum M(6,,0,) = —KL(B,|R) uniquely at 6, (keeping Reminder §04.14 in mind). The
corresponding M -estimator is thus just a MLE. O

§05 Consistency

Here and subsequently, let (I, d) be a metric space endowed with its Borel-o-algebra & := %r.,
let (X,,, 2, R" = (RB")sco) for all n € N be a statistical model over the parameter space © and
let v : © — I' be an identifiable parameter of interest.

§05.01 Reminder. For each n € N let 7,, be an estimator of ~, i.e. a statistic on (X,,, Z,,) with values

in (I',¢). The sequence (%)ZGN of estimators is called (weakly) consistent, if for all € € R,

holds B™(d(%,,7(#)) > ¢) —— 0 for all # € ©. Note that the estimator 7,, can be defined

mn
for each n € N on a different measurable space. We write, however, shortly d(7,,,7(¢)) ~ 0.
Moreover, saying ,,7,, is consistent always means the sequence (7, )nen is (weakly) consistent.

O

Consider an M-estimator 7,, for a random criterion function M,, with associated criterion

function M, that is, M, (7) 7, M(6, ) holds point-wise for each v € I'. For example, due to
. ~ ®n

the LLN M,,(y) = Pm(y) LA Bm(vy) = M(0,v) provided m(vy) € Z (2", B). The hope is

that a minimising value of ﬁ\/[n(fy) then converges to the minimising value of M (6, v). However,
in general point-wise convergence will not be sufficient.
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§05.02 Theorem. Under the assumptions and notations of Definition $04.11 any M -estimator Y Of 7,
ie, Mp(Vn) < My (7(0)) + opn (1), is consistent, i.e., d(7,,7(0)) = op (1), if in addition the
following two conditions are satisfied:

(CO1) sup|1\7[n(’y) — M(0,7)| = opn (1) (uniform convergence in probability);
~vel

(CO2) inf M(0,~) > M(0,~(0)) for any € € R}, (identification).
vel:d(y,v(0))>e

§05.03 Proof of Theorem §05.02. is given in the lecture. O
§05.04 Corollary. Under the assumptions and notations of Definition $04.11 any Z-estimator 7,, of 7,

ie, Hy(3,) = opn (1), is consistent, i.e., d(7,,7(0)) = og~(1), if in addition the following two
conditions are satisfied:

(COl) sup\]ﬁn(fy) — H(0,7)[| = opn(1) (uniform convergence in probability);
yerl’

(CO2) inf |1H(O,~)|| > 0= |H(0,~(0))|| for any ¢ € R}, (identification).
yel:d(v,7(9))>e

§05.05 Proof of Corollary §05.04. Setting M,(7) = ||H,(v)|| and M(6,~) = |[H(8,~)]|| the claim
follows directly from Theorem §05.02. O

§05.06 Lemma. If (i) T is compact, (ii) M(6,~) > M(0,~(0)) for all v € T\{v(0)}, and (iii) v —
M(0,~) is continuous, then (CO2) in Theorem §05.02 holds.

§05.07 Proof of Lemma §05.06. is left as an exercise. |

§05.08 Example (MLE, §04.15 continued). Assuming in addition that the parameter space © is compact
and that the criterion function 6 — M(6,,6) := KL(R |R) — KL(B,|R) is continuous then
employing Lemma §05.06 the condition (CO2) of Theorem §05.02 is satisfied. O

§05.09 Lemma. (CO1)in Theorem $05.02 is satisfied, if the following conditions hold:

(i) (T',d) is a compact metric space,

(i) v — M(8,7) is continuous and M, (~) = M(6,~) + opn (1) forall v € T, and

(ii1) limlim sup I]g’"( sup |1\A/In(”yl) — Mn(")/g” > 5) =0forall e € R,
o0 n—oo 71,72€T:d(71,72) <0
§05.10 Proof of Lemma §05.09. is given in the lecture. O

§05.11 Example. Given (X", 2" B®") and v : © — I for each 7 € T" let m(y) € 2 be a real
function x — m(, ) belonging to .Z, (2", B). Consider M,,(7y) := Bm(7y), i.e. M, (v, 2") =

& > iepny m(Y; i), 2 € X", and M(6, y) := Bm(y) where due to the LLN §02.06 M, () =
M(0,v) + Open (1) for each v € I'. Suppose in addition the following conditions:

(i) (T',d) is a compact metric space,
(i) v+ m(y, ) is continuous for B-a.e. z € X,

(i) thereis H € £ (2", B) withsup, p |m(y,z)| < |H ()| for B-a.e. z € &, or equivalently,
sup,cp [m(7)| belongs to Z(2", B).
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Then, (I) v — Bm(v) = M(6,~) is continuous and (CO1) supwer|l\7l (7) = M(8,7)| = ogen(1).
Indeed, by dominated convergence (see §02.20) (ii) and (111) imply together (I). Consider (CO1).
Define the random variable A§ := Sup., ., cr.a(y1.42)<s |l\/l (71) — M, (72)| € 27", We show
below for all e, € R, exists § € Rf, with lim sup,_,. B®"(A} > ¢) < n which in
turn by Lemma §05.09 implies the claim (CO1). Let e,n € R. Keeping Aj € 2 with
r = A§(T) = SUDP,, 1 erid(ym)<s [M(71, ) — m(y2,2)| in mind and applying the elemen-
tary triangular inequality we have A} < @A% point-wise on X™. Moreover, due to (i) and
(i) for B-a.e. © € X the function 7 — m(y,z) is uniformly continuous on I', and thus
limgs_,g A;(a:) = (. Therewith, dominated convergence (see §02.20), which can be applied
due to (iii), implies limg_,q [I?,’A}; = 0. In particular there is § € R such that [%’A% < 7e,
which in turn implies P®"A? < P"(PAl) = RA! < ne. Employing Markov’s inequal-
ity §02.18 the last estimate implies the claim, that is, for all e, € [R* exists & € [R; with
lim sup,,_, ., B®" (Ag > 5) < n. If in addition to (i)-(iii) and, hence (I)

(iv) thereis y(f) € I with M(6,~) > M(6,~v(0)) for all v € T'\{~(0)},

then applying Lemma §05.06 it holds (CO2) . d(inf(a)) M(0,~) > M(0,~(0)). To summarise,
e 7Y

with (CO1) and (CO2) the condrtrons of Theorem §05.02 are satrsﬁed Consequently, any M-
estimator 3, i.., My, (3n) < mfvepl\/l (7)+0@,®n( ), and thus M, (3,) < M, (y (9))—1—0@@%(1)

is a consistent estimator of v, i.e., d(Yn, v(0)) = Open (1). O

§05.12 Lemma. (CO1)in Corollary §05.04 is satisfied, if the following conditions hold:

(i) (T, d) is a compact metric space,

(i) v — H(6,7) is continuous and |H,(v) — H(6,~)|| = opn (1) forall v € T, and

(i) lim lim sup B"( sup IH, (1) — Ho ()| = e) =0foralle € R,
N0 oo Y1,72€T:d(y1,72) <8
§05.13 Proof of Lemma §05.12. is left as an exercise. O

§05.14 Example. Given (X", 2" R*"), v : © — I' and (X;)icpyy ~ R®" for § € O, for each
V€ I' let h( ) € Z" be a numerical function belonging to .Z}(R) for all v € T". Consider
H,(7) := Bh(y), i.e. Hu(7,2") = %Ziem h(v,z;), 2™ € &A™, and H(0,~) := Bh(y) where

due to the LLN §02.06 ||[H,(7) — H(8,7)| = og,@n(l) for each v € I'. Suppose in addition the
following conditions:

(i) (I',d) is a compact metric space,
(i1) v+ h(~,x) is continuous for B-a.e. z € X,
(ii1) sup.cr|[h(7)|| belongs to .Z; ().

Then, arguing line by line as in Example §05.11 (I) v +— Bh(v) = H(,~) is continuous and
(COD) sup,ep|[Hn(v) — H(6,7)|| = ogen(1). If in addition to (i)-(iii) and hence (I)

(iv) thereis y(6) € I' with ||[H(0,v)|| > 0 = |[H(0,~(8))]| for all v € T'\{v(9)},
then applying Lemma §05.06 it holds (CO2) inf HH( M| > 0 = [[H(0,~v(0))]||-
vyel

d(y,7(0))>
To summarise, with (CO1) and (CO2) Athe condrtrons of Corollary §05.04 are satisfied. Con-
sequently, any Z-estimator 7, i.e., H,(7,) = olg,ean(l) is a consistent estimator of v, i.e.,
d(Fn,v(0)) = O[g;®n(1). m
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§05.15 Remark. The conditions (CO1) and (CO2) of Corollary §05.04 (respectively, (CO1) and (CO2)
of Theorem §05.02) being sufficient to ensure consistency might be weakened in specific situa-
tions as we see next. O

505.16 Proposition. LetT' C R and H,(~) = H(9, v)+opn (1) for all v € T where H is a deterministic
function. Assume in addition that either
(Ia) v+ ﬁn(v) is continuous and has exactly one zero 7, or
(Ib) 7 +— Hy(7) is non-decreasing with H,(7,) = opn (1),
and that (1) H(0,v(0) — ) < 0 < H(0,v(0) + ¢) for every e € R{. Then, 5, = ~(0) + o~ (1).

§05.17 Proof of Proposition §05.16. is given in the lecture. O

§05.18 Example. Consider P € W(Z) and h(v,t) = sign(t — ) with sign(t) := Lz — Lyc
for all v,¢ € R. The sample median 7, is a (near) zero of the map v — H, (y) = Ph h(7),
ie. Hy(y,z") = %Zie[[n]] h(~,z;), ™ € R™ Considering H(y) = Ph(y) = P((v,)) —
P((—00,7)) we have obviously H,(7) = H(v) + open (1) for each 4 € T. Keeping in mind

that v — ﬁn () is non-increasing from Proposition §05.16 follows consistency of the sample
median 7, i.e., 7, = 7Y, + open (1), if for any ¢ € R}, in addition H(vy, —¢) > 0 > H(v, + ¢)
or equivalently P((—oo, < 7, —¢€)) < 1/2 < P((—00,7, + €)). In other words, the sample
median 7, is a consistent estimator of the population median, if it is unique. O

§06 Asymptotic normality

Here and subsequently, for k,n € Nlet ' C R* be endowed with its Borel-o-algebra & := %,
let (X™, 27" R®") be a statistical product experiment over the parameter space © and let
v : © — I be an identifiable parameter of interest.

$06.01 Heuristics. Consider H,(7) = Bh(y), ie. H,(y,2") = %ZieM h(v,z;), 2" € X", and

H(0,~) = Bh(~) fory € 'and 0 € ©. Let 7, be a zero of v +— Ifln(v), i.e., 7, is a Z-estimator.
Assume in addition that5,, = y(6) +0pen (1) where v(0) is a zero of y — H(0, ). Heuristically,

consider a Taylor expansion of a real-valued H around v(0) € ' C R, thatis, 0 = ﬁn(%) =
H, (4(0))+ (3, =7(0) Hy (4(8))+ 5 (7, —7(6))*H,,(3,) for some 7, between v(¢) and 7,,. Thus,
rewriting the last identity \/72(3,, —v(8)) = —v/nH,(7(6)) (ﬁn(v(e)) —l—%(%—v(@))ﬁn(%))_l
If h(v(#)) belongs to .Z,(®), then due to the CLT it holds —+/n(H,(v(0)) — H(8,v(6))) =
—\/_(I]J’h( (0)) — Bh(~(6))) N Niog2(y(0)))- If moreover h(v(@)) € Z(B), then by the LLN
H,(v(0)) = Bh(y(9)) = I]:,Ph(fy(e))—i-og,@n(l). If in addition H,, (3,) = Open (1) then employing
Slutzky’s lemma §02.10 it follows /n(3,, — v(9)) 4 N o.@i(y0))-2n2(1(0)))- 1N the sequel, 7 is
a vector and h vector-valued. Consequently, h(y(6)) is a matrix and we denote by |[h(~(0))| »

its Frobenius norm, where | M||p := (3 ey Zregxy Mik) "2 for any matrix M = (Mjx,) €
R(EK) O

§06.02 Theorem. Under the assumptlons and notations of Definition §04.11 with I" C R let 7, be a
consistent Z-estimator of , i.e. 7, = (0) + 0@,®n( ), with H n(Pn) = 0@,®n( ~1/2). Assume the
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criterion process ﬁn is continuous differentiable in a neighbourhood U of y(6) € int(T") with

LT 73 —-(k.k . . ..
derivative H,, := %Hn e & (k1) and satisfies the following two conditions:

(AN1) /nH,(v(0)) % Nioo,) under B for some positive semidefinite g € R*),

(AN2) sup,cys IH, (v) —H(8,7)||r = Open (1) for some continuous matrix-valued function -y
H(6,~) with regular H(6, y(0)) having H," as inverse.

~ N ~ d
Then v/n(Y, — v(9)) + vnHy ' Hy((0)) = ogen (1) and /(Y — () = N, 20,01,y
§06.03 Proof of Theorem §06.02. is given in the lecture. O

§06.04 Corollary. Under the assumptions and notations of Definition §04.11 with I’ QA[R’“ let 5, be a
consistent M -estimator of v, i.e. 7, = v(0) + o[g@n(l), with M, (7,,) = inf,er M, (7). Assume

the criterion process ﬂ\/In is twice continuously differentiable in a neighbourhood U of v(0) €

. . LA ~ —k : = ~ ——(k,k
int(T") with derivatives M,, := %Mn € 2 (score function) and M,, :== %Mn € 5{( )

satisfies in addition the following two conditions:

and

(AN1) /M, (7(6)) 4 N(o.0,) under B®™ for some positive semidefinite Qg > 0,

(AN2) SupveUHl\A/[n(v) — M(8,79)||r = ogen (1) for some continuous matrix-valued function

v = M(0, ) with regular M(0,~(6)) having M," as inverse.
~ d
Then \/ﬁ(%@ - 7(9)> — N(o,M;ngM;l)-
§06.05 Proof of Corollary §06.04. is given in the lecture. O

§06.06 Example (§05.71 continued). Given (X", Z°®" B®") and v : © — T for each v € T let
m(7y) € Z(R) be areal function. Consider M,,(v) = Bm(y) and M(6,~v) = Bm() where due

~

to the LLN M,,(v) = M(6,~) + open (1) for each y € I'. Suppose in addition that
(i) I' is compact,

(i1) v+ m(y,x) is twice continuously differentiable in a neighbourhood U of (6) € int(I")

. . . . . 2
for R-a.e. z € X with derivatives m := (%m and m := 882—7111

(i) 1m(y(0)) € Z(B) with Bii(y(0)) = 0 and Q := Brin(y(0))1ia(v(6))" > 0,
(iv) sup, ey [(7)[|r € Z(B) and My := Rrin(7(6)) is regular with inverse M,".

hold true. If the M-estimator satisfies %, = 7(0) +0gen (1) then VvV, —(0)) 4 N o151 0p8: 1)
due to Corollary §06.04 since the conditions (AN1)-(AN2) are satisfied. Indeed, following Ex-
ample §05.11, (iv) implies the condition (AN2) and due to the CLT the condition (AN1) follows
from (iii). However, estimators of M, and )y are necessary in order to use the asymptotic dis-
tribution to conduct inference. A typical approach to obtain these estimators is as follows. First
replacing B by B, the quantity M,, (v) == @m(v) and ﬁn(y) = I]?’,Qm(y)m(y)t is just an empirical
counterpart of M., () = Rin(v) and Qp(7) = Bria(y)1i(7)?, respectively. Secondly, replace

by its estimator 7,, we obtain M,, := M, (7, ) and Q, = ﬁn(%) as estimator of My = My(~(6))
and Qg = Qp(v(0)), respectively. If in addition to (i)-(iv) the following condition holds

() sup, eyl (7)]] belongs to .2 ().
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Then SupfyeU||Mn(7)_M0<7)“F = o@,@m(l) and sup,, ;7 [|Q2,(7) = (7)[| Fr = o@,@m(l) following

line by line the arguments in Example §05.11. From these uniform convergences and 7,, =

~v(0) + o@,@m(l) follows M, = M, + Olg,®n(1) and Q, = Qp + o@)@n(l) which in turn implies
PN

V, = M, Q.M, = M;'QyM,* + o[g@n(l). Consequently, by applying Slutzky’s lemma
§02.10 we have \/ﬁ\A/n_lﬂ(% —7(0)) N No,1d)- O

§06.07 Example (MLE, §04.15 continued). Let (X™, 2 ®" RB®") with B <> P for all § € O, likelihood
L(#) = dR/dR, log-likelihood ¢ = log L. and parameter of interest 6 (i.e., v = idg) as in
Example §04.15. Consider the MLE 6,, which maximises the (joint) log-likelihood 6 — R/(6).
Let the following conditions be satisfied:

(i) (©,d) is a compact metric space,
(i1) the parameter 6 is identifiable, i.e., ¢, # 0, implies B, # B,
(iii) the map 6 — £(6,x) is continuous for B-a.e. z € X,

(iv) suppee |€(6)] belongs to .Z,(R).
Then combining the arguments in the Examples §05.08 and §05.11 the conditions (COI)Aand

(CO2) of Theorem §05.02 are satisfied, which in turn implies consistency of the MLE 6, =
0+ Open (1). In addition let the following conditions be fulfilled

(v) for B-a.e. v € X the map 0 > £(6, v) is twice continuously differentiable in a neighbour-

hood U of § € © with derivatives / := 8 é and / := 592206

(i) supgey [|€(0)]| € Z(R) and supgey (0| r € (),

(vii) the Fisher-information matrix Zy := R((6)£(6)" is strictly positive definite.

Then the conditions (AN1) and (AN2) of Corollary §06.04, and the identity Zy = —I]:,PZ'(G) are
satisfied (for details see Satz §20.20 in the lecture notes Statistik 1). Therewith, the MLE
satisfies v/n(6, — 0) = VI BI0) + o pon (1) and, consequently, vn(@, —6,) 4 Nozy. O

$06.08 Remark. The conditions (v) and (vi) in Example §06.07 can be weakened replacing differen-
tiability by Hellinger-differentiability. Keeping the Hellinger-distance H(R,B,) = ||LY/3(6) —
LY2(0,)|| 2 in mind, where L'/2() € %(P) using [|LY/?(0 )H?% ® = BLO) =1 < oo,
the famlly R is called Hellinger-differentiable with derivative (g, in 0, € int(©) C R*, if

€ Z(R) and hence /5, L'/%(0,) € Z(P) such that

LY2(0, 2) — LV2(0,, 2) — 1 (4 0 — 020, 2) 7
. (6, 2) (6o, ) — 5(lo, (%) )L (6o, ) P(dx)
0—0o J ||0_60||
ILY72(0, + h) = LV2(6,) — 5 ({g,, m)L2(0,) 1%, )
= lim -0
B0 1112

The map x — {y, (z) is also called score function. Keeping ly, € Z(B,) in mind the Fisher-
information matrix Z, = B (g, (; is well-defined. Note that, the score function and the Fisher-
information matrix are independent of the dominating measure . 0

Testing procedures

24 Statistics 2


https://sip.math.uni-heidelberg.de/vl/st1-ss19/src/Skript-ST1-SS19.pdf

§06 Asymptotic normality Chapter 2 Asymptotic properties of M- and Z-estimators

§06.09 Heuristics. Let (X, Z,,R") for all n € N be a statistical model over the parameter space ©
and let v : © — I be an identifiable parameter of interest. Given a map A : I' — RP we
eventually test the hypothesis Hy : A(y) = 0 against the alternative H; : A(y) # 0. Typical
examples include A(y) = v — 7, for a given value ~,, or more generally, linear hypothesis
A(vy) = M~ — a, for a given value a, and matrix M. It covers in particular testing the j-th co-
ordinate of v = (v/) e, i.6., A(7) = 7/ — 7. Under regularity conditions it seems reasonable
to assume an estimator 7,, of y having under R the property \/n(A(%,) — A(v(0))) 4 No,s)
with invertible asymptotic covariance matrix >y. If we have in addition an estimator ., =
Y9 + opn (1) at hand. Then under the hypothesis Ho, i.., for B" with A(v(0)) = 0, a Wald test
exploits the property W, := nA(3,)' St AF,) > X, where x? is a Chi-square-distribution
with p degrees of freedom. Precisely, a Wald rest rejects the hypothesis Hy : A(y) = 0 if /Wn
exceeds the 1-a-Quantile X127,1—a of a Xf,—distribution. Obviously, the Wald test does exactly
meets the asymptotic level a, i.e., lim,_,oo P"(W, > Xoia) = P(W > x2,_,) = a where
W ~ Xf,. However, the behaviour of the test statistic 1¥/,, under the alternative H; is still an
open questions, which we intent to study in the next sections. O

§06.10 Example (§06.06 continued). Let (X™, Z°®" B®"), v : © — T be an identifiable parame-
ter of interest and let m(y) € Z(R) for all v € I'. For each v € T let M,,(y) = Bm(y)
and M(6,~) = Bm(~y). Under the conditions (i)-(v) in Example §06.06 an M-estimator 7,, €

arg inf_p l\A/In(v) satisfies v/n(3,—v(6)) 4 No1; 10,x1; 1) under B®". Moreover, we have even-

tually access to estimators M,, = My + O%D@n(l) and Q,, = Qy + 0@,@”( ). Let A: ' — R” be
continuously differentiable in a neighbourhood of v(0) then applying the delta method §02.16

we obtain /n(A(F,) — A(v(0))) = N, under R®" with %y 1= A, M, QsM, 1Af/(0
-1 -1,

From A5, = A n(l) follows 3, = = As M Q, M, AL =Yg+ Olg>®"( ) and, thus

\/_2_1/2( Ay ) ( ( ))) 4 N(om which under H, i.e., for [P’( with A(v(0)) = 0, implies

W, = nAF,)'S 1 AG,) = =
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Chapter 3

Asymptotic properties of tests

Asymptotic properties of tests under local alternatives are presented com-
plementing the Neyman-Pearson theory introduced in the lecture Statistik
1. For a more detailed exposition we refer to the text books Witting and
Miiller-Funk [1995] and van der Vaart [1998].

§07 Contiguity

§07.01 Preliminaries: likelihood ratios and differentiable models

§07.01 Motivation. Considering a statistical model (X,,, Z,,, R"), a parameter of interesty : © — I, a
partition {#°, 7'} of the parameter values of interests I' = #° |§ ! (ie. T = #° U 7,
) = #°N A and H#Y # () # 1) we are interested in a (randomised) test o, € 2"
(.e. @, : X, — [0,1]) of the hypothesis Hy : . against the alternative H; : #'. Under
regularity conditions we may have at hand an estimator 7,, of v with known asymptotic distribu-
tion. Typically the estimator 7,, allows us to construct a test statistic 7}, with known asymptotic
distribution under Hy, i.e. under P with v(6) € #°. Exploiting the asymptotic distribution an
associated test o, = 14, .., does eventually not exceed asymptotically a given level « € (0, 1)
under the hypothesis Hy. However, we like to investigate also its power under the alternative
H,, i.e. under a specific B" with v(0) € J#1.

§07.02 Reminder. Let v and i be measures on (X', 2).

O

(a) For any positive numerical function f € 2" the map B — fu(B) = p(1,f) = [, Fdu

defines a measure f/ on (X, 2"). Any f € " satisfying v = Ty is called density of v
with respect to p, or ji-density for short.

(b) We say v is dominated by p, symbolically v < /i, if for each B € 2" with u(B) = 0
follows v(B) = 0. The measures x and v are called equivalent or mutually dominated,
symbolically ;1 <> v, if both v <« i and p < v.

(c) We say v and p are orthogonal or singular, symbolically » | i, if there exists X

X, WX, with X,, X, € 2" and p(X,) =0 = v(X,).
We note that g € %, () if and only if gf € .Z,(x). In this case holds fu(g) = [gd(fu) =
J(gT) dp = p(gf) (Klenke [2012], Satz 4.15, p. 93). Let additionally v € M, (2") be a o-finite

measure on (X, Z). If f,u = v = f,u for f,,f, € ?i then f, = f, p-a.e.. In other words
a density is unique up to p-a.e. equivalence (Klenke [2012], Satz 7.29, p. 159). If in addition
p € My(Z), then by Lebesgue’s decomposition theorem there exists v%, vt € M, (Z)
such that v = 1% + v+ with v+ L i and 1% = fu where f € 2 and f < oo p-ae..
(Klenke [2012], Satz 7.33, p. 160) Furthermore, there is a Radon-Nikodym-density f € ?+
with v = fu and T < oo p-a.e. if and only if v < p (Klenke [2012], Korollar 7.34, p. 161). If
fe 2 isa Radon-Nikodym-density of v with respect to p, i.e. v = fu, then the positive real
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function f1 e+ € 27 is it too. Consequently, without loss of generality we consider here and
subsequently a positive real version of the Radon-Nikodym-density. O

§07.03 Definition. Let B, P € W(Z") be probability measures on (X, 2"). Any positive numerical
random variable L € 2 satisfying

B(L<oo)=1land B(B) =LR(B)+R(BN{L =00}) forall Be Z (07.1)
is called a likelihood ratio (LR) of B with respect to B, symbolically dP?/dR := L. ]

Here and subsequently, let B, € W(Z") and L. := dR/dR be a likelihood ratio of B with
respect to B. We first note that B(L) = B(L < oo) € [0, 1] and B(L = oo) = 0 by definition,
and also P(L = 0) = LR(L = 0) + R({L = 0} N {L = o0}) = 0.

§07.04 Property.
() RLRPsIBe 2 :R(B) =0 (hence LR(B) = 0) and B(B) = 1 (hence R(B N {L =
o} =1) & B(L = o00) = 1 & B(L) = 0;

§07.05 Remark. Note that both B and B are dominated by B := 3(R+ B) € W(Z'). Letf, € 2°*
denote a P-density of B, i € {0, 1} (c.f. Reminder §07.02), then
f,
L, = f]]-{ffoeRt,} + Oojﬂ-{fo:()}ﬁ{iﬂekt,} (07.2)
is a likelihood ratio of B with respect to B, i.e., L, = dB/dR. Indeed, L, € er satisfies
RB(L, =00) <RB(f,=0)=0and forall B € 2

L.R(B) + B(B N {L. = 00}) = R (¢ Lprgeenyy) + R(BN{f, =0} N {f, € R}})
=fR(BN{f, € R }) + R(BN{f, = 0}) = B(B).

\0

Consequently, L, is always a version of the likelihood ratio dP/dR. In general the likeli-
hood ratio dB/dR (and similar dR/dP) is uniquely determined by (07.1) up to (R + B)-a.e.
equivalence (Witting [1985] Satz 1.110 a), p. 112). Moreover, the positive numerical random
variable L1 = %]l{ﬂem} + 001 5,—gnfr,ersy 18 @ version of the likelihood ratio dR/dR switch-
ing the roles of B and B. Consequently, (iii) can equivalently be written as B < B < B(dR/
dpP = 0) = P(L;! = 0) = B(L, = co) = 0. However, given any version L. = dR/dR of
the likelihood ratio the measure P can be written as a sum P = P?% + P+ of two measures
P, P+ € M,(2) where P* := LR and P+ := 1,_,P with PX(B) = R(B N {L = oo}),
B € Z is, respectively, the absolute continuous and singular part of P with respect to
(Lebesgue decomposition). O

§07.06 Property. The two measures P* := LR and P+ := 1,_,R in M, (Z") satisfy
(i) P=R*+ P P* <R and P+ L B

(ii) B(f) > B(f) = LR(f) = B(LS) = B(fLyeny) forall f € Z;
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(i) B <R ifand only if R(L) = 1 if and only if R(dR/dR = 0) = B(L = oo) = 0 if and only
ifforall f € Z " holds B(f) = B(L). o

$07.07 Reminder. Consider a R*-valued statistic S defined on (X, Z),ie. Se X k If P < B, then

the probability measure P® = P o S~! € W(%*) induced by S under B can be calculated from
the probability measure RYY = po (S,L)~! induced by the random vector (S, L) under R

through the formula

R(S € B) = P¥(1;) = R(15(S)L) = B (1,(IT)TT,

L

) forall B € #*

using the coordinate maps II (S, L) = L and I (S, L) = S. The formula, however, is only valid
under the assumption B < B, since a part of I orthogonal to R can’t be recovered. O

Here and subsequently, let B = (B)gco with © C R be a family of probability measures on
a measurable space (X', 2"), and for each 0,6 € O let Ly, (6) := dR/dR, denote a likelihood
ratio of B with respect to B . Keep in mind, that Ly, (0,) = 1(= 1,).

§07.08 Definition. Let s > 1 and ¢, € int(©). The statistical model (X', 2°, B) (and the family B) is
called .Z,(0,)-differentiable with derivative ly,, if {y, € £ (B,) and for all § — 6, hold

I5(Lg!"(8) = 1) = {€o, (0 = 0,)) |l 25,y = 0116 — 6] (07.3)
and B(Lo, (6) = 00) = o([|6/ — bo|")- 7

§07.09 Remark. In case s = 1 the defining condition B(Lg,(f) = o0) = o(||# — 6,]|) follows
from (07.3) (Witting [1985], Hilfssatz 1.178, p164). We note that %, (0, )-differentiability implies
Z1(B,)-continuity of & + Ly, (0) in 0,, i.e., [|Lg,(0) — Lo, (6,)]|.2@,) = o(1) as & — 0,. Since
Ly, (0) is unique up to B + B -a.e.-equivalence .Z, (0, )-differentiability does not depend on the
version Ly, (0) of the likelihood ratio dRB/dR, . m

§07.10 Lemma. If B is .Z,(0,)-differentiable with derivative éeo, then it holds B, ({y,) = 0. For any
s = r > LifR is £,(0,)-differentiable with derivative {y,, then R is also Z,(0,)-differentiable
with derivative ly,.

§07.11 Proof of Lemma §07.10. see Witting [1985] (Hilfssatz 1.178, pl64 and Satz 1.190, p.164). 0

In order to avoid additional integrability conditions in Definition §07.08 the function 6 —
s(Lll/ °(f) — 1) is considered. The next assertion formulates differentiability under additional
integrability conditions.

§07.12 Lemma. Let s > 1 and 0, € int(©). The family B is .Z,(0,)-differentiable with derivative fgo,
iflg, € Z(R), Lo, (0) € Z.ABR.) forall 6 € U(6,) and for all 0 — 0, hold

(Lo, (8) = 1) = (€g,,0 — 00) | z(@,) = 0|0 = 6,]])
and B(Ly, (0) = 00) = o([|0 — 6,[°).

§07.13 Proof of Lemma §07.12. see Witting [1985] (Satz 1.199, p.183). O
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Let us assume in addition, that the family B is dominated by pn € M, (Z"). For each § € ©
denote by L,,(6) := dR/dp € £ " a Radon-Nikodym density of R with respect to 1. Keeping
Remark §07.05 in mind L, g, (0) = %H{L#(QO)EM} + 00l i, (0,)-0ynir, er:y s in (07.2) is for
each 0,,0 € O a version of the likelihood ratio d/dR . We note that

{L.p,(0) = 0o} = {{L.(0,) =0} N{L,(0) € R }} C{L,(6,) =0} =: N,

where B, (Np,) = 0, and for all & € © holds - 9 )]1 = Lug,(0)1y; < oo and B(Np,) =
RN, N{L.(0) € RL}) = RB(L,y,(0) = 00) = [%(d[P’/dI]%’o = 00). Decomposing the integral
with respect to X' = Ny, [ Ny it follows

12(LY2(0) — L2(9,)) — (€, (0 — 05)) LY (00|12
= [|12(Ly5 () = 1) = {do,., (0 = 0,)) | %m,) + 1Mas, 2L 2(0) 12
ot LYo (0) = 1) = (£g,, (0 — 0,)) %5, + 4B(Li g, (0) = c0)
e 0, (0) = 1) = {lo,, (0 = 0,)) I ,) + 4B(La, (6) = 00). (07.4)

Keeping Remark §06.08 in mind for 6, € int(©) the family B is Hellinger-differentiable with
derivative (g, if by, € Z(R.), hence fy, L/ *(6,) € L (1), and for 6 — 6,

IL5/%(8) = L/2(60) = 5{l6,,0 — o) L/ *(B0) || 22y = 0([16 = 6o]))-
Exploiting the identity (07.4) we obtain immediately the next property.

§07.14 Property. Let B <y € My(Z') and 0, € int(©). The family B is Hellinger-differentiable
with derivative 690 if and only if B is £,(0,)-differentiable with derivative Eg

§07.15 Proposition. Let B < u € M,(Z") with open © C RF*. If the likelihood L, (0) := dB/dp,
0 € O, satisfies in addition the following conditions:
(i) for each v € X the map 0 — s(0,z) = L}/Q(H,x) is continuously differentiable
with derivative s : 689
(i) $(0) € Z(p) forall 6 € ©, and hence Ty := 41($(0)s(0)") € [R(;’k),
(i11) the map 0 — Iy is continuous.
Then B is for all 0, € © Hellinger-differentiable with score function 290 = Q%I{S(QO)EW.

§07.16 Proof of Proposition §07.15. is given in the lecture. 0

§07.17 Example. Consider a statistical location model (R, %, R) dominated by the Lebesgue mea-
sure A\ € M, (%) with likelihood for each § € R given by L(0,z) = g(z — 60), x € R,
where g is a strictly positive density. If g is continuously differentiable with derivative g sat-
isfying A(|g|>/g) < oo then due to Proposition §07.15 the family R is Hellinger-differentiable
with score function lg = —g(x — 0)/g(z — 0). Indeed, setting 5(6, z) := \/g(x — ), we have

$(0,2) = Z+/g(x — 0) = —1g(x — 0)/+/g(x — 0) which is continuous in § and hence condi-
tion (i) is satisfied. Moreover conditions (ii) and (iii) hold true, since 6 — Zy = 4\(5(0))* =
A(]g]?/g) < oo is constant and thus continuous. Applying Proposition §07.15 the family B is
Hellinger-differentiable with score function /g, = 2 59 ;]l{é erey = —0(x —6,)/g(x — 6,). ©
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§07.02 Contiguity

We introduce next an asymptotic version of absolute continuity. In this section we restrict
our attention to probability measures R, P € W(.Z,), n € N, in short (B"),en, (P™)nen €
(W(Z7,))nen- We aim to obtain the limiting distribution of (test) statistics S,, € 2%, n € N,
under P if its limiting distribution under P" is known.

§07.18 Definition. Let P, P" € W(Z,), n € N. The sequence (P"),cy is called contiguous with
respect to (P™),en, symbolically P < P, if for any sequence (B)nen € (Zn)nen With
lim,, o B"(B,) = 0 holds lim,,_,,, P"(B,,) = 0. The sequences (P"),cn and (R"),en are
called mutually contiguous, symbolically > <> P", if both P" < B™ and R™ < P". O

§07.19 Lemma. Let B, P" € W(Z,), n € N.
() P"a B & for all (Sy)nen € (2F)nen holds: S, s 0= S, 2 0;
(ii) For any statistic Sy, : (X, Zn) — (S,7), n €N, holds: P"<a P" = P"o S 'a P"o S !,
(iii) For any sub-sequence (ny)ien in N holds: P <« B™ = P < P,
(iv) B" < B™ < for any € € R, exists 6 € R, such that for all (By,)nen € (Zn)nen holds:

0

lim sup,,_, . R"(B,,) < 6 = lim sup,,_,.. P"(B,) < &;
(v) Let (Sp)nen € (Z.F)nen and P™ < B™, then:

(v-a) P oS-t S RandPro St L P = P <R
(v-b) (P™ o S 1), en tight = (P o S;1),en tight.

§07.20 Proof of Lemma §07.19. (i) ,,=* and its converse follows applying the definition on B, =
{lISn]] > €} forany e € R} and S,, = 1, n € N, respectively. (ii) and (iii) follow immediately
from the definition. For the proof of (iv) and (v-a) we refer to Witting and Miiller-Funk [1995]
(Hilfssatz 6.111, p.294 and Satz 6.113, p.295). The proof of (v-b) is given in the lecture. O

§07.21 Remark. Next we characterise contiguity in terms of the asymptotic behaviour of the likeli-
hood ratio L,, = dP"/dR™ € Z,", n € N. First recall that P*(L, < o0) = P™(L,) € [0,1]
and R"(L,, = o0) = P™(L,, = 0) = 0 for each n € N. Consequently, the probability measure
P" o L' € W(Z) is concentrated in R* meaning that P" o L' (R*) = P"(L, € R*) = 1
for each n € N. Moreover, (R" o L !),cy is tight, since for any ¢ € R}, and ¢ > 1/e holds
P"(L, > ¢) < 1R"(L,) < < € by Markov’s inequality. However, P" o L is generally not
concentrated in R, but under P™ <« P™ holds P"(L,, = co) — 0 since R"(L,, = oo) = 0 for all
n € N. Thereby, the limit distribution of P™ o L1 (if it exists) is concentrated in R ™. m

Formally, we write L,, = L, 11, o) + 001y, _,, where the second summand is negligible in
the sense of Slutzky’s lemma under contiguity B" < P".

$07.22 Definition. (T},),en € (2 n)nen converges in distribution to P” € W(%) under P, shortly
T, i> PT under P", if

ProT ' 5 PT o Po(Tulpe) > PT and PYT, €R)—0. (07.5)

We note that any family of probability measures on (R, ) is tight, since R is compact. A
non trivial formulation of tightness for probability measures provides the next definition.
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§07.23 Definition. A sequence (P"),en € W(Z) is called asymptotically tight if for all € € R, exists
M € R{ and n, € N such that for all n > n, holds P"([-M, M]°) < e. O

§07.24 Remark. Asymptotic tightness of (P"),cny € W(Z) is equivalently characterised by: for any

(M,)nen in R with M,, 1 oo holds P"([—M,, M,]|°) 2% 0. In particular, we have im-
mediately P™({—o00,00}) =% 0. The concept of asymptotic tightness and tightness as in
Definition §02.21 coincide if P"(R) = 1 for all n € N. Furthermore, it can be shown that
the claim of Prohorov’s theorem Property §02.24 holds also for families of asymptotically tight

probability measures. O

507.25 Theorem. For eachn € N let P", P" € W(2,,), let L, := dP"/dP" € Z,," be a likelihood
ratio of P™ with respect to B™ and let R*,P* € W(2). Then the following statements are
equivalent:

(al) H:lpn q u%[m’.

n—00 +

(a2) B"(L,) —— 1 and for any ¢ € R} exists M € R with sup, cy B" (L1, 20ny) < €, i.e
(R™ o L, Y)en is uniformly integrable;

(@3) (P"o LY en is asymptotically tight.

If in addition L, % P under P, i.e. P" o L-1 % PL, then the following statements are

equivalent:

(bl) I]:lpn 4 ":()Dn’.

(b2) 1= [ yB"(dy) = B"(idr) = B"(idg1x);

(b3) L, % PL under P with PL(B) = PL(idg1,) = [ yB(dy) for all B € A.

§07.26 Proof of Theorem §07.25. is given in the lecture. O

Since R™(L,) = P"(L,, < oo) it holds P"(L,) — 1 < P"(L,, = co) — 0. Keeping (07.1)
in mind the mass of the absolute continuous part of P" with respect to R converges two 1, if
and only if, the singular part vanishes.

§07.27 Corollary. Under the notations of Theorem §07.25 the following statements are equivalent:
(1) I]:lpn 4 I]E)Dn;

(i) if B™ oL} 4 RY € W(%) along a sub-sequence (ny)ien, then PL(idg) = 1;

(i) if B™ o L} 4 RY € W(#) along a sub-sequence (n,)ren, then P™ o L1 4 PL, with
PY(B) = P(idg 1) for all B € #.

§07.28 Proof of Corollary §07.27. Since (P™ o L 1),y is tight (Remark §07.21) the claim follows

from Theorem §07.25 (b1)-(b3) by applying Prohorov’s theorem §02.24. O

We are particularly interested in mutual contiguity (R <> P™) of (B"),,en and (P™),,en, which
can be characterised by applying Theorem §07.25 and its analogous formulation switching the
roles of P and P". However, for n € N the transformation of a likelihood ratio L,, = dP"/
dP" into a log-likelihood ratio (LLR) £, :=logL,, = log (dR"/dR") € 2 captures equally
both orthogonal events {L,, = 0} and {L,, = oco}. Generally, ¢, takes the value —co and +o00
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with positive P"- and P"-probability, respectively. In other words P" o /! and P" o /! is
concentrated in [—00, 00) and (—o0, 0], respectively, since by Definition §07.03 of L,, it holds

R"({, =00) =0 and P"({, =—00)=0 foralln e N. (07.6)
Thereby, similar to Remark §07.21 under mutual contiguity P" <> B" it follows
P"({, =00) -0 and BR"({, =—00) =0 asn — oo. (07.7)

Consequently, the limit distribution of ¢,, under both " and P", if it exists, is concentrated
in R. Keeping Definition §07.22 in mind under mutual contiguity P" < > P™ convergence in
distribution of £, under P" and P" to R¢, P* € W(%), respectively, is equivalently characterised

Pf & Po(lyly.y) S P (07.8)

If L' = dR"/dP™ is a likelihood ratio of P™ with respect to P, as for example in Re-
mark §07.05, then making use of the identity log ;' = —logL, = —/, the convergence in
distribution of /,, under " respectively P" implies immediately the corresponding convergence
of log L 1. Similar to Theorem §07.25 (b1)-(b3) the next result characterises mutual contiguity
in terms of the log-likelihood ratio /,,.

§07.29 Theorem. For each n € N let P",P" € W(Z,,), let {,, := logL,, = log(dP"/dP") € Z,, be
a log-likelihood ratio such that also 1,;)' = dP"/dP" € Z, " and let RY, Pt € W(2). Ifin
addition (,, 4 R under P", i.e. P" o (1 4 P, then the following statements are equivalent:
(b’1) P <> B";

(b'2) 1= [, exp(z)R*(dz) = RB*(exp) = B*(exp 1g)
b'3) ¢, L P* under B™ with P*(B) = R (exp 1) = [, exp(2)R*(dz) for all B € A.

§07.30 Proof of Theorem §07.29. is given in the lecture. O

§07.31 Remark. Let f} and f, denote, respectively, a y-density of P* and P* with respect to a measure
p € M, (%) dominating P’, and hence P’. The measure P* in Theorem §07.29 (b’3) is equally
defined by | (z) = exp(z)f,(z) for p-a.e. z € R. O

§07.32 Corollary. Under the notations of Theorem §07.29 if B" o (.1 4, Nuo2 for (p,0) € R x RF
then the following statements are equivalent:

(b”1) P <> R";
(b2) p=—0%/2
(6”3) €y 5 N2 /0,2) under P,

§07.33 Proof of Corollary §07.32. is given in the lecture. O

§07.34 Example (Le Cam’s first lemma). For n € N let R",P* € W(Z,) and L,, := dP"/dR" €
7;. If¢, :=loglL, N N(_s2/2,,2) under B", then P" <> R" and ¢, LN N(,2/2,,2) under P"
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due to Corollary §07.32. For ¢ > 0 from o~'((, + 02/2) % Ny, under P" follows thus

o (l, + 0?/2) 4 N1y under P". In other words in this situation there is asymptotically a
location shift by o. O

For each n € Nlet B",P" € W(Z,,), let L,, :== dP"/dR" € Z,," be a likelihood ratio of
B" with respect to B, let ¢, := logL,, and let S,, € %nk be a R*-valued statistic defined on
(X, Z,). We search conditions which allow to calculate the limiting distribution of (.S,,, L, ) re-
spectively (S,, ¢,,) under P", from the limiting distribution of (.S,,, L,,) respectively (S, £,) un-
der P". Keeping again (§07.22) in mind under mutual contiguity " <> P™ the joint convergence
in distribution of (S,,L,) % RY € W(#*+1) under P", (S,,, £,) > BR™Y € W(#*+1) un-
der P" and (S, /,) 4 pY ¢ W(%") under P, respectively, is equally characterised

And |]:1Dn © (Sn7 Ln]l{Ln<oo})71 i) U:lb(S’L),
R" o <Sn7£”)_1 i) H%)D(Sj) And H%))n © (Sna gnﬂ{érp—oo})_l i> H%)(S,K) and
=

P™ 0 (Sp, bpl gy, ony) ' S PO, (07.9)

Denote by I, = II,, € B, ie. y*'' = (yi)iepry — L) = yrs (respec-

k+1

tively IT, :== 1L, € %’k“) the coordinate map which allows us to write [ yl]%’(S’L)(ds, dy) =

k+1

Jarrn Le(s, y)I (s, )P (ds, dy) = ROV (1,11) for all C € B4+

$07.35 Theorem. For eachn € N let P",P" € W(Z,,), let {,, = log L,, = log(dP"/dR") € 2, be a
log-likelihood ratio, and let S,, € Z.* be a R*-valued statistic. Then, we have
(i) If (Sp, Ly, ) i> IP L) e W(BEY) under B and B (I 1500) = BYY(IL) = 1, then
(Sn, L) 4 Y under P™ with p L)(C’) = [FD(S’L)(HL]I ) forall C € 1.

(i) If (Sn, £n) 2 B € W(B*1) under u:m and B (exp(IL) 1) = B9 (exp(IL)) =
1, then (Sn,ﬁn) 2 P ynder P™ with Rt (C) R )(exp( I)1.) for all C € 2+

§07.36 Proof of Theorem §07.35. is given in the lecture. O

§07.37 Example (Le Cam’s third lemma). For each n € Nlet B",B" € W(Z,,), let £, = logL, =
log(dP"/dP™) € Z,, be a log-likelihood ratio, and let S, € Z.* be a RF-valued statistic.
Suppose that the limit distribution of (.S, ¢,,) under P" is multivariate normal, that is

T

0 (S, ) S PED =N,y with v = ( “02) and M = (th 0_2) . (07.10)

2

Then it holds (S, ¢,) 4 plsh = N ary under P with v = (u + 7,02/2)". Indeed, since
R (exp(T1,)) = 1 both assumptions of Theorem §07.35 (ii) are satisfied and hence it remains
to calculate the limit distribution H?(S’Z)(C) = R0 (exp(I1)1.) for all C' € %B**1. Suppose
first M > 0, or equivalently ¥ > 0 and o > 0, then R‘®” has a density f*" with respect
to the Lebesgue-measure N1 € M, (%"*!) and (see Remark $07.31) the Lebesgue-density
50 of P satisfies £59(s,2) = exp(2)f(s, z) for AFl-ae. (s,z) € RF1. Keeping
the coordinate map II, in mind we denote by f, and | the marginal density of R0 o I1, and
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R o I1, respectively. Denoting by £/ and 5%, respectively, a conditional density of S

given ¢ = z under the joint distribution I]jf(s’ﬁ) and IPf(S’E) (see Notation §03.11 (iv)) we have
1% (5)F,(2) = exp(2)fy " (s)f(2) for \+l-ae. (s, 2) € R* . Exploiting Theorem §07.29
(b’3) it holds f(z) = exp(z)fy(z) for A\-a.e. z € R (see Remark §07.31). Consequently, it
remains to verify that N, ,) and N, ;) have the same conditional distribution given ¢ = z.
Indeed, both are again multivariate normal (see Notation §03.11 (v)) with equal covariance
matrix ¥ — 277" and conditional mean B~ (idgt) = p + 0 27(z + 02/2) = p+ 7+
o727(2 — 02/2) = P (idgs). The case of a positive semi-definite ¥ and o2 > 0 follows
by similar arguments when considering the projection onto the image of . If ¢ = 0 the claim
follows from Lemma §07.19 (i) together with Slutzky’s lemma §02.10. In particular, note that

Sn 4, N(,.,») under B" and S, LN N(u4-x) under P" (see Reminder §07.07). O

§08 Local asymptotic normality (LAN)

§08.01 Aim. Foreachn € Nlet (X,, 2,,B" = (P")sco) with © C R” be a statistical experiment. We
aim to approximate (X, Z,,, ") in a certain sense by a Gaussian location model after suitable
reparametrisation.

$08.02 Reminder. Consider on (R*, %*) the family Ngx, sy := (N(ix))pers Of multivariate normal
distributions with common strictly positive definite covariance matrix > € Rg *) and log-
likelihood ratio log (AN, »)/dN(s))(2) = (27 h,z) — 3(X7'h,h), = € R*. Noting that
for each h € R* the likelihood L(h) = dN,5)/d\* of N, 5y with respect to the Lebesgue
measure \* on R” satisfies L(h,z) = L(0,x — h) for all z € R* the statistical experiment

([Rk, 748 Nka{Z}) is called a Gaussian location model. O

Consider a localised reparametrisation centred around a parameter value 6, € int(©) which
is in the sequel regarded as fixed.

§08.03 Definition. Consider a sequence of statistical experiments (X,,, 2, "), n € N, with common
parameter set © C R*. Given a localising rate (3,,)nen With §,, = o(1) for each n € N define a
local parameter set O7 := {5-1(0 — 0,) : 0 € ©} C R*. For each § € © and associated local
parameter h = §,1(0 — 0,) € O rewriting B™ as B",, . we obtain a sequence of localised
statistical experiment (X, 2, Blon o, = (B . )necon), n € N. O

§08.04 Remark. In the sequel we eventually take the local parameter set ©” equal to R* which is not
correct if the parameter set © is a strict subset of R*. However, if §, € int(©) is an inner
point of ©, which is assumed throughout this section, then for each h € R the parameter
0 = 0, + d,,h belongs to © for every sufficiently large n. In other words, the local parameter
set O converges to the whole of R* asn — oo, i.e., Unen®l = R*. Thereby, we tactically
may either define the probability measure B ., , arbitrarily if 6, + d,,h does not belong to ©, or

assume that n is sufficiently large. O

§08.05 Aim. We show, for large n, that the localised statistical experiment (X, Z,,, P" ) and a

snR¥ 1o,
Gaussian location model (R*, %% N_. {I{;l}) are similar in statistical properties whenever the

original experiments, i.e., § — [, are “smooth”.

§08.06 Heuristics. Consider a statistical experiment (X', 2", RB) dominated by up € M,(Z), i.e.,
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B < u, with © C R, positive real likelihood L(#) = dB/du € 2™t and log-likelihood ¢ =
log L. Assume that for all z € &', the map ¢ +— £(0, ) is twice differentiable with derivatives
(= 8 5! and 0= 682 5. A Taylor expansion of the log-likelihood ratio leads to /(¢ + h,z) —

(0, x) — hi(h,z)+ +h?((0, ©) + o0, (h?) where the remainder term depends on z. Considering a
product experiment (X", 2", R®") eventually it holds log(dRZ ~/dR®") = hy/n IP’( () +
%hzﬁ (6 («9)) + R,, where the score / has mean zero, i.e., I]ZGD(E (0)) = 0, and the Fisher information

Ty equals —IE,"(Z(H)) = [|36P(|E(0)|2) Setting ZJ := /P (E(@)) from the central limit theorem
§02.13 follows Zj N No.z,) under R®" while due to the law of large numbers §02.06 it holds
RUO) = =Ty + Olg>®n(1). If in addition the remainder term is negligible, i.e., R, = Olg)@)n(l),
then the log-likelihood ratio permits an expansion

log (RS, /=/dR®") = h2§ — §h*Ty + open(1)

which in the limit equals the log-likelihood ratio in a Gaussian location model. O

$08.07 Definition. A sequence of statistical experiments (X,,, 25, B"),en with © C R* is called local
asymptotic normal (LAN) in 6, € int(©), if there is a localising rate (J,),en With 0, = o(1),
a sequence of statistics (2} Jnen € (Z;F)nen and a matrix Zy, € R*®* such that for every

h € R the following three statements hold true:
(a) 6, + 0,h € O for all sufficiently large n, i.e., n = n,(h);

b) 25 % Nz, under B, ie., B" o (Z7)" % Nz, ):
(c) log(dB™, . /dR™) = (23, h) — 3(Zs,h, h) + Ry, where R, ) = 015?(1).

The matrix 7y, and the sequence of statistics (24 )nen is called, respectively, Fisher information
at 6, and central sequence. O

§08.08 Comment. If we assume in addition a strictly positive definite matrix Z,, € [RgC *) with in-

verse Z, ! the sequence of statistics (25 =1, 125‘0 Jnen € (Z:F),en is equally a central se-

quence satisfying g” 4 Nz, under B" and log(dR”.; ./dBR™) = (Zs,h Z~") $(Zy,h, h) +
o@m( ). In other words the hkehhood ratio dB”, ; , /dR™ equals approximately the hkehhood ra-
tio dN, 7~ 1) 1y/dNq, 7,1 as in the Reminder §()8 02. Consequently, the localised statistical model

(X, 20, P:eg .0,) is similar to a Gaussian location model (R*, %% N, i 1}) in the sense of

Definition §08.07. O

§08.09 Definition. A LAN sequence of statistical experiments is called uniformly local asymptotic
normal (ULAN) in 6, € O, if the condition (c) in Definition §08.07 is replaced by

(¢’) for h,, — hitholds log(dR™,, . /dB") = (Zj  h) — 5(Zy,h, h) + op(1). O

$08.10 Theorem. Let (X, 27, P"),en be LAN in 0, € © C R* with localising rate (5,,)nen, central
sequence (2} )nen and Fisher information matrix Ty, € R%™*. Then for any h,h/ € R* the
following statements hold true:

P

(1) (B, 1 nen and (B )nen are mutually contiguous, i.e., B" A

0o+dnh

(i) Zg 4 Nz, n1,,) under B"

If the sequence of statistical experiments is ULAN, then for any h,, — h and h!, — N’ in R* the
following statements hold true:

Oo+dnh*®
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(i) (B, nen and (B ./ Jnen are mutually contiguous, i.e., B, <cB"
i) zy 4 N, n1,,) under B",, .
§08.11 Proof of Theorem §08.10. is given in the lecture. O

§08.12 Theorem. Let B <y € M,(Z) with open © C R* be Hellinger-differentiable in 6, € ©
with derivative (g, and Fisher information matrix Ly, = B, ((g, 05 ) € [R(;’k). Then the sequence
of product experiments (X", ;&” _®”, R®™) is ULAN in 0, with localising rate 0,, := n~Y2 and
central sequence Z;} = \/nB(ly,), n € N, that is,

(1) \/ﬁ@(égo) 4 Noz,,) under R*"™ and

(ii) for hy, — h it holds log(dR%;  —/dR®™) = (Zg 'h) — 2(Zy h, h) + 0[5,®n(1).
§08.13 Proof of Theorem §08.12. is given in the lecture. 0

§08.14 Corollary. Under the assumptions of Theorem §08.12 consider for each n € N a statistical
product experiment (X", 2", B®") and an estimator 7, € (2 “")P of a parameter of interest
v : © — RP allowing an expansion /i3, — v(6,)) = /B (s, ) + 0|g,®n( ) for some function

vy, € LE(R) with B (vy,) = 0. Then, \/n(7, — v(6,)) 4, N5,y under B=" with ¥,

R, (o, 04, ) and for each h € R holds \/n(3, — v(0,)) 4 N5, under BEL  — with 7, =
[%)o (1/}00 géo)h'

§08.15 Proof of Corollary §08.14. is given in the lecture. O

§08.16 Example (Example §06.06 continued). Under the assumptions of Theorem §08.12 lety : § — R?
be a parameter of interest. Consider m(v) € Z,(R) for all v € R?, a criterion process M, (7) =

@(m(fy)), a criterion function M(6, 7) = B(m(v)) and a M-estimator 7,, € arg 1nf76F{M (")}
of {7, := v(6,)} = arg infweF{M( ,7)}. Under regularity conditions as in Example §06.06
we have /(5 —7,) = 1P (¢9,) +olg,®n( ) with ¢y, := —M; m(%) assuming a regular ma-

trix M, := B, (m(’yo)) Consequently, setting X, = B, (19, ¥) ) = MR, (1i(7,)1(7,)" )MO1
from Corollary §08.14 it follows

\/ﬁ(;y\n - ’70) i) N(Th,Eo) under P(%—?}z/f with Th = _M;lﬂ:ebo (m<,yo)£go)h

In the particular case of a MLE 0, of 0, i.e., (v = idgs), as in Example §06.07 setting m :=
— log(dB/dR) we have 1(6,) = —{y,, Iy, = B, ((6,)m(6,)") = B, (112(6,)) = M, and thus
S, = M;'B, (h(y,)m(7,)")M;t = Z, ! and 7, := —M;'B, (11(6,)¢,)h = h. Therewith,

\/ﬁ(gn—é)%NhI )underIPM/f O

§08.17 Remark. Supposing +/n(f (A 0,) = VnB(y,) + o%@n(l) let us further assume a transfor-
mation A : © — RP that is “smooth”, and hence by employing the delta method §02.16,

for instance satisfies v/72(A(0,) — A(6,)) = Ag,v/nB(1g,) + O%[;@n(].) Consequently, it fol-
lows /n(A(6,) — A(6,)) 4 Nins,) under B with 7, = Ay, eo(wgoft Jh and X,
A, B, (Yo,10%, ) A4 . In the special case of a MLE we have \/n(A A(6,)—A(6,)) 4 N(Aeoh,AgoIglAg )

Xn —
under B°) - O
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§09 Asymptotic relative efficiency

Heuristics (§06.09 and §06.10 continued). Under the conditions of Corollary §08.14 consider
the statistical testing task Hy : A(6,) = 0 against the alternative H; : A(f,) # 0 for some

transformation A : © — R satisfying v/n(A(6,) — A(6,)) = Ag,/nB(1,) + open(1). As

in §06.09 let W, := nA(6,)'S-1A(6,) where &, = ¥ + olg@n(l) is a consistent estimator of
5 = Ag,R,(vo,0,) A, then a Wald iest is given by @, := Ly, ... . Thereby, under Hy,
ie. A(6,) = 0, we have \/nA(0,) = Ag,/nB(vy,) + Ogen (1) and w, 2 X, under R®"

which in turn implies B®"(p, = 1) > Xo((X21_as00)) = a. In other words, the Wald

test is asymptotically a level « test. For each § € © let us denote 3, (6) = RB®"(p,) =
B (o = 1) = B®**(W, > x;,_,) Which equals the power of the Wald test @, under
Hy, ie. 0 € © with A(f) # 0. In the sequel we consider local alternatives of the form
0 = 0, 4+ h/y/n and thus we are interested in 3, (6, + h/y/n) = BZ, (W, > x2,_ )
Keeping Remark §08.17 under R/}, - we have \/ﬁA(e)]) 4 Ny, 8, (o, ¢, yn.)» assuming addi-
tionally ¥ > 0 also £-Y2\/nA(0,) % N, 1a,) with ay := X724y B (15, s, )'h, and hence,
nA(0,)'S1A®0,) S X2 (llax|?). Here x?(c) denotes a non-central x*-distribution with p de-
grees of freedom and non-centrality parameter ¢ € R*. Moreover, W, — nA(@\n)tEflA(@\n) =
O%[;@n(].) and thus W, — nA(6,)'~"1A(0,) = Open /f(l) due to Lemma §07.19 (ii) by em-
o o+h n

ploying that " <> P%" _ are mutually contiguous. Consequently, W, X3 (llan|*) under

0o+h/
ﬂg’ﬁ’.}l/ﬁ'and thus B%(QO + h/\/n) XZ(HahHZ)((X;J:a, 00)). Note that a;, simplifies to
htA) (Ag, Ty " Ah )71 Ag,h in the particular case of a MLE 6. O

Reminder (Gauf test). In a Gaussian location model, i.e. Y & Ngx, 1 with Z, € RQ“ ’k),

consider the binary testing task Hj : {N(o,zgol)} against the alternative H; : {N(hl;ol)} for
some h € RF. In this situation the log-likelihood ratio ¢, = lOg(dN(h7I6—1) / dN(ng—l)) satisfies
Uh(y) = (Zo,y, h) — 307 forall y € R* with o := (Zy,h, h). Consequently, £, ~ N(_,2 5,2
under Ng7-1), i.e. under the hypothesis Hy, and £, ~ N,2/5,2) under N, z-1), i.e. under the
alternative Hy. For a € (0,1) let ¢p1—a € R satisfy N(_2/,2)((Ch,1-a,00)) = « and thus
Nz (lh > chi-a) = N(_o2/2.02) ((€n,1-a,00)) = a. Keeping in mind that any most powerful
level-« test has Neyman-Pearson form and the Gauf3 test p* := 1y,..,, ., 1s a Neyman-Pearson
level-av test. lIts power given by By« (h) 1= Nyz1) (0" = 1) = Nyz0)(ly > cpi-a) =
N(o2 /202) ((¢h1—a> 00)) is maximal in the class of all level-o tests, i.e., for any level- test ¢
holds SB,(h) < B,+(h). In other words, ¢* is a most powerful level-a test (Statistik 1, Satz
§21.16, p.100). O

Example (Neyman-Pearson test). Assume local asymptotic normality as in Definition §08.07
where 0}, , := log(dR" ,/dR") 4 N(_o2/2.02) under B" with o} := (Zy,h, h) for h € R,

Oo+dnh

Hence by Le Cam’s first lemma (Example §07.34)mutual contiguity B” ; , <>B" and ¢}, ,, 4

Oo+nh
N(o2/202) under B hold. Consider the binary testing task of the hypothesis Hy : {B"}
against a local alternative H; : {R" .}. In this situation ¢y = 1y, .. . ., is a Neyman-

Pearson test, which is a most powerful level-a test, if B" (¢} = 1) = a. Keeping its power
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function B,. (0) = B"(¢;) = B™(¢; = 1) = B"(lhn > Chni-a) evaluated at 6 in mind
the value S.. (6, + 6,h) equals the maximal size of the power in the class of all level-a
tests. Considering c,1- € R as in Reminder §09.02 under local asymptotic normality it

follows @ = RB™(¢%) = B"(lpn > Chni-a) —— Ni_o2/202)((Chi—as00)) = @ which im-
plies Chni-o ——— Chi_a» and in addition By (0, + 0,h) = B, (¢F) = B™,  (h, >
Chnl-a) e, N(o2/2,02) ((Ch,1—a, oo)) = B,+(h) with Neyman-Pearson test ¢* in a Gaussian
location model as in Reminder §09.02. O

§09.04 Theorem. Let © C R. Consider a one-sided test task Hy : (—o0,0,] against Hy : (6,,00).
Suppose that (X,,, Z,,, ") is LAN in 0, € © with localising sequence (,)nen, central sequence

ny Yo

(28 )nen € (Zn)nen and strictly positive Fisher information Ty, € R,

(i) Given a sequence (T,,)nen € (Zn)nen Of test statistics satisfying (T, Z5) N No,ar) with
M = ((¢% p)', (p.To,)") consider the randomised test ¢, := 11,y + Ynlir,—.) With
Yo € [0,1] and ¢, € R such that B,,(0,) = B"(¢n) = B*(Th > cn) + 1B (Th = cn) =
an =25 . Choosing z1_o € R with 1 — [E\I(O’l)(zl,a) := N ((zl,a, oo)) = a we have

n—o0

Bn (0o + 0yh) = "ja)f+5nh(90n) — [E\I(o,l) (—21-a + hp/o).

.. . . 1/2
(1) In case T,, = Z§ consider p; = ]l{z;; oz e Yy = 0and c, = zl_aIGO/ . Then
n—oo

Bos (05) = B (7)) = BM(T, 225 > 2120) 5 1~ Ry, (21-0) = cvand

0o

Bt 8o+ 0ah) = B, 01 (1) = By (—21-a + HTG)7).
§09.05 Proof of Theorem §09.04. is given in the lecture. O

§09.06 Remark.
(a) By using Theorem §07.35 directly it could be possible to calculate an asymptotic power of
a test if log(dR" ; ,/dR") 4 P under R™ where P equals not necessarily N ).
(b) Let (Y1,Y2) ~ Ny with M = ((02, p), (p,Igo)t) as in Theorem §09.04 (i), then
p* = |Cov(Yy,Ys)[? < Var(Y;)Var(Ys) = 0%Zy,. Consequently, the test ¥ given in
(i1) maximises the asymptotic power when considering only a randomised test ¢,, as given
in part (i) of Theorem §09.04. O

§09.07 Theorem. Let the assumptions of Theorem §09.04 be satisfied. Any test p,, of the one-sided
testing task Hy : (00, 0] against H, : (6,,00) with 3,,(0,) :== B"(¢n) = an 7% o fulfils

(i) lim sup,,_,. By, (0o + dnh) < ﬂf\r(oyl)(_zl—a + h\/Zy,) for all h € R};
(i) lim inf,, 0 By, (0o — 0uh) = K, (=210 — hy/Zp,) for all h € R},

§09.08 Proof of Theorem §09.07. is given in the lecture. O

§09.09 Remark. Keeping Theorem §09.07 in mind we call the test (sequence) () ),en given in The-
orem §09.04 (i1) asymptotically uniformly most powerful level-a test (sequence) in the class

of all asymptotic level-« test (sequences). Its asymptotic power function equals k| (—z1—a +
h+/Zy,) which is the power function of the uniformly most powerful test of Hy : (—o0, 0]
against 1 : (0, 0o) in the limit Gaussian location experiment (R, %, Ny, (7-1,). m
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§09.10 Asymptotic relative efficiency. Let (X,,, 2, R"),en be LAN with localising rate (0, :=
n~1/2),en. Consider a test 2 satisfying the conditions of Theorem §09.04 (i) and hence, ad-
mitting an asymptotic power function such that 8,4 (8, +h/v/n) “—> K on (m21—athpa/oa).
Thereby, choosing 7 = h/+/n the approximation 3. (6, + 1) ~ R (—21—a + NV/Npa/oa) is
reasonable. In analogy, if ¢? is another test satisfying the conditions of Theorem §09.04 (i) and
admitting 5., (0,+7) ~ K, (—21-a+7v/1ps/0s). Roughly speaking, this means, that at 6,+17
the power of the test ¢ and goflb with sample size n, and ny, respectively, is approximately
equal if np2 /02 = nypy /oy The quantity are(p% . ¢ ) = (na/m) = (pyo2)/(p20}) is called
asymptotic relative efficiency. Meaning, that a sample of size n, = are(yy, | gpflb) ny is needed
for the test ¢y, to attain at 6, + 7 approximately the same power [, | (—21-a +7y/Tapa/00) =

Koy (—21-a + ny/Mepy/0b) as the test ¢"  with sample size n,. A comparison with the test

@y as in Theorem §09.04 (i1) allows analogously to introduce a notion of asymptotic absolute

efficiency. m

§10 Rank tests

§10.01 Reminder. Consider on the sample space (R", #") the statistic 7' : R" — R" with x —
T'(z) = (Ti(z))iefn) and Ti(z) == minfc € R : 3y L« = i}, ¢ € [n]. Since T (z) <
Ty(z) < --- < T,(z) for all z € R™ the statistic 7" (and any other statistic with this property)
is called an order statistic. Denote by S,, the symmetric group of order n, i.e. the set of all
permutations of the set [n]. We identify as usual a vector s = (s;);c[,) € [n]" with the map

s : [n] — [n], i~ s(i) := s;, and hence S,, C [n]". Let s~ € S, denote the inverse
permutation of s € S,,, i.e. ids, = s 0 s~ = s~ o s. For a permutation s = (s;);c[n) € S, and
a vector © = (;);c[n) € R"™ we write shortly =, := (., );c,;. A Borel-measurable map S :

R" — S,,ie. S7!(s) € B" forall s € S,,, is called a random permutation on (R", %™). The
associated map S~ : R" — S, satisfying ids, = S~ (x)oS(z) = S(x) oS~ (x) forall z € X is
trivially again Borel-measurable, and hence called random inverse permutation of .S. Moreover
the statistic Xg : R" — R" with z = Xg(7) := (Ts,(2) )ic[n] = TS@2) = D_ses, Tslis(S(2)) (a
finite sum of Borel-measurable functions z — x;14-1,(x)) is called a random arrangement. ©

§10.02 Definition. A random permutation O = (O; )¢,y on (R™, #") is called order permutation, if
the associated random arrangement X : R" — R" with z — 2, is an order statistic, i.e.
TOi(z) & Toxx) & " ° K To,(z) for all z € R™. A random permutation R = (R,-)ie[[n] on
(R™, %") is called rank permutation, if its random inverse permutation O := R~ is an order
permutation. For ¢ € [n] the i-th component R;(x) of R(x) is called the rank of the i-th
component of x € R". O

§10.03 Comment. An order permutation O is uniquely determined on the Borel-set {z; # 1} =
{(@i)icpy € R™ © 2y # 23,Vj € [n]\{i},Vi € [n]} only. However, for x € R", the
permutation o := O(z) € §,, and i € [n] the value at the i-th position in the ordered vector z,
equals the value at the o;-th position in the original vector x. Conversely, for the permutation
r = R(x) € S, of the rank permutation R := O~ the value at the r;-th position in the ordered
vector x, equals the value at the i-th position in the original vector z. O

§10.04 Remark. The map R* = (R})ig[n) : R" — S, with 2 = Ri(z) = > Llp=y +
> jefn] Lizsey for each i € [n] is a rank permutation. Indeed, for each z € R™ we have
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r:= R*(z) € S, (r : [n] — [n] is injective and hence bijective) and its inverse permutation
o := r~ satisfies z,, < 7,, < --- < T,,. Furthermore, each component of R* is %-2["l-
measurable, and hence R* is a rank permutation. On the Borel-set {1, # =, } each rank permu-
tation R = (R;)e[,] is uniquely determined by R;(x) = >,y Liwy<ey = £ (), @ € [n]. For
each y € R define F (y) := @(]lwoﬁy]) with [, (y, z) := %Zjew 1.,<; €10,1] forall z € R™.

~

F. is called empirical cumulative distribution function. If in addition r := R(x) and 0 := r~ for
x € {z; # x;} then i = nk,(z,,, z) and r; = nk,(z;, z) for each i € [n]. O

§10.05 Comment. We assume a product probability measure P" = () jepg B on the sample space
(R™, %™) where for each j € [n] the marginal probability measure P € WW(%) admits a
Lebesgue density f, = dP/d\ and hence P" < A" € M, (") with Lebesgue density dP"/
d\" = Tlcqy T+ Noting that the complement {u; = x;} = {z; # 2;}" of the Borel-set
{x; # x;} is a A" null set, and hence it is also a P" null set. Thereby, each rank permuta-
tion R on (R", %") with corresponding order permutation O := R~ satisfies 20, () < Zo,(z) <
-+ < X0, (z) for P"-a.e. x € R". Moreover, for P"-a.e. v € R™ the vector of ranks R(x) (and

the rang permutation R) is determined by R;(z) = > Licoy = nk (z;, ), i € [n]. O

J€[n]

§10.06 Lemma. Consider a product probability measure P®™ on (R"™, %™) with identical marginal
distribution P € W(%), cumulative distribution function F(y) = P(1_.,), v € R, and
Lebesgue density T = dP/d\. Let R and Xo with O = R~ be a rang permutation on (R", ")
and the corresponding order statistic, respectively.

(i) R isunder P®™ uniformly distributed on the symmetric group S,, precisely, (P®")E({s}) =
(P9 o R1)({s}) =P®*"(R=s) = 14, s €S, inshort R ~ (P*")F = Ug,.
(ii) R and Xo are independent under P®".
(iii) The distribution of X o admits under P*" a Lebesgue density £ (x) = n!1,(x) [ ], e T (x;),
r € R™ with B .= {(xz)le[[n] c R",xl < ... < l’n}

(iv) Foreachi € [n] the distribution of the i-th component of X admits under P*™ a Lebesgue
density f.(z) = i(7)|F(z)|" |1 — F(z)|"""f(z), z € R.

§10.07 Proof of Lemma §10.06. see Statistik 1 (Lemma §24.05, p.115). O

§10.08 Definition. Let 2 and [P be probability measures on (R, %). We say R is stochastically smaller
than P, or 2 < P for short, if B((¢, 00)) < P((¢,00)) for all ¢ € R. If in addition  # P, then
we write 2 < [P, O

§10.09 Remark. Roughly speaking, 2 < PP says that realisations of 2 are typically smaller than reali-
sations of . O

§10.10 Example. For 0 € R™ consider on (R, %) a Gaussian location family Ngy(s2;. Then for all
a,b € R holds N, ,2) < N,,2) if and only if a < b. More generally, given a location family
R on (R, %) as introduced in Example §07.17 with likelihood function L(0,z) = g(xz — 0),
6,x € R, for some strictly positive Lebesgue-density g on R. Then for all a,b € R holds
P < Rifand only if a < b. O

§10.11 Heuristics. Given a sample from each distribution B, P € W(ZA) we consider the testing task
H, : P = P against the alternative H; : B < P. Loosely speaking, this means, that we
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aim to reject the null hypothesis if realisations of B are significantly smaller than realisation
of P. More precisely, we assume a sample of n = m + [ independent real random variables
{Xi,i € [n]} where the first m and the last [ have as common marginal distribution 2 and
P, respectively. In other words X = (Xi)ie[[n]] takes its values in the pooled sample space
(R™, 2™). Considering a rank permutation R on (R", ") and an observation = € R" it seems
reasonable to reject the hypothesis if the sum of ranks within the first group of m random
variables, i.e. W,(2) := 3., Ri(), takes sufficiently smaller values then the sum of ranks
within the second group of / random variables, i.e. W (x) := >~y Ritm(x) where obviously

Wo(z) + W(z) = Zie[[n]] Ri(z) = Zie[[n]] 1= @ -

§10.12 Lemma. For m,l € Nandn :=m + 1 let R = (R;);c[n) be a rang permutation on (R™, 2"),
W, = Zie[[m]] R, W = Zz‘e[[l]] Rivm and Uy @ R™ — [0, ml] with x — U,y(x) =

Zie[[mﬂ Zjem 1ioeiy- Then for each x € {x; # x;} it holds W,(x) = Upy(x) + w

and consequently W (x) = ml — U,y(x) + l(l;r ).

§10.13 Proof of Lemma §10.12. see Statistik 1 (Lemma §24.11, p.116). O

§10.14 Comment. Keeping Lemma §10.12 in mind, we use the test statistic W, or equivalently U,,,; to
reject the hypothesis Hy : P = P against the alternative H; : 2 < P, if U,,,; < c or equivalently
W, < ¢+ W for a certain threshold ¢ € (0,ml]. The test is called (one-sided) Mann-
Whitney U-test or Wilcoxon two-sample rank sum test'. The critical value has to be chosen
according to a pre-specified level a € (0, 1) which under the null hypothesis necessitates the
knowledge of the distribution of U,,; or an asymptotic approximation. Interestingly the next
proposition shows that under the null hypothesis the distribution of U,,; is distribution free in
the following sense: If B = P and P admits a Lebesgue density, then the distribution of U,,; 1s
determined and it is independent of the underlying distribution P. O

§10.15 Proposition. For m,l € N and n := m + 1 let P®" € W(%") with identical marginal
distribution P < X. For all k € [0,ml] it holds P®"(U,y = k) = N(k;m,1)/(}) where
N(k;m,l) denotes the number of all partitions Zie[[m] ki = k of k in m increasingly or-
dered numbers ky < ko < --- < ky, taking from the set [0,1]. In particular, it holds
P®n(Uml = k) = P®N<Uml =ml — k)

§10.16 Proof of Proposition §10.15. see Georgii [2015] (Satz 11.26, p.342). O

§10.17 Remark. For small values of k the partition number N (k;m, () can be calculated by com-
binatorical means and there exists tables gathering certain quantiles of the U,,,;-distribution.
However, for large values of & the exact calculation of quantiles of the U,,;-distribution may be
avoided by using an appropriate asymptotic approximation. In the sequel we let m and [ and
thus n = m + [ tend to infinity, which formally means that we consider sequences (M, )nen
and (,)nen satisfying m,, + [, = n for any n € N. Here and subsequently we assume that
mp/n == ~ € (0,1) and hence I,,/n "= 1 — ~. For sake of presentation, however,
we drop the additional index n and write shortly n = m + [ with m/n 2% ~ and hence

n—o0

l/n —1—7. O

I'The version based on W, has been proposed by Wilcoxon [1945], while the U,,,;-version has been independently
be introduced by Mann and Whitney [1947].
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§10.18 Theorem. Form,l € Nandn := m+1 let P®" € W(AB"™) with identical marginal distribution

P < A, and hence continuous cumulative distribution function £ Consider U, : R™ — [0, ml]
and Ty - R" — R with x — Upy(z) := Zie[[m] Zje[m] 1ie,.,.y and

v To(x) =1 Hai)=m» Haigm) =1 (Ha:)=1/2)=m > (Raism)—1/2).

i€[m] €[] i€[m] €[]

Define further v, := ml(n + )/12 T*l =T/ /O and U, := (Upy — ml/2) /\/Om1. If in
addition m/n — v € (0,1) then U}, — T, = open (1) and T}, 4 Nio,1y under P®", and thus
U, % Nio,1) under P".

§10.19 Proof of Theorem §10.18. see Georgii [2015] (Satz 11.29, p.344). O

§10.20 Remark. Considering two independent samples (X;)iepm) ~ P®™ and (X4, )iepy ~ P set

n:=m+land X := (X;);cpn). Keeping Theorem §10.18 in mind we reject the null hypothesis

H, : B = P against the alternative H, : B < P, if Uy (X) < ml/2 4 24+/Usm With [EVW)(,ZQ) =

€ (0,1). This test is asymptotically a level-« test due to Theorem §10.18 by exploiting that

under the null P& (U, < ml/2 + 2or/Umi) s K. (20) = aform/n 7% v € (0,1).

Note that we reject similarly the null hypothesis H, : 2 = [P against the alternative H; : P < P

if Upy > ml/2 + 21_a\/Unu. Next we study the (asymptotic) size of the power of the rank test
under local alternatives where we use that under the assumptions of Theorem §10.18 it holds

v Un— ml /2 _ KX:)-1/2 KXiym)—1/2
ml /_Uml - n+1\ﬁ Z 1/1 n+1 Vi Z 1/1 +Op®n(1)

i€[m]

= /1—yVmB(g) - ﬁfﬂ?(g) + open(1) (10.1)
setting ¢ := V12(F — 1/2), B(g) := o > icfm) 9(X;) and Rg) = %Zie[[l]] 9(Xitm) where

B,(g) and P(g) are independent, P(g) = 0, and P(¢%) = 1 by construction. O
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Chapter 4

Nonparametric estimation

This chapter presents an introduction to nonparametric estimation of
curves along the lines of the textbooks by Tsybakov [2009] and Comte
[2015] where far more details, examples and further discussions can be
found.

§12 Introduction

Nonparametric density estimation. Consider for a non-empty set of parameters © a
family B of probability measures on (R, %) which contains the distribution of an observable
real random variable, X  B. The family R captures the prior knowledge about the distribu-
tion of the observation. For example, a family given by a set of parameters © containing only
one singleton, i.e., © = {0,}, and hence X ~ B for some probability measure B, € W(A),
means, the data generating process is known to us in advance. On the contrary, a parameter
set © = W(Z) reflects a lack of prior knowledge. A parametric model B for some parameter
set © C R* provides in a certain sense a trade-off between both extremes. In this chapter our
aim is to avoid an assumption of a finite dimensional set of parameters. For example, consider
{Xi,i € [n]} wp e W(Z), that is, an independent and identically distributed sample with
common probability measure P € YW(%). A reasonable estimator of the associated cumulative
distribution function (c.d.f.) F(¢) := P((—o0,t]), t € R, is the empirical cumulative distri-
bution function (e.c.d.f.) E(t) :== B((—oc,t]), t € R. For each t € R, [F(¢) is an unbiased
estimator of [F(¢) with variance Var(F, (t)) = LF(¢)(1 —F(t)). Consequently, F,(t) converges in
probability to F(¢), and thus it is a consistent estimator. Moreover, by the law of large numbers
(Property §02.05 (1)) the convergence holds almost surely in any point and also uniformly, by
Glivenko-Cantelli’s theorem, i.e., ||F, — F||». = o(1) P-a.s.. If we assume in addition that P
admits a Lebesgue density then [ is a unbiased estimator with minimal variance, by Lehman-
Scheffé’s theorem. However, comparing different probability measures using their associated
c.d.f.’s is visually difficult and as a consequence, other measures for dissimilarities are typi-
cally used. Consider, for instance, for two probability measures P and P on (R, %) their total
variation distance given by |P — B||ty := sup{|P(B) — B(B)|, B € #}. We note that for
any probability measure P € W(Z) admitting a Lebesgue-density we have |P — B||ry = 1
[P-a.s. for any n € N. As a consequence the empirical probability measure P is not a consistent
estimator of P in terms of the total variation distance. In other words, dependending on the
measure of accuracy (metric, topology, etc.) a different estimator of P might be reasonable.

§12.01 Lemma (Scheffé’s theorem). Let P,R € W(%) admit a p-density p and p,, respectively, for
some (1 € Mo (). Then |P — Bllrv = 30(lp — p.|) = 3llp — Rl £60)-

§12.02 Proof of Lemma §12.01. see Tsybakov [2009] (Lemma 2.1, p.70). O

In the sequel let D be the set of Lebesgue densities on (R, %), and hence D C ¥ =
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Z1(#,)\). P = p) and E, denote for each density p € D the associated probability measure
and expectation, respectively. We consider the statistical product experiment (R", " B®" =
(P )pep) and (Xi)iepn) © B®". Typically, for s > 1 we access the accuracy of an estimator p
of p either by a local measure, e.g. P*"(|p(t) — p(t)|°), for t € R, or by a global measure, e.g.
Pe"(|lp — plly,) = P="(A(Jp — p[*)), with a focus on the special cases s = 1 and s = 2.

Nonparametric regression. We describe the dependence of the variation of a real-valued
random variable Y (response) on the variation of an explanatory random variable X by a func-
tional relationship E (Y’X = x) = f(x) where f is an unknown functional parameter of in-
terest. For a detailed discussion of the case of a deterministic explanatory variable we refer to
Tsybakov [2009]. Here and subsequently, we restrict our attention to the special case of a real-
valued explanatory variable X, and hence, a random vector (Y, X) taking values in (R? %?).
The joint distribution of (Y, X) is uniquely determined by the functional parameter of interest
f, the conditional distribution of the error € := Y — f(X) given X and the marginal distribution
of X which are generally all not known in advance. However, the joint distribution is typically
parametrised by the regression function f only and we write shortly (Y, X) ~ P. Thereby, the
dependence on the marginal distribution B of the regressor X and the conditional distribution
of the error term ¢ given X 1is usually not made explicit. For sake of simplicity, suppose in
addition that the joint distribution 2 of (Y, X') admits a joint Lebesgue density p. Denoting by
p* the marginal density of X we use for the conditional density pyx of Y given X the P-a.s.
identity p* py;x = p (see Notation §03.11 (iii)) which allows for P-a.e. € R to write

ale) = f ") = E (4] = 20"
= /Ry[pyxl-(y)dpr(g;) = /yp(y,aj)dy. (12.1)

R

Consequently, the function of interest is P-a.s. given by f = q/p* which motivates the follow-
ing estimation strategy. Given a sample of (Y, X) estimate separately ¢ and p*, say by g and
p*, and then form a estimator f = § /p" (possibly in addition to be regularised). There are
many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel let
J be a family of regression functions and for each f € F denote by P’ and E, the associated
probability measure of (Y, X) and its expectation, respectively. We denote by P. the family of
possible distributions of (Y, X'), but keep in mind, that the distribution P of (Y, X) is gener-
ally not uniquely determined by f € F only. If {(Y;, X;),7 € [n]} form an independent and
identically distributed (i.i.d.) sample of (Y, X) ~ P then P®" = ®jc[,)? denotes the joint
product probability measure of the family ((Y;, X;))icpny. We write {(Y;, X;),7 € [n]} g P
or (Y, Xi))iepn) ~ P®" for short. We denote by 2*" := (P“")rcr the corresponding family
of product probability measures. For s > 1 we access also the accuracy of an estimator fof

<

[ either by a local measure, e.g. P*"(|f(t) — f(t)|*), for ¢ € R, or by a global measure, e.g.
Re(|lf — fll%,) = B="(A(|f — fI°)) with a focus on the special cases s = 1 and 5 = 2.

§13 Kernel density estimation

Throughout this section we consider the statistical product model (R", ", B*" = (P®")yep)

46 Statistics 2



§13 Kernel density estimation Chapter 4 Nonparametric estimation

and let {X;,i € [n]} S P = pA € W(%) be real-valued random variables with Lebesgue

density p e D C £ = X(% A)and c.df. E

§13.01 Definition. A function K € . with A(K) = 1is called a kernel. Given a bandwidth b € R,
and an evaluation point z, € R define K, (z,) € %, with z — K, (2,,2) := t K (%*3%). The

statistic p, (x,) := PK, (x,) € A" satisfying

1 i~ <o
" = (xz)ze[[n]} = [pb Los T Z K xmxl = nb Z K(x b - )

16 [[n]] i€ [[n]]

is called kernel density estimator of p(z,). O

§13.02 Remark. Since F(z +b) —F(z —b) = pA(Jx —b, x4+ b]) forany b € R, we have F(z+b) —
F(z —b) ~ p(z)2b for b sufficiently small. Replacing the unknown [ by its empirical counter
part [, Rosenblatt [1956] proposed for p(z) the estimator p, (x) € Z™ given by

FE(z+b,2") —E(z —b,z")
2b

=52 mlew(550) = 5 D SK(5) =5 ) Kl w)

i€[n] i€[n] i€n]

n

T = (xi)ie[[n]] = Pz, 2") =

setting K (t) := 31;_,,(t) for t € R. Observe that K is a density, which in turn implies that
r = p,(z,2")is a densr[y for each h € R} and 2" € R"™ as well. Parzen [1962] introduces a
kernel K and a bandwidth b as in Definition §13.01 and studies the more general kernel density
estimator p,(z) = BK, (), = € R. Note that A(p,) = 1 since A(K) = 1 by assumption. If the
kernel K is in addition positive, i.e. K € 9™, then p, is a density. An alternative motivation

for a kernel density estimator provides the following lemma. O

§13.03 Lemma (Bochner’s lemma). For b € R, x, € R and QQ € %, define Q,(x,) € 2, with
Qu (2o, 7) = £Q(222), x € R. If g € A is bounded, i.e., ||g|| #. < oo, and continuous in .,

then limy_, )\(ng(azo)) = g(z,) N Q).

§13.04 Proof of Lemma §13.03. is given in the lecture. O

§13.05 Example. Kernels typically considered are the rectangular kernel K (u) := 11, 1]( ), the tri-
angular kernel K (u) := (1—|u|)1;_, ;(u), the Epanechnikov kernel K (u) := 3(1—u?)1, ,(u)
or the Gaussian kernel K (u) := exp(—u?/2). O

ﬁ\“
3

Local measure of accuracy.
§13.06 Definition. The mean squared error of a kernel density estimator p,(z,) satisfies
mse(z,) = E*" [P, (z,) — p(z,)|* = var(z,) + |bias(z,)|* atapointz, € R
by introducing a variance and a bias term, respectively,
var(z,) := E?"|p, (o) — EZ"Py(20)|°  and  bias(z,) := EZ"P,(z0) — p(o). 0

In the sequel we analyse separately the variance and bias term.
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§13.07 Lemma. Letp € £, and K € £, N2, with \(K) = 1. For eachz, € R, h € R, andn € N
we have var(z,) < (nb)7!||pl|le. [ K%,

§13.08 Proof of Lemma §13.07. is given in the lecture. O

§13.00 Remark. Let p € £, be continuous, and suppose that K € %, N %, satisfies A\(K) = 1.
By Lemma §13.07 var(z,) < (nb) '||p|l«.[|K]||%. On the other hand, since bias(z,) =
ApK,(x,)) — p(x,) from Bochner’s Lemma §13.03 follows |bias(z,)| = o(1) as b — 0.
By combining both results, we obtain for any sequence (b, ),en of bandwidths satisfying 1 =
o(nb,), i.e. nb, — oo, and b, = o(1) that mse(z,) = o(1) as n — oco. As a consequence, the
kernel density estimator is consistent, but its rate of convergence might be arbitrarily slow. Here
and subsequently the bandwidth depends on n but we drop from now on the additional index n
and write shortly 1 = o(nb) orb = o(1) as n — oo. 0.

$13.10 Lemma. Let p be twice-differentiable with second derivative p € Z.. If K,id3K € 2,
AMK) = 1and M(idg K) = 0, then |bias(z,)| < b2 |||l A(idg |K]|) forall z, € R, b € R,

\0°

§13.11 Proof of Lemma §13.10. is given in the lecture. O

§13.12 Remark. Let p € Z, be twice-differentiable with second derivative p € %, and suppose
that K € 4 N %, satisfies id3 K € %, AK = 1 and A(idg K) = 0. By combination of
Lemmata §13.07 and §13.10 follows for all b € R, n € N and uniformly for all z, € R

\0?
mse(z,) < (nb) ! Ipll.e. | K%, + b* 1Bl (A(dz|K]))%.

The first and second term on the right hand side is increasing and decreasing, respectively, as h
tends to zero. Therefore, let us minimise the right hand side as a function of b. Keep in mind
that M (b) := a(nb)~'+cb*, b € R, attains its minimum M (b,) = b(5%; )1/ @8+ =26/ (25+1)

\0?
at bo = (2LBC)1/(2,3+1)TZ*1/(25+1)_ Thus’ ChOOSing bo — (”[p"‘!pHZg;\c(”dJl?I))Q )1/5 1/5 we obtain
Loo MR

4/5 _
sup mse(z,) < §(IBl%. A1z [K))*) ™ (Ipll2o [1K11%,)° n=/°.

To€

We shall emphasise that the optimal bandwidth b, depends not only on the kernel but also on
characteristics of the unknown density p, and hence, it is in general not feasible in practise. 0

§13.13 Lemma. Letp € %, be continuous in x,and K € ZN. 4 NZL, with A\K = 1. If1 = o(nb)
andb = o(1) as n — oo, then \/nb(p,(z,) — E*"p,(z,)) 4 N(02) with 0% := p(x,) A\ (K?).

§13.14 Proof of Lemma §13.13. is given in the lecture. 0

§13.15 Remark. In addition to the assumptions of Lemma §13.13 let p be twice-differentiable with

second derivative p € £, continuous in x,, and let id?RK € % with A\(idgr K) = 0. Then,
b~?bias(z,) = ip(z,)A(idgK) + o(1) as b — 0 by Bochner’s Lemma §13.03. Therefore,

setting p := CSQ/Q[b(xO))\(id?RK) we have \/nbbias(z,) = p + o(1) as bn'/* — ¢ € R}, and
thus v/nb(p,(z,) — p(z,)) 4, N0 due Lemma §13.13. Moreover, we conclude similarly

Vb (B, () — p(0)) B Nigp2y, if bn'/5 = o(1). 0
$13.16 Definition. A kernel K satisfying in addition id} K € .%, and \(id}, ) = 0 for each j € [I] is
called a kernel of order | € N. 0
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§13.17 Remark. For arbitrary [ € N the construction of a kernel of order [ and several examples are
given, for instance, in Tsybakov [2009], section 1.2.2, or Comte [2015] section 3.2.4. O

§13.18 Notation. We denote by | /7| the greatest integer strictly less than the real number /. O

§13.19 Definition. For 3, L € R the Holder class H(/3, L) on R is a set of [ = | 3] times differen-

\0
tiable functions f : R — R whose derivative f() satisfies | (z) — f®(y)| < L]z — y|*~* for
all z,y € R. O

§13.20 Lemma. Suppose that p € H(B,L) and let K be a kernel of order | = || satisfying
idr|°K € Z,. Then, |bias(z,)| < b’ £\ (|ids|?|K]) for each z, € R, b € R}, and n € N.

§13.21 Proof of Lemma §13.20. is given in the lecture. O

§13.22 Remark. Let p € H(5, L) and suppose that K € %, is a kernel of order [ = || satisfying
in addition |idR|'8 K € Z,. By combination of Lemmata §13.07 and §13.20 we conclude that
uniformly for all z, € R

— . 2
mse(z,) < (nb) 7 [pllz A KP) +b* (FAGdr|’| K1)

Minimising the right hand side as a function of / leads to an optimal bandwidth b, = ¢n~1/(25+1)
with constant given by ¢**™1258(£\([idg|?| K1))? = ||p|| 2. A(| K])?. Consequently, by choosing
the optimal bandwidth b, we have sup, .z mse(z,) = O(n~2#/(2#+1) However, the optimal
bandwidth b, depends again on characteristics of the unknown density p, and hence, it is gen-
erally not feasible in practise. O

§13.23 Theorem. Suppose that p € H(S,L) and let K € £, be a kernel of order | = | 3] satisfying
in addition |idg |°K € Z,. Fix c € R, and set b, := en~ YY) then for alln € N

sup  sup  EP|p,.(z,) — p(z,)|* < Cn 2/GFHD
2o€R peH(B,L)ND

where C' € Rt

., is a constant depending only on 3, L, c and on the kernel K.

§13.24 Proof of Theorem §13.23. is given in the lecture. O

Global measure of accuracy.
§13.25 Definition. The mean integrated squared error of a kernel density estimator p, € .%, satisfies
mise := EZ"||p, — p||%, = A(var) + A(|bias|?) for a density p € %
using the variance and bias term as in Definition §13.06. O

We study now separately the integrated variance and bias term.

§1326 Lemma. Let K € £ N %, with \(K) = 1. We have X(var) < (nb) ' K||%, for any density
p, b€ R andn € N.

§13.27 Proof of Lemma §13.26. is given in the lecture. 0
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§13.28 Definition. For 3, L € R, the Nikol’ski class N'(3, L) on R is a set of [ = | 3] times differen-
tiable functions f : R — R whose derivative f) satisfies || f)(e + 1) — f?| & < L[t|?~! for
allt € R. O

§13.29 Lemma. Suppose that p € £, NN (B, L) and let K be a kernel of order | = | 3] satisfying
lidg|°K € Z,. Then we have ||bias|| z, < b £X(|id|’|K]) for each b € RY, and n € N,

§13.30 Proof of Lemma §13.29. is given in the lecture. O

1331 Remark. Letp € 4 NN(5,L) and let K € %, be a kernel of order [ = |3] satisfying
lidr|’ K € .%,. By combination of Lemmata §13.26 and §13.29 follows

mise < (nb) | K%, +b* (FA(Jide |’ K1))".

Minimising the right hand side as a function of b leads to an optimal bandwidth b, = ¢n~%/(2#+1)
with constant given by ¢**™128(£\(|ids|?|K]))* = A(K?). Consequently, by choosing an op-
timal bandwidth b, we have mise = O(n=2%/(28+1)) However, the optimal bandwidth b, de-
pends again on characteristics of the unknown density p, and hence, is in general not feasible
in practise. O

§13.32 Theorem. Suppose that p € £, "N (B,L) and let K € %, be a kernel of order | = |f3]
satisfying in addition |idg|° K € .Z,. Fix c € R', and set b, = cn™Y/*+Y then for all n € N

ES" ||, — pll%, < Cn 204D,
where C' € R{ is a constant depending only on (3, L, c and on the kernel K.

§13.33 Proof of Theorem §13.32. is given in the lecture. O

Data-driven bandwidth selection.

§13.34 Oracle choice. Considering mise(b) := E®"||p, — pl|%, of a kernel density estimator p, the
choice of the bandwidth b is crucial. For instance, an ideal value b, of the bandwidth satisfies
mise(b,) = inf{mise(b) : b € R} }. Note that for a given density p, the estimator p,,, if b,
exists, has minimal mise(b,) w1th1n the family {p, : b € R} of all kernel density estimators
with fixed kernel and varying bandwidth. Unfortunately, mise(b) = E°"||p, — p||%, depends
on unknown characteristics of the density p. Therefore, both the bandwidth b, and the kernel
density estimator [p,, remain purely theoretical and thus they are often called oracle. m

§13.35 Cross validation. A common idea is to minimise a unbiased estimator rather than mise(b) =
J(b) + A(p?) with J(b) := EZ"{\(p?) — 2\(pp,)}. We observe that A(p) does not depend
on the bandwidth b and hence, the oracle choice b,, if it exists, satisfies .J(b,) = min{.J(b) :
b € R }. To construct a unbiased estimator of J(b) it is sufficient to estimate E®"\(p?) and
E2"A\(p.p) without bias. Obviously, A(p?) is a unbiased estimator of ES"\(p?). For z € R,
i € [n] and 2" = (2)icp € R™ we consider P, (z,2") 1= 29 3 icpup iy Ko (2, 25), and
(I]/?\;(ﬁ;)) (zm) =1 D icpn) By (i, 2™), hence p,*(z) € #" and P(p:') € 2", where the latter
by construction is an unbiased estimator of E®"A(p,p). Note that for each i € [n] the i-th
coordinate map z" — I (z™) := z; and [p," are independent in a statistical product experiment,
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which in tun implies, that 2™ — p;*(z;, 2™) is a unbiased estimator of E*"(p,p). To sum-
marise, for each b € R, the (leave-one-out) cross-validation criterion J(b) := A(p2)— %@(ﬁ;l)
is an unbiased estimator of J(b), i.e., J(b) = [Ef”j (b). Recall, that the oracle b, minimises
both mise(b) and E*"{ J(b)} over b € R . Therefore, a reasonable and feasible choice b of
the bandwidth, if it exists, satisfies .J| (B) = min{J(b),b € R*}. Finally, we define the cross-
validation estimator p;. Note that p; is a kernel density estimator with random bandwidth b

depending on the sample only. Under appropriate conditions the mise of the estimator pj is
asymptotically equivalent to that of the oracle kernel density (pseudo)-estimator p,,. O

§14 Nonparametric regression by local smoothing

Here and subsequently, we consider a statistical product experiment (R?*", 2", P*") as intro-
duced in Section §12. Let {(Y;, X;),% € [n]} be an ii.d. sample of (Y, X) ~ P. Introducing
the coordinate maps IT,, I, € %* with (y,x) — IL(y,z) := y and (y,z) — I (y,z) := =
we tactically identify Y and X with IL, and II,, respectively, and thus, (Y, X) with the iden-
tity idg=. We denote by B the marginal dlstrlbutlon of the regressor X and by E, (Y|X ) a
conditional expectation of Y given X (see Section §03).

§14.01 Assumption. The random vector (Y, X) € (%?)? obeys P-a.e. a nonparametric regression
model E,(Y'|X) = f for some unknown regression function f € F.

(NPR1) The error term € := Y — f(X) has a finite second moment, i.e., ¢ € .Z,(P), and hence,
E,(e) = 0. We set 62 := E,(¢°). The error term ¢ and the explanatory variable X are
independent.

(NPR2) The joint distribution P of (Y, X) admits a joint Lebesgue density p € (%*)7, i.e.
p = dP/d)\*> and P = p)®. Denote by p* the marginal density of X. Using for the
conditional density p, of Y given X the P-a.s. identity p*pyx = p (see Notation §03.11
(ii1)) define q := fp™* asin (12.1). O

§14.02 Heuristics. Given a bandwidth b € R and evaluation points y,, r, € R define K, (yo) and
K, (x,) as in Definition §13.01. The statistic P, (Yo, z,) := B (K, (Yo, V) K, (z,, X)) € B*",

(y7$)n = ((yl?xl))le[[n]] = pb(QOaxm y,r Z K y07yl moaxz)

i€n]

is a kernel density estimator of the joint density p € %, (\?) evaluated at (y,, x,). Exploiting
A(K) = 1 the marginal p} (z,) := BK, (20, X) := [ P(¥o, To)dyo, € A" is a kernel density
estimator of the marginal density p* € ., evaluated at =, € R. Keeping (12.1) in mind we
estimate q(x,) by replacing the unknown density [ by its kernel estimator p,, that is, g, (z,) :=
Jr YoP (Yo, o) dy, € ZB*". If the kernel K is in addition of order 1, i.e. A(idg K) = 0, then we

have q, (z,) = B(Y K, (2., X)) where @, (z,, (y, 2)") = %ziem v Ky, (o, x;) forall (y, z)" =
((yiaxi))ie[[n]] € R, O

§14.03 Definition. Given a kernel K of order 1, a bandwidth b € R

\0?

and an evaluation point x, € R
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the statistic f,(z,) := & (I") s T,)|) € %" defined for all (y,z)" € R*™ b
[N y

n ﬁb(:poa (y>$)n) Kb(xoaxi)
fol@o, (y,2)") = =c———55 = > v ,
Zje[[n]] Ky (20, 7;)

lf |[ﬁf(xm (y7 ) )| € |R\U

i€[n]

and f(z,, (y, z)") = 0 otherwise, is called Nadaraya—Watson estimator of f(z,). O

Local measure of accuracy.

§14.04 Comment. We make use of the properties of a kernel density estimator derived in Section §13
in order to analyse the estimator p} of p*. As a consequence, it remains to consider the estima-
tor g, of . We consider first its mean squared error at a given point x, € R , that is,

mseq (2,) = EZ"|q,(2,) — q(2,)]> = varg(z,) + |biase(z,)|?
by introducing a variance and a bias term, respectively,

varg(z,) == [Ef?”ﬁb(xo) — [Elf?"@h(xo)F and biasy(z,) = [E®"q1h(xo) q(z,).

In the sequel we analyse separately the variance and bias term. O

§14.05 Lemma. Under Assumption §14.01 let f,p* € £, and K € £, N %, with \(K) = 1. For
each z, € R, b € R} and n € Nwe have varg(z,) < (nb) (|| flI%. + o2) ¥, I K%,

§14.06 Proof of Lemma §14.05. 1s given in the lecture. O
Recall the Definitions §13.16 and §13.19 of a Holder class and a higher order kernel.

§14.07 Corollary. Under Assumption §14.01 let q € H(S, L) and let K be a kernel of order | = | 3]
with |idg | K € Z,. Then, |biasq(z,)| < b’L\(|idr|?|K]) for each z, € R, b € R, n € N.

\0?

§14.08 Proof of Corollary §14.07. Due to the identity biasq(x,) = A (K, (z,)q) — q(z,) the assertion
follows immediately from Lemma §13.20 (replace the density p by q). O

§14.00 Remark. We note that f, p* € £, implies q = fp* € Z,.. Suppose that q € H (S, L) and
let K € %, be a kernel of order | = [3] with |idg|°K € .%. Combining Lemma §14.05
and Corollary §14.07 we have

— . 2
sup mseq (z,) < (nb) " (IfI%, + o) Ip*ll2 1K1, + % (FA(del?| K1) (14.1)

ToER

Suppose further that p* € H(f, L), then combining Lemmata §13.07 and §13.20 an upper
bound of mse,x (1,) := E&"|p (z,) — p*(x,)|? is given by (see Remark §13.22)

sup mscyx (z,) < (D) B L 1K1 + b (A (ida | 1) (142)

Therefore minimising the right hand side in eqs. (14.1) and (14.2) as a function of b leads to an
optimal bandwidth b, = ¢n ="'/t with constant ¢ € R}, depending on f, p* and K. O

§14.10 Proposition. Under Assumption §14.01 suppose that q,p* € H(B,L) and let K € %, be a
kernel of order | = | 3] with |[idg|° K € 4, Fixc € R, and setb, = ecn™/25+)_ IfpX(x,) > 0

\0
then |f, (z,) — f(zo)]* = Oﬂ})@ﬂ (n=26/(26+1),

52 Statistics 2



§14 Nonparametric regression by local smoothing Chapter 4 Nonparametric estimation

§14.11 Proof of Proposition §14.10. is given in the lecture. O

§14.12 Remark. It is straightforward to show that under similar assumption as used in Lemma §13.13
the asymptotic normality of g, (z,) holds true, which due to Slutky’s lemma §02.10 allows then
to establish the asymptotic normality of f, (z,). 0.

Global measure of accuracy.

§14.13 Comment. We make use of the properties of a kernel density estimator derived in Section §13
in order to analyse the mean integrated squared error of the estimator p* under the additional
assumption p* € .%,. As a consequence, it remains to study the estimator @, of q € %, where

miseq = EZ"[[G, — al%, = A(vary) + A(|biasq|?)

using the variance and bias term as in Comment §14.04.

O

We study now separately the integrated variance and bias term.

§14.14 Lemma. Under Assumption §14.01 let f € Z,(B,) and K € £, N %, with \(K) = 1. For all
b € R and n € N we have \(varg) < (nb) 'o% || K|%, with oy :=E,Y? = B(f?) + 02

§14.15 Proof of Lemma §14.14. is given in the lecture. O
Recall the Definitions §13.16 and §13.28 of a Nikol’ski class and a higher order kernel.

§14.16 Corollary. Under Assumption §14.01 let q € £, NN (B, L) and let K be a kernel of order
I = |B] with |idg|’ K € 4. Then, ||biasq| s < b EX(|idg|?|K]|) forallb € R, n € N.

\0?

§14.17 Proof of Corollary §14.16. Making use of the identity biasq(z,) = (K, (z,)q) — q(z,) and
replacing g by the density p the assertion follows immediately from Lemma §13.29. O

§14.18 Remark. Let f € Z(R), q € L NN(B,L) and let K € %, be a kernel of order | = |3
satisfying |idg|° K € %,. Combining Lemma §14.14 and Corollary §14.16 we have
miscq < (nb) 07| K%, + b (EA(lida | K))” (14.3)
Suppose further that p* € £,NN (8, L), then combining Lemmata §13.26 and §13.29 an upper
bound of misec,x := ES"||pX — p*||%, is given by (see Remark §13.31)
misepx < (nb) MK |2, + b2 (2A(Jide|’|K]))”. (14.4)

Therefore minimising the right hand side in eqs. (14.3) and (14.4) as a function of b leads to an
optimal bandwidth b, = ¢n~'/(%*1) with constant ¢ € R}, depending on f, p* and K. O

In order to derive an upper bound for the mise of ﬁ we use in the next assertion a regularised
version which makes use of a stronger assumption, that is, p* (x) > p, for all z € A, for some
known constant p, > 0 and measurable support A € ZA.

§14.19 Proposition. Under Assumption §14.01 suppose that [ € £,(B,), q,p* € L NN (B, L) and
let K € %, be a kernel of order | = || satisfying |idr|° K € Z,. Assume in addition that
p*(x) > p, for all x € A, for some known constant p, > 0 and set A € AB. Consider the
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regularised Nadaraya—Watson estimator fbo(x) = (z ]l (5 @)>p/2) forallx € A. Fix c € R,

and setb, = cn=/ @Y then for all n € N

.Q)

ES"(|(f2 — )15, < Cn—28/G0H0)]

where C' € R, is a constant depending only on (3, L, c, p, and on the kernel K.

§14.20 Proof of Proposition §14.19. is given in the lecture. O

Local polynomial estimators.

§14.21 Heuristics. Let the kernel K’ take only values in R*. Itis then easily verified, that the Nadaraya—
Watson estimator fb € %" as in Definition §14.03 satisfies

-~

fb(wm (yv x)n) € arg inf Z (yz - Q)ZKb(woa xz)

9eR i€n]

Therefore, ﬁ is obtained by a local constant least squares approximation of the responses {y;}.
The locality is determined by the kernel K that downweights all the x; that are not close to
x, whereas 6 plays the role of a local constant to be fitted. More generally, we may define a
local polynomial least squares approximation, replacing the constant # by a polynomial of a
pre-specified degree. O

§14.22 Definition. For m € R consider U : R — R 2 — U(2) = (1,2,22/2!,...,2™/m!). Let
K :R — Rbeakernel and b € R?, be a bandwidth. A random vector 0(x,) € #™ " satisfying

o, (y,2)") € arg inf 7 (3 — 0V (2522) K (2, 2).

eRm+ i€n]
is called a local polynomial estimator of order m of 0(z,) = (f(x,), bf(:vo), b M (2,)).
The statistic f,(z,) = U*(0)0(x,) is called local polynomial estimator of order m of f(x,). ©

§14.23 Remark. Note that fb(xo) is simply the first coordinate of the vector 5(3:0) Obviously, the
Nadaraya—Watson estimator with non-negative kernel is just a local polynomial estimator of
order zero. Furthermore, properly normalised coordinates of (z,) provide estimators of the
derivatives f (20), f (o), ..., f™(z,). For theoretical properties of local polynomial estimators
and their detailed discussion we refer to Tsybakov [2009], section 1.6. O

§15 Sequence space models

In the sequel we study nonparametric estimation of a functional parameter of interest 6 based
on a noisy version 0 = 6 + n~Y/2Wof 6 contaminated by an additive random error W with
noise level n~'/2. The quantity n € N is usually called sample size referring to statistical
problems where the noisy version € is constructed using a sample of size n. For convenience, we
eventually consider the measure space ([0, 1], %,.,,, \,,,) where A, denotes the restriction of the
Lebesgue measure to %,,. We exemplary suppose that the function of interest 6 : [0,1] — R
is Borel-measurable, i.e. 0 € %,,. In addition we assume that § € %, := Z(B,,, A\oy)
and thus # permits an orthogonal series expansion. With a slight abuse of notations we write
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shortly A := \,, and .%Z, := Z.(AB,,,\) for s > 1 (see Notation §01.03). In Section §17
below we briefly recall theoretical basws and terminologies from functional analysis which
allow us to formalise the statistical experiment as a sequence space model. Throughout the
following sections we illustrate the results using three particular models, namely, nonparametric
regression with uniformly distributed random design, nonparametric density estimation and a
Gaussian sequence space model.

§15.01 Nonparametric density estimation. Let D, be a set of square-integrable Lebesgue densities

§15.0

£

n ([0,1], %,,), and hence D, C &, = Z,(%,,,\). B = pA and E, denote for each density

p € D, the associated probability measure and expectation, respectively. We consider the
statistical product experiment ([0, 1]", 2" | B*" = (P“"),ep,). Since p € £, we have P(|h|) =
A(|R|p) < [|h]lzllplle < ooforall b € £, and thus £, C Z(P) in equal. We write shortly
p. = A(hp) = pA(h) = P(h). We note that p € %, is uniquely determined by the family
(Pu)hez up to A-as. equality (see Example §17.03 (d)). For each h € %, the statistic p, :=
Rh e A with 2™ = (2;)ic[n] — Pu(2™) = %Zie[[n]] h(xz) is an unbiased estimator of p,. The
centred statistic 11 := n/2(Ph — P(h)) € 2 ,ie. W, € Z(P®") with P*" (1)) = 0, satisfies
Pr=p.+nY 21 by construction. Considering the families p := ([, )nc.«, and W= (W);Le &
of real-valued random variables defined on the common probability space ([0, 1]", %7, ,P*")
we write shortly p = p + n~ /211 meaning that, p, = p, + n~ /21 for all h € %, O

Nonparametric regression. Let (Y, X) € (%?)? obey P-a.e. a nonparametric regression
model E,(Y|X) = f satisfying the Assumption §14.01 (see section §14). For convenience,
in addition the regressor X is supposed to be uniformly distributed on the interval [0, 1], i.e
X ~ Up,). As a consequence, we have p* = 1, and Z,(B) = £ (%B,.,\) = Z. Let
us denote in this situation by U, the joint distribution of (Y, X), but keep in mind, that the
conditional distribution of the error term given X is still no specified. The regression function
f € A,, is assumed to be square integrable, i.e., f € .Z,. Recall that by Assumption §14.01
(NPR1) the centred error term ¢ = Y — f(X) and the explanatory variable X are indepen-
dent. Identifying again Y and X with the coordinate map IL. and II_, respectively, we have
fi == AMhf) = B(fh) = U,(Yh(X)). We note that [ € %, is umquely determined by the
family ( fi)nes, up to A-a.s. equahty (see Example §17.03 (d)). For each h € %, the statistic

fi=B(Yh(X)) € 2% with (y,2)" = (s, )i = (4, 2)") = £ 3,y vih(w:) is an
unbiased estimator of f,. The centred statistic 11 := n'/?(B(Yh(X)) — U,(Yh(X))) € 2>,
ie. W e Z(Up) with UJ?"(VZ) = 0, satisfies ﬁ = f,+n"'/21¥ by construction. Considering
the families f := (f,) hew, and W:= (]),c, of real-valued random variables defined on the
common probability space (R*", %", U") we write shortly f = f+ n~Y21}, meaning that,
fr=fo+n 2V forall h € %, O

Stochastic process on Hilbert spaces.

Here and subsequently, (H, (-, -)u) and &/ denotes a separable real Hilbert space and a subset
of H, respectively. Considering the product spaces R¥ = X,y R and RY = X,/ R the
mapping I, : R¥ — RY given by y = (yn)hew — (Yu)uew =: 1Ly is called canonical
projection. In particular, for each A € H the coordinate map II, := 1T, : RY — R is given
by v = (Yn)wen — yn =: ILy. Moreover, R" is equipped with the product Borel-c-algebra

BN = R,y B Recall that B equals the smallest o-algebra on R" such that all coordinate
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maps IL, h € H are measurable. i.e., Z°" = o(IL, h € H).

§15.03 Stochastic process on H. Let (Y,),en be a family of real random variables on a common
probability space (0, o7, P), thatis, Y, € & for each h € H. Consider the R"-valued random
variable Y := (Y;)nen where Y : Q@ — RM is a &7-%®"-measurable map given by w
(Y, (w))nen =: Y(w). Yis called a stochastic process on H. Its distribution P¥ := P o Y ! is
the image probability measure of P under the map Y, i.e. ¥ ~ [P* for short. Further, denote by
P =PoY, ! = PYoll,' the distribution of the stochastic process V,, := ILY = (Y,)ueu
on U. The family (P*“)ych finiee 1S called family of finite-dimensional distributions of Y or PY.
In particular, P = P™ = PY o II"" denotes the distribution of Y, = I Y". Furthermore, for
h,h, € Hwe write P(Y,) = P*(Il,) and Cov(Y,.Y, ) := PY((II, — PY(IL,))(II, — P¥(IL, ))), if
it exists, for the expectation of Y, and the covariance of Y, and Y, with respect to P”. m

§15.04 Definition. Let Y := (Y,)nen ~ P be a stochastic process on H. If P(]Y,]) < oo, i.e.
Y, € Z(P)orll, € Z(PY) in equal, for each » € H, then the functional m : H — R
with b — m(h) := P(Y,) is called mean function of Y. If the mean function is in addition
linear and bounded, that is, m € L (H,R) (see Definition §17.22), then due to the Fréchet-Riesz
representation theorem (Property §17.23) there exists # € H such that m(h) = (¢, h)y for all
h € H. The element P (") := P¥(idy) := 6 is called H-mean or expectation of Y (or PY). If
P(|Yn|?) < oo, ie., Y, € L(P)orIl, € %(PY) in equal, for each h € H, then the mapping
cov : H* — R with (h,h,) — cov(h,h,) := Cov(Y,,Y, ) is called covariance function of Y.
If the covariance function is in addition a bounded bilinear form, then there is [' € L(H) such
that cov(h, h,) = (Uh, h,)w = (h,Th,)y for all h, h, € H. The operator I" is called covariance
operator of Yor P”. If Yadmits a mean function m and a covariance function cov then we write
shortly Y ~ B, ... If there is a H-mean § = P(Y) € H and a covariance operator I' € L(H) we
write Y ~ B, ., where for h, h, € H the covariance of Y, and Y, equals I, := (h,T'h,)y, and
Y, — (h, )y has mean zero and variance [, i.e. ¥, — (h,0)y ~ B, . O

h,h

$15.05 Remark. A covariance operator I' € [L(H) associated with a stochastic process Y ~ PY on H is
self-adjoint and non-negative definite, i.e. [' € [(H) (see Definition §17.28 (e)). O

§15.06 Notation. Given a measurable space (€2, .o/, u) introduce the p-equivalence class {h}, =
{h,€ o/ : h =h, p-ae.} forh € of. Fors € R define the set of equivalence classes L(p):=
Lo/, p) = {{h}, : h € L(fo)} and [{h}, ) = Bl for {h}, € Li(u). For
s = 1, (Ly(w), ||li.u)) is @ normed vector space. Formally, we denote by {e}, : .Z, (1) —
L,(x«) the natural injection h ~ {h},. In case s = 2 the norm [[{h}, |, = 1Ml =
(1(Jh[*)"/? is induced by the inner product ({h},,{h.},) = ({h}., {h} )L = w(hh,),
and hence (IL,(1t), (-, -)1,(u)) is a Hilbert space. If A\ = 1 is the Lebesgue-measure then we write
shortly (L., (-.-); ) and {e} : £, — L,. Similarly, given a set D, C %, = Z,(HB,., \oy) Of
square-integrable Lebesgue densities on ([0, 1], %, ), we write D, := {{p},p € D,} C L, =
L,(A,.;, \oy) for short.

§15.07 Nonparametric density estimation (§/5.0/ continued). Consider on .%, the stocllastic process
P = (P:)nesy, of real random variables defined on ([0, 1], 2! ,°") by p, := Bh € %], for

[0,1] 0,1

each h € .Z,. We introduce a stochastic process (P, ){x}eL, on L, given by py,, := p, € A,
for {h} € L,. Note that for each h, € {h} we have p, = p, A"-a.s. and thus also P®"-a.s..
As usual we identify h with its equivalence class {h} and write shortly p = (p,)ner, With

~

P, = @h € %, for each h € L,. Meaning, that for each h € L, there is h, € {h} C &

0,1
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with p, = Bh, € 4, and hence p, is unique only up to \"-a.s. equality. However, given
the image probability measure P®" o p~' for each i € L, we have p, = Ph € Z(Pe)
since ., C Z(P) dueto p € D, C %, . As a consequence, P = (P.)neL, admits a mean
function m, : L, — R satisfying m,(h) = P®"(p,) = ﬂg‘@”(@h) = pA(h) = (p,h), = pu
for all h € L,. Moreover, p (more precisely the A-equivalence class {p}) is the [,-mean of
the stochastic process P = (P )new,- Introduce similarly the stochastic process W:= (11]) e,
on L, given by W := n'/?(p, — (p, h)i,) € A", for h € L,, which allows us to write shortly
P = p + n /211, meaning that, p, = p, + n /21} for all h € L,. Since W] € Z,(P®") has
mean zero for each h € L, the [L,-mean of Wequals zero. If in addition ||p|». < oo, then we
have P(|2]*) = A(|A’p) < |Ipl2.||R]|%, < oo for all h € Z, and thus 2, C Z,(P) in equal.
As a consequence for each h € L, we obtain p, = RPh € Z,(P*") and, hence W] € Z,(P*")

by construction. The covariance function of W:= (W} )ey, is given by

(B, h,) = cov,(h, h,) := Cov(W;, W) = A(phh,) — A(ph)\(ph,)
= B((h = (p, h)r)(h, = (P, h)1.)) = nCov(p,, ps.)-

Consequently, we have W~ Fo.cor,) and pP=p+ n~Y2W ~ B, 1 oy, Introduce the multi-
plication operator M, : B, — A, given by h — M,(h) = hp. If ||p|le < oo, then
M, € L(L,) (see Example §17.21 (b)). This allows us to write A(phh,) = (M,h, h,)r, for all
h,h, € L,. Moreover, consider | := 1, € %, which trivially belongs to L, for any s € R
In particular, since L, C L, (indeed A(|2|) < || 1|, |2, = |||, < oo for all h € L,) we
have (h,1);, = A(h) for all h € L, and r1 := {al,a € R} = lin{1}. Consider further
the operator 11, € L(L,) defined by I i := (h,1),1 = A(h)1 for all h € L,, which is an
orthogonal projection (see Definition §17.28 (f) and Example §17.30 (a)). This allows us to
write A(ph)A(ph,) = (Mph, 1), (1, Myh, )i, = (IL, Myh, Mph, ), = (MIL,M,A, h,)i,. Sum-
marising, if p € D, NL, then I* := M, — M, II M, € [F(L,) is the covariance operator of
W, since cov, (h, h,) = (I®h, )y, for all h, h, € L,. We note that ||T*||,., < ||p|/._ by using
(h, B, = pA((R — pAIR))E) = PA(R?) — (PAR))? < A(ph?) < [lplu. forall h € L,
with [|h]|f, < 1 together with Property §17.29 (i). Consequently, we have W ~ Byp, and
P=p+nPW~ P, i, 0

§15.08 Nonparametric regression (§/5.02 continued). Consider the stochastic process f: (ﬁ) hel, ON
L, of real valued random variables defined on (R?", %", U?") by fo = B(Yh(X)) € &
for each h € L,. Here, we identify h again with its equivalence class {h} as discussed in
details in Example §15.07. Given the image probability measure U?" o f_l foreach h € L,
we have f, = B(Yh(X)) € Z(U") by using Yh(X) = (¢ + f(X))h(X) € Z(U,) under
Assumption §14.01 (NPR1). Indeed, since f € %, C %, we have fh € L, foreach h € L,
and U (|leh(X)]) = U,(le[)A(|h]) < oo by Assumption §14.01 (NPR1). As a consequence F
admits a mean function m; : L, — R satisfying m(h) = Uf®"(ﬁ) = Uf®”([IA3,;(Yh(X))) =
A(fh) = (f,h), for all h € L,. Moreover, f (more precisly the A\-equivalence class {f}) is
the L,-mean of the stochastic process f: (ﬁ) nel,- Introduce similarly the stochastic process
W= (W)ner, on L, given by W, := n'/2(f, — (f,h),) € %> for h € L,, which allows
us to write shortly f = f + n~Y/21i] meaning that, f, = f, + n~Y/21i] for all h € L,. Since
W e Z(U?") has mean zero for each h € L,, the [L,-mean of Wequals zero. If in addition
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| fll.z. < oo, then we have Y'h(X) = (¢ + f(X))h(X) € Z,(U,) under Assumption §14.01
(NPR1). Indeed, we have U,(f*(X)h*(X)) = A(f?h*) < ||fII%_|IR||, < oo forall b € L,
and U, (e°h*(X)) = oZ||h||f, < oo by Assumption §14.01 (NPR1). As a consequence for all

h € L, we have f, = B(Yh(X)) € Z,(U7") and, hence W, € Z,(U7") by construction. The
covariance function of W:= (W) nel, 18 under Assumption §14.01 given for all h, h, € L, by

covy(h, h,) := Cov(W, W) = U,(Y?h(X)h,(X)) — U(Yh(X))U,(Yh,(X))
= o2(h, h)E, + (fh, [, — (G (f b, = nCov(fi, ).

Consequently, if ||f|l». < oo, then we have IV ~ P, o0.cov) and f f+nY2W~P Pyt con)-

Moreover, as in Example §15.07 both the multlphcatlon operator M; due to || f||#. < oo and
the projection operator II, belong to L(L,). Furthermore, introducing the orthogonal projection
I :==1idy, — I, € L(L,) allows us to write

covy(h, h,) = o2, h,)i, + (Ml Myh )i, — (LMl Myh, )i,
= (oZidi, h, h,)¢, + (ILMh, Myh )y, = ((02idy, + MITEM) R, B)E

Summarising, under Assumption §14.01 if f €L, NL, then TV := ¢Zid;, + ML M, € I*(L,)
is the covariance operator of W, since cov,(h,h,) = (I'h, ha)[L2 for all h,h, € [I_2. We note
that || TV, < o2 + HfHH_ by using (IVh, h)y, = oZ[|hlf, + [TLMAE, < o2 + [M/IE,,
forall h € L, with |||, < 1, and ||[M;|low, < || flli. (see Example §17.21 (b)) together with
Property §17.29 (i). Consequently, we have 7/~ B, and f=f+n2W~ Bt O

§15.09 Notation. In the sequel we exploit the Hilbert space structure of L, which guarantees the exis-
tence of an orthonormal basis (ONB) U C L,. An ONB is an orthonormal system (ONS) which
is complete (see Definition §17.04). Moreover, since L, is separable, any ONS is countable,
and thus there is an orthonormal sequence (ONS) u, = (u;);en in L, (see Definition §17.09).
Rather than a stochastic process Y := (Y,)ne1, on L, we consider its canonical projection
Y, = (Y, )jen =1L YonU = {u;,j € N}. m

§15.10 White noise process on H. Let Y := (Y} ),cn be a stochastic process on H. For an ONS
u. = (u;);en in H we call the canonical projection Y, = (Y, )jen a white noise process, if
{Y,,7 € N} is a family of independent and identically distributed random variables, where
each Y, has zero mean and variance one, ¥, ~ I}, and Y P/_ X\J in short. We call Y a white
noise process on H, if Y, ~ P®N yields for any ONS U, in IH] O

§15.11 Notation. In other words, the distribution P* of a white noise process Y, = (Y, );en equals
the product of its marginal B, -distributions, i.e. P" = ®;cnP™ = ®;enFo1y = P®N O

§15.12 Remark. Consider the centred stochastic process W= (V%) net, of error terms in the Exam-
ples §15.07 and §15.08. In general there does not exists an ONB u, = (u;) ey in L, such that
the canonical projection Y, is a white noise process. O

§15.13 Property. Let Y := (Y,)nenw ~ PY be a stochastic process on H admitting a H-mean 6 € H
and a covariance operator I' € L' (H), i.e., Y ~ Byy. If there exists an ONB u. = (u;)jen in
H such that Y, is a white noise process, i.e. Y, ~ P, Then we have § = > jentls uduu, =
Y ienP(Y, )u; = 0and (Th,hw = .5 on(us, Iyw(Tug, w )ulus,, hoyw = (b, ho)w, and thus
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0 =0 € Hand I' = idy. As a consequence, for each ONS V in H the random variables
{Y,,v € V} are pairwise uncorrelated. O

§15.14 Gaussian process on H. A stochastic process Y = (Y, )nen on H with mean function m and
covariance function cov is called a Gaussian process on H, if the family of finite-dimensional
distributions (P*)ycy inite cOnsists of normal distributions, that is, Y, = (VY,),ey is normally
distributed with mean vector (m(u)),e and covariance matrix (cov(u, u'))ywey. We write
shortly Y ~ N, .,y or ¥~ N, if in addition there exist a H-mean 6 € H and a covariance

operator I' € [ (H) associated with Y. The Gaussian process ¥ ~ N, .., with H-mean zero and
covariance operator idy is called iso-Gaussian process or Gaussian white noise process on H.
O

§15.15 Property. Let Y ~ Ny be a Gaussian process on H admitting a H-mean 0 € H and a
covariance operator I € I (W). If there exists an ONB u. = (u;)jen in H such thatY, = (Y,)jen
is a Gaussian white noise process, i.e., Y, ~ N%le), then due to Property §15.13 we have
Y ~ No,a,) and for each ONS V in H the standard normally distributed random variables

{Y,,v € V} are pairwise uncorrelated, and hence, independent, i.e., IL)Y ~ N%}{). O

§15.16 Definition (Random function in H). Let (H, (-, -)i) be an Hilbert space equipped with its Borel-
o-algebra Ay, which is induced by its topology. An .o7-Zy-measurable map YV : 2 — H is
called an H-valued random variable or a random function in H. O

§15.17 Lemma. Let u, = (u;);en be an ONS in H. There does not exist a non-zero random function'Y’
in H such that Y, = (Y, = (Y, u;)u)jen is a Gaussian white noise process.

§15.18 Proof of Lemma §15.17. For j € N and r > 0 define A} := {h € H: [(h,u;)u| < r}, and
AL, = n{Aj,j € N}. Obviously, it holds H = lim, ., A%, and hence, 1 = PY(H) =
lim, o PY (A7) for each random function Y in H. Assume that there is a Gaussian white
noise process I1,Y, then for each n € N it holds P¥ (AL) < PY(N{A},j € [1,n]}) =
|PYu (A7) = |P(|Z] < )" where Z ~ N ). Thereby, as n — oo we get PY (A7) = 0 for
all » > 0 and hence it follows the contradiction P¥ (H) = 0, which completes the proof. m|

Sequence space model.

Given a pre-specified ONS u, = (u;) ey in H we base our estimation procedure on the expansion
of the function of interest § € U = lin(u;, j € N). More precisly, we consider the sequence of
generalised Fourier coefficients U = 6, = (0,, = (0, u;)u) jen Which allow to reconstruct § =
U*0.. = > jen bh,u; (see Example §17.30 (a)). The choice of an adequate ONS u, = (u;);en is
determined by the presumed information on the function of interest # formalised by an abstract
smoothness conditions given in Definition §16.15. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far

beyond the scope of this lecture.

§15.19 Notation. Given a pre-specified ONS u, = (u;);ey in H and a stochastic process Y ~ B, on
H admitting a H-mean # € H and a covariance operator [' € L (H), the canonical projection
Y, = (Y,)jen admits a mean sequence 6, = (6,,)jen € ¢, and a covariance operator I €
L*(¢,) with (infinite) matrix representation I’ = (I )j;en € R™N having generic entries

' = (u, Tuj)y = Cov(Y,,Y,) for k,j € N. B:S/u/construction for each a.,a? € /¢,, and
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hence h := U*a.,h? := U*a? € Uwe have Il a. = (I, )jen = (D_pen . ak)jen € £, and

Ui Uk

(b, any, =1, O

§15.20 Sequence space model (SSM). Let W= (W) nen be a stochastic process on H with H-mean

zero and let n € N be a sample size. The stochastic process 0 =0+nY 2Won H with H-
mean 0 € H is called a noisy version of §. We denote by 2" the distribution of 0. If Wadmits
a covariance operator (possibly depending on ), say I’ € L*(H), then we eventually write
¢ ~ B, for short. Given an ONS u, = (u;) ey in H the canonical projection 6, = (6, ) ens
a sequence of observable quantities, takes the form of a sequence space model (SSM)

0, = (0, u)n+n""2W, =0, +n W, jeN. (15.1)
We denote by 7", respectively I, .« ), the distribution of the stochastic process §u which is
determined by the distribution B", respectively B, -1, of the noisy version 9. m

§15.21 Gaussian sequence space model. Consider a separable real Hilbert space (H, (-,-)u). The

§16.01

parameter of interest § € H is uniquely determined by the family (6, := (0, h)u)nen. Let W:=
(W) hen ~ N (0,.a) be a Gaussian white noise process on H. The observable stochastic process
0= (9 Jnhew on H satisfies 0 =0+ n V2 meaning that, 0, = 0, +n V2W] ~ N6, n11n12)
for all h € H. In other words § ~ No,n-1ia,) 18 @ Gaussian process on H with H-mean 6
and covariance operator n”~'idy. Given an ONS u, = (u;)jen in H the canonical projection
é;_ = (é;) jen takes the form of a Gaussian sequence space model (SSM)

i.4.d.

0, = (0, u)u+n V20, =60, +n V2, jeN with {1 ,ieN}"&" Ny,y).(15.2)

We denote by N, ,-14,) the distribution of the stochastic process @; which is determined by
the distribution N g ,,-1,4,,) Of the noisy version 6. O

§16 Orthogonal series estimation

Here and subsequently, u, = (u;);en denotes a pre-specified orthonormal sequence in a sepa-
rable Hilbert space (H, (-, -)u). Given a noisy version 6 = 6 + n~/2Wof a function of interest
6 € H as in Definition §15.20 we study an estimator using a dimension reduction. To be more
precise, given a nested sieve ([m])merm, M C N, as in Definition §17.11 we introduce a se-
quence of approximation spaces (U,, := lin(u;,7 € [m]))mer which form a nested sieve in
U = lin(u;,j € N). If § € U, which is assumed from here on, then § permits an expansion
as generalised Fourier series 8 = U*0, = ) jen 0w, u; (see Example §17.30 (a)). Form € M
we approximate ¢ by its orthogonal projection 6™ := I, 6 onto U,, (see Definition §17.28 (f)).
Introducing the sequence of indicators 17 := (17),ey with 17 := 1;,,(j) for j € N we have
the identities 6™ = > p1 0w = D en 176, u; = U*(6,.17). Given the noisy version 0 we
replace the unknown sequence 6,, of generalised Fourier coefficients by the canonical projection
6.. = (0.,) jen obeying a SSM as in Definition §15.20 (15.1).

Definition. Given a SSM (/9; ~ B as in (15.1) we call o = U*(é;,]l’j") orthogonal series
estimator (OSE) of 0 for each m € M. 0
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Global measure of accuracy.

We shall measure the accuracy of the OSE o =U *(@; 17) of 6 first by a global risk with respect
to the distribution P of the noisy version 6.

§16.02 Definition. Given a noisy version 0~ 2™ of 0 admitting a H-mean 6 € H the global H-risk of
a OSE 0™ = U*(0, 17) satisfies

I]?;”Hé\m — 0||?, = vary + bias;
by introducing a variance term vary := P"[|0™ — ™| and a bias term biasy = [|§" — 0||y5. ©

In the sequel we analyse separately the variance and bias term. We consider a noisy version
0 = 0+n~1/2W~ P" of § admitting a H-mean 6 € H and a covariance operator n~ 'V € I (1),

ie. 0 ~ B .1y, as in Definition §15.20, where the error process W~ Fo~y has H-mean zero
and covariance operator [Y € [ (H) (see Definition §15.04). As a consequence, given an ONS
u. = (u;) en in H for each m € /\/l the R™-valued random vector (VL/) je[m] has mean zero and
covariance matrix (I’ )x jepm) € R™™ (Notation §15.19).

§16.03 Notation. Let m € N. For a, € RN and T.. = (T,,)1. jen € RN we introduce, respectively,

J

its sub-vector [a.],, == (a;);epn) € R™ and its sub-matrix [7],, == (T,)x jepn) € R™™. We
denote the trace of [T.],, by tr([Z.],.) == > cp,y L, and for a. € RN with minimal value in
B C N we define arg min {a,,n € B} := min{m € B : a,, < a,, Yn € B}. O

$16.04 Property. Let0 = 0 +n~Y2 W~ R™ = By.,.-1y, then for all m € M we have
vary = B"|U*(17(0,, — 0.)) |3 = n B[ 12W. )12, = n~ L er([17 ). =

111111

§16.05 Definition. Let C' € R} and for each n € Nlet R} € R and m; € N satisfy

CT'R; < inf Ej[6" — 6]} < E;ll6™ — 0l < OR;.

Then we call R oracle bound, m; oracle dimension and 0" oracle optimal (up to the constant
C). As a consequence, up to the constant C? the statistik 6™ attains the lower H-risk bound
within the family of OSE’s, that is, E?||0™ — 0]|2 < C?inf,cn E2||0™ — 0]|3. O

§16.06 Oracle inequality. Ifé\ ~ B" = By, then setting for n € N and m € M

R (0) = [l10" = Ol v~ x([I7, 1)), mi = m;(0) == arg min {R}(9), m € M}

n

and R:(0) := R™(0) = min {R"(9),m € M}

we have R™(0) < P[0 — 0|2 = n~ tr([[°.],) + 16" — 6112 < 2R™(6) for all m € M and

......

n € N. As a consequence we immediately obtain the following oracle inequality

Ri(6) < inf B0 — 0], < B0 — 03 < 2R:(0) < 2 inf B"[6" — 0],

and hence, R (0), m and the statistic 0™, respectively, is an oracle bound, an oracle dimension
and oracle optimal (up to the constant 2).
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§16.07 Remark. We shall emphasise that for each m € M we have n™! tr([I” ],.) = o(1) as n — oc.
As a consequence, if || — ||Z = o(1) as m — oo then we obtain R2(#) = o(1) as n — oo,
and thus, R? () is also called an oracle rate Indeed, for all 6 € R there exists ms € M and
whence R?(0) < R™(0) < 0. However, note that the oracle dlménsmn m? = m?(6) as defined
in Property §16.06 depends on the unknown parameter of interest ¢, and thus also the oracle
optimal statistic ™. In other words ™ is not a feasible estimator. O

§16.08 Oracle inequality. If 0 ~ B" = By.-1vy and if in addition there exists v, € R, satisfying
YVheU: v, Y AllE < (hT°h)y < b3 (16.1)

then setting for n € N and m € M

R™(0) :=[||0™ — t9||ﬁ \Y; n_lm], m. :=m’(0) := arg min {R"(9), m € M}

n

and R:(0) := R™(9) = min{R"(9),m € M} (16.2)

we have v 'R7(0) < (16" — O[3 = n~" tr([[Y, 1) + |16 = 8l < (vo + 1)R(0) for all
m € M and n € N. As a consequence we immediately obtain the following oracle inequality

WJIRZ(9><n§gﬁ4”?"||9m Ollf < B(16™ — 0% < 2%R;(0) < 2v; inf B6" — 0]y,

and, hence R (0), m? and the statistic 0™, respectively, is an oracle bound, an oracle dimension
and oracle optimal (up to the constant 2v?2). O

§16.09 GSSM (§15.21 continued). If 0 ~ Ng,n-1ia,) 1s @ Gaussian process on H with H-mean 6 and
covarlance > operator n~lidy € 1 (M), then (16.1) is satisfied with v, = 1. Thereby, the statistic
g = U *(9 1) with oracle dimension m? as in (16.2) is oracle optimal (up to the constant 2)
by Property §16.08. O

§16.10 Nonparametric density estimation (§/5.07 continued). Consider on L, the stochastic process
P = (Pu)new, of real random variables defined on ([0, 1], £}, , P®") by p, := Ph € %" for
eachh € L,.If pe D,NL, thenp = p+n/2W~ B, ..-1rv s a stochastic process on L, with
L,-mean p and covariance operator n'I'* € L*(L,) where I* = M, —M,II M, . Let u. = (u;),en
be an ONS in [, and let U* denote the orthogonal complement of U = lin(u;,j € N) in L,
(see Definition §17.07). Assume that 1 := 1y, € U", and thus (I,h),, = 0 for all » € U.
Note that p, = 1 (thus IL,p = 1), and hence I*1 = 0, which can equally be deduced from
P, = 1 ~ PB,.0. As aconsequence, we assume in the sequel an expansion p =1 + U*p,_,

which is trivially satisfied whenever {1} U {u;,j € N} is an ONB. If in addition p~' € L.,
then (16.1) is satisfied with v, = ||p|l.. V |[p7*|lL.. Indeed, we have A(p(h — pA(h))?) =
(T®h, h)y, (see Example §15.07), A((h — pA(h))?) < v,A(p(h — pA(h))?) by definition, for
each h € U, A((h — pA(h))?) = [|h — pA(R)L]IE, = ||R[IE, + IPA(R)L||, since T € U
Combining the bounds we obtain v, (I*h, k), > ||h||?,, which shows the lower bound in (16.1).
As for the upper bound we use [|I?|| 4 < ||plli. < v, (see Example §15.07) together with
Property §17.29 (i). Thereby, considering the canonical projection p,. = ([, );en the statistic
p" =1+ U*(p,17) (and hence p™ — p = U*(p,.I™) — U*p,.) with oracle dimension m? as
in (16.2) is oracle optimal (up to the constant 2(||p||7 _ V ||[p~'||_)) by Property §16.08. O
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§16.11 Nonparametric regression (§/5.08 continued). Consider the stochastic process f (ﬁ) heL, ON
L, of real valued random variables defined on (R?", %", U?") by f = [P’(Yh( )) € $B*" for
each h € L,. Under Assumption §14.01 if in addition f€L,NL, then f = f+ n Y2~
B, 18 a stochastic process on L, with L,-mean f and covariance operator n Y € 1F(L,)
where IV = ¢2id;, + MII M;. Moreover, (16.1) is satisfied with v; = (02 + || f[7_) V 022
Indeed, since (I'h, k), = oZ||h||t, + [II;M;h||, the lower bound follows immediatly, while
for the upper bound we use ||IV||.., < o2 + || fIlf. < v, (see Example §15.08) together with

Property 17.29 (i). Thereby, considering the canonical projection fu = ( fu])jeN the statistic

f’" = U*( ft' 1) with oracle dimension m? as in (16.2) is oracle optimal (up to the constant
2((a2 + |IfIIE.)?* vV o*)) by Property §16.08. o

§16.12 Illustration. Here and subsequently, we use for two sequences a., b, € ([RTO)N the notation
a, ~ b, if the sequence a./b. is bounded away both from zero and infinity. We illustrate the
last results considering usual behaviour for the bias terms (/6™ — 0||3)mer. We distinguish the
following two cases

(p) thereis K € N with [|[§*~" — 0|3 > 0 and ||0* — 0|3 =0

(np) for all m € N holds ||0™ — 6|7 > 0.

Note that the expansion of § is in case (p) finite, i.e., = > ie[K] 6, u; for some K € N while
in the opposite case (np), it isn’t. Interestingly, in case (p) the oracle bound is parametric, that
is, nR2(9) = O(1), in case (np) the oracle bound is nonparametric, i.e. lim,,_,., nR2(0) = occ.

In case (np) consider the following two specifications:

1 —2s
(P) If [|0™ — 0]|Z ~ m™%, s > 0, then m? ~ n2s+1 and R2(A) ~ n2s+1.

1 1
(E) If [|0™ — 0|3 ~ exp(—m?*), s > 0, then m® ~ (logn)2s and R2(#) ~ (logn)2sn~!. O

§16.13 Notation. Recall that u, = (u;);ey is an ONS with U = lin {u;,7 € N} C H and for h € H
denotes h, := (h, )jen = Uh its generalised Fourier coefficients. U € L(U,4) is a unitary
operator with inverse U™ (see Example §17.30 (a)). For a strictly positive sequence of weights
w. € (R)" consider the Hilbert space £,(w?) := {a. € RN, ||a.||s,(w2) < oo} with inner prod-
uct (a.,b)pwz) = D ;en wra;b; and induced norm |-l w2) (see Example §17.03 (c)). Let
||w_1||g < oo, then ¢,(w?) C ¢,, and hence the image U* (¢, ( 2) = {U*a. : a. € L(w?)}
of £,(w?) under U is a subset of U. Moreover =U *(62( 2)) is a Hilbert space with inner
product (U a., U al) . . i= (G, a2) 1, (w2) w,- If u, is complete in H, i.e.
H = U, then we eventually write (H", (-, ), ..). O

§16.14 Example. Consider the real Hilbert space L, = L,(%,,, \,,,) and the trigonometric basis 1), =
(1;)jen (see Example §17.05). Define further the Hilbert space (L%, (-, ). w.) With respect to
the trigonometric basis as in Notation §16.13.
(P) If we set w; = 1, wy, = war1 = k°, s €N, k € N, then L is a subset of the Sobolev space
of s-times differentiable periodic functions. Moreover, up to a constant, for any function

h € L4, the weighted norm ||A[7, . equals the L,-norm of its s-th weak derivative )
(Tsybakov [2009]).

(E) If, on the contrary, w; = exp(—1 + j*), s > 1/2, j € N, then L% is a class of analytic
Junctions (Kawata [1972]).

Note that, the trigonometric basis is w_ !-regular as in Definition $17.12 (b) whenever w; ! € ¢,
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(see Example §17.14), and thus in the case (P) for s > 1/2 and in the case (E) for s > 0. O

§16.15 Abstract smoothness condition. Given a sequence of weights f. = (f;);en € (R})N with
f.||c. < oo and an ONS u, = (u;);jen in H consider (U"", ||-||,, ;) as in Notation §16.13. Let
r € R}, be a constant. We assume in the following that the function of interest belongs to the
ellipsoid ', := {h € U : ||A]2 ;. <7?} C L. O

§16.16 Lemma. For m € M consider the approximation 6™ = U*(0,17) € U,, of 6 = U*(0,.1,) € U
and set f(my = |[f.(1, — 17)[[e.. = supjepmpe ;- If 0 € F;, then biasy = [|0™ — 0|y < 7 o)

§16.17 Proof of Lemma §16.16. is given in the lecture. O

§16.18 Proposition. Let 0 ~ B" = B, ,-1v). Setting form € M andn € N

Ry () = [fL, Vo~ tm], my = mi (1) = arg min {R](1.),m € M}
and RZ(f.) := R™(f.) = min {R"(}.),m € M} (16.3)

we have I]E,P”H@\m:z — 0|17 < (IT|leg +72) Ri(.) forall @ € F7, and n € N,
§16.19 Proof of Proposition §16.18. is given in the lecture. O

§16.20 Remark. Arguing similarly as in Remark §16.07 we note that R’ (f.) = o(1) as n — oo,
whenever f,) = o(1) as m — oo. The latter is satisfied, for example, if f. € ¢,. Note that
the dimension m’ := m/’(f.) as defined in 16.3 does not depend on the unknown parameter of
interest ¢ but on the class F, only, and thus also the statistic f™.. In other words, if the regularity

of # known in advance, then the OSE /9\7”3 18 a feasible estimator. O

§16.21 GSSM (§16.09 continued). If0 ~ N 9.0 1idy)> Where [[idy || = 1. From Proposition §16.18 we
obtain immediately, sup{P"[|§": — 6]|3,0 € Fr.} < (1+7%) Ri(.) for all n € N. In other
words the global H-risk of the OSE with optimally choosen dimension is not larger than R (§.)
(up to a constant) uniformely for all functions of interest belonging to [, . O

§16.22 Nonparametric density estimation (§/6./0 continued). Consider on L, the stochastic process
P = (Pu)ner, of real random variables defined on ([0, 1]", 4}, , ") by p, := Ph € B" for
eachh € L,. If pe D,NL, thenp ~ B, with ||T?]|.., < ||p|lL. (see Example §15.07).
From Proposition §16.18 we obtain immediately un upper bound for the gobal L,-risk (mise)
which still depends on ||p||._. If we assume in addition that the ONS u, is f.-regular as in
Definition §17.12 (b), i.e. [|>;cn 21wl < 7o ;. for some 7,5, € R'. Then, we have
Iplle. < 77 forall p € F7, by Lemma §17.15. As a consequence, considering the
OSE p™ = U*(p, 17") with dimension m’ as in (16.3) from Proposition §16.18 we obtain,

sup{P*"|p"™ — pllf,.p € Do NE,} < (r7uy +7%) Ri(f.) for all n € N. Consider the

trigonometric basis ¥, = (1;)jen defined in Example §17.05 and w, € (R)N given either in

Example §16.14 (P) or in (E). If we set f. := w_ !, then 1), is f.-regular (see Example $17.14)

with 7'5”f' = 2||f. %2 which is finite in case (P) for s > 1/2 and in case (E) for s > 0. In this

situation we sup{P*"|[p™ — p|Z.p € D, NE} < (V2r|flle, + %) Ri(f.) forall n € N,

where R’ (f.) = o(1) as n — oo (Remark §16.20). O
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~

§16.23 Nonparametric regression (§/6./1 continued). Consider the stochastic process s f = (f)new,
on L, of real valued random variables defined on (R?", %", U?") by f= B(YR(X)) €
P for each h € L,. Under Assumption $14.01 if fel,NL, then f ~ B, with
ITY]|ew,y < 02+ £l (see Example §15.08). From Proposition §16.18 we obtain immediately
un upper bound for the gobal L,-risk (mise) which still depends on || f||,_. If we assume in
addition that the ONS w, is f.-regular as in Definition §17.12 (b), then || f||.. < r7,. ;. for
all f € F’. by Lemma §17.15. As a consequence, considering the OSE f’”? =U *(J?“_]l’??)
with dimension m? as in (16.3) from Proposition §16.18 we obtain, sup{Uj@"HfM —flt,. f €
Er.} < (o2 + 11 ;. +7%) Ri(5.) for all n € N. Consider the trigonometric basis 1. = (1;) jen
defined in Example §17.05 and §,' := w. € (R})" given either in Example §16.14 (P) or
(E). In this situation, similar to Example §16.22, we obtain sup{Uf®”||f’”5 —flt,, feF . } <
(02 +2r||f.]|7, +72) R;(f.) forall n € N, where R (f.) = o(1) as n — oo (Remark §16.20). o

§16.24 Illustration. Let us consider the following two specifications:
1 —2s
(P) If 2 ~m~2, s> 0, then m* ~ n2s+1 and R:(f.) ~ n2s+1.

1 1
(E) If {2, ~ exp(—m?*), s > 0, then m* ~ (logn)2s and R’ (f.) ~ (logn)2sn~1. O

Local measure of accuracy.

Consider a linear functional ® : H D D(®) — R, e.g. the point evaluation in Example §17.24.
We assume from here on that the ONS u, = (u;) jen and hence for each m € M also the orthog-

onal projection 0" = U*(6,.17) = >_ (b u; and the OSE o = U*(@u_]lf") =D jeiml gujuj
belong to the domain D(®) of . As a consequence ®(6") and @(@m) are well-defined. As-
suming in addition # € D(®) we measure the accuracy of o by a local ®-risk with respect to
the distribution ™ of the noisy version 6. Keep in mind, if 6 admits an H-mean 6 € D(P),

then ®(6™) is an unbiased estimator of ®(6™), i.e. B"®(6™) = ®(6™), due to the linearity of the
expectation and .

$16.25 Definition. Given a noisy version 6 ~ P of 6§ admitting a H-mean 6 € D(P) C H the local
&-risk of a OSE " = U*(H ™) satisfies

R (|B(") — ()|?) = vary + bias?
with variance term varg := [P’"(|(I>(§’”) — ®(0™)|?) and bias term biasy := ®(0™") — ®(). o
In the sequel we analyse separately the variance and bias term. We consider a noisy version

0 = 0+n/2W~ P" of § admitting a H-mean 6 € H and a covariance operator n~ 'Y € I (i),

ie 0~ By, as in Definition §15.20. Since the error process W~ B~y has H-mean zero
and covariance operator IV € IF(H) (see Definition §15.04) for each m € M the R™-valued
random vector [ ],, = (VI].) je[m has mean zero and covariance matrix [I” ],, = (I, )x je[m]»
ie. [I/I{]f ~ Po ) (Notation §16.03).

§16.26 Notation. Let m € N. We set ©, := (@, );en With the slight abuse of notations ¢, :=
O(u,), j € N. If & € L(H,R) then D(P) = H, and by Fréchet-Riesz representation theorem
(Property §17.23) there is ¢ € H with &, = ¢,, and thus ¢, € /,. Recall that [®, ],, € R™ and
[¢..]. € R™ denotes a sub-vector of ¢, and ¢, , respectively. O
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$16.27 Property. Letf = 0 + n~ /2 W~ P = By .-y and 0 € D(®P), then for all m € M we have

varg = n_ll]:gn(|<q)u.]]-7.nJ Wu.>fg|2) - n_1<];0 (q)u]]-T:L)7 q)u.]]f.n>52

U

=n QL5 =07 (@], [P )n ©

§16.28 Definition. Let C' € RY and for eachn € Nlet R} € R and m; € N satisfy

C'R; < inf B"(|2(0") — 2(0)]°) < B"(12(6™) - B(O)) < CR:.

Then we call R} oracle bound, m; oracle dimension and 0™ oracle optimal (up to the constant
(). As a consequence, up to the constant C? the statistik ™ attains the lower ®-risk bound
within the family of OSE’s, i.e. E; (|®(6™) — ®(0)]*) < C?inf e B™(|2(6™) — ®(0)]?). ©

§16.29 Oracle inequality. If 0 ~ B" = By,-1v) then setting for n,m € N
Ry(0) = [| 20" = )P vV | @, 12re |, mi = m;(6) := arg min {R}(6), m € M}
and R:(0) := R™(0) = min {R(9),m € M}

we have R™(0) < IP;”(|<I>(§'”) — ®(0)|?) < 2R™(0) for all m € M and n € N. It follows

R;(0) < inf B"(|2(0") — 2(6)]*) < B"(|2(0") — 2 (9)[)

< 2R;(0) < 2 inf B"(|12(@") — B(0))

As a consequence, R2(0), m: and the statistic 0™, respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant 2).

§16.30 Remark. Arguing similarly as in Remark §16.07 we note that R2(9) = o(1) as n — oo,
whenever |®(0™ — )| = o(1) as m — oo. The latter is satisfied, for example, if ®, 6, € ¢, (see
Definition §16.36). The oracle dimension m; = m? () as defined in Property §16.29 depends
again on the unknown parameter of interest ¢, and thus also the oracle optimal statistic . In
other words 6" is not a feasible estimator. O

§16.31 Oracle inequality. Let O ~ B" = B,y If vy € RY,

., satisfies (16.1), then setting forn, m € N

Ry (0) == [|®(0" = O) v || @, 1[7],  m; = m;(0) := arg min {R}'(0),m € M}
and R:(0) := R™(9) = min{R"(9),m € M} (16.4)

we have v; 'R™(0) < B"(|®(6™ — 6)[2) < (v, + 1)R™(6) for all m € M and n € N. It follows
v R(60) < inf B(12(0" - 0)) <B(12(0" — 0)F)

meM
< 2wR;(0) < 2] inf R (|®(6™ — 0)]?).
me

As a consequence, R:(0), m: and the statistic 0™, respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant 2v?). O
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§16.32 GSSM (§16.09 continued). 1f 0 ~ No,n-1ia,)> then (16.1) is satisfied with v, = 1. The statistic

g = U*(6,. 1) with oracle dimension m? as in (16.4) is oracle optimal (up to the constant 2)
by Property §16.31. O

§16.33 Nonparametric density estimation (§/6./0 continued). Consider on L, the stocllastic process
P = (Pu)neL, of real random variables defined on ([0, 1], %7, , P®") by p, := Rh € %" for

eachh €l,. f peD,NL,., p'el, and 1, € U* then we have p ~ T )
and v, = ||p|l V ||p YL, satisfies (16.1) (see Example §16.10) Thereby, considering the

canonical projection p,. = ([, );en the statistic p™ = 1 + U*(p, 17") with oracle dimension
m; as in (16.4) is oracle optimal for p =1 + U*p,. (up to the constant 2(||p[|f_ V [[p~'[|f_))
by Property §16.31. O

§16.34 Nonparametric regression (§/6./1 continued). Consider the stochastic process f: (ﬁ) hel, ON
L, of real valued random variables defined on (R*", %?", U?") by f, := R(Yh(X)) € #*

o~

for each h € L,. Under Assumption §14.01 if f € L, NL, then we have [ ~ P" = B,
and v; = (o2 + || f|If.) V 022 satisfies (16.1) (see Example §16.11). Thereby, considering the

o~

canonical projection f, = (f, );en the statistic f’”i =U *(ﬁ 1) with oracle dimension m? as
in (16.4) is oracle optimal (up to the constant 2((o2 + || f||7 _)? VV o= *)) by Property §16.31. ©

§16.35 Illustration. We illustrate the last results considering usual behaviour for both the variance
term n~' ||, 17|7 and the bias term |®(#™ — #)[>. Recalling the two cases (p) and (np) in
[llustration §16.12 we distinguish the following two cases

(p) @, €4, orthereis K € Nwith [®(0%" — 6)|* € R, and sup,,,»x |P(6" — 0)|* = 0,

(mp) P, & (,and for all m € N holds [®(0™ — 0)|> € R,

In case (p) the oracle bound is again parametric, i.e. nR2(9) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. lim,,_,, nR?(0) = oo. In case (np) with <I>i ~ 5%, 2q > —1

and hence ||®, 177 ~ m?**! consider the following two specifications:

1
(P) If 02 ~ j=27% s > 0, and hence |®(6" — 0)]> ~ m~2"%, then m; ~ n2?+ and
—2(s—a)
Re(0) ~mn 2s+1 | where R2(0) = o(1) as n — oo for s > a.

(E) If 02 ~ j*722exp(—j*), s > 0, and hence |P(0™ — 0)[> ~ exp(—m?*), then m; ~
" 2a+1
(logn)2s and R2(0) ~ (logn) 2s n~'. O

§16.36 Regular linear functional. Consider an ONS u, = (u,);en in H and an ellipsoid F’, as in
Definition §16.15. We call a linear functional ® : H D D(®) — R regular if u. belongs to
the domain D(®) of ¢ and the sequence ¢, = (P, );en (see Notation §16.26) satisfies either
®,0, €lor®, . €, O

§16.37 Remark. We may emphasise that we neither impose that the sequence ®, = (P, );en tends
to zero nor that it is square summable. However, if &, € ¢, then ® € L(U,R) and &, = ¢,,
where ¢, denotes the sequence of generalised Fourier coefficients of the representer ¢ of ¢
given by Fréchet-Riesz representation theorem Property §17.23. Assuming a regular functional,
however, enables us in specific cases to deal with more demanding functionals, such as in
Example §17.24 the evaluation of the solution at a given point. We note that ®, € £,(f?)
implies ®,.0,. € ¢, forall 0 € [’ applying the Cauchy-Schwarz-inequality (Property §17.02).
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Moreover, if @, Gu € (, then ®(0) = >, @, 0, and |D(0" — 0)| < [[2,.0, (1, — 17)|,, =
Zj elm]* ®, 0, | = o(1) asm — oco. As a consequence, for a regular linear functional the oracle
bound given in Property §16.31 satisfies R2(0) = o(1) as n — oo (Remark §16.30). O

§16.38 Lemma. Let § = U*(0,1,) € U. Form € M set " := U*(0,17) € U, and (®,.f.)(m) :=
|®, f.(1, — 1), = supje[[mﬂc(cbu]fj). If0 € F'_, then biasy = |®(0™ — 0)| < r (D,.f.)m)

§16.39 Proof of Lemma §16.38. is given in the lecture. O

§16.40 Proposition. Let 0 ~ B" = B, ,-1p). Setting for n,m € N

RI(7) = [(®uf)fmy V[ @LTYI[E),  m) = m;(f.) »= arg min {R ,m e M}
and R}(f.) := R™(f.) = min{R"(f.),m € ./\/l} (16.5)

we have P"(|®(6" — 6)[2) < (|IT°||ee + 72) RE(1.) for all 6 € F’

.andn €N,

§16.41 Proof of Proposition §16.40. is given in the lecture. O

§16.42 Remark. Arguing similarly as in Remark §16.07 we note that R} (f.) = o(1) as n — oo,
whenever (®,.§.)m) = o(1) as m — oo. The latter is satisfied, for example, if ®,f. € 4,, i.e.
® is a regular linear functional. Note that the dimension m} := m/(f.) as defined in 16.5 does
not depend on the unknown parameter of interest 6 but on the class [, only, and thus also the

statistic ™. In other words, if the regularity of 6 is known in advance, then the OSE 0™ is a
feasible estimator. O

§16.43 GSSM (§16.32 continued). 0 ~ N 4,0 tiay)» Where ||idy]|i = 1. From Proposition §16.40 we
obtain immediately, sup{P"(|® (6™ — 6)|?),0 € Fr.} < (147%) R;(f.) for all n € N. In other
words the local ®-risk of the OSE with optimally choosen dimension is not larger than R (§.)
(up to a constant) uniformely for all functions of interest belonging to [, . O

§16.44 Nonparametric density estimation (§/6.33 continued). Consider on L, the stochastic process

P = (Pu)ner, of real random variables defined on ([0, 1]*, 4}, ,P") by p, := Ph € 2" for
eachh € L,. If pel,NL, and w.is f.-regular (Definition §17.12 (b)) then p ~ B, -1,
with ||[I®]|y., < [|p|lL. (see Example §15.07) and ||p|l.. < 77 forall p € F’, (see Ex-
ample §16.10). As a consequence the OSE p™ = U*(p, 17") with dimension m as in (16.5)
satisfies sup{P*"(|®(p™ — p)|*).p € .} < (r7y + 7°) Ri(f.) for all n € N by from
Proposition §16.40. Consider as in Example §16.22 the trigonometric basis 1. = (v;);en
and {71 = w, € ([R{*O)N given either in Example §16.14 (P) or (E). In this situation we
bup{[FD® (2™ —p)*),p € D, NE} < (V2r|flle, + r?) Ri(f.) for all n € N, where
R:(f.) = o(1) as n — oo if in addition <I> §. € £, (Remark §16.42). O

§16.45 Nonparametric regression (§/6.34 continued). Consider the stochastic process f (ﬁ)helz
on L, of real valued random variables defined on (R*", %", U") by f, := B(Yh(X)) €
2?" for each h € L,. Under Assumption §14.01 if fel,NL, then f ~ B, with

1T |ee, < 02+ Sl (see Example §15.08). From Proposition §16.18 we obtain immediately
un upper bound for the gobal L,-risk (mise) which still depends on || f||._. If we assume in
addition that the ONS w, is f.-regular as in Definition §17.12 (b), then || f|j.. < r7,.5 for
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all f € [’ by Lemma §17.15. As a consequence, considering the OSE fm?f =U *(ﬁ_]l’j*)
with dimension m as in (16.3) from Proposition §16.18 we obtain, sup{[F}?mHJ?'”; —0|I7,.0 €
Er.} < (024727 ;. +7%) R;(f.) foralln € N. Consider as in Example §16.23 the trigonometric
basis 1, = (1;)jen and §,1 1= w, € (RF)N given either in Example §16.14 (P) or (E). In this
situation we sup{[ljf?®"(|(1>(]?7’”‘ = NP f e} < (o +r?7; +7°) Ri(.) foralln € N,
where R%(f.) = o(1) as n — oo if in addition ®, f. € ¢, (Remark §16.42). m

§16.46 Illustration. Let us consider 2 ~ j*%, 2a > —1 and hence ||®, 17
following two specifications:

7~ m**! and the

1
(P) If # ~ j=%, s > 0, and hence (@u,f.)%m) ~ m~267%) for s > a, then m’ ~ n2s+1 and
—2(s—a)
RZ(f.) ~n 2s+1

1
(E) If §2 ~ j=*exp(—j*), s > 0, and hence (®,.f.)?,,) ~ exp(—m™), then m; ~ (logn)2s

2a+1
and R:(f.) ~ (logn) 2s n~'. O

§17 Supplementary materials

For a detailed and extensive survey on functional analysis we refer the reader, for example, to
Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§17.01 Definition. A normed real vector space (H, ||-||) that is complete (in a Cauchy-sense) is called
a real Hilbert space if there exists an inner product (-, )y on H x H with |[(h, h)y|'? = ||h||u
for all h € H. m

§17.02 Property.
(Cauchy-Schwarz inequality) [(hy, ha)u| < || |lullhel|w for all hy, hy € H. O

§17.03 Example.

(a) For k € N the Euclidean space R* endowed with the Euclidean inner product (x,y) := y'x
and the induced Euclidean norm ||z|| = (z*z)'/? for all z, y € R* is a Hilbert space. More
generally, given a strictly positive definite (k x k)-matrix W, R* endowed with the weighted
inner product (z, y)w = y'Wax for all z,y € R” is also a Hilbert space.

(b) Denote by RN the vector space of all R-valued sequences over N where we refer to any
sequence (a;)jen € RN as a whole by a. as for example in «the sequence a.» and arithmetic
operations on sequences are defined component-wise, i.e., a.b. = (a;b;)jen, a. V b, =
(a; V b; :== max(a;,b;))jen a. A b. = (a; A b; := min(a;,b;))jen or a. < cb, with ¢ €
R*, if a; < cb; for all j € N, for sequences a.,b. € RN. In the sequel, let ||a.|l,, :=
(> jen |a;])/*, for s € [1,00), and ||a.||,. := sup{|a;|,j € N}. Thereby, for s € [1, 00],
consider £,(N) := {a. € RN, ||a.||s, < oo}, or £, for short, endowed with the norm ||-||..
In particular, ¢, is the usual Hilbert space of square summable sequences over N endowed
with the inner product (a., b.),, == > .\ a;b; for all a., b, € 4.

JEN

(¢) For a strictly positive sequence w. € (R’)™ consider the weighted norm |
D ien Wila|?. We define £,(w?) := {a. € RY,|

2 P
Aellpy(w2) =

@.|g,(w2) < 00}, which is a Hilbert space
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endowed with the inner product (a.,b.)s,wz) = (w.a., w.a)y, = 3. wia;b; for all
a., b, € y(w.).

(d) For a measure space (£2,.o7, 1) recall the set of all .Z,(x)-integrable functions given in
Notation §01.03 for s € [1,00]. The set of equivalence classes L () = L, (o, ) =
{{h}. : h € Z(o, )} is avector space endowed with the norm |[{A },. ||, () := |22
for {h}, € L,() (see Notation §15.06). As usual we identify a function h € Z,(u) with
its equivalence class {h},. For instance, L,(<7, ;1) = {h € & : ||h||i )}, or Ly(p) for
short, denotes the usual Hilbert space of square ji-integrable in </ endowed with the inner
product (h, h,)i, () = p(hh,) forall b, h, € Ly(p). O

§17.04 Definition. A subset U/ of a Hilbert space (H, (-, -)n) is called orthogonal if
Vuy,ug € U, uy # ug @ (ug,us)y =0

and orthonormal system (ONS) if in addition ||u|ly = 1, Yu € U. We say U is an orthonormal
basis (ONB) if U C U" and U’ is ONS, then U = U, i.e., if it is a complete ONS.

§17.05 Example. Consider the real Hilbert space L,(%,,, \,,) With respect to the restriction \,, of
the Lebesgue measure to %,,,. With a slight abuse of notations we write shortly A := ), and
L, := Ly(A,.,, \). The trigonometric basis given for t € [0, 1] by

Yy (t) := 1, Yop(t) == V2 cos(2mkt), opsq(t) == V2sin(2rkt), k € N,
is orthonormal and complete, i.e. an ONB. O

§17.06 Property.
(Pythagorean formula) If{h;, j € [n]} C H are orthogonal, then HZ]’G[[n] h|l = Zje[[n]] 1,113

(Bessel’s inequality) — IfU C His an ONS, then ||| > Y oueu (B, uw)y|? for all h € H.

(Parseval’s formula) — An ONS U C H is complete if and only if ||h||fy = >, | (R, wn|? for
all h € H. O

$17.07 Definition. Let I/ be a subset of a Hilbert space (H, (-, -)y). Denote by U := lin(2/) the closure
of the linear subspace spanned by the elements of /. Its orthogonal complement in (H, (-, -))
is defined by U* := {h € H : (h,u)y = 0,YVu € U} where H = U @ U*. O

§17.08 Remark. If &/ C H is an ONS, then there exists an ONS V C H such that H = H(U) @ H(V)
and forall h € Hitholds h = Y, ,,(h, u)pu+ >, ,(h, v)yv (in a L*-sense). In particular, if
Uisan ONBthen h =) . (h,u)uu forall h € H. O

§17.09 Definition. A sequence u. = (u;);en in H is said to be an orthonormal sequence (ONS), re-
spectively, an orthonormal basis (ONB) if the subset {u;, j € N} is an ONS, respectively ONB.
The Hilbert space H is called separable, if there exists a complete orthonormal sequence. m

§17.10 Example. The Hilbert space (R”, (-, )w), (&:(w.), (-, ) ry(w.)) and (Ly(p), (-, Yi,(0)) with o-
finite measure p are separable. O

§17.11 Definition. A family ([m])mem, M C N, is called a nested sieve in N, if Upcpq[m] = N.
We write [m]® := N\[m] = (m,00) NN form € M. Similarly, given an ONS u, = (u;) en
and setting U,,, := lin {u;, j € [m]} for m € M we call the family (U,,)menm a nested sieve in
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U :=lin {u;, j € N}. We write U} := lin {u;,j € [m]°} where U = U,, ® U For convenient
notations we set further 17 := (17) ey with 17 := 1, (j) for j € N. and 1, := (1) en. m

§17.12 Definition. We call an ONS u, = (u;)jen in Ly(p) (respectively, in ¢,) regular

(a) with respect to a nested sieve ([m])men, if there is a finite constant 7, > 1 satisfying
132 ey [ ey < 7m forallm € M;

(b) with respect to a weight sequence w., w,-regular in short, if there exists a finite constant
Tuw, = 1 such that |3 W2 | L < T O

§17.13 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L, a regular ONS
(u;)jen the nested sieve ([m])men is exactly equivalent to following property: there exists a
finite constant 7, > 1 such that for any h € U,, we have ||h||L < 7,/m/|h||L,. Typical exam-
ple are bounded basis, such as the trigonometric basis, or basis obeying the following property:
there is Cx € R, such that for any ¢™ € R™ yields [|3;cp,,; ¢l < Coov/mmax;epm) c;.
Birgé and Massart [1997] have shown that the last property is satisfied for piece-wise polyno-
mials, splines and wavelets. O

§17.14 Example (Example §17.05 continued). Consider the trigonometric basis 1), = (1;) jen in the real
Hilbert space L, = Ly(H,,, Ayy)- Since sup;cy|[¢yllL. < v/2 setting 72 := 2 the trigonomet-
ric basis is regular w.r.t. any nested Sieve ([m])mnmen, i.e., Definition §17.12 (a) holds with
1~ jepmy Y?||lL. < 2m. In the particular case of the nested sieve ([1 + 2m]),,en, We have
Yienrom ¥l = 14+ 30 e i2sin®(2mje) + 2 cos*(2mje)} = 1+ 2m and thus, the trigono-
metric basis is regular with 7, := 1. Moreover, the trigonometric basis is regular with respect
to any w. € £,. Indeed, in this situation we have ||3° . w?¢? |, < 2[w.||7, and hence Defini-
tion §17.12 (b) holds with 77, = 2||w.]|7.. O

§17.15 Lemma. Let F’, be a class of functions an ONS u. = (u;)jen in Ly(p) (or analogously
in {,) as given in Definition §16.15. If the ONS is regular wrt the weight sequence f. as
in Definition §17.12 (b) for some finite constant 7,5, > 1, then for each [ € [  holds

HfHU-oo(M) < Tuw.Hf”l/fo < TTuw,-

§17.16 Proof of Lemma §17.15. Due to the Cauchy-Schwarz inequality (Property §17.02) for each
fe®, wehave || £y < IFIT/ 120 en 74 L (u)» Which in turn implies the assertion by

employing the Definition $17.12 (b) of 7,,;, and r. O

§17.17 Example (Example §16.14 continued). Consider L% with respect to the trigonometric basis . =
(1;);en and a weight sequence w, satisfying either Example §16.14 (P) with p > 1/2 or Exam-
ple §16.14 (E) with p > 0. Inboth cases setting 7, = 2||1/w.||7, < oo the trigonometric basis

is regular w.r.t. the weight sequence 1/w.. Consequently, setting f, = 1/w, from Lemma §17.15

follows sup{||f[|%_ .0 € 13"} < 2(01[7, 1 5. [IF.II7,- .

§17.18 Definition. A map 7' : H — G between Hilbert spaces H and G is called linear operator if
T(ahy+bhs) = aThy +bThs forall hy, hy € H,a,b € R. Its domain will be denoted by D(T'),
its range by R(T") and its null space by N (T). O

§17.19 Property. Let T' : H — G be a linear operator, then the following assertions are equivalent:
(i) T is continuous in zero. (ii) T is bounded, i.e., there is M > 0 such that ||Th||c < M|h|ly
forall h € H. (iii) T' is uniformly continuous. O
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§17.20 Definition. The class of all bounded linear operators T' : H — G is denoted by L(H,G) and
in case of H = G, L(H) for short. For T € L(H,G) define its (uniform) norm as || T || ue =
sup{||Th|ls; ||h]ln < 1,h € H}. O

§17.21 Example.

(a) Let u. = (u;);jen be an ONS in H, forany » € Hand j € N we call /1, := (h, u;)y gener-
alised Fourier coefficient. We write 11, := (h,, );en for short. The associated (generalised)
Fourier series transform U : H — RN defined by h — Uh := h,_ belongs to .Z(H,(,)
with ||U||p ., = 1.

(b) Consider a measure space (2,.27, ;) and a function f € & the map M, : & — o
with h — M;h := hf is called multiplication operator. If || f|| .z ) < oo then we have
M; € L(tu(w) with [[Mylew. < || flle < oo

§17.22 Definition. A (linear) map ® : H D D(®) — R is called (linear) functional and given an
ONS . = (u;);en in H which belongs to D(®) we set ¢, := (P, )jen With the slight abuse of
notations ¢, := ®(u;), j € N. In particular, if & € L(H,R) then D(P) = H. O

§17.23 Property. Let ® € L(H,R).
(Fréchet-Riesz representation) There exists ¢ € H such that ®(h) = (¢, h)y for all h € H,

and hence, given an ONS u. = (u;) jen in H we have ®, = ®(u;) = (¢, u;)u = ¢, for all
7 €N, or®, = ¢, for short. O

§17.24 Example. Consider an ONB u, = (u;) ey in L,(£2, &7, 1) (or analogously in /,(N)). By eval-
uation at a point t, € §) we mean the linear functional ®,, : L,(u) D D(P;,) — R with
h = h(t,) == @, (h) = >y huui(t,). Obviously, a point evaluation of h at ¢, is well-
defined, if 3,y [h,u,(to)| < oo. Observe that the point evaluation at ¢, is generally not
bounded on the subset {h € Ly(p) : >y [P, u;(t,)| < 00} O

jeN
§17.25 Definition. For each T' € L(H,G) there is a uniquely determined adjoint operator T € L (G, H)

satisfying (T'h, g)¢ = (h, T*g)y forallh € H, g € G. m
§17.26 Property. Let S, T € L(H,,H,) and R € L(H,, Hs). Then we have

i) (S+T) =S*+T* (RS)* = S*R~.

(ll) ||S*||[L(H27H1) = ||S||[L(H17H2)’ SS*H[L(HQ,Hz) = ||S*S||[L(H1,H1) = ||S||E(H|,|Hl2)'

(i) M(S) = R(S)*, N(S*) = R(S)™.. O

§17.27 Example.

(a) The adjoint of a (k x m) matrix M is its (m x k) transpose matrix M*.
(b) Let M; € L(L,(x)) be a multiplication operator, then its adjoint equals also a multiplication
with f, i.e. My = M. O
§17.28 Definition. Let H and G be Hilbert spaces.
(a) The identity in L(H) is denoted by idy.

(b) If T € L(H,6), then T : A/(T)+ — R(T) is bijective and continuous whereas its inverse
T-': R(T) — N(T)* is continuous (i.e. bounded) if and only if R(T) is closed. In
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particular, if 7 : H — G is bijective (invertible) then its inverse 7! € L(G,H) satisfies
idg = TT~' and idy = T-T.

(¢c) U € L(H,6) is called unitary, if U is invertible with UU* = idg and U*U = idy.

(d) T € L(H) is called self-adjoint, if T = T*,i.e., (Th,h,)y = (h,T*h,)y for all h, h, € H.

(e) A self-adjoint T' € L(H) is called non-negative, T" < 1= (1) for short, if (T'h, h)y > 0 for all
h € H and strictly positive or T' € [ (1) for short, if (T'h, h)y > 0 for all h € H\{0}.

(f) IT € L(n) is called projection if 1I*> = IIII = II. For Il # 0 are equivalent: (i) IT is an
orthogonal projection (H = R (II) & A/(I1)); (ii) ||IL|| @ = 1; Gii) IT € LF(H). O

§17.29 Property.
(i) If T € L(W) is self-adjoint, then ||T ||w = sup{|{(Th,h)u| : ||h|ln < 1,h € H}.
(i) If T € L' (W) then there exists T"/? € I (M) with T = T'/?T"/2,

§17.30 Example (Example §17.21 continued).

(a) Letu. = (u;);en be an ONS in H and set U := lin {u;, j € N}. The (generalised) Fourier
series transform U € L(H,4,) (see Example §17.21 (a)) is a partial isometry with adjoint
U* € L, b) satisfying U*a, = >,y a;u; for a. € £,(N), e, U : U — £,(N) is uni-
tary. Moreover, the orthogonal projection II, € L(H) onto U satisfies [ h = U*Uh =
> jen Pu,u; forall b € H. If u. = (u;)jen is complete (i.e. ONB), then U is invertible with
UU* = idy,(n) and U*U = idy due to Parseval’s formula, and hence U is unitary.

(b) A multiplication operator M; € L(L,(n)) (see Example §17.21 (b)) is self-adjoint and if
f € o/ is non-negative, i.e. f € </, then M; is non-negative, i.e, M; € L (L,(n)). O
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