Statistik 1

Prof. Dr. Jan Johannes Sergio Brenner Miguel Sommersemester 2019

07. Übungsblatt

Aufgabe 1	Aufgabe 2	Aufgabe 3	Aufgabe 4	Vorbereitung	Σ

Aufgabe 1 (4 Punkte)

Überprüfen Sie, ob die folgenden Verteilungsfamilien Exponentialfamilien bilden. Bestimmen Sie gegebenfalls den natürlichen Parameterraum.

a) Multinomialverteilung $\{M_{(\theta,n)}, \theta = (\theta_0, \dots, \theta_s) \in (0,1)^{s+1}, \sum_{i=0}^s \theta_i = 1\}$ mit Zähldichten

$$\mathbb{p}_{\theta}(x) = \frac{n!}{x_0! \cdots x_s!} \theta_0^{x_0} \cdots \theta_s^{x_s}, \quad x \in [0, n]^{s+1}, \sum_{i=0}^s x_i = n;$$

- b) Poissonverteilung $\{Poi_{\lambda}, \lambda > 0\};$
- c) Gleichverteilung $\{U_{[0,\theta]}, \theta > 0\};$
- d) Betaverteilung $\{Beta_{(a,b)}, a, b > 0\}$ mit Lebesguedichten

$$f_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \quad x \in (0,1).$$

Hinweis zu d): Benutzen Sie ohne Beweis, dass $B(a,b):=\int_0^1 x^{a-1}(1-x)^{b-1}dx<\infty\Leftrightarrow a,b>0.$

Hinweis zur Aufgabe 1: Verwenden Sie Definition 13.01 und geben Sie das dominierende Maß μ und die Funktionen η , C, S, h explizit an oder versuchen Sie die Nichtexistenz solcher Funktionen zu begründen mittels eines Widerspruchsbeweis. Verwenden Sie auch die Definition 13.03.

Aufgabe 2 (4 Punkte)

Sei $\mathbb{P}_{\Theta_{\text{nat}}}$ eine Exponentialfamilie mit natürlichem Parameterraum $\Theta_{\text{nat}} \subset \mathbb{R}^k$ und Darstellung

$$\frac{d\mathbb{P}_{\theta}}{d\mu}(x) = C(\theta)h(x)\exp(\langle \theta, S(x) \rangle) = h(x)\exp(\langle \theta, S(x) \rangle - A(\theta)),$$

mit $A(\theta) = \log(C(\theta)^{-1}) = \log(\int_{\mathcal{X}} h(x) \exp(\langle \theta, S(x) \rangle) \mu(dx))$. Sei θ_0 ein innerer Punkt von Θ_{nat} . Zeigen Sie:

- a) Die erzeugende Funktion $\psi_{\theta_0}(s) = \mathbb{E}_{\theta_0}[\exp(\langle S, s \rangle)]$ ist in einer Umgebung U(0) des Nullvektors wohldefiniert.
- b) Es gilt für $s \in U(0)$ die Darstellung $\psi_{\theta_0}(s) = \exp(A(\theta_0 + s) A(\theta_0))$.

Nun möchten wir zeigen, dass auf U(0) die Funktion $\psi_{\boldsymbol{\theta}_0}$ in jeder Variable θ_i unendlich differenzierbar ist. Wir definieren für $s \in U(0)$ die Funktion $\varphi(\boldsymbol{\theta}_0+s) = \int h(x) \exp(\langle S(x), \boldsymbol{\theta}_0+s \rangle) \mu(dx)$ und sehen, dass $\psi_{\boldsymbol{\theta}_0}(s) = \exp(-A(\boldsymbol{\theta}_0)) \varphi(\boldsymbol{\theta}_0+s)$. Folglich reicht es die Aussage für $\varphi(\boldsymbol{\theta}_0+s)$ zu zeigen. Da die Argumentation für beliebige Richtungen und höhere Ableitungen analog ist, lässt sich das Problem reduzieren. Zeigen Sie nun:

c) Für $i \in [1, k]$, $s \in U(0)$ existiert $\frac{\partial}{\partial \theta_i} \varphi(\theta_0 + s)$ und es gilt

$$\frac{\partial \varphi(\boldsymbol{\theta}_0 + s)}{\partial \theta_i} = \int h(x) \exp(\langle S(x), \boldsymbol{\theta}_0 + s \rangle) S_i(x) \mu(dx).$$

Anmerkung: Insbesondere gilt dann auch $\frac{\partial^2}{\partial \theta_i \partial \theta_j} \exp(A(\boldsymbol{\theta}_0)) = \int h(x) \exp(\langle S(x), \boldsymbol{\theta}_0 + s \rangle) S_i(x) S_j(x) \mu(dx)$ für $i, j \in [1, k]$.

d) Für $i, j \in [1, k]$ folgt außerdem $\mathbb{E}_{\boldsymbol{\theta}_0}[S_i] = \frac{\partial A}{\partial \theta_i}(\boldsymbol{\theta}_0)$ und $\mathbb{C}ov_{\boldsymbol{\theta}_0}[S_i, S_j] = \frac{\partial^2 A}{\partial \theta_i \partial \theta_j}(\boldsymbol{\theta}_0)$.

Aufgabe 3 (4 Punkte)

Für eine Familie \mathcal{P} von Verteilungen wird eine erschöpfende (suffiziente) Statistik S^* minimalerschöpfend (minimalsuffizient) genannt, falls für jede weitere erschöpfende Statistik S eine messbare Funktion g existiert, so dass $S^* = g \circ S$ \mathbb{P} -fast sicher für alle $\mathbb{P} \in \mathcal{P}$.

Sei \mathbb{P}_{Θ} eine Familie von Verteilungen auf $(\mathcal{X}, \mathcal{X})$ mit Dichten \mathbb{f}_{θ} bezüglich eines σ -endlichen Maßes μ . Ferner sei der Träger der Dichten identisch.

- a) Eine Statistik S ist erschöpfend für \mathbb{P}_{Θ} genau dann, wenn für feste θ und θ' der Quotient $\mathbb{f}_{\theta} / \mathbb{f}_{\theta'}$ eine Funktion von S(x) ist.
- b) Ist $\Theta = [0, k]$, so ist $S(x) = \left(\frac{f_1(x)}{f_0(x)}, \dots, \frac{f_k(x)}{f_0(x)}\right)$ minimalerschöpfend für \mathbb{P}_{Θ} .
- c) Sei $\Theta_0 \subset \Theta$, T minimalerschöpfend für \mathbb{P}_{Θ_0} und erschöpfend für \mathbb{P}_{Θ} . Beweisen Sie, dass dann T minimalerschöpfend für \mathbb{P}_{Θ} ist.

Hinweis: Zeigen Sie zunächst, dass alle Maße aus \mathbb{P}_{Θ} zueinander äquivalent sind.

d) Zeigen Sie, dass $\overline{X} := \frac{1}{n} \sum_{i=1}^{n} x_i$ minimalerschöpfend für $\{N_{(\mu,1)}^n, \mu \in \mathbb{R}\}$ ist. Hinweis: Verwenden Sie Aufgabenteil a)-c).

Aufgabe 4 (4 Punkte)

Sei \mathbb{P}_{Θ} eine Familie von Verteilungen auf $(\mathcal{X}, \mathcal{X})$, die von einem σ -endlichen Maß μ dominiert werde. Ferner sei A ein festes Element von \mathcal{X} mit $\mathbb{P}_{\theta}[A] > 0$ für alle $\theta \in \Theta$, und \mathbb{P}_{θ}^* die auf A eingeschränkte Verteilung, d.h. $\mathbb{P}_{\theta}^*[B] = \frac{\mathbb{P}_{\theta}[B \cap A]}{\mathbb{P}_{\theta}[A]}$. Zeigen Sie:

- a) Eine Dichte \mathbb{f}_{θ}^* von \mathbb{P}_{θ}^* bezüglich μ für beliebige $\theta \in \Theta$ ist durch $\mathbb{f}_{\theta}^* = \frac{1}{\mathbb{P}_{\theta}[A]} \mathbb{1}_A \frac{d\mathbb{P}_{\theta}}{d\mu}$ gegeben.
- b) Ist $T:(\mathcal{X},\mathcal{X})\to(\mathcal{Y},\mathcal{Y})$ erschöpfend für \mathbb{P}_{Θ} , dann ist T auch erschöpfend für $\mathbb{P}_{\Theta}^*:=\{\mathbb{P}_{\theta}^*:\theta\in\Theta\}.$
- c) Ist T außerdem vollständig für \mathbb{P}_{Θ} , dann ist T auch vollständig für \mathbb{P}_{Θ}^* . Hinweis: Verwenden Sie die Notation $\varphi(T) := \mathbb{E}[\mathbb{1}_A|T]$ und den Satz 03.41.

Klausurvorbereitung:

Die folgende Aufgabe dient zur Wiederholung des Vorlesungstoffes und als Hilfsmittel zum gezielten Lernen auf die Klausur.

Aufgabe 5 (Vorbereitung; 4 Bonuspunkte)

Gegeben sei das lineare Modell für $X \in \mathbb{R}^{(n,p)}, \beta \in \mathbb{R}^p$

$$Y = X\beta + \varepsilon$$

wobei $X^tX = \mathcal{E}_p$ und $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^t \sim \mathcal{N}_{(0, \sigma^2 \mathcal{E}_n)}$ mit $\sigma^2 > 0$.

- a) Bestimmen Sie den gewöhnlichen Kleinste Quadrate Schätzer $\widehat{\beta} = (\widehat{\beta}_1, \dots, \widehat{\beta}_p)^t$ von $\beta = (\beta_1, \dots, \beta_p)^t$ und geben Sie dessen Verteilung an. Begründen Sie die Wohldefiniertheit.
- b) Geben Sie die Verteilung von $\lambda_1\widehat{\beta}_1+\lambda_2\widehat{\beta}_2$ für $\lambda_1,\lambda_2\in\mathbb{R}$ an.

Seien nun Z_1, \ldots, Z_n unabhängig und identisch $N_{(\mu,\sigma^2)}$ -verteilte Zufallsvariablen mit $\sigma^2 > 0$. Weiter sei $\overline{Z}_n := \frac{1}{n} \sum_{i=1}^n Z_i$.

c) Zeigen Sie, dass der Schätzer $\widetilde{\sigma_n^2} := \frac{1}{n} \sum_{i=1}^n (Z_i - \overline{Z}_n)^2 \xrightarrow{\mathbb{P}} \sigma^2$ ist und zeigen Sie, dass $\mathbb{E}[\widetilde{\sigma_n^2}] = \frac{n-1}{n} \sigma^2$ um zu zeigen, dass der Schätzer nicht erwartungstreu ist.

- d) Sei nun $\widehat{\sigma_n^2} := \frac{1}{n-1} \sum_{i=1}^n (Z_i \overline{Z}_n)^2$. Zeigen Sie:
 - i) $\widehat{\sigma_n^2}$ ist erwartungstreu;
 - ii) $\widehat{\sigma_n^2} \widetilde{\sigma_n^2} \stackrel{\mathbb{P}}{\to} 0$ und

Hinweis: Verwenden Sie die Aussage der Aufgabe 40 b) des Zettels 11 der Vorlesung "Einführung in die Wahrscheinlichkeitstheorie und Statistik" WS 18/19. https://sip.math.uni-heidelberg.de/vl/ews-ws18/src/uebung11.pdf

iii)
$$\widehat{\sigma_n^2} \stackrel{\mathbb{P}}{\to} \sigma^2$$
.

Anmerkung: Sie haben nun gezeigt, dass $\widehat{\sigma_n^2}$ ein konsistenter, erwartungstreuer Schätzer von σ^2 ist.

Abgabe:

In Zweiergruppen, bis spätestens Dienstag, den 11. Juni 2019, 11:15 Uhr. (Die Übungszettelkästen sind im 1. OG, INF 205, vor dem Dekanat.)

Homepage:

https://sip.math.uni-heidelberg.de/vl/st1-ss19/