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Chapter 1

Statistical inverse problems

The observable signal g = T60 corrupted with an additive noise is first
formalised in this chapter and secondly the noisy observation of the oper-
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Let (H, (-, -),) and (G, (-, ), ) be separable real Hilbert spaces and let T : H — G be a known
linear, bounded operator, T € L(H,G) in short. We are interested in the reconstruction of € H
from a noisy version of g = T8, which we formalise first in this section by introducing stochastic
processes.

50110001 Notation. For 2,y € R we agree on the following notations |z ] := max {k: €Z: ke (—o0,x]
(integer part),  Vy = max(z, y) (maximum), z Ay = min(x, y) (minimum), {x}+ = max(z,0)
(positive part), {x} = max(—z,0) (negative part) and |z| = {z} + {z} (modulus).

(a) Forc ¢ Rand A € R = RU {#o0} = [~00,00] weset A = ANJco0], A =
AN[—oo,c, A :=AN(c,00, A :=ANJoc0,c), A :=A\{c},and A := AU {£o0}.

\
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(b)

(©)

(d)

Forb € Randa E,,_WC write [a, b] := [a,b]NZ, [a,b) := [a,b)NZ, (a,b] := (a,b]NZ,
and (. b)) := (a,b) N Z. Moreover, let [n] := [1,n] and [n)) := [1,n]) forn € N = 7Z ..

For a o-algebra </ we denote by <7/, := o/ N A the trace of &/ over a ser A which is
for A € o/ a o-algebra too. For ¢ € R we set &/ := &/ N[c,o0], &/, := & N (c, 0],
o/ =4 N[oo,c],and 7 = & N [oo,c). We denote by % := %, the Borel-c-algebra
over the compactified real line R, where the sets {—oco}, {oc} and R are in R closed and
open, respectively, and hence Borel-measurable. Note that % := % is the Borel-o-algebra
over R.

Given two measurable space (£2,.27) and (£2,, %) we denote by M(«, ) the set of all o7 -
<7, measurable functions mapping €2 into 2,. We call f € M) M(«,%) and f €

M) := M(«,B) real and numerical, respectlvely Slmllarly, fe M, (@) =M, 2, (or
fe M, () =Mw2,)) and f € M_ () := M(,2.) (or f € M (/) := M(«, %)) is
calledp()szrw and srrictly positive. If & = %’ then we write M, := M_,(#), M_, := M_,(%),
M., := M.,(#), and M_, := M_,() for short. O

§01|01 Stochastic process

$01101.01 Notation. Here and subsequently, a non-empty and generally non-finite subset 7 of IN, Z or
R and a subset U/ of J denote an index set. We consider the product spaces R’ = Xies R

and R* = X, R, where we identify the family i, = (1 );cs € R’ and the mapy, : J — R

with j — y. Eventually, we define arithmetic operations on elements of R’ coordinate-wise,

for example meaning a,b, = (¢,b,);es and ra, = (ra;);e for a,,b, € R and r € R. Let us
further introduce 0, := (0);cs and 1, := (1);cy. The map II, : R’ — R given by y, =
(y)jeq = (y)jeu =: Ly, is called canonical projection. In particular, for each j € J the

coordinate map 11 = II

: R” — R is given by y = (y,)jreq = vy, =: TLy.. Moreover,

{}

R” is equipped with the product Borel-o-algebra B = (%) ieq P Recall that B equals

the smallest o-algebra on R” such that all coordinate maps IT, j € J are measurable. i.e.,
B = o(Il,,j € J). Moreover, let (7, 7. v) be a measure space with o-algebra ¢ over J
containing all elemenatry events { J }, Jj € J, and o-finite measure » < .7, ( 7). We denote by

L,(v)

= L 7 v) = LT, £,v) C M(s) the usual set of square integrable numerical functions

defined on (7, #,v). Define the set of equivalence classes J := [,(v) := L,(J, 7,v), which
forms a Hilbert space endowed with usual inner product (-.-), := (-,-) ,, and induced norm

1115

= [l 0

50101.02 Comment. Given a measurable space ({)..«7 i), s € IR, and the usual space £,(Q, <, u) of
L,(1)-integrable functions introduce for each /1 < M(~), the u-equivalence class {1}, :=
{h. € M(#): h = h, p-a.e.}. Define the set of equivalence classes L.(p) = L(o ) := L (Q o, p)

= {{h},:h e tiow}and [{h}, [l ) = bl for {h}, € L(u). Fors € R, (L(w), ||-||L(

is a complete normed vector space, i.e. a Banach space. Formally, we denote by {s}, : £, u) —

L.(n) the natural injection i+ {h},. In case s = 2 the norm |{h}.[|, ., = [h

(1(|h[))"? is induced by the inner product ({h},,{h.},) — ({h},, {hth o = u(hho), and

hence (L,(n), (-, -)

L) is a Hilbert space. As usual we identify the equivalence class {h}, with

its representative h, and write /» < [,() for short. If A = p is the Lebesgue-measure then we
write shortly (I, (-,-) ) and {e} : Lo — L. O

$0101.03 Stochastic process. Let (Y );cs be a family of real-valued random variables on a common
probability space (2,7, P), thatis, Y € o for each j € J. Consider the R’ -valued random

2
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variable Y := (Y);ey € M(#,27),ie. Y : Q — R” is a «7/-2" -measurable map given by
w = (Y (w)jer = Y (w). Y is called a stochastic process. Its distribution P* := P o Y
is the image probability measure of P under the map Y/, ie. ¥ ~ " or P ¢ 7/ (%) for
short. Further, denote by P* = PoY ' = P* o L' the distribution of the stochastic pro-
cess ¥, = 1LY = (Y)uew onU C J. The family (P*)yc s fniee is called family of finite-
dimensional distributions of Y/ or P*. In particular, P* = P"* = P* o II' € #(#) de-
notes the distribution of ¥ = II.Y. Furthermore, for j,j € H we write ’(}') = ]PY(HJ,)
and Cov(Y V) == P(YY) — P(Y)P(Y) = P*(11,1I,) — P* (I1,)P* (I1,), if it exists, for the
expectation of ¥ and the covariance of ¥ and ¥ with respect to IP. O

$0101.04 Assumption. The stochastic process ¥ = (Y');cs on a measurable space (2, .¢7) as a function
QxJ = Rwith (w,j) = Y (w)is & ® _7-Z8-measurable, )| < M~ © 7) for short. O

$0101.05 Definition. Let Y = (Y );cs ~ P* be a stochastic process satisfying Assumption §01101.04. If
P(|Y|) € R, ie. ¥ € Li(P)or II, € L,(P*) in equal, for each j € 7, then m, := (m, :=
P(Y))jes € R is called mean function of ¥, where m, € M(.#) due to Assumption §01101.04.
If in addition v (m?) € R.,, hence m, € J, then m, is called (J-)mean. If P(]Y|?) < oo, i.e., Y €
L,(P) or IT, € £,(P*) in equal, for each j € 7, then cov_ = (cov = Cov(Y,Y)); cs € R”
is called covariance function of Y/, where cov,, € M(.7*) due to Assumptlon §01101.04. A linear
and bounded (continuous) operator from J into itself, I € [L(J) for short, satisfying (I'z,,y,), = )
I 7y cov, @ v(dj)v(dg,) forall y,x, € J = Ly(v) is called covariance operatorof Y, or P*.
If Y admits a mean function m, € M(_#) (respectively mean m, € J) and a covariance function
cov,, € M(#*) (respectively covariance operator I' € [L(J)) then we write shortly ¥ ~ P
(respectively ¥ ~ P ). ”D

(m.,I")

$0101.06 Notation. For notional convenience we eventually identify ¥ and I, i.e. ) ~ I for short. We
denote by 7/ (#) the set of all probability measures on (IR, %’ ), by /// (#) C W (%) the subset of
all probability measures with finite second moment, by I . € #/(#) a probablhty measure with
mean ¢ € R and variance 0> € R.,, and by I}, ., = {P(’ngz) EW(B):. o c ]R>()} the subset of all
probability distributions with finite second moment and mean zero. For ' . € 7/(#), j € NN,

we denote by @ ;-7 . the associated product measure on (]RN, ,@@N). O

(1, ,6°

501101.07 Remark. A covariance operator I' € [(J) associated with a stochastic process ¥/ ~ P* is
self-adjoint and non-negative definite, [ < [-(J) for short. If

sup {P (v (1Y))[?): . € 9 = Lo, ), < 1} € R,

which holds for example if [P (

7)€ R orinequal |||, € £,(P) (implying ¥, € J P-as.),
then there exists a covariance operator I € [*(J) satisfying (I'z,, y/) = Cov(v(x,Y),v(yY)) for
all 7,y € J. Observe that ||Y||j = sup {|V(y.Y)‘2¢ v €Jd lully < 1}- Note that ||Y/ ||, € £,(P) is

a sufficent condition for the existence of a covariance operator, but it is not a necessary condition
(see Lemma §01101.18). O

§0101.08 Lemma. Let Y = (Y );cs ~ " be a stochastic process satisfying Assumption $01101.04 and
Y e L(P) foreach j € J, and letv < IR _..

(i) Ifforallh, € J
P (Jv(hY)|?) < vlnl? (01.01)

then'Y, admits a covariance operator I' € [2(J) satisfying ||I'|| , <

(8}
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(i1) Iffor all h, € J in addition to (01.01) we have also

P(lv(hY)?) — ‘IP(]/ hY, ))

|52 (01.02)

then ' € [(9) is invertible with inverse T € L(J) where ||[T''[|,, < v.

Consequently, if (01.01) and (01.01) are satisfied for all h, € J then we have
v RIS < 2 = (Th, ), < VA, \!2 Vh, € J. (01.03)
§01101.09 Proof of Lemma §01101.08. Given in the lecture. m

s0101.10 Empirical mean function. Assume a probability space (2, 2, IP) and a stochastic process ) =
(0)jer € Mz o /) ie. ZX T 2 (2,5) = ¢(2) € Ris Z ® _f-%-measurable, satisfying
in addition ¢ € L,(P) := L,(%, Z,P) for each j € J. Consider the product probability space
(27 P and Y = (V)jes with Y == D(1) € 2 where 2 = (2)icfa) — Y (2) =
(]E’(z/é))(z) = %Zie[n]]%(zi) for each j € J. By construction m, = (m; = P (¢ ))Jej =
IP(4)) € M(7) is the mean function of Y. The statistic € := n'*()(v)) — (1)) € M(2™) is
centred, i.e. § € £,(P™") with P (¢) =0, and we have |

& =(&)jes =n""(B—P)(1h) = n'”(R(h) — P(1) € M(2" 9 7).

exploiting ) « M(2 = 7). Since Y = m; + n""/?¢ for each j € J by construction we write

shortly ¥ = m, + n '/’ and call Y/ empi} ical mean function. If for each 7 € J in addition we
assume ¢ € L,(I”) then we obtaln Y = E(w) € L,(P™) and, hence € € L,(P™) by construction.
By exp101t1ng )€ Mz« 7) the covariance function cov,, € M(.#*) of € = (€);cy is given for
each 7, € jby

cov, =Cov(g,g) =P(vy) — P()P(y)) =nCov(Y,Y).

77 e
Consequently, we have ¢ ~ I~ and Y| = m, +n g ~ P . There exists a co-
variance operator I' € [2(J), if in addition sup {]P ’z/ a, ) )} )ra, €I =Lw),|al, < 1} € R.,,
which holds whenever [|v;|, € L,(P) or in equal P(|[«,|]?) € R.,. Observe that ||¢||j =
sup {|1/(a,w.)‘2: a, €J,]lal, <1}. Note that [|)]|, € L.(P) is a sufficent condition for the ex-

istence of a covariance operator, but it is not necessary. m

s0101.11 White noise process. A stochastic process W, = (VV])]e 7 1s called white noise process, if
(W,) e is a family of independent and identically F, -distributed real random variables, where

each W, has zero mean and variance one, W, ~ P and W, ~ 7 in short. O

s01101.12 Notation. In other words, the distribution P" of a white noise process W, = (W )jeg ~ P"
equals the product of its marginal P, , -distributions, i.e. P = = ®jc JPY = = Qjesk, =R 0

(0,1) (0,1)

s0101.13 Remark. The centred stochastic process €, := (€,) ;e of error terms considered in an Empirical
mean function §01101.10 is in general not a white noise process. O
so1101.14 Notation. We denote by /, := L,(1) = L,(IN,2%, 1) the space of all square-summable real-valued

sequences endowed with counting measure 14, := jen 05} over the index set IN.

§0101.15 Property. Let W, = (W )jew ~ B be a white noise process. By assumption W. admits
0 := (0)jen as {,;-mean and I' = id,, € [2(¢,) as covariance operator, i.e. W, ~ B, . since
(a,b), =3 ;enab =3 jen @ Do encov, b, = (L'a,b), foralla,b, €L, O
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s01101.16 Gaussian process. A stochastic process Y, = (Y )jes ~ E, . satisfying Assumption §01101.04
with mean function m, € M(#) and covariance function cov € M(7* is called a Gaussian
process, if the family of finite-dimensional distributions (IP”)MQ 7 finite cONsists of normal distri-
butions, that is, ¥, = (Y ),ey is normally distributed with mean vector (m, )<, and covariance
matrix (cov, ,)u,weu. We write shortly Y ~ N or ¥ ~ N, ., I1f in addition there exist a

(m.,cov,,)

covariance operator [' € [2(J) associated with Y. The Gaussian process B ~ ~ N, ., with J-mean
zero and covariance operator id; is called iso-Gaussian process or Gaussian white noise process,
which equals B ~ N ., in the particular case J = L,(1) = £,. m

50110117 Definition Random function. Let (H, (-, -), ) be an Hilbert space equipped with its Borel-o-algebra
%,, which is induced by its topology. A random variable Y € M(«#,4.), i.e. an o/ -%,-
measurable map Y : (2, .o/) — (H,%,), is called an H-valued random variable or a random
Jfunction in H. 0

s0101.18 Lemma. Consider ({,, (-, -), ). There does not exist a non-zero random function Y, = (Y )jcw in
0, which is a Gaussian white noise process.

$01101.19 Proof of Lemma §01101.18. Given in the lecture. O

§01|02 Noisy image

$01102.01 Assumption. The Hilbert space J = L,(J,_#,v) with o-finite measure v © .7, ( 7 ), o-algebra
# over J containing all elementary events { 7 }, J € J, and the surjective partial isometry
V € L(G.J),i.e. VV" = idy, are fixed and presumed to be known in advance. O

$01102.02 Notation. Come back to the reconstruction of # € H from a noisy version of ¢ = T € G.
Under Assumption §01102.01 setting A := VT € L(H,J) and g = (g );c7 := Vg € J we write
g — A0. Keep in mind, that we identify the equivalence class and its representative . O

50102.03 Noisy image. Let € = (€);cs be a stochastic process satisfying Assumption §01101.04 with
mean zero and let n € IN be a sample size. The stochastic process g = g + n /%€, with J-mean
g, is called a noisy version of the image g = Vg € J, or noisy image for short. We denote
by I the distribution of g. If € admits (possibly depending on g) a covariance function, say
cov’ € M(7), or a covariance operator, say |, € [°(J), then we eventually write € ~ P and

0,,cov?)

~ P ore ~ D andg ~ D forshort. O

(gn~'cov?)

§01002.04 Empirical mean model. For each g € G let B € # () be a probability measure on a mea-
surable space (Z,%). Similar to an Empirical mean function §01101.10 consider a stochastic
process v; = (1));c7 € NM(z = 7) which in addition for all g € G satisfies ) € £,(I) for
each j € J and B(¢)) = (9 = (V)))jes = g = Vg. Considering a statistical product
experiment (2", 2 TR = (P%),e6) as in an Empirical mean function §01101.10 we define
q9=1(g = E(zﬁ]))jej = (w) € M(z" ® 7). For g € G assuming a P“"-sample the J-mean
of g is by construction P (¢)) = g = Vg € J. Moreover, the stochastic process

& = ()jes = (B — B)(w) = n"*(B(1) — B(1)) € M(2” 5 9).

is centred, i.e. € € L,(B™) = L,(2", Z" P*) with ]E®”(éj) = 0 for each j € J, and exploiting
e Mz e 7)) it satisfies Assumption §01101.04. Since @ =g + n~'?¢ for each j € J the
stochastic process ¢ = ¢ + 7 '/°¢, is a noisy version of the image g = Vg € J. O

§0102.05 Sequence model. Consider J = ¢, = L,(%) as in §01101.14. Let & = (€ );cn be a real-valued
stochastic process (satisfying always Assumption §01101.04) with mean zero and let n € IN be

Statistics of inverse problems 5
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a sample size. The observable noisy version g = ¢ + n '/

§01101.14 takes the form of a sequence model

g ~ B" with /,-mean g € /, as in

g=g+n'"%, jeN (01.04)
If € admits a covariance function (possibly depending on g), say cov* € R, then we eventually
write g ~ 7 . for short. If in addition & admits a covariance operator P € [2(¢4) (an infinite
matrix) then we wrlte qg~P O

(g 'T)

. - . ®IN . . .
§0102.06 Gaussian sequence model. Let 3 := (B),-n ~ N, be a Gaussian white noise process. The

observable noisy version § = ¢ + n/’B, with /,-mean g € {, takes the form of a Gaussian
sequence model

g=g+n""B, jeN with (B)jen ~ No (01.05)

and we denote by N the distribution of the stochastic process g. O

§01|02/01 Examples of empirical mean models

501102.07 Notation. Consider over D € Z# the measure space (D, %, \,) where \, € .#,(%,) denotes
the restriction of the Lebesgue measure A € .#,(#) to the Borel-o-algebra %, = £ N D,
and the Hilbert space ,(\) := L,(D,%,\) =: G. Let (v,);cn be an orthonormal system in
,(\,). The linear operator V : L,(\) — 4, w1th g Vg =g = (g = (9,v;) O ))]elN
is a surjective partial isometry V € L(L\),4). Its adjoint operator V© € [L(£,L,(\)) satisfies
Vi, = Z en @V, = 1. (a,v,) € Ly(\) forall g, € £, (the limit is taken in £,). We call g, = (g,)jen
( genem/lsed ) F()urzer u)c{}ﬁciems and V (generalised) Fourier series transform. O

$01102.08 Density estimation on D. Let D, be a set of square-integrable Lebesgue densities on (D, %,,),
and hence D, C L,(\,) =: G. We denote for each density ¢ € D, by I := g\, € # (%)
the associated probability measure. Assuming an iid. sample (X;);c[,) of size n € N we
consider the statistical product experiment (D", %, . 2" = ("), cp,). Let V € L(LA), L)
be a generalised Fourier series transform (see Notation §01102.07) which is fixed and known in
advanced. Evidently, for each density ¢ € D, C L,(A) the generalised Fourier coefficients

g = (g9)jew = Vg for each j € IN satisfy

9 =9, Vi) o) = Ml9V;) = g (V) = B(v)),

ie. v, € Li(D,%,.E) =: L,(£). Moreover, the stochastic process v, = (v;)jen on (D, %,, ) is
B, @ 2N-ZB-measurable, i.e v, € M(#. ©2"). Similar to an Empirical mean model §01102.04 we
define | = (g := B(v,))jen = D(v.) € M(#" @ 2") where for each j € IN

T = (xi)ie[[n]] — /g;( T) = (]13( — ! Z v

i€[n]

By construction g = (g = B (v,))jen = B (v.) € M(2") is the £,-mean of g. For each j € IN the

statistic € = n" 2(P(v) —P(v,)) € M) is centred, ie. g € L(D" %" B") = L") with

B (¢) = 0, and exploiting v, € V(% = 2") the stochastic process

& = (&)en = n'*(B — B)(v.) = n"*(B(v.) — B(v))) € M#" 02

) - S PO 1y . P
satisfies Assumption §01101.04. Since g = g + n "¢, for each j € IN by construction g =

g -+ mn '’ is a noisy version of g. O

6 Statistics of inverse problems
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§0102.09 Regression with uniform design. Consider the measure space ([0, 1],% . \,,) where )\, de-
notes the restriction of the Lebesgue measure to the Borel-o-algebra %, over [0, 1], and the
Hilbert space [,(\..) := L,([0,1],4,,, \..) of square Lebesgue-integrable functions. Let (X ,Y") be
a [0, 1] x R-valued random vector. We denote by " € #/(%,,) the marginal distribution of X , by
""" a regular conditional distribution of Y given X, and by P = P* 0 P"* € #(%4,, ® %)
the joint distribution of (X, Y"). We tactically identify X and Y with the coordinate map IT,, and
I1,., respectively, and thus (X, Y") with the identity idjg 1)xr such that P = P*" € #/(%,, @ 2).
If in addition Y € L,(°) = L,((0.1) x k. = 2. 1) then P (idg) = P (YV|X) =: g € M)
is unique up to P*-a.s. equality. Moreover, we have g € IL,(P*) = L,([0,1],4,,.P*) and the error
term ¢ := Y — g(X) satisfies ¢ € ,(P) with P(¢) = 0. Let us denote in this situation by " *
and P :=P* 0" € # (%, © %), respectively, a regular conditional distribution of Y given
X and the joint distribution of (X,Y"). Keep however in mind, that even if g € L,(P") is fixed
the conditional distribution IBY‘X is still not fully specified. We assume in what follows that the
regressor X is uniformly distributed on the interval [0, 1], i.e. X ~ U,, = \,, = P" and that
g el CL(P) = Ly\) =: G identifying again equivalence classes and their representatives.
Denote by U, := U,,, ® P"™ the joint distribution of (X, Y") without fully specifying the condi-
tional distribution P"™. For ¢,/ € I,(P") C L,(P*) we have gh € I,(P*) and thus P* (¢h) € RR.
Keep in mind that X and Y equals the coordinate map II,,, and II,, respectively. Consequently,
if Y e [,(U)and h € 1,(P") = L,(\.), hence h(X) € L,(U,), then we obtain Yh(X) € L,(U)
and

U(YR(X)) =P (B (Y)h) = P*(gh) = Ay(gh) = (g.h), , , €R

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment (([0. 1] x R)", (#, @ 2)" U " = (U"), ) of sizen € N and for g ¢ [,
we denote by ((X,Y))iepnp ~ U™ an iid. sample of (X,Y) ~ U, = U,, ® "™, Let
Ve L(L(\), 4,) be a generalised Fourier series transform as in Notation §01102.07 which is fixed

and known in advanced. Evidently, for each g € F, C L,(\,,) the generalised Fourier coefficients
g9, = (g)jen = Vg foreach j € IN satisfy

9, = (9 Vi) = Monlgv,) = U(Yv,(X)).

Therefore the stochastic process 1) = ((X,Y) = Vv (X))cn € Mz =2 22%) fulfils
Assumption §01101.04 and g = Ug(w_). Similar to an Empirical mean model §01102.04 we define
g =1(g = ]E(l@))jem = IE(Q/}) € M((#,,® 2™ @2%). By construction g = U,(¢)) € M(2") is the
¢,-mean of g. For each j € IN the statistic € := n'%]ﬁ(q) — U(v)) € M((#,, ®#)™) is centred,
ie. & € L,(U) with U?"(¢,) = 0, and exploiting ' N (%, = ) =2") the stochastic process

& = (&)jen = 1 (B — U)() = 0" (B(1)) — (1)) € M(, 0 9" 02

satisfies Assumption §01101.04. Since g = g + n~"/?¢ for each j € IN by construction g =

g -+ n 7€ is a noisy version of ¢. O

§01|02|02 Extension to complex-valued models

§01102.10 Notation Reminder. Given a non-empty and generally non-finite subset J of IN, Z or R and
a subset U of J as an index set consider the complex product spaces ¢’ = Xje7 C and

" = X,y C, where we identify the family 1, — (y)jes € ¢’ and themapy, : J — C
with j — 3. Eventually, we define arithmetic operations on elements of C” coordinate-wise, for
example meaning a,b, = (a,b,);c7 and ra, = (ra,);je for a, b, € €’ and r € C. Let us further
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introduce 0, := (0);e7, L. := (1);c7., and the imaginary unit .. The map IJ,, : ¢’ — ¢ given
by y, = (y,)jes — (yj)jeu = Huy is called canonical projection. In particular, for each 7 € J

the coordinate map 11, := . ¢7 > Cis given by y, = (y,);7cqs — ¥y, =: ILy,. Let # denote

{J}
the Borel-o-algebra over C (with a slight abuse of notation). Moreover, C’ is equipped with the

product Borel-c-algebra B = (%) ieq P Recall that B equals the smallest o-algebra on

C” such that all coordinate maps I, j € J are measurable. i.e., B = o(Il,,j € J). More-
over, let (7, 7. 1) be a measure space with o-finite measure » < .7, ( 7). We write for each
¥ -PB-measurable h : J — C shortly /» € M (/) with a slight abuse of notation. For s € R, =
[1,00] we introduce the usual space L,(v) := L,(J, 7,v) of L,(v)-integrable complex-valued
functions. Define further the set of equivalence classes L,(v) := L (T, 7., v) := {{h}u: h e Ls(u)}
= [[hllg) = (w(h*)"/* is in-
duced by the inner product ({h},,{h.}.) = ({h}.,, {R}.) ) = v(hh,) (denoting by Z the
complex conjugate of z € C), and hence (L,(»), (-, ->[L2(V>) is a complex Hilbert space. As usual
we identify the equivalence class {h}, with its representative h, and write /. € L ,(») for short. If
A = v is the Lebesgue-measure then we write also shortly (I, [|-][, ). and (L., (-,-) ).

Let (Y),;es be a family of complex-valued random Varlables on a common probability space
(Q,47,P), that is, ¥ € M(«) for each j € J. Consider the C”-valued random variable
Y = (Y)jes € M, 2”) where ¥/ : Q — C” is a o/-%"’ -measurable map given by
w = (Y(w)jes = Y (w). Y is called a (complex-valued) stochastic process. Its distribu-
rion P* := P o Y/ is the image probability measure of P under the map Y, i.e. ¥ ~ " or
IP* © /(%) for short. Further, denote by P = P oY, " = P* o I, the distribution of the
stochastic process ¥, :=I1,Y, = (Y)uewyon U C J. The famlly (]P )uc 7 finite 18 called family
of finite-dimensional distributions of Y, or P*. In particular, P = P"™* = P* o I e W)
denotes the distribution of ¥ = I1 Y. Furthermore, for j, j, € J we write I’(Y) = P*(II) and
Cov(Y,Y) :=P(YY,) — P(Y)P(Y,), if it exists, for the expectation of ¥ and the covariance
of ¥ and Y with respect to IP. m

(see Comment §

s0102.11 Assumption. The complex-valued stochastic process ¥ = (Y );cs on a common measurable
space (€2,47) as a function Q x J — C with (w,j) — Y(w) is & ® _#-%-measurable,
Y & M« » ) for short. O

§01102.12 Notation. Consider the complex Hilbert spaces L,(A..) = L,([0,1),%,,, ) and J = /,(z) =
L,() = L,(%, 2% 1) where the latter is the space of all square-summable complex-valued se-
quences endowed with counting measure 1, := » ez d¢;1 over the index set Z. For each j € Z
introduce the exponential ¢, € M(# ) with ¢ (+) = exp(—:27zj) for x € [0,1) forming to-
gether the exponential basis (e,) jez in [L »(Mun). Moreover, the complex-valued stochastic process
e. = (¢)jez on ([0,1), 4, ) is B, ® 2%-%B-measurable, i.e. satisfies Assumption §01102.11. The

linear operator I : L,(\.,) — £,(Z) with g — Fg = g. = (g, := (g, ej>[L2w”))j€Z =\, (gc)isa
bijective isometry (unitary) F € L(L.(\.), £(2). Its adjoint operator F™ € L(£.(z), L,(\.)) satisfies

VZ(A[Ovl)(géO)E') = VZ((Fg>E°> = <Fg, a->g2 = <g7 F*a->[L2(>\m_,)) = /\[Ovl)(gF ) = )‘[01>< (_e>>

and hence F'a, = Y ez € = plac) € L) for all a, € £,(2) (the limit is taken in L,(A.,)).
We call g, = (g;)jez Fourier coefficients and ¥ Fourier-series ncms]‘()lm i

501102.13 Density estimation on [0, 1). Let D, be a set of square-integrable Lebesgue densities on ([0,1), 4, , ),
and hence D, C L,(\.,,) (by the usual embedding of real-valued functions) as in Notation §01102.10.
We denote for each Lebesgue density g on ([0,1),4, ) by I := gA,, € #(#,,) the associ-

ated probability measure. We consider the statistical product experiment ([0, 1)", 2" " =

8 Statistics of inverse problems
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(") 0, ). Let F € L(L.(w), £.(2)) be the Fourier-series transform (see Notation §0102.12). Evi-

dently, for each g € D, C L,(A\)) € L,(Aw) its Fourier-series g = (g )jez = Fg foreach j € Z
satisfy

q/ - <Q7e]>|]‘2<>\“l) - )\m)(.qé]) - IE;(é])

The complex-valued stochastic process €, = (€;) jez on ([ 1), B, ) is (B,,22%)-%-measurable,
ie. e € M(#, =2 for short. We define g = (g := (é)) = P (e) € M @2%) similar to
an Empirical mean model §01102.04 where for each 7 € Z

T = (1)) = G0 = (D) (@) =n" Y 8@ =n" Y exp(i2mjz).

the statistic € := n,“” )—P(€)) € J\/[ «%f is centred, i.e. € € L,(B™) with P*"(g) = 0,
and explomng = (€);ez € M(#,, 27 the complex valued stochastic process

= (§)jez = n'""(E ~E)@) = n'*(B(e) — B(@)) € M#; 02

) - S PO 1y . NP
satisfies Assumption §01102.11. Since g = g, + n /g for each j € Z by construction g —

g -+ n'?¢ is a noisy version of ¢. .

§01102.14 Regression with uniform design. Consider the measure space (|0, 1),.%, |\, ) and the com-
plex Hilbert space [L,(\,.) as in Notation §01102.10. Let [, be a set of square-integrable real-valued
regression function on ([0, 1], %, ), and hence F, C L,(\.,) =: G (by the usual embedding of
real-valued functions). We consider as in Regression with uniform design §01102.09 the statisti-
cal product experiment (([0,1) x R)". (4 @ 2)" U™ = (U™"), ) of sizen € N and for
g € I, we denote by ((X,Y))iepag ~ U an iid. sample of (X,Y) ~ U, = U,, ® P"™. Let
F € L.\, 6(2) be the Fourier-series transform (see Notation §01102.12). For each g € F, C
L,(A..,) the Fourier coefficients g = (g]) jez = Fg for each j € Z satisfy

g = <,(], e]>[L2(A“) - A(),m(,qé]) - U/(Yéz(X))

The complex-valued stochastic process ¢) = ()(X,Y) = Y& (X))jez € M((#, @522
fulfils Assumption §01102.11 and lg = U, (@/}) Similar to an Empirical mean model §01102.04 we

define g = (g := B(¥)))jez = ]P( ) € M((#, ©2)™ 2% where for each j € Z

g = IS h)=mn" Z Ye(X)=n" Z Y exp(127j X).
Zel[n]] 7;6”:7’1/]]
By construction g = U,(y)) € M(@2* is the /,(z)-mean of g. For each j € Z the statistic
& = n'2(P(y )= Uld)) € M, ©2)™) is centred, ie. € € L,(U™) with U (¢) = 0, and

exploiting ¢ € M((#,, © #)»2”) the complex-valued stochastlc process

& = (&)jer = " (B — U)() = n'(B() — U() € M(, 59 227

satisfies Assumption §01102.11. Since /g; =g + n /%€ for each j € Z by construction =
g +mn '’ is a noisy version of g. O

§01102.15 Notation. Consider the complex Hilbert space |, := [,(A) = L,(R, %, ) as in Notation §01102.10.
Let ' € denote the Fourier-Plancherel transform satisfying

g = (09) = [ gle)explznephde), jER, Vg eLnL,
R

Statistics of inverse problems 9
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Introducing ¢, = (¢);cp € M(#) given by ¢ (1) := exp(—272j) for z,j € R we evidently
have ¢, ¢, () € M(#) and (keep for each j € Rin mind thate, € L bute & L,)

9.=(g)jer =Fg = (Fg). = (Fg), = \(¢§))jer = A(ge.), Vg €L, NL,.
Moreover, F is unitary with adjoint F* € L(L.) satisfying
A (g&)h) = A((Fg).h) = (Fg,h) = (g,F"h)_ = A(gFh) = A(gA(h&))

and hence (F'h,)(z) = A(he(r)),z € R, forall h, € L, NL,. Forg € L, NL, we write
g, = (g = Myc))jer = A(ge.) = Fg such that g = F"g (with a slight abuse of notation). We
note that the complex-valued stochastic process e, = (¢,);cr on (R, %) is B -J8-measurable,
ie. e = (e);er € M(#) for short, and thus satisfies Assumption §01102.11. O

§01102.16 Density estimation on R. Let [D, be a set of square-integrable Lebesgue densities on (R, %),
and hence D, C L, =: G (by the usual embedding of real-valued functions). We denote for
each density g € D, by > := g\ € # (%) the associated probability measure. We consider
the statistical product experiment (R, % """ == (I'") .0, ). Let F € L(L.) be the Fourier-

Plancherel transform (see Notation §01102.15). Evidently, for each ¢ € D, C L, and hence
g € L, NL, its Fourier-Plancherel transform g = (g,)jer = Fg for each j € R satisfies

g, =Aye) =E(@).

The stochastic process (,);cr on (R, %) is & -Z-measurable, i.e. G )
short. Similar to an Empirical mean model §01102.04 we define g = (g := R(¢)));er = D(¢.) €
M(#™ @ ) where for each j € R

= (@)iep = G0 = (P(E)@) = n* 350 =n" 3 expli2rja).

i€n] 1€[n]

By construction g = (g, = E(§))jer = E(c) € M(#) is the L,-mean of g. For each j € R the

-~

statistic & := n'*(P(¢,) — (¢ )) € M(#™) is centred, i.e. € € L,(B™) with P“"(¢,) = 0. Since

n

¢ = (¢)jer € M(#) the stochastic process

&= (&)er=n"(B - B)) =n"(B@) - B(@)) € M”09

1/2

satisfies Assumption §01102.11 and, by construction § — ¢ + n /’¢, is a noisy versionof g. 0

s01102.17 Notation. Consider on the measurable space (IR _,, % ) the restriction \ , € .#,(%.,) of the

Lebesgue-measure A on R.,, and for ¢ € R the o-finite measure x°\ , € .Z,(%4.,) with Lebesgue-

density x° € M(#£.,) given by x — x%z) := z°. For s € R., introduce the complex vector space

L.(x) =L (xA) := LRoo, Boo, xA) of all complex-valued | (x\.)-integrable functions. Given

the complex Hilbert space [, := () := L,(R,%,\) of all complex-valued square-Lebesgue-
integrable functions let M. € L(L.t<),L,) denote the Mellin transform satisfying

= (M.g), = /}R T2 g ()N (de) = /]R 2™ g(x)(x*\.,) (dz)

>0 >0

:/ w g (2) (N (), j € R, Vg € L) NLE,
R

>0
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Introducing x, = (x,);ep € M(#, @ #) given by x () == 227 for z € R.,,j € R we evidently
have x (v) € A, ¢ olog =x" =% € #_, and

9. = (9)jer = Mg = (M.g). = (M.g); = x '\, (X9))jer
= (¥ A(XKg))jer, Vg € L) NLE.
Moreover, M, is unitary with adjoint M € (L., L") satisfying

M A (" %g)h) = AM(M.g).h) = (Mg, b)Y, = (g, MiR), .
— (A (gMIR) = (x*"A) (gARR)Xx ), Vg €L, NL,

and hence (M:h,)(z) = )\(x,(lrj)h,);r*‘ = (AMxh)x )(x), x € R, forall h, € L, NL,. For
g € Lix7) NI we write g 1= (g = x* '\ (x X g) = A (x'Xg))jer = M.g such
that g = M:g (with a slight abuse of notation). We note that for each ¢ € R the complex-
valued stochastic process x°X, = (x°X,) jer on (R.,, #.,) is #., ® HB-Z-measurable, i.e. XX, =
(xX)) jer € M(#.,© %) for short, and thus satisfies Assumption §01102.11. O

§01102.18 Density estimation on R_,. Let D, C L (x") N L,x* ") with L,(x*7') =: G (by the usual embed-

§01103.01

ding of real-valued functions) be a set of densities on (R.,, %.,) for some ¢ « R fixed and pre-
sumed to be known in advance. We denote for each density g € D, by I := g\, € #(#4..) the
associated probability measure. We consider the statistical product experiment (]R o By R =
(B"")yen, ). Let M. € L(L.6),L,) be the Mellin transform (see Notation §01102.17). Evidently,
for each g € D, C L,(x") N L,(x*7") its Mellin transform g = (g)jer = M.g for each j € R
satisfies

g = A %g) = Bx'R).

The complex-valued stochastic process x°'X, = (x°7'X,)jer on (R.,, A.,) is (#., ® B)-B-
measurable, i.e. x'X, = (x° i)jeR € M (#.,2 %) for short. Similar to an Empirical mean

~

model §01102.04 we define g = (g = B(x7'X))jer = P(x'%) € M(#5 © %) where for each
JER
7= (@)icy = §0) = (R %)) (@) =0 Y xR =07t Y7 ai
i€[n] ic[n]

By construction g = (g, = ]B(x“i))j@g € M(2) is the L,-mean of g. For each j € R the

statistic € = n'/ Z(IP( X)) — ]P( %)) € M(£) is centred, i.e. € € L,(B™) with P*"(g) =
0. By explomng XX, = (x7'% ) jer € M(#., @ %) the stochastic process

&= (&)jer = 0" (B~ B)(x"'%) = n'*(B(x"'%) ~ B(x'%)) € M(#Z e #)

1/2

satisfies Assumption §01102.11 and, by construction § = ¢ + n ¢, is a noisy versionof g. O

§01|03 Statistical direct problem

Assumption. The Hilbert space J = [.,(7, 7.,») with o-finite measure v < .7, ( 7) and the
surjective partial isometries V € L(G,J) and U := A = VT € L(H,J),i.e. VV' =id; = UU",

are fixed and presumed to be known in advance. O

$01103.02 Notation. Under Assumption §01103.01 we consider the reconstruction of § = Uf € J (or in

equal 6 = U’f, € H) from a noisy version of ¢ = Vg = A = Ul = ( € J. Keep in mind, that
we identify the equivalence class and its representative 6. m

Statistics of inverse problems 11
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$0103.03 Statistical direct problem. Consider as in Definition §01102.03 a stochastic process €, = (€,) e
satisfying Assumption §01101.04 with mean zero and a sample size n € IN. Under Assump-
tion §01103.01 the observable noisy image has J-mean €, = Uf € J, takes the form 6, = 6 +n""/?¢,
and is called a noisy version of the parameter § € H, or noisy parameter for short. We denote
by " the distribution of 5 If € admits (possibly depending on #) a covariance function, say
cov € M), or a covariance operator, say [, € [-(J), then we eventually write & ~ D

and () ~ D ore ~ P and 0 ~ P, .., for short. The reconstruction of 6, € J (in equal

(@n~"cov?) (0,,1)

6 = U*f € H) from its noisy version 5 ~ B" is called a statistical direct problem. m

$01103.04 Direct empirical mean model. Consider the reconstruction of § € J (in equal § = U*f, € H)
in an Empirical mean model as in §01102.04. Under Assumption §01103.01 the observable noisy
image has J-mean U6 = 6 € J, i.e. it is a noisy version of the parameter, and takes the
form an Empirical mean model as in §01102.04, that is 5 = 0, + n '?e with error process g =

~

n'?(B(y) —B(¢)) € M(2™ e ) satisfying Assumption §01101.04. O

§0103.05 Direct sequence model (dSM). Consider J = /, = [,(1) as in §01101.14. Let € = (€ ),en be a
sequence of real-valued random variables with mean zero and let n € IN be a sample size. The

observable noisy version 5 =0 +n " ~ )" with £,-mean ¢, € [, takes the form of a Sequence
model as in §01102.05, that is

0 =0+n""%

R

jeN. (01.06)

If € admits a covariance function (possibly depending on ), say cov’ & M@2") = R J, then we

eventually write 0 ~ P, .. forshort. If in addition € admits a covariance operator I, € [-(/,)

¢

(an infinite matrix) then we write 0 ~ B, O

L)*®

50103.06 Gaussian direct sequence model (GdSM). Let B := (B);en ~ N; be a Gaussian white

noise process. The observable noisy version ¢, = ¢} + n"' ZB with /,-mean () € /, takes the form
of a Gaussian sequence model as in §01102.06, that is

§=60+n"B,jeN with (B)jen~Non. (01.07)

We denote by N the distribution of the stochastic process 4. O

§01|04 Diagonal statistical inverse problem

50104.01 Notation. Consider the measure space (J, ¢ ,v) and the Hilbert space J = L,(») as in No-
tation §01101.01. For w, € R’ define the multiplication map M, : R’ — R’ with a, —
M,a = wa = (wa)jey. If w. € M(#), ie. w, is _Z-Z-measurable, then we have
M, : M(#) — M(#) too. If in addition w, € L_(») then we have also M, € L(J) identify-
ing again equivalence classes and representatives. We set

L) := {M,:w, e L.} C L)

noting that [|M, ||, ,, = sup {|lw.a|;: |all, <1} < [[w.]|, , for each M, € I*(J). Finally, given
surjective partial isometries U € L(H,J) and V € L(G,J) we define

[ () == VHLW)U = {V*M,U € L#,6): M, e ) }.

As a consequence, for each T € 1"V (') we have VT U* = M, € I'(J) for some w, € L_(v). ©
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501104.02 Notation. For A € ¢ wedenote by I, = (1), the indicator function where for each j € J,
1" =1if j € Aand I' = 0 otherwise. Obviously, I.' is _# -Z-measurable, i.e. I € M(.#), and
it belongs to L. (v), and to L,(v) whenever v(A) € R.,. Since {j} € # we have 1V € ¢ and
194 € L(v). In particular, it follows 1. = 17 € L_(v) and M, € (). For each w, € () set

aw, = {{aw.}, 1 a € L)} ={aw, :a €I =L}

and hence in particular 11, = {a 1 : a. € J}. Given O, = (0);e7 for w. € M( /) we write
further
/\/\:V::{\\;:Q}::{jGj:wj:O}G/,

and denote by domM) = {a, € J : aqw, € J}, ran(M) = {aw, : a, € domM,) C J}

and ker(M.) = {a, € J : {aw.}, = 0}, respectively, the domain range and nullspace of

M, :J D domM,) — J. We write w, € N, (), if w, € M( ) and v (N ) = 0. Similarly, for

w, € M(7) with v({w, < 0,}) = 0 we write w, € N, (/). 0
5010403 Notation. Consider the special case (7, 7. v) = (N, 2", 1) where (1¥1) e forms an or-

thonormal basis in ¢,. For each infinite matrix A,, € L(¢) C IRN = M @) with
A= (A = (AT 1P ) e

and for each j,7 € IN and a, € ¢, we have

A/- = (Am)joelN - A*-|-]lfj} € EZ: A. (Am' )jelN = A ]l{j} S é
and (A, ,a) =y (A, ZAma] = (A.a, ]l{’}) € R.
j.eN

If A,. € L(%) equals a multiplication operator A,, = M, € L'(¢) for some s, € ¢ (where ( :=
L. (1) is the set of all bounded real-valued sequences with respect to the counting measure 1, over
IN) then we call A,, € L(%) diagonal. Note that A,, € L(4,) is diagonal if and only if A;; = 0 for
all j € Nand j, E IN, =N\ {j}. Foreach T € I]E () with T, = VTU* = M, € (%), the
sequence s, € £, is called singular values of T and (s,, U, V) smgular value decomposition of
T. In other words, each T € 1" (1x(9)) is diagonal wrt. to U and V. i

§01104.04 Assumption. For J = [ ,(»), surjective partial isometries [/ < [.(H.J) and V < (G, J), fixed and
presumed to be known in advance, T € 1" (1)) C L(H,G) and hence A = VT = M,U or in
equal s, € [L_(v) is also presumed to be known where g = VT = MU = M,f) = 5,6, € Jorin
equal g € Js.. 0

§01104.05 Notation. Under Assumption §01104.04 given s, € [L_(~) and g € Js, we consider the reconstruc-
tionof § = Uf € J (orinequal § = U"¢) € H) from a noisy version ofg =Vg=A0=s0€J.
Keep in mind, that we identify the equivalence class and its representative ¢. O

s01104.06 Diagonal statistical inverse problem. Consider as in Definition §01102.03 a stochastic process
€ = (€);jes satisfying Assumption §01101.04 with mean zero and a sample size n € IN. Under
Assumption §01104.04, where s, € () is known in advance, the observable noisy image has J-
mean g = 6,6 and takes the form g = g+n"""%¢, = 5,0 +n""/%¢,. We denote by I the distribution
of g. If € admits (possibly depending on g = s,6) a covariance function, say cov’* & NM(
or a covariance operator, say I, < I-(J), then we eventually write € ~ I . and g (] ~ B o
ore ~ P andg ~ P . for short. The reconstruction of ¢, € J (in equal 0 =U%q 6 I]-I])
from a n01sy version g ~ ]Bm of the image g = s.0, € J is called a diagonal statistical inverse

problem. m
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$01104.07 Diagonal inverse empirical mean model (dieMM). Consider the reconstruction of € € J (in
equal # = U*A € H) in an Empirical mean model as in §01102.04. Under Assumption §01104.04,
where s, € () is known in advance, the observable noisy image has J-mean Vg = g = 5,0, €

35, C J and takes the form of an Empirical mean model as in §01102.04, thatis § = 5.6, + n "¢,
with error process

& =n'*(B - B)(w) = n”(B(¥) - B(4)) € M(z" o .7)
satisfying Assumption §01101.04. O

$01104.08 Diagonal inverse sequence model (diSM). Consider J = ¢, = L,(%) as in §01101.14. Let
€ = (€),en be a sequence of real-valued random variables with mean zero and let n € N be
a sample size. Under Assumption §01104.04, where s, € {_, is known in advance, the observable
noisy image has /,-mean g = 5,6, € ¢, and takes the form of a Sequence model as in §01102.05,
thatis g = g + n /%€, = 5,6, + n~"/?¢, or in equal

G=g+n'%=50+n"", jel. (01.08)
We denote by [ the distribution of §. O

50110409 Gaussian diagonal inverse sequence model (GdiSM). LetB := (B);en ~ Noy be a Gaussian
white noise process. The observable noisy version g = g + n~/°B with ¢,-mean g = s,§ takes
the form of a Gaussian sequence model as in §01102.06, that is

g=s50+n""B,jeN with (B)jen~ Noy. (01.09)
We denote by N, the distribution of the stochastic process . m

§01|04j01 Examples of diagonal inverse empirical mean models

$01104.10 Diagonal inverse regression with uniform design. Consider the measure space ([0, 1], 4, , A,
and the Hilbert space [,(A\..) as in Model §01102.09. Let T" € ["" (1n2)) C L(H,L(0.1)) be known
in advance, ie. T, = VTU" = M, € [!¢) and in other words T has a known singular
value decomposition (s,, U, V) with sequence of singular values s, ¢ /. Let (X,Y) be a
[0,1] x R-valued random vector. As in Model §01102.09 we assume in what follows that the
regressor X is uniformly distributed on the interval [0, 1], i.e. X ~ U,, = A, = P* and
that given T = g € L,([0,1]) for some ¢ < H the joint distribution of (X,Y") is given by
U, := U,, @B without fully specifying the regular conditional distribution B, which how-
ever satisfies ]PT?X (idr) = B, (Y’X) = TO = g € L,([0,1]). Keep in mind that we tactically
identify X and Y with the coordinate map II,, and II,, respectively, and thus (X,Y") with the
identity idjo1xr. Consequently, if Y~ € [,(U..) and h € L,(P") = L,(\.,), hence h(X) € L,(Ux),
then we obtain Y'h(X) € L,(U.) and

U (YR(X)) = PY(B," (Y)h) = P*((TO)h) = Aoy (TO)R) = (TO, k),  €R

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment (([0,1] x R)". (2 © 22)" U, = (U )yco ) of sizen € N and for ¢ € ©
we denote by ((X,Y))icfn) ~ Ui an iid. sample of (X,Y) ~ U, = U,, ® By, Keep in
mind that V € L(L.\.), %) and U € L(H,4) are generalised Fourier series transform as in No-
tation §01102.07 which are fixed and known in advanced. Evidently, for each § € © C H the
generalised Fourier coefficients = (6) ey = U6 and ¢ = (gj) jew = Vg = M,f, = 5,0, satisfy
g =50 =M, 1), = <T97V*]1-{j}>m o) (T0.v,)

J J L, 2\ o [Lz(>‘w 1

) = U (Y (X))
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for each j € IN. The stochastic process ) = ()(X,Y) = Vv (X))en € Mz, @72
fulfils Assumption §01101.04 and 4 = 56 = Up(¢). Similar to an Empirical mean model
§01102.04 we define § = (Z]; = E(w))JelN € M((4#,, @ 2)" «2%). By construction g = 5.0 =
Uy (¢)) € M2 is the £,-mean of §. For each j € IN the statistic & := n"/*(I( ) — Upn(¥)) €
M((#,, ® %)) is centred, i.e. € € L,(U5") with Uy" (¢ ) = 0, and exploiting 1) € (4, @ %) 2N
the stochastic process

& = ()jen = (B — Up)(w) = "2 (B(1)) — Un (1)) € M, )" 575

satisfies Assumption §01101.04, and by construction § = ¢ + n ’g, = 5.0, + n '€, is a noisy
version of g = s.0. O

Notation (Circular additive convolution). Let g, p be two Lebesgue densities on ([0, 1), %, ), then
their circular additive convolution is given by

9(y) = (q ®p)(y) = /[ LAl =Ly ph@) Wy <)

We note that g is again a density on ([0, 1), 4, ). Consider the complex Hilbert spaces [,(\..)
and J := /,(7), the exponentials e, := (e,) ez given by ¢,(z) := exp(—i2mjz) for z € [0, 1) and
j € 7., and the Fourier-series transform F € L(L.\.), £,(2)) with

g Fgi=g.=(Fg), =g :=(9,¢) . )jez

(see Notations §01102.10 and §01102.12). Let ¢ € L,(\.,) and let | -] be the floor function, then the
circular additive convolution operator &, : Ly(A,) = Ly(Ay) with A — ®,h defined by

(@.h)(t) = (p®h)(t):= / ot —s— |t —s])h(s)\,(ds) Vte0,1)

[0,1)

satisfies [|&®, |, ..o, < [l o) = Aan(le])- Since ¢ € L,(\) and for each j € Z, e, € L (i)
we have g€, € L,(\.,) too. More precisely, for each j € Z we have

Pan(@e)] < 8l o) < lellyon Bl o = Tl

and hence o = A\, (pc) = (A, (¢€))jez € (. () with a slight abuse of notation satisfies
lell,_ 2 = I (@l < el ) Obviously, if ¢ € Ly(\.) (implying ¢ € L,(\.)) then
@ = Aon(P8) = (Noy(98) = (@, &) . )jez = Fp € ,(2). However, for each ¢ € L,(A\..) and
h € L,(M\.) the circular convolution theorem states

(®:h), = (D) ) = Aan(@8) (R, ey ) = Ao (@) (FR), = gh, V) €Z,

or (®.h), = F(®,h) = A\, (¢e)(Fh) = ph, in short. Consequently, (¢, F,F) is a singular
value decomposition of &, with ¢, € £, (Z), and thus ®, € ["" (1:(0.2)) = F(1(¢.(2))F. O

Cicular density deconvolution. Consider the complex Hilbert spaces [,(\..) and J := /,(7). Let
D, be a set of square-integrable Lebesgue densities on ([0, 1), %, ), and hence D, C L,(\.,) C
L,(A\.,) (by the usual embedding of real-valued functions) as in Notation §01102.10. We denote for
each density p € L,(\.,) by P := p,,, € #(4,,) the associated probability measure. Given a
Lebesque density ¢ < [,(A.) presumed to be fixed and known in advance for each Lebesgue den-
sity p € D, we consider the Lebesque density g = q ® p € L,(\.,) (see Notation §01104.11) and
denote by I’ := (q®p)\.,, = g\, € #(%,,) the associated probability measure. We cons1der

the statistical product experiment ([0, 1)", 22" 2" = (2."),cp,). Let F € L(L\), 6(2) be

0,1)
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the Fourier-series transform (see Notation §01102.12). Evidently, for g € L,(A\.,)) C L,(\.,) its
Fourier-series g = (g,)jez = Fg satisfies g = A, (g¢,) = B,,(¢) for each j € Z. Moreover,
considering the Fourier-series p, = (p,)jez = Fp of p € D, C L,(\.,) by the circular convolu-
tion theorem we have g = F(q@®p) = qp withq, = A\, (qe) € (. (Z)and p = Fp € {,(Z) (see
Notation §01104.11). Moreover, the stochastic process € = (€ ) ez on ([0 1),4,,)is (B,,®2%)-

(11
~

%-measurable, ie. ¢, € M(#, 2 for short. We define g = (g = E(g))jcz = P(E) €
M(#:; @ 2%) similar to an Empirical mean model §01102.04 where for each ] EZ

Y= Wi = G0 = (BE)) =n" > g =n"Y _ exp(i2mjy).

i€n] i€n]

By construction g = q,p, = P.(€) € {,(z) is the mean of g. For each j € 7Z the statistic

g :=n'"’ (P(c) —P.(c)) € M(#2) is centred, i.e. g € L,(B") with B." (¢ ) = 0, and exploiting
& = (€)jez € M(£, ©2%) the complex valued stochastic process

~

&= (&)jez =B~ B.)(€) = n'*(B(&) — B, (0)) € M@y 02

plg

12‘

€ = q,p, +n ¢ for each j € R by
€, 1s a noisy version of g = q,p.

satisfies Assumption §01002.11. Since g = g + n™"/
construction g = ¢ +n '’g = q.p + -V

§01104.13 Cicular regression deconvolution with uniform design. Consider the measure space

(10,1],4, ,\,.) and the complex Hilbert spaces [,(\..) and /,(7) as in Notation §01102.10. Let
the circular convolution operator & < ["" (1(.z)) C L(LA.)) with p € L,(A.) be known in ad-
vance (see Notation §01104.11),i.e. F ®, F" = M, € L'(4.(z)) and in other words ® has a known
singular value decomposition (¢, F, F') with sequence of singular values € /(7). Let (X,Y")
be a [0,1) x R-valued random vector. As in Model §01102.14 we assume in what follows that
the regressor X is uniformly distributed on the interval [0, 1), i.e. X ~ Uy, = A,, = P* and
that given ®, f =: g € L,(\.,) for some [ € [, C [,(\,) = H the joint distribution of (X,Y")
isgivenby U, = U,, ® ]Ryf‘x and without fully specifying the regular conditional distribution
P which however satisfies P'* (idg) = P, (Y|X) = ®.f = g € L(\.). Keep in mind
that we tactically identify X and Y with the coordinate map IT,, and II,, respectively, and thus
(X,Y) with the identity idjy 1)xg. Consequently, if Y & [,(U.) and h € L,(P*) = L,(\..), hence

h(X) € L,(U,.), then we obtain Y h(X) € L,(U,.) and

U (YR(X)) = PY(RS(YV)R) = PT((@.0)h) = A ((@.0)h) = (®,f, k), € C

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment (([0,1) x R)". (2 @ 2)" U = (U");cr) of sizen € Nand for [ € [,

[0,1)

we denote by ((AX;,Y;))iG[[n}] ~ U7 an iid. sample of (X,Y) ~ U,, = U,, ® P'/*. Keep

in mind that F' € L(L,(\.),4.(2)) is the Fourier series transform as in Notation §01/02.12 which is
fixed and evidently known in advanced. For each f € F, C L,(\.,) = H the Fourier coefficients

f=(f)jez=Ffand g = (g)jez =Fg =F(®,f) = M,f = @ f (Notation §01104.11) satisfy
9,- - S%f; - <1\[¢f:“ 1;{j}>€2<z> - <®¢f’ F ]lfj}>ﬂ_2(/\ = <®¢f70,7>|]_2()\m) = UMY(YE/(X))

foreach j € Z. The stochastic process 1) = (1) (X, V) := V& (X));cz € M7, @2 =2 fulfils
Assumption §01101.04 and g = ¢ f = U,‘ (1). Similar to an Empirical mean model §01102.04 we
define g = (g = ]E'W]))]ez = IP(@/}) € M(#,©2)" ©2%). By construction g = ¢ f =
U,.(¢)) € {,(z) is the mean of g. For each j € Z the statistic € = n" Z(P((/;) -U,.(¥)) €

M((#,, ®#)™) is centred, i.e. € € L,(U7") with U;" (&) = 0, and exploiting ) € M((# = #) = 27)
the stochastic process

&= (&)jen =" (B~ U,)(1) = " (B(1) — Uy (1)) € M, 09" 027)
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satisfies Assumption §01101.04, and by construction § = ¢ + n '?e = ¢ [ + n '’c is a noisy

version of g = ¢ f. O

s01104.14 Notation (Additive convolution on R). Let g, p be two Lebesgue densities on (R, %), then their
additive convolution is given by

90) = @+p)(v) = |

[ aty—a)p()a(ds) = / p(y—2)q()\(dz) for \ae.y € R,

R

We note that ¢ is again a density on (IR, %) (keep in mind that we identify representatives
and equivalence classes). Consider the complex Hilbert space [, = [,(A), the exponentials
¢, = (¢)jer € M(#) given by e,(z) := exp(—12mjz) for z,j € R, and the Fourier-Plancherel
transform F € L(L,) satisfying

Fh =h, = ((Fh), := h, := A\(h&,))jer = A(h&), Vh e L, NL,

(see Notations §01102.10 and §01102.15). Consider p € L, and q € L, with conjugate exponents
(1/p+1/q = 1) then the integral [, p(y—2z)q(x)\(dz) exists for all y € R and hence (q*p)(y)
is for all y € R defined. Inthe case q € L, and p € L, with p € R., the integral (g xp)(y) exists
for A-a.e. y € R only. However, the \-a.e.-defined function q * p belongs to L, and satisfies
la = pll, < llall,|[pll, - Werner [2011] p.337 for p = 2 and general case p € R., lecture notes
P. Maréchal (Analyse pour les problemes inverses d’imagerie). For ¢ € L, the additive convolution
operator *_ : L, = L, with h — *_,h defined by

() = (o # B) () ::/]Rgo(t—s)h(s))\(ds) for \-a.e.y € R

satisfies ||*, ||, ., < [[#ll, = A(|»]). Since ¢ € L, and foreach j € R, ¢; € L, we have ¢ € L,
too. More precisely, for each 7 € R we have

(A(e)l < lleslly, <llell el = el

and hence ¢, := A(¢e) = (¢ = A¢€))jer € L. with a slight abuse of notation satisfies
||g0.||Lm = ||>\(goé,)||[Lm < ||<p||[Ll. Obviously, if ¢ € L, NL, then ¢, = A(pe,) = Fp € L,.
However, for each ¢ € L, and h € L, N L, the convolution theorem states

(5,1), = M(x,h)e) = Age)A(he) = g(Fh), = gh, for \ae.j € R.

or (x,h), = F(x,h) = A(pe)(Fh) = gh, A-as. in short. Consequently, (¢, F,F) is a singular
value decomposition of x, with ¢ € L, and thus x, € [*" (1)) = F*((L.))F. O

§01104.15 Density additive deconvolution on [R. Consider the complex Hilbert space [, = [,(\). Let [,
be a set of square-integrable Lebesgue densities on (R, %), and hence D, C L, N L, (by the
usual embedding of real-valued functions) as in Notation §01102.10. We denote for each density
p € L, by P := p\ € #(%) the associated probability measure. Given a Lebesque density
q < L,(\) presumed to be fixed and known in advance for each Lebesgue density p € D, we
consider the Lebesque density ¢ = x,p = q*p € L,NL, (see Notation §01104.14) and denote by
P, = (q*xp)A = g\ € # (%) the associated probability measure. We consider the statistical
product experiment (R, % " 2" = (P."),.n,). Let F € L(L) be the Fourier-Plancherel
transform (see Notation §01102.15). Evidently, for g € L, N L, its Fourier-Plancherel transform
g = (g9)jer = Fyg satisfies g = A(gg) = B, (g) for all j € R. Moreover, considering
the Fourier-Plancherel transform p, = (p)jer = Fp of p € D, C L, NL, by the additive
convolution theorem we have g = F(x,p) = A(ge,)(Fp) = q.p, A-a.s. with g, = A\(qe,) € L,

Statistics of inverse problems 17
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and p = Fp € L, (see Notation §01104.14). Moreover, the stochastic process € = (€;);er on
(R, A) is B’-PB-measurable, i.e. o, € M(#) for short. We define

~

9= (3 =R@E))er = BE) e M#" 29)

similar to an Empirical mean model §01102.04 where for each j € R

y = (Y)ietn = G0 = (B(8))(y) =n"" Z &) =n"' Z exp (1277 y,).
i€n] i€[n]

By construction g = qp = ]Pm(é,) € L, is the mean of . For each j € R the statistic

g :=n"(P(e) — ( 1)) € M(#™) is centred, i.e. € € L,(B.") with R."(¢) = 0, and exploiting
6 = ( ) jer € M(#) the complex valued stochastic process

&= (&)jen =n"(E ~ ,)(e) =n"*(B(e) ~ By(e) € M 02)

1/2 —1/2 2

satisfies Assumption §01/02.11, and by construction g = ¢ + n~
version of g = qp.

g = q.p + n '’g is a noisy

s0104.16 Notation (Multiplicative convolution on R_). Let g, p be two Lebesgue densities on (R.,, %)
satisfying , then their multiplicative convolution is given by

9(y) = (@@ p)(y) == /R a(y/2)p()r\.(dz)

>0

:/ p(y/x)q(x)z A (dz) for A ,-ae.y € R.,.
R

>0

We note that g is again a density on (R.,, %4,) (keep in mind that we identify representatives
and equivalence classes). For ¢ € R fixed and known in advance consider the complex Hilbert
spaces |,(x') = L,(R.o, ., xA,) and L, = L,(R, %, ), the kernel x'%, = (x°X,)jer € M(%.,© %)
given by (x°X,)(z) = zca?v for x € R.,, j € R and the Mellin transform M. € L(L.&*),L,) (see
Notation §01102.17) satisfying

M.h = h, = (M.h), = <AL (R h) = A (X Rh))jer, Vh € L") NLE)

(see Notations §01102.10 and §01102.17). Consider p,q € L,x") = L,(R.., %, x'A,) then the
integral [ p(y/z)q(v)r—'\,(dr) exists for A -a.e. y € R., and hence (q ® p)(y) is for
A-a.e. y € R defined and the \ ,-a.e.-defined function q & p belongs to L,(x*") and satisfies
la B pll oy < lall g Pl o) mcase p € L) ML) and g € L,(x) the integral
(gEp)(y)is for A -a.e. y € R defined and the \_,-a.e.-defined function g p belongs to L,(x*)
and satisfies || B p/|, o < Hq‘|wx< o |IPlly - (Phd thesis of S. Brenner Miguel [2023]). For
@ € L,(x") the multiplicative convolution operator [, : L(x*7) — L,x*7") with h — FE,h
defined by

(E.0)(1) = (o B h)(t) = /}R o(t/5)h(s)s~ A (ds) for A-ae.y € Rey

=0

satisfies |G, [|, .y < oy = X Au(le]). Since ¢ € L,(x7) and for each j € R, x, €
L.(A\.) we have X, € L,(x*"") too. More precisely, for each ;7 € R we have

A X SRl S NPl IR o = el
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and hence o = x '\ (Xp) = (¢ = x'A(Fp))jer € L. with a slight abuse of notation
satsties [afl, = [x " A(&p)l, < @l s = = Aulli]). Obviously, if ¢ € Lix) N
L,x*") then ¢ = x A, (Xp) = (x* A\, (x X ¢))jer = Mg € L,. However, for each ¢ €
L,(x") and h € L,x") N L,(x*™") the convolution theorem states

(8,h), = x "\ (Z(Bh) = x A5 e)x A (5h)
= x"'A,(Xp)(Mh), = ¢h, forX-ae.j € R.

or (E,h), = M.(E,h) = x'A\,(Xp)(M.h) = @h, A-a.s. in short. Consequently, (¢, M., M,) is
a singular value decomposition of &, with ¢, € L., and thus &, € ' (1)) = M (D(L))M,.

§01104.17 Density multiplicative deconvolution on R_,. Consider the complex Hilbert spaces [,(x* ') =
LR, Z <A )and [, = L,(A). Let D, C L,(x ") N L") be a set of Lebesgue-densities on
(Reo, & ) (by the usual embedding of real- Valued functions) as in Notation §01102.10. We denote

>0

for each Lebesgue density p on (R.,, %) by = pA, € #(%,) the associated probability
measure. Given a Lebesque density ¢ < [, (x presumed to be fixed and known in advance for
each Lebesgue density p € D, we consider the Lebesque density g = H,p = qEp € L,(x") N

L,(x*7") (see Notation §01104.16) and denote by P := (q B p)\, = g\, € # (%) the asso-
ciated probability measure. We consider the statistical product experiment (IR BB =

> x{q}

(IP&”)WE@_)). Let M. € L(L(x*"),L,) be the Mellin transform (see Notation §01102.1 7). EV1dently,

for g € Lix7) NL,&*") its Mellin transform g = (g )jer = M.g satisfies g = x '\ (X g) =
P,(x7'x;) for all j € R. Moreover, considering the Mellin transform p = (p);jer = M.p of

p € D, CL,(x") NL,*") by the multiplicative convolution theorem we have g = M. (E,p) =
AL (Xq)(Mp) = qp A-as. with g, = x'A\(Xq) € L. and p = M.p € L, (see No-

tation §01104.16). Moreover, the complex-valued stochastic process x'X, = (x°7'X))jer €
M#.,22) on (R.,, $B.,) is B., ® B-PAB-measurable, i.e. x'x € M(#,2 %) for short. We
define

7= =B(x"%))jer = B(x'X) € M@ ©2)

similar to an Empirical mean model §01102.04 where for each j € R

y=Wiepn = G0 = RN =0 Y TR (y) =0 Yy
i€[n] i€n]

By construction g = q.p, = ]PM(XHX) € L, is the mean of g. For each j € R the statistic

g = n2(P(xe'x) — P, (x'%)) € M(#) is centred, i.e. € € L,(B.") with B."(¢) = 0, and
exploiting X 'X, = (x°7'X) jer € M(#.,® %) the complex Valued stochastic process

&= (&)jer = n"(B — B)(x %) = n*(B(x %) - B,(x'X)) € M(# 09)

1/

1/ /“€, is a noisy

satisfies Assumption §01/02.11, and by construction g = ¢ +n g = q.p + n

version of g = q,p..

§01|05 Non-diagonal statistical inverse problem

50105.01 Notation. Consider the measure space (7, ¢ ,v) and the Hilbert space J = L,(v) as in Nota-
tion §01101.01. For T, & M( ) denote foreach j,j, € J byl :J — RandT :J — R
the map j — T, and j, — T, , respectively. Then we have T ,T € M(7) for each
Jj,j, € J. Ifin addltlon 1. € Jforv-ae. j € J then for each a, € J it follows (T, a,) :=
(T.,a), = v(T a) € ]Rfory -a.e. j € J and thus (T, a,) : j = (T,.a,), is v-a.e. defined

Jjle?
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and (T,.a.), € M(#). If for each ¢, & J in addition [|(T,.a.)[* = v((T,.a)) € R., and hence
(T,.a.), € J, then setting a, +— Ta, := (T, a,), defines an integral operator T : J — J which we
identify here and subsequently with its kernel T, € )V((_7*). Evidently, the operator T, : J — J
is bounded, ie. T, € LQ), if [|T,[ ., = sup{v(T,.a)): acdfal, <1} € ]R>O We set
-(J) := {T.‘. € L(J): with kernel T,, € M (.7 } Finally, given surjective partial isometries U €
L(H, ) and V € L(G,J) we deﬁne 1 (L) == VX(=()U := {V*'T, U € LM.G): T,, € l=() }.
As a consequence, for each T € ['V(1+(s)) we have VTU* = T, € [+(J) for some kernel

T,. € M(#). In the special case (J, 7 ,v) = (]N 2N 1), where RY = M) is the set of all
1nﬁn1te real-valued matrices, we have [L-(¢,) = (compare Notation §01104.03). O

§01105.02 Assumption. For J = [,(»), surjective partial isometries U/ € [.(H.J) and V < (G, J), fixed and
presumed to be known in advance, 1" < ['"(I-(1)) and hence I = \"T U* & [+(J) with kernel
T, € M) is also known where g =T, 6, € J or inequal g € ran(’ {T a,:a € J]} m

§0105.03 Notation. Under Assumption §01105.02 given T & [+(J) and g & ran(T.) we consider the
reconstruction of , = U# € J (orinequal § = U” 0 € H) from a noisy version of the image g —
VTU ) = .0 € J. Keep in mind, that we identify the equivalence class and its representative

g.- ]

§01105.04 Non-diagonal statistical inverse problem. Consider as in Definition §01102.03 a stochastic pro-
cess € = (€ ),ecz satisfying Assumption §01101.04 with mean zero and a sample size n € IN. Un-
der Assumption §01105.02, where T, & [--(J) with kernel T, & M( 7% 1s known in advance, the
observable noisy image has J- mean g = T,0 and takes the form g =g+n'e="T.0+n""?,

or in equal

g=g+n"%=(T,0),+n "%, wvaejecJ. (01.10)
We denote by [, the distribution of g. If € admits (possibly depending on ¢ = T'#) a covariance
function, say cov ' 0 ¢ M(s , Or a covariance operator, say L., € [-(J), then we eventually write
e~bB andg~P ore~P andg~ P forshort. The reconstruction of 0eld
(in equal 9 = U%) € H-I]) from a n01sy version q ~ ]B of the image g = T, 6, € J is called a
non-diagonal statistical inverse problem. m

$01105.05 Non-diagonal inverse empirical mean model (nieMM). Consider the reconstruction of § €
J (in equal # = U*§ € H) in an Empirical mean model as in §01102.04. Under Assump-
tion §01105.02, where I € [-+(J) with kernel T & M(_7) is known in advance, the observable
noisy image has J-mean Vg = g = T 6] € J and takes the form of an Empirical mean model
as in §01102.04, thatis g = T, 6, + n "¢ orin equal (01.10) with error process

= D)) =n(R(¢) - B(¥) e Mz" e 7)

:'%)

& = n'(
satisfying Assumption §01101.04. m

$01105.06 Comment. In the special case J = ¢, (compare Notation §01104.03) a Diagonal statistical inverse
problem §01104.06 with multiplication operator, i.e. T, = M,, is indeed the diagonal case of the
statistical inverse problem given in Assumption §01105.02. Moreover, introducing 1, := (1),en
the multiplication operator id, := M, € [L(&) with diagonal kernel id,, € M(@2Y) equals the
identity on 4,, i.e. id,, = id,. As a consequence for J = /, a statistical direct problem as
in Definition §01103.03 is also a statistical inverse problem with known identity operator, i.e.
T.\. = id.|.' U
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$01105.07 Non-diagonal inverse sequence model (niSM). Consider J = /, = L,(%) as in §01101.14. Let
€ = (€ ),en be a sequence of real-valued random variables with mean zero and let n € IN be a
sample size. Under Assumption §01105.02, where I < [--(%.) with kernel T < V( V) is known
in advance, the observable noisy image has /, mean q = T.ﬂ and takes the form of a Sequence
model as in §01102.05, thatis g = g +n""%¢ =T, 0 + n‘1/2s', or in equal

g=g+n"%= (TJ‘.,HJ&—1—71’1/26'].7 j €N. (01.11)
We denote by I’ the distribution of g. 0
$01105.08 Gaussian non-diagonal inverse sequence model (GniSM). Let B := (B]-)jem ~ N(Ol) be a

Gaussian white noise process. The observable noisy version g = ¢ + n~"/’B with /,-mean
g = T_‘_Q takes the form of a Gaussian sequence model as in §01102.06, that is

= (T,.,0), +n "B, j €N with (B)jew ~ Nob. (01.12)

Jle?

We denote by N, the distribution of the stochastic process . i

§01|05/01 Examples of non-diagonal inverse empirical mean models

§01105.09 Non-diagonal inverse regression with uniform design. Consider the measure space
(10,1],4, . A, and the real Hilbert space [,(\..) as in Model §01102.09. Let T & [1"(1-(1))

0,1

and hence T, — VT'U" € (/) with kernel T, & M2") be known in advance. Let (X,Y)
be a [0, 1] x R-valued random vector. As in Model §01102.09 we assume in what follows that
the regressor X is uniformly distributed on the interval [0, 1], i.e. X ~ U,, = \,, = P* and
that given T = g € L,([0,1]) for some ¢ < H the joint distribution of (X,Y") is given by
U, = U,, ® BJ"™ without fully specifying the regular conditional distribution B},"* which how-
ever satisfies B}~ (idg) = B, (Y‘X) = T#O = g € L,([0,1]). Keep in mind that we tactically
identify X and Y with the coordinate map I, and II,, respectively, and thus (X, Y") with the
identity idjo1)xr. Consequently, if Y~ € [,(U..) and h € L,(P") = L,(\,,), hence h(X) € L,(Ux),
then we obtain Y h(X) € L,(U.) and

U (YR(X)) = PY (B, (Y)h) = P*((TO)R) = A, ((TO)R) = (T4, h) o, €R

identifying again equivalence classes and their representatives. We consider the statistical prod-

uct experiment (([0,1] x R)". (2 © 22)" U, = (U )yeo ) of sizen € N and for § € ©
we denote by ((X, }{))lem ~ U an iid. sample of (X,Y) ~ U,, = U,, ® B,™. Keep in
mind that V € L(L.(\.), %) and U € L(H,4) are generalised Fourier series transform as in No-

tation §01102.07 Wthh are fixed and known in advance. Evidently, for each § € © C H the
generalised Fourier coefficients €} = () jew = U6 and g = (g )jen = Vg = T, 0 satisfy

g = (T..0), = (T.0.17), = (T, V1) | =X, ((TO),) = Upn(Yv,(X))
for each j € IN. The stochastic process v; = (¢)(X V) i= Vv (X))jen € Mz, 02 02"
fulfils Assumption §01101.04 and g = T, 6, = U, (¢)). Similar to an Empirical mean model
§0102.04 we define g = (g = R(¢)))jew € M((#, ©#)" @2"). By construction g = T, ) =
U (1)) € M@2") is the £,-mean of g. For each j € IN the statistic € := Il,l"u(]é(’b;) —Un(¥))) €

M((#,, ® 2)") is centred, i.e. € € L,(U7") with Uyy'(€) = 0, and exploiting 1) € M((2,, © %) @ 2")
the stochastic process

& = (&)sen = (B — Up) (1) = n(B() — Un(8)) € M(, 02 029
satisfies Assumption §01|()1 04. Since g = g +n % = (T, ), + nf”%@ for each j € IN by

-1/

construction g = g +n e =T  +n e isa n01sy version ofg =T,.0. O
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§01105.10 Regression with known design. Consider the measure space (D, %, . A, ) where A\, denotes the
restriction of the Lebesgue measure to the Borel-o-algebra %, over D € £, and the real Hilbert
space ,(\) := L,(D,%,,\,) of square Lebesgue-integrable real-valued functions. Let (X,Y)
be a D x R-valued random vector. We assume in what follows that the marginal distribution
P* € W (%) of the regressor X admits a Lebesgue density ©» € L,(\,) presumed to be fixed
and known in advance, that is P* = ¢),. For a real random variable £ ~ I ¢ 7/(#) and
a € R we denote by I° € #/ (%) the distribution of a + £. We assume that for each B € %
the map I2°(53) : a +— B*(B) is #-%, -measurable. Then I : R x # — [0, 1] with (a, B)
P*(B) is a Markov kernel from (R, ﬂ) (R, %). In this situation, for any f € M(#.) the
map I, : D x B — [0,1] with (z, B) + B{,(B) is a Markov kernel from (D, 4%,) to
(R, %).If € and X are independent and Y = f(X) 4 & for some [ € M (%), which is assumed
throughtout this model, then Py, is a regular version of the conditional distribution of Y~ given
X, in symbols B"™ = Bf,. In other words there exists a P*-null set N' € %, such that
P'"(B) = B,(B) forall B € % and x € N (Witting [1985], Saiz 129, p.130). In summary the

joint distribution of (X,Y) is given by )\ := ), ® B, without fully specifying the error
distribution P* € #/(#) and thus the regular conditional distribution B = Bf,. (Since \,
dominates ¢\, each representative of {f},, induces the same joint distribution B},", = P." €

W (7, © 7)) We tactically identify X and Y with the coordinate map II, and II,, respectively,
and thus (X,Y") with the identity idpyg such that B, = B." € #(%, ®%). Let in addition
p < L (\), then M_ € IX(L,\)) with A — M_h := ph. Note that then for each i € L,(\) w
have M_h € L,(\) and hence for each representative i € L,(»)\.). (Since A\, dominates @\, for
each h € M(%,) we have {h}, C {h},.,. If \, and ¢\, dominate mutually each other, i.e.
they share the same null sets, then {h}_, = {h}, and hence [,(\) C L,(»\).) If in addition
P* e B, C #(#),ie. & has mean zero and a finite second moment and f € L,(\), then
for each representatlve f e Lleh), f(X) € L(B,) and Y € L,(B,) too. In particular 1t follows
B (idg) = B(Y|X) = {f}. € Li(P") = L,(¢\). Consequently, for each i € L,(\), hence
h(X) € Ly(B,) we obtain Y h(X) € L£,(B,) and

B, (YR(X)) =P (B (Y)h) = oA (fh) = M (0 fh) = (M, f,h) , €R

identifying agaln equivalence classes and their representatlves We note that M € (L)) with
density ¢ « [_(\) is positive semi-definite, i.e. M, € L(L,(\)) and if in addltlon © € M, (%)
(i.e. p € M ,(# ) and )\ (N) = 0) then it is stictly positive definite, i.e. M, € [Z(L.(\)). Keep in
mind that U < [L(L.(\),7,) is generalised Fourier series transform as in Notation §01102.07 which
is fixed and knmm in advance. Evidently, we have Mﬁ = UM, U* € L+(6) C L+(6) = L(4)
and for each f € F, C L,\) and g := M,f € L,(\) the generalised Fourier coefficients
f.=(f)jew =Uf and g = (g)jew = Ug = M{.f. for each j € IN satisfy

g = (ML, f), = (MLLY), = M f, UL =M fu)  =B.(Yu(X)) eR

The stochastic process 1) = ((X,Y) = YVu,(X))jew € M((# @ %) 22" fulfils Assump-
tion §01101.04 and g = M. f = (¢). Similar to an Empirical mean model §01102.04 we con-
sider the statistical product experiment ((D x R)". (2, © )" B = (B ");cp) of size
n € N and for / & [ we denote by ((X:,}{))Z-e[[nﬂ ~ IPff‘Z” an iid. sample of (X,Y) ~
B, = ¢\ OB, Wedefine g = (7 = R(t)))jen = B(1)) € M 52)" 22, By con-
struction g = M.f = B (¢) € M(Z‘N) is the /,-mean of . For each j € IN the statistic

g = n"%]ﬁ(zﬁ;) D (1) € M(#,©2)") is centred, i.e. € € L,(E) with B"(¢) = 0, and

J .7'

exploiting ¢ € M((#, ® %) ©2") the stochastic process

& = (&)jen =n""(B ~ B.)(1) = n*(B() — B () € M0 2" 02%)
satisfies Assumption §01101.04. Since g = g +n~'’¢, = (M}, f), + n'/€, for each j € N by
construction § = ¢ +n 7 = M/ [ +n g isa n01sy version ofg = M. f. O
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§02 Noisy image and noisy operator

$02000.01 Assumption. The Hilbert space J = L,(J,_#,v) with o-finite measure v .7, ( 7 ), o-algebra
# over J containing all elementary events { J }, j € J, and the surjective partial isometries
U e LMJI)and V € L(G,J), ie. UU" = id; = VV", are fixed and presumed to be known in
advance. i

§02|01 Noisy non-diagonal operator

$02101.01 Notation. Under Assumption §02100.01 we consider the reconstruction of § = U# € J (or in
equal # = U"§ € H) from noisy versions of Vg — g="T.0edand T = VTU" € [-(J). 0

§02001.02 Assumption. The real-valued stochastic process ¥, = (Y, );;cs on a common measurable
space (€2, .¢7) as a function Q x J* — R with (w, j,7,) — Y, (w) is & ® _#*-Z8-measurable,

ld.

Y. € M« @ 7*) for short. O

$02001.03 Noisy non-diagonal operator. Let 7),, = (7),,);cs be a stochastic process satisfying As-
sumption §02/01.02 with mean zero and let & € IN be a sample size. The stochastic process
T.‘_ =T, + k~'*n,, with mean kernel T, € M(#*) is called a noisy version of the non-diagonal
operator T, = VTU* € [=+(J), or noisy non-diagonal operator for short. We denote by B
the distribution of T‘ If 7,, admits a covariance function (possibly depending on T), say
cov € M(.7"), then we eventually write 77, ~ I, and f‘ ~ P . for short. O

(, (T,,..kcov

$02/01.04 Empirical mean model. Foreach T € T C 'V (1)) let 5, € 7/(Z) be a probability measure
on a measurable space (Z,%). Similar to an Empirical mean function §01101.10 consider a
stochastic process ) = (v ); ;7 € M(2 = /") which in addition for all T" € T with T, =
VTU" € I+(J) and kernel T, € M(7") satisfies v/ € L,(1) 1= L,(% Z.R) for each j,j, €
J and B(y,) = (T, = E(¢ ))jjes = T,. Considering a statistical product experiAment
(2", % B = (B*)rer) similar to an Empirical mean function §0101.10 we define T, =
(ij = ]/%\(/lﬂj‘ja))jhjoej = ]/l%(@/)‘) € M(z" e #). For T € T assuming a B”"-sample the mean
kernel of T, is by construction (¢ ) = T,, = VTU" € L+(J). Moreover for each j, j, € J the

statistic 7, := K'*(B (1) ) — B(1) ) € M(2™) is centred, i.e. 1, € L(B") = L,(2", 2™ K"
with B (1,,) = 0, and exploiting 1) < M (2 = ') the stochastic process

M = (0 )jser = KPR =B)(0) = RPR(,) - B(1,) € M2 o)

satisfies Assumption §01101.04. Since ij =T, + k7'/*n,, for each j,j € J the stochastic
process T‘ =T, +k '/?7),. is a noisy version of the operator T, = VTU”* € 1-(9). o

50200105 Bivariate sequence model. Consider the measure space (7, #,v) = (N, 2N 1) asin §01101.14.
Let 1,. = (1),,);,j.e~ be a real-valued stochastic process satisfying Assumption §01101.04 with

mean zero and let £ € IN be a sample size. The observable noisy version T, = T, + k7?1, ~

B’ with mean kernel T, € M) = ]RlNz takes the form of a bivariate sequence model
T, =T, +k" i, j.j €N (02.01)

If n,. admits a covariance function (possibly depending on T,)), say cov € M@EN), then we
eventually write T, ~ P for short. O
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§0201.06 Gaussian bivariate sequence model. Let V\ (\\ i )igeN ™ N, be a Gaussian white noise
process. The observable noisy version T = T K 2VV with mean kernel T, € M@2N) takes
the form of a Gaussian bivariate sequence model

SN’

Tm =T, +k I/ZW\J7 J,J. € N with (\NJ\L)J’JOEIN ~ Ny (02.02)
and we denote by N! the distribution of the stochastic process T‘ O

§02|01j01 Examples of empirical mean models

502101.07 Conditional expectation operator. Consider the Borel-measurable spaces (), %, ) and (2, %. )
for X.Z ¢ #. Let (Z,X) be a Z x X-valued random vector. We denote by P’ e W(#.)
and P° € #(#.) the marginal distribution of Z and X, respectively, by " a regular con-
ditional distribution of X given Z, and by P = P” @ P € #/(%.® %.) the joint dis-
tribution of (Z, X'). We tactically identify Z and X with the coordinate map II, and IT,,
spectively, and thus (Z, X') with the 1dent1ty idg «x such that P = IPZX € W (B.2%B). In-
troduce further the Hilbert spaces |,(P") = L,(X, %, P") =: H, (") = L,(2,%.,P) = G
and (") := 1L,(2 xX,%8. ® B, P""). Foreachh € H = [I_Z( "), and hence h(X) € L,(P™")
we have "7/ := PY(h) = P(h(X)|Z) € L") = 6. Wecall P** : H — G with
h — P h conditional expectation operator. Since by exploiting Jensens inequality for each
h € H = L,(P*) we have

PRI = P2 ([P (1)) = P7 (1P (h(X)] 2)[?) < P7(P (K(X)[2)) = P* (W) = |Ih]];

it follows P*” € L(#,6) with |[P*"|| .., < 1. Its adjoint (P**)" € L(6,H) satisfies (P*'*)" =
P”*. Moreover, for each h € H = L,(P*) and g € G = L,(P”), hence h(X),g(Z) € L(P"),
we have

(P"7h,g)s =P (9(2)P (h(X)|Z)) = P77 (9(Z)h(X)) = (h, P g),,.

Evidently, the conditional expectation operator P*'” determines fully (and vice versa) the regular
conditional distribution I’*'“ of X given Z. However, in general the marginal distributions P*
and P?, and hence the Hilbert spaces H = [,(P") and G = [,(P") are not known in advance.
We assume in what follows that X = 2 = [0, 1] and that X and Z is uniformly distributed
on the interval [0,1],ie. X ~ U, = A\, =P  and Z ~ U,, = \,, = P". We denote by
U, := U,, ® P*” the joint distribution of (Z, X) which is now fully specified once the con-
ditional expectation operator °*'“ € T C L(H,G) is known. We consider the statistical product
experiment ([0, 1], 22" U™ == (U")v2 ) of size k € N and for ’*“ & T we denote by
((Z, X))iepry ~ U2t an iid. sample of (Z,X) ~ U,.. = U, © P, Let U,V € L(L&), %)
be generalised Fourier series transforms as in Notation §01102.07 which are fixed and known

in advanced. Then )7 = VIP"“U" € [-(() is an operator with kernel (infinite matrix)
B € M@Y) satisfying B = (B} = (P*u,,v,), = Uy (0, (X)v,(2)));.5.en Therefore

the stochastic process 1), = (i) (7, X) =1, (X)v,(Z))j en € M#, ©2") fulfils Assump-
tion §02101.02 and P = U, (1/) ). Similar to an Empirical mean model §02101.04 we define
BY” = (B = P(@bm )jen € M @2¥). By construction B = Up..(1,) € M) s the
mean kernel of ]P ¥7 For each j, j. € NN the statistic My = KPR ) = U (y)) € M&#E?)
is centred, i.e. 1), € L,(U:) with USH( 7n,,) = 0, and exploiting ¥, € M, ©2V) the stochastic
process

e = () )jaen = K70 = U )(0) = R2(R@,) — Ve (3,) € M@ 02
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satisfies Assumption §02101.02. Since P¥7 = ]PX'Z + k1?7, for each j, j, € IN by construction

31,
]P\ - =B 7 4k '“1,. is a noisy version of ]PX‘Z m
50200108 Covariance operator. Let (H, (-,-),) be a separable Hilbert space equipped with its Borel-o-

algebra %, and X be an H-valued random function. We tactically identify X with the identity
idy on H such that X is defined on the measure space (H, %,,P) and X ~ P = P* € #(%.).
Here and subsequently, |7 € L) and P((x, X)) = 0 forall z € H.

In this situation X admits a covariance operator e I(H) (see Remark §01101.07). Let
us denote by P. € #(%.) the destribution of X which is not fully specified given I'* €

T C (). We consider the statistical product experiment (H', %;", B** = (P%*)px ;). Let

T
(1) en be an orthonormal system in H and denote by U & [L(H./,) its associated generalised
Fourier series transform (see Notation §01002.07). Then I = UI"'U" ¢ [L-(4) is a posi-
tive semi-definite operator with kernel (infinite matrix) FX € M) which satisfies Ef =
(T = B ((u, X ), (X,u0,),));en. The process ¥, = (¥, (X) = (u, X) (X, 0,),)j5en €

M (%, ©2~) fulfils Assumption §02101.02 and IJ; = P. (¢).). Similar to an Empirical mean model
50201.04 we define T = (F\, = P(tﬁm ))jjen € M(#" ©2¥). By construction I = B (1) €

J

M (2") is the mean kernel ofF . Foreach j, j, € IN the statistic 7),, := n" (]P(Lm) — P, (z;‘/)) €

M%) is centred, i.e. M, € L,(P¥) with ]Pfk (1,,) = 0, and exploiting U, € M (%, ©2) the
stochastic process

M = (0 )jgew = KR = B (0) = BP(R@,) — B (4,)) € M @)

=T

1.

satisfies Assumptlon $02101.02. Since LY

4.

+ k1), for each j, j, € IN by construction
LY =0 + kY °1),. 1s a noisy version of I]‘, . O

§02001.09 Cross-covariance operator. Let (H, (-, -);) and (G, (-, ). ) be separable Hilbert space equipped
with its Borel-o-algebra %, and %, respectively. Consider an H-valued random function X and
an G-valued random function Z. Then (Z, X)) is an (G x H, %, ® A,)-valued random function.
We denote by P” € #/(#%.) and ' € # (%.) the marginal dlstrlbutlon of Z and X, respectively,
and by P”" € W (. ® 4,) the joint distribution of (Z, X ). We tactically identify Z and X with
the coordinate map 1, and II,, respectively, and thus (Z, X') with the identity idg«y such that
P = P?* € #/(%. ® #4.). Here and subsequently, we assume that 1Z]|2 € Lo(P), | X |2 € Lu(P),
P((z,7).) = Oand P({z, X),) = Oforall z € G and x € H. In this situation Z and X

admits a covariance operator T'? € 12(G) and I'* € (), respectively (see Remark §01101.07),
and (Z, X ) admits a cross-covariance operator I'’* € IL(H, 6) satisfying

(FZX:c,z>G = IPX’Z(<z, Z)(X,z),) VreH,zeG.
where [|[T7%[| .o, < [IT7(I1/2IT |22 (Baker [1973] p.275). Let us denote by P.. € #/(#. @ #.)

the destribution of (Z, X') which is not fully specified given I'** € T C L(H,G). We consider
the statistical product experiment ((G x H)", (%, ® %,)**, B*" = (P )pzxq). Let U € L(H, )
and V € L(G,£,) be generalised Fourier series transforms as in Notation §01102.07 which are fixed
and known in advanced. Then I.”" = VI7'U" & [-(/) is an operator with kernel (infinite
matrix) I7° € M@Y) satisfying 17" = (7" = (I u;,v)), = B ((v, 2) (X, 0,),,))jjien-

Therefore the stochastic process v, = (¢ (7, X ) = (v, Z) (X 1) )jjen € M(# 2 2) o)
fulfils Assumption §()2|()l 02 and [[7* = P.. (¢.)- Similar to an Empirical mean model §02/01.04

T

we define [[7¥ = (I7¥ = ]E(w ))jgen € M((# @ 2,)" @2¥). By construction LY =P.. (v.) €
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M (@) is the mean kernel of I,?*. Foreach j, j. € N the statistic M, = /\*""'Z(IE('Le,_;‘/ ) —Ba(¥,)) €

r

M((#. © %)) is centred, i.e. 7, € L,(B-~®k) with P (1,,) = 0, and the stochastic process
R = (0 )ren = K20~ B)(0) = RRBE,) — B (.)€ M0 2)" 52%)

satisfies Assumption §02001.02 exploiting ¢, € M((# = 7)" =2¥). Since L7* = L7 + k0,

for each 7, j, € IN by construction f/ Y= f,fx + k1), is a noisy version of I,", . O

502101.10 Design operator. Consider the measure space (D, %,. \,) where )\, denotes the restriction of
the Lebesgue measure to the Borel-o-algebra 4, over D € 2, and the real Hilbert space
L,(\) == L,(D,%,,\) of square Lebesgue-integrable real-valued functions. Let I € %/ (%,)
admit a Lebesgue density o € L,(A), thatis P = @A, (compare Regression with known design
§01105.10). Let in addition p» < [L_(\), then M_ € (L) with h — M_h := ph. Note that
then for each h € L,(\.) we have M_h € L,(\). Consequently, for each g,h € L,(\), hence
g,h € L,(P) we obtain gh € L,(E )and

R(gh) = o). (gh) = X (wgh) = (M,g,h) ) €R

identifying again equivalence classes and their representatlves We note that M, € [¥(L.(\)) w1th
density ¢ < [_(\) is positive semi-definite, i.e. M, € [Z(L,(\)) and if in addition p € M, (%
(i.e. ¢ € M (%) and )\ (/\/ ) = 0) then it is stictly positive definite, i.e. M, € E(L,(\)). Keep in
mind that U < [(L.( ) is generalised Fourier series transform as in Notation §01102.07 which
is fixed and known in advance Evidently, we have M7, := UM, U* € L:(4) C Le(l) = L)
satisfying M7, = (M7, = (Miu,u). = B(w1,));;en. Therefore the stochastic process

313 [ .9 M

¥, = (W, =uu)jen € MZ @2") fulfils Assumptlon §02001.02 and M7, = P (¢;,). Similar

©

to an Empirical mean model §02101.04 we define M (1\71]“ = ]/ls(wm ))jien € M(# @2v).
By construction M, = ]P(@/} )eM ZN) is the mean kernel of M For each j, 7. € IN the statistic
N, = /«:1""2(]131,(1/;/) —P(y,)) € M(#) is centred, ie. 7, € L,(R”) with P*(n,,) = 0, and
exploiting 1) € M(#, @2 ) the stochastlc process

= (0 )ssen = PR = R)(1) = RARE) — B@)) € Moo o)

MV’

314,

satisfies Assumption §02101.02. Since M

Jld.

+ kY ’n),, for each j,j € IN by construction
M,. = M¢, + kY /"1, is a noisy version of M. =

§02|02 Non-diagonal statistical inverse problem with noisy operator

§02102.01 Assumption. For J = [,(»), surjective partial isometries U < [(H.J)and V € (G, J), fixed and
presumed to be known in advance, the operator " & ['"(1-(1)) and hence T = VTU" € [-(J)
with kernel T, € 77 is not known in advance where g = T, 6, € J or inequal g € ran(1.)) =
{T.‘_a,: a, € J]}. m

§02002.02 Notation. Under Assumption §02102.01 given T & [+(J) and g & ran(T.) we consider the
reconstruction of § = Uf € J (or in equal § = U € H) from a noisy version of the image
g = VTUG =T 0 € Jand anoisy version of the operator T, < [-+(1). Keep in mind, that we
identify the equivalence class and its representative ¢. m

$02102.03 Non-diagonal statistical inverse problem with noisy operator. As in Definition §01102.03 con-
sider a stochastic process € = (€ )jes satisfying Assumption §01101.04 with mean zero and
a sample size n € IN, and in addition as in Definition §02/01.03 a stochastic process 7),, =
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(1,,)j.5. e satisfying Assumption §02/01.02 with mean zero and a sample size £ € IN. Under
Assumption §0202.01 where T, & [-(J) with kernel '’ € M(.7*) is not known anymore, the
observable noisy image (Definition §01102.03) has J-mean g = T, 6, and the observable noisy
non-diagonal operator (Definition §02/01.03) has mean kernel T.‘. € M(#*, and take the form

g =g +n'¢and T.l. =T,, + k7'/*n),., respectively, or in equal
§g=(T.0),+n" and T, =T, +k",, j.jeJ. (02.03)

We denote by I the joint distribution of (g, T‘) The reconstruction of § € J (or in equal
0 = U’ € H) from a noisy version (/g\,’f‘) ~ Bpi* of the image g = VIU( = T 6 € J
and the operator 1" & ['"(1(1)) is called a non-diagonal statistical inverse problem with noisy
operator. O

§02102.04 Non-diagonal inverse empirical mean model (nieMM) with noisy operator. Consider the
reconstruction of § € J (in equal § = U* € H) in an Empirical mean model as in §01102.04.
Under Assumption §02102.01, where T, € [--(J) with kernel T, € N(_7*) is not known in advance,
the observable noisy image has J-mean Vg = g = T, 6, € J and the observable noisy non-
diagonal operator (Definition §02101.03) has mean kernel T, € _#?, and take, respectively, the
form of an Empirical mean model as in §01102.04 and Empirical mean model as in §02101.04. More
precisely, foreachd € © CHand T € T C V(=) let B, € #/(2) be a probability measure
on a measurable space (Z,Z). Similar to §01102.04 and §02101.04 consider stochastic processes
e 2 g andy). € 2@ 77 whichin addition forallg € © and T € T satisfy \” ' /' €
L (12.) for each j, j, € J and B, (¢°"") = g = T.0 and B (¢),) = T,.. The observable n01sy
versions take the form g = T ¢, +n "¢ and T.‘. =T, +k7'’n,, orin equal (02.03) with error

processes & = n"*(B(4,°") = B.(4°7)) € M2 e #) and n,, = K2 (R(4]) — Ba(4))) €

M(z™ @ g satisfying Assumption §01101.04 and Assumption §02/01.02. m

§02102.05 Non-diagonal inverse sequence model (niSM) with noisy operator. Consider J = ¢, = L,(%)
as in §0101.14. Let & = (€)jew and 7,, = (7,,);.;en be real-valued stochastic processes
satisfying Assumption §01101.04 and Assumption §02/01.02 with mean zero and let n, k E N be
sample sizes. Under Assumption §02/02.01, where T, & [-+(¢.) with kernel T, € 7\/[ ) is not
known in advance, the observable noisy image has /,-mean g = T, 6, and the observable noisy
operator has mean kernel T, € M@2Y), and take the form of a Sequence model as in §01102.05

and Bivariate sequence model as in §02/01.05, thatis g = T, 6 + n~'/*¢, and T.‘. =T, +k"n,

or in equal
=(T,..0), +n"% and T =T +k"",, jjeN (02.04)
We denote by 12/, the joint distribution of (g, T.,). O

§02102.06 Gaussian non-diagonal inverse sequence model (GniSM) with noisy Operator Consider
J = £, as in 5010114, Let B := (B)jen ~ Noj and W, = (W, ) jen ~ N(01 be Gaus-
sian white noise process. The observable noisy versions g = g +n/’B, with £,-mean g = T.0

and '/I\‘.‘. =T, + k:‘WVV.I, with mean kernel T, € M @2) take the form of a Gaussian sequence
model as in §01102.06 and Gaussian bivariate sequence model as in §02/01.06, that is

= (T, 0), 40 md T, =T, 4k, N

jli?

with (Bj)j@N ~ NN and (W) e ~ NYL(02.05)

~

We denote by N, the joint distribution of the stochastic process (7, T,.). O
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§02|02j01 Examples of non-diagonal inverse empirical mean models with noisy
operator

§02002.07 Instrumental regression. Consider for Z, X € 4 the Borel-measurable spaces (2., 7. ), (X, %, )
and (R, #). Let (Z,X,Y) be a Z x X x R-valued random vector with joint distribution
P?*Y € W(B.©B.©2). We denote by P° € #(%.) the marginal distribution of Z, by
P and P"” a regular conditional distribution of X given Z and Y given Z, respectively,
andby P"" = PP 0P € #(%. %) and P7' = P’ 0 P"” € #(%.® %) the marginal
distributions of (Z, X ) and (Z,Y). We tactically identify Z, X and Y with the coordinate
map II,, II, and II,, respectively, and thus (Z,X,Y) with the identity idy«xxgr such that
P =P € #(#B 2% 22). Ifin addition Y € [, (P) = [ (2 xX xR, % © % © 2. 1) then
IPY‘Z(id%J) =P (Y|Z) =: g € ,(P?) is unique up to P”?-a.s. equality (compare Regression with
uniform design §01102.09). Introduce further the Hilbert spaces [,(P") := L,(X, 2., P), [ (") :=
L,(Z,%.,P?) and as in §02101.07 the conditional expectation operator P ¢ L(LeY),L#) with
ho— P00 =P (h) = P(h(X)|Z). In what follows we assume that )" € (") and hence
g € L,(P”), and that in addition ¢ € ran(P"") C L,(P”). In this situation there exists f € L,(P")
such that for any h € [,(P”)

(9, h)y wr) = P (P(Y|Z2)h(2)) =P (P(f(X)|2)h(2)) = (@}, ) e
or in equal P-a.s. we have Y = f(X) + & with P(¢£]|Z) = 0. We note that for all h € L,(F*)
we have (g, /) - = P(Yh(Z)). We assume moreover that X' = 2 = [0, 1] and that X and
Z is uniformly distributed on the interval [0,1],ie. X ~ Uy = A, = P  and Z ~ U,, =
A, = P7. Consequently, we set H = [,(P") = L,(\,) and G := 1(P") = L,(\.,). We denote
by U.. := U, ® P*” the joint distribution of (Z, X) which is now fully specified once the
conditional expectation operator P*'¥ € T C L(L,(\.) is given (see Model §02101.07). Moreover,
for P*” ¢ T C (L) and f € F, C L,(\,) = H, and hence g := P*“f € L,(\.,) = G,
we denote by U, .. := Uy, ® ]BY‘Z the joint distribution of (Z,Y") without fully specifying the
regular conditional distribution P"'” which however satisfies ]BY‘Z(id%) = IB(Y‘Z ) =g =
PV f (see Model §01105.09). Let U,V & L(L.(\.).7) be generalised Fourier series transforms
as in Notation §01102.07 which are fixed and known in advance. Following Model §02101.07

PYY = VPYPU" € 1+(0) is an operator with kernel (infinite matrix) B € M@") sat-
isfying BY” = (P}” = <]PX'Zu],V]>G = U (0, (X)v,(2)));jen. Therefore the stochas-

tic process ¢, = (V) (7. X) =1 (X)v,(7));jen € M, ©2V) fulfils Assumption §02101.02
and IEf‘Z = U, (w‘) Moreover, similar to Model §01105.09 for each [ ¢ F, C [,(\.) = H
the generalised Fourier coefficients g = (g)jew = Vg = VP U'Uf = IEf‘Z f, satisfy
g = U,...(Yv.(Z)). The stochastic process Y = (¥ :=Yv(X))jen € M((#, 22 o2 ful-
fils Aﬂsumptlon §01101.04 and g — 1 f=U. (UW) The observable noisy versions take the

DX|1Z PY\Z

form g = IE‘, f +n ¢ and 2, k#n,., or in equal (02.03) with error processes

~

é. == n,l'ﬂz(E), — U, 1)(l.) I/Q(E( ) f|]P ( )) e M (,9 ® B)™" X21[\‘) and
77"' - klﬁ( I ><L o ) = kl/Q(P(¢\.) - wa(@/{‘)) € M<%<:% ®2N)

satisfying Assumption §01101.04 and Assumption §02/01.02. 0

50200208 Functional linear regression. Let (H,(-,-),) be a separable Hilbert space equipped with its

Borel-o-algebra %, and let (X,Y) be an H x R-valued random vector with joint distribution
P*" € W (%, ®%). We denote by IP* € # (%) the marginal distribution of X. We tactically
identify X and Y with the coordinate map II, and [T, respectively, and thus (X ,Y") with the
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identity idy.g such that P = P*" € #/(%.® #). Here and subsequently, we assume that
VOIXE € LP) = LM xR, %, @ %, P) and P ({r, X)) = 0 forall 2 € H. In this situation X
admits a covariance operator T € [2(H) (see Remark §01101.07) and there is ¢ € H satisfying
(g,2)y = P(Y/(X,x),)forall z € H. In what follows we assume that in addition g € ran(I") C
H. In this situation there exists f € H such that

(9.2)y = P(Y (X, 2},) = P(X, ), (X,2},) = (" f.a), Ve

orin equal P-a.s. we have Y = (X, f), + & with P(£(X, z),) = 0 forall z € H. Let us denote
by P. € # (%.) the marginal destribution of X which is not fully specified given ' € T C I>(i)
(see Model §02101.08). Moreover, for ' € T C (W)and f € F, C H,andhence g :=I'" f € H,
we denote by 2 . the joint distribution of (X, Y") without fully specifying the distribution which
however is assumed to satisfy [0 . (Y (X', x), ) = D ((X, f) (X 7)) forallz € H. Let U €
L(H,4.) be a generalised Fourier series transform as in Notation §01102.07 which is fixed and known
in advance. Following Model §02101.08 ) := UI'"U" € [(7.) is an operator with kernel (infi-
nite matrix) I} € M@Y) satisfying I; = (I = (T, w), = B ((X,0,),, (X, w),))jjen-
Therefore the stochastic process ¢, = (¢) (X) = (X, u ) (X 1), )jen € M 22) ful-
fils Assumption §0201.02 and I;; = . (¢2.). Moreover, for each f € F, C H the generalised
Fourier coefficients g = (g)jew = Ug = UT*U'Uf =L [, satisfy g = P (Y (X, u),). The
stochastic process ¢) = (1) == Y (X, 1), )jew € M((# @ %) =2 fulfils Assumption §01101.04
and g = Ly f = -

LY =T +k "/*1),., or in equal (02.03) with error processes

—1/

(1)). The observable noisy versions take the form g = [\ f + 1 “€ and

& =00~ B, ) (1) =02 (B) ~ Bre($) € M 227 52 and

M= K2R = R)(W,) = K(R(,) — B (4,) € M @2)
satisfying Assumption §01101.04 and Assumption §02/01.02. O

50200209 Functional linear instrumental regression. Let (H, (-, -),) and (G, (-, -) ) be separable Hilbert
space equipped with its Borel-o-algebra %, and %, respectively, and let (Z, X,Y’) be an
G x H x R-valued random vector with joint distribution P**" € #/(%. ® %, %). We de-
note by I’ € #(%.), P°" € W (% ® %), and P°" € W (% © %) the marginal distribution
of Z,(Z,X) and (Z,Y), respectively. We tactically identify Z, X and Y with the coordinate
map II, II, and II,, respectively, and thus (Z, X ,Y") with the identity idgxnxr such that P =
P?*" € (%, © . #). Here and subsequently, we assume that Y || 7], | X[ € () =
LG xH xR, % &% 02P), P((2,7) ) =0and P((r, X)) = 0forall 2 € Gand z € H. In
this situation (Z, X') admits a cross-covariance operator I’ X e LM,6) (see Model §02101.09)
and there is g € G satisfying (g, 2). = P(Y (Z, z)_) for all z € G. In what follows we assume
that in addition ¢ € ran(I'"") C G. In this situation there exists f € H such that

(9,2) = P(Y(Z,2)g) = PU(X, [),(Z,2)g) = (T [, 2)g

orinequal P-a.s. wehave Y = (X, f) +&§ with P(£(Z, 2).) = O forall z € G. Let us denote by

P.. € ¥ (%.® %) the marginal destribution of (Z, X') which is not fully specified given I'** €
T C L(H,6) (see Model §02101.09). Moreover, for I'”* € T C L(H,6) and f € F, C H, and hence
g :=TI'?"f € G, we denote by I . the joint distribution of (Z, X',Y") without fully specifying

the distribution which however is assumed to satisfy I .. (Y (7, 2) ) = D..((X, ), (Z.2).)
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forall z € G. Let U € L(H,4) and V € L(G,%) be generalised Fourier series transforms
as in Notation §01102.07 which are fixed and known in advance. Following Model §02/01.09
7% = VI"'U" € [+(() is an operator with kernel (infinite matrix) I[* € M@") satisfying
L7 = (07 = T, v), = Pa((X,0),(Z,v,)g))jjen. Therefore the stochastic pro-

313 J.0 vJ

cessy, = (¢ (Z,X) == (X, 10)(Z,V,)))jsen € MZ o2 2™) fulfils Assumption §02101.02

and IJ7" = 2-<(¢,.). Moreover, for each f € F, C H the generalised Fourier coefficients

g = (9)jen = Vg = VI'U'Uf = LI [, satisfy g = B ..(Y(Z,v.),). The stochastic

process ¥ = ((Z,Y) =Y (Z,v)_ )jew € M((# @ %) 22" fulfils Assumption §01101.04 and

-1/

g = L7"f = B ,..()). The observable noisy versions take the form g = 1.7 /' + n"“¢ and

f‘ =T+ k *1,., or in equal (02.03) with error processes

&= (R = B (1) = nHR() — B () €M 02702 and
77 = kY >(L) — Pux )( ) = kl/Q(IE(w ) E“(w.‘.)) € M((%. ® B.)*" X)INJ)

satisfying Assumption §01101.04 and Assumption §02/01.02. O

§02102.10 Regression ~ with  unknown  design. Consider the measure space (D, %, \)
where )\, denotes the restriction of the Lebesgue measure to the Borel-o-algebra %, over D €
2%, and the real Hilbert space L,(\.) := L,(D,%,,\) of square Lebesgue-integrable real-valued
functions. Let (X,Y’) be a D x R-valued random vector. We assume in what follows that the
marginal distribution IP* € #/(%.) of the regressor X admits a Lebesgue density o < I (\.),
that is P* = ©\,, which is nor known in advance. Moreover, let the joint distribution of (X ,Y")
be given by I 1= ¢\, ® B, without fully specifying the error distribution P* € #/ (%) and
thus the regular conditional distribution B = B{, (compare Model §01105.10). We tactically
identify X and Y with the coordinate map [, and IT,, respectively, and thus (X,Y") with the
identity idp g such that B, = B € #/(%, ® #). In addition we assume that » < [__(\.), and
hence M _ € LM(L.(\)), P e P[,,\H C #(#), i.e. £ has mean zero and a finite second moment, and
fel (), theng =M, f € L,\) for each h € L,(\) satisfies

BL(YR(X)) = P* (B (Y)h) = oA (FR) = A (9FR) = (MLF,BY, ) = (9, ), € R.

Let U & [L(L.(v). /) be a generalised Fourier series transform as in Notation §01/02.07 which is
fixed and known in advance. Evidently, we have M, := UM, U* € Le(6) C L) = L)
and for each f € F, C L,\) and g := M_f € L,(\) the generalised Fourier coefficients
f.=(f)jex =Uf and g = (g)jew = Ug = M{.f. for each j € IN satisfy

= (M., £), = (ML£ P, = M F, U, = (M fow), o) =B (Yu(X)) e R

The stochastic process ) = (¢)( X, V") := V1, (X)) jew € M((#, @ 2) @ 2") fulfils Assumption §01101.04
and ¢ = M. f = D_(¢) (compare Model §01105.10). Moreover, considering the marginal
distribution P = ¢\, of X we have M{, := UM, U* € L:(4) C L+(t) = L) satisfy-

ing M, = (M, = (Miu,u), = R(ww));jen. Therefore the stochastic process ¥,

313, ol h, 0 M

(¥, =1, (X)w,(X))jsen € M, @2V) fulfils Assumption §02/01.02 and MY, = = (4),) (com-
pare Model §02101.10). The observable noisy versions take the form ¢ = M f + n '’¢ and
M, = = M, +n "1, orin equal (02.03) with error processes

& =n'"(B—B,)(4) = n(B) - Bu() € M(# o2 =) and
n. = KA - B)(0) = FAB,) - B,) € M o)

satisfying Assumption §01101.04 and Assumption §02101.02. O
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§02|03 Noisy diagonal operator

$02103.01 Notation. Under Assumption §02/00.01 we consider the reconstruction of § = Uf € J (or in
equal § = U"f) € H) from noisy versions of Vg — g = s0 € Jand s € L _(v) or in equal
M, = VTU" € I')). O

$0203.02 Noisy diagonal operator. Let ), = (1,);c7 be a stochastic process satisfying Assumption §01101.04
with mean zero and let & € IN be a sample size. The stochastic process s, = s, + k~/*r), with
mean function 5, € _¢ is called a noisy version of 5, € L_(v) and hence the diagonal operator
M. € [(J), or noisy diagonal operator for short. We denote by I>" the distribution of 5. If 7,
admits a covariance function (possibly depending on s), say cov’ & 77, then we eventually
write 1), ~ I, ands ~ P . for short. O

§02103.03 Comment. Similar to a noisy image (Definition §01102.03) we consider Empirical mean model
§01102.04, Sequence model §01102.05 or Gaussian sequence model §01102.06. Examples are pro-
vided in Subsubsection §01102/01. 0

§02|03j01 Examples of empirical mean models

§02103.04 Covariance operator under second order stationarity. Consider the complex Hilbert spaces
LA ) and J = £,(Z). Let (Ly(A), (-, ) , ) be equipped with its Borel-o-algebra 4, . , and

X be a L,(\,)-valued real random function (by the usual embedding of real-valued functions as

in Notation §01102.10). We tactically identify X with the identity idL(A[ y on L,(\.,) such that X

is defined on the measure space (L,(\.), %, . ,,P)and X ~ P = P* € #(%..,). Here and
subsequently, we assume that \XHm o e LPrand PX . x) ) = Oforallz € L(\,). In

this situation X admits a covariance ()pemt()r '™ € (L) (see Remark §01101.07). Moreover,
let X be second order stationary, i.e. there exists ¢ € (% ) such that

cov, =Cov(X(t),X(s)=c*(t—s—[t—s]), Vs, tel01).
Evidently, since || X'[|” < L.(I") we have
Iy = Al ) = 1 COv(X0) X))
]P(|X(0)\2)/[01) P(1X (1)) Ay (dt) = P(IX )PP X7, ) € R

and hence ¢ € L,(\,,) too. Furthermore, the covariance operator T € [Z(L,\.) equals a
circular additive convolution (see Notation §01104.11), since for all z,y € L,(\.)

7
o

= Cov({X,y) o (X 7)) = Py (XA (XT))

\A

(t) Cov(X (1), X(S))I<S))‘[o,1>(dS)A[o.,l)(dt)

¢ (t— s — [t —s])x(s) Aoy (ds) Aoy (dt)

@I

[0,1)

:/M( ® @) (DF(E) Moo (dE) = (@2, ),

hence ®. = ' € [:(L,(\.) in short. Let F € L(L\.),L(2) be the Fourier-series transform
with b — Fh := h, = ), (he,) and exponential basis e, := (e;) ez (see Notations §01102.10
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and §01102.12). Since ¢* € L,(\,,) we denote ¢* = Fc*. Then the circular convolution theorem
states (®,.h), = F(®.h) = (Fc*)(Fh) = ¢h,. Consequently, (¢}, F,F) is an eigen value
decomposition of ®.. € [Z(L,(\.)) with ¢& € (,(z) C {_(Z), and thus F = @ € [ (@) =
F*(I'(¢.(2))F. Let us denote by . € #/(#....,) the destribution of X which is not fully speciﬁed
given ¢* € D, C L,(\.,). We consider the statistical product experiment

Rk

(L)), B, B = (B )oxep, )

The stochastic process 1) = (¢ (X) = [(X,¢) | [*)jez € M(#. = 2% fulfils Assumption §01101.04
and ¢ = . () since for each j € Z we have

I (|<X7 e]>|]_2<,\[ ,,)| ) <F G, e]) L) <®cxej’ ej>|]_2(,\u,,)) = <C-XFeJ> Fej)gz z
(z)

= <C.X]]~;{j}7llfj}>gz(z) = C]'X‘
Similar to an Empirical mean model §01102.04 we define & = (¢° == (¢ ))jez € M(ZL ©27%),

By construction ¢ = R.(¢)) € M(QZ) is the mean sequence of C*. For each J € Z the statistic
n, = R () — () € ML) is centred, ie. 7, € L,(B") with ™ (r) = 0, and

C

exploiting ¢ € M(#.. ®2”) the stochastic process

~

0= (0)jez = F(R = R)(1) = K(R() — B (1)) € M 02
satisfies Assumption §01101.04 and by construction ¢ = ¢ + & '/?1] is a noisy version of ¢*.

§02103.05 Cross-covariance operator under second order stationarity. Consider the complex Hilbert
spaces [,(\. ) and J = /,(7). Let (L,(\.), (-, -)[szw)) be equipped with its Borel-o-algebra
P, ., and let X and Z be a L,(\.)-valued real random function (by the usual embedding of
real-valued functions as in Notation S01102. 10). Then (Z,X) is an ((L,(\.))?, %, ..., )-valued
random function. We denote by ]P P* € #(%..,) the marginal distribution of Z and X,
respectively, and by P”" € %/ (% )) the joint distribution of (Z, X). We tactically take Z
and X as coordinate map, and thus identify (Z, X') with the identity id [L2 xo) such that P =

P?* € #(#:.). Here and subsequently, we assume that 1Z]|7 . ) € LalP HX||2 € Ly(P),
PU(Z,2) ) = 0and P({X, //>[LM ) = Oforall z,z € [L( m) In thlS snuatlon (Z,X)
admits a cross-covariance operator T?* € L(L.)) (see Model §02/01.09). Moreover, let (Z, X)
be second order stationary, 1.e. there exists c‘X € MM such that

cov’® =Cov(Z(t), X (s)) =" (t—s—|t—s]), Vs, tel0,1).

Evidently, since ||X'[|” =~ € L,(P) we have

1 oy = Aol = [ Cv(Z(0), X ()P ()

[0,1)

P(\Z(O)IQ)/[Ol)IP(IX(t)IQ)Am.n(dt) =PZO)P)PUXI . ) € Re

and hence ¢“* € [,(\..) too. Furthermore, the cross-covariance operator ' e L) equals
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a circular additive convolution (see Notation §01104.11), since for all z,y € L,(\.,)

= Cov((Z,2) o (X2 0) = P (2200 (X))

ﬂ_g()\m.w)

- /[;] 1) J[0,1) z<t> COV(Z(t)’ X(8))x(8))\[ﬂ-1>(ds))‘m,l)(dt)

Lo(Mon)?

- / (1) / Xt — s — [t — 5))a(s) Ao (ds)Aon (d0)
[0,1) [0,1)
- /[01)< < ® ) (B)Z(t) Ay (dt) = <®c”x7z>m2(xm.”>’

hence ®.. = I'”* € L(L(\.) in short. Let F € L(L\.), 6(@) be the Fourier-series transform
with h — Fh := h, = )\[U,U(he,) and exponential basis e, := (¢;);jez (see Notations §01102.10
and §01102.12). Since ¢* € [L,(\.) we denote ¢/* = Fc?¥. Then the circular convolution
theorem states (®..h), = F(®..h) = (Fc?*)(Fh) = ¢*h,. Consequently, (¢f,F,F) is a
singular value decomposition of ®.. € L(L,(\.)) with ¢Z*¥ € (,(z) C (. (Z), and thus =
®or € (1)) = F(L(L2))F. Let us denote by .. € #/(#...) the joint destribution of
(Z, X)) which is not fully specified given ¢** € D, C L,(\.,). We consider the statistical product
experiment

_ 2k Rk

(L)), B, B = (R )ezxen,).-

Z,X) = (Z,¢) 0, (6 X o ))iez € M(#, @2 fulfils As-

The stochastic process ) = (1 (
= I2..(¢)) since for each j € Z we have

sumption §01101.04 and c¢Z*

R({Z,e) 00 X o)) = Cov((Z ) ) (Xe) )
— (szej,ej)b(m) = (@0, €)= (" Fe, Fe), @ =

Similar to an Empirical mean model §01102.04 we define ¢#¥ = (¢”* = (¢ 1))jez € MBI @27,
By construction ¢/* = R.. (1)) € M(2%) is the mean sequence of ¢/*. For each JjEZL the statis-
tic 7 = = k2B (s /) — (1)) € M) is centred, i.e. 7, € L,(B) with BX(7),) = 0, and
exploiting ¢ € M(#.. ©2”) the stochastic process

~

n=(0)jez = k(0 —P)(0) = K2R(W) — Ba(1)) € M@ 22

satisfies Assumption §01101.04 and by construction ¢/* = ¢/* + L '/?1] is a noisy version of
ZX
cZx. O

§02|04 Diagonal statistical inverse problem with noisy operator

§02104.01 Assumption. For J = [,(»), surjective partial isometries U < [(H,J) and V < L(G,J), fixed
and presumed to be known in advance, the operator ' € ['" (1)) C L(H,G) and hence M, =
VTU" € I!(J9) orin equal s, € |__(v) is not known in advance where qg=VTO0=M0 =s0¢cJ
orinequal g € us,. O

§0204.02 Notation. Under Assumption §02104.01 given g € us, for s, € [L_(v) we consider the reconstruc-
tion of ) = U € J (or in equal § = U™, € H) from a noisy version of g =Vg =M =50 ¢
J and a noisy version of 5, € [_(»). Keep in mind, that we identify the equivalence class and its
representative ¢. O
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$0204.03 Diagonal statistical inverse problem with noisy operator. Consider as in Definition §01102.03
stochastic processes € = (€);es and 1, = (1),);e7 satisfying Assumption §01101.04 with mean
zero and sample sizes n, k € IN. Under Assumption §0204.01 where s, € [_(v) is not known
in advanced, the observable noisy image and operator, respectively, has J-mean g = 5,6, and
mean-function s, € L_(v), and takes the form g = g + n'/*¢, and s, = s, + k~'/*n, or in equal

)

=s50+n" and 5 =s+k"n, jecJ. (02.06)

s

We denote by I/ the joint distribution of (g,s,). The reconstruction of § € J (in equal § =
U*, € H) from a noisy version (g,5,) ~ B." of the image g =s0€Jands, €L (v)is called
a diagonal statistical inverse problem with noisy operator. m

§02104.04 Diagonal inverse empirical mean model (dieMM) with noisy operator. Consider the recon-
struction of §, € J (in equal # = U*f € H) in an Empirical mean model as in §01102.04. Under
Assumption §02104.01, where M. & ['(J) with s, € [__(v) is not known in advance, the observable
noisy image has J-mean Vg = g = 5,6, € J and the observable noisy diagonal operator has
mean function s, € L_(v), and takes each the form of an Empirical mean model as in §01102.04.
More precisely, foreach # € © C Hands, € § C L_(v) let B, € #(Z) be a probabil-
ity measure on a measurable space (Z,Z). Similar to §01102.04 consider stochastic processes
U7 € 2@ ¢ which in addition for all § € © and s, € 8 satisfy ¢, )" ¢ L,(I2.) for each
j € Jand B,(v)°) = g = 5.6 and B, (¢)°) = s.. The observable noisy versions take the form
g =s0+n "% ands = s + k"1, or in equal (02.06) with error processes

& =n"(B - B =B~ B) € M0 /) and

~
k

n = KPR - B = KPR - BW)) € Mz o 1)
satisfying Assumption §01101.04. O

§02104.05 Diagonal inverse sequence model (diSM) with noisy operator. Consider J = ¢, = L,(%)
as in §0101.14. Let € = (€)jew and 1, = (1) en be real-valued stochastic processes satisfy-
ing Assumption §01101.04 with mean zero and let n, k& € IN be sample sizes. Under Assump-
tion §02104.01, where M, € [*(J) with s, € L_(v) is not known in advance, the observable noisy
image has ¢,-mean g = T, ¢ and the observable noisy operator has mean function s, € L (v),
and take both the form of a Sequence model as in §01102.05, that is g = T, € + n~'%, and
5, =5, + k7?9, or in equal

g=s6+n" and §=s+k"), jeN. (02.07)
We denote by I the joint distribution of (g,5,). O

§02104.06 Gaussian diagonal inverse sequence model (GdiSM) with noisy operator. Consider Gaus-
sian white noise processes B, := (B);en ~ Nﬁﬂ and W, := (W) ew ~ Nfiﬂ. The observable
noisy versions g = g +n" 2B with £,-mean g9="T.0 ands, = s, + k7 2W. with mean function
s, € L (v) take both the form of a Gaussian sequence model as in §01102.06, that is

g=s50+n""B and §=s+k'""W, jeEN
with  (B)jen ~ Noy and  (W))jen ~ No3. (02.08)
We denote by N, the joint distribution of the stochastic process (g, 5, ). u
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§02|04|01 Examples of diagonal inverse empirical mean models with noisy
operator

§02104.07 Cicular density deconvolution with unkown error density. Similar to Model §01104.12 con-
sider the complex Hilbert spaces [,(\.,) and J := /(7). Let D, C L,(\,,) and D, C L,(\.,) C
L.(A.,) be sets of Lebesgue densities on ([0, 1), 4, , ) (by the usual embedding of real-valued func-
tions as in Notation §01102.10). We denote for each density p € L,(\.,)) by 2 := pA,,, € #(%,,)
the associated probability measure. Given a Lebesque error density ¢ < [, which is not known
anymore for each Lebesgue density p < [), we consider the Lebesque density ¢ = g & p €
Ay) (see Notation §01104.11) and denote by 2, := (q ® p)A,, = g\, € #(%,,) the associ-
ated probability measure. We consider the statistical product experiment
([0, 1), B5™ B, = (B ® B )pen, qen,)-
Let F € L(L(\.),4(z) be the Fourier-series transform (see Notation §01102.12). Evidently, for
g € L,(\,) € L,(\,) its Fourier-series g = (g )jez = Fg satisfies g = A, (g¢) = B, (&) for
each j € Z. Moreover, considering the Fourier-series p, = (p,);ez =Fpofp €D, C L,\)
by the circular convolution theorem we have g = F(q ® p) = qp with g, = A, (ge,) =
P() € ((z)and p, = Fp € (,(z) (see Notation §01104.11). Moreover, the stochastic pro-

q J

cess € = (¢)jez on ([0,1),%,,) is (,%’ ® 2%)-%B-measurable, i.e. & € M(#, =2%) for short

10,1)

(compare Model §01104.12). We define g = (7 :— P(E))jez = P(E) € M2 and

~

q, = (g, = S HE ¢))jez = ]P( ) € M(# ©2%) similar to an Empirical mean model §01102.04
where by construction ¢ = q,p, = B, (€) is the /,(z)-mean of g and q, = R(€) € (. (2) is
the mean sequence of g,. The observable noisy versions take the form § = ¢q.p + n '“¢ and

q, = q. + k1, or in equal (02.06) with error processes

£

e=n""(E-R,E) = nl/Q(IE’( ) — P.(6))e M# 2" and
n =

HAUR - R)(@) = K(B() - B@)) € M@ o)

q

satisfying Assumption §01101.04. m

§02104.08 Density additive deconvolution on R with unkown error density. Similar to Model §01104.15
consider the complex Hilbert space [, = [.,(A). LetD, € [, and D, C [.,NL, be sets of Lebesgue
densities on (R, %) (by the usual embedding of real-valued functions as in Notation §01102.10).
We denote for each density p € L, by 2 := p\ € #/(£) the associated probability measure.
Given a Lebesque density ¢ < [, which is not known anymore for each Lebesgue density p < [,
we consider the Lebesque density ¢ = *,p = ¢ * p € L,NL, (see Notation §01104.14) and denote
by P, = (q*p)\ = g\ € # (%) the associated probability measure. We consider the statistical

Pla
product experiment

n+k

(R

R(n+k)

, B ]PVTIHX\!T: = (]B;” ® EXX{>[D6D_>,Q]6|D1)'

Let F € L(L.) be the Fourier-Plancherel transform (see Notation §01102.15). Evidently, for g €
L, N L, its Fourier-Plancherel transform g = (g)jer = Fg satisfies ¢ = A(g¢) = B, (€)
for all j € R. Moreover, considering the Fourier-Plancherel transform p. = (p,)jer = Fp of
p € D, C L,NL, by the additive convolution theorem we have g = F(x,p) = A(qe,)(Fp) = q.p,
A-as. with g, = A(ge,) = R(e) € L. andp, = Fp € L, (see Notation §01104.14). Moreover, the
complex-valued stochastic process & = (€,);cg on (R, %) is & -%B-measurable, i.e. & € M(#)
for short (compare Model §01104.15). We define g = (7 := ]13,,(6,))]-611{ — B(e) € M(#" «2)

and q, = (7, == —R(c ))jer = E(8) € M(#" %) similar to an Empirical mean model §01102.04
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where by construction g = q,p, = P, (€) is the L,-mean of g and q, = R(e) € L. is the
mean function of g,. The observable noisy versions take the form ¢ = q.p, + n /¢ and @,

q, + & '’m, orin equal (02.06) with error processes

&=n"(B-R,)@) =n"*R@) - B.(@)cM= =% and
; ,

satisfying Assumption §01101.04. m

§02104.09 Density multiplicative deconvolution on R., with unkown error density. Consider the com-
plex Hilbert spaces [L,(x* ") = [,(R., “x,) and L, = [,(\) as in Model §01104.17. Let
D, C L(x")and D, C L,(x")N [Lz(‘ ) be sets of Lebesgue-densities on (R.,, %) (by the
usual embedding of real-valued functions as in Notation §01102.10). We denote for each Lebesgue
density p on (R.,, &) by colnoP := pX., € #'(#4,) the associated probability measure. Given
a Lebesque density ¢ < L,(x ') which is nor known anymore for each Lebesgue density p < D,
we consider the Lebesque density g = H.p = q #H p € L,(x")NL,(x*") (see Notation §01104.16)
and denote by P, := (g ® p)\, = g\, € #(%,) the associated probability measure. We

pla *

consider the statistical product experiment

n+k

g2 (n+k) n®k ®n ®k
(RL, 25" B = (B @ B )pen,qen,)-

0

Let M. € L(L(*"),L,) be the Mellin transform (see Notation §01102.17). Evidently, for g €
L,x")NL,*") its Mellin transform g = (g,)jer = M.g satisfies g = x '\ (X g) = D, (x* %))
for all j € R. Moreover, considering the Mellin transform p, = (p)jer = M.p of p €
D, C L,(x") NL,x*") by the multiplicative convolution theorem we have g = M.(E,p) =
AL (Xg)(M.p) = g.p, A-as. with g, = x '\ (Xq) = R(x*'X) € L. and p = M.p € L,
(see Notation §01/04.16). Moreover, the complex-valued stochastic process x°'X, = (x°7'X, ) jer €
M(#.,® %) on (]R>0, B.,) is B., ® HB-FPB-measurable, i.e. x* X, € M (%, %) for short. We de-
fine g = (J = R(x '%))er = R(¢7'R) € M= o) and @, = (4, = DX '%))jer =
IE(XHX) € M=#" @ %) similar to an Empirical mean model §01102.04 where by construction
g =qp = P.(x*7'X) is the L,-mean of § and g, = R(x*'X,) € L.. is the mean function of ..
The observable noisy versions take the form g = q.p +n ¢ and g, = ¢, + & '/*1], or in equal
(02.06) with error processes

é=n"(l D)%) =nRE"R) - IEp.q<x“i))e Mz @) and
0= kR =B %) =R RETR) - BKXTR)) € M 0 9)
satisfying Assumption §01101.04. m

§02104.10 Functional linear regression under second order stationarity. Consider the complex Hilbert
spaces [,(\. ) and J = /,(7). Let (L,(\.), (-, -)MAM)) be equipped with its Borel-o-algebra
P ., and let (X,Y) be an L,(A,) x R-valued random vector with joint distribution P*Y ¢
W (%.., ® %Z). Wedenote by " € # (%...,) the marginal distribution of the real random function
X (by the usual embedding of real-valued functions as in Notation §01102.10). We tactically
identify X and Y with the coordinate map II, , , and II,, respectively, and thus (X, Y") with the
identity idy ., )xr such that P = P € W (4. ©2). Here and subsequently, we assume that
Y, HXH[L o ELP) = Lo xR, A, @ 2,P), P((r, X)) = 0forall z € L,(A,), and
that X is second order stationary as in Model §02/03.04. In this s1tuat10n X admits a covariance
()pemt()r ' e P m) which equals a circular additive convolution, that is ®. = I'* €
L= (L)) with ¢ € L,(\.,) (see Model §02103.04) and there is g € L,(\.,) satisfying (g, ’7’.>[L2(N.) =
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P(Y(X,z) ) forall z € L,(\.). In what follows we assume that in addition g < ran(I") C
L,(Ao). In th1s s1tuat10n there exists f € L,(\..,) such that

(9,2)

or in equal P-a.s. we have Y = (f, X) ,  + & with P({(X,z) , ) = 0forallz € L,(\.).
Let us denote by P. € #/(#4...) the margmal destribution of X Wthh is not fully specified given
¢ e D, C L,(\) (see Model §02103.04). Moreover, for ¢ € D, C L,(\.,) and f € F, C L,(\.,),
and hence g := ®,.f € L,(\.), we denote by I} . the joint distribution of (X,Y") without
fully specifying the distribution which however is assumed to satisty 7. (Y (X z) =) =
RO, X0, (o), ) forallz € Ly(h). LetF € I]_(U_Q(A‘A,\)),EQ(Z)) be the Fourier-series trans-
form with h — Fh := h, = \,,,(h&) and exponential basis e, (e ) jez (see Notations §01102.10
and §01102.12). Following Model §02103.04 M, = F&.F" = FF F" € I(4(2) is a multiplica-
tion operator with ¢¥ € /,(z) C (. (z) satisfying ¢ = (¢ = P ([(X.¢) . |"))jez. There-
fore the complex-valued stochastic process |\, (X&)[> = (|, (X&)[* = [(X e o Diez €
M(#.., @27 fulfils Assumption §01101.04 and ¢ = B.(|A,, (X o)| ). Moreover for each f €
F, € L,(\.) the Fourier coefficients g = (g)jez = Fg = FI'F'Ff = M. f = ¢ff, sat-
isfy g = (g = 5. (Y (X,¢) . ))jez. The complex-valued stochastic process Y\, (X&) =
(YA, (XG) =Y (X,¢e) ”))]EZ € M((#..,© #) ©2%) fulfils Assumption §01101.04 and g =
X[ = B.(Y\, (X&)). The observable noisy versions take the form ; — ¢/ + n '/’c and

¢t = + k"0, orin equal (02.06) with error processes

=P (X,z) ) =PUSX) 0 (X 2) ) = (s T YT E LW

!

& =n"(E — Bu)(|h,(Xe)

) € M((Z.., © 2" ©2%)  and
n = k,-l,r'z(ff —R)(Y A, (XE)) € M(#L, ©2%)

satisfying Assumption §01101.04. m

Functional linear instrumental regression under second order stationarity. Consider the
complex Hilbert spaces L,(\..) and J := (,(z). Let (L,(\), (-, ), )) be equipped with its
Borel-g-algebra %, . , and let (Z, X,Y’) be an L,(\.,)* x R-valued random vector with joint
distribution P**" ¢ 7/(%1 ., ® %#). We denote by I’ P” € # (%...,) the marginal distributions
of the real random functions Z and X (by the usual embeddlng of real-valued functions as
in Notation §01102.10). Moreover, denote by P> e W(A.), and P € W (B.., @ 2B) the
marginal distribution of (Z, X)) and (Z,Y"), respectively. We tactically take Z, X and Y as
coordinate maps and thus identify (Z, X, Y") with the identity idy ., PR such that P = P7*"

W(Z . )® #). Here and subsequently, given [,(I”) := L,(L,\.))* x R, %, ® %, P) we assume that

Y, || Z]? HXH oy € Ly(P), P((Z,z) O ) =0, Pz, X)) = 0forall z,z € Ly(\),
and that (Z X) is sec()na’ order smm)na}\ as in Model §02103.05. In thls situation (Z, X') admits
a cross-covariance operator T?* € IL(L.)) which equals a circular additive convolution, that

is ®.. = 7" e L) with &¥ € [L ) (see Model §02101.09) and there is g € L,(\.)
satisfying (g, 2) o) = IP(Y(Z, Z) o) forall 2 € L,(\). In what follows we assume that in
addition g € ran(I'"") C L,(A\.,). In this situation there exists f € L,(\.,) such that

(9. 2h 0y =POYV(Z,2) ) = PUS XD 0 (2020 0) = T Fro)n, V2 € L)

or in equal P-a.s. we have Y = (f, X) , '+ with P(§(Z,2) , ) = O0forall z € L,(\).
Let us denote by P.. € #/ (%, ,) the marglnal destribution of (Z X ) which is not fully spec-
ified given ¢ € D, C L,(\.) (see Model §02103.05). Moreover, for ¢** € D, C L,(\.)
and f € F, C L,(\.,), and hence g := ®..f € L,(\.), we denote by I .. the joint distribu-
tion of (Z, X,Y") without fully specifying the distribution which however is assumed to satisfy
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Chapter 1 Statistical inverse problems §02 Noisy image and noisy operator

B (Y(Z.2) ) = Ba((.X), (Z.2) ) forall 2 € L) Let F € LLow), 4(2)
be the Fourier-series tmnsform w1th h — F h := h, = \,,(he,) and exponential basis e, :=
(€;)jez (see Notations §01102.10 and §01102.12). Similar to Model §02/03.05 M.« = F®..F
FPZXF € (L) is a multiplication operator with ¢Z* € (,(z) C (.(Z) which satisﬁes
X = (¢ =R ((Z,¢ ) oo (e X ))jez. Therefore the complex-valued stochastic pro-
cess Aoy (Z8) Aoy (Xe) = (AM( &)\, (Y ) =A{Z.e) o (€ X o))iez € M# 02 ful-
fils Assumption §0101.04 and ¢Z* = . ()\[(,,])(Ze,))\(,_])(Xe,)). Moreover, for each f e, C
L,(A..) the Fourier coefficients g = (g)jez = Fg = FI"F'Ff = Moof = ¥f, sat-
isfy g = (g =L (Y{(Z,¢) )))]EZ The complex-valued stochastic process Y A, ,(Z€,) =
(YA, (Zo) Y(Z &, )Jez € M((#.., ® #) @ 2%) fulfils Assumption §01101.04 and g = CZXf =
B (YA, (Z€)). The observable noisy versions take the form = ¢ f +n "¢ and /" =
/" + k", or in equal (02.06) with error processes

é. - nl/z(E - EV‘)()\[u.n(Zé-))\[u.n(Ye.)> E M((‘%L* "®%>w ®QZ) and
0= K2R —R) (YA, (Z8)) € M@ 02

satisfying Assumption §01101.04. O
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Chapter 2

Regularisation of inverse problems

Given g = T, 0 the regularised reconstruction of 6, in a direct problem
and an inverse problem with linear operator T, , in a diagonal or general
case is presented.

Overview
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§03 lll-posed inverse problems

Let H and G be separable Hilbert spaces over K € {R, C} endowed with inner product (-, M

and (-, ). and induced norm ||-[|;; and ||-||5, respectively. Consider a linear bounded operator
T:H — G, forshort T € L(H,G).

$03100.01 Definition. Given g € G the reconstruction of a solution § € H of the equation g = T8 is
called inverse problem. m

£03100.02 Definition (Hadamard [1932]). An inverse problem g = T is called well-posed if (a) a solution
0 exists, (b) the solution 6 is unigue, and (c) the solution depends continuously on g. An inverse
problem which is not well-posed is called ill-posed. m
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Chapter 2 Regularisation of inverse problems §03 Tll-posed inverse problems

For a broader overview on inverse problems we refer the reader to the monograph by Kress
[1989] or Engl et al. [2000].

$03100.03 Property (Existence and identification). There exists an unique solution of the equation g = T0 if
and only if the following two conditions are satisfied

(existence) g belongs to the range ran(T) of T,

(identification) The operator T is injective, i.e., its null space ker(T) = {0} is trivial. O

$03100.04 Remark. If there does not exist a solution typically one might consider a least-square solution
which exists if and only if g € ran(T) @ ker(T"). A least-square solution with minimal norm,
if it exists, could be recovered, in case the solution is not unique. Nevertheless, the main issue
is often the stability of the inverse problem. More precisely, if the solution does not depend
continuously on g, i.e., the inverse T~! of T is not continuous, a reconstruction § = T71§ may
be far from the solution € even if the noisy version g is close to g. m

§03100.05 Property. Denote by I1__ . the orthogonal projection onto the closure Tan(T) of the range of 'T.
For each g € G the following assertions are equivalent (i) 0 minimises h — |g — Th||; over
H (least square solution); (ii) II_, g = T6; (iii)) T g = T"TO (normal equation,). i
503000.06 Remark. We note that g € ran(T) @ ran(T)" implies IT_.g € ran(T) and hence the preimage
T'({Il_.9}) ={h € H:Th =T1I_.g} is not empty. More precisely, due to Property §03100.05
it equals the set of least square solutions, i.e. T~ ({Il ., g}) = {0 € H: T*g = T*TH}. O

50300.07 Notation. In the sequel keep in mind that for each T € L(H,6) its restriction T__ : ker(T)* —
ran(T) is bijective and thus has an inverse T_' : ran(T) — ker(T)*. Here and subsequently we
identify T'and T__. O

503100.08 Definition. For T € IL(H,G) the Moore-Penrose inverse (generalised or pseudo inverse) T" is the
unique linear extension of T~ : ran(T) — ker(T)™ to the domain dom(T") := ran(T) & ran(T)"
with ker(T") = ran(T)™ satisfying T'g := T"'II_ ¢ for any g € dom(T"). 0

Tan(T)

5030009 Remark. We note that TT'T = T, T'TT' = T', T'T = 11_.. and TT'g = I1_ g for any
g € dom(T"). If T is injective, and hence T*T, then T*T : H — ran(T'T) is invertible, which
in turn, for any g € ran(T) @ ran(T)", implies that (T*T)T"g is the unique solution of the
normal equation, and thus T™'({I_.g}) = {T'g} = {(T"T)'T"g}. If T is invertible then
T'=T" O

503000.10 Property. For each g € dom(T"), T'g belongs to T_'({I1_.g}) and, hence is a least square

res

solution. Moreover, T'g is the unique least square solution with minimal ||-||,,-norm, that is,

IT'glly = inf{[lRlly : & € T, ({93} 0

We eventually approximate the operator T by sequence (T™),,cn of operators in L(H,G),
where for each m the operator T" € L(H,G) has a finite dimensional image. If | T" — T|| .., =
o(1) as m — oo, then T is compact (reference), i.e. T € K(H,G) for short, and the inverse
problem is generally ill-posed due to the next property.

§03100.11 Property. IfH and G are infinite dimensional and T € K(H,G) is injective, then

inf {||Th||g: I, =1.hen} =0,

which in turn implies that T_' : ran(T) — H, and hence also T', is not continuous. O
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§04100.01

§04 Regularisation by orthogonal projection Chapter 2 Regularisation of inverse problems

Coming back to the reconstruction of # € H from a noisy version of the image g = T0 € G
and eventually a noisy version of the operator T' € L(H,G) as introduced in Chapter 1. Through-
out this manuscript introducing the measure space (7, #,v) with index set J being con-
tained in IN Z or R, surjective partial isometries U € L(H,L.(») and V € L(G,L,()), which
are fixed and presumed to be known in advance, we write ¢ = A0 with A := VT € L(H,L1),
VTU" € L), g = (9)jes == Vg € L) and 0, = (0);c 7 == Ul € L,(v). Concerning the
operator VT'U™ we distinguish two cases, in Section §04 it behaves like a multiplication, i.e.
VTU" = M, € IY(J) for some s, € L_(v), while in Section §05 and Section $§06 we consider the
non-diagonal case VIU" =T, € ().

§04 Regularisation by orthogonal projection

Notation (Reminder). Consider the measure space (7, #,v) and the Hilbert space J = L,(v)
as in Notation $01101.01. For w, € R define the multiplication map M, : R — R’ with
a, = M,a, = wa = (wa)jeq. fw, € M(7),ie. w, is #-%-measurable, then we have
M, : M(#) — M(#) too. If in addition w, € L_(v) then we have also M, € L(J) identifying
again equivalence classes and representatives. We set ['(J) : {M w, € L. } C L(J) noting
that [|M,[|, ,, = sup {||w.a|;: lal, <1} < w. |, foreach M, € L(J) (see Notatlon §01104.01).
Finally, given surjective partial isometries U € L(H,J) and V € L(G.J) we define [ (1)) 1=
V(1)U = {V*MWU € L(H,G): M, ¢ [B‘(Jl)}. As a consequence, for each T' € IV (1(4)) we have
VTU" =M, € () for some w, € L_(v). 0

504100.02 Notation (Reminder (see §0104.02)). For A € 7 we denote by 1. = (1'');c the indicator

function where for each j € J, 1" = 1if j € Aand I' = 0 otherwise. Obviously, 1. is
Y -%-measurable, i.e. 1! € M(#), and it belongs to L.(v), and to L,(v) whenever v(A) € R.,.
Since {j} € # wehave 1¥) € # and 1V} € L (v). Obviously, we have I, = 17 € L_(v) and
M, € I'(J). Foreach w, € I _(v) setuw, := {{aw.}, : a. € L)} = {aw,:a € J=1,r)} and
hence in particular 11" = {a 1} : a, € J}. Given O, = (0);cs for w, € M( ) we write further

N ={w.=0}:={jeJ:w =0} € ¢, anddenote by dom(M.) = {a, € J : aw, € J},

ran(M.) = {aw, : a, € dom(M,) C J} and ker(M,) = {a, € J : {aW} = 0} respeCtlvely, the

domain, range and nullspace of M : J O dom(\l ) — J. Wewrite w, € M, (7),if w, € M
and v (N ) = 0. Similarly, for w, € V() with v({w, < 0}) = 0 we wrlte w, € M, For
w, € M(7) we denote its Moore- Penrose inverse by w, := w'1% € M () meaning w /‘ =w; !
if ) ¢ AV and w/ := 0if j € A.. Obviously, we have w/w,w/ = w/, ww/w, = w, and
wow! = wiw, = 1%, O

§04100.03 Property. For each w, < L _(v) the multiplication M,, € L(J) is a linear bounded operator.

Keeping N, = {w, = 0} € _# in mind its range and null space is given by ran(M.) = Jw,
and ker(M,) = g1 = ran(M,.), respectively. M, E () is consequently injective if and only
ifw, € My, (#), ie. w, € M(7)and v(N,) = 0. If in addition w, € M_, (7)1 L. (v) then
the multiplication M, € (1) C L(J) is a posmve semi-definite operator, Wthh is injective if
and only if w, € M, (7). For each A < 7 setting A° := J\A € _¢ the range and null
space of the multiplication M. € 2(J) C L(J) is given by ran(M,.) = 1" and ker(M,.) = 41",
respectively. Obviously, we have MiA = M. and hence M. is an orthogonal projection and
J = 01! @ o1, Moreover, the map M, = id; equals the identity on J. O

§04100.04 Assumption. For J = [,(»), surjective partial isometries U € [.(H,J) and V < (G, ), fixed and

presumed to be known in advance, let T < 1" (1:0)) C L(H,6) and hence VT'U" = M, € [I*(J) for
some s, « [_(v),let g € dom()M.), and hence sig € J = L,(v). O
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In the sequel we consider first in Subsection §04/02 the direct problem, that is s, = 1, and then
secondly in Subsection §04/03 the diagonal inverse problem, that is s, € L_(v).

§04|01 Weigthed norms and inner products

§04101.01 Notation (Reminder (see §01100.01)). Extending the real line by the points —oo and +-co we define
R := R U {#o00} and denote by % the Borel-o-field over R where the trace of 4, = Z N R
over R equals 2. Thereby, each a, € M(#) is in a canonical way also ¢ -8 measurable,
a. € M(7) for short. For w, € M(#) and hence w? € ﬁw(/ ), consider the measure w’r on
(7, I ), i.e., w2 = dw’r /dv is the Radon-Nikodym density of w2 with respect to v. We write
shortly (-, +) = (-} e, and ||| := [[-[|_sz,)- For w. € M(7) with Moore-Penrose inverse
w o= woN € M) we set IV = ["(v) := dom(M,) and write w’' = (w/)* = (w?)' for
short. O

50401.02 Property. Let w, € M(.7). Then w?v € M,( 7) is a o-finite measure satisfying w?v(|a|?) =
v([w.a|?) for each a, € Ly(wv), and Ly(wv) endowed with inner product (-,-) = (-} (s, =

(M, MW->[L2(V) is a separable Hilbert space. If in addition w, € NU( 7)1 L. (v), then
L,0w20) = gow, + M1 = {wh, : h, € L)} + {h1% : h, € M()}. (04.01)

Indeed, for each h, € M(.#) consider the decomposition h, = w,w,h, + h.1*. The claim follows
immediately from the equivalence of h, € L,(w!'v) and w!h, € L,v). Since w, ¢ L_(v) the map
M, : L,(v) — L,(v) is well-defined, and (similar to (04.01))

dom(M,) = {h, € L,(v) : wih, € L,(v)} = tow, + LI C Ly(wv).

Consequently, if in addition N, = (), then dom(M,.) = L,(wX'v). If w, € |_(v) then M, € IX(J),
and (with Moore-Penrose inverse w, of a representative w, € M(.7)) M, : J O dom(M,.) — J.
Moreover, we have dom(M,) = J, ran(M,) = ow, and ker(M,) = Jl]lf% (see Property §04100.03).
Therewith, it follows dom(M,) = aw, @ s1%. Consequently, if in addition v(N.) = 0, then
Jv = [(v) = dom(M.,.) = ow, = L,(w’'v). The last equality follows from (04.01) since both
measures w2'v and v share the same null sets (i.e. they mutually dominate each other). O

§04|02 Direct problem

We assume throughout this subsection that Assumption §04100.04 is satisfied with s, = 1, € [_(v).

§04102.01 Notation. For a non-empty and generally non-finite subset 7 of IN, Z or R and m € IN we set
[m] == [=m,m]NJ and assuming || € ¢ we write shortly 1" = (1");c7 := 1" € M(#).
Furthermore, we define 1" := 1, — 1™ € M(2). 0

§0402.02 Property. For each m € IN, My. € [E(J) and M,,.. € [2(J) is the orthogonal projection onto the

linear subspace 31" C J and its orthogonal complement 31" = (s17*)+ C J, respectively, that
is J = 91" @ a1, We have point-wise 1" — 1, = o(1) as m — oo meaning that for each j € J
holds 1" — 1, = o(1) as m — oo. Considering the orthogonal projection My. € [2(J) and the
identity M, = idy € 2(J) point-wise convergence M. — idy; = o(1) as m — oo holds too, that
is, |(My. —idy)al, = (L' = L)a|, = 1" a|, = o(1) as m — oo forall a, € J. u

$0402.03 Orthogonal projection. Given m € IN we define for each § = U# € J its orthogonal projection
O" = 01" € 41" (and 0™ := U™ € H). 0
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§04|02j01 Global and maximal global v-error

We shall measure first globally the accuracy of the orthogonal projection ™ := 1" of § € J.

§04102.04 Property. Ifv. € N, (/) (i.e. v, € M(7)and v(N,) = 0) and 6] € (V) (ie. HHHZ =2 () €
IR..), then for each m € IN we have 0" € L,(vv) too, since ||0"[|> = ©] 1/(02]1’") < v (67).
Moreover, it holds ||0" — 0|2 = 01" ||2 = vlv (Q71") < 02v(€) € Rey and (| — 6|2 = o(1)
as m — oo by dominated convergence. i

§04102.05 Comment. We assume throughout this chapter that the Hilbert space /| = [ (7. 7 ») and the
surjective partial isometry U & [L(H,J) is fixed and known in advance. Considering a v-error
means the weight sequences v, € M(#) is also fixed and known in advance. Consequently, the
condition v, € VL, ( 7) does not impose an additional restriction. O

$0402.06 Global v-error. Given v, € N, (7), m < IN, asolution /, = U < [,(v'») and its orthogonal

projection ()" = 01" 41" we call |0 — 6|, = |Q1""||, € R., global v-error. 0
$04002.07 Assumption. Consider weights o, v, € NV, (/) (i.e. a0 € M(7)and v(N,) = 0 = v(\))), such
that a, € L_(v) and (av), := (a,v);c7 = ab, € [L\,(V). We write (an o= @) T, € Re

for each m € IN. O

50410208 Notation. For sequences «,, b, € (IX)" taking its values in I{ € {R, R, R, Q.7 ...} we
write ¢, € (I{)" and b, € (IX)" if g, and b,, respectively, is monotonically rnon-decreasing and

non-increasing. If in addition ¢, — oo and ), — 0 as n — oo, then we write o, ¢ (]K)TH\ and
b, € (IK)™ for short. For w, € () we set w,, := |w.]l, ., and W, = (W := ||W,]lf“\|[L ))jEN
where by construction w,, € (R.,)". O

$04002.09 Reminder. Under Assumption §04/02.07 we have J* = 1,(v) = dom(M,) = ga, = L,(a'v)
and the three measures v, a?/'v and v’ dominate mutually each other, i.e. they share the same
null sets (see Property §04/01.02). Consequently, J* C J = [L,(v) and if h, € L,(av) satisfies
v*v(h.) € R.,, for example, then h, € L,(v?v) too. o

§04102.10 Notation. Under Assumption §04/02.07 and given a constant r « I3, we consider J* = [* (v) =

L.(eX"v) endowed with ||| ; == [[-]| . := ||| ., and the ellipsoid

I = {h, € I = @) = v(air) <} C I O

§0402.11 Property. Under Assumption §04102.07 we have J* C L,(vv). Indeed, for each h, < J° (i.e.,
1l 12 follows |[h 2 = v(Fat (@) < )2 (@), € Reo :

$04102.12 Abstract smoothness condition. Under Assumption §0402.07 a solution ¢, < [ satisfies an
abstract smoothness condition if there isr € R., such that § € J** C J°. O

$0402.13 Lemma. Under Assumption §04102.07 for each m € WN and solution ) ¢ J** C L,(v’v) its or-
thogonal projection 0" := Q1" € y1!" satisfies ||0" — ]|, = |01 [|,< 1 (av),,.

$04102.14 Proof of Lemma §04102.13. Given in the lecture. O

$04102.15 Maximal global v-error. Under Assumption §04/02.07 for m < IN, a solution ¢, = Uf < J**
and its orthogonal projection /" = /1" € 41" we call sup {||" — 6 & € J** } maximal global
v-error over the class of solutions J*". m
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§04|02/02 Local and maximal local ¢-error

Secondly, we measure locally the accuracy of the orthogonal projection ™ := 41" of § € .

s04i02.16 Notation. For ¢ € M(7) and dom(¢v) := {h, eJ=LW):9¢h € I]_l(u)} we consider the linear
functional ¢ : J D dom(or) — R given by h, — ¢v(h,) = v(¢h,) with a slight abuse of

notations. O
5040217 Comment. If ¢ < J = 1L,(v), then it follows dom(¢v) = J and |[¢v|| ,n = [¢ll;, € R
Consequently, we have ¢v € L(J,R) and ¢v(h,) = (h., @) > in other words ¢ is a Fréchet-Riesz
representative of the continuous linear functional ¢v. O

so4i02.18 Property. If ¢ € M, (/) (ie. ¢ € M(#) and v(N,) = 0) and 6, € dom(¢v) (i.e. ¢ € L,(v)),
then for each m € IN we have )" € dom(¢v) too, since ||@€" ||, ., = v(|¢0[1") < v(|¢6]).
Moreover, it holds

v (8) — ov(87)] < |¢lv(18" — &) = l¢lv(la]1") < v(|¢h]) € R

and |pv(60) — v (0™)| = o(1) as m — oo by dominated convergence. O

§0402.19 Comment. We assume throughout this chapter that the Hilbert space J = (7. 7.») and the
surjective partial isometry U € [L(H,J) is fixed and known in advance (Assumption §04100.04).
Considering a ¢-error means the linear function ¢ and hence in equal ¢ € _¢# is also fixed
and known in advance. Consequently, the condition ¢ © M., ( 7) does not impose an additional
restriction. m

$04102.20 Local ¢-error. Given ¢ © N, (7), m < IN, asolution ¢, = Ut/ € dom(or) and its orthogonal
projection )" = 017" € 41" we call |¢pv(0) — ov(§™)| = |ov(1")| € R, local ¢-error. O

§04102.21 Assumption. Consider ¢.a, € N, (/) (ie. ¢.a € M(7) and v(N)) = 0 = v(A])), such that
a, € L (v and (a0), == (0,0),c7 = a,¢ € [,(v) and hence [[a 17" (| = [|(ag). T[], ,, = o(1) as
m — oo. 0

§04002.22 Reminder. Under Assumption §04/02.21 we have J* = L,(v) = dom(M.) = ga, = L,(av)
and the three measures v, |¢|v and a?'v dominate mutually each other (see Property §04101.02).
Consequently, J* C J = L,(»v) and if h, € L,(a'v) satisfies v(|¢h.|) € R.,, for example, then
h, € L,(|¢]v) too. O

$0402.23 Property. Under Assumption §04102.21 we have J* C dom(¢v). Indeed, for each h, € I, i.e.
[hlly € Rao, we have ||@h]l; ) = v([hal(ag)]) < [[lq ]l (@)l € Reo 0

§04102.24 Notation (Reminder). Under Assumption §04/02.21 a solution §f = U# € J satisfies an abstract
smoothness condition if there is v € R., such that {, € J*" = {h, € |2 < r2} C J* where

[l = -l == Il @, (see Definition §04102.12). Since (a¢), € [,(v) we have [la 11" =
H(agﬁ),]lf”'lﬂh(y) = o(1) as m — oo by dominated convergence. O

50410225 Lemma. Under Assumption §04102.21 for each m € N and 0, € )" C dom(¢v) its orthogonal
projection " := Q1" € 41" of satisfies |¢v (0 — ") = |¢v (A1) < v(|@OIT"™)< v a1

$04102.26 Proof of Lemma §04102.25. Given in the lecture. O
§04102.27 Maximal local ¢-error. Under Assumption §04102.21 for 7 € IN, a solution ¢} = Uf < J*" and

its orthogonal projection ¢ = 1" < 41" we call sup {\qﬁy(&,) —ov(0")|: 6 € J]“’f} maximal
local ¢-error over the class of solutions J**. o
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§04|03 Diagonal inverse problem

We assume throughout this subsection that Assumption §04100.04 is satisfied with s, € [L_(»).

504003.01 Reminder. Under Assumption §04100.04 we consider T € [ (1)) C L(H,G), and hence VTU" =
M, € IJ) and ¢ = M, = 56 < J for some s, ¢ [ (). Due to Property §04/01.02 the
Moore-Penrose inverse of M, € [I*(J) satisfies M! = M, : J O dom(M.) — J with dom(M,) =
15, @ 91 = J°. For each m € IN, My. € [2(J) and M,.. € L(J) is the orthogonal projec-
tion onto the linear subspace 41" C J and its orthogonal complement it = (J]]lf")L cC J,
respectively, that is J = g1 & o1"™ (see Property §0402.02). Given g € J we call § € J
satisfying [|g — s.6||, = inf {|lg — s.h.||;: h. € 3} a least squares solution, if it exists (see Prop-
erty §03100.05). O

§0403.02 Property. For s, € L _(v) and each ¢ < dom(M.) = g5, @ i s 0 = M, g = slg the unique
least square solution with minimal ||-|| ;-norm in the set stg + 31 of all least square solutions.
If in addition v(N)) = 0 (i.e. M, is injective), then 6§, = s! g, is the unique least square solution.
Given m € N for each g < dom(\.) we have g1" € dom(M.) too. In particular, for 6, = sl it

follows Q17" = (slg)1" = sl(g1") € o1 O
§04103.03 Orthogonal projection. Given m € IN we define for each ¢ ¢ dom(M.) and § = sig € J the
orthogonal projections g™ = g1" € 41" and 0" = (s!g)1" = sigm € s17". O
§04103.04 Assumption. Consider weights a_, t < M, (7)1 L () and hence (ta), := ta, € L. (v). O
§04103.05 Link condition. Given weights t < M (7)1 L_(v), an operator M, < ['(J), and hence s, &

I__(v), satisfies a link condition if there is d 6 IR, such that

M, € M, := {M, € LU): |w| < dt At < dw|v-ae.}. O
504103.06 Property. Given weights . < N, (/) (1 L.(v) and introducing ||-||, := ||M.-||; we have

M, = {M € LW): d*a < |MR.J|, < d|[A, VA € I}

moreover, for each M € M, and for all s € R (exploiting M; = M..) holds

d k. < MR, < AR, VA, € dom(M,). O

§04103.07 Comment. Given M € M, there exists w, € M, (7)1 L (v) such that M = M, . Consequently,
we have v(A.) = 0 and hence for each s € R the value w; is well-defined for all j € A, and
thus w? is v-a.e. defined. In particular it follows w/ = w,' v-a.e., and hence M = M, ..
Similarly, we have M* = M,. for each s € R. O

$0403.08 Property. Under Assumption §04103.04 let §, € J and M, € 1'(J) satisfy, respectively, an abstract
smoothness condition () < 1" as in Definition $04102.12 and a link condition V., < M., as in
Definition §04103.05, then g = 5.6, I fulfils an abstract smoothness condition g € J'", since

A7 lgllfy = d (v (g?) < allslv(g?) = alfw(slg?) = alv(67) = |l 0

§04|03j01 Global and maximal global v-error

We measure similar to Subsubsection §04/102/01 first globally the accuracy of the orthogonal
projection " = sfg™ € 41" of § = slg € J.
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§04103.09 Property (Global v-error). If v, € N, (/) and 0, = slg < L,(v/v), then for each m € IN we have
0" € Ly(vv) too, since ||Q" |2 = vlv (1) < 0}v(6). Moreover, it holds

I = 613 = eI} = vl (1) < olv (@) € Re
and [|0" — 6|2 = o(1) as m — oo by dominated convergence. O

§04103.10 Assumption. Consider weights a_, v, € M, (7)suchthata < [ _(v)and (av) = av, € L _(v).

We write (av), = ((av),, := [[(a0), 1|, )men, where by construction (av), € (R.,)"
(compare Notation §04102.08). O

§04103.11 Reminder. Under Assumption §04/03.10 we have J* = [',(v) = dom(M,) = ga, = L, ()
and the three measures v, a?'v and v?v dominate mutually each other, i.e. they share the same
null sets (see Property §04/01.02). Consequently, J* C J = L,(v) and if h, € L,(al'v) satisfies
v*v(IY) € R.,, for example, then h, € L,(vv) too. Moreover under Assumption §04103.10 we
have J*" C J° C [,(v’v) (see Definition §04102.12 and Property §04/02.11). m

§04103.12 Property (Maximal global v-error). Under Assumption §04103.10 for each m € IN and for each
solution 0, = s!g  J* C L,(vv) its orthogonal projection 0" = Q17" = slgm € 1" satisfies

as shown in Proof §04102.14. 0

Qm i H-HD _ He-]linu”ng T (aU)(m)

§04|03/02 Local and maximal local ¢-error

Secondly, we measure locally the accuracy of the orthogonal projection " = sig™ € 41" of
6 =slg € J.

§04103.13 Property (Local ¢-error). If ¢ € M., (/) and () = slg & doml(ov), then for each m € IN we
have 0" € dom(év) too, since ||0" (| ., = v(|@8|1") < v(|§6|). Moreover, it holds

v (8) — ov(@")] < lelv(16" —6]) = glv(18]17) < v(l¢hl) € R,

and |pv(6) — ov(0™)| = o(1) as m — oo by dominated convergence. O

5040314 Assumption. Consider ;¢ € M, (/) such that a, € I () and (a0), := (a,0);c7 = 0,0 €
[,(v) and hence [ a1 = |[(ag). 1|, = o(1) as m — oc. O

§04103.15 Reminder. Under Assumption §04103.14 we have J* = [,(v) = dom(M,) = uga, = L,(av)
and the three measures v, |¢|v and a'v dominate mutually each other (see Property §04101.02).
Consequently, J* C J = L,(»v) and if h, € L,(a'v) satisfies v(|¢h.|) € R.,, for example, then
h. € L,(¢lv) too. Moreover, under Assumption §04/03.14 we have J** C J* C dom(¢v) (see
Definition §04102.12 and Property §04/02.11). m

§04103.16 Property (Maximal local ¢-error). Under Assumption §04103.14 for each m € IN and for each
solution 0, = s!g < J* C dom(¢v) its orthogonal projection §" := Q1" = sig™ € 41" satisfies

o0 (@ — )] = |ov(@1)] < v(lAlE)< xlat,

as shown in Proof §04102.26. 0
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§05 (Generalised) linear Galerkin approach

50510001 Notation. Consider J = ¢, := L,(4) = L,(N,2", ) with counting measure 1, := ZjelN dj1s
surjective partial isometries U € L(H,4) and V € L(G,4). Foreach T € L(H,G) and T :=
VTU* € L(t) = L+(£.) (compare Notation §01104.03) we identify the kernel (infinite dimensional

matrix) T,, = (T, ); jen € R" and the map from /, into itself given by

a'}_)T;-(‘I Z 1. % = Tﬂ’a’> = (T a))]E]N

j,€IN

(compare Notation §01105.01). Moreover, we denote by [:-(7.) the subset of all strictly positive
definite operator in [+(%). For each T, € I:-(¢.) we denote its Moore-Penrose inverse by TT‘ :

¢, O dom(T],) — ¢, (see Definition §03/00.08). O
5050002 Notation (Property). Form € Nset 1" := 1, — 1" € R where 0, = 1" 1" = 1" 1" € R".
(a) Fora, € R introduce its sub-vector [¢,], := (a.)iepm) € R" where [a,], = [a.1"],.

(b) For A,. = (A),)jjen € R" introduce its sub-matrix Al = (Ay)j e € R"™™.

Clearly, if we restrict A7, := M. A, .M. € L(4) with R

a, — Ala = (1" Z A a =T (AT a), = 1", (ALall))en

J,€[m]

to an operator from R" (ran(M;.) = ¢,1™) to itself, then it is represented by the matrix [A, ], .
Note that the adjoint A", € L(4) of A,. € () and the transposed matrix [A,.] € R™" of
[A..], satisfy [AL] = [A.]. If[A.] € R""™ denotes the Moore-Penrose inverse of (AL

(as linear map from R" into itself), then the Moore-Penrose inverse A”." € L(4) of A7, (see
Definition $03100.08), restricted to an operator from R" to itself can be represented by the
matrix [A,‘,] In particular, if [A,,], is regular (invertible), and hence [A|]T, = [A..]', then

we have A A" = M. = AITAT

(c) Given M, € I¥(¢,), the diagonal matrix [M,], € R™" has [w,), as its diagonal entries. Note
that [M, " = [M,.], = [M:], forall s € R., and [M]ﬁ = [M, ], = [M],.

(d) Keep in mind the Euclidean norm ||-| of a vector and the weighted norm |||, := [[M.-]|,,
with t € IR]EO. Forall a, € ¢, 1" (and (ta), := ta, € ¢,1") we have

jm

= [(t)L.[(t)], = [IML[a]]* = |[(ta) L]

laullf = IMally = )]l = ) 27]l; = [a].Mc][al.

(e) Let |[Al| = sup {I|Az||: |z € [0,1]} denote the spectral norm of a matrix A. Then we
haVe ||A7” Hiu ||M]lmA.‘.M]lm |||L(£) - ||[ } spec and fOr S € R>0 hence
JOE ) = MMMy = (ML = €17, = max {Jg]:g € pml}.

§05|01 Linear Galerkin approach

§05101.01 Assumption. For J = /,, surjective partial isometries U/ < [(H./,) and V < [L(G,/,) fixed and
presumed to be known in advance, the operator T € L(H.G) satisfies T, = VTU" € (1) C
L+(¢,) = L(4,). Let g € dom(T,) = ran(T,.), and hence ¢, — T’ g = T.‘.'g_ e l,. i
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§05001.02 Linear Galerkin approach. Let T € [-(/.) and g € /,. Form € IN any element 6" € .17, i.e
0 =6"(1,—1") = "1, satisfying

@, T.o"), —20",q), <{a,T.a), —2a,g), forala €1’
is called a Galerkin solution in ¢, 17". O

$0501.03 Lemma. Let T, ¢ [-() and g € (.. (i) Forall m € N the matrix [T,] € R™™ is
strictly positive definite. (ii) The Galerkin solution 6" € ¢1", i.e. 0, = " (1, — 1) = "1™,
is uniquely determined by [0"], = [T, '[g].. and hence 0" = T_"l'f”g_. (iii) If in addition
g € dom(T.)and 0 =1 g € [, then the Galerkin solution 6" minimises in ¢,1\" the functional
a, = F(a) =T, (a - Q)7

$05101.04 Proof of Lemma §05101.03. Given in the lecture. O

50501.05 Remark. Consider for ¢ € /, its orthogonal projection 1.6, and 1" onto the subspace ¢ 1"
and its orthogonal complement ¢, 1" := (¢,17)%, respectively, then the approximation error
116-0ll, = [(L—1")a], = [[1"6], converges to zero asm — oo by Lebesgue’s dominated
convergence theorem. On the other hand, if ¢ < dom('” Jand () := T' g € (, then the Galerkin
solution 6" € ¢ 1" satisfies [1"¢ — 6], = —[T, ]''[T, (1, — 1")§] = —[T,.[.'[T,.1""4] and,
hence it does generally not correspond to the orthogonal projection 17", = (1, — 17")6. More-
over, the approximation error sup { || — §]| M E IN., } does generally not converge to zero as
n — 00. However, if

C, :=sup {HT.”:HT._l\IY )i m € l\'}
= sup { [|[T..[,'[T. 2" al, |- llall, = 1.0 € ,m e N} € Rey

then [|0" — @], < (14 C,)[|[1"*4]|, which implies sup {|[6" — 6, :m € N} = o(1) asm —
oo. Here and subsequently, we will restrict ourselves to classes of solutions and operators which
ensure the convergence. Obviously, this is a minimal regularity condition for us if we aim to
estimate the Galerkin solution. m

50501.06 Notation (Reminder §04102.08). For sequences «,, b, € (I<)" taking its valuesin I € {RR_,, ), Z, .
we write o, € (I\)" and ), € ()" if ¢, and b, is monotonlcally, respectively, non- deueasmg
and non-increasing. If in addition ¢, — oo and ), — 0 as n — oo, then we write «, © (]K)\ and
b, € (IK)™ for short. 0

5050107 Property. If t. € (R_,)™ is monotonically non-increasing, then for all m € N we have

)], " =min {t;:j € pul} > sup {t;:j e N...} = L1, =t

(m)?

-1 ]lm

and hence 1 >t

(m)

o = [T e, o

$05001.08 Link condition. Given weights {, € R, N/ an operator I < [:-(/.) satisfies a link condition if
there is d € IR, such that

T, € To == {A,. € :(t): dY|all, < | T.all,, <dlal, foralla, ¢}

and we set T, := {A,, € L+(&): (A.A,)"” € T2}
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$05101.09 Remark. Note that { € ]R,LTU M/ foreach A,, € Ei implies ker(A..) = {0}, i.e. A,, is injective
and hence strictly positive definite. We shall emphasise that for T, € L+(¢.) the condition T, €
T.. is equivalent to

A, < 1T, <dlla], foralla €, (05.01)

Observe further that M, € [*(¢.) satisfies the link condition M, € T, as in Definition §05101.08 if
and only if |s,| < dt, At < d|s| (y-a.e.), i.e. M, € M,, as in Definition §04103.05. Thereby, we
have M, C T,,. We shall emphasise, that there are operators satisfying the link condition T3
which do not belong to M, ,, 1.e., they are non-diagonal. Let us briefly give a construction of one
of those. We consider a small perturbation of M,, that is, T-|- = M, + MA,.M, where A,, € L-(£,)
is a positive definite operator with spectral norm ¢ := [[M(A,.[| ,, < 1. Obviously, T, is strictly
positive definite, and [T, a[, < [lidy, + MA.. o M@, < (1+c)[lal], On the other hand,

we have ||(id, + MA,.) 7l ., = W 7 by the Neumann series argument ??, which

L(¢2)

in turn implies [|a.||, = [[Mall, = [[(ide, + MAL) " |, I T,.a. sz < =T, |,,- Combining
both bounds the operator T, satisfies the link condition T, € T for all d > max(1 + ¢, ILC)
and is obviously not a multiplication operator, i.e. diagonal. O

§05001.10 Property. If I\ € T with {, € R,N/(_andd c R, then forall s € [—1, 1] we have
(inequality of Heinz [1951]) d™"[|a,]|, < IT.all, < d“la,||.  forall a, € dom(M.). O

s0501.11 Comment. Given T, € T we have ker(T,) = {0} = ker(T}) and on ran(T,) = dom(T/)
(which is dense in ¢ ) we have T.‘. = TT Slmllarly, foreach s € IR;U on ran(T;,) = dom(T.) we
have T, = T;' = (T,,)". 0
§05001.12 Notation. Given weights a, € R>, N /_ introduce (] := [,(a.?) := Ly(a*y) = ¢,a, = ran(M,) =
J* C ¢, = J endowed with ||-|| . := |[M,.-[|, (as in Property §0401.02). We assume in the
following that ) € /, satisfies an abstract smoothness condition (Definition §04102.12), i.e., there
ist € R.osuch that § € (0" ;= J* = {h, € £5: |||, <} C 45 C 0, O

§0501.13 Source condition. Given T, < [-+(/.), the solution 0, € /, satisfies a source condition, if there is
s € R, such that § € ran((T,T,.)"*), that is, §, = (T_I.T.‘.)s/2 a, for some a, € £, 0

$05001.14 Corollary. For a,t € R, and v, € R, N7 set t =00 =0 € R, N (... Consider 0y =10,
and assume that I < T, If a < ( then (i) for any 0, € [ we have 0, = TT/ ‘h, with
1h]l, < |6, and conversely (i) for any , — T.'h, with h, < [, we obtain 6, € (5 with
14, < d ]l

§05101.15 Proof of Corollary §05101.14. Given in the lecture. O

5050116 Comment. Under the assumptions of Corollary §05001.14 if T, & T, and a < t then (i) for
any 0, (] we have 6 = (T, T )"*'h, with [|h[|, < d”"[|6], ., and conversely (ii) for any

O — (T°T.)""*h, with 1, € /, we obtain ¢ € (* with [|4]|_. < d*"[|, o

le,-

s0s001.17 Corollary. Given d.v ¢ R, and {0, € Ry, N{, set (ta), :== ta, € Ry Nl If T < T, and
0, € (3", then we have g, = T, 0 € ({"".

§05101.18 Proof of Corollary §05101.17. Given in the lecture. O

50501.19 Remark. Keeping the orthonormal basis (1) ;¢ in ¢, in mind (Notation §01104.02) each M, €
1'(2.) with ¢, € €., is self-adjoint with eigensystem ((¢,, 1¥)),c. Indeed, for all j € IN we have
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M, 19" = ¢, 19}, Recall that [<(/.) denotes the subset of [(.) containing all compact operators. If
A,. € K(£.) is compact and in addition self-adjoint, then A,, admits an eigensystem ((¢;, ¢;)) e
where ¢, € /_, contains each eigenvalue of A,, repeated according to its multiplicity (with zero
as only accumulation point) and e, = (e;);cn is the associated eigenbasis. We denote by [<(/.)
the subset of [Z(¢,) containing all compact operators. If A, € [K°(/.) then we have ¢, € (]R>0)f[1)\I
(possibly after a reordering). O

505001.20 Lemma. Consider as in Definition §05101.08 a link condition T_, with t, € (R .[,)F. Let the oper-
ator T, (1) admit ((¢,.¢,)) ;e as eigensystem where ¢, € (R.,)™ contains each eigenvalue
of T,, repeated according to its multiplicity and the associated eigenbasis e, = (¢,);jen does
eventually not correspond to the ONB (1¥7);en. If T, € T, then we have d™' < ¢ /t, < d for
all j € IN.

505101.21 Proof of Lemma §05101.20. Given in the lecture. O

$05101.22 Lemma. Consider the link condition I’ < 1., as in Definition $§05101.08 with t, € (]R>U)Eq. For
allm € Nand s € [0,1] we have (i) €, ||[T,] < (d(d+2))" < (3d%),
(i) I[T...],"[M] < d

e
< (d(d +2))° < (3d%)° and Gii) ||[T,.][M]

\ || ) u ||
m |spec Im m llspec

$05101.23 Proof of Lemma §05101.22. Given in the lecture. O

§05|01j01 Global and maximal global v-error

We shall measure first globally the accuracy of the Galerkin solution " € ¢, 1" of f = Tf‘. g €L,

50501.24 Property (Global v-error). Consider v, € (R.)", T, € L+(.) and g € dom(T) = ran(T.,) C ¢,
and hence 6, = Tf‘.g. = T.‘_.lg. € l,. Given m € IN we have v*1" € (_ and hence 1,1"" C [,(v?).
Consequently, denoting by 6" = T_’:”g. € 1" a Galerkin solution we have 0" € (,(v?) with

167, < IIVLLIT,L e gLl € Reo.

If C, :=sup {|]M, T} '?T.‘.M,ﬂ,‘,‘ |, ;meN} € R, then

1" —afl, < 1+ Coral,,

which implies sup {||6/ — 6, j € [m,c0)} = o(1) as m — co. O
50501.25 Notation (Reminder §0402.08). Forw, € (_ wesetw;, := ||[w?||, andw? = (w2, := [|[w2L"||, )jens

where by construction w3, = sup {w? i€ N., }, j € Z., and w?, € (R.,)~. Evidently, if in ad-

dition w” € (R_,)" then we have w?, = (w? = w’,) en. O

50500126 Assumption. Consider weights t,a, ¢ (R_,)" and v, € (R )" such that (av), := a,v, € /_ and
(t/v), =ty ' € [ are satisfied. In addition there exists C,,, € (0, 1] such that for all m € IN

(t/0);,,, = min {(t/v)}: j € [m]} > C,, (t/o), (05.02)

orinequal C_ |/(t/v) “1"

{;\ g (t/u)n.ﬁ)' U

$05001.27 Reminder. Under Assumption §0501.26 we have J* = (] = dom(M,) = ra, = /,(a;*) and the
three measures 1, a; 1, and v’1, dominate mutually each other, i.e. they share the same null sets
(see Property §04101.02). Consequently, since (av), < /__ and

17]l, = [l(av)a Al < ll(@o)ll,_ [Pl € Reo foreach b, € £
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we have /; C /,(v?). Moreover, since t.a, € (R_)" foreach s € [0,1] we have t. . € (R.,)"

N

and (at), = at € (R.)". We note further if in addition (t/v), € (R_,)" is satisfied, then

p
Assumption §05/01.26 (05.02) is fulfilled with C_, = 1 due to Property §05/01.07. m

§05101.28 Lemma (Maximal global v-error). Let Assumption §05101.26, T.‘. c Tz, g € dom(T,,) = ran(T,,) C
lyand 0, = T g = T g € (% be satisfied. Given m € IN denoting by 0" = T.Tf”g. el a
Galerkin solution for any s € [0, 1] we obtain

16— "I < (9d°Ciy + 1) (o)t 0002, 16" | < 3d” (|l and

(t/v)
IT.(6 = &M)I; < (94" + 1)d* (b}, [[Ta))2,. (05.03)

$05101.29 Proof of Lemma §05101.28. Given in the lecture. O

§05|01j02 Global and maximal global ¢-error

Secondly we measure locally the accuracy of the Galerkin solution " € 1" of ) = T_T‘.g. € l,.

§05101.30 Reminder. Given ¢ < IR]:] for dom(on) := {h, € €, : ¢h, € {,} we consider as in Nota-
tion §04102.16 the linear functional ¢z : ¢, O dom(¢y) — R defined by

he = du(h) == y(gh) = Y ¢h,.

jEN
For each () € dom(or) and m € IN by Property §04102.18 we have 1" € dom(¢y,) with
oy (6 — Q17| < |l (16]177) < 3 (I¢4]) € Reo,
and |p1 (6, — 01)||ov(6) — ¢v(4™)| = o(1) as m — oo by dominated convergence. O

$05001.31 Property (Local ¢-error). Consider ¢ < R\, L. el and g € dom(T) = ran(T,.) C ¥, and
hence 0, = Tf"g. = T.‘_.lg. € ,. Given m € N we have ¢’1" € ¢, and hence ¢.1" C dom(¢y,).
Consequently, denoting by 6" = Tf"f”g. € 1" a Galerkin solution we have 6" € dom(¢y,) with

126" l,, < I[T.L [8LINgLIl € Reo.
If C. = sup {HMI,,,LT‘“T_”.'HQH/&: meN} € R, then
o (0" — )] < (1+ CT)H]K”“QH&
which implies sup {|pu (¢ — 6)|:j € [m.o0)} = o(1) as m — oo. u
s0s001.32 Assumption. Let ¢, a < (R )" and ¢ € R, such that (at), € (R )" and (a0), € (.. O

§05001.33 Reminder. Under Assumption §0501.32 we have J* = /] = dom(M,) = r,a, = /,(a;?) and the
three measures 1, a;’y, and |¢|y, dominate mutually each other, i.e. they share the same null
sets (see Property §04101.02). Consequently, since (a¢), € /, and (Property §04102.23)

[@hll, = %(|h.a. (ag),

) < [[(ag)ll,, [Pl € Reo foreach b, € £,

we have (; C dom(oy). Moreover, from (a0), € (, follows [[a, 17" = [|(ag). 1|, = o(1)
as m — oo. For s € [0,1] from (at), = at € (R.,)" follows (at), = ((at'), = (at),,, =
(@)1l Jmen € (R 0
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50501.34 Lemma (Maximal local ¢-error). Let Assumption §05101.32, T, € T, g € dom(T,) = ran(T,)) C
lyand 0, = T' g = T.'q € (" be satisfied. Given m € N denoting by " = Tﬂ”g‘ e vl a
Galerkin solution for any s € [0, 1] we obtain

(0" = 0)1* < 3d°(3d” + T2 (Ila L[| + (at), [ 1]]7). (05.04)

§05101.35 Proof of Lemma §05/01.34. Given in the lecture. O

50501.36 Lemma. For each m € N denote bias’ = ||a,]lﬁ”'l||z (at) (m)||t’s]lm||2 If (a0), € [, and
(at'), € (R.,)" then it follows bias? € (R.,)>.

505101.37 Proof of Lemma §05101.36. Given in the lecture. O

§05|02 Generalised linear Galerkin approach

§05102.01 Generalised linear Galerkln approach. Given T, < [(7.) and g € /, any element " € ¢1"
satisfying T,.6" = 17"g, i.e., [T, ] [0"], = [g]..1s called a generalised Galerkin solution. u

$0502.02 Notation. We denote by ['(/,) the subset of all injective A,, € L() such that [A,], € R™™
is regular for all m € IN. For each m € IN and A,, € l]i‘( .), the inverse [A,.]." € R™™ of
[A,], € R™™ exists. Note that [Z(,) C I*(¢,) (Lemma §05101.22). O

§05102.03 Assumption. For J = /,, surjective partial isometries U < [(H./,) and V < [L(G,/,) fixed and
presumed to be known in advance, the operator T ¢ L(H.6) satisfies T, = VTU" € (1, C
L(6) = L+(6). Let g & dom(T.) = ran(T,.), and hence ¢, = T’ g = T.‘ilg_ € l,. o

§05102.04 Remark. We consider a generalised linear Galerkin approach under Assumption §05102.03, i.e.
[T,.], is assumed to be regular for each m € IN, so that [T, ] * always exists. We shall emphasise
that it is a non-trivial problem to determine when such an assumption holds (cf. Efromovich
and Koltchinskii [2001] and references therein). However, if [T, ] is regular, then for each
g, € U, the generalised Galerkin solution 6" = T.."q € ¢ 17" is by [§"], = [T..].'[¢]. uniquely

determined. 0

$0502.05 Generalised link condition. Given weights ¢ < (IR )" 1 (_ an operator T, < ['(/,) satisfies a
generalised link condition if there exist D € R, and d € [1, D] such that

T, € Tup = {T,. € T, NL®): IIMLIT,]Il,,.. = I[T. ML, <DforallmeN}. O

§05102.06 Remark. We shall emphasise that T,,,, contains the subset M,, of diagonal operator satisfy-
ing the link condition, i.e. M, € T, (see Remark §05/01.09). Indeed, any M, € M,, satisfies
IIMLIMLL,.. = 6w, 1|, < d < D. Moreover, we have T;; C T, whenever D > 3d
due to Lemma §05/01.22 (ii). The link condition T,, € T, or in equal (T T, )/* € T does not
depend on an unitary V, i.e. V*V = idg, (or more generally surjective partial isometry with
ran(T) C tan(V") implying T"V'VT = T'T) since for each T € L(H,6) with VTU" = T,
we have T, T, = UT"V'VTU" = UT"TU". The general link condition Definition §05102.05
however involves both surjective partial isometries U € L(H,4) and V € L(G,4,). It is worth
pointing out, that for each T € L(H,G) and surjective partial isometry U & L(H,¢,) satisfying
(UT"TU")/2 € T7 we can theoretically construct a surjective partial isometry V € (G, () such
that VIU* = T, € L(&) satisfies T, T;, = UT"TU* and T, = UT"V* € T;. Consequently,
from Lemma §0501.22 (ii) it follows || [M[T, ] * wee = 1T ] "ML < 3d” foreachm € NN,
which implies T, € T, for all D > 3d’. The fundamental mequdllty of Heinz [1951] in

52 Statistics of inverse problems



§05 (Generalised) linear Galerkin approach Chapter 2 Regularisation of inverse problems

Property §0501.10 implies ||(UT"TU")~1/2197||, < dt' € R., for each j € IN. Thereby, the
sequence (UT"TU")~"/21¥" is an element of £, and, hence v, := TU*(UT*TU")~ /211", j € N
belongs to G. Then it is easily checked that (v, ) e is an orthonormal sequence in G which de-
termines a surjective partial isometry V € L(G,£,) (Notation §01102.07). By construction we have
T, =UT'V' =UT'TU(UT'TU")""/2 = (UT'TU")"/? € 2(1,), hence T,, = (UT"TU")"/? €
L(¢), and thus T, € T3 or in equal (T, T))"/? = (T, T, )"/? = (UT'TU")"? € T; and
T.\. S -l]—t,d' U

50510207 Property. If T, I € T, thenalso T, € T,,, for each D > 3d>."

§05|02j01 Global and maximal global v-error

We shall measure first globally the accuracy of the Galerkin solution " € ¢, 1" of § = Tf‘. g €L,

505102.08 Property (Global v-error). Consider v, € (R_,)", T,. € I'(t,) and g, € dom(T,)) = ran(T..) C £,
and hence 6, = Tf‘.g. = T.Iilg_ € l,. Given m € N we have 1" € (_, and hence 1,1 C [,(v}).
Consequently, denoting by 0" = T.’C”g. € 1,1 a generalised Galerkin solution we have 0" €
L, (v?) with

167 1,0y < NVLLITLL L, M)

If C. = sup {HM.,T.”.)HT-\-M

20

Hn L G]N} c R, then

0" =, < (1+Collreall,
which implies sup { || — ]| .- j e N, } = o(1) as m — oc. O

§0502.09 Lemma (Maximal global v-error). Under Assumption §05101.26 let I’ < 1T, g € dom(T!) =
ran(T.) C (, and 6 = T/ g ="T!g el Givenm €N denotmg by " = Tm”g el a
generallsed Galerkin solution for any s € [0, 1] we obtain

16, — 6" [|> < (D*d°C,. + 1) (av

(t/0)

o |12, 1167, <Dl and
||T.‘_((9, — Qm)”éz < (Dd + 1)ds(ats)(m)||]lf”“9,||a,1. (05.05)

$05102.10 Proof of Lemma §05102.09. Given in the lecture. O

§05|02|02 Global and maximal global ¢-error

Secondly we measure locally the accuracy of the generalised Galerkin solution " € 1" of
=T g€l
. ofote 2

50502.11 Reminder. Given ¢ € (R )" for dom(on) := {h, € £, : ¢h, € £,} we consider as in Nota-
tion §04102.16 the linear functional ¢/, : ¢, O dom(¢ ) — R defined by

he = ¢y (h) == u(gh) =Y ¢h,.

jEN
For each ¢} € dom(¢y) and m € IN by Property §04102.18 we have 41" € dom(¢y,) with
[y (6 — 617)] < Il (16]1) < 4 (1¢6]) € Re,

and |p1 (6, — Q1)||ov(6) — ¢v(6™)| = o(1) as m — oo by dominated convergence. O
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505102.12 Property (Local ¢-error). Consider & € (R,)N, T € I°(,) and g € dom(T)) = ran(T,) C 4,
and hence 6, =T, g =T, 'q € (,. Given m € N we have §’'1;" € {, and hence ¢.1" C dom(on).
Consequently, denoting by 6" = Tf:”g. € 1" a Galerkin solution we have 6" € dom(¢y,) with

g I, < 1T, [@LIgl] € Re.

I C, = sup {|IM,. T (T2 g

PRECES N} € R, then
oy (0" — Q)] < (L+ C)lILr e,
which implies sup {|¢y () — 0)]:j € N.,.} = o(1) as m — . O

§0502.13 Reminder. Under Assumption §05/01.32 we have J* = /] = dom(M,) = ra, = /,(a*) and the
three measures 1, a;’y, and |¢|y, dominate mutually each other, i.e. they share the same null
sets (see Property $04101.02). Consequently, since (a¢), € /, and (Property §04102.23)

lehll, = w(Inal(@on]) < | @orll, Il . € Ru for cach b € £

£y
we have (; C dom(oy). Moreover, from (a0), € (, follows [la 1/""|| = ||(a¢),]l7l“||£2 = o(1)
as m — oo. For s € [0,1] from (at), = a,t € (R.,)" follows (at) = ((at'), = (at),,, =
[(at) L[], Jmen € (Roo) 0

§0502.14 Lemma (Maximal local ¢-error). Under Assumption §05101.32 let T < T,,, g € dom(TL,) =
ran(T.) C l,and ) = T g = T g € (. Givenm € N denoting by " = Tf"f”g_ € vl a
generalised Galerkin solution for any s € [0, 1] we obtain

o1 (6" — )17 < (1 +DA)DA|[L G2, (Ja k[ + (atf, [£°17]12). (05.06)

(m

$05102.15 Proof of Lemma §05102.14. Given in the lecture. O

§06 Spectral regularisation

50600.01 Notation. Consider the measure space (7, ¢ ,v) and the Hilbert space J = L,(v) as in Nota-
tion §01101.01. We suppose that U € L(H,J) and V € L(G,J) are surjective partial isometries,
hence VV* = id; = UU”*. As in Definition §03100.08 we denote for A := VTU* € L(J) its
Moore-Penrose inverse by A' : J O dom(A") — J. m

§06100.02 Comment. In case the operator T € L(H,G) is fixed and presumed to be known in advance,
a spectral regularisation is formally not restricted to the diagonal or non-diagonal case as con-
sidered in Subsection §01104 and Subsection §01/05, respectively. Consequently, we use in this
section the symbol A := VTU* € L(J). However, in case of a noisy operator we will restrict
ourselves to the diagonal and non-diagonal case introduced in Definition §02104.03 and Defini-
tion §02102.03. O

§06100.03 Assumption. For J = [,(v)let U < L(H.J)and V & [(G.J) be surjective partial isometries
fixed and presumed to be known in advance, let T < [.(11.G), hence A = VTU" € L(J) with
Moore-Penrose inverse A' : J D dom(A") — J and let g € dom(A), and hence 6, = Al ged. o

$06100.04 Definition. A collection {Rﬂ e LU): a € (0, 1)} of operators is called regularisation of A" if for
any g € dom(A) holds |[R g — Alg[|, — Oas a — 0. 0

506000.05 Remark. If A" is not bounded, then we have IR, [l,,, = o0 as a — 0. However, for g € dom(4)
if (¢")new is a sequence in J such that | g"—g||, < n~' forall n € IN, then there exists a sequence

(a,)nen in (0,1) such that ||R, g" — Alg]|, = o(1) as n — oo. O
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§06|01 (Generalised) Tikhonov regularisation

s0601.01 Definition. The collection {A"™'A" € L(J): A" := (XA + aidy) ™! € E(s),a € (0,1) } of operators
is called Tikhonov regularisation of A’ : J O dom(A") — J. i

s06001.02 Remark. Given A € L(J) consider for each a € (0, 1) the strictly positive definite operator
A" = AA + aidje [£(J) where

(A2, + )l = AR )Ry = (AR, )y > al b € Re (06.01)

L(J)

forany h, € J,, = J \ {0,} by applying the Cauchy-Schwarz inequality and, hence
inf {|AA,||,: |5, = 1.h €3} > o € R, (06.02)

Using the last bound A" € [£(J) has a closed range ran(A"). Indeed, if (A"a*) je converges, say
to g € J, then (A"R}) ;e is a Cauchy sequence and also (1)) ;e by (06.01). Since J is complete,
(h.)jen converges, say to h, € J. Since A" is continuous, (A'R}) e converges to A*h, = g.
In other words the range is closed. Since A" € L(£.) is injective with closed range it follows
ran(A") = ker(A")* = J, which in turn implies A" is invertible, and due to the open mapping
theorem with inverse A~ = (A*)™' € 1L(J). Moreover, exploiting ran(A") = J and (06.02) we

have [|A""[|, , < " since

ol al- 1A g .
1A ey = sup {IA" g0 € 9. llglly = 1} = sup { =~ 0 € 9, = rana N\ {0} }

171l

= sup { gy e € 3o} =sup { AR b e ], =1} <o

Consequently, the collection {A"'A" = (A'A + aid;) 'A" € LU): a € (0,1)} is well-defined.
O

50601.03 Lemma. For each h, € ker(A)" holds ||a(A'A + aidy) " A, = o(1) as a — 0.
$06101.04 Proof of Lemma §06101.03. Given in the lecture. O

§0601.05 Remark. Let g € dom(A), § = ATg ceJdand (" : A‘”HA*g. € J we have
A —6")=ANANg +ah — AANT'Ng=ANg+af —ANg = ab,

and rewriting the last identity A" 'A"g — A'lg = —aA""'¢). Consequently, from Lemma §06101.03
follows ||A"™'A"g—A'g||, = o(1) as & — Osince , = A'q € J. Thereby, the Tikhonov collection
as in Definition §06/01.01 is indeed a regularisation in the sense of Definition §06100.04. O

$06101.06 Lemma. For each C € L(J) the following statements are equivalent:
(i) 6 minimises the generalised Tikhonov functional h, = Fy(h.) := §llg — Ah|]? + S[Ch.|?

(ii) 6" is solution of the normal equation: A'g = (A'A + aC"C)6".
$06101.07 Proof of Lemma §06/01.06. Given in the lecture. 0

$06101.08 Remark. Observe that ker(A)Nker(C) = ker(A'A + aC’C) which in turn implies, that the solution
of the generalised Tikhonov functional, if it exists, is unique if and only if ker(A) Nker(C) = {0 }.
Recall that there exists a solution, for example, if (A"A + «C"C) has a continuous inverse.  J
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50601.09 Corollary. Given the Tikhonov regularisation { A" ™' A" = (A'A + aidy)'A" € LU): a € (0,1)}
as in Definition §06101.01 for each g € J, 0" = AQHA*g. € J is the unique minimiser in J of the
Tikhonov functional h, = 5llg, — A3 + 5 [|1|1% O

§06101.10 Proof of Corollary §06101.09. Given in the lecture. O

s0601.11 Definition. Given an operator C € L(J) satisfying (gTR1) ran(C) is closed and (gTR2) there
exists ¢ € R., such that for any h, € ker(C) it holds ||Ah,|[;, > c[|h.||;, the collection

{eTR, := (AA +aC'C)"A" € LU): a € (0,1)}
is called generalised Tikhonov regularisation of A'. m

s06i01.12 Remark. Assumption (gTR1) and (gTR2) ensure together that the generalised Tikhonov regu-
larisation is well-defined. More precisely, introduce inner products (-, -) := (A-, A-) +(C-,C-),
and (-, )., := (,+), + (C-,C-); on J with associated norms ||| and |-||... Since J is complete
with respect to both norms (due to (gTR1) and (gTR2)), it follows from ?? that ||-||, and [|-||, are
equivalent (keeping in mind that ||%,[|> < nr1a><;(||A||f<J]>7 1)|7.]|Z). Consequently, there is K > 0
such that ||, [|, > K[a.|| and thus [[AR,||3+[|Ch|1? > K>(||h.||2 +[|Ch.|]%). Exploiting the last
inequality we obtain [|A"Ah, + aC*Ch,||; > K?min(1, o)||h.||, for any h, € J. In analogy to
the arguments exploiting (06.01) in Remark §06/01.02, A"A +«aC"C is injective with closed range
and, thus it has a continuous inverse, i.e., (A'A + aC*C)~! € L(J). Consequently, the gener-
alised Tikhonov regularisation {gTR, := (A'A + aC*C)™'A" € LU): a € (0,1) } is well-defined.
Moreover, keeping in mind Lemma §06/01.06 6" := gTR, g € J is obviously a solution of the
normal equation, and thus the unique minimiser of the generalised Tikhonov functional. 0

s06101.13 Corollary. Consider the generalised Tikhonov regularisation as in Definition §06101.11. For
each g € J, 0" := gTR g = (NA+aC*C)~'A'g is the unique minimiser in J of the generalised
Tikhonov functional h, = 5llg, — AR,||* + 5 [|Ch.|]%. O

$06101.14 Proof of Corollary §06/01.13. Given in the lecture. O

50601.15 Remark. Introduce further the adjoint A’ and C” of A and C, respectively, with respect to the
inner product (-, -)_ introduced in Remark §06101.12, i.e., (Ah,, g), = (h., Alg), and (Ch,, g), =
(h.,Clg), for all h,,g € J. In particular, for each g,h, € J we have (a) Alg = (AA +
C'C)'Ag, (b) C'g = (AA+C'C)"'C"'g and (¢) (ALA+C'C)h, = h, (i.e.,, AA+C'C = idy).
We note that ker(A)) = ker(A) and Tan(A:) = ker(A)** where ker(A)* denotes the orthogonal
complement of ker(A) in (J, (-, -), ). O

Consider the restriction of A as bijective map from ker(A)* to ran(A) and denote its inverse
by A" : ran(A) — ker(A)**. Given the orthogonal projection II_ . onto ran(A) its associated
Moore-Penrose inverse A’ (see Definition §03100.08) defined on dom(A!) = ran(A) @ ran(A)t =
dom(4)) is given by A| := AT'IT_ .
s06101.16 Proposition. Consider the generalised Tikhonov regularisation { gTR, € LUJ): a € (0, 1)} as in

Definition $06101.11. Under the conditions (gTR1) and (gTR2) of Definition $06101.11 for g € J

and 6 = ¢gTR, g = (A'A + aC’'C) 1A' € J the following statements are equivalent:
(i) g € dom(A) = ran(A) @ ran(A)™ = dom(A);

(ii) thereis @ € J such that ||§" — ||, = o(1) as o — 0.

Moreover, under the equivalent conditions we have 6 = Al qg.
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§06101.17 Proof of Proposition §06/01.16. Given in the lecture. O

s06101.18 Remark. Due to Proposition §06/01.16 the generalised Tikhonov regularisation as in Defini-
tion §06/01.11 is indeed a regularisation in the sense of Definition §06100.04. Moreover, we shall
emphasise that || — ||, = o(1) if and only if ||[Af" — Af’[|; = o(1) and [|CO" — CO||, = o(1),
which in turn implies ||§" — 6|, = o(1). Keep further in mind that A"g = A’ A6 holds if and only
if A'g = A"Af is true, since A"’A+C"C is continuously invertible. Thereby, for each g € dom(A')
the set of least squares solution A" (1T, g) satisfies A (IT,,q) = {h € J: XAn =Ag} =
{h.€ J: &An =Ag} = {7} +ker(A) with § = Alg. Each§ € A'(I_,, g) can thus be writ-

ten as § = §° + h, for some h, € ker(A) with " € ker(A)**, and hence, A = A§" and ICY f <
6112 + 1h)1? = |62, which together implies [|CA’||> < |C4]|? for any § € A (1T, g). In
other words, 6 is the unique least squares solution with minimal ||C- || ,-norm. O

§06|02 Spectral regularisation

506002.01 Definition. For A € L(J) let {r,a € (0,1)} be a collection of real-valued Borel-measurable
functions defined on [0, |A[|? |]. The collection {R, =1, (AA)A € LU):a € (0,1)} of opera-
tors is called spectral regularisation of A' : J O dom(A") — J if

(sR1) forall o € (0, 1) there exists C, € R, such that |r (z)| < C, forall x € [0, HA||E(J])],

(sR2) forall z € (0,]|A]|2 ] holds |1 — zr (x)| = o(1) as & — 0, and

L(J)

(sR3) there is K € R., such that |zr ()] < K forall z € [0, [|A||> ] and e € (0,1). 0

L(9)

50602.02 Proposition. For A € L(J) a spectral regularisation {R, =1 (AA)A" € LU):a € (0,1)} as in
Definition §06102.01 is a regularisation in the sense of Definition $06100.04.

§06102.03 Proof of Proposition §06/02.02. Given in the lecture. O

5060204 Remark. We shall emphasise that under (sR3) for any g ¢ dom(A) it can be shown that
IR.gll; = llt,(AA)A'g ||, — oo as & — O (Engl et al. [2000], Theorem 4.1, p. 72). O

§06|02j01 Maximal global v-error

Given A € L(J) and a spectral regularisation {R(‘ =1 (AA)A € L(I): a € (0, 1)} of A" :J D
dom(A') — J as in Definition §06/02.01 for g € dom(A) and v € (0, 1) we shall measure globally
the accuracy of the approximation " := R, g = 1,(AA)A'qg € Jof § := Alg € J.

§06102.05 Source condition. Given A < [(J)and g € dom(A), the solution § = A g € J satisfies a source
condition, if there is s € IR, such that 6 € ran((AA)"*), i.e. § = (A'A)*h, for h, € J. O

$0602.06 Proposition. Given A € L(J) let {Ru =1 (AA)A € L) a € (0, 1)} be a spectral regularisa-
tion ofAT . J D dom(A) — J as in Definition $06102.01. Assume Definition §06102.01 (sR1), and
(sR3), and in addition replace (sR2) by
(sR2a) there iss, € R., such that for all s € [0,s)] there is a constant C, € R, satisfying

sup {2°]1 — 2z (2)]: z € [0, A2} < Ca® Va € (0,1).

For g € dom(&) and o € (0,1) consider 6 = R.g = 1, (AA)Ng € Jand § .= ANg € J. If
there are s € [0, 25| and h, € J such that 6, = (N A)h, (i.e. 6 € ran((N'A)7) satisfies a source
condition as in Definition $06102.05), then we have

10" — 6|, < Ce?||h), Yo e(0,1). (06.03)
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§06102.07 Proof of Proposition §06102.06. Given in the lecture. O

$06102.08 Link condition. Given weights t < M (7) M L_(v) an operator A < [-(J) satisfies a link
condition if there is d € R, such that

AeT,:={T ebu:d|al, < |Tal, <d|all forala € J}

and we set T, := {T € L(9): (T'T)"* e T3 }. O

506102.09 Property. If A € T, witht, € M (/)N _(v)and d € R_, then forall s € [—1.1] we have
(inequality of Heinz [1951]) d""|a.||, < ||[Aa|, < d"||a|l. forall a, € dom(M.). u

506002.10 Comment. Given A € T we have ker(A) = {0,} and on ran(A) (which is dense in J) we have
A = A'. Similarly, for each s € R., on ran(A’) we have A~* = A" = (A"), O

506102.11 Assumption. Consider v, € M_, (/)L _(v),and fort € R_,,a € (0,t] sett := o' and a, := v?
where t,,a, € M., () NL.(v) and hence v(N,) = v(N)) = v(N,) = 0. O

$0602.12 Reminder. Under Assumption §06102.11 we have J* = [°,(v) = dom(M,.) = ya, = L,(a.*v) and
the measures v, v’v, v and a;?v dominate mutually each other (see Property §04/01.02). Conse-
quently, J* C J = L,(v) and J* C L,(v'v) (Property §04/02.11) since (av), = v/™ € L_(v). We as-
sume in the following that ) € J satisfies an abstract smoothness condition (Definition §04102.12),
ie,thereisr € R., such that ) € J*" = {h, € J°: ||h|| .. <t} C J* C J. Under Assump-
tion §06102.11 by Corollary §0501.14 (see Comment §05101.16) if A € T, (or in equal (A"A)"* €
T..) then (i) forany (, € J* we have § = (A'A)*h, with |||, < d”"[|¢]|,.., and conversely
(ii) forany ¢, = (A"A)"™', with h, € ,(v) we obtain § € J* with ||| ., < d*'|A,

;- O

$00102.13 Corollary. Let Assumption §06102.11 with (ta), = v/ € M, (/) NL. (v) and d.1v < R, be
satisfied. If A < T, and 0, < I, then we have g = Af, € J'".

§06102.14 Proof of Corollary §06102.13. Given in the lecture. O

$0602.15 Proposition. Given A € L(J) let {R =1 (AA)A € L(I): a € (0, 1)} be a spectral regulari-
sation of A J D dom(A) — J as in Definition §06102.01. Assume (sR1), (sR2), and (sR3)
(Definition §06102.01) and (sR2a) (Proposition §06102.06). For g € dom(A) and o € (0,1) con-
sider ° = R g =1, (AA)A'g € Jand 6, := Ng € J. Under Assumption §06102.11 if T € T,
(link condition as in Definition §06102.08) and ¢, < 1" (abstract smoothness condition as in
Definition §04102.12), then for any q € |—a, t| we have

6 = Al < Cly &7 1 a9 V€ (0,1). (06.04)

(g+a)/(2t)

506102.16 Proof of Proof §06102.16. Given in the lecture. O

§06102.17 Remark. Let us briefly comment on the Assumption §06/02.11 imposed in Proposition §06/02.15.
We set ()’ := 6 and write {9” acl0.)) = {0 u{d =R A0 =1, (AA)AAG:ac(0,1)},
shortly. Note that, under ¢ > —a the global v’-error is well-defined on J° since {0,": a €0, 1)} -
L,(v*v) for all § € J°. Moreover, the additional condition ¢ < ¢ together with a < ¢ allows us to
apply the inequality of Heinz [1951] Property §06/02.09. We can dismiss those upper bounds, if
A and M, commute. However, if A and M, do not commute, then the smallest upper bound of
the global approximation bias is up to a constant « since (a + ¢q)/(2t) € [0, 1]. O

s06102.18 Example. Let us discuss certain spectral regularisations satisfying (sR1), (sR2a) and (sR3).
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(a) Tikhonov regularisation as defined in §06101.01 is given by = + 1.(z) = (z + a)~! and
satisfies (sR1) and (sR3) with C, = o' and K = 1, and (sR2a) with s, = 1 and C, =
s5(1 —s)l=s,

(b) Spectral cut-off given by the piecewise continuous function z — r,(z) = 11, . (z) satisfies
(sR1) and (sR3) with C, = o' and K = 1, and (sR2a) with s, = co and C, = 1.

(c) A special iterative regularisation is the Landweber iteration. This method is based on a
transformation of the normal equation into an equivalent fixed point equation 6 = 6 +
wA (g —Af) withw € (0, [|A ||L_(f)] Then the corresponding fixed point operator id; —wA'A
is non-expansive and § may be approximated by 6" determined by ¢ := 6’7" + WA (g —
A¢/7), j € [m],and 6 := 0. Note, that without loss of generality, we can assume ||A |, ,, <
1 and drop the parameter w. By induction the iterate §" can be expressed non-recursively
through " = >7 1, (ids — AA)Y'Ag and thus w = 1, () = 37,y (1 — )" where
1—uar,, (z) = (1 —x)". Under the assumption ||A[| , < 1, the Landweber iteration is thus
a spectral regularisation with « = 1/m satisfying (sR1) and (sR3) with C, = o' and K = 1.
Moreover, (sR2a) holds with s = oo and C, = s®e™*. o

$06i02.19 Notation. Given A € [2(J), i.e., A is positive definite, we eventually consider a spectral regular-
isation {Ra =1,(A) € LU): a € (0, 1)} of A' for a given collection {ra: a € (0, 1)} of real-valued
Borel-measurable functions defined on [0, ||A ||, ] satisfying
(sR1") forall @ € (0,1) there exists C, € R., such that |1, (z)| < C, forall z € [0, [|A[|, ],

(sR2’a) there are s, € [1,00) and C, € R, for all s € [0,s] such that 2*|1 — zr (z)| < C,o’ for
allz € [0, [|All,] and o € (0,1),

(sR3") thereis K € R., such that |zr (z)| < Kforall z € [0, |Al| ] and o € (0, 1).

We shall measure in the sequel the accuracy of the approximation §* = R g = 1 (A)g € J

of = A g € J for g € dom(A), by its global approximation error. For convenient no-
tation we eventually use the notation ()’ := ¢ and write and write {(9 a € [0, 1)} = {4} U
{(9,“ =R A0 =1(A)AO: a € (0, 1)}. u

506102.20 Proposition. Given A € [2(0) let {Ra =1 (A) € L) a e (0, 1)} be a spectral regularisation
of A' satisfying (sR1°), (sR2"a) and (sR3") in Notation §06102.19. For g € dom(A) and o € (0,1)
consider " =R, g =1.(A)g € Jand § := A'g € J.

(i) If there are s € [0.s| and h, € J such that 0, = A'h, (ie. 0, € ran(N) satisfies a source
condition as in Definition §06102.05), then we have

6" —all, < Ca'lh|, VYae(0,1). (06.05)

(11) Under Assumption §06102.11 if 'I" < 1, (link condition as in Definition $06102.08) and ¢, <
J* (abstract smoothness condition as in Definition §04102.12), then for any ¢ € [—a.t A
(ts, — a)| we have

19" — 4|, <C A gl g e (0, 1). (06.06)

v? (g+a)/t

§06102.21 Proof of Proposition §06102.20. Given in the lecture. O

§06102.22 Remark. If (sR2’a) is satisfied for some s, > 2 (excluding the Tikhonov regularisation as dis-
cussed in Example §06102.18 (a)) then (06.06) in Proposition §06102.20 (ii) holds for any ¢ €
[—a, t] as in Proposition §06102.15. 0
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§06|02/02 Maximal local ¢-error

Given A € L(J) and a spectral regularisation {R := 1 (AA)A € LU):ae(0,1)} of A': J D
dom(A') — J as in Definition §06102.01 for g, € dom(A) and « € (0, 1) we shall measure locally
the accuracy of the approximation " := R, g =1,(AA)A'g € Jof § := Alg € J.

5060223 Reminder. For ¢ € M., (#) and dom(ov) := {h, € J = L,(v): ¢h, € L,»)} we consider the
linear functional ¢ : J O dom(¢r) — R given by h, — ¢v(h,) := v(¢h,) with a slight abuse
of notations. Under Assumption §06102.11 we have J* = I (v) = dom(M, ) = ya, = L,(e;*v) and
the measures v, v?v, g@?y, v and a;*v dominate mutually each other (see Property §04101.02).
Consequently, J* C J = L,(») and J° C L,(v/v) (Property §04102.11) since (av), = v'™ €
L.(v). We assume in the following that ¢, ¢ J** and A < T, satisfies, respectively, an abstract
smoothness condition (Definition §04/02.12) and link condition (Definition §06102.08). Under
Assumption §06/02.11 due to Proposition §06102.15 we have " — 6 € L,(v*v), and thus if in
addition v, * € [L,(¢'v) also 6" — 6 € dom(¢v). O

5060224 Proposition. Given A € L) let {R =1 (ANA)A € LU):a € (0,1)} be a spectral regular-
isation of A J D dom(A) — J as in Definition $06102.01. Assume (sR1), (sR3) (Defini-
tion §06102.01) and (sR2a) (Proposition §06102.06). For g € dom(A) and o € (0,1) consider
0 =Rg =1 (AA)Ag € Jand § = ATg. € . Under Assumption §06102.11 if A € T,
(link condition) and () < 1" (abstract smoothness condition), then for any q € |—a, t| such that
o ¢ e L) with o € N, (/) we have

|60 (0" = 0)] < Cprayeo A 1 [Jo77], /@0 Vo € (0, 1). (06.07)
§06102.25 Proof of Proposition §06/02.24. Given in the lecture. O

$0602.26 Proposition. Given A € [2(J) let {Rﬂ =1 (A) € LU):a € (0, 1)} be a spectral regularisation
ofAT satisfying (sR1°), (sR2’a) and (sR3") in Notation §06102.19. For g € dom(A) and o € (0,1)
consider 0 = R,g = 1.(A)g € Jand § := A'g € J. Under Assumption 06102.11 if T < T,
(link condition) and 6, € J** (abstract smoothness condition), then for any q € [—a,t A (ts, —a)]
such that v * < L (¢'v) with o € M, (/) we have

v (6 — Q)] < Cprnype A 1 [l 00" Vo € (0, 1), (06.08)
§06102.27 Proof of Proposition §06/02.26. Given in the lecture. O

$06102.28 Remark. If (sR2’a) is satisfied for some s, > 2 (excluding the Tikhonov regularisation as dis-
cussed in Example §06/02.18 (a)) then Proposition §06/02.26 holds for any ¢ € [—a, t] as in Propo-
sition §06102.24. O
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Chapter 3

Regularised estimation

Making use of the regularisation approaches presented in Chapter 2 we
introduce estimators of the solution 6 € H based on a noisy observation
of the image g = T'0 and eventually in addition of the operator T.
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§07 Orthogonal projection estimator

$07100.01 Notation (504100.01 continued). Consider the measure space (J, #,v) and the Hilbert space
J = L,(v) as in Notation §01101.01. For w, € R’ define the multiplication map M, : R - R’
with a, — M, a, == w.a, := (w;q)je7. fw, € M(7),1.e. w, is # -Z-measurable, then we have
M, : M(7) — M(#) too. If in addition w, € L_(v) then we have also M, € L(J) identifying
again equivalence classes and representatives. We set ['(J) := {Mw: w, € [Lw(u)} C L) noting
that ||M,[|, ., = sup {||w.a|: la], <1} < [w.l,_, foreach M, € LX(J) (see Notation §01004.01).
Finally, given surjective partial isometries U € L(H,J) and V € L(G,J) we define ['" (1)) :=
V(@)U == {V'M,U € L#.G): M, € '(9) }. As a consequence, for each T € 1'¥ (1)) we have
VTU" = M, € () for some w, € L_(v). O
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§07100.02 Assumption. The separable Hilbert space J = [L,(7. 7. v) with o-algebra ¢ over J containing
all elementary events {j}, j € J, and all events [1] := [-m,m] N T, m € N, and with o-
finite measure v € .7 ( 7 ) such that v([m]) € R, for all m € IN, and the surjective partial
isometries U < [.(H.J) and V & [(G,J) are fixed and presumed to be known in advance. The
operator satisfies T € 1" (1)) C L(H,6) and hence VTU" = M, € I(J) for some s, € [__(~) and

the image fulfils ¢ ¢ dom()M.), and hence s/g € J = L,(v). O

$07100.03 Reminder. Under Assumption §07100.02 we consider T' € ' (1)) C L(H,6), and hence VT U" =
M, € I!(J) and g = M0, = 5,0, € J for some s, € [._(~). Due to Property §04/01.02 the Moore-
Penrose inverse of M, € I*(J) satisfies M/ = M, : J D dom(M,) — J with dom(M,) = s, P
31 = J*. For each m € IN, My € [2(J) and M,... € EQ)) is the orthogonal projection onto the

linear subspace J1"* C J and its orthogonal complement s1""* = (s1")+ C J, respectively, that
is J = yI" @ o1"* (see Property §04102.02). Given g € J we call §, € J satisfying ||g — .60, =
inf {||g, — s.h.||,: h. € 3} a least squares solution, if it exists (see Property §03100.05). Writing
sl =5 1Y and N = {j € N:5 € R} foreach g € dom(\M.) = us, @ g1 is ) = M, g = slg
the unique least square solution with minimal |[|-|| ,-norm in the set s{g + 312 of all least square
solutions (Property §04/03.02). If in addition (/) = 0, i.e. M, is injective, then ) = sl is the
unique least square solution. Given m € IN for each ¢ < dom()M.) we have g 1" € dom(M.,) too.
In particular, for § = s!g follows (1" = (s!g)1" = s!(g1") € 41" O

§07|01 Diagonal statistical inverse problem

507001.01 Assumption. Consider a stochastic process €, = (¢ ), on a probability space ({2, .o, P) sat-
isfying Assumption §01101.04 (ie. € & M« 7)) with mean zero (ie. P(e) = (IP(€));c7 = 0),
a sample size n < IN and let Assumption §07/00.02 be satisfied where s, € [ () is known in
advance. For 6] € J the observable noisy image with mean g = 5.0, ¢ J = L,(v) takes the form
g = g +n '"c. We denote by 2 the distribution of g. O

£07101.02 Definition. Under Assumption §07/01.01 for ¢/ € J and s, « [ _(~) consider a noisy version
g~ Blotg =s6 ¢ dom(). Foreachm € IN we call g» := g1 and §" := s/g" = sig1"
orthogonal projection estimator (OPE) of g and 6 = s!g € J, respectively. O

§07|01j01 Examples

§0701.03 GdiSM (§01104.09 continued). Considering ¢, = L,(N,2", 1) for J = /, let Assumption §0700.02
be satisfied where VT U™ — M. ¢ ['(/,) for some s, € /. — [_(y)is known in advance. We
illustrate the OPE in a Gaussian diagonal inverse sequence model (GdiSM) as in §01104.09. Here
the observable stochastic process | — ¢ + 7 "/°I3 ~ N/ is a noisy version of ¢ — 5.0, ¢ /, with
) =slg ¢ © C/ and B ~ N, .. Consequently, g admits a N; -distribution belonging to the
family Ny, .., := (N},)qeco. Summarising the observations satisfy a statistical product experiment

(R", B, N,..,) where © C /.. O

§0701.04 Property (GdiSM §07101.03 continued). The error process B ~ Nﬁ]ﬂ as in Model $07101.03 admits

a covariance operator id,, € ((,) which is evidently invertible with inverse id,, € L((.) where
||id,, = land N} (B?) = 1. For all h, € {, we have IR = ||h,||12d£ = (idg,h., ), . O

e

§07101.05 Property. For o € R, N/, and P e (%), 5 €N, astochastic process Y| ~ ©,;-nb . of

(1,,57)

independent random variables admits M. € ['(.) N2 (¢,) as covariance operator with |[M,.|| ., =
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|a*|l,_, since

(M,.a,b), => b =Y a Y Cov(Y,Y)h Va,b €L,

jeEN jeN  j eN

If 0,0 ¢ ]R]\>U M [ then M,. € IMt) is invertible with inverse M.'! = M, . € ') and

IV ey = llell_- D

§07101.06 diSM (§01104.08 continued). For J = /, let Assumption §07/00.02 be satisfied where s, € [ =
(%) is known in advance. We illustrate the OPE in a Diagonal inverse sequence model (diSM)
as in §01104.08. Here the observable stochastic process = ¢ + n '’ is a noisy version of
g =-s0cl,withf, =s¢gc© C/ ande ~ ®(,‘61NIPE", where

(iSM1) foraEEC]R N/ and P° =D e7(#) forall j €N,

(0,5

iSM2) X C R M/ _ and foreach g € > we have g ' € IR]N“ M/ too.

Under (iSM1) g admits a [/, -distribution belonging to the family Bax{s o = (Bl )acoqex-
Summarising the observations satisfy a statistical product experiment (R B . B..,..) where
OC/landY C R, NL.. O

§0701.07 Property (diSM §07101.06 continued).

(1) Under (iSM1) the error process g r~ ®J e]NP 2 admits a covariance operator M,. € 1X(£,) N
L), ie €& ~P = ||0 |, (Property §07101.05) and B, (€2?) = o,

(0.M,)

(i1) Under (iSM1) and (iSM2) the covariance operator M,. € X(6.)NE(¢,) is invertible with inverse
M, € k() N L) satisfying [[M,- || ., = [la|,_.

Under (iSM1) and (iSM2) setting v, := max(||a |, . [|a’l[, ) we evidently have |N.|| . < v,

and ||M,- < v,. Consequently, from Lemma $01101.08 (01.03) we obtain

lhey

R < IRJZ = (b b), S wlhl? V€. o

§07101.08 dieMM (§01104.07 continued). For J = [L,(v) let Assumption §07100.02 be satisfied where s, €
[_(v)is known in advance. We illustrate the OPE in a Diagonal inverse empirical mean model
(dieMM) as in §01104.07. Here the observable stochastic process = ¢ + n '/’ is a noisy
version of ¢ = 5.0, € Jwith ) = s.g ¢ © C J, and error process & = n'2(P(1)) — B.(1))) €
Mz 7) satisfying Assumption §01101.04. More precisely, on a measurable space (Z, %) for
each ) € © C J there is a probability measure [, © 7/(Z). Consider a stochastic process
P = (l/)]e 7 € Mz« 7) which in addition for s, € [__(») and for each ¢, € © C J satisfies
(dieMM1) ¢) € L,(B.) := L2, Z,B,)v-ae.j€J and [ (1)) =56 = g v-as.,

(dieMM2) (v — B ()1 € () B,-a.s. foreachm € NN,

(dieMM3) there is v, € R, such that |2, (") <V, and
B.(Jv(hah)?) < Ve\th-ij Vh, € J,
dieMM4) V7 =B, (4%) — [B.(¥)]? € M., (/) NL.(v), H(\/_“‘“‘)’WLM < v,., and
B.(jv(R)[?) = B.(lv(h)]?) — B (v(h)|” = v |02, Vh, € J.
We consider a statistical product experiment (2, 2" 12, = (.")4c0) as in an Empirical
mean function §01101.10 where © C J. O
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§07101.09 Property (dieMM §07/01.08 continued).
(1) Under (dieMM1)—(dieMM3) due to Lemma §01101.08 (1) the stochastic process ) © N (2 © 7)
and hence the error process €& = n'*(B — B.) () € M2 e #) admits a covariance
operator 1, € 2(J3) satisfying ||1;. H[u » < Vo

(i1) Under (dieMM1)— (d1eMM4) due to Lemma §01101.08 (i1) the covariance operator 1,, € LE(J) is

invertible with inverse I,,' € L(J) satisfying ||T,." o < Vopue
Consequently, from Lemma §01101.08 (01.03) we obtain
Vi [l S I = Gl )y < vl Ve € 0. O

§07|01j02 Global and maximal global v-risk

We measure first the accuracy of the OPE @,\m := s/ g™ of the projection ()" = s/g" < 11" with
g — 5,0, € dom(M.) by the mean of its global v-error introduced in §04/03101, i.e. its v-risk.

50701.10 Reminder. If v, € VL, ( 7)and ¢, € | (v'v) then we have " € L,(v’v) too and ||¢)" — 0||§ =

as m — oo (Property §04103.09). m

s07101.11 Assumption. Consider a noisy version ¢ = ¢ + n "¢, ~ 7 satisfying Assumption §07/01.01,
@stPel) v = BL(€2) = (" = BL(IE[%);es € L.(v) and
(dsipg2) 1" € L_(v) B-a.s., for each m € IN. O

$0701.12 Comment. Under Assumption §07001.11 and v, € N, (/) set (s'v), := slv, € M(2). If 5/ 1" &
L(vv) then we have (s'v) 1" € J B -a.s.. If in addition ¢, < L (v'»), and hence 0" & L,(v/v)
(Property §04103.09), then it follows

0d" = (s0), G 1" = n(s'0) E1" + 08" e J = L(v) El-as. (07.01)

If 7 C 7 (at most countable) and v, is the counting measure over the index set J then As-
sumption §01101.04 and (astpgl) v"* = 7 (¢?) « L_(~,) implies the additional assumption (dSIPg2)
el € L.(») B:-a.s.. However, the last implication does generally not hold, if 7 < {R. R .}

for example. O

§07|01/02/01 Global v-risk

507001.13 Assumption. Letv, € M, (7), 6 € [,(0/v), and s/ 1" € [,(v’») for all m € IN be satisfied.

-~

s0701.14 Definition. Under Assumptions $07101.11 and §07001.13 the global v-risk of an OPE §" = s! qr =
sigl" € Ly(viv) B -a.s. satisfies

BL(10" - a)2) = Bi(

|s1(q, — g) 1 [15) + [Tl (07.02)

with variance term B (||s! (g — ¢)1"[1?) = n ' B (||(s'0). 1" [1?) and bias term |01, O

§07101.15 Property. Under Assumptions §07101.11 and §07101.13 we have

B ([l(s'o).&1(I7) =/jIBZ(|&'3-|2)(5T S v(dj) = v(v"(s'0)17) (07.03)

and consequently I (||s! (g, — g )1 [[7) < W=l I8/ € R, o
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$07101.16 Notation. For a, € R with minimal value in B C NN we define
arg min {(1,,,,: m € B} := min {m € B:a,<aq,Vje B}. O
$07101.17 Proposition (Upper bound). Under Assumptions §07101.11 and $07101.13 for all n,m € N setting

R(0,s.,0,) := HH]I’”H\2 + n_lﬂsT]lmH m; = arg min {R(6,5,0) : m € N}
and R (0.s.0):=R"(0,s,0) = min {R(4,5,0) :m € N} (07.04)

we have BL(|6" — 612) < (1V V[, ) R(4,s.,v) for all n € .

Hﬂ_x(l/)

§07101.18 Proof of Proposition §07/01.17. Given in the lecture. O

§07101.19 Definition. Let ¢ < [ ,(v’v) and 9'” e L(vr) Bi-as. for all m € IN. If there exist C € R., and
foreachn € N, R’ € R., and m’ € IN satisfying

C'R, < inf BI[I0" — 0l <ELIG" — 4} <CR, VneN,
me

then we call R’ oracle bound, m: oracle dimension and 9 " oracle optimal (up to the constant

C). As a consequence, up to the constant C” the statistic (9, attains the lower global v-risk bound
within the family of OPE’s, that is, B[ — 6, 12 < Cinfen B ll0" — 6112 O

$07101.20 Oracle inequality. Under Assumptions §07101.11 and §07101.13 if in addition
1< mas(W* o, 10) o) < W, € R
is satisfied then (07.04) implies

| 2

Vil R)(0,5,0) < BL(|6" — 0)12) = n7'w (" (s'0)?T7) + |41
< v.R(0,5,0) Vm,n € N.

As a consequence we immediately obtain the following oracle inequality

v R s,0) < inf BRI - al) < BL(I1E* - a)?)

< v, R(8s.0) <2 inf B'(|8" —4]>) VneNN, (07.05
" meN v

and, hence R’ (0,s.,0,), m’ and the statistic qm, respectively, is an oracle bound, an oracle di-
mension and oracle optimal (up to the constant v;,). O

5070121 Remark. For each fixed m € IN with [|s/1"|| | € R., we have n'||s/1"[|, = o(1) as n — oo.
As a consequence, if ||s/1"[|, € R., for all m € N and [|Q1""|| = o(1) as m — oo then we
obtain R (6, s.,v,) = o(1) as n — oo, and thus, R’ (6, s.,v,) is also called an oracle rate. Indeed,
for all § € R., there exists m, € IN and n, € IN such that we have both [0 1"[|> < ¢/2 and
n*1\|5f]lﬁnﬁ|§ < d0/2forall n € N.,, and whence R} (4,s,,0) < R'(f,s.,v,) < 0. However, note
that the oracle dimension m’ = mZ(f,s.,v,) as defined in Proposition §0701. l7 depends on the

unknown parameter of interest ), and thus also the oracle optimal statistic 0 . In other words
g™ is not a feasible estimator. O
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50710122 Corollary (GdiSM §07101.03 continued). Consider § = ¢ + n'?B, ~ N as in Model §07101.03,
where B ~ \L:L\], s, €l,,0 €/, and hence g = s, € dom(M,) C ¢,. Given v, ]RII\“ and
0 € [,(v) the ( mfeaszble) OPE 9 = sig™ € (,(v?) with oracle dimension m. as in (07.04)

satlsﬁes

N (18 —0)?) = 9sny_mfm4

4 —0)2) VneN,

and hence it is oracle optimal (with constant 1).
§0701.23 Proof of Corollary §07/01.22. Given in the lecture. o

s07001.24 Corollary (diSM §07101.06 continued). Consider q = ¢ + n '’¢, ~ D as in Model §07101.06,
where € ~ ;b satisfies (iISM1) and (iSM2) with max(Ha Mo llo?ll, ) =1 v, € Ry, s € £,

0, € [, and hence g = 5,0, € dom(M,) C ¢,. Given v, © R ,and 0, € [,(v}) the (infeasible) OPE
O™ = sigm € L,(v2) with oracle dimension m? as in (07.04) satisfies

B (16"

—0)*) < wR(6,s5.0) <V inf BL (14" —4)?) VneN,
v " meN v

and hence it is oracle optimal (with constant v, ).

$07101.25 Proof of Corollary §07101.24. Given in the lecture. O

507101.26 Corollary (dieMM §07101.08 continued). Let q = g +n V% be defined on (2. 2" 1).") as
in Model §07101.08, where 1) < NU(Z @ /) satisfies (dieMM1)—(dieMM4) for some v,,, < IR,
5, € L (v), 6 € J] and hence g = s, € dom(M.,) C J. Under Assumption §07101.13 the
(infeasible) OPE 9 = s/ g™ € L,(vv) ef "-a.s. with oracle dimension m: as in (07.04) satisfies

Xn
(e

and hence it is oracle optimal (with constant v, ).

— 4 ) We\s\an(Q»5-vt’.) < Vi nliréf ols (HH — 4 ) Vn € N,

§07101.27 Proof of Corollary §07101.26. Given in the lecture. O
s07001.28 Illustration. We illustrate the last results considering usual behaviour for 6,s,,0, € M, (7).
We distinguish the following two cases
(p) s! € Ly(v2v) or there is m € IN with [|§" — § 3 =0,
(np) s/ ¢ L,(e?v) and for all m € N holds [|0" — 4] € R...

Interestingly, in case (p) the oracle bound is parametrlc, that is, nR(6,s.,v) = O(1), in case
(np) the oracle bound is nonparametric, i.e. lim, ., nR;(4,s,0) = co. In case (np) consider
the following three specifications:

Table 01 [§07]

Order of the oracle rate R (6, s.,v,) as n — 0o

G e (a € R.y) (t € R,,) (squared bias) (variance)
v} = j» 0? 572 Q]Imu“z 5T1m||2 me RO(9 s, 0,)
/7./ J 25 (e b o ey n n\Yer ey Yo
(o-m) v € (—1/2 —t,a) ,]‘72“7l ']'72r m—2@-v) m2vtatl N TTET n—%
1 /¢ 4—2a—1 A—2 —2a—2t—1 n TaFETT IOgn
\r"‘y’l;:*l/z Vi J ' m ¢ logm (logn) } T
(0-s) a—veER,, jEt e m e mA=2=Drem® | (Jog ) (logn) ™
(10 )2t+22\/+1
(sm) v+it+1/2eR., e g m—2@V)g gmm™ vt (logn)= gT
2 . 20 L loglogn
v+t=-1/2 e’ J e logm (logn)= %
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We note that in case (o-m) and (s-m) for v + t < —1/2 the oracle rate R’ (6, s, v,) is parametric. O

§07|01|02/02 Maximal global v-risk

50700129 Notation (Reminder). For sequences .., € (IX)" taking its values in X € {R, R ,, Q. 7, ...}

we write o, € (]K)E\ and ), € (]K)i\l if a, and b,, respectively, is monotonically non-decreasing

and non-increasing. If in addition ¢, — oo and ), — 0 as n — oo, then we write «, © (]K) " and
b, € () for short. For w, < [_(v) we set w,, := [[w.[|_,, and w. = (w, := [[W. L], )jen,
where by construction w,, € (R..)". 0

§07101.30 Assumption. Consider weights o, . v < M, (/) (i.e. v(N) = v(N) = 0 = v(N,)), such that
a.t €L (v, (av), = ap €L (v, (av), € (R, and {1 € L(0/v) for all m € NN. O

§0701.31 Reminder. Under Assumption §07/01.30 we have J* = [* (v) = dom(M,) = sa, € J and the
three measures v, a?fv and v’ dominate mutually each other, i.e. they share the same null sets
(see Property §04101.02). We consider J* endowed with ||-|| . = ||M,-||, and given a constant
r € R, the ellipsoid J* := {h, € J* : ||A|, < r} € J° Since (av), < L _(v), and hence
(av),,, = H (av ]l’”‘lH[L ) € R, for each m € N we have J* C [,(vv) (Property §04102.11), and
HH,]K"H . av),, forall §, « J* (Lemma §04102.13). Consequently, if Assumption §07101.30,
6 e J*r and 511[” e [L,(vv) for all m € IN are satisfied, then Assumption §07/01.13 is fulfilled.
Moreover, under Assumption §07/01.30 for each M. © M, , we have ||s/1"[|, < d[[t{L"]|, € R.,
for all m € IN (Definition $04103.05). Therefore, if Assumption §07/01.30, ¢, € J*" and M. € M,
are satisfied, then Assumption §07/01.13 is also fulfilled. O

50701.32 Proposition (Upper bound). Under Assumptions §07101.11 and §07101.30 let s/ 1" € 1_,(v’v) for all
m € IN. Setting forn,m € IN

R, 5,0) = [(av)e, V! |s/17 2], 1 := arg min {R(a, 5,0) : m € N}
and R (a.s.v):=R(a,s,0)=min{R(a,s,0):meN} (07.06)
and [|V/°|| , =iv,, € R, forall 0, € J*, hence g = 5.6, € dom(M.) C J, we have
BL(16" = 6]1%) < (v, +1°) Ri(a,5,0) ¥n €N
§07101.33 Proof of Proposition §07/01.32. Given in the lecture. O

§0701.34 Remark. Under the assumptions of Proposition §07/01.32 if there exists in addition v, € R.,
satisfying Hw_“m ., < v, forall § € J* then

sup { & (/|6

T =02 aeu < (v 4+1)R (a,5,0) Ve N

Arguing similarly as in Remark §07/01.21 we note that R (a,,s,,v,) = o(1) as n — oo, whenever
|sI1[], € R, for all m € N (note that (av),,, = o(1) as m — oo by Assumption §07/01.30
which is satisfied, for example, if (av), = a, € J or in equal a, € L,(v’»)). Note that the
dimension m’ := m/(a,,s.,v,) as defined in (07.06) does not depend on the unknown parameter

of interest 6 but on the class J*" only, and thus also the statistic 5’“:. In other words, if the
regularity of 6 is known in advance, then the OPE 9 is a feasible estimator. 0

§07101.35 Corollary (Upper bound). Under Assumptions §07101.11 and §07101.30 setting for n,m € IN

R, o) o= [(ao)}, Vo €172, ) := arg min {R(a,, t,0) : m € N}
and R (a.t.0):=R"(a,t,0)=min{R(a,t.0):meN} (07.07)
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and ||v/°[|, , =i v, € R, for each N, € M, known in advance, for all 0, < I*', hence
| = 5.0 € dom(M,) C J, we have

L (6" — 6]2) < (d'v, + 1) Ri(a,t,0) Vn €N,
$07101.36 Proof of Corollary $07101.35. Given in the lecture. o

$0701.37 Remark. Under the assumptions of Corollary §07/01.35 if there exists in addition v € R., satis-
fying [[v"*[|, < v forall § € J* and M, € M, then

-~

sup {IE,“(| Qg — HHE) 6 el M eM,}t < (vd+1)R(a,t,0) VYncN.

Arguing similarly as in Remark §07/01.21 we note that R (a,,t,0) = o(1) as n — oo since
|€17]|, € R., for all m € N and (av),,, = o(1) as m — oo by Assumption §07101.30. Note
that the dimension m’ := m’(a,, t,v,) as defined in (07.07) does neither depend on the unknown
parameter of interest €, nor on the known multiplication operator M, but on the classes J** and
M., only, and thus also the statistic é\m;. In other words, if the regularity of § is known in advance,
then the OPE @,\mz is a feasible estimator. O

$07101.38 Corollary (GdiSM §07101.03 continued). Consider fq\ =g+ n*l/zB, ~ N;l’ﬁ as in Model §07101.03,
where B~ Nﬁ], s, € [, 0 € [, and hence g = 5,0, € dom(M,) C {,. Under Assump-
tion §07101.30 the OPE 0" = sIq 1" € (,(v?) satisfies

(1) with dimension m} = m/(a,,s,,v,) as in (07.06) and constant C =1 + 1>

sup {N, (4" — 6]*): 0 e "} < CR(a,5.0) Vn € N; (07.08)

(i) with dimension m* = m’(a,,t,v,) as in (07.07) and constant C = d* + 1
sup {N;. (14" — 0l2): 0 €67 M eM, } < CR(a,t,0) Vnel (07.09)

§07101.39 Proof of Corollary §07101.38. Given in the lecture. O

§07001.40 Corollary (diSM §07101.06 continued). Consider § = g + n™'/*¢, ~ B., as in Model §07101.06,

where € ~ ©;cnb) L satisfies (iSM1) with [0, —=: v, € R, s € [, 0, € [, and hence

(0,5%)

g = 8.6 € dom(M.) C {,. Under Assumption §07101.30 the OPE é’\ =slgl™ € (,(v) satisfies

(i) with dimension m} = m’(a,,s,,0,) as in (07.06) and constant C = v, + 1*

sup {B0, (10" — 0J*): 6 € '} < CR(a.5.0) Vn € NN (07.10)

(i) with dimension m* = m’(a,,t,v,) as in (07.07) and constant C = v,d* + 1°

sup {B\Za(Hé\m — 9“02) e M, eM,}t <CR(a,t,0) Vnel. (07.11)
§07101.41 Proof of Corollary §07/01.40. Given in the lecture. O

5070142 Corollary (dieMM $0701.08 continued). Let § = g + n~"2€, be defined on (2, 2" ") as
in Model §07101.08, where 1) © N2z @ /) satisfies (dieMM1)—(dieMM3) for some v,., < IR,
s, L (v), 0, € Jand hence g = 5,6, € dom(M,) C J. Under Assumption §0701.30 the OPE

0" = sigl € L(ov) B -as. satisfies
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(1) with constant
C,,. :=sup {ws‘s‘w: 4 e Jl“’r} +1°
and dimension m = m’(a,,s.,,v,) as in (07.06)

sup {]P®" (

provided /1" € [ (v/v) for all m € IN;

12):0ed} <G, Rifa,s,0) VnelN (07.12)

(i) with constant
Cu,r,t,d = dZ Sup {VS\s\w: 0- S J]u,r,Ms € Mt,d} + r2

and dimension m: = m’(a,, t,,v,) as in (07.07)
®n (1] A 2 *
sup {]B‘s (HH — QHU): ged M eM, <C, R (a,t0) VnelN (07.13)

§07101.43 Proof of Corollary §07101.42. Given in the lecture. O

s0701.44 Illustration. We illustrate the last results considering usual behaviour for a,, s,, t,, v, € M, (%)
and w, € {s,,t,}. We distinguish similar to Illustration §07/01.28 the following two cases (p) w/ €
L,(v}v), and (np) w] & L,(vv). Interestingly, in case (p) the bounds in Proposition §07/01.32
and Corollary §07/01.35 are parametric, that is, nR(a,,w,,u) = O(1), in case (np) the bounds
are nonparametric, i.e. lim, ,,, nR(a,w,, ) = oc. In case (np) consider the following three
specifications:

Table 02 [§07]
Order of the oracle rate R’ (a,,w,,0) as n — oo

G eg) (a € R.y) (t € Roy) (squared bias)  (variance)
5 . 5 9 2 2 i *
v? = 2 o’ w2 (av);,, ||wit" ; m R (a,,w.,v)
(om)ve (—1/2—ta) j 2 57 m-2e) m2 At nzFE N meme
. . =t logn
i 2a =2 —2a—2t—1 n PRE TS| g
vt=—1/2 j G2 m™2 logm (h)g”’) T ==
(0-s) a—veR., j e m e mi=2=Drem™ | (Jog )7 (logn) =
(log )2t+2v+1
(sm) v+t+1/2c¢R., e/ j m*»e ™" mAvTaTl (logn)= —_—
20 - 2 1 logl
vt =—1/2 e j m¥e ™ logm (logn )= w
We note that in case (o-m) and (s-m) for v + t < —1/2 the rate R (a,, w,, v,) is parametric. i

§07|01|03 Local and maximal local ¢-risk

Secondly, we measure the accuracy of the OPE am =slgrof " = sgm e ol with g = 56 €
dom (M. ) by the mean of its local ¢-error introduced in §04103102, i.e. its ¢-risk.

§0701.45 Reminder. If ¢ € M, (/) and ) € dom(ov), then for each m € IN we have (" € dom(¢v) too
and ¢ (6) — gbu(@,"’) = (1) as m — oo (Property §04103.13). O

§07101.46 Assumption. Consider a noisy version g = ¢ + n ' ~ [ satisfying Assumption §07/01.01.
In addition

(dSIPI1) € admits a covariance operator, say [,. € (J),1.e. & ~ P and

0,55,)°
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@sie2) 1" € J B.-a.s., for each m € IN. m

50701.47 Comment. Under Assumption §07001.46 and ¢ € M., (7) set (s'¢), := si¢p € M(2). If s/1" €
L.('v) then we have s/ 1" € dom(ov) Bi-as. since v(|(s'¢) & L"|) < [|s/17]|,[[€ 1], € Ruo
B:-a.s.. If in addition ¢ < dom(or), and hence §" € dom(¢r) (Property §04/03.13), then it

follows
0" =8 g1 =n"eel” + 0" domlor) Bl-as. (07.14)

If 7 € 7 (at most countable) and v, is the counting measure over the index set 7 then Assump-
tion §01101.04 and @siein) € ~ P implies v’ = B! (|¢]?) € [.(~,) and hence the additional
assumption (dSIP12) 17" € J = 1,(»,) B/-a.s.. However, the last implication does generally not
hold, if 7 € {R, R _,} for example. o

§07|01/03j01 Local ¢-risk
50700148 Assumption. Let o € M, ( /), 0 € dom(ov), and s/ 1" € [,(¢'v) for all m € N be satisfied.

50700149 Definition. Under Assumptions §07101.46 and §07101.48 the local ¢-risk of an OPE am =slg" =
sig1" € dom(¢r) B} -a.s. satisfies

B (|¢v(8" — 0)P) = Bi(lov(si(g — o) 1)) + v (A1) 2. (07.15)
with variance B, (|¢v (s!(q — ¢)1")|?) = n"'B, . (|¢v(sl&1")|?) and bias |¢v (1)]. 0

$07101.50 Property. Under Assumptions §07101.46 and §07101.48 we have

P(Q%s)(|¢y(5j€.-]l:n>|2) = BQ,;‘§>(|V(¢(5T¢).]1T)|2)
= (L ((s'9). 1), (s'0).17"), =: ||<5f¢>),]1?@||§5 (07.16)

and consequently I (|¢v (s!(g, — g)17)|*) < n”'||T,

L(9) Hﬁj]l:" H; € R)(» 0

§07101.51 Proposition (Upper bound). Under Assumptions §07101.46 and §07101.48 for all m,n € N setting

n n

and R (0.s5.0) = R"(@,5,¢) :=min {R(,5.¢): m € N} (07.17)

R(0.5.0) = |ov(QL"™) P +n'||s 172,  m = arg min {R](0,s.,¢) : m € N}

we have B (|ov (0" — 0)?) < (1V ||, )Ri(8. 5, ¢) for all n € IN.
§07101.52 Proof of Proposition §07/01.51. Given in the lecture. O

50710153 Definition. Let ¢/ € dom(¢r) and 5 & dom(ov) B -a.s. for all m € IN. If there exist C € R,
and foreachn € N, R, € R., and m? € IN satisfying

ov(A" —0)}) <BL(lov(@" —Q))>) <C R, VneN,

C'R < i B

then we call R’ oracle bound, m® oracle dimension and §"™ oracle optimal (up to the constant

C). As a consequence, up to the constant C” the statistic @mﬁ attains the lower local ¢-risk bound
within the family of OPE’s, that is, B (|¢v (6™ — 6)|*) < C*inf,en B (|ov (0" — )]?). 0
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5070154 Comment. If [, € 1-(J) is invertible with inverse [, € [.(J),i.e. [, I," = id; = [,,'T;,, then
we write shortly 1 < max(||[.[| .||, ) < v. € R.. In this situation for all h, € J we
have v,.'[|7.[|3 < HhHé = (Buh, by < villB12 O

$07101.55 Oracle inequality. Under Assumptions §07101.46 and $07101.48 if in addition
1 g HlaX(HL;ﬁH[U\)? |“‘(;;lHL(ﬂ)) g Vos S ]R 1
is satisfied then (07.17) (and Comment §07101.54) implies
Vi RL(0,5,¢) < Bi(lov(@" — 0)P") = n'|(s'0) A7l + lov(@r )P
< v.R(0,5,9) Ym,n € NN.

As a consequence we immediately obtain the following oracle inequality

v Ri(65.¢) < inf Bl(lov(@" —0)) <EL(ov@" — )
< W Ri(65,¢) < v, inf 13‘5(|¢y( —)*) VneN, (07.18)
and hence R} (,s., ¢), m: and the statistic o respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v;,). O

50710156 Remark. Arguing similarly as in Remark §07101.21 we note that R’ (6, s.,¢) = o(1) as n — oo,
whenever ||5f]lf”||§S € R, forall m € N and |¢v (A1) = o(1) as m — oco. The latter is

satisfied, for example, if f, = s/g € dom(¢v). The oracle dimension m’ = m?(4,s,, ¢) as defined
in (§07/01.51) depends again on the unknown parameter of interest €, and thus also the oracle
optimal statistic 4™ . In other words §™ is not a feasible estimator. O

§0701.57 Corollary (GdiSM §07001.03 continued). Consider q = ¢ + n " °B ~ N.. as in Model \807|01 03,
where 13 ~ \u)m s, €l 0 ¢cl, and hence g = 5,6, € dom(M.) C {,. Given ¢ < R, and

0 € domlow,) the (infeasible) OPE 0" = s g1 € dom(oy) with oracle dimension m. as in
(07.17) satisfies

N (16n (@ —8)*) = Ri(6,5,¢) = inf N (jén (" —)P),

and hence it is oracle optimal (with constant 1).
§07101.58 Proof of Corollary §07101.57. Given in the lecture. O

507101.59 Corollary (diSM §07101.06 continued). Conmsider g = ¢ + n '°¢, ~ B as in Model §0701.06,
where € ~ ;- b, . satisfies (iSM1) and (iSM2) with max(Ha o s lle?ll, ) =:v, € Ray, s, € L,

() € [, and hence g = 5,0, € dom(M.) C {,. Given ¢ & R, ,and ) € doml(on) the (infeasible)
OPE 0" = sig1" € dom(éu,) with oracle dimension m¢ as in (07.17) satisfies

Bl (o (@ —0)F) < wR(6.5.¢) < ¥ inf Bl (on(@" —Q)),

and hence it is oracle optimal (with constant v, ).

§07101.60 Proof of Corollary §07/01.59. Given in the lecture. O
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50701.61 Corollary (dieMM §07101.08 continued). Let § = g + n /%€ be defined on (2", 2" 1) as

in Model §07101.08, where 1) < N2z © 7) satisfies (dieMM1)—(dieMM4) for some v, < IR,
s, € L.(v), 0, € J and hence g = s, € dom(M.,) C J. Under Assumption §07101.48 the
(infeasible) OPE 0" = s/g 1" € dom(¢v) with oracle dimension m® as in (07.17) satisfies

B (o (@ — ) < R0 0,6) < inf B(ov(@ — 0)P)

and hence it is oracle optimal (with constant v, ).

§07101.62 Proof of Corollary §07/01.61. Given in the lecture. m

§07101.63 Illustration. We illustrate the last results considering usual behaviour for 0, s,, ¢ € M,,, (7).

Similar to the two cases (p) and (np) in Illustration §07/01.28 we distinguish here the following
two cases

(p) sf € L(¢’v) or there is K € IN with sup {|¢y(0,]lf"'l)|2: meN.. =0,
(np) s! ¢ L,(¢'v) and for all m € N holds sup {|¢v(§1"")[*: m € N.,.} € R...

In case (p) the oracle bound is again parametric, i.e. nR(6,s,¢) = O(1), while in case (np)
the oracle bound is nonparametric, i.e. lim, ,,, nR (f,s.,¢) = oco. In case (np) consider the
following three specifications:

Table 03 [§07]
Order of the oracle rate R (6, s., ¢) as n — oo

G edg (a € R,y (t € R.y) (squared bias) (variance)
B S 123 Wy | | D | R (0. 5., ¢)
(o-m) v € (—t,a) j >/ g m2@) m> nET n-
v=—t e m 2@+ logm (mg e 10%
(0s) a—veR, j7°7YV2 e m~2eY) m—Drem” | (logn)™ (logn) =
(sm) v+tecR, e jH M4t 2V p=2m™ g 2v20 (log n)* —(lOg:)%
v=—t e j m—4a-2)s e=2m  Jogm (log n)i loglogn :?gn
We note that in case (o-m) and (s-m) for v < —t the oracle rate R (6, s., ¢) is parametric. O

§07|01/03j02 Maximal local ¢-risk

§07101.64 Assumption. Consider weights ot ¢ M (7)and ¢ € N, (/) (ie. v(N) = v(N) =0 =

§0701.65 Reminder. Under Assumption §0701.64 we have J* =

v(N))),suchthata t € _(v),a €, (¢v),and /1" € [,(0'») for all m € IN. O

I*,(v) = dom(M,) = sa, € J and the
three measures v, a’'v and |¢|v dominate mutually each other, i.e. they share the same null sets
(see Property §04/01.02). We consider J* endowed with ||-|| , = ||M,||, and given a constant
r € IR, the ellipsoid J** := {h, € J* : |||, < r} C J° Since a, € L.(¢), and hence
la, 17|, = [[(ag).1 ]|, € R, for each m € IN ([a,1"[|, = o(1) as m — oo by dominated
convergence) we have J* C dom(ov) (Property §04102.23), and ¢ (017)] < v ||a 1] , for
all 4 ¢ J° (Lemma §0402.25). Consequently, if Assumption §07101.64, ¢  J*" and s/1" €
[,(¢'v) for all m € IN are satisfied, then Assumption §07I01.48 is fulfilled. Moreover, under
Assumption §07001.64 for each M, € M., we have [[¢/1"[|, < d|[{L"[|, € R. forallm € N
(Definition §04103.05). Therefore, if Assumption §0701.64, ¢ ¢ J** and M, € M, are satisfied,
then Assumption §07101.48 is also fulfilled. O
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$07101.66 Proposition (Upper bound). Under Assumptions §07101.46 and §07101.64 let s/ 1" € 1,(¢"v) for all
m € IN. Setting forn,m € IN

R (a,s.,8) = ||a,]lf”'l||; +n7 sl L|2, = arg min {R(a,5,¢) :m € N}

n

and R (0.s.0):=R"(a,s,¢) = min {R(a,s,¢) :m € N} (07.19)

and |||, , = v, € R, forall § = sig € J** we have

L)
Bl(jov(@" —0)) < (. Vr) R(a.s.¢) YneN.
§07101.67 Proof of Proposition §07/01.66. Given in the lecture. O

§0701.68 Remark. Under the assumptions of Proposition §07101.66 if there exists in addition v, € R.,
satisfying ||I;.|| , < v forall § € J** then

sup {IB‘(\@V(HA —Q))aecr} <(wVr)R(a.s,¢) VneN.

n

Arguing similarly as in Remark §07/01.21 we note that R (a,,s,,¢) = o(1) as n — oo, whenever
||5f]l:"||§5 € R., forall m € N and [|a, 1|, = o(1) as m — oo. The latter is satisfied since
a, € L,(¢'v) by Assumption §07/01.64. Note that the dimension m* := m’(a,,s,, ¢) as defined in
(07.19) does not depend on the unknown parameter of interest €, but on the class J*" only, and
thus also the statistic (/9,\7"1. In other words, if the regularity of  is known in advance, then the
OPE /07”: is a feasible estimator. 0

§07101.69 Corollary (Upper bound). Under Assumptions §07101.46 and §07101.64 setting for n,m € IN

R'(a,,t, ) = ||a,]l:"'l||Z +n7 Y6172, m = arg min {R’:(a_,t_,gzé) :m € ]N}
and R (a.t.0)=R"(a,t,¢) =min{R(a.t,¢): m e N} (07.20)

and ||I,.||. ., = v,. € R., for each N, € M, _, known in advance, for all ¢, < 1", hence

L)

g =50 € dom(M,) C J, we have
Bl (|ov(@" — 0)*) < (v, V1)) Rifa,t.¢) ¥neN.
$07101.70 Proof of Corollary $07101.69. Given in the lecture. o

$0701.71 Remark. Under the assumptions of Corollary §07101.69 if there exists in addition v € R., satis-
fying ||1,. < v forall § € J** and M, € M,, then

HL(‘J]

(@ —)?):q e M e, < (VEVP) R (a,t,6) VneN.

n

sup {IB‘" (

Arguing similarly as in Remark §07101.21 we note that R'(a,,t,¢) = o(1) as n — oo since
[tL"]|, € R., for all m € IN and ||a_]l:"“||¢ = 0(1) as m — oo by Assumption §07101.64. Note
that the dimension m* := m(a,,t,, ¢) as defined in (07.20) does neither depend on the unknown
parameter of interest § nor on the known multiplication operator M, but on the classes J** and

M., only, and thus also the statistic @m:. In other words, if the regularity of € is known in advance,
then the OPE 4™ is a feasible estimator. O

507001.72 Corollary (GdiSM §07101.03 continued). Consider g = g + n'’B, ~ N, as in Model §07101.03,
where B, ~ N, s ¢ (_, 0 ¢ [, and hence g = 86 € dom(M,) C ¢, Under Assump-
tion §07101.64 the OPE Q™ = sig 1" € dom(¢x,) satisfies
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(i) with dimension m} = m’(a,,s,,¢) as in (07.19) and constant C. = 1V 1°

sup {N; (o (@ — @)*): 6 c ¢} < CR(a,s,¢) VneN (07.21)
(ii) with dimension m = m’(a,,t,¢) as in (07.20) and constant C,, = d* V 1*

sup {N;5(|¢1/N(am‘7 —)P):gerr M eM,} <G, R(a,t,¢) VneN. (07.22)

§07101.73 Proof of Corollary §07/01.72. Given in the lecture. O

5070174 Corollary (diSM §07001.06 continued). Consider g = g + n'*€, ~ B, as in Model §07101.06,
where € ~ D satisfies (iISM1) with | |[ = v, c R, s el 0 ¢/l andhence g = s, €

(0, M,

dom(M,) C {,. Under Assumption §07101.64 the OPE é\’": = sigL" € dom(oy) satisfies

2
a,

(i) with dimension m; = m/(a,,s,,¢) as in (07.19) and constant C,, = v, V 1*

sup {B\ZU(WVN(é\M —Q)):aece} <C,R(a,s,¢) VneN (07.23)
(i1) with dimension m = m’(a,,t,¢) asin (07.20) and constant C_, , = v,d* Vv r?

sup { B, (|ou (0" — Q)*): 0 e "M em,} < CR)(a,t.¢) YneN.  (07.24)

§07101.75 Proof of Corollary §07/01.74. Given in the lecture. O

50701.76 Corollary (dieMM $0701.08 continued). Let § = g + n~"2€, be defined on (2, 2" ") as
in Model §07101.08, where 1) < N2z @ /) satisfies (dieMM1)—(dieMM3) for some v,., < IR,
s, L (v), 0, € Jand hence g = 5,6, € dom(M,) C J. Under Assumption §0701.64 the OPE
4" = sig1 € dom(or) B -ass. satisfies

(1) with constant
C,,. :=sup {wg‘sw,: 0 e J]”} Ve
and with dimension m; = m’(a,,s.,¢) as in (07.19)
sup {BY" (Jou (0" — 0)[*): 4 € 0} < C,, Ri(a.5,¢) Vn €N (07.25)

provided s 1" < [,(¢'v) for all m € IN;
(i) with constant
Cooa i=d"sup {vyy: 8 € 3, M, e M, } VI
and dimension m’ = m’(a,,t,, @) as in (07.20)

sup {]BS"(WVN(@”: —Q)f): e MeM,} <C, ., Ra.t,¢) VnelN (07.26)

§07101.77 Proof of Corollary §07101.76. Given in the lecture. O

$0701.78 Illustration. We illustrate the last results considering usual behaviour for a,, s,,t,, ¢ € M, (%)
and w, € {s,, t,}. We distinguish the following two cases (p) w; € L,(¢’v), and (np) w] & L,(¢'v).
Interestingly, in case (p) the bound in Proposition §0701.66 is parametric, that is, nR(a,, w,, ¢) =
O(1), in case (np) the bound is nonparametric, i.e. lim, ., nR(a,,w,, ¢) = oo. In case (np)
consider the following three specifications:
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Table 04 [§07]
Order of the rate R(a,, w,, ¢) as n — oo

Geg (a € R,y (t € R.,) (squared bias) (variance)
e A . o
(o-m) v € (—t,a) j7 5% m~2e m>t nzim no
. . - logn
o ;—2a =2t —2(a+t) n pIeE=s) g
v=—t J J m= logm (10;; n ) n
(0s) a—veER, J* e m~2e) m2—Yrem* | (logn)* (logn)™ ™
> ot 2 2v-tat 1 (log n)HTV
(sm) v+teR., e’ i em m> (logn )= —
2 . R a1 loglogn
P > 42t : 2a ot = Tt = R
v =—t e J e log m (logn) ~
We note that in case (o-m) and (s-m) for v < —t the rate R (a,, w,, ¢) is parametric. m

§07|02 Diagonal statistical inverse problem with noisy operator

$0702.01 Assumption. Consider stochastic processes & — (& );-7 and 77, = (7] ),-7 on a probability
space ({2, .o/, I”) satisfying Assumption §01101.04 (ie. .7, € M~ = 7)) with mean zero (i.e.
P(g) = 0, = IP(n,)), sample sizes 1,k & IN and let Assumption §07/00.02 and in addition s, &
N, (7)NL (v) be satisfied where s, € VL, (7)1 _(v)is not known anymore. The observable
noisy image and operator, respectively, has mean ¢ = s.(, € J = L,(v) and mean-function s, ¢
M., (7). (v), and takes the form § = ¢ + n '“c and s = s + k '“1r. We denote by ]P”A
the joint distribution of (g, ). Denoting by I/ and " the marglnal distribution of g and s,
respectively, if € and 7), are independent then we write """ = " @ " for the joint product
distribution of (7, s,). O

§07102.02 Comment. We restrict ourselves in this section to the case s, « M, ( 7) only, which ensure
identification of the solution €, of the equation g = s,6. O

$0702.03 Notation. Introduce the random index set {5’ > /'} == {j € J : ks’ > 1} € _#, for each
j € J the elementary random variable 1" ' taking the value one on the event {s? > k'} and
zero otherwise, and the stochastic process 1/~ " "/ : (]1]{5% Njer € M(« @ 7) satisfying hence
Assumption §0101.04. Furthermore, we define 5/ o = = 515¥" and denote its Moore-Penrose
inverse by 5*" = §'1¥>""7. We eventually use the elementary identity 55" = 15771 —

55" and the upper bound |[s[| < &V% O

50700204 Definition. Under Assumption §07102.01 for ¢ < J let (g,5) ~ B.* be noisy versions of
g = 56 € dom(M.) and 5, € [_(v). For each m € IN we call - ghltgm = g g
thresholded orthogonal projection estimator (tOPE) of 6, = slg € J where g» = g1" is an
orthogonal projection estimator (OPE) of g. m

§07|02j01 Examples

§07102.05 GdiSM with noisy operator (§0204.06 contmued) Considering J = /, = L,(N,2%, 1) let As-
sumption §07100.02 be satisfied where s, € S C R, (1 /. is not known anymore. We illustrate
the tOPE in a Gaussian diagonal inverse sequence model (GdlSM) with noisy operator as in
§02104.06. Here the observable process 5 =5+k"W, ~Nandj =g +n"B ~ N;, is

a noisy version of 5, € & C R, , (1l and g = 560 € dom(M,) C ¢, with (), ¢ © C /,, respec-
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®IN

tively, where 13, ~ N, and W, ~ N() , are independent. Consequently, (g,s.) admits a joint
Ngf = Ny, ® Ns distribution belonging to the family Ngif = (Ne‘s ® N )aco ses- Summarising

the observations satisfy a statistical product experiment (]R B \T()f) where © C /, and
SCR,NL,. O

507102.06 Property (GdiSM with noisy operator §07102.05 continued). For W, := (Wj)je]N ~ N(0 ,, we have
Noy € #(#) with 31, = N1 (W), 1, = N3 (W2), and 0, = N} (W,). 0

§07102.07 diSM with noisy operator (§02104.05 continued). For J = /, let Assumption §07100.02 be sat-
isfied where 5, € § C ]R%\f, M (. is not known anymore. We illustrate the tOPE in a Diagonal
inverse sequence model (diSM) with noisy operator as in §02104.05. Here the Observable stochas-
tic process 5. — s, + & ’r and = ¢ + n """ is a noisy version of s, €3 C Ry, N L. and
g =50 € domM,) C ¢, with (, ¢ © C /,, respectively, where ¢, ~ @QJEMP and 7], ~ GQ,@NP
are independent. In addition, let €, satisfy (iSM1) of Model §07/01.06 for o, € > C ]R,]E(, M/ and
(diSMnO1) for{ € = C R, N7 we have P" € #/(#) with & =1(n')and 0 = (7)) for all

7 €N.

Under (iSM1) g admits a [ -distribution belonging to the family R,.. = (B, )aco ses.aex
and under (diSMnO1) 5 admits a [/ -distribution belonging to the family R := (B{)scs¢cz=-
Consequently, (g, 3) admits a joint D'\ = B ® B; distribution belonging to the family
| (Br.® P,5 )Qe(-) s.c8,0ex ce=. Summarising the observations satisfy a statistical product

experiment (1" 2" 1/ ) where .= C R, 1/ SC RN/ and© C L. 0

§07102.08 Property (diSM with noisy operator §07102.07 continued). Under (diSMnO1) the process 1, ~ ® enP?
satisfies P € W(#) with & = P"(0)"), & > P"(n)?), and 0 = P" (1)) for all j € . O

§07102.09 dieMM with noisy operator (§02|04.04 continued). For J = [ ,(v) let Assumption §07100.02 be
satisfied where s, ¢ & C M, (/) N L _(») is not known anymore. We illustrate the tOPE in
a Diagonal inverse empirical mean model (dieMM) with noisy operator as in §02104.04. Here
the observable stochastic processes 5 — s -+ & “r and § = ¢ + n '’€ are noisy version
ofs, ¢ Sand g = 56 € Jwith () ¢ © C J, respectively, and independent error processes
& =n2(P(y) — B.(1)) € M(2” & #) and 1, = k2(P(p) — R(g)) € M(2™ @ ) satisfying
Assumption §01101.04. More precisely, on a measurable space (Z, Z) foreach § € © and s, € §
there are probability measures [, 7 € #/(2). Similar to Model §02/04.04 consider stochastic
processes 1), o © N(2z = 7). In addition for all f € © and s, € & the process ©) ¢ M(Z = 7)
satisfies (dieMM1)-(dieMM3) of Model §0701.08 for v,,, € R, and the process ¢ & N (Z = 7)
fulfils

(dieMMnO1) ¢ € L) = L,2,Z,R)v-ae. j € Jand L (p) = 5 v-as.,
(dieMMnO2) thereis v.. & R, such that [ I2()')[|, , < v andhence [(¢)[, , < wv..

We consider a statistical product experiment (2", 2 o M, Per — (B)" @ B° e coscs) asin
an Empirical mean function §01101.10 where 8 € M., (/) N _(v) and © C J. 0

vk

$07102.10 Property (dieMM with noisy operator §07102.09 continued). Under (dieMMnO1) and (dieMMnO2) the
process 1), = k’l/Q(]P R)(p) € M2« 7) satisfies V., > HIP‘M( )H[L oy Ve = H]P®k( n? )H[Lx )

sl =

and 0 = R (n),) for v-ae. j € J. O

§07|02|02 Global and maximal global v-risk

We measure first the accuracy of the tOPE am := g MItgm of the projection /)" = s/ € 11" with
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g = 50 ¢ dom(M.)and s, € M, (/) ML _(~) by the mean of its global v-error introduced in
§04103101, i.e. its v-risk.

$07102.11 Reminder. If v, € MV, () and ¢} € [,(v/~) then for each m € IN we have 0" € [,(vv) too and
16" — 6|2 = o(1) as m — oo (Property §04103.09). O

50702.12 Assumption. Let (g,5) = (g +n 26,5 + k*n) ~ B := B! ® P* be independent noisy
versions satisfying Assumption §07|()2.01. In addition
@stegt) v = B (€2) == (v = Bi(€?))jer € L), KO, := 1V [[W[|,_g,,
(dsipg2) €1 [ (v) B.-a.s. for each m € IN, and
@IPn0) v = B'(n) := (v* := B (1)) jes € L), K= 1V [[W4@|_,,.
Moreover, from (dSIPnO) (i.c. v = () € L_(v) follows B (?) =: v < (yv'*)1/2 for v-a.e.
j € J.andhence v V1], ,, <K. O

s0702.13 Notation. Since [[5*]| ,, < k* (Notation §07102.03), s, € L.(v) and 1" € L_(v) for all

m € NN, for (5"1s) = 50l € M(«#® #) we have (5*1s) 1" € L_(v) for all m € N too. If
in addition 1" € [ ,(v?v) for all m € IN then for (s"v) := 5"y, € M(« @ #) we also have
(s®™lp) 1" € J for all m € IN. m

$07102.14 Comment. Under Assumption §07(02.12 and v, € M, (7)) if 1" € [,(o'v) for all m € N
then we have (s"v)el" € J ]B"®k -a.s.. If in addition ¢ € [,(v'v), and hence 0" € [L,(v'v)
(Property §04/03.09), then it follows

0f" = EWi) G I = n2EY) L 4 (3%s) 0d" € J B -as.. (07.27)

If 7 € 7. (at most countable) and v, is the counting measure over the index set 7 then Assump-
tion §01101.04 and (dSIPgl) (i.e. v/ = B (&’) € L_(»)) imply the additional assumption (dSIPg2)
el € L. (») B:-a.s.. However, the last implication does generally not hold, if 7 ¢ {R. R .}
for example. O

§07|02/02/01 Global v-risk
§07102.15 Assumption. Letv, € V., (7), 0 € L,(0/v),and s/ 1", 1" & L,(v'v) for m € IN be satisfied. =

§07102.16 Definition. Under Assumptions §07102.12 and §07102.15 for m € IN the global v-risk of a thresh-
olded OPE 0" = s®ligm =5HFF1g1m € L(viv) B -a.s. satisfies

B8~ ally) = B (I (G — 51 12) + BF (L& V01 |2) + gL I? (07.28)
with variance terms B, ™ (|[5®" (g —5,6)17(|2), B" (|1% <01 ||?) and bias term || 1],
§07102.17 Property. Under Assumptions §07102.12 and §07102.15 for each m € IN we have

.75 (g, —5a)1" |1 = B @ B[ (n %€ + (s, — 5)0) 1|2
=n "' (R (EWs)) v (s'o)2 1) + v (B (51 |s, — &) 026" 1")
(5. € M., (#) by Assumption §07102.01) and B ||]l,{§‘2<k71}9.]l?1||§ = v(B" (82 < k™)o2g°1"). O

$07102.18 Lemma. Under Assumption §07102.12 (dSIPnO) for all 7 € J we have
(i) B (E91s)?) < 2(v +1) < 4(1Vv'®)"”,

1/2
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(i) B"E” < &) <4(1vv)(1Vkes) ™" <41 vy @)1V ks) ™, and
(i) P (\5 gj|2|§j(’“)”\2) < 2(\45‘(2) +v)(1vV ksf)’l <4(1v \4-5‘(2))(1 V ksf)’l
§07102.19 Proof of Lemma §07102.18. Given in the lecture. O

§07102.20 Reminder. If Assumptions §07/01.11 and §07/01.13 are satisfied, then for all n, m € IN setting

R0 s 0) = [|Q0 12+ 07 |sI10)|2, ;) = arg min {R](8,s,,v) : m € N}
and R (0.s.0) :=R"(0,5,0) =min {R(0,5,0):m e N} (07.29)

the OPE (" := = s/ g with known s, € L_(v) fulfils I (||9 - 9”5) < (VW) Ri(8, 5., 0.)
due to Proposition §07101.17. Keep in mind that Assumption §07/01.11 is part of Assumption §07/02.12
and that Assumption §07/01.13 is part of Assumption §07102.15. 0

§07102.21 Proposition_ (Upper bound). Let Assumpnons §07102.12 and §07102.15 be satisfied. The thresh-
olded OPE " sWltgm ¢ L(v2v) Br* -a.s. for all n, k,m € IN fulfils

B (16" = 112) < 4llve v Ll v VL, R0, 5., 0)
20y + 3l VL)1V EsD) T2 (07.30)
<AKKS, R)(0,5,0) + 8K||(1V ks?) 20172, (07.31)

§07102.22 Proof of Proposition §07102.21. Given in the lecture. O
§07102.23 Comment. For each m € IN we have
2\—1/2 m (|2 2\—1/2 2 2\—1/2 m||2 2\—1/2 m|L||2
IV k) 012 < (1 ks) 202 = (1Y ks L2 + |1V ks?) o1
2\-1/2nqm (|2 m|L]|2
< [V ks 20122 + TP, (07.32)
Consequently, under the assumptions of Proposition §07/02.21 from (??) (Proof §07102.22) follows
B (16" — 6lI?) < 2K, R0 5, 0) + S8K[16(1V ks?) 2102

< 2KK;, R)(0,5,0) + 8K[|6(1V ks?) 2|2
< 10K K, R)(6,5,0) + 8K|0(1 V ks?) 21712,

Selecting m° := arg min {R::’(Q,ﬁ,,b,) tm € ]N} and R’(,s.,0) = R™(@,s,v) as in (07.29)
(Reminder §07102.20) we obtain

B (10" - a?) < 2KK, R (6,5, 0) + 8K [[6,(1 V ks?) ™. (07.33)

We shall emphasise, that the upper bound consists (up to the constants) of the sum of the two
terms R (6,5, v) and ||Q(1V ks?)™"/ *||? depending each on one of the sample sizes n and  only.
Moreover, R (6,5, v,) is the oracle rate (Property §07/01.20) in case of an in advanced known
M, € I(J). o

§07102.24 Corollary (GdlSM with noisy opemmr §07102.05 Contmued) Consider independent noisy versions
(3.5) = (g + "B, s, + k°W,) ~ NI = N, ® N as in Model §07102.05, where B ~ N,
and W, ~ Nm ) are mdependent . € ]R " ﬂ( and 0, < (,, and hence g = 8.0 € dom(M,) C £,

Given v, € R, and | € [, the (infeasible) thresholded OPE " = = WG € 1,(v?) with
oracle dimension m’ as in (07.29) satisfies

NI — Q)2) < ARG, 5,0) + 121V ks?) )2 Yn,k €N (07.34)

where R’ (6, s.,v,) is the oracle rate in a GdiSM §07101.03 (see Corollary §07101.22).
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§07102.25 Proof of Corollary §07/02.24. Given in the lecture. O

§07102.26 Corollary (diSM with noisy operator §07/02.07 continued). Consider independent noisy versions
(9,8) = (g + n%e,5 + k'?n) ~ BLo¢ = Bl ® Bi as in Model §07102.07, where €, and
7, satisfy (iSM1) and (diSMnO1) with I, == [af|, V1 € R oand K == [[{]|, V1 € R,
respectively, s, IR,W(, M /{.and 0, < [, and hence g — 5.0, € dom(M.) C /.. Given v, € IR,I\;) and
0, € [,(v’) the (infeasible) thresholded OPE am’o’ = gMitgm € (,(v?) with oracle dimension m: as
in (07.29) satisfies

RIE(IA™ = 012) < AKKI R (6, 5.0) + 8K [|(1V k) 02 Wn,k e N (07.35)
where R (6, s.,v,) is the oracle rate in a diSM §07101.06 (see Corollary §07101.24).

§07102.27 Proof of Corollary §07102.26. Given in the lecture. O

§07102.28 Corollary (dieMM with noisy operator §07102.09 continued). Consider independent noisy versions
G = g+n'eands, — s + k0 defined on (2. 2" BT — B P as in
Model §07102.09, where 1,0 € M(Z @ 7) satisfy (dieMM1)—(dieMM3) (Model §07101.08) and
(dieMMnO1)—(dieMMnO2) (Model §07102.09) with v,,,V,, € IR.,, respectively, s, € M,,,(.7) N
L. (v), 0, € J and hence g = 5,6, € dom(M,) C J. Given Assumption §07102.15 the (infeasible)
thresholded OPE a‘m: = Ef’””fq?"ﬁ € L,(v’v) with oracle dimension m’ as in (07.29) satisfies

B (16" = 6117) < 4w

sle

R(,5.,0) + 8, [|(1V k) "?4[2 Vn,k e N (07.36)
where R (4, 5.,v,) is the oracle rate in a dieMM §07101.08 (see Corollary §07101.26).

§07102.29 Proof of Corollary §07102.28. Given in the lecture. O

§07002.30 Illustration. We illustrate the last results considering usual behaviour for 4, s,,0, € M, (7).
We distinguish again the two cases (p) and (np) in Illustration §07/01.28, where in case (p) the
term R (6, 5., v,) is parametric, that is, nR’(4,s,,0) = O(1), in case (np) it is nonparametric, i.e.
lim,, o nR(,5.,0) = oco. In case (np) we consider again the three specifications (o-m), (o-s)
and (s-m) introduced in Illustration §07/01.28 where also in Table 01 [§07] the order of the oracle
dimension m® and the oracle rate R}(4,s,,0) as n — oo are given. The next table depict the
oracle rate R} (6, 5.,v,) and the rate of the additional term ||(1 V ks?)™" 20,||§ asn, k — oo:

Table 05 [§07]
Order of R(¢,5.,v,) and [|(1V ks?)"4 2 as n, k — oo

G ed (a € R.y) (t € R.y)
< 9y 2 : ° 2. 202..2 2\—1/2 2
= Gooos  RlGew) (0w s (ks
2a—1 9 - 2(a—v) -9z 1 ,:2( a)—1
(o-m) v € (—1/2 —t,a) J j7 | nT 2kt et 2=
a—v<t k_aTv
a—v=t (k/ log k')_l
a—v >t k71
L _a—v T o - _a-v
(0-s) a—veER,, joRl e (logn) = gAmst gmeeaste | (log k)™ w
(sm) v+t+1/2¢c¢R., e/ 77| nt(logn) = Jre it e k=

We note that in case (o-m) and (s-m) for v + t < —1/2 the oracle rate R’ (6, 5., v,) is parametric. 0
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§07|02|02/02 Maximal global v-risk

50700231 Notation (Reminder). For sequences ., ), € (IX)" taking its values in IX € {R, R ,, Q. 7, ...}
we write o, € (I)" and b, € (IK)" if a, and b, respectively, is monotonically non-decreasing
and non-increasing. If in addition a, — oo and b, — 0 as n — oo, then we write ¢, € (I{)" and

b, € () for short. For w, < [ (1) we set w,, := [[w.[|,_,, and w. = (w, := [W.I"]|_))jew
where by construction w,, € (R.,)". O
§07102.32 Assumption. Consider weights o, t v c M (/) (i.e. v(N) = v(N) = 0 = v(N,)), such that
a,t € L.(v), (av), = ap €L (), (av), € (R. ) and 1", 1" < [,(v'v) for all m € IN. O

§07102.33 Reminder. Under Assumption §07/02.32 we have J* = [*,(v) = dom(M,) = sa, € J and the
three measures v, a?fv and v dominate mutually each other, i.e. they share the same null sets
(see Property §04/01.02). We consider J* endowed with ||-|| , = ||M,||, and given a constant
r € IR, the ellipsoid J** := {h, € J* : ||A|, < r} € J° Since (av), < I_(v), and hence
(av),,, = [[(a0), "™l ,, € Rs, for each m € N we have J* C [,(v/») (Property §04102.11), and
||9.]1:”“HU < 1 (av),, forall 0, € J*" (Lemma §04/02.13). Let in addition M, € M, satisfy a link
condition as in Definition §04103.05 with weights t. < M, (7) ML _(v), and radius d € R _,. We
set (tv), := (tv);es = tlo, € M(#). Obviously, for each m € NN the condition /1" & [,(0/v)
(due to Assumption §07/02.32) implies s/ 1" € [,(v/) too. Consequently, if Assumption §07102.32,
0 € J* and M, € M, are satisfied, then Assumption §07/02.15 is also fulfilled. Keep in mind if
Assumptions §07/01.11 and §07/01.30 are satisfied, then for n, m € IN setting

R(a. . 0) = [(av), V n_IHtf]lf”Hz], m’ = arg min {R:L(a,,t,,n,) tm € ]N}
and R (a.t.0):=R"(a,t,0) =min{R(a,t,0):meN} (07.37)

for each M, € M, , known in advance, for all ¢, ¢ J*', and hence g = 5.6, € dom(M.) C J, and
for each n ¢ IN the OPE 9,’" = slgm € L(v'v) fulfils

R — 012 < ([ ],_od +1) Ri(a.tu) ¥n €N,

due to Corollary §07/01.35. We shall emphasise that Assumptions §07102.12 and §0702.32 contains
Assumptions §07101.11 and §07101.30, respectively. 0

§07102.34 Proposition (Upper bound). Let Assumptions §07102.12 and §07102.32 be satisfied. If M. € M,
with d e R, and 0 ¢ I withr ¢ R, then the thresholded OPE é’" = ghltgm € L,(vv)
IB‘S -a.s. foralln, k,m € N fulfils
B (16" — al2) < (v v Ll vV L[l d + 1) Ri(a, £, 0)
2Ny + 3V L)ALV EE) (@0, (07.38)
< (KK, d" + ) Rl(a,. t,0) + 8K AP [|(1 V k€) " (av)?]|, (- (07.39)

§07102.35 Proof of Proposition §07/02.34. Given in the lecture. O

§0702.36 Remark. If in addition there exists v € R., satisfying v > (K, vV K,,) for all § € J* and
M, € M,, then the maximal global v-risk of the thresholded OPE ™ with optimally chosen

dimension m’ := arg min {R’:(a,,t,,n,) 'm € ]N} and R (a,,t,0) = min {Rf(a.,t.,n.) m € ]N}
as in (07.37) fulfils
sup { B[ — 6]|% 6 € 3o M, e M,
< (W' + 7 + 8v'rPd’) Ri(a t.0) V [[(a)?(1V EE) ||, , foralln, k € IN.
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Arguing similarly as in Remark §07/01.21 we note that R’ (a,,t,v) = o(l) as n — oo since
(tv), 1" € L.(v) for all m € N and (av),,, = o(l) as m — oo by Assumption §0702.32.
Moreover, we have [|(av)/(1V kt7)'|| , = o(1)asm — oo by dominated convergence. Note
that the dimension m’ := m’(a,, t,,v,) as defined in (07.37) does depend neither on the unknown
parameter of interest €, nor on the unknown operator M, but on the classes J** and M, , only, and

thus also the statistic gm* In other words, if the regularity of € and M, is known in advance, then
the thresholded OPE ™ is a feasible estimator. O

§07102.37 Corollary (GdlSM with noisy operator §07102.05 contmued) Consider independent noisy versions
(3,8) = (g +n°B, 5. + k'"W,) ~ N7 = N;. @ N as in Model §07102.05, where B, ~ N,

and W, ~ 1\«)1) are independent, s, € Ry N L., 4 E ,, and hence g = 5,0, € dom(M,) C /,.

Under Assumption §07102.32 the thresholded OPE (" — = gMltgm € (,(v?) with dimension m’ as
in (07.37) satisfies

sup {N;. (18 = €12): @ e 657 M. e mg
< C R(a,t,0)V[[(a0)X(1VEE) ", (07.40)

with constant C_, = r* + 4d* + 12r*d”.
§07102.38 Proof of Corollary 07102.37. Given in the lecture. O

§07102.39 Corollary (diSM with noisy operator §07/02.07 continued). Consider independent noisy versions
(9,8) = (g + nV%, 8 + k'*0) ~ BLSt = BL, @ Bt as in Model §07102.07, where €, and 0,
satisfy (iSM1) and (diSMnO1) with IS, == [[af|, VI € R and K := || ||, V1 € IR, respectively,
5 € IRE, N /{.and () < !, and hence g — 5,0, € dom(M.) C (.. Under Assumption §07102.32 the
thresholded OPE (/9,\’”’*' =S5WItgm. € (,(v?) with dimension m as in (07.37) satisfies

sup { By ( ||9-m:' - 9||3) 6 e, M, € My,
< e R0, o) V [[(a0)2(1V KE) ], (07.41)

with constant C,,, . = 1* + AK K d* + 8K 1*d”.
§07102.40 Proof of Corollary §07102.39. Given in the lecture. O

§07102.41 Corollary (dieMM with noisy operator §07102.09 continued). Consider independent noisy versions
= g 4+ n e and 5, — s, + k', defined on (27 2V B — B o ) as in
Model §07102.09, where ), o € NM(Z @ 7) satisfies (dieMM1)—(dieMM3) (Model §07101.08) and
(dieMMnO1)—(dieMMnO2) (Model §07102.09) with v,,,V,, € IR.,, respectively, s, € M,,,(.7)
L.(v), 9 e J and hence g = 5,6, € dom(M.) C J. Under Assumption §07102.32 the thresholded

OPE (" = = 5Wltgm e L, (viv) with dimension m; as in (07.37) satisfies

sup { Bl ( ||0 - 9“3) 6, M, € My,
< C, . Ria,t,0)VI[[(a0)(1VAE) ], (07.42)

with constant C,,,, = 1* + 4d’ sup {v,,,v,,: 6 € I, M, € M,, } + 8r°d* sup {v2,: M, € M, }.

5\9’)

§07102.42 Proof of Corollary §07/02.41. Given in the lecture. O

§07002.43 Illustration. We illustrate the last results considering usual behaviour for a,, t, v, € M, (7).
We distinguish again the two cases (p) and (np) in Illustration §07101.44, where in case (p) the
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term R’ (a,,t,v) is parametric, that is, nR](a,,t,v) = O(1), in case (np) it is nonparametric,
ie. lim, oo nR(a,t,v) = co. In case (np) we consider again three specifications similar to
(o-m), (0-s) and (s-m) introduced in Illustration §07101.44 where also in Table 02 [§07] the order of
the dimension m* and the rate R (a,, t,,v) as n — oo are given. The next table depict the rate

R(a, t,v,) and the additional term |[(1 V k€)' (av)||, , asn,k — oo
Table 06 [§07]

Order of R(a,,t,,v) and [|(1 V k€)' (av)||, ) asn,k — oo

(g eJd) (a € R.o) (t € R.p)
o = j” @t Rifa,t,0) (o)) ) [(1VER) (a0) |,
2(a—v) |

(O'm) v E (_1/2 —t. ‘(1) ']‘—2:1 j—Zr n*m j—.’(é\—v) ']‘_’\‘rfv—(\)

a—v<t k_a_Tv

a—v2>t -1
(0s) a—veR, j e | (log n)7¥ e g2lvma)gf (logk)~ 5

, , o+l | .

(ssm) v+t +1/2c R, e’ g n_l(log n) 2a e " 'ji(fﬂ')ﬁ A i
We note that in case (o-m) and (s-m) for v+t < —1/2 the rate R](a,, t, v,) is parametric. O
§07|02|03 Local and maximal local ¢-risk
Secondly, we measure the accuracy of the tOPE 6" := s®lfgm of (" = sigm < 41" with

g = s0 ¢ dom(M.)and s, € M, (/) ML _(v) by the mean of its local ¢-error introduced in
§04103102, i.e. its ¢-risk.

§0702.44 Reminder. If ¢ € V[, (/) and ¢} € dom(ov), then for each m € IN we have (" € dom(¢v) too
and |¢v () — ov(0")| = o(1) as m — oo (Property §04103.13). O

5070245 Assumption. Let (3,5,) = (g + n V%, s + k'*1) ~ B.*" := B ® B be independent noisy
versions satisfying Assumption §0702.01. In addition

(aSIPI1) € admit a covariance operator, say I, € L(J),1.e. & ~ P, K =1V L[

(0..5.)
@SIPR2) 1™ € J =L,(v) ]P,,;‘-a s. for each m € IN, and
@stPno) v = B (1) := (v =B (1)) jer € L), K i= 1V W@,
Moreover, from (dSIPnO) (i.e. v*'?) = IE,’]"(TIf) L)) follows P (n?) =: v* < (v''*)1/2 for v-a.e.
j € J.andhence v V1], , <K. O

s0702.46 Notation. Since |[s™/[|, ) < k' (Notation §07102.03), 5, € L.(v) and 1" € L,(v) = J (using
v([m]) € R, by Assumption §07000.02) for all m € N, for (s"'s) := ¥, € M(# ® 7) we
have (5"s) 17" € L_(v) for all m € NN too. If in addition 1" € [ ,(¢'v) for all m € IN then for

(5W10) :=5Mp € M(« ® #) we also have (51¢) 1" € J for all m € IN. O

§0702.47 Comment. Under Assumption §07102.45 and ¢ € M, () if 1" € L,(¢v) for all m € N

then we have s 17" € dom(¢v) B -a.s. (since v (|(3®I1¢) 17 |) < [|(EWIHe) 17|, €17 (|, € Reo

]B"®k—a.s.). If in addition ¢, € dom(or), and hence 6" € dom(¢v) (Property §04103.13), then it
follows

g = =5 g 1 =nPEPNEL + (3%1s),0" € dom(ov) Eﬁg’k-a.s.. (07.43)

If 7 C 7 (at most countable) and v, is the counting measure over the index set J then As-
sumption §01101.04 and (dSIPI1) (i.e. & ~ P, ) implies v'* = ' (|€]?) € I_(~) and hence the

(0,,1;..)
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additional assumption (dSIP12) €1 € J = L,(~ ]B‘&—a s.. However, the last implication does
generally not hold, if 7 ¢ {R, R _,} for example O

§07|02|03j01 Local ¢-risk
§07102.48 Assumption. Let o € M, (7), 0, € dom(ov), s/1" 17 & [,(o'v) for m € IN be satisfied. i

§07102.49 Definition. Under Assumptions §07/02.45 and §07102. 48for m € IN the local ¢-risk of a thresh-
olded OPE " = 5®Iigm = g1 g1 € dom(év) B -a.s. satisfies

B (Jov(@" — a)1%) = B (In(E*76).(G — ¢)17) )
+ R (v (%) 1 — 1)08)[?). (07.44)

with variance B (|v (3" ¢),(q — ¢)1")|?) and bias B* (|v ((EW's) 1" — 1,)¢4)[?). 0

§07102.50 Property. Under Assumptions §07102.45 and §07102.48 (exploiting the independence of (s®¢),
ande, ¢ ~ P withl, < (), and (s""¢) 1" € L,(v)) we have

(0.,15.)
nB. " (v (E10).(G — o) 1)7) = B (Ir (G o)) )
= B (L)1), 6*0). 1), < [IBall v (B (514" 1).
Since s, € M., ( /) and s/ 1" € [(0'v) the last bound together with Lemma §07102.18 (i) implies

]Pof@k(l” (E"e).(G — @) < Bl v (B (1)) (s'0) 1)
< Bl 201y + DS < Bl 4l v Ll S 2 (07.45)

Moreover, assuming 0, < dom(¢v) and hence 1" € dom(¢v), we obtain (using 55, = 1/%<¥"
and applying the generalised Minkowski inequality)

B (I (B9 10 = 1)g0)?) — e (1)
< B ([r(E™ (s = 5)@01) ) + B (jv (15 a1 ?)
< v (1AL (B (s, = S PB4 o (oot | (B @ < k7))
<2y + I+ 2V L) IAT (L k)22 (07.46)
where the last inequality follows from Lemma $07102.18 (i1) and (iii). O

§07102.51 Reminder. If Assumptions §07/01.46 and §07/01.48 are satisfied then for all m,n € IN setting
R(0.5.0) = |ovQL") P +n||lsi 12, m = arg min {R(6,5.,¢) : m € N}
and R (0.5.¢) = R"(0,5,¢) = min {R](0,5,¢) :m € N} (07.47)

the OPE ] := = s/ g with known s, € L_(v) fulfills B}, (|¢v (6 g —6)2) < (1v 1T ]l, o)) R (6, 5., )
due to Proposition §07101.51. Keep in mind that A%sumptlon §07101.46 1s part of Assumption §07102.45
and that Assumption §07/01.48 is part of Assumption §07/02.48. O

§07002.52 Proposition (Upper bound). Let Assumptions §07102.45 and §0702.48 be satisfied. The thresh-
olded OPE §" = gm ¢ dom(év) BI**-a.s. for all n, k,m € N fulfills

B (Jov(@" = 0)1) < ATl v DI vV Ll R 5.6)
+6(V ) + 30wV Ll V>)||9]lm(1Vk?5) s

< AK KRG, 5,¢) + 24K |01 (1V ks?) 212

(07.48)
(07.49)

L, (I¢[v)

L.(¢lv)
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§07102.53 Proof of Proposition §07/02.52. Given in the lecture. O

5070254 Comment. Selecting m? := arg min {R'(,s.,¢) : m € N} and R}(6,s,,v) = R"(6,s.,¢) as in
(07.47) (Reminder §07102.51) from Proposition §07/02.52 we obtain immediately

Bl (Jov (0" — 0)1°) < 4KK, R (0,5, ¢) + 24K[|0 17 (1 v ks?) || (07.50)

Ly (I¢lv)

We shall emphasise, that R’ (4, 5., ¢) is the oracle rate (Property §07101.55) if M, € [X(J) is known
in advance. Furthermore, for each m € IN we have

161 (1 V ks?)™ <01V &Sl o)
= (101 V &)L g+ NAV R8T )

<[0TV k) 1/2]1:71||[L1(\¢.>\V) + 1AL Iy gy (0751

I ey <

Consequently, under the assumptions of Proposition §07102.52 from (??) (Proof §07102.53) follows

B (lov (0" — 0)) < 4K R (6, 5, ¢) + 24K [0 (1 ks?) ™[
<AK K R0, 5., ¢) + 24K [|Q(1 V ks2)™?||2

L(1¢)
28K4K9|5 (He]lmllHn_ (I¢]v) + n_1“5j]1:n”¢) + 24Ks”6-]1:n(1 \ ks ) 1/2||ﬂ_ (lplv) "
Selecting m; := arg min { [|QL" |2+ n | |2 m e N} we obtain
"@k(]qb (@ Q" )| ) < 3K Km min {HQIL'"HF (14l) +n7t|s 1" z: m e ]N}

We shall emphasise, that the last upper bound consists (up to the constants) of the sum of the
two terms depending each on one of the sample sizes n and k only. However, the first term
min {[|Q1"|> (o TSI i: m € N} is generally larger than the oracle rate R} (0,5, ¢). O

§07102.55 Corollary (GdlSM with noisy opemtor §07102.05 contmued) Consider independent noisy versions
(g.5)=(g+n V2B s+ EPW) ~ NI =N, @ N as in Model §07102.05, where B ~ N

and W, ~ N, are independent, s, € R\, (. and (),  (,, and hence ( 9. =5 9 € dom(M,) C £,

Given ¢ < ]R and ) € dom(on) the (infeasible) thresholded OPE 0 g € dom(en)
with oracle dimension m: as in (07.47) satisfies

N (o (@ — )) < AR (6,5.¢) + 36]|(1 v ks) )7 (07.52)

where R (6, 5., ¢) is the oracle rate in a GdiSM §07101.03 (see Corollary §07101.57).

§07102.56 Proof of Corollary §07102.55. Given in the lecture. O

§07102.57 Corollary (diSM with noisy operator §07102.07 continued). Consider independent noisy versions
(9,8) = (g + n'%e,s + k*n) ~ Bl = B, ® B{ as in Model §07102.07, where €, and
7, satisfy (iSM1) and (diSMnO1) with I, == [af|, V1 € R and K = [[{]|, V1 € R,
respectively, s, Rm;, N /{_and?t €/, and hence q = 5.0 € dom(M.) C /.. Given ¢ & IR and
0 ¢ dom(on,) the (infeasible) thresholded OPE §" = =5WIgm € dom(oy) with oracle dimension
m? as in (07.47) satisfies

Bl (|ou (0 — ) 2) < AKK R (6, 5., @) + 24K [| (1 V ks2) 24| Vn,k e N (07.53)

£(1gl)

where R’ (0, 5., ¢) is the oracle rate in a diSM §07101.06 (see Corollary §07101.59).
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§07102.58 Proof of Corollary §07102.57. Given in the lecture. O

§07102.59 Corollary (dieMM with noisy operator §07102.09 continued). Consider independent noisy versions
a =g +n 126 andg. = 5 + k 1_)7’ deﬁned on (Zn\k’ L%XOHA.);E\’:M _ ]-B/u ® IPX}) as in
Model §07102.09, where 1), o € M(Z ® 7) satisfies (dieMM1)—(dieMM3) (Model §07101.08) and
(dieMMnO1)—(dieMMnO2) (Model §07102.09) with v, ,,V,, € R.,, respectively, s, € M,,,(.7) N
L. (), 6, € Jand hence g — 5.0, ¢ dom(\.) C [,. Given Assumption §07102.48 the (infeasible)
tOPE (" — sWIgm € dom(ov) with oracle dimension m: as in (07.29) satisfies

B2 (o @ ~0) ) < dvn, Koo 0) + 20211V k) 542 Vik € N (07,59

where R (4, 5., ¢) is the oracle rate in a dieMM §07101.08 (see Corollary §07101.61).
§07102.60 Proof of Corollary §07102.59. Given in the lecture. O

§0702.61 Illustration. We illustrate the last results considering usual behaviour for €, s,, ¢ € M, (7).
We distinguish again the two cases (p) and (np) in Illustration §07101.63, where in case (p) the
term R (6, 5., ¢) is parametric, that is, nR (6, s, ¢) = O(1), in case (np) it is nonparametric, i.e.
lim,, o nR(0,5,¢) = oco. In case (np) we consider again the three specifications (o-m), (o-s)
and (s-m) introduced in Illustration §07101.63 where also in Table 03 [§07] the order of the oracle
dimension m? and the oracle rate R’(4,s,,¢) as n — oo are given. The next table depict the

oracle rate R;(f, 5., ¢) and the rate of the additional term ||(1 V ks?)™"*4)|? (o 381, K — 00:

Table 07 [§07]
Order of R(4,s.,¢) and ||(1V ks2)"?4||> asn,k — oo

4, (|1)

g €J) (a € R.,) (t € R.y)

=77 6 s (Rl 40 509 1LV ks2) 20017
(o-m) v E (71{&) J a—1/2 } 2t n*:% J\ a—1 jt{\' a—1

a—v <<t ki?

a—v=t k71 IOg k’)z

a—v >+t kil
(0s) a—veR, j Y e | (log n)f% gt Jratter” (log k)f%

(t4+v)

(ssm) v+teR, e 2 (log nn) a G V2ei jrtv1/2e | g
We note that in case (o-m) and (s-m) for v < —t the oracle rate R’ (4, 5., ¢) is parametric. O

§07|02|03j02 Maximal local ¢-risk

§07002.62 Assumption. Consider weights a. ¢ ¢ M, (7)and ¢ € M, (/) (ie. v(N,) = v(N) =0 =
v(N)),suchthata t € _(v),a €l (¢v),and t 1" 1" € [,(¢'v) for all m € IN. o

§07102.63 Reminder. Under Assumption §07/02.62 we have J* = [*,(v) = dom(M,) = ya, C J and the
three measures v, a'v and |¢|v dominate mutually each other, i.e. they share the same null sets
(see Property §04101.02). We consider J* endowed with ||-|| ; = ||M,-||, and given a constant 1 <
IR, the ellipsoid J*" := {h, € J*: ||h,|| ; <1} € J° Since a, € L,(¢'v), and hence ||a,]lf”'l]|¢ =
[(a). 1" || € R, for each m € W ([|a,1"[|, = o(1) as m — oo by dominated convergence)
we have J* C dom(¢v) (Property §04102.23), and [pv (Q1"")| < v |a1"[|, for all 0 € J*
(Lemma §04102.25). Let in addition M, & M, satisfy a link condition as in Definition §04103.05
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with weights t. € M_, (7)1 _(v), and radius d € R_,. We set (t'0), := (Uqb)]ej =tge 7.
Obviously, for m € N the condition £ 1" € [,(¢'v) due to Assumption §07102.62 implies s/ 1" €
I,(o'v) too. Consequently, if Assumption §07102.62, ¢/ € J* and M, € M), are satisfied, then
Assumption §07102.48 is also fulfilled. Keep in mind if Assumptions §07101.48 and §07101.64 are
satisfied, then for n, m € N setting

R(a,,t,0) = Ha,]lf”'le +n7t[E1m)2, = arg min {R:L(a,,t,,cé) tm € ]N}
and R (0.t.0):=R"(a,t,¢) = min {R(a,t,¢): m € N} (07.55)

forall ) = slg € J*, known M, € M,, and n € IN the OPE é,\m: = s g fulfills

B (Jov(@" — 6)) < (|l v ) Rifa b, 0).

due to Corollary §07101.69. We shall emphasise that Assumptions §07102.45 and §07/02.62 contains
Assumptions §07101.46 and §07101.64, respectively. m

§07102.64 Proposition Upper bound. Let Assumptions §07102.45 and §07102.62 be satisfied. If M, € M,
with d € R, and () € I with v < R, then for all n,k,m &€ IN the thresholded OPE

4" =5Wlign € dom(ov) B -a.s. fulfills
B (lov @ — A)) < (32 V ATl v DIV L, d)R (0t )

+ 6(1 Pl g, + 31V L)1V EE) a1 |2 (07.56)
< (3 VAK, Kd)R (a,, ¢, ¢) + 24K || (1 V k) a 203 (07.57)

§07102.65 Proof of Proposition §07102.64. Given in the lecture. m

50702.66 Remark. Selecting m; := arg min {R(a.,t.,¢) : m € N} and R}(a.,t.,¢) = R"(a,,t,¢) as in
(07.55) (Reminder §07102.63) we obtain

B (lov (0" — )%) < (3 VAR, K@) R (a, ., ¢) + 24K d?||(1 V k) Pal? (07.58)

where R’ (a..t,, ¢) is the rate (Corollary §07101.69) if M, € I(J) is known in advance. Furthermore,
for each m € IN we have

1LV R a2 < 11V ERE)allf = [1(1V L) a1 (|2 + [|(1 v k€)™ e 1|3
<AV EE) Padr |7 + (a2 (07.59)

Consequently, under the assumptions of Proposition §07102.64 from (??) (Proof §07102.65) follows
immediately

B (lov(@" = 6)1°) < (3¢ V4K K d)R (0, £, ¢) + 24K AP (1 V k€)™ a1 |2
< (3¢ VAK, K &)R (a, t,, ¢) + 24K || (1 V k€)™, I3
< (3 VAK, K d® + 24K d*r*)R] (a,t,¢)+24K4d2r2||(1\/k:t2) a1

We shall emphasise, that the upper bound (07.58) consists (up to the constants) of the sum of
the two terms R'(a,, t,¢) and ||(1V kt?)" Qa,H; depending each on one of the sample sizes n

and k only. If in addition there exists v € R., satisfying v > (K,, V K|) for all § € J** and
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M, € M,, then for all n,k € IN the maximal local ¢-risk of the thresholded OPE é\m; with
optimally choosen dimension 2’ is bounded by

sup {B1°" (|ov (6] 0" — 0)[?): 4 € 30 M, € M,,
< (3 VAR, K d + 24K &) R (a1, 0) V [[(1V k) Y.

Arguing similarly as in Remark §07101.21 we note that R (a,,t,¢) = o(l) as n — oo since
t1" € L,(¢'v) for all m € N and Ha,]lf”'le = o(1) as m — oo by Assumption §07102.62.
Moreover, we have ||(1V kt?) " Za,H; = o(1) as £ — oo by dominated convergence. Note that

the dimension m* := m’(a,,t,¢) does depend neither on the unknown parameter of interest
nor on the unknown operator M, but on the classes J*" and M, , only, and thus also the statistic

ém:. In other words, if the regularity of € and M, is known in advance, then the OPE am; is a
feasible estimator. O

§07102.67 Corollary (GdlSM with noisy operator §07102.05 contmued) Consider independent noisy versions
(g, 5) = (g + "B, s, + k°W,) ~ \'”/] = N, @ N as in Model §07102.05, where BB, ~ N}

and W, ~ I\M are independent, s, € Ry, N L., 4 E [,, and hence g = 5,6, € dom(M.) C /,.

Under Assumption §07102.62 the thresholded OPE g Mg € dom(oy) with dimension m,
as in (07.55) satisfies

sup {N;Ts@k |¢>1/( " —0)?): 4 € 27 M, € M,
< C,R(a,t,0) V|1V kt?)‘l/Za,Hj). (07.60)
with constant C_, = 31* V 4d* 4 361*d’.

§07102.68 Proof of Corollary §07102.67. Given in the lecture. O

§07102.69 Corollary (diSM with noisy operator §07/02.07 continued). Consider independent noisy versions
(9,8) = (g +nV%,8 + k'n) ~ Bl = BI, @ P! as in Model §07102.07, where €, and 1,
satisfy (iSM1) and (diSMnO1) with IS, == |||, VI € R and K := || ||, V1 € R, respectively,
5, € IR,TT, (. and () < !, and hence g — 5,0, € dom(M.) C (.. Under Assumption §07102.62 the
thresholded OPE 0" = s®Igm € dom(oy,) with dimension m as in (07.55) satisfies

sup {Rit (o (07 — Q)7): 0 € 57 M. € M,
< Cupe Rifo,t, @) VIV AE) 0} (07.61)

with constant C, ,, . = 31 V AKCK. & + 24K 1*d”,

§07102.70 Proof of Corollary §07/02.69. Given in the lecture. O

§07102.71 Corollary (dieMM with noisy operator §07102.09 continued). Consider independent noisy versions

G = g +n' ands — s + k', defined on (2. 7V BT — B @ P as
in Model $07102.09, where ’l““‘ o€ Mz e 7) satisﬁes (dieMMl) (dieMM3) and (dieMMnO1)—
(dieMMnO2) with v, V,, € IR ., respectively, s, « N, )N L, (V) () € J and hence g = 5,0, €

dom(M,) C J. Under Assumption §07102.62 the thresholded OPE 9,7" =5®lgm € dom(oy) with
dimension m as in (07.55) satisfies

sup { Rk (o (07 — Q)*): 0 € 3 M. € My,
< CLR(a,t,0) V(L VEE) a2 (07.62)

with constant C_, = 31* V 4d’ sup {W9\5W V.1 0 € 3% M, € Mtd} + 241*d* sup { Vit M, € M,
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§07102.72 Proof of Corollary §07102.71. Given in the lecture. O

§07102.73 Illustration. We illustrate the last results considering usual behaviour for a,, t, ¢ € M, (7).

§08100.01

We distinguish again the two cases (p) and (np) in Illustration §07/02.73 where in case (p) the
term R (a,,t,, ¢) is parametric, that is, nR(a,,t,¢) = O(1), in case (np) it is nonparametric, i.e.
lim,, o nR(a,,t,,¢) = co. In case (np) we consider again the three specifications (o-m), (o-s) and
(s-m) introduced in Illustration §07/01.78 where also in Table 04 [§07] the order of the dimension
m and the rate R'(a,,t,,¢) as n — oo are given. The next table depict the rate R (a,,t,, ¢) and
the additional term ||(1 V k‘c?)’l/Qa_H(?5 asn, k — oo only:

Table 08 [§07]
Order of R}(a,, t,¢) and [|(1V k:’c?)’la,H?5 asn,k — oo

e (a € Ry (t € R.yp)

¢ =" @ ¢ Ri(a,t,0) | (ao) £2(ag)? (1v kt?)’”a,”i
om)ve(—ta) 5| pTan JAEIL v

a—v<t ki?

a—v >t k!
(0s) a—veR, j* e’ (logn)_? JAmml o 2lvma) =l (logk)_?
(sm) v+teR, e/ je n’l(logn)HTv G le it pmlemgt | el
We note that in case (o-m) and (s-m) for v < —t the rate R/ (a,, t,, ¢) is parametric. O
§08 (Generalised) Galerkin estimator
Notation (Reminder). Consider J = ¢, := L,(4) = L,(N,2%, 1) with counting measure 15, :=

Z]E]N d¢;1, surjective partial isometries U € L(H,%) and V € L(G,4). For each T € L(H,G)
and T, = VTU* € L(t) = L+(£,) (compare Notation §01104.03) we identify the kernel (infinite

dimensional matrix) T, = (T, );jen € ]RN and the map from /, into itself given by

a— T a = (Z ’I‘]'\j,,ajo = <Tj\.’ a-)gz = V]N(’I‘Jg.a-))jem

J,eIN

(compare Notation §01105.01). Moreover, we denote by [--(7.) the subset of all strictly positive
definite operator in [+(%.). Foreach T, € 1:-(¢,) we denote its Moore-Penrose inverse by T : £, D
dom(T),) — ¢, (see Definition $03/00.08). We denote by [--(/.) the subset of all injective A, € [-+((.)
such that [A,.], € R™" is regular for all m € N. For each m € IN and A,, € 1(%), the inverse
A € R™™ of [A,], € R™" exists. Note that 1:+(4,) C I(4,) (Lemma $05/01.22). O

§08100.02 Assumption. For J = /,, surjective partial isometries U  [.(H./,) and V & [(G./.) fixed and

presumed to be known in advance, the operator ' « [(H, G) satisfies either I, = VT'U" € [.-(/,) C
L-(¢) = L(£) or more generally T = VTU" € [+((.) C Lx() = L(&). Let g € dom(T)) =
ran(T.),and hence () = T g =T g € /.. m

50800.03 Reminder. Under Assumption §08100.02 we consider T € [:-(/.) or more generally T < [:(/,)

and ¢ € dom(T) = ran(T..), and hence 6, = T"g = T.‘f_lg. € (,. Foreachm € Nand A, € [.-(,)
we write A7, := M. A, M. € L+(6), which restricted to an operator from R" (ran(My.) = ¢,1™) to

itself, can be represented by the matrix [A,.], € R™" (see Notation §05100.02). If [A,.]. € R™"™
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denotes the Moore-Penrose inverse of [A,,], (as linear map from R" into itself), then the Moore-
Penrose inverse A" = (A7) € 1+(¢) of AT,'T, (see Definition §03100.08), restricted to an operator
from R" to itself can be represented by the matrix [A,.]' . In particular, if A, € (1), i.e. [A,.],
is regular (invertible), and hence [A,‘,]Tﬂ = [A_‘,];l, then we have Aﬁ"",A',"L,H' = My = A’,’j’,”AZ"",. For

T, € l-(t.)and m € IN we call any element 6" € (1" i.e. 0, = 6" (1, — 1") = " 1", satisfying

<(9om7 T.\.Qm>42 o 2(‘907”7 g.>52 < <CL,, T.|.a->

,, — 2{a,g), foralla €1

a Galerkin solution in ¢,1". Since I’ < [--(/,) the Galerkin solution is uniguely determined
by (0], = [T..]'[¢]., and hence 6" = T""¢ (Lemma §05001.03). More generally, under As-
sumption §08i00.02 with T € [:(/.) we call the unique solution §" = T""g of [T, ] [0"].

R

[q), generalised Galerkin solution (Definition §05/02.01). Keep in mind that [:-(/.) C (4,
(Lemma §05101.22).

Dv”

§08|01 Non-diagonal statistical inverse problem

s08001.01 Assumption. Consider a stochastic process €, = (£ ), on a probability space (€2, .o7, P) sat-
isfying Assumption §01101.04 (i.e. € € M~ «2%) with mean zero (i.e. P(g) = (P(€))jen = 0),
a sample size n € IN and let Assumption §08100.02 be satisfied where T, < [--(.) or T, & L+ (2,)
is known in advance. For € € ¢, the observable noisy image with mean ¢ — I’ (] € /, takes the
form g = ¢ + n '". We denote by I, the distribution of g. In addition

<y € Ry, O

(nSIP) € admits a covariance operator, say I, € [:+(£,) with |1, | mn

$08101.02 Definition. Under Assumption §08|01 01 for ¢, € /, and T € (/) consider a noisy version
g~ Biofg="T 0 ¢ dom(T.). Foreachm € IN we call g = T’”“A = Tm”/g\]l’” T_’l’fﬁﬁ_m
(generalised) Galerkin estimator ( GE) of ) = T.“"(/. = T.‘. q €L, O

$0801.03 Comment. The (generalised) Galerkin solution " = Tf‘f”g. € 1" does generally not cor-
respond to the orthogonal projection 1'"¢ = (1, — 17*)f. Moreover, the approximation er-
ror sup {||6/ — 6| iJ € IN.,. } does generally not converge to zero as m — oo (compare Re-
mark §05/01.05). Here and subsequently, we will restrict ourselves to classes of solutions and
operators which ensure the convergence. Obviously, this is a minimal regularity condition for us
if we aim to estimate the Galerkin solution.

§08|01j01 Examples

$0801.04 GNiSM (§01105.08 continued). Let Assumption §08100.02 be satisfied where T, € (%) or T, €
I:+(£.) is known in advance. We illustrate the (generalised) GE in a Gaussian non-diagonal inverse
sequence model (GniSM) as in §01105.08. Here the observable stochastic process = ¢ +

nY ’B ~ N, is a noisy version of g = T, f € dom(T},) C £, with 0, € © C /, and BB, ~

N.". Consequently, G g admits a Nng-dlstrlbutlon belonging to the family N;_ ., := (N, )aeo-

(0,1)
Summarising the observations satisfy a statistical product experiment (IR, ,%’/'\ N ) where
O C/,. 0
§08101.05 Reminder (GniSM §08101.04 continued). Due to Property §07/01.04 the error process B ~ N

(0,1)

admits as covariance operator I, = id,, € [(¢,) and hence Assumption §08/01.01 is satisfied. O

§08101.06 niSM (§01105.07 continued). Let Assumption §08100.02 be satisfied where T, € L-(¢.) or T, €
I:-(.) is known in advanced. We illustrate the (generalised) GE in a Non- diagonal inverse se-
quence model (niSM) as in §01105.07. Here the observable stochastic process § = ¢ + 7 '’ isa
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noisy version of g = T.lﬂ, € dom(T),) C 4, with, € © C /, and & ~ ®j€NIPé‘ satisfying (iSM1)
and (iSM2) introduced in diSM §07/01.06. Under (iSM1) g admits a [, -distribution belonging to
the family R, n s = (B, )aco qex- Summarising the observations satisfy a statistical product

experiment (IR B" B ) where © C /, and > C RS, N L. 0

$08/01.07 Reminder (niSM §08/01.06 continued). Due to Property §07101.07 (i) under (iSM1) the process &, ~
©jenk), . admits as covariance operator [;, = M,. € [X(¢.) NI (4,) and hence Assumption §08101.01
is satisfied. O

$08i01.08 nieMM (§01105.05 continued). Let Assumption §08100.02 be satisfied where T, € L+(¢.) or T €
I:-(£.) is known in advanced. We illustrate the (generalised) GE in a Non-diagonal inverse empir—
ical mean model (nieMM) as in §01105.05. Here the observable stochastic process ¢ = ¢ + 1 '/’¢
is a noisy version of g = T”Q € dom(T) C ¢, with § — g € © C [, and error process
g = nl/Q(]AE(wo) — B (v)) € M(2™ @2 satisfying Assumption §01101.04. More precisely, on
a measurable space (2, 2) for T, < I:-(/.) and for each §f € © C /, there is a probability
measure [, ¢ 7/(2). Consider a stochastic process 1) = (L )jen € Mz ©2%) which similar
to (dieMM1)—(dieMM4) introduced in dieMM §07/01.08 in addition for T € [:+(%.) (or T, € l+(%)
and for each () € © C /, satisfies
(mieMM1) ¢ € L,(R) 1= L,(%, Z,By) forall j € N and B.(v) =T.0 =g,
(dieMM2) for each m € IN we have () — B, (¢)))1" € (_ By-a.s. due to (nieMM1),

(nieMM?2) there is v, R, such that |0, (¢)")[|, < v, and

IB\T <|I/1\(h'-'L’.‘)|2) g W(/\T P

|2, Vh e,
(nieMM3) " 1= B, () — By (1) € B 01 6, (7)), < vy, amd
NS , 2
B (I (he) ) 2 B (4 (ha)]?) — B (e () |* = wid ]2, b, €

We consider a statistical product experiment (2, 2" 2}, , = (2,")4c0) as in an Empirical
mean function §01101.10 where © C /.. O

§08101.09 Reminder (nieMM §08/01.08 continued). Due to Property §07101.09 (i) under (nieMM1) and (nieMM2)
the error process € = n'*(R (¢))—B (1)) € M(2™ ©2") admits a covariance operator I, € [2(¢,)
and hence Assumption §08101.01 is satisfied. m

§08|01|02 Global and maximal global v-risk

We measure first the accuracy of the (generalised) GE § Tm”A of the (generalised) Galerkin
solution ()" = T""g < 1" with ¢ = T,0 € dom(T)) by the mean of its global v-error
introduced in §05/01101 and §05102101, i.e. 1ts v-risk.

$0801.10 Reminder. If v, € IR,Ij) then we have v’1" € /_ and ¢+, 1" C /,(v?). Consequently, for each
6 € [,(v’) the (generalised) Galerkin solution " = Tf"f”g_ € ¢, 1" satisfies )" € /,(v*) too. If in
addition C, := sup {|IM,T."T, M. ||, . :m € N} € R, then [|§" — @], < (1 + C,)[[1"™"6]],,
which implies sup { |6/ — 6 :j e N.,} = o(l) as m — oo (Property §05/01.24 and Prop-
erty §05102.08). 0

$0801.11 Comment. Under Assumption §08/01.01 since ™, T ”]Y" € 1" for each m € IN we have
Tm”e € 1" Bi-as.. Indeed, € ~ P, with I, € [I_>( ,) by Assumption §08101.01 (nSIP) implies
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Br(e?) € (., hence 1" € (. Bi-as. and ||Tm”é||£2 ||Tm'T]l:"||£2||a]lT||ew € R., Br-as..
Given v, € R o from ¢, 1" C /,(v?) (Reminder §08/01.10) it follows

q" = Tm”/g\ = n’1/2T::”E', + 0" 1 Cly2) Br-as.. O

§08|01/02/01 Global v-risk
§08/01.12 Assumption. Let v € ]RL\\;J and ¢, € /,(v’) be satisfied. O

s0801.13 Definition. Under Assumptions §0801.01 and §08101.12 the global v-risk of a (generalised) GE
9 Tm”E € 1" C {,(v?) Bir-a.s. satisfies

B (18" —al2) = Brl T @ — )I2 + 14" — ) (08.01)
with variance ng(||TmH( a)l?) = n*IIng}(HTKHé,Hg) and bias || — 0|, O

$08/01.14 Notation (Reminder). Let A € (%) be a Hilbert-Schmidt operator, A € HS(¢,) for short, where
HAH2 = tr(AA) = tr(AA) € R.,. IfI' € L(6) then tr(ATA) < ||, tr(AA) =
||FH[L,>||AHEIS. For arbitrary A € L(%.) we have M, A" = M"A" € HS(¢,). u

§0801.15 Property. Under Assumptions §08101.01 and §08101.12 we have
Br (1T el?) = e LT o (T M) = te(DLLIT,] Bl (T ML) (08.02)
and consequently B, (| (G — 9)[2) < |l IMVTZ2, € R e

$08101.16 Proposition (Upper bound). Under Assumptions §08101.01 and §08101.12 for all n,m € IN with
(generalised) Galerkin solution 6" = Tf:”g. € 01" setting

R0, T, 0) = 8" 0||§ nt|M, Tm|T||HS, m. = arg min {R7'(,T,,v): m € N}
and R (0.7, .v):=R"0,T,,0)=min{R(0T,.v):meN} (08.03)

we have Bi ([0 = 0]|2) < (1V [|Tll,, )R(&. T,..v) for all n € IN.

$08101.17 Proof of Proposition §08/01.16. Given in the lecture. O

§08101.18 Comment. Let A & I]-US( o)and I € [-(z,) be invertible with inverse " < [-(,). If we set
vo= max([Tf T, ) € R, then we have v [[A[]” < tr(ATAY) < v|[A[]% by using
Notation §08101.14. O

$08101.19 Oracle inequality. Under Assumptions §08101.01 and §08101.12 if in addition

1 < max( o ) < Vor € R,

o|T

is satisfied, then (08.03) (and Comment §08101.18) implies

VR, T,0) < B — 8 = 0 r(MUTZT (T2 M) + 7 — a2
< v R4, T, v) VYn,meN.

As a consequence we immediately obtain the following oracle inequality
v R (4, T,.,0) < 1nf E\T(He _9|| ) < e\T(”g _QHQ)

< v R (6, T,.,0) < WB‘T mf B‘T(HQ —0|| ) VneN, (08.04)
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and, hence R(0, T, ,v), m and the statistic §", respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant ;). i

50801.20 Remark. Arguing similarly as in Remark §07101.21 we note that ||M, Tm”|| € R., for all
m € IN and hence R)(), T, ,v,) = o(1) as n — oo, whenever ||6" — 6|, = o( ) as m — oo (see
Reminder §08101.10). Note that the oracle dimension m; := m:(f, T, ,v,) as defined in Proposi-
tion $08I01. 16 depends on the unknown parameter of interest ), and thus also the oracle optimal
statistic 9, . In other words 9 is not a feasible estimator. O

§08101.21 Corollary (GniSM §08/01.04 continued). Consider g, = ¢ + n*l/QB, ~ N;T as in Model §08101.04,

where 13 ~ NX,']\, T.elt)orT, € (), § € (,, and hence g = T.0 € dom(T)) C /,. Given

Assumption §08101.12 the (infeasible, generalised) GE g Tm
dimension m as in (08.03) satisfies

T

q E 0,1 C ly(v?) with oracle

N (1 = A1) = R, T 0) = inf Np (|0 = 4))2) vn €N,

and hence it is oracle optimal (with constant 1).

$08101.22 Proof of Corollary §08/01.21. Given in the lecture. O

50801.23 Corollary (niSM §08101.06 continued). Consider g, = g + n™'/*€, ~ B, as in Model §08101.06,
where €, ~ R/E]NP | satisfies (iSM1) and (iSM2) with max(|lo?[|, | |a’l], ) =v, € R, T €
() or T, € 1--(4,), 6 € (,, and hence g ="T, 0 € dom(T)) C 4,. Given Assumption §08101.12

the ( mfeaszble, generalised) GE g = T'” IT/g\ € 1" C L,(v?) with oracle dimension m: as in
(08.03) satisfies

B (187 = 8)17) < wR(@, T, 0) < ¥ Inf B (18" = 6l2) vn €N,

and hence it is oracle optimal (with constant v, ).

§08101.24 Proof of Corollary §08/01.23. Given in the lecture. O

5080125 Corollary (nieMM $08101.08 continued). Let § = g + n %€, be defined on (2", 2°" 1.") as in
Model §08101.08, where 1) © NU(Z ©2") satisfies (nieMM1)—(nieMM3) for some v,,, € R, T &
L-(¢.) or T, € (), 6 € (,, and hence g ="T, 6 € dom(T)) C 4,. Given Assumption §08101.12

the (infeasible, generalised) GE ém?‘ = T.‘ g € 01" C Ly(v?) By -a.s. with oracle dimension m?
as in (08.03) satisfies

IF;&(H@ - ‘9” ) We\leR @,T,.,0) < Wemw 1nf (“0 6”:) Vn € N,

and hence it is oracle optimal (with constant Vyy,,).

§08101.26 Proof of Corollary §08101.25. Given in the lecture. O

sogi01.27 Illustration. We distinguish the following two cases
(p) sup {[IM,T"||2:m e N} € R, or sup {[|6" — @]|* m € ..} = 0 for some K € NN,
(np) sup {|[M,T]2"[|2: m € N} = oo and sup {||6" — Ol2:meN..} € R, forall K € IN.
Note that 415" = (, implies the case (p). Interestingly, in case (p) the oracle bound is para-
metric, that is, nR}(6, T, ,v) = O(1), in case (np) the oracle bound is nonparametric, i.e.

lim,, . nR(4), T,.,v) = oo. In case (np) we consider similar to (o-m), (o-s) and (s-m) in Illus-
tration §07101.28 the following specifications:
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Table 01 [§08]

Order of the oracle rate R (), T, ,v) as n — 00

(squared bias) (variance)
: m 2 m\T 2 o o

(m € IN) ”9. - 9.”0 HMu oo g m, Rn(e-a T.|.a U.)

(v, =m") (a € R.y) (t € R.o)
(0m) ve(—1/2—1ta) m 2 mAtV+L nEFs n o

N\ s 1
v+t=—1/2 m22-1 logm (o)™ %
ot 1 _a—v
(0-s) a—veR, m—2ev) mI—20E=V))s gm (logm)2 (logn)™ ¢
i (10gn)2t+2§+1
(sm) vt+1/2eR, miT2a)sgmm® p2(tv+l (logn)2a A
20 L log 1
VH+t=—1/2 e logm (logn)z %

We note that in case (o-m) and (s-m) for v+t < —1/2 the oracle rate R} (6, T, , v) is parametric. O

§08|01|02/02 Maximal global v-risk

5080128 Notation (Reminder). For sequences «,, b, € (IX)" taking its values in X € {R,R_,,Z, ...} we
write o, € (IK)™ and 0, € (]K)i\I if a, and b,, respectively, is monotonically rnon-decreasing and

non-increasing. If in addition ¢, — oo and b, — 0 as n — oo, then we write ¢, € (]K)E and
b, & (IK) for short. For w, € (_ we set w,, := ||w.||, and w, = (w,, = ||[w.E"|, );ew, where
by construction w,,, € (R.,)™N. O
5080129 Assumption. Consider weights . a, ¢ (R.)" and v, € IR", such that (av), := ayp, € £,

(av), € (R.,), and (t/v), = t v € (_ are satisfied. In addition there exists C,,, € (0,1] such
that for all m € IN

(t/0)},-y = min { (t/0)}: j € [m]} > C,, (t/0);,, (08.05)

2

< (t/v), 0

(m)*

3 Al
orinequal C |

(t/0), 17

§08/01.30 Reminder. Under Assumption §08/01.29 we have (i = dom(M,.) = ra, C /, and the three
measures 1, a,’y, and v’y dominate mutually each other, i.e. they share the same null sets
(see Property §04|01 02). We consider /; endowed with [|-|[ . = [[M,.-||, and given a constant
r € R, the ellipsoid /;" := {a, € £; : ||a,|| .. <t} C £;. Since (av), [, and hence (av),, =

[(a0), 1], € R, for each m € IN we have /] C /,(v?) (Property §04102.11). Consequently,
if Assumption §08101.29 and ¢, (" are satisfied, then Assumptlon §08101.12 1is also fulfilled.
Since vt R, under Assumption §08/01.29, we have [t 1" » = /1], € R, for
each m € IN. Under the Assumptions §08100.02 and §08/01.29 considering the generalised link
condition T, € EdD with band D € [1,00) and d € [1, D] as in Definition §05/02.05 we have
bupm@N{H[M]”[ JL .} < D, and hence

spec

IMVTE, = (ML) M) = te(MULIT, L (L) L)
= tr([Miy, ] [T, ] (T, LML) < [IIML] ...] 12 (M)

spec

D[ (08.06)

using tr([M,].) = [l(o/6. 177

= ||tj1]lf”||§. Moreover, for each m € IN the generalised
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Galerkin solution " := T."f”g. el of = Tfl.g. € (7" satisfies (Lemma §05102.09)

16, — " |12

< (D*AC. 4 1) (av v

(t/v)
Note that under Assumptions §08/00.02 and §0801.29 the link condition T, € T with band d €
R.. as in Definition §05/01.08 implies sup,,, -p{||[M. ], [T.‘_];HSPGC} < 3d* (Lemma §05101.22), and
hence for each m € IN we have (08.06) with D = 3d” and the Galerkin solution §" := T.’:”g_ €
17 of 6, = T g € £5" satisfies ||} — 0"||> < (9d°C,J + 1)(av); 1* (Lemma §0501.28). 0

(m)

s08101.31 Proposition. Under Assumptions §08101.01 and §08101.29 setting for n,m € IN

Ri(a. . 0) = [(av);, V n_1||t,_1]1’f1||§], m = arg min {R(a,,t,v) : m € N}
and R (a.t.v):=R"(a.t,0) =min {R(a,t,0):m €N} (08.07)

and |1 ||, = v € R, for T, € T, andforall 0, < [}', hence g, =T, f, € dom(T. ) C 0,
we have

BL(10" = 0l7) < (Dwye + 200D’ Ri(a. t,0) Vn €N

(t/v)
(orfor T, € T withD = 3d®).

§08101.32 Proof of Proposition §08/01.31. Given in the lecture. o

s0801.33 Remark. Under the assumptions of Proposition §08/01.31 if there exists in addition v € R.,

satisfying |||, < v forallf € ;" and T, € T, (or T, € T:), then we have

sup {]B&(HQM - 9||§) el T, € Tl_,d_”} (D’v + 20_2 D*dr*) R(a.t.0) Vn € NN,

(t/v)

Arguing similarly as in Remark §07101.21 we note that R/ (a,,t,,v) = o(1) as n — oo since
61", € R, for all m € NN, and (av),,, = o(1) as m — oo by Assumption §08/01.29. The
latter is satisfied, for example, if (av), € /, (in equal a, € /,(v?)). Note that the dimension
m’ = m(a,t,v) as defined in (08.07) does not depend on the unknown parameter of interest

but on the classes ¢;" and T, only, and thus also the statistic @\ " In other words, if the regularity
of 6 and T, is known in advance, then the (generalised) GE 9 is a feasible estimator. O

s0801.34 Corollary (GniSM §0801.04 continued). Consider g, = ¢ + 2B, ~ Ny as in Model §08101.04,
where 3 ~ 1\5?, T.elt)orT, €l:t), f € (,and hence g = T. 0 € dom(T))) C ¢,. Under
Assumption §08101.29 the (generalised) GE (9, =T, HA. e 1™ C € ,(0?) with dimension m as
in (08.07) satisfies

sup{N;T(Hé\m’*‘ — 9“ ) el T, eEdD} CR(a,t,v) VneN (08.08)

with constant C = D* + 2C, D2d21r2 (for T, € T withD = 3d? ).

(t/v)

§08101.35 Proof of Corollary §08/01.34. Given in the lecture. O

50801.36 Corollary (niSM §08101.06 continued). Consider g, = g, + n~'/*¢, ~ B, as in Model §08101.06,
where &~ ©,oxD, | satisfies GSM1) with ||o7]|, = v, € R, T € =(0)or T e (L),

() € [, and hence g =T, 0, € dom(T],) C ¥,. Under Assumption §08101.29 the (generalised) GE
g = g "9 € L1 C 4, (02) with dimension m: as in (08.07) satisfies

sup { B, (1 — [2): 0 € 2.7, € T} < CR(a,t,0) ¥n €N

with constant C = D’v, + 2C, 2 D’d’1? (for T, e T, withD = 3d?).

(t/v)
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§08101.37 Proof of Corollary §08/01.36. Given in the lecture. O

50810138 Corollary (nieMM §08101.08 continued). Let § = g + n~"2€, be defined on (2, 2" ") as in
Model §08101.08, where 1) & N2 ©2") satisfies (nieMM1) and (nieMM?2) for some v, , < IR,
T, € l(t)yor T, e L), 0 € (, and hence g = T, 60, € dom(T)) C {,. Under Assump-
tion §08101.29 the (generalised) GE é\m: = Tf”qu € 0,1 C 4,(v?) with dimension m as in (08.07)
satisfies

sup {B." (1|4 —

) el T, € T(,d_D} <G, Ri(a,t,0) VneN

with constant C,, ,, = D*sup {vyp,: 0 € (7, T, € T } + 2C. D*dr* (for T, € T withD =
3d?).

$08101.39 Proof of Corollary §08101.38. Given in the lecture. O

s08i01.40 Illustration. We distinguish the following two cases (p) (v/t), € £,, and (np) (v/t), & {,. Inter-
estingly, in case (p) the bound in Proposition §08/01.31 is parametric, thatis, nR(a,, t,,v) = O(1),
in case (np) the bound is nonparametric, i.e. lim, ., nR(a,,t,,b) = co. In case (np) we con-
sider similar to (o-m), (o-s) and (s-m) in Illustration §07/01.44 the following three specifications:
Table 02 [§08]

Order of the rate R(a,,t,,v,) as n — oo

(j €N (a € R.y) (t € R.y) (squared bias)  (variance)

b2 = 5 a? £ (an)fm i z m’ R (a,,t.,1v,)
(em)ve(~1/2-ta) j | mre mA pEi T

-9, 9 D VAT, YR 1 %,\ 1

vt =—1/2 Jo g mmReel Jogm ()™ | =22

(0s) a—veER., j e m =2 mA=2=sem | (Jogn)* (logn) =
: (1 )2t+2v+1
(sm) v+t+1/2¢ R, e/ g m¥e " m2vtattl (logn)> g—
2a . 2a a1 log I

v+t=-1/2 eI j m*¥e ™ logm (logn )= w

We note that in case (o-m) and (s-m) for v + t < —1/2 the rate R (a_, t, v) is parametric. O
n\ e Yor Yo

§08|01|03 Local and maximal local ¢-risk

Secondly, we measure the accuracy of the (generalised) GE 5’” = T’"H g of the (generalised)

Galerkin solution " = T 'g € 01" with g = T 6 € dom(T.) by the mean of its local ¢-error
introduced in §05/01102 and §05102102, i.e. its ¢-risk.

sosi01.41 Reminder. If ¢ < IR, then we have ¢’'1" € 4, and 1" C dom(¢y). Consequently, for each
0 € dom(ey) the (generahsed) Galerkin solution " = T m”g € (1" satisfies " € dom(oy,)

too. If in addition C, := sup {|[M, T (") oll,:m e IN} € R, then |py (" — Q)] < (1 +

C,)|[176]], which 1mphes sup { oy () — §)|:j € N.,.} = o(1) as m — oo (Property §05101.31
and Property §05102.12). 0

$08/01.42 Comment. Under Assumption §08101.01 since 6", T ”]Y” € 1" for each m € IN we have
Tf:”s, € 1" Bi-as.. Indeed, € ~ P with [, € [I_>( ,) by Assumption §08101.01 (nSIP) implies

0.5)
13
< o € R., B;-as..

D' (é2) € (., hence €1 € (. P"-as.and |T e, < [T 1"
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Given ¢ © ]R from +,1"" C dom(¢y,) (Reminder §08101.41) it follows

0" =T g =n T + 0" 1 C domon)  Bj-as. :

§08|01/03j01 Local ¢-risk
§08i01.43 Assumption. Let ¢ € IR,T\;) and ¢, € dom(oy,) be satisfied. 0

so8i01.44 Defimition. Under Assumptions §08101.01 and §0801.43 the local ¢-risk of a (generalised) GE
6 = TmHg € 1" C dom(¢y,) Bi-a.s. satisfies

B (|ou(@" = 0)*) = B (|on (T m”( — )P +loy (0" — Q) (08.09)
with variance By (|¢n (T, (G — 9))?) = n "B (|¢n (T, €)[?) and bias |¢n (8" — 6).  ©
$08101.45 Property. Under Assumptions §08101.01 and §08101.43 we have
Br(lon (T "€)) = Br(l(enr, T, e), [*) = Br(K(T) 6", €),,1°)
= (E\T(TT”)@ (TR ), = N ¢ I (08.10)
and consequently B (|¢n (T)." (G — g)*) < n [Tl (T @17 € R 0

$08101.46 Proposition (Upper bound). Under Assumptions §08101.01 and §08101.43 for all n,m € IN with
(generalised) Galerkin solution 6" = Tf:”g. € ¢, 1" setting

RUOLT o) = oy (6" —60)P4+n"|| (T, m”) ||j, m; = arg min {R'(,T,.,¢) : m € N}
and R (0.7T,.¢):=R"A.T,,¢) =min{R'(AT,¢) :meN} (08.11)
we have By (|6 (7 — 0)[2) < (LV [Ty VR0, T,..0) for all n € I,
$08101.47 Proof of Proposition §08/01.46. Given in the lecture. o

5080148 Reminder. If [}, € 1°(¢,) is invertible with inverse I,," € L((.), i.e. [, I = id,, = I, [, then
we write shortly 1 < max(|[[.]|, .., ) < v. € R... In this situation for all h, € ¢, we
bave vy 2 < 12 = (b, ), < el 2. -

$08101.49 Oracle inequality. Under Assumptions §08101.01 and §08101.43 if in addition

1< max([Bi ey, 15 ) < v € R

e |

is satisfied then (08.11) (and Reminder §08101.48) implies
Vi R0, T, ) < Bi(lon (@ — 0)7) = n (1) ¢ Iy, + leu " — Q)
< v R, T.¢) Vn,meN
As a consequence we immediately obtain the following oracle inequality
v R (6. T, ) < inf Br(lon (6 — 0)1°) < Br(lon (@™ — 0)°)
<vpR(0. T ¢) < viy inf B B (lou (8" — Q)% VneN, (08.12)

and hence R (60,7T, ,¢), m: and the statistic Q™ respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant v, ). m
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50810150 Remark. Arguing similarly as in Remark §07/01.21 we note that ||(T. mIT) qb’"||2 € R., for all

m € IN and hence R(6, T, ., ¢) = o(1) as n — oo, whenever |y, (0" — §)]* = (1) as m — 0o
(see Reminder §08/01.41). Note that the oracle dimension m; := m? (9, T, , ¢) as defined in (08.11)

depends on the unknown parameter of interest ¢, and thus also the oracle optimal statistic §™
In other words 9 is not a feasible estimator. m

§08101.51 Corollary (GniSM §08/01.04 continued). Consider g, = ¢ + nfl/QE’, ~ N;T as in Model §08101.04,
where B ~ NN T, € lx(t)orT, € (0, 4 € 0, and henceg =T, 6 € dom(T),) C 4,

(0,1)?

Given Assumption §08101.43 the (infeasible, generalised) GE g = Tm ”A € 1™ C dom(oy)
with oracle dimension m: as in (08.11) satisfies

Ny (I8 = 6)]") = Ri(6, T,..¢) = inf N}, (Jon (8" —@)).

and hence it is oracle optimal (with constant 1).

§08101.52 Proof of Corollary §08/01.51. Given in the lecture. o

5080153 Corollary (niSM §08101.06 continued). Conmsider g = g + n'/?€, ~ By, as in Model §08101.06,
where €~ ;b satisfies (iSM1) and (iSM2) with max([[a 7|, |lo”], ) =1v, € R, T €
() or T, L+ (£,), @ c (., and hence g = T 6 € dom(T.,) C 4,. Given Assumption §08101.43

the (infeasible, generalised) GE 9, = .‘_ g 6 ¢ 17 C dom(¢y) with oracle dimension m. as
in (08.11) satisfies

n Am: - 2 < o < 2 n am . 2
POIT\G(|¢V1N(0- 0-)| ) ~ Wan(Q,T,@) IV Wllré% 1:ﬂ?\TIU(MSV]N(Q 0-)| )7

and hence it is oracle optimal (with constant v, ).

$08101.54 Proof of Corollary §08/01.53. Given in the lecture. m

5080155 Corollary (nieMM §08i01.08 continued). Let g = g + n "2, be defined on (2", 2" 10" as in
Model §08101.08, where 1) « N(2 ©2") satisfies (nieMM1)—(nieMM3) for some v, ¢ R, T ¢
() or T, 1:-(0.), 6, € (,, and hence g = T.0 € dom(T))) C /,. Given Assumption §O(S’I0/ 43

the ( lnfeaszble generalised) GE g = Tm g q G ¢ 17 C doml(¢y) with oracle dimension m. as
in (08.11) satisfies

]B&(|¢IJ]N(§7H - 9-)|2) < Vame (@, T,.,0) < Vemw 1nf (|¢ ( )|2),

and hence it is oracle optimal (with constant vy, ).

§08101.56 Proof of Corollary §08/01.55. Given in the lecture. O

s08/01.57 Illustration. We distinguish the following two cases
(p) sup {||(T" gz5m||2 meN} € R, 0rsup{|¢y —6O)>meN.} =0for K € N,

(mp) sup {|(T;" quHZ m €N} = oo and sup{\qﬁy " —0)2meN.} € R, forall K €
IN.

Note that 415 = (, implies the case (p). Interestingly, in case (p) the oracle bound is para-
metric, that is, nR(6, T, ,¢) = O(1), in case (np) the oracle bound is nonparametric, i.e.
lim,, . nR (4, T,..¢) = oo. In case (np) we consider similar to (o-m), (o-s) and (s-m) in Illus-
tration §07101.63 the following specifications:
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Table 03 [§08]
Order of the oracle rate R(6, T, ,¢) as n — 00

(squarred bias) (variance)
. o 2 mlt\* gm |2 e °
(m €I |¢V]N(9' - 6.>| ||(T.\. ) 9@ ||g2 m, R'n(avT.w @)
(o =m""'?) (aeR.) (t € R.y)
(0-m) v e (—t,a) m 2 mat2y nEm no
s 1
vt e logm () g
2t 1 _a=-v
(0-s) a—veR, m 2@ M2+ gm (logm)2: (logn)™ ¢
1 (lo n)tﬂ
(sm) vi+teR, it gmm® 2ty (logn )2 gT
2 L log1
v=—t mI—1a=20+ gmm logm (logn)2a oe0en :gn
i 0-m S-m A\ — ; A i ic.
We note that in case (o-m) and (s-m) for v < —t the oracle rate R, (6, T,,, ¢) is parametric O

§08|01/03j02 Maximal local ¢-risk

§08101.58 Assumption. Consider weights t, a, © (IRN))“A\I and ¢ © R]T, such that (a¢), = a,¢ < /, and

(at), ;= at, € (R.,)D. O
5080159 Comment. Assuming ., € (R.,)" and hence (at)) € (R.,)" is rather weak. If in addition
lim inf (at)” > ¢ € R, is satisfied, and hence (at)?, o, £ ¢ (R.)", then a? ¢ (R.,)} and the

J—o0 i i

assumption (ao), € (, implies ¢ € (,, which together with £ ¢ (R.,)Y implies (¢/t), € /,,

and thus the rate R (a,,t,, ¢) is parametric (Illustration §08101.72). Since we are interested in the
case of a non-parametric rate, the additional assumption (at)’ € (R )" imposes a rather weak
condition satisfied also in Illustration §08/01.72. O

$0801.60 Reminder. Under Assumption §08/01.58 we have (] = dom(M,) = ra, C /, and the three
measures 1, a,”y, and |¢|y, dominate mutually each other, i.e. they share the same null sets
(see Property §0401.02). We consider /; endowed with |-[| . = ||M,.-[|, and given a con-
stant 1 < IR, the ellipsoid /" := {a, € £ : [la] - < r} C €. Since (a0), € [, we
have /] C dom(¢y,) (Property §04102.23). Consequently, if Assumption §08101.58 and ¢, < ("
are satisfied, then Assumption §08/01.43 is also fulfilled. Moreover, from (a¢), € (., follows
a1, = [[(ag). T[], = o(1) as m — oco. For s € [0,1] from (at), = at € (R.,)N
follows (at'), = ((at), = (at),,, = ||(ats),]lf”“||ex)mem € (]R>0)£\I. Since o, t, € R un-
der Assumption §0801.58, we have ¢ 1" C dom(ox) and [[{7"1"]|, = [[(¢/t.1"[|, € R, for
each m € IN. Under the Assumptions §08/00.02 and §08101.58 considering the generalised link
condition T, € T, with band D € R., and d € [I,D] as in Definition $0502.05 we have
sup,, en{ | ([T..) M|l } < D, and hence

(T ¢

o = IATLY LI = (T LML @]
< ML) L M L[,

< D[], (08.13)

using [[[M..],[¢],[| = [[£"L"]|,. Moreover, for each m € NN the generalised Galerkin solution

" = Tf‘:‘”g. el of = Tf‘.g. € (7" satisfies (Lemma §05102.14)

6 (8" — ) < DA(DA + 12 (|12 + (ot

(m)

T H;). (08.14)
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Under Assumptions §08100.02 and §08101.58 the link condition T, € T; with band d € R., as in
Definition §0501.08 implies sup,, cn{|[([T,.].") [M]. o) < 3d” (Lemma §05/01.22), and hence
for each m € IN we have (08.13) with D = 3d” and the Galerkin solution " := T_’:”g' € ¢,1" of
0 = Tf‘.g. € (2" satisfies (08.14) with D = 3d* (Lemma §05/01.34). o

$0801.61 Lemma. Under Assumption §08101.58 setting for n,m € IN
R (a,t,¢) = Ha.]lf”'lH; +n 1%, ) = arg min {R(a,.t,¢) : m € N}
and R (a.t.0) =R(a,t,¢) =min {R(a.t,¢):m e N} (08.15)

we have (at)), >n~"' = (at)) = (at)]  foralln € IN_ ., ie. (at) > n"' is satisfied.

m;,+1

$08101.62 Proof of Lemma §08/01.61. Given in the lecture. O

508101.63 Proposition (Upper bound). Under Assumptions §08101.01 and §08101.58 setting m* and R} (a,, t,, §)
forn € Nasin (08.15) and ||, ||, = v, € R, for T, < T, and forall (| < [, hence
g="T,0¢ dom(T))) C /,, we have

Bir(

on (0 = 0)2) < D*(vyr + 20 Rifa, t. @) ¥n € Noy.
(orforl € T withD = 3d?).

$08101.64 Proof of Proposition §08/01.63. Given in the lecture. O

$0801.65 Remark. Under the assumptions of Proposition §08/01.63 if there exists in addition v € R.,

satisfying || .||, < v forall 6 € 5" and T, € T,,,, (or T,, € T3), then we have

sup {IB"}(WVL\V(Q""” —Q)P): 0 T, T} KD(v+2dP)R(a,t,¢) Vn € Ny,

Arguing similarly as in Remark §07/01.56 we note that ||t 17| s € Reoforallm € N and
(112 = o(1) as m — oo (since (a0), € (.), and hence Ri(a,.t, ¢) = o(1) as n — oco. Note
that the dimension m* := m’(a,,t,¢) as defined in (08.15) does not depend on the unknown
parameter of interest ¢, but on the classes /)" and T, only, and thus also the statistic am;

other words, if the regularity of ¢, and T, is known in advance, then the (generalised) GE g is
a feasible estimator. O

50801.66 Corollary (GniSM §0801.04 continued). Consider g = ¢ + n2B, ~ Ny as in Model §08101.04,
where B3, ~ 1\5?, T, clt)yorT, cl(t), 0 ¢ (,and hence g =T, 6 € dom(T),) C {,. Under

Assumption §08101.58 the (generalised) GE g = T, ”A. € 1™ C dom(qzﬁum) with dimension m
as in (08.15) satisfies

sup{NelT(|gz5y( —4)| ) ety T, € T((m} C.pR(a,t,0) VneN.,. (08.16)
with constant C,,, = D*(1 + 2d°1?) (for T € T, with D = 3d?).

§08101.67 Proof of Corollary §08101.66. Given in the lecture. O

50801.68 Corollary (niSM §08101.06 continued). Consider g, = g + n~'/’€, ~ By, as in Model §08101.06,
where &~ ;oD satisfies GSM1) with |[o7]|, = v, € R, T € 1=(0) or T € (L),

0,5%)

() € [, and hence g =T, 0, € dom(T))) C ¥,. Under Assumption §08101.58 the (generalised) GE
g = Tmmﬁ € o1 C dom(on) with dimension m as in (08.15) satisfies

Sup{BIT|0(|¢V( _9)| ) gegﬂr T GdeD} rdDa a7t7¢) vne]N>(ﬂl
with constant C, ,,,, = D*(||a?||,_ + 2d°1?) (for T, € T, with D = 3d).

Statistics of inverse problems 99



Chapter 3 Regularised estimation §08 (Generalised) Galerkin estimator

§08101.69 Proof of Corollary §08101.68. Given in the lecture. O

50801.70 Corollary (nieMM §08001.08 continued). Let g = g + n~"2€ be defined on (2", 2" 12.") as in
Model §08101.08, where 1) & N(Z =2") satisfies (nieMM1) and (nieMM2) for some v, ., < R,
T, € l(t)yor T, e L), 0 € (, and hence g = T, 0, € dom(T)) C {,. Under Assump-

tion §08101.58 the (generalised) GE 0" = Tf:m’g: € 117 C dom(¢w) with dimension m: as in
(08.15) satisfies

sup {B7 (lon (@™ — Q)2): 6 € 7,7, € T} < Copape Rifa,t,¢) ¥n € Ny,

with constant C, ., = D*(sup {‘Vemw: Qely'\T, € TW)} +2d°r%) (for T € T, with D = 3d?).
§08101.71 Proof of Corollary §08101.70. Given in the lecture. O

s0801.72 Illustration. We distinguish the following two cases (p) (¢/t), € £,, and (np) (¢/t), € ¢,. Inter-
estingly, in case (p) the bound in Proposition §08/01.63 is parametric, that is, nR(a,, t,,¢) = O(1),
in case (p) the bound is nonparametric, i.e. lim, ., nR(a,,t,,¢) = co. In case (p) we consider
similar to (o-m), (0-s) and (s-m) in Illustration §07101.78 the following specifications:
Table 04 [§08]

Order of the rate R (a,, t,, ¢) as n — oo

(G eN (a € R,y (t € R.,) (squarred bias)  (variance)

e N P R IS S Ri(a.1,0)
(0-m) v € (—t,a) j 2a j 2t m2—v) 2yt P n-5H

. . L !

v — —t sz,\ sz' m—Q(a+c> logm (]Qg - )zﬂw Oi,‘n

(0s) a—veR, j ™ e m 2 m2—V+em™ | (logn)* (logn)™ "~
(1o n)tﬂ
(sm) v+teR, e/ j e ™" m2vte (logm )= —gn
, . 20 a1 log 1

v=—t e Jj e logm (logn)> %

We note that in case (o-m) and (s-m) for v < —t the rate R (a,, ¢ 1S parametric. O
m\ e Yoy ¥

§08|02 Non-diagonal statistical inverse problem with noisy operator

$08102.01 Notation Reminder. For A,, = (A;;); en € ]R]Nz we denote by A7 := M. A, .M. € L(£.) with

713,

a, — Ala = (1" Z Ajya, =T (AL a)

= 1A Lall)) jen
j.elml

the operator which restricted to a linear map from R" (ran(M;.) = ¢,1™) into itself is represented
by the sub-matrix [A..] = (A,,); ctm € R™™ (compare Notation §05/00.02). Moreover,
|-l and || A = sup{||Az|| : ||z|| < 1} denotes, respectively, the Euclidean norm of a
vector and the spectral norm of a matrix A. Clearly, we have [[A7L[| , = [[MpA Ml =
I[A..] e Furthermore, A7, € L(4) is a Hilbert-Schmidt operator (§08101.14), i.e. AJ, € HS(4,),
and M A, = M'A" € HS(¢,) for arbitrary w, € R". Moreover, introduce 0(N) = (N, N )
forp € R... o

spec

m

50802.02 Assumption. Consider a stochastic process €, = (& ) ;- satisfying Assumption §01101.04 with

J

mean zero and a sample size » < IN, and in addition a stochastic process 1), = (1), );,; e satis-
fying Assumption §02101.02, with mean zero and a sample size & & IN. Let Assumption §08100.02

100 Statistics of inverse problems



§08 (Generalised) Galerkin estimator Chapter 3 Regularised estimation

be satisfied where T, < [-((.) or T, € [-+(%.) is not known anymore. For € € {, the observable
noisy image with mean g = T () € /, and the observable noisy non-diagonal operator with

mean kernel T, € R takes the form g =g +mn ' and % =T, -+ k""n,., respectively. We
denote by D‘,} the joint distribution of (g, T .). Denoting by I and 15" the marginal distribution
of g and TI , respectively, if € and 7),, are mdependent then we write 2" = I @ B for the

joint product distribution of (g, T.‘.). In addition €, satisfies (nSIP) (Assumption §08/01.01) with
v, € R, and n,, fulfils
(nSIPnO1) there is v, € IR, such that 7, for all m € IN and a,, b, € /, satisfies

:[P[A (‘ <b.' ,';’.n.‘ a.>(! ‘2> g Vr H(I.H‘Z Hb, HZ
implying B (7)?,) =: v < v, forall j,j € IN, and hence 1 V ||\/,EH€X(H\J> < v
(nSIPnO2) thereis / « IN and Kf € IR such that 7, satisfies
vl =R (02) = (v = B(02))j gen € LN

and 1V ||v, < K where 1V ||y, o ey S W < K,Zr O

T|(1) H
Lo (IN)

§08102.03 Lemma. Let Assumption §08102.02 (nSIPnO1) and (nSIPn02) be satisfied, and let m € IN.

(1) Under (nSIPnO1) for any A,, € HS(¢,) and a, € {, we have
B (JAial? ) < wllALE el

and in particular, m B (Hnr‘"aH?) < VTH“-”? by using HldT‘nHIQ{S =m
(11) Under (nS1Pn02) for all x € R., we have

21 2072
X

B (|12l = x) <m
and BY (027, Lo, = 01) < ma20-VKE

§08102.04 Proof of Lemma §08102.03. Given in the lecture. O

§0802.05 Notation. For each m € IN and T, € [“(¢,) we introduce below an observable event ()

and its complement () such that on the event () , = the random matrix [T|], € Rmm)

~ -1 m,m .
regular and hence its inverse [T, | € R always exists. We denote by 1o the observable

elementary random variable which takes the value 1 on the event (2, and zero otherwise. We

denote by T."’_' = My T.‘.Mlm € L(£) the random operator which restricted to a linear map from
R" into itself can be represented by the random matrix [T‘L Note that its Moore-Penrose

m|t

inverse f € (&) restricted to a linear map from R into itself can be represented by the

] of [T .|, (see Definition §03/00.08). On the event €~ we

n,kAn

Moore-Penrose inverse matrix [T .
have T/ T = T/ = M. Let (. € L(£) be the zero operator mapping /, to {0,}. The

random operator, which equals A,, € (&) on € ~and 0, on €2 is denoted by L\‘ =

kAn m,kAn?
A,l,]lg,,m € L(4). Let T'”‘“”N”) = Tm]lsz .. € L) and denote its Moore-Penrose inverse by
T_"'f It < 1L(r,) where trivially T, m‘(m" = T.Tf”]l@m. We eventually use the elementary identity
T,THT,T,%]IQ,,,J.A,, _ Tf:' kAn)HT.r:\(kAm _ T.Tj\(kAn)T.r‘r:l(kAn)H — M 1o, . .

50802.06 Definition. Under Assumption §08102.02 let (g, T .) ~ %" be noisy versions of g € dom(T,)

and T, & [(.) (or T, & 1=(0.)). For each m € ]N we call §" = T.’:‘(’“”)”Q — Tf"f”]lszma]lf” —
T_T”]ln,mg_ (generahsed) thresholded Galerkin estimator (tGE) of 6, = Tf‘.g_ cl,. 0
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50802.07 Remark. Under Assumption §08/02.02 we have € 1" € /_ B;-a.s. and T"’ e L(4) withran(T) C
1" Bf-as. for each m € IN. Consequently, ran(T*""") C 1" B-a.s., and T"’ i e g qm
B**-a.s., and hence

~m

9’” T [(kAn)I /g\. _ n—l/ZTfl’j\(k/\")HE'. + Tf".l\(k/\“)ﬁgoe [2]1:71 Er;@k-a.s..

Let us recall that the (generalised) Galerkin solution £ € ¢, 1" does generally not correspond to
the orthogonal projection 17" = (1, — 17")f. Moreover, the approximation error sup{||§" —
All,, : m > n} does generally not converge to zero as n — oo (compare Remark §0501.05). Here
and subsequently, we will restrict ourselves to classes of solutions and operators which ensure
the convergence. Obviously, this is a minimal regularity condition for us if we aim to estimate
the Galerkin solution. O

§08|02/01 Examples

§08102.08 GniSM with noisy operator (§02102.06 continued). Let Assumption §08/00.02 be satisfied where
T,eTCl(t)orT, €T C I:-(.) is not known anymore. We illustrate the (generalised) tGE
1n a Gaussian non- dlagonal inverse sequence model (GniSM) with n01sy operator as in §02102.06.
Here the observable stochastic processes T =T, + k" W~ N, and | g=gq+n" 2B ~ NI,
are noisy version of I € T and g = T, 9 € dom(TT) C é with (, € © C /,, respectively,

where W, : (V\ )jjEN ~ \T\Lﬁ and B ~ 1\ - are independent. Consequently, (g, T .) admits

(0

a joint Ngf b= Ng‘T ® N-distribution belonglng to the family N.°F .= (Ne‘T ® N )ae(_)”’l‘.‘.e'ﬂ‘.

Summarising the observations satisfy a statistical product experiment (]R B \L)T’) where
O C/landT CL(4L)or T C L(4). 0

$08102.09 Property (GniSM with noisy operator §08/02.08 continued). Let W, .~ N,iﬁ\} and B ~ \lel\l be
independent as in Model §08102.08. Then Assumption §08102.02 is satisfied:

(i) Due to Property $07101.04 B, admits id,, € >(¢,) as covariance operator with lide, ||, = L
i.e. (nSIP) is fulfilled with vy, = 1. For all h, € {, we have ||.||? = Hh'HiQde = (idg,h, h.), -

(ii) Forallm € N and a,,b, € {, we have VV,TCL, ~ Ha.mngBm’, (b, B,"% ~ N(O,”wf ,» and hence

N (1o Wi, 12) = lla I 112 < N2 2.

i.e. (nSIPnO1) is satisfied with v, = 1.

(iii) For any | € N setting K = [, cy(2j — 1) = (20 — 1)/l we have K, > 1 and 1V
[, = K de. (nS1P02) is satisfied with K, = K, O

§08102.10 niSM with noisy operator (§02102.05 continued). Let Assumption §08100.02 be satisfied where
T,eT ClorT, €T C l:-(.) is not known anymore. We illustrate the (generalised)
GE in a Non-diagonal 1 mverse sequence model (mSM) with n01sy operdtor as in §02102.05. Here
the observable stochastic process I, = T, -+ E12m,. ~ 2" and g =g +n'% ~ B is
a noisy version of T, & T and g = T, 0 E dom(T),) C /¢, with (, € © C [,, respectively,
where & ~ ©@ jeN]P and M. ~ ®j,j, elNIP - are independent. In addition, let €, satisfy (iSM1) of
Model §07101.06 for . € ¥ C R, 1 (. and let 7,. fulfill

miSMnO1) for{, € = C (R., )N Nl (N)wehaver ~ P . < 7(#), forallj,j €N,

(miSMn02) for ! € N and £ € 22 C (R.,)N NL_(¥) we have €2 := (€2 .= P, (7)), en-

Jli
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Under (iSM1) g admits a I -distribution belonging to the family R}, :== (B3, )qcor €T ,aes
and under (niSMnO1), (niSMn02) T, admits a P,.ﬁ‘é . -distribution belonging to the family P"

=20 e

TxExEH *
(R}fﬂgm)T.‘.€T7§"_657§5‘2_z>652,. Summarising (g, T,,) admits a joint P, . ... = B, ® B, distribu-
. . . n®k n k
tion belonging to the family B3, c.. :== (B, ® Emsw)ae@,T,‘,ewr,qez,g,‘,ea,gfﬁ”e?l and the ob-
servations satisfy a statistical product experiment (IRIh ,%N\ ,R,’;T‘X'EEX;H) where © C /, and
T CL(t)or T C L-(6). O

§0802.11 Lemma (niSM with noisy operator §08/01.06 continued). Consider error processes 1, and €, as
in Model §08102.10 satisfying(iSM1), (niSMnO1) and (niSMn0O2). Then Assumption $§08102.02 is
satisfied:

(1) Due to Property §07101.07 (1) under (iSM1), €, admits 1,, = M,. € IX(¢.) N [2(¢,) as covariance
operator with ||N..|| ., = [|o’||, < [lo’], V1 =:v, € R.,, ie. mSIP) is fulfilled with
Vir = V. Forall h, € £, we have |||}, = (Muh, k), < v |[R]f7.

2

(i) Under niSMnO1) for allm € N and a,,b, € {, with 1V || ||, . = v. € R, we have

Bleen (10 1), 1) < wellal7 10117

i.e. (nSIPnO1) is satisfied with v, = v..

(iii) Under (niSMn02) setting 1VH€-(%UHA“«> = K € R, wehave K., > v, and 1VH\4|T,‘(”H&C(N) <
Kzfm, i.e. (nSIPn02) is satisfied with K, = K....

§08102.12 Proof of Lemma §08102.11. Given in the lecture. O

§08102.13 nieMM with noisy operator (§02102.04 continued). Let Assumption §08100.02 be satisfied where

T, eTCl(t)orT, €T C 1:-(4.) is not known anymore. We illustrate the (generalised) tGE

in a Non-diagonal inverse empirical mean model (nieMM) with noisy operator as in §02102.04.

Here the observable stochastic processes T, = T+ & %7, ~ B and § = g + n %€ are
noisy version of T, € T and g = T, f € dom(T),) C ¢, with 0, € © C (,, and independent error
processes €, = nlﬂ(fa(@/{)—ﬂw(@/{)) e M(z" @2 and ), = k1/2(I?Pk(<p.‘.)—IE%(gQ‘.)) € M(z" @2v)
satisfying Assumption §01101.04 and Assumption §02/01.02. More precisely, on a measurable
space (Z, Z') foreach ) € © C £, and T, € T there are probability measures B, B € #/(2).
Similar to Model §02102.04 consider stochastic processes v, € M(2 = 2" and & M(Z = "), In
addition for all § € © and T, € T the process 1) € M(z =2") satisfies (nieMMT1) and (nieMM?2)
of Model §08101.08 for v,,, € IR, and the process 7 & M( =2") fulfils

(nieMMnO1) o € L,(1) := L,(2, Z,F) forall j, j, € N and P,‘(;,:;‘.) =T,
(nieMMnO2) there is v, € IR, such that @, for allm € IN and a,, b, € /, satisfies

B (1¢h, ), I*) < waollal 101 -
(nieMMnO3) thereis [ € N and ] € R, such that ¢, satisfies

B (an) = (B(g)))jen € L(N),

< KQ/

Hf(&(INl) X Dhrjpe

and 1V |[B(lg, — B |*)

. _ . thk  pp®(ntk) mnek n o PRk .
We consider a statistical product experiment (2, 2" R = (B, @B " )jco o) asin

an Empirical mean function §01101.10 where © C /, and T C (%) or T C [L:+(4.). O
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§0802.14 Lemma (nieMM with noisy operator §08101.08 continued). Consider error processes 1),, and €, as
in Model §08102.13 where 1) ¢ NU(Z ©2") satisfies (nieMM1) and (nieMM2) and @, € M(Z ®2v)
Sfulfils (nieMMnO1)-(nieMMnO3). Then Assumption §08102.02 is satisfied:

(i) Due to Property $07101.09 (1) under (nieMM1) and (nieMM?2) €, admits a covariance operator
L € (1) satisfying ||Lc]|, ) < Vo, Le. (nSIP) is fulfilled with V. = V. For all h, € ,
we have ||h sz (Lih., h), b S Vo || ”22

(i1) Under (nieMMnO1) and (nieMMnO2) for all m € N and a,, b, € {, we have

B (| (b i), [2) < v a2 102
i.e. (nSIPnO1) is satisfied with v, = v,,,.
(iii) Under (nieMMnO1) and (nieMMnO3) there exists a constant C, € R., depending onl € IN
only such that we have 1V ||v,."|| v S C,K:,, i.e. (nSIPn02) is satisfied with K, =
C)/"K,, € R...

§08102.15 Proof of Lemma §08102.14. Given in the lecture. O

§08|02(02 Global and maximal global v-risk

ml(n/\k)\’f/\

We measure first the accuracy of the thresholded (generalised) GE 9 | of the (gen-
eralised) Galerkin solution )" = T lg el withg =T 0 € dom( ) and T, 6 [“(¢,) by the
mean of its global v-error introduced in §05/01101 and §05 I02|()1 i.e. its v-risk.

§08102.16 Reminder. If v, € (IR,\[))N then we have v’ 1" € /_ and 1" C /,(v’). Consequently, for each
0 € [,(v) the (generalised) Galerkin solution 0" = Tﬂ”g_ € 1,1 satisfies )" € /,(v*) too. If in
addition C, := sup {||M,T""T, M, [, :m € N} € R., then [|" — §]|, < (1+ C,)| gy,
which 1mp11es sup { [/ — 6,5 eN..,} = o(1) as m — oo (Property §05/01.24 and Prop-
erty §0502.08). O

§08102.17 Comment. Under Assumption §08/02.02 we have 1" € /(_ BEi-a.s. and T € [L(4) with
ran(T)) C 1" Bf-as. for each m € IN. Consequently, ran(T ") C fg]lf” P-as., and

k
T"”‘( Mg e 11 B -a.s., and hence

A~

é\ T k/\n)H/g: _ n—l/Qr/I\YI’j\(k/\n -y Tm\ (kAn))| ge . 1" C e ,(0) ]B"fk—a.s.. O

§08|02|02/01 Global v-risk
§08102.18 Assumption. Let v, € ]RL\\;J and ¢, € /,(v’) be satisfied. O

§08102.19 Deﬁnltlon Under Assumptions §08102.02 and §08102.18 the global v-risk of a (generalised) tGE
g = mem 9 € 01 C £,(02) B -aus. satisfies

B (16" - 6)?) = EQM(HT.TKW)H@. — )P + BT g — 6)) (08.17)
with 9ﬁ®k(|]Tm' it — Wz = B (tr(M, T’"HE,T(T’"”) M,)1e,,.) (see Property §08101.15).
O

§08102.20 Property. Under Assumption §08102.02 we have

B (T g — 612) = B (1T (T = Te" + (0" — 6))1210..) + Q)1 2R (<

m, k:An)

Am| m m c
< 2B (T = Te | 20e) + 2018 — 6l + 61PR(€,.)
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(since T T 1o, = T I = My o, ). 0

$08/02.21 Notation (Reminder). Let A € (%) be a Hilbert-Schmidt operator, A € HS(¢,) for short, where
HAH;S = tr(A'A) = tr(AA) € Ry,. If T € L(£) then tr(ATA) < 1T, tr(AA) =
T[], . [[A]]%,. For arbitrary A € L(¢:) we have M A" = M'A™ € HS(1.). O

5080222 Notation. Foreachm € Nand T,, € [X(¢,) we consider the observable event and its complement

QO MLIT P <kAn} and Q,, ;:{H[Mn]m[il,]jnis>mn}. (08.18)

n,kAn

On the event 2

m,kAn

Moreover, setting A7, := 7, 'T}

m,m) . . . ~ -1 m,m
o € R™™ is regular with inverse [T.], € R™™.
we introduce an unobserved event and its complement

the random matrix [T

mlf

m

LD, < kP and O = {Am|AL)2, > kY (08.19)

/HL :

Note that 1, = Tam|iaz)2, < *} denotes an unobserved elementary random variable. O

L(€:)

50810223 Lemma. Under Assumptions §08102.02 and §08102.18 for all m, k,n € IN we have
() if4IMT2 <k AnthenT,, CQ

m,kAn’

(i) B (tr(M, Tm”L}‘T(Tm” M, ) 1o, m) Vi (4] M, T 12, + (k A n)B(U,)), and

(i) BT (T = Ta"120e.) < 46w M2 1672 + B (lnfem ) ).
withQ) ., and Um’k as in (08.18) and (08.19), respectively.

kAn
508102.24 Proof of Lemma §08/02.23. Given in the lecture. O

§08102.25 Proposition (Upper bound). Under Assumptions §08102.02 and §08102.18 for all n,m € IN with
(generalised) Galerkin solution 0" = Tf:”g. € 0,17 setting similar to (08.03)

R0 o) = 0" = Q)12+ (n A k) IMT 2
m;,, 1= arg min {R

0,T,.,v)= mln{

Hs’

T ) im E]N} and

R,.(0.T,.v) =R (6,T,.,0):m e N} (08.20)

nAk ( nAk

m\(/’6/\71)I’r m pn®k .
o TdeS.
for all m € NN the (generalised) tGE 9 T, q € 1" B " -a.s. satisfies

(;‘@k .m_ e lly 0T T n/\k ofe?
By (116" = 6112) < (4vyr + 8w 1077 ) R0, T, v)
+vB () + 2B (0" |17 L) + 14)12B0(2),,)  (08.21)

m,kAn

with )

m,kAn

and G, as in (08.18) and (08.19), respectively.

§08102.26 Proof of Proposition §08/02.25. Given in the lecture. O

§08102.27 Corollary Under the assumptions of Proposition $§08102.25 the (infeasible, generalised) tGE
g =T Wm")”ﬁ € 01 C 4y(02) By -a.s. with Q as in (08.18) and (infeasible) dimen-

oo m kAN

sionm?,, as in (08.20) for each k,n € N with R (0. T__, v,) < 1/4 satisfies

B (107 — ) < (v + 8w |77 R, (6, T, )
2K (v + (A1) A7t T2,
(o Pk (T

nAk

mrct/\k 2
+ 017, /4
-1

(08.22)

L( ))
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and if in addition

(me, Pk (me I T2, ) < R0, T, 00) < 1/4 (08.23)

then we have
B (167 — 62) < R,(0.T,..0)

x {4+ 2K5 (mg,,) ) + (Bve + 2K (12 + 2K (m,, ) 1612}
< 27K (v + 167112+ 11615 ) R,.(6,T,,0) (08.24)

§08102.28 Proof of Corollary §08102.27. Given in the lecture. O

$08102.29 Remark. Consider m?,, = arg min {RW 0, T,.0):m€E ]N} andR;, (0, T, v) = R™(8), T,..v)
as in (08.20). Arguing similarly as in Remark §07/01.21 we note that || M, Tm”|| € R., for all
m € Nandhence R, (4. T, .v) = o(l)asn Ak — oo, whenever | ()" — (| - o( )asm — 0o
(c.f. Remark §05101.05). In this situation if sup{|/(" ||[2 :m € N} < j‘, ¢ IR, then from

(08.24) in Corollary §08/02.27 follows

B (107 = 612) < 2K (v + Koy + [16]12) R, (8, T, 0).

However, the dimension m,, = m?, (6, T, v) as defined in (08.03) depends on the unknown
parameter of interest ] and the nuissance parameter T, , and thus also the statistic ™. In other

words 6™ is not a feasible estimator. O

508102.30 Corollary (GniSM with noisy operator §0802.08 wntmued) Consider independent noisy versions
(9. T,.) = (g_—&-n’”B T, +k2W,,) ~ ~ NI = NI @N! as in Model §08102.08, where B, ~ N(,]

o|T
and V\’ ~ N(ﬁ]i are mdependent T.e Tand( € (, and hence g = I 0, < dom(T] ) C 4,
Given Asmmptzon §08102.18 for each k: n € N fulfilling (08.23) the ( mfeaszble generalised) tGE

g = T el ’W)”ﬁ € 0,1 C Ly(v?) satisfies

NI = a)2) < 2220 = D (1 + (107

o+ lAl2) R0, T...v)
where R (6,T,,,v,) is the oracle rate in a GniSM §08101.04 (see Corollary §08101.21).

§08102.31 Proof of Corollary §08/02.30. Given in the lecture. O

$08102.32 Corollary (niSM with noisy operator §0802.10 continued). Consider independent noisy versions
(9.5) = (g +n %, T, + k'°n,,) ~ DL as in Model §08102.10, where €. and 1), satisfies
(isM1) with v, = |[o”[|, V1 and @iSMnOD—miSMn02) with I = 1V ||, o, respectively,
T.eTand( € (, and hence g = T (| € dom(T) C [,. Given Assumpn(m §08102.18 for each
k,n € NN fulfilling (08.23) the (infeasible, generalised) tGE G = mimleAn) 19 € o1 C Ly ()
satlsﬁes

Bﬁ‘%ﬁ&\g(zn(”émz% — 9.”3) < 22[+2K§i’) (Wg + H@,m:

+6]2) B8, T, 0)
where R (0, T,,,v,) is the oracle rate in a niSM §08101.06 (see Corollary §08101.23).

§08102.33 Proof of Corollary §08/02.32. Given in the lecture. O
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508102.34 Corollary (nieMM with noisy operator §08102.13 continued). Consider independent noisy versions
(4, l”) — (g +n P T+ k) defined on (2, 2" B as in Model §08102.13,
where 1) © M(Z ©2%) and ©. € M2 ©2N) satisfies (nieMM1)-(nieMM2) for v, © R, and
(nieMMnOl) -(nieMMnO3) for I, € R, respectively, I < T and (] € (,, and hence g =T 0, €
dom(T),) C /,. Gtven As Sumptlon §08102.18 for each k n € NN fulfilling (08.23) the (mfeaszble

generallsed) tGE " = A.‘. cl(nm) Hﬁ € 01 C Ly(v2) satisfies

qQ

SR = 0l < CKT (Vi + 2142 R,,(0.T,..0)

where C, € R., is a constant depending on | € N only and R;(0, T, ,v,) is the oracle rate in a
nieMM §08101.08 (see Corollary §08101.25).

§08102.35 Proof of Corollary §08102.34. Given in the lecture. O

50802.36 Illustration. We distinguish as in Illustration §08101.27 the two cases (p) and (np), where 15+ =
0, implies the case (p). In case (p) the oracle bound is parametric, that is, nR’ (4, T, 0) = 0(1),
in case (np) the oracle bound is nonparametric, i.e. lim, ., nR;(4, T,.,v.) = oo. In case (np)
consider similar to (o-m), (0-s) and (s-m) in Illustration §08/01.27 the following specifications:

Table 05 [§08]
Order of the rate R (A, T, ,v) asn Ak — oo

(squared bias) (variance)
) m 2 m\T 2 B
e —a I e RL@T.u)
(b, =m") (a € R.p) (t € R.y)
1 2y
(oom) ve(—1/2—t,a) m~2ev) M2+ (n A k)= (n ANk)” ZafzeT
- . C2a—2t—1 nAk T lognAk
vHt=—1/2 me logm (lug r:,/\k) nAk
2 1 _a-v
(0-s) a—veER, m—2ev) m1—20E=V))s gm (logn A k)2t (logn Ak)™ +
) . L 1 /\k 2L+2 +1
(sm) vt+1/2eR., miT2e)igmm® p2(ttv+l (logn A k)2a ( Ognn/\)k
20 1
v+t=-1/2 em logm (logn A k)2e W

We note that in case (o-m) and s-m) for v+t < —1/2 therate R] (4, T, , v) is parametric. The tGE
attains the rate R, , := R, (4, T, ,v) due to Corollary §08102.27 under the additional condition

(k' (me,)
" mg,, |t

Since (m;,,)°R.,(4. T,..0) = o(1) also k' (m;,, )*|| T = o(1) is necessary as n Ak — oo.
The next table depicts the order of both terms in case (o-m), (0 s) and (s-m).

me H 2 -1 < ’n BRDA (0.-'[‘“-0. ) (0825)
ofo L) AR Ak !

‘ 2

Table 06 [§08]
Orderasn Ak — o0

(0-m) (0-s) (s-m)
€ (—1/2 —t,a) a—veR,, v+t+1/2€ R,
o _2(a=v)+2 _ 2a-2v+2 1 Nk M}a’;l
() R0 Tw) | (0 AR)EFT - (logn k) llog nAR).
_ Wt e log n Ak )25
(n ARY ™ (e P2, | (0 A k)= (n A k) togn/b) =

In case (0-s) a value [ > 2 and (s-m) a value [ > 3 is sufficient to ensure (08.25) as n A k — oo. In

case (o-m) assuming a > | we have k' (m;, )*(| T, et E@) =o(1) asn Ak — oo. In this situation

we have (08.25)if2(a—1)(I — 1) > 2(a—v) +2orinequal [ > (2a —v)/(a—1). O
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§08|02|02/02 Maximal global v-risk

50802.37 Notation (Reminder). For sequences «,, ), € (I{)" taking its values in I € {IR,R_,.Z, ...} we
write ¢, € ()" and b, € (I)" if q, and b,, respectively, is monotonically non-decreasing and

non-increasing. If in addition ¢, — oo and b, — 0 as n — oo, then we write ¢, € (IX)" and
b, € (IK)} for short. For w, € (. we set w,, := [[w,[|, and w, = (W, := [[w.1"[|, );cn, where
by construction w,,, € (R.,)™. 0

50810238 Assumption. Consider weights t . a, € (]RN,)iN and v, © IR, such that (av), v, € /.,

= a,
(av), € (R.,)N, and (t/v), = t v ' € [ are satisfied. In addition there exists C,,, € (0,1] such
that for all m € IN

(t/v),_, = min {(t/v)’: j € [m]} > C,, (t/v), (08.26)

or in equal C

(t/0) 1 ||,

< (4/0)0- O

§08102.39 Reminder. Under Assumption §08102.38 we have (] = dom(M,.) = ra, C /7, and the three
measures 1, a,’y, and v’y dominate mutually each other, i.e. they share the same null sets
(see Property §04|01.02). We consider /; endowed with ||| . = [[M,.-||, and given a constant
r < R, the ellipsoid (;" := {a, € £; : ||a,|| -. <t} C £;. Since (av), [, and hence (av),, :=
[(av), "], € R, for each m € IN we have (] C /,(v?) (Property §04102.11). Consequently,
if Assumption §08/02.38 and ) < /" are satisfied, then Assumptlon §08102.18 1s also fulfilled.
Since vt & R, under Assumption §08002.38, we have [, = [[(e/0.17]], € R, for
each m € IN. Under the Assumptions §08/00.02 and §08102.38 considering the generalised link
condition T, € T, with band D € [1,00) and d € [1, D] as in Definition §0502.05 we have
suppen {IIMLIT,'L} < D, and hence [T, < D' and M T2, < DI 17
shown in (08.06) using tr([M, ) = [(o/0, 1|7 = ||t 1"[|2. Moreover, for each m € N the

generalised Galerkin solution " := Tf:”g. €01 of 6, =T g € (3" satisfies (Lemma §05/02.09)

(\\|

em, Hm,
0 g

o < allf] <aDdr and |6 - 9"’ < (D’AdC. + 1) (av o)1

Note that under Assumptions §08/00.02 and §08102.38 the link condition T € de with band
d € R., as in Definition §0501.08 implies sup,, < { [[[M,],[T,.]. ']l } < 3d° (Lemma §05I01. 22)
and hence for each m € IN we have ||M,T""[|2_ < 9d'[[¢*1."||? and the Galerkin solution "
T'g € 1 of § = T g € £3" satisfies [("||, < 3a,d’rand ||, —0"[? < (94°C,; + 1)(an)(m
(Lemma §05101.28). O

50810240 Corollary. Under Assumptions §08102.02 and §08102.38 let 6 = T“g el and'T, € T, (or
T, € T withD = 3d°), for allm,k,n € N we have

(i) FAD*[I'LI )2 < k AnthenD,, CQ .,
(i) B (tr(MT T (T *M,) e, ) < Vo (4D° [ 1|2 + (B A ) B (T ,)), and
(i) BT (T = Ta"1210..) < 4k WDl w207 )2 + B (llnie" )2 ).
with Q . and Ok as in (08.18) and (08.19), respectively.

m,kAn
§08102.41 Proof of Corollary §08/02.40. Given in the lecture. O

§08102.42 Proposition (Upper bound). Under Assumptions $§08102.02 and §08102.38 let () = T"q e (" and
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L.el,(orl, €T withD = 3d?) for all n,m € N setting similar to (08.07)

R0 6o i= [(ao)f, v (n A R) €M),
m,, = arg mln{ ol t,0) im e ]N} and
R (a.t.0) = R"(a,t,0) = min {Rmk (a,t,0):m € ]N} (08.27)
for all m € N the (generalised) tGE q" T‘”‘(Mnmg € o1 By -a.s. satisfies
B (10" — 62) < 2D*(CL2 dr® + 2w, + 4w a?Ddr?) R, (o, £, 0)

+ B () + 2B (| [ T) + AR (9,,,.,)  (08.28)

withQ) . and G, asin (08.18) and (08.19), respectively.

kAn

§08102.43 Proof of Proposition §08102.42. Given in the lecture. O

s08102.44 Corollary. Under the assumptions of Proposition §08102.42 for k,n € IN with R (a.t.v) <

1/(4D)°) the (generalised) tGE g T, e g e C 0, (02) BT -as. with Q.
(08.18) and dimension m’,, as in (08.27) satlsﬁes

as in

kAR

EG@k(Hé\mw o 0”3) (Ct/v)d2r2 =+ 2W€\T + 4WTa1D d’r ) Rt«bm(a ,t,0)
+ 2K DD (v + (a0)2 1) k7', 42 + a?DPdr? /4 )
x (i, (k7 (m,, )82 ) (08.29)

nAk nAk m;,

and if in addition
(me (k7 (m:, )’62 ) <R (a,t,0) < 1/(4D%) (08.30)
then we have

By (107 = 62) < 22KID™ (v + (a0} 1 + (C2 + @) dr®) R, (o, t,0).  (08.31)
$08102.45 Proof of Corollary §08102.44. Given in the lecture. O

s0s102.46 Remark. Arguing similarly as in Remark $07101.21 we note that || '1."[|? € R., for all m € IN
and hence R, (a..t.v) = o(1) asn Ak — oo, whenever (av),,, = o(1) asm — 00, i.e. (av), €
(IR_,). If there is in addition C € R., such that I/ < C and v,, < C forall 0, := T g € (%
and I’ < T, then from the bound (08.31) Corollary §0802.44 follows immediately

sup {Ri (10 = Q]2): T, € Tup. e 57} <R (at, )
x 2292CD"(C + (av))1” + (C.2 + a)d™r?).

Note that the dimension m’,, := m’ ,(a,t,v) does not depend on the unknown parameter of

interest 6 but on the classes ¢;* and T, only, and thus also the statistic (/9,\’";. In other words,
if the regularity of € and T.|. is known in advance, then the thresholded GE ™ is a feasible
estimator. 0

50810247 Corollary (GniSM with noisy operator §08102.08 continued). Consider independent noisy versions
G, T ) = (g +n”B, T, +k'*W,) ~ N)Y" = Nj, @ N as in Model §08102.08, where

o)1
B ~ l\ and \\, ~ Nm.l

(0,1)

are independent, T € T and () € [, and hence g = T 0

)
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dom( ) C F szen Assumption §08102.38 for each k,n € N fulfilling (08.30) the (generalised)
tGEH kAl q € o1 C L,(v2) satisfies

\
sup {Ng\l?k(||ém:Ak — 9,“:) T-\- €Tun,0 € é;u} < R‘n/\k(a7t7no)
x 2242((20 — 1)ID* (1 + (av)22* + (C,., + a?)d’r?)

where R (a,, t,,0,) is the rate in a GniSM §08101.04 (see Corollary §08101.34).

§08102.48 Proof of Corollary §08/02.47. Given in the lecture. O

§08102.49 Corollary (niSM with noisy operator §0802.10 continued). Consider independent noisy versions
(.5) = (g +n e T+ k"n.) ~ B asin Model §08102.10, where € and 7. satisfies
(SM1) with v, = [|o?, v 1 and (iSMnO1)—~niSMn02) with I = 1V [, -, respectively,
T.eTand( € (, and hence g = T € dom(T. ) C (.. Given Assumption g\08|02 38 for each

k,n € N fulfilling (08.30) the (generalised) tGE (9 "” 4|(m) Hﬁ € 1 C Ly(v?) satisfies

up (B o ([ — BT, € T € £} < R (o )
X 22”2K5(.MD (v, + (avo)fr* + (C(;f) + af)d2r2)

where R (a,,t,,0,) is the rate in a niSM §08101.06 (see Corollary §08101.36).

§08102.50 Proof of Corollary §08/02.49. Given in the lecture. O

5080251 Corollary (nieMM with noisy operator §08102.13 continued). Consider independent noisy versions
(g, T”) (g +n e, T+ k0, defined on (2" 2 W ey gs in Model §08102.13,
where ) < M2z ©2") and ®. € Mz @2v) satisfies (nieMM1)-(nieMM2) for v, € R, and
(nieMMnO1)-(nieMMnO3) for IX, < R, respectively, I < T and (] € (,, and hence g =T 0, €
dom( W) C ( leen Asmmptlon §08102.38 for each k, n € IN fulfilling (08.30) the (generalzsed)

tGE 9m =T TG e e C Ly () satisfies

sup { B (107 — 0]2): T,. € Tl € 67} <R (a1t 0)
x C,, sup {K,ZFZIW: T, € Thd,D}DQl(sup {Vyo: T, € Toan, 0 € 57} + (a0) 1 + (C,o 4+ a)d’r?)

where C,, € R., is a constant depending on | € N only and R(a,,t,,v,) is the rate in a nieMM
§08101.08 (see Corollary §08101.38).

§08102.52 Proof of Corollary §08102.51. Given in the lecture. O

$08102.53 Illustration. We distinguish again the two cases (p) and (np) given in Illustration §08/01.40
where in case (p) the bound in Corollary §08102.44 is parametric, that is, (n A k)R, (a,t,0) =
O(1), in case (np) the bound is nonparametric, i.e. lim, ,(n A k)R], (a,t,b) = oco. In
case (np) we consider similar to (o-m), (o-s) and (s-m) in Illustration §07101.44 the following three
specifications:
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Table 07 [§08]
Order of the rate R, (a,,t,,0) asn A k — oo

(G €N (a € R.y) (t € R.,) (squared bias)  (variance)
v? = @t (ao), [Cas R, (ot v)
(o-m) v e (—1/2—ta) j > | mey mAv et (n A k)= (n A k) =me
vet=ol2 g logm (joankymi | Lognak
(0-s) a—veER,, j e m-2eY) ma=2=Drem® | (Jogp A k)% (logn A k)T
2t4+2v41
(sm) v+t+1/2eR., e j m*e ™" m2vaHl (logm A k)* —(lognglj\)k i
v+t=—1/2 e 7" jH m2e " logm (logn A k)* %

We note that in case (o-m) and (s-m) for v + t < —1/2 the rate R](a,, t,, v, is parametric. The tGE
attains the rate R}, := R’ ,(a,,t,,v,) due to Corollary §08/02.44 under the additional condition

(K (2, )62 ) < (m2,,) "R, (a1, 0). (08.32)
Since (m;,, ) °R},(a,,t,0) = o(1) also K~ (m},,)’t,> = o(1) is necessary as n A k — oo. The

next table depicts the order of both terms in case (o-m), (0-s) and (s-m).

Table 08 [§08]

Orderasn Ak — o0

(0-m) (0-s) (s-m)
veE(=1/2—t,a) a—veR, v+t+1/2€ R,
2(a—v)+2 2a-2vt2 2=t
(m5,,) R, (0, b)) | (0 AR FFE (logn ARy S Cosnak) B
_ _ 2a-2 e 1 k)5
(n AR (2 )62 | (n A k)R (n A k) togn/b) =

In case (o-s) a value [ > 2 and s-m) a value [ > 3 is sufficient to ensure (08.32) asn A k — oo.
In case (o-m) assuming a > | we have k~'( Mk) t,? =o(1) asn Ak — oo. In this situation we

m,

have (08.32)if 2(a — 1)(I — 1) > 2(a—v) + 2 or in equal l > (2a—v)/(a—1). O

§08|02|03 Local and maximal local ¢-risk

We measure the accuracy of the (generalised) tGE g = Tm' ] g of the (generalised) Galerkin

solution ¢ = T"""¢ < (1" with g — T,.0. € dom(T)) by the mean of its local ¢-error introduced
in §05101102 and §05102102, i.e. its ¢-risk.

$08i02.54 Reminder. If ¢ ¢ IR, then we have o1 € (, and 1" C dom(¢y). Consequently, for each
6 € dom(sy) the (generalised) Galerkin solution §" = T m”g € 17" satisfies 0" € dom(on)
too. If in addition C, := sup {|[M,. T/ (T") o[, :me N} € R, then |gu (6" — 6)] < (1 +
C)[16,|, which implies sup {lou (6" —6)|: j e N.,,} = o(1) as m — oo (Property §05/01.31
and Property §05102.12). O

$08102.55 Comment. Under Assumption §08/02.02 we have 1" € (. BE-as. and T"' € L(4) with
Ian(T‘"") C 1™ BF-as. for each m € N. Consequently, ran(T."""") C (1" Bf-as., and

(k
T.':‘ Mg e o1 Bi*-aus., and hence

S

07” T k/\n)ﬁ/g: _ n—l/?Tf:‘(k/\")He. _|_ T.T‘T.L‘(k/\”)n'goe Fz]lzn g dom(¢l/]N) Eﬁ‘@k-a.s,. O
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§08|02|03j01 Local ¢-risk
§08102.56 Assumption. Let ¢ € RI'\;, and ¢ € dom(¢y,) be satisfied. O

50802.57 Definition. Under Assumptions §08/02.02 and §08102.56 the local ¢-risk of a (generalised) tGE
Qm = T’:‘W’“ ”Ej € 1" C dom(¢y) Br-a.s. satisfies

i (ou (@ — 0)1) = B (1on (T2 (@G — ))*) + B (lon (T2 g, = )[?) (08.33)

with B (|gn (T TG — g))[?) = n‘llE]’FkH(T.T‘(kA" Ty’ (;Sm||2 (see Property §08101.45). O

§08102.58 Property. Under Assumption §08102.02 we have

B (lou (T g =0)) = B (on (T (T =T+ (8" —6)) o) Hou (6) PR (2 ,,,)
< 2B (Jou (T (T2 = THA") o) + 2lon (0" — 0) + [ou(0) "B (2,..)

m,kAn

(since T T 1o, = TN = My T, ). O

$08102.59 Notation (Reminder). Let A € L(%,) be a Hilbert-Schmidt operator, A € HS(¢,) for short, where
A2, = tr(AA) = tr(AA) € R.p. T € L&) then tr(ATA) < [[Tf|, tr(AA) =

|Tl, ., IA[]%.. For arbitrary A € L(4.) we have M,A" = M"A" € HS(z,). 0

HS'

§0802.60 Notation. Foreachm € Nand T, € [X(¢,) we consider the observable event and its complement

~ * ‘ ¢ ~ -1 *
Qo = UATL ) (L IP <k any and Q= {lI([T.], ) [¢LI* > kAn}. (08.34)

k

. s m,m) . . . ~ 1 m,m
On the event €}, the random matrix [T, ] € R™™ is regular with inverse [T, ] € R™™.

kAn
m

Moreover, settmg AL =, TmH we introduce an unobserved event and its complement

= {4m|[AL7, <k} oand U o= {4m|| AL, > k). (08.35)

m k

Note that 15, = Tfam|iaz)2, < *} denotes an unobserved elementary random variable. O

L(e)

§08102.61 Lemma. Under Assumptions §08102.02 and §08102.56 for all m, k,n € IN we have
() if4l|(Ty ¢"[l; <k AnthenT,, CQ

m,kAn’

(i) B (T @12 o) < wn(4I(T2Y @7+ (k An)E! (D)), and

(i) B (|om (T2 (T = Ty)am)[Pae,.) < 4k we (T2 @ 2 16012 + B (e |2 1o.,).
with € and G, as in (08.34) and (08.35), respectively.

m,kAn

508102.62 Proof of Lemma §08/02.61. Given in the lecture. O

§08102.63 Proposition (Upper bound). Under Assumptions §08102.02 and §08102.56 for all n,m € IN with
(generalised) Galerkin solution 0" = Tf‘f”g. € ¢, I C dom(oy,) setting similar to (08.11)

R0 T ) = o (0" — ) + (n A k) ||( S
m,,, 1= arg min {RW 0,T,..¢):meN} and

nAk

R (0.7, 0):==R"0,T,.¢) =min{R (4.T,,¢) : meN} (08.36)
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for all m € N the (generalised) tGE g = ”/[\‘f"f‘wnm/gj € o1 C dom(éy) B -a.s. satisfies

B (on (8" = 6)1%) < (4vyr + 8u[|0"|[7 ) R (6, T,.. ¢)
+ B () + 2B (" [ 1) + lon () PR () (08.37)
withQ  and G, as in (08.34) and (08.35), respectively.
$08102.64 Proof of Proposition §08/02.63. Given in the lecture. O

§0802.65 Corollary. Under the assumptions of Proposmon §08102.63 the (infeasible, generalised) tGE
Qm?’” = T “(km)”’g\ € oI C dom(gy) B -a.s. with Q e @8 in (08.34) and (infeasible)
dimenszon me,, as in (08.36) for each k,n € Wwith R (6.7 o) < 1/4 satisfies

B (1ou (07 = 0)[2) < (4v + 8wl |2 ) R, (6, T,.. ¢)
+ 220G (v + o (O) ) K7 me 1T 2+ 16712, /4

x (me,, (k7 me, T2, ) 08.38)

L(& ))

and if in addition
(me, (k7 (me PN T2, ) < R8T ) < 1/4 (08.39)

then we have

Br" (|ou (@™ — 0)]?) < R.,.(0,T,..¢)
x (44 2K (m3,,) e + (8w + 22K 16712 + 27K (m,) 2 o (0)]7)
< 2K (v + 1072 + oy (6)2) R0, T,.. ) (08.40)

§08102.66 Proof of Corollary §08/02.65. Given in the lecture. O

§0802.67 Remark. Consider m’,, = arg min {RW 0,T..¢) :me ]N} andR;,(4,T,.,¢) = W(@ T..®)
as in (08.36). Arguing 31m11ar1y as in Remark §07/01.21 we note that H( e H2 € R, for all

m € IN and hence R, (0,T,.¢) = o(1) as n A k — oo, whenever o1 (0" — H)\ = o(l) as
m — oo (c.f. Remark §05|01 05) In this situation if sup 7 ime N} < I, € R, then
from (08.40) in Corollary §08102.65 follows

Bh (lom (@™ — Q)2) < 227K (v + Ko + [0 (8)]%) R0, T, ).

However, the dimension m?, = m, (6, T, ¢) as defined in (08.11) depends on the unknown

parameter of interest €] and the nuissance parameter T, , and thus also the statistic 6. In other
words 6™ is not a feasible estimator. O

508102.68 Corollary (GniSM with noisy operator §08/02.08 contmued) Consider independent noisy versions
®IN

(g.,T") = ((/+72 B, T, +kPW,) ~ N =N, @N; as in Model §08102.08, where B, ~ N,

o|T o|T
and \;\:‘_ ~ NUIT are independent, T, € T and ¢, € (., and hence g = T 0, < dom(T,) C /..
Given Assumption §08102.18 for each k n € N fulfilling (08.23) the ( mfeaszble generalised) tGE

g =T g e 1 C domi(ey) satisfies

N3 (g (07 — B)?) < 2((20 — ) (1 + ]

Z + |¢V1N(9°)|2) Rn/\k(a T\ 7¢)

where R (0,T,., ¢) is the oracle rate in a GniSM §08101.04 (see Corollary §08101.51).
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§08102.69 Proof of Corollary §08/02.68. Given in the lecture.

O

§08102.70 Corollary (niSM with noisy operator §0802.10 continued). Consider independent noisy versions

(9.5) =

T.e€ T and 6, € [, and hence g

each k,n € IN fulfilling (08.39) the ( mfeaszble generalised) tGE 9

dom(<z$z/[N satisfies

E&%\Z\M ( | )78 (Qm:w

(g +n e, T +k'°n,,) ~

n®k
E

T|o|gle?

~as in Model §08102.10, where ¢, and n),, satisfies
(SM1) with v, = ||o?[], Ul and (niSMnO1—niSMn02) with K., := 1V [|€7],

respectlvely,

=T, 0 € dom(T),) C /.. leen Acsumptlon §08102.56 for

. Q)|2) < QQHZKZZ‘) (Wg + ||Qm:m

ael(kAn) |T§ c f]lm " C

2+ [ou(0))°) R, T,.. 4)

where R, (0, T,., ) is the oracle rate in a niSM §08101.06 (see Corollary §08101.53).

§08102.71 Proof of Corollary §08102.70. Given in the lecture.

O

50810272 Corollary (nieMM with noisy operator §08102.13 continued). Consider independent noisy versions

(g, T“) — (g +n e T+ k) defined on (2", 2 B as in Model $08102.13,
where 1) N(Z ©2") and @. € Mz ©2V) satisfies (nieMM1)-(nieMM_2) for v, © R, and
(nieMMnO1)-(nieMMnO3) for I, € R, respectively, I < T and 0, < [, and hence g — T, CAS
dom(T),) C /,. leen Assmnptlon §08102.56 for each k n € NN fulfilling (08.39) the ( mfeaszble
generalised) tGE grin = "” ARl € 1 C doml(ey,) satisfies

B (|ou (8" = 0)) < CKE, (my + 107

2+ [ou(0)]*) R, ,(6.T,.. ¢)

where C,, € R., is a constant depending on | € N only and R;(0,, T, , ¢) is the oracle rate in a
nieMM §08101.08 (see Corollary §08101.55).

$08102.73 Proof of Corollary §08102.72. Given in the lecture. O

s08102.74 Illustration. We distinguish as in Illustration §08101.57 the two cases (p) and (np), where (p) is

implied by 415 = 0. In case (p) the oracle bound is parametric, that is, nR (6, T, ., ¢) = O(1),
in case (np) the oracle bound is nonparametric, i.e. lim,_,., nR;(0, T, ,¢) = oco. In case (np)
consider similar to (o-m), (0-s) and (s-m) in Illustration §08/01.57 the following specifications:

Table 09 [§08]

Order of the rate R, (A, T, ,¢)asn Ak — oo

(squarred bias) (variance)
! nm 2 ml’r m ()2 .
v @ -0 NTER | . RL@T.9)
(6 =m"'%) (a€R.) (t e ]R, o)
(o-m) v e (—t a) m2e-v) maty (n A A)+ (n A k)
_ nAk e lognAk
v=—t m2 ey log m < log n Ak ) nAk
- 1 _a—v
(0-s) a—veER, m 2@ M2+ em (logn AEk)2 (logn Ak)™ ¢
2 L 1 k)E
(sm) viteR., m(1—4at2v)s pmm 2t (logn A k)2 %
2 a1
v=—t a2 g-m logm (logn A k)2 logls%/\k

We note that in case (o-m) and -m) for v < —t the rate R], (4, T, , ) is parametric. The tGE
attains the rate R, , := R} (4, T,., ¢) due to Corollary §08/02.65 under the additional condition

(6 g SN2, ) < (e, ) R (6 T ) (08.41)
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Since (m;, )R, (6, T,,¢) = o(1) also k™' (m;, )*|| T et f(&) = o(1) is necessary as n Ak — 00.

The next table depicts the order of both terms in case (o-m), (o-s) and (s-m).

Table 10 [§08]
Orderasn A k — oo

(0-m) (0-s) (s-m)
v € (—t,a) a—veR., v+te R,
o _2(a=v)42 __2a—2v42 log n Ak zt+2v 2
(m2,) R (0, T,0) | (n A k)RS (logn a k)5 (osnak) =
me |t _2a-3 —c lognAk) 2
(n AR e, PITE 2, | (o ak) 55 (n A k) UognAk)

In case (o-s) a value [ > 2 and s-m) a value [ > 3 is sufﬁcient to ensure (08.41)asn Ak — oo.
In case (o-m) assuming a > 3/2 we have kfl( me,, )| Tl w> = o(1) asn A k — oo. In this
situation we have (08.41)if (2a—3)(l—1) > 2(a—v)+2orinequal [ > (4da—2v—1)/(2a—3). ©

§08|02|03j02 Maximal local ¢-risk

508102.75 Assumption. Consider weights ¢, a, € (IR l,)iN and ¢ © IR, such that (a0), == a0 € [, and
(at) :=at, € (R,(,)wﬂ,\‘. o

5080276 Comment. Assuming ., € (R_,)" and hence (at)’ € (R.,)" is rather weak. If in addition
lim inf (at) > ¢ € R, is satisfied, and hence (at)], a’, £ ¢ (R.,)", then a? & (R.,)N and the

j—oo
assumption (a¢), € /, implies ¢ € /,, which together with £ ¢ (R.,)" implies (¢/t), € (,,
and thus the rate R} (a,, t,, ¢) is parametric (Illustration §08101.72). Since we are interested in the

case of a non-parametric rate, the additional assumption (at)’ € (R )" imposes a rather weak
condition satisfied also in Illustration §08101.72. O

102

$0802.77 Reminder. Under Assumption §08102.75 we have /] = dom(M,.) = ra, C /, and the three
measures 1, o’y and |¢|y, dominate mutually each other, i.e. they share the same null sets
(see Property §0401.02). We consider /; endowed with ||-[|. . = ||M,.-[|, and given a con-
stant 1 < IR, the ellipsoid /" := {a, € £ : [la] - < r} C €. Since (a0), € /[, we
have /; C dom(¢y) (Property §04102.23). Consequently, if Assumption §08102.75 and ¢, € ("
are satisfied, then Assumption §08/02.56 is also fulfilled. Moreover, from (ao), € /, follows

o, 1], = l[(@e) 1, = o(1) as m — oo. For s € [0,1] from (at), = at € (R.o)N
follows (at'), = ((at), = (at),,, = [[(@)I""]|, Jmen € (R.,)N. Since o.t, ¢ IR, un-
der Assumption §08102.75, we have 1" C dom(eéx) and ["1"[|, = [|(¢/t)1"[|, € R, for

each m € IN. Under the Assumptions §08100.02 and §08/02.75 considering the generalised link
condition T, € T, with band D € R., and d € [1,D] as in Definition §05002.05 we have
supyen{ (T, ML} < D, and hence

T2 ¢ 1, = ML Tl = (T, MLME gL

< ML) LI IMe L (gLl < DIJE (|, (08.42)
using [[[M..],[¢].[| = [[£"L"]|,. Moreover, for each m € NN the generalised Galerkin solution
Q" = Tf"f”g. el of § = Tf‘.g. € (;" satisfies (Lemma §05102.14)

o3 (6" — )| < DA(DA + 12 ([l 22 + (@t 1€ 27 2). (08.43)

Under Assumptions §08/00.02 and §08/02.75 the link condition T, € T, withband d € R., as in
Definition §05/01.08 implies sup,, cn{ || ([T.\.E)*U\”LLHspc(.} < 3d’ (Lemma §05101.22), and hence
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for each m € IN we have (08.42) with D = 3d” and the Galerkin solution 6" := T.Tf”g. € 1" of
6, =T, g € {;" satisfies (08.43) with D = 3d” (Lemma §05/01.34). 0

50810278 Corollary. Under Assumptions §08102.02 and §08102.75 let 6, = T;“‘.((j. c (" and L.e L., (or
T, € T withD = 3d°), for allm,k,n € N we have

@) if4D2Htj1]K"H2 k AnthenS,, CQ

m,kAn’

(if) B (|I(T") GIE To) S wa(AD* T3 + (k An)B(U,)), and

m,

(i) B (lon (T (T = T)a) o) < 4k wDP L0207 )2 + B (e ) Lo ).
with Q. and G, as in (08.34) and (08.35), respectively.

N
§08102.79 Proof of Corollary §08102.78. Given in the lecture. O

508102.80 Proposition (Upper bound). Under Assumptions §08102.02 and §08102.75 let 6 := T‘q € (" and
L.oel,(orl, T;, withD = 3d2)f0r alln,m € N setting similar to (08.15)

R tg) o= [l |15 + (n AR,
m’,, =arg min {R], (a,t,¢):m € N} and
R (0. t.0) =Rl(a,t,¢) = min {R], (a,t,¢) :m € N} (08.44)

for all m € NN the (generalised) tGE g TKM")HA € 1" B -a.s. satisfies

Bi (|0 (8" — )°) < 4D°((1V @], (n A R))AP + vy + 2@ D'd'r) R, (a6, ¢)
B (U,) + 2B (| 4" [ 1) + [on ()BT (Q,,,)  (08.45)

withQ . and G, as in (08.34) and (08.35), respectively.

N

§08102.81 Proof of Proposition §08/02.80. Given in the lecture. O

$08102.82 Corollary. Under the assumptions of Proposition §08102.80 for k,n € N with R’ (a.t.,0) <
1/(4D)°) the (generalised) tGE g = Tt e C domi(en) B -as. with Q.

|o my,. kAN

in (08.34) and dimension m,, as in (08.44) satzsﬁes

as

B (lon (@™ = 0)) S AD (AP + o + 20t D'dY) R, (a0, 4,0)
+ 2B D" D (v + [l 22%) &y 82+ @D’ /4
x (mg, (K (mg,, )60 ) (08.46)
and if in addition
(m (K (m:, )62 ) <R (a,t, ¢) < 1/(4D%) (08.47)
then we have

B (o (@ — 0)P) < 2D (v + 22 + (1V @) dP)R, (0 o). (08.48)

§08102.83 Proof of Corollary §08/02.82. Given in the lecture. O
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$0802.84 Remark. Arguing similarly as in Remark §07101.56 we note that [[{'1"||, € R., forall m € IN
and (||@T"[|2 = o(1) as m — oo (since (a0), € /,), and hence R (a,,t,¢) = o(1) as n — oo.

If there is in addition C € R., such that K] < Candv,, < C forall ¢ := T g € (" and
1. € T, then from the bound (08.48) Corollary §08102.82 follows immediately

sup {Bh (o (@™ = Q)?): T, € Toun, 8 € 7} < R (0,4, 0)
x 22CDY(C + [|a[2r* + (1 V af)d’r?).

Note that the dimension m’,, = m’ ,(a,t,¢) as defined in (08.44) does not depend on the

nAk

unknown parameter of interest €, but on the classes ¢;* and T,,,, only, and thus also the statistic
9 . In other words, if the regularity of §, and T, is known in advance, then the thresholded GE

4" is a feasible estimator. O

508102.85 Corollary (GniSM with noisy operator §08102.08 continued). Consider independent noisy versions
(G, T L o= (g +nY B, T, + k'2W,)) ~ Nii¥ = N, @ Ny as in Model §08102.08, where

B ~ N " and \\ ~ \IM’ are independent, T, € T and ) € [, and hence g = T 0

1)

dmn( ) C l,. szen Assumption §08102.75 for each k,n € N fulfilling (08.47) the ( generallsed)

tGE Q = T.’: ‘(Mnm/g\. € 01" C dom(ey,) satisfies

sup {N;7 (16" = 6)2): T, € T, € £} < R (0,8, )
x 220220 = MDY+ [la 3 + (1 v a?)d’r?)

where R (a,,t,, @) is the rate in a GniSM §08101.04 (see Corollary §08101.66).

$08102.86 Proof of Corollary §08102.85. Given in the lecture. O

$08102.87 Corollary (niSM with noisy operator §0802.10 continued). Consider independent noisy versions
(0.5) = (g +n e, T+ k") ~ B . as in Model §08102.10, where € and 1), satisfies
(iSM1) with v, = ||| ¢V 1 and (niSMnO1)~(niSMn02) with KZZ =1V HE(‘Z”H t respectively,
T.e Tand? € [, and hence g = T 0, € dom(T.) C (.. Given Assumption §08102.75 for
each k,n € N fulfilling (08.47) the (generalised) tGE " = Tf‘" Al e 1 € domi(en)

satisfies

sup {B&i]\vg\w“(uamﬁ - 9“3) T.|. € Tup, 0 € Eg’r} < R’:mk(aﬂ £, ¢)
x 20K DY (v, + ||a,||§)r2 + (1 Vv a?)dr?)

where R (a,, t,, @) is the rate in a niSM §08101.06 (see Corollary §08101.68).

§08102.88 Proof of Corollary §08102.87. Given in the lecture. O

508102.89 Corollary (nieMM with noisy operator §08102.13 continued). Consider independent noisy versions
(G.T.) = (g +n e T, + k0, defined on (2" 27" B as in Model §08102.13,
where ; © N(2 2 and € N2 ©2%) satisfies (nieMM1)-(nieMM2) for v, € R, and
(nieMMnO1)-(nieMMnO3) for K, € R.,, respectively, T.,eT and () < [, and hence g — T, 0 e
dom( W C é Given Assumpnon §08102.75 for each k, n € NN fulfilling (08.47) the ( genemlzsed )

{1GE " = T, k“kmqu\ € ¢, 1™ C dom(oy,) satisfies

sup { By (10" — 0)*): T,. € Tuun,th € £} < R, (01,8, 0)
x Cysup { K i T, € Touo JD*(sup {¥ymi T € T, @ € €07} + [la 32 + (1 V a})d'T)
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where C, € R., is a constant depending on | € IN only and R(a,,t,, ¢) is the rate in a nieMM
§08101.08 (see Corollary §08101.70).

$08102.90 Proof of Corollary §08102.89. Given in the lecture. o

§08102.91

§09100.01

Hlustration. We distinguish as in Illustration §08/01.72 the two cases (p) and (np). Interestingly,
in case (p) the bound is parametric, that is, nR(a,,t,¢) = O(1), in case (np) the bound is
nonparametric, i.e. lim, ., nR(a,t,¢) = co. In case (np) consider similar to (o-m), (o-s) and
(s-m) in [1lustration §08/01.72 the following specifications:

Table 11 [§08]
Order of the rate R, (a,,t,¢) asn A k — o0

(j €N (a € R.y) (t € R.y) (squarred bias)  (variance)
C?j =g a; £ | a.]linuH; L ; M, 5 R’:z/\k(aﬂ t,9)
(oom) v € (—t,a) j = 52 m~2v) m2Ta (n A k)= (n AE) =
= —t joe G2 2@t log m (IU:,AIAN)% IorgLZI/c\k
(0s) a—veR, j ™ e m 2 m2Vrem™ | (logn Ak)* | (logn Ak) T
(sm) v+teR., e J e m2vr2 (logn A k)= 7(1%22:)%
vt e g | e logm (logn A k)% | REERAR

We note that in case (o-m) and s-m) for v < —t the rate R’ (a,, t,, ¢) is parametric. The tGE attains
the rate R}, := R}, (a., ., ¢) due to Corollary §08/02.82 under the additional condition

nAk ‘nAk

(K (m2, )62 )7 < (m2,,) "R (a4, ). (08.49)

m;,

Since (m,, )R}, (e, t.,¢) = o(1) also k' (m;,,)’t,” = o(1) is necessary as n A k — oo. The

nAk i

next table depicts the order of both terms in case (o-m), (0-s) and (s-m).
Table 12 [§08]
Orderasn Ak — o0

(0-m) (0-s) (s-m)
v E (—t,a) a—veR, v+teR,,
2(a—v 2 2a—2v+42 %ﬂt’iz
(m2, )R e tn) | (AR EES (logn k) RES (s B
_ _ _2a-3 —c It k 2t
(n AR (m )62 | (oA k)RR (n A K) Loen ™

In case (0-s) a value [ > 2 and (s-m) a value [ > 3 is sufficient to ensure (08.49) as n A k — oo. In
case (o-m) assuming a > 3/2 we have k7'(m?,,)*t,2 = o(1) asn A k — oco. In this situation we

nAk m,

have (08.49) if (2a—3)({ — 1) > 2(a —v) + 2 orinequal [ > (da—2v —1)/(2a — 3). O

§09 Spectral regularisation estimator

Notation. Consider the measure space (J, ¢ ,v) and the Hilbert space J = L,(v) as in Nota-
tion §01101.01. We suppose that U € L(H,J) and V € L(G,J) are surjective partial isometries,
hence VV* = id; = UU”. As in Definition §03100.08 we denote for A := VTU* € L(J) its
Moore-Penrose inverse by A2 J D dom(A) — . O

§09100.02 Assumption. For J — [L.(v) let U ¢ L(H.J)and V € [(G.J) be surjective partial isometries

fixed and presumed to be known in advance, let T € [(1.G), hence A = VTU" € L(J) with
Moore-Penrose inverse A’ : J O dom(A) — J and let q € dom(A"), and hence § = A' ged. o
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§00100.03 Reminder. Under Assumption §09100.02 we consider ¢, ¢ J and A < [.(J) and hence g = Af €
ran(A) C dom(A). Let {r,: a € (0,1)} be a collection of real-valued Borel-measurable functions
defined on [0, || T, ||? | satisfying (see 506102.01)

(sR1) forall @ € (0,1) there exists C, € R, such that |r (x)| < C, forall z € [0, [|A|? ],

L)

(sR2) forall z € (0, [|A[|?, ] holds |1 — a1, (2)| = o(1) as @ — 0, and

(sR3) there is K € R., such that |1, (v)| < K forall z € [0,[|A[|? ] and o € (0,1),

Then the collection {R, := 1 (A"A)A" € L(J): a € (0,1)} of operators is called spectral regulari-
sation of A" J D dom(A) — J. 0

§09|01 Statistical inverse problem

50901.01 Assumption. Consider a random function § € M(+,%.,) on a measurable space (2, .o7) with
values in J (Definition §01101.17). Let Assumption §08100.02 be satisfied where A < [.(J) is
known in advance. For () ¢ J, hence image g = Af, € J, and probability measure B, € #/ (<)
on (€2, </) the random function g has a finite second moment (i.e. I, (/[7[7) € R.,). O

$0901.02 Definition. Under Assumption §09101.01 for ¢, € J, A € [(J), and a continuous spectral regu-
larisation {R, := 1 (A"A)A" € L(): a € (0,1)} of A’ as in Definition §0602.01 we call " = R
spectral regularisation estimator (sRE) of . 0

50901.03 Comment. Since g = Af, € dom(A) and hence = A q the spectral regularised approximation
6" =R g =r,(AA)Ag € J converges to f, as « — 0, i.e. the approximation error ||)" — €|,
converges to zero as & — 0 (compare Proposition §06102.02). 0

§09|01/01 Global risk

$0901.04 Lemma (J-consistency). Let {Ra =1 (AA)A € L1): a € (0, 1)} be a continuous spectral reg-
ularisation of A as in Definition $06102.01. Assume Definition $06102.01 (sR1) and (sR2), and in
addition replace (sR3) by

(sR3a) forall s € [0, 1] there exists K, € R., such that x*|r (z)| < C.o*™" forall x € [0, HAHE(&)]
and o € (0,1).

Under Assumption §09101.01 a sSRE g = R,q of § = A'g € J satisfies for all a« € (0,1)

Ba(l6" —A2) < 2K .0 B (I[g — al?) + 216" — 6] (09.01)
If g is a J-consistent estimator of g, that is I\ (||g, — ) = o(1) as n — oo, then

BL(|6" = 0]%) = o(1) asn — oo
for any sequence (o, )new such that o, = o(1) and o' B\ (||g — g |I3) = o(1) as n — oc.

509101.05 Proof of Lemma §09101.04. Given in the lecture. |

$09101.06 Reminder. Given A € [.(J) let {Ru =1 (ANA)A € L) a € (0, 1)} be a spectral regularisation
of A" : J D dom(A) — J as in Definition §06102.01. Assume Definition §06102.01 (sR1), and
(sR3), and in addition replace (sR2) by
(sR2a) there are s, € R., C, € R, for all s € [0,s] such that 2*|1 — zr (z)] < C,o* for all
x €0, HAHE(J)] and o € (0,1).
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For () ¢ J, g = Al € dom(A), and o € (0.1) consider " = R g = r(AA)Ag € J. If
§ = A'g € J fulfills a source condition as in Definition §06/02.05, that is, there are s < [0, 25 |
and /i, € J such that () — (A*A)"”"Qh, orin equal ¢} € ran((A'A)"), then we have

due to Proposition §06102.06. O

0" — 0, < ok, Yae€(0,1) (09.02)

$09101.07 Corollary. Let the assumptions of Lemma $0901.04 be satisfied and in addition let (sR2) be
replaced by (sR2a). If§, = A’ g, € J fulfills a source condition as in Definition §06102.05, that is,

there are s 0,25 | and h, € J suchthat 0, = (A"A )], then the sSRE o = R, g of 0 = ANgeld
with o, = (B.(1g = g 15)""" fulfitls

R0 =6l < 2K, + C,

[B3) (Bl — 1)) (09.03)

§09101.08 Proof of Corollary §09101.07. Given in the lecture. O

$0901.09 Reminder. Given A € [2(0), i.e., A is positive definite, we eventually consider as in Nota-
tion §06102.19 a spectral regularisation {R, :=1,(A) € L():a € (0,1)} of A’ for a given collec-
tion {r,: @ € (0,1)} of real-valued Borel-measurable functions defined on [0, [|A |, , ] satisfying
(sR17) forall @ € (0,1) there exists C, € R., such that |1, (z)| < C, forall z € [0, [|A[|, ],
(sR2’a) there are s, € [1,00) and C, € R, for all s € [0,s] such that 2°|1 — zr (z)| < C,o’ for

allz € [0, [|A]l,] and o € (0,1),

(sR3") thereis K € R., such that |1 (z)| < Kforall = € [0, |Al| ] and o € (0, 1).
We consider the spectral regularised approximation " = R, g =1,(A)g € Jof § := A'q € J for

g € dom(A). Under Assumption §09101.01 we call éa = R, g spectral regularisation estimator
(sRE) of 6. o

50901.10 Lemma (J-consistency). Given A € L(J) let {R, :=1,(A) € LU): a € (0,1)} be a continuous
spectral regularisation of A' as in Notation $06102.19. Assume Notation $06102.19 (sR1°) and
(sR2’a), and in addition replace (sR3") by

(sR3’a) forall s € [0,1] there exists K, € R., such that v°|r,(v)| < K.o*™' forall v € [0, ||Al|,,)]
and o € (0,1).

Under Assumption §09101.01 a sSRE g = R, g of § = A'g € J satisfies for all o € (0,1)
B (167 = 0113) < 2KaBu(llg — gl3) + 216" - al? (09.04)
If g is a J-consistent estimator of g, that is (/g — ¢|?) = ol(1) as n — oo, then
BL(18" = 0]3) = o(1) asn — oo
for any sequence (o,)nen such that oo, = o(1) and o;°B\(||q, — g.||Z) =o(1) as n — oc.
§0901.11 Proof of Lemma §09101.10. Given in the lecture. O

s0o01.12 Reminder. Given A € [-(J) let {Ri\ =1 (A) € L) a € (0, 1)} be a spectral regularisation of
A" : J D dom(A) — J as in Notation §06102.19. Assume Notation §06/02.19 (sR1°), (sR2’a), and
(sR3"). For ) ¢ J, g = Al € dom(A),and o € (0.1) consider " = R g =1, (A)g € J. If

120 Statistics of inverse problems



§09 Spectral regularisation estimator Chapter 3 Regularised estimation

6 = A g € J fulfills a source condition as in Definition §0602.05, that is, there are s < [0, 2s |
and /,, € J such that (, = A'/, orin equal ) € ran(A’), then we have

6" —all, < Ca'llh]l, Va e (0,1) (09.05)
due to Proposition §06102.20. O

50901.13 Corollary. Let the assumptions of Lemma §09101.10 be satisfied. If § = Al g € J fulfills a source
condition as in Definition §06102.05, that is, there are s < |0, 2s | and h, € J such that (, = (A)'h,

then the sRE (" = R gof=Ag e dwitha, = (B.(]q — gHj))U(Z“s)fulﬁlls

B (16" — %) < 20K + ClI)2) (B (llg, — gl2)) 7. (09.06)

§09101.14 Proof of Corollary §09101.13. Given in the lecture. O

§09|01/02 Maximal global v-risk

§0901.15 Assumption. Consider the separable Hilbert space J = L,(J, 7,v) with o-algebra ¢ over J
containing all elementary events { J }, j € J,and all events [m] := [-m,m|NJT, m € N,
and with o-finite measure » € .7, ( 7 ) such that v([m]) € R, for all m € IN. Let Assump-
tion §09100.02 be satisfied where A < [.(J) is known in advance. For ¢/ € J, and hence image
g =Af € J,let B, € # (<) be a probability measure on (2, o/). Consider a stochastic pro-
cess £ = (£ );c7 on (£, o) satisfying Assumption §01101.04 (i.e. & € M(~ = »)) which for each
¢ Jand A € [L(J) in addition fulfills
(Slpgl) 6/ 6 Ll(]:)/ \) = Ll(Q7M7IB\A) fOI' all] 6 j al’ld ]P/)‘\ (6.) — (]B \(El))le‘] — ()-,

(SIPg2) V4 1= B, (€2) := (v := B.(€));er € L (v) and
(SIPg3) 1" € L (v) B,-a.s., for each m € IN.

Given a sample size n < IN the observable noisy image with mean ¢ = Af) ¢ J takes the form
¢ = g +n '"c. We denote by 2, the distribution of g. O

$0001.16 Comment. Under Assumption §09101.15 we have 1" € J B,-a.s.. Since ¢ < J, and hence
g" = g 1" € J (Property $04103.09), it follows

-~

gr=g1r =n"%61" +gre J Rli-as.. (09.07)

If 7 C 7 (at most countable) and v, is the counting measure over the index set J then As-
sumption §01101.04 and (SIPg2) v** = I, (&) € () implies the additional assumption (SIPg3)
el" € L. (1) B:-a.s.. However, the last implication does generally not hold, if 7 < {R, R}
for example. O

$0001.17 Assumption. Consider v, € M_, (/)L _(v),and fort € R_,,a € (0,t] sett := o' and a, := v?
where t,,a, € M., () NL.(v) and hence v(N,) = v(N)) = v(N,) = 0. 0

$0001.18 Reminder. Under Assumption §0901.17 we have J* = [°,(v) = dom(M,.) = ya, = L,(a.;*») and
the measures v, v’v, £ and a; v dominate mutually each other (see Property §04101.02). Conse-
quently, J* € J = [,(v) and J* C [L,(v/v) (Property §04102.11) since (av), = v/™ € L_(v). We as-
sume in the following that ) € J satisfies an abstract smoothness condition (Definition §04102.12),
ie, thereisr € R., such that 6, € J** = {h, € J*: ||h,|| .. <1} C J* C J. Under Assump-
tion §0602.11 by Corollary §0501.14 (see Comment §05101.16) if A € T, (or in equal (A"A)"* €

T..) then (i) forany , € J* we have § = (A'A)*"h, with |||, < d"*[|6]| ., and conversely
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(ii) forany ¢, = (A'A)"“'h, with /. € [,(») we obtain ¢, € J* with ||| -, < d""||A.]|,. In partic-
ular since (ta), = v/ € M, (#)NL (v)if A € T ,and ¢, € J*, then due to Corollary §06102.13
we have g = Af € J', 0

5090119 Notation (Reminder). For sequences .., € (IX)" taking its values in X € {R. R ,, Q. 7, ...}
we write ¢, € (I()" and /, € (I)" if @, and b, respectively, is monotonically non-decreasing

and non-increasing. If in addition ¢, — oc and ), — 0 as n — oo, then we write o, € (]K) N and

b, & (IK)]) for short. For w, € () we set w,, := [[w.[|,_,, and w, = (W, := [W. 2" ]|, )jen
where by construction w,, € (R..)". O

$0001.20 Corollary. Under Assumptions §09101.15 and §09101.17 setting for n,m € IN

R((at),) :=[(a at),, vV n 'm], m’ :=arg min {R:l((at)_) tm € ]N}
and R ((at)) := R"((at),) = min {R]((at),) : m € N} (09.08)

and ||V < v, € R, for A € T, and forall (, € J*, hence g = Af) € dom(A) C J, the
orthogonal projection estimator (OPE) g := g 17" fulfills

BL(lg — g” ) < (Vyu + d’r ) R((@),) VYm,n €N

and hence BA([37 — g12) < (v, + d12) R((a0)).
§09101.21 Proof of Corollary §09101.20. Given in the lecture. O

Consider the OPE g := g 1" for the orthogonal projection g = g1" € 1" of ¢ = Af €
J. Given a continuous spectral regularisation {R, :=r (A A)A eLU):ace(0,1)} of A" as in

Definition §06/02.01 We measure the accuracy of the sRE 4" =R g g of = Alg € J by the
mean of its global v-error introduced in §04/03/01, i.e. its v-risk.

§0001.22 Proposition. Under Assumptions §09101.15 and §09101.17 with ||V’ "\HLM < vy, € R let
{Rﬂ =1 (AA)A € L(): a € (0, 1)} be a continuous spectral regularisation of A" as in Defini-
tion §06102.01 and in addition replac/g (sR2) and (sR3) by (sR2a) and (sR3a), respectively. Consider
form € Nand o < (0,1) the SRE Q™™ =R g If 0, € )" and A < T, then for all m < I\ and
a € (0,1) we have

]B&(Haa’m - 9||§q) < [@* 7 v o R (00
% 2 R KL ey (o + A1) . (09.09)

(g-+a)/(2t)

509101.23 Proof of Proof $09101.23. Given in the lecture. O

09101.24 Corollary. Under the assumptions of Proposition §09101.22 the SRE éa:’m: = R,.q™ with m;,
and R (v7*) as in (09.08) (Corollary §09101.20 using (at), = v***) and o := (R} (00™))" @+ for
all n satisfies

(I = 812) < (R()) 0/

X 2d2‘q'/t{C deH 2y Kim)/ @) (Vya + d'r >} (09.10)

(g+a)/( 20

$09101.25 Proof of Corollary 09101.24. Given in the lecture. O
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Chapter 4

Minimax optimal estimation

We present a general approach to derive lower bounds and thus in com-
bination with the upper bounds Chapter 3 establish minimax optimality.

Overview
§10 Minimax theory: a general approach . . . . . .. .. ... ... .. ...... 123
§11 Derivingalowerbound . . . . . . . .. .. ... .. ... ... ... 127
§11101 Lower bound based on two hypothesis . . . . . . ... ... ... ... 128
§11102 Lower bound based on m hypothesis . . . . .. ... .. .. ..... 133

§10 Minimax theory: a general approach

Suppose that the function of interest 6 belongs to a class © C H. For each noise level n € IN
let R" := (B")pco denote a family of probability measures and let IE" be the expectation with
respect to the measure B" in '. Moreover, we assume that the probability measure associated
with an observable quantity belongs to 2.

§10100.01 GASM (§01103.06 continued). Given ¢, = L,(N,2", 1) consider a Gaussian direct sequence model
(GdSM) as in §01103.06. Here the observable stochastic process 5 —0+n'B~N'isa noisy
versionof , € © C /,and B ~ \Tﬁ'f Consequently, g admits a N, -distribution belonging to the
family N; := (N, )gco. Summarising the observations satisfy a statistical product experiment
(R, 2" N!) where © C (,. O

Assume furthermore, that an estimator § of § based on observable quantities is available which

takes its values in H but does not necessarily belong to ©. We shall measure the accuracy of any
estimator € of # by its distance ?,(6,6) where 0+, ) is a certain semi metric to be specified

ist ist

below. Moreover, we call the quantity B" (92 (6, 6)) risk of the estimator 0 of 6.

ist

$1000.02 Definition. Given an estimator 8 of a function of interest 6 belonging to a class of solutions ©
based on observable quantities with probability measure B" € R" we call

ist

RIG10] :=sup {B"(2%(6,0)): 6 c 0}
its maximal risk over ©. O

§1000.03 Remark. An advantage of taking a maximal risk instead of a risk is that the former does not
depend on the unknown function ¢. Imagine we would have taken a constant estimator, say
6 = h, of 6. This would be the perfect estimator if by chance § = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. m
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§10100.04 Definition. Consider a maximal risk R [«|©] over a family " of probability measures. Let 0
be an estimator of € ©, C € R, and foreachn € N let R} € R., satisfy

(lower) R’ is a lower bound up to the constant C~' of the maximal risk over O, that is
infR[§]0]>C 'R,
0

where the infimum is taken over all possible estimators of 6;

(upper) R is an upper bound up to the constant C of the maximal risk over O, that is

Rl016] < CR;

Then we call R minimax-bound and the estimator 6 minimax-optimal (up to the constant C). As
a consequence, up to the constant C* the estimator 6 attains the lower maximal risk bound that

is, R[d]0] < C’infz R[d]0O]. O
§1000.05 Remark. We call a minimax-bound (R),en a minimax-optimal rate (of convergence) if in
addition R} = o(1) as n — oo. It is worth noting that a minimax-optimal rate is not unique
since every other rate that is equivalent of order is also minimax-optimal. m
§1000.06 dSM (§01103.05 continued). Given /, = [,(IN,2", 4 ) consider a Direct sequence model (dSM) as in

§01103.05. Here the observable stochastic process ¢, = ¢} -+ '/“< is anoisy version of (, € © C /,
and € ~ ;" where

(SM:ub) forg € X C ]R M/ and P < 7/ (#) we have Pe =P forallj € IN,

Under (SM:ub) /0\ admits a ) -distribution belonging to the family I%Xz :: (Bl)gco qex- Sum-

marising the observations satisfy a statistical product experiment (]R B  R'.) where © C /,
and > C ]R Nne, O

More generally, given a class of solutions O, a class of nuissances parameters = and a noise
level n € N let B2 := (B;)sco cc= denote a family of probability measures. Moreover, we
assume that the probability measure associated with an observable quantity belongs to ..
Note that dismissing in Model §10100.06 compared to Model §10/00.01 the assumption of a known
sequence of variances ¢ the class of nuissances parameters = equals 3.

5100007 Definition. Given an estimator 6 of a function of interest § belonging to a class of solutions ©
based on observable quantities with probability measure B, € .- we call

R610,=] :=sup { B} (2( 9 0):0c0.,6e2}
its maximal risk over © x =. O
§1000.08 diSM (§01104.08 continued). Given /, = L,(N,2%, 1) and ¢/, = L_(N,2", 4 ) consider a Diagonal

inverse sequence model (diSM) as in §01104.08 where s, € ( _ 1S known 1n advance. Here the
observable stochastic process § = ¢ -+ n '/“¢, is a noisy version of ¢ = 50 < /, with (|, =
sig € ©C(and & ~ @, P, where & satisfies (SM:ub) in Model §10100.06 for ¥ € R, 1 (_.
Under (SM:ub) g admits a )| -distribution belonging to the family B, (w15 :: (Bu.)aco aes-
Summarising the observations satisfy a statistical product experiment (R B P{L .. ) where
(,)Q(zandzgﬂ{uﬁ(\. O

Given some transformation T defined on H let the probability measure associated with an
observable quantity belong to a family of probability measures B’ 1,.= := (Bjr¢)oco cc=.
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$1000.09 Definition. Given an estimator 8 of a function of interest 6 belonging to a class of solutions ©
based on an observable quantity with probability measure B, € ;.= we call

R1610{T},=] := sup{R} (o (5,9)) 0 €0,£c=}

ist

its maximal risk over © X {T} x =, 0

§1000.10 diSM with noisy operator (§02104.05 continued). Given ¢, = [,(N,2%,1) and /., = L_(IN,2", )
consider a Diagonal inverse sequence model (diSM) with noisy operator as in §02/04.05 where
5, € 8 C R, N{_is not known anymore. Here the observable stochastic process 5, — s, + & /7),
and g = ¢ + n '"c is a noisy version of 5, € & C R,m;, M/(. and g = 5.6, € dom(M,) C ¢, with
€ © C [, respectively, where € ~ @, >° and M, ~ Q’CJQNP"] are independent. In addition,
let & satisfy (SM:ub) in Model §10100.06 for o, € 3 C R, (1 /. and let 7, fulfill
(SMnO:ub) foré € = C R, 17 wehave " € 7/(#) with £ =Pm')and0 = P(n),j €N
Under (SM:ub) g admits a B -distribution belonging to the family R’s. v = (B, )aco scs.acx
and under (SMnO:ub) 5, admits a P -distribution belonging to the family B!, := (12";)5.6575_65.
Consequently, (g,5,) admits a joint D' = B/, ® B; distribution belonging to the family
Prek = (Bu. ®E‘§)Qe@’5_gg’geg,§€5. Summarising the observations satisfy a statistical product
experiment (R'\ , B 8 ,R,’;g"\jx;) where >, = C IR'\,U Ne_.8C IR'\U N/_and O C 7,. O

Finally, given a class of solutions ©, a class of operators T, a class of nuissance parameters
= and noise levels n, k € Nlet RS _ = (E@§)9€@7T617565 denote a family of joint probability
measures.

$1000.11 Definition. Given an estimator 6 of a function of interest 6 belonging to a class of solutions ©
based on observable quantities with joint probability measure IB‘”T"E e P - we call

R,,[010,T,Z] :=sup {Eﬁ,’; (02

ist

(0,0)):0c0,TeT,ccx}

its maximal risk over © x T x =. O

§1000.12 Remark. Taking the supremum over the class of operators allows us to quantify the additional
complexity due to the estimation of the operator. Moreover, if there exist an estimator 6, a
constant C € R, and for eachn,k € IN there is R, , € R., such that
(lower) R, is a lower bound up to the constant C™' of the maximal risk over © x T x Z, that is

]'Iif Rnk[glgvTva] > 071 R’n.k
0

where the infimum is taken over all possible estimators of 6

(upper) R, is an upper bound up to the constant C of the maximal risk over © x T x Z, that is

R,1010,T.2]<CR],,

then we call R, minimax-bound and the estimator gminimax—optimal (up to the constant C). As

a consequence, up to the constant C” the estimator 6 attains the lower maximal risk bound that is,
R, 1016, T,Z] < C? infy Rn)k[g |©,T,=Z]. Typically, we assume first that the nuissance parameter £

is known a priori, and hence R";",, is a class of probability measures associated with the observ-
able quantities. In this situation, we consider the maximal risk {Em (02(6,0)):0c0,TeT}

ist
and we seek a bound R], up to a constant which depends possibly on the nuissance parame-
ter . However, if the bound R, is a valid lower and upper bound up to a constant uniformly
for all nuissance parameters ¢ € =, then it is, obviously, also a bound of the maximal risk

R, [0]0,T,=] O
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Considering the Hilbert space ¢, = L,(IN,2", ) and a surjective partial isometry U € L(H,¢),
which is fixed and presumed to be known in advance, we study statistical inverse problems where
observable quantities admit a probability measure IE;‘T‘,g e P . for some class O, T and = of
solutions, operators and nuissance parameters, respectively. We consider the following global
and local measures of accuracy.

§10000.13 Notation (Reminder). For sequences «,. b, € (IX)" taking its values in [{ € {R, R . 7Z, ...}
we write ¢, € ()" and /, € (IK)" if @, and b, respectively, is monotonically non-decreasing
and non-increasing. If in addition ¢, — oo and ), — 0 as n — oo, then we write o, & (I&)ﬂj
and b, € (IO)" for short. For w, € (= L_(1) we set w, := 0, w, = (w, = ||w,]lf||£w)je]N,
wo = [|w.ll,_, and w. = (w,, := |[w.E"[, )jen, where by construction w, € (R.,)" and

W(.) E (]Rgg)iN. O

§10100.14 Assumption (Maximal global v-risk). Consider weights t, a, & )E\ and v, € TRN such that

(R.
(av), = av, € (,and (av), € (R,)] and there exists C_, € (0,1] such that for all m € N

(av)

(av)?,_, = min {(av)’: j € [m]} > C,, (av)},_,

orinequal 1 > C_ [/(av) "1, (av);

—1)*

§10100.15 Reminder (Maximal global v-risk). Under Assumption §10100.14 we introduce ¢; = dom(M,.) =
r.a, = (,(a*) endowed with |-[| . := [|]|,, .., and the ellipsod (;" := {h. € £ |2, <2*} C 45,

where the measures 1, v’14, and a; 1, dominate mutually each other. Under Assumption §10100.14

we consider the followmg global measure of accuracy Introduce /4,(v?) = L,(v’%) = dom(M,) =

oot C 4, and |||, = [|M,-[|,, where £" C £,(v?) (Property $0402.11). For § = U € £;" we call

6,0) =6 — 8|\, global v-error, emg(HH 0,||n) global v-risk and

1st

R T 2] = sup {Rye (16— 6)|?): 4 e 4, T e T, € =}

maximal v-risk over (" x T x =. Note that (av)’, € (R.,)™ by definition, hence (av)’ & (R )"
is satisfied if and only if (av)?, = o(1) as m — oo (i.e. the maximal global approxima-
tion is consistent). Moreover if (av)] € (R_,)" then we have trivially (av)), € (R-,)" and
[(av), " 1], = (av),* = (av),’, for all m € N, ie. Assumption §10100.14 is satisfied with
C., =1 ul

(av)

Sand ¢ € R]N“ such that
(ag), := a,¢ € {,and (at), := at, € (R.,)". O

$10000.16 Assumption (Maximal local ¢-risk). Consider weights t,a, € (R.,)¥

§10000.17 Reminder (Maximal local ¢-risk). Under Assumption §10100.16 introduce ¢ = /,(a;*) endowed
with ||| . := |ll,,- and the ellipsod £;" := {h, € £ ||, <:*} C £;, where the measures
Y |@ly and a;’y, dominate mutually each other. Under Assumption §10/00.16 we consider
the following local measure of accuracy. Under Assumption §10100.16 introduce dom(¢y) =
{h. € €, ¢h, € £, =L,(N.2%,%)} and the linear functional ¢y, : ¢, O dom(éy) — R with h, —
oy (h.) = 1y (@h.) where £;" C dom(¢y,) (Property §0402.23). For §, € £;" we call 0.(6,6) =
o, (6 — )| local ¢-error, B (|6, 6 —8)] ?) local ¢-risk and

,R’:/).A[éil/jl*wf E} ‘= Ssup {Egé(’(ﬁVm(a— 9,)|2) 0 € f;’r,T S -ﬂ—,f S E}

maximal ¢-risk over (7" x T x =. Imposing by Assumption §10100.16 t.a € (R_,)" and hence
(at)) € (R.)" is rather weak. If in addition lim inf (at)’ > ¢ € R, is satisfied, and hence

j*))(,
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(at)?, a2, ¢ (R.,)Y, then > ¢ (R.,)} and the assumption (a¢), € /, implies ¢ € /,, which
together with £ ¢ (R.,)Y implies (¢/t), € (,, and thus the rate R}(a,,t,, ¢) is parametric (Illustra-
tion §07/01.78 or Illustration §08/01.72). Since we are interested in the case of a non-parametric
rate, the additional assumption (at)’ € (R )" imposes a rather weak condition satisfied also in
[lustration §07101.78 or Illustration §08101.72. O

$10100.18 Comment. We formulate the results in terms of § = U# € J rather than directly for § € H.
Since U is known, considering the class H"' := U"J* := {U": § € J*"} we obtain immedi-
ately also bounds over H"" for the maximal global risk

R 161U, T, 2] == sup {B: (U6 — 0)2): 0 enw” TeT, ¢ B}
and maximal local risk
R0 U0, T,2] == sup { Bl (|o (UG — 0))]?): 0 e, TeT,c =}

which we do not explicitly state in the sequel. O

§11 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

51110001 Definition. Let I and i} be two probability measures on a measurable space (X, 27).
(a) The function

E(log ) = [log ()R, if B <P,
+00, otherwise

KLER[R) = {

is called Kullback-Leibler-divergence of B with respect to IP.

Let u € #,(2)be a R and P dominating o-finite measure (e.g. B, P <y = B + ). We write
dR := dR/du and dR, := dE /du for short.
(b) The Hellinger distance between I} and P is defined by

= 1/2
HE,B) := (/' dR — VdR[*) " = [|V/dR — VdR]|
(c) and the Hellinger affinity is given by

PR, R) ;:/\/ﬁ\/@:: (VAR, VdR), .

where both do not depend on the choice of the dominating measure /. O

§11100.02 Remark. The Kullback-Leibler-divergence satisfies KL(RB|E) > 0 as well as KL(B|R) = 0
if and only if B = B, but KL(:|-) is not symmetric. Moreover, for product measures holds

KL(I%1 & IE),2|IP1,1 02y Ez) = KL(I%1|IP11) + KL(RZHPIZ) and p(IE)l & R,m ]Pl,l 02y ]P12) = p(IB,u ]Pll)p(]Pﬂza IP12)
O

$110003 Lemma. (i) 0 < HA(B,B) < 2; (ii) p(B,B) = 1 — sHE, B); and (ii) H(E, B) < KL(B[R).

§11100.04 Proof of Lemma §11100.03. Given in the lecture course Statistik 2 (Lemma §13.12, p.54). 0
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§1100.05 Lemma. For a,,b, € (., and n € IN we have KL(N/'|N) = Z||a, — D, ||2

§11100.06 Proof of Lemma §11100.05. Given in the lecture course Statistik 2 (Lemma §13.14, p.54). O

§11100.07 Assumption. The distribution P € %/ (%) admits a Lebesgue-density p := dP/d\ and there
exist constants C, z. € R., such that

Voe|[—x,z)]: /[p(u) log (p([p&))\(du) <C 22

u— )
0

$1100.08 Lemma. Let Y ~ " where P ¢ /(%) fulfills Assumption §11100.07 with .= < R_,. For

a,b.,o el andn & N consider a, +n 'Y ~ I and b, +n ") ~ ]R';.Iqu 2 =y, €
R., and n'/>v}?|a, — b, < 1 thenwe have KL(]P‘U|]B ) < nv,Clla, — b7
§11100.09 Proof of Lemma §11100.08. Given in the lecture. O

§1100.10 Comment. For o € R,, the normal distribution N ., € #/ (%) satisfy Assumption §11100.07 with
C, = 1/(20%) and =, = oo (see Proof §11100.06). O

s1100.11 Assumption. The semi metric 0 (-, -) is symmetric and satisfies the rriangular inequality. Mor-
ever, for any estimator 0 and parameter € and 6, such that 0,(6, 6) € R., the quantities DM(O )
and DM(Q, 6) are measurable. O

s1100.12 Lemma. Let (X, 2") be a measurable space, let 6, and 6, be parameters with 0 (0°,0') € R.,,

and let Assumption §11100.11 be satisfied.
(1) If B, B € #(Z) are probability measures then for any estimator 6 we have

E(22(0,6") +R(2.(0,6")) > 10&(6 0') P'(B. ). (11.01)
(i) If B, B € (%) satisfy HR, ) < 1, then for any estimator 0 we have
R(22(6,6°) + B (22(6,6") > ! aﬁt(e 6. (11.02)

(iii) Forn € N, let " := ®;¢mR,; € #/( 2 and P = RjempBy € W(2™") be product
probability measures with marginals B, B, € W (Z) fulfilling HE,,RB,) < 2n" for each
j € [n]. Then for any estimator 6 we have

1
R" (ozt(e 0°) + E" (ozt(e 6') > 3—20;;(9 6"). (11.03)
§11100.13 Proof of Lemma §11100.12. Given in the lecture. O

§11|01 Lower bound based on two hypothesis

§1101.01 Lemma (Lower bound based on two hypothesis). Given a noise level n € N let R := (B")gco be
a family of probability measures. We measure the accuracy of an estimator 0 by its maximal risk

RG10] :=sup {B"(2%(6,0)): 6 c©}.

ist
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(i) Ifthere are 60" € © witho_(6°,0") € R., and associated probability measures B, and "

such that Assumption §11100.11 and H(B!', B") < 1 are satisfied then we have

_ 1
inf;R[§|0] > —0°
m 2] n[ | ] 16alst

where the infimum is taken over all possible estimators.

(6",6") (11.04)

(i) Let n € IN., and for each 0 € © let B" = ®jc[,)B be a product probability measure
with identically B-distributed marginals. If there are 68°, 0" € © withd_(0°,0") € R., and
associated marginal probability measures I, and B, such that Assumption §11100.11 and
H(B., ) < 2n! are satisfied then we have
1

inf; R[4]0] > 6—40;(90,91) (11.05)

where the infimum is taken over all possible estimators.

$11101.02 Proof of Lemma §11101.01. Given in the lecture. O

§11101.03 Remark (Lower bound for a local ¢-risk). Assuming the bounded Hellinger distance as for exam-
ple in Lemma §11101.01, Le Cam’s general method (see Le Cam [1973]) and Pinsker’s inequality
allow us to derive a lower bound for a local ¢-risk as in Reminder §10100.17. However, in this
special setting a lower bound can be obtained elementarily from Lemma §11101.01, which in case
(1) for any estimator 6 states

- N ~ 1
Ri1610]:=sup {B"(|on (0 — Q)[*): 0 c 0} > T-|om (6 — I
If we consider furthermore candidates §° := 6" and §' = —68" for some §° € O such that

—@" € O, then trivially |¢1 (6 — 6')|* = 4|é1,(§")]* which in turn under the conditions of
Lemma §11101.01 (i) implies

~ 1
inf R[4 > lou (@), (11.06)
Similarly, under the conditions of Lemma §11101.01 (ii) we get
~ 1
inf; RG]0 > 1—6|¢VN(9,*)|2. (11.07)

Often a minimax-optimal lower bound can be found by constructing a candidate §° = Uf" € ©
that has the largest possible |¢1 (6")|?-value but B and IP}. are still statistically indistinguishable
in the sense that HR", P;) < 1 or H(E,P,) < 2n". i

§11101.04 Reminder (Maximal local ¢-risk in diSM (§10100.08 continued)). In Subsection §07/01 we consider
an orthogonal projection estimator (OPE) in a Diagonal inverse sequence model (diSM) as in
Model §01104.08 (summarised in Model §1000.08). Here the observable noisy version g satisfy a
statistical product experiment (]I%N. B P e = (R0 )aco nen) where s, € [ is known, © C
/,and ¥ C R, M (_. Under Assumption §07101.64 (which is implied by Assumption §10100.16)
in Corollary §07/01.74 an upper bound for the maximal local ¢-risk of an OPE is shown. More
precisly, assuming a multiplication operator M., < ['(J) (compare Notation §01104.01), which
fulfills a link condition M, & M, , for d € R, (see Assumption §04103.04), the performance of the
OPE 5 " = slg1" € dom(¢y) with dimension m € IN is measured by its maximal local ¢-risk
over the ellipsoid © = /" withr € R, that is

RO |6 L) o} ] =sup {RL(Iou (@™ — Q)4 e} ¥n,m €N,
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For n,m € IN setting (as in (07.20))

R'(a,,t,0) = ||a,]lf”'l||§5 +n7 €12, ' = arg min {RT(a_,t,,gz_S) tm € ]N}

n

and R (a.t.0):=R"(a,t,¢) =min{R(a,t,¢) :m €N} (11.08)

the OPE 9’” = sig1™ € dom(¢y) with optimally choosen dimension m! = m/(a,, t,¢) as in
(11.08) fulfills

RIG" e MY, {a}] <(vd VI R(a.t,¢) VneN (11.09)

with [[’[|, =:v, € k... In the proof of the next proposition we make use of Lemma §08101.61

which under Assumption §07101.64 (implied by Assumption §11100.07) states that (at)fn; >nt >

(at).., = (at) . forall n € N with (at)] > n ' ie.n € N .. O

§1101.05 diSM (510100.08 continued). Consider § = ¢ + n '?¢, ~ B, as in Model §1000.08, where ¢,
satisfies (SM:ub) with ) € 7/(#) and 0, € R", N /. In addition

(SM:lb) B, € #/(#) fulfills Assumption §11100.07 with C.,2. € R and o, 7 € (. 0

§11101.06 Corollary (diSM §11101.05 continued). For s, € [, () € [,, hence g = 5,6, € dom(M,) C 7,
consider | = ¢ +n'"e ~ B as in Model §11101.05, where €, fulfills (SM:ub) and (SM:lb)

o

with Cooo € R [la?l|, =:v, € R.. Foreach 0 & [, with 2n'*v,?|[s.(]" ||, < . setting
0 =0 and (' := —0" the dzstrlbutzons D, € #W(#™Y), r € {0,1}, satisfy H2( I L B
2.
§11101.07 Proof of Corollary §11101.06. Given in the lecture. O

§11101.08 Proposition (diSM §11101.05 continued). For s, € [, 0, € [,, hence g = 8,6, € dom(M.) C ¢,
consider = ¢ +n g ~ D asin Model 5}]]|0].05, where ¢ fulfills (SM:ub) and (SM:1b) with
C.z.e R, and H(T-QH/, =:v, € R_,. Let Assumption §10100.16 and in addition

s, < dt, y-ae. ford € R, (11.10)
be satisfied. Then we have
infz RG] 6" M} {a}] = Ri(a,t,¢) x & (4P Av,'d*(C Aa?)) Vn € Nogye (11.11)
where the infimum is taken over all possible estimators.

§11101.09 Proof of Proposition §11101.08. Given in the lecture. O

§11101.10 Comment. By combining the lower bound in Proposition §11101.08 and the upper bound in
Corollary §07101.74 for the maximal local ¢-risk of an OPE in a diSM §11101.05 we have shown
that R'(a,,t,, ¢) is a minimax-rate and the OPE with optimally chosen dimension parameter is
minimax-optimal (up to a constant). O

§11101.11 GAiSM (§01104.09 continued). Consider a Gaussian diagonal inverse sequence model (GdiSM)
as in §01104.09 where 5, « /_ is known in advance. Here the observable stochastic process
g = g +n'"B ~ N/ is anoisy version of ¢ — s(  /, with ) = sig € © C /, and
B ~ Nm Consequently, g admits a N, -distribution belonging to the famlly Nex {&} = (N,.)aco-
Summarising the observations satisfy a statistical product experiment (IR B N....,) where
© C /,. Under Assumption §07/01.64 (which is implied by Assumption §10100.16) in Corol-
lary §0701.72 an upper bound for the maximal local ¢-risk of an OPE is shown. More precisly,
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assuming a multiplication operator M, < [(J) (compare Notation §01104.01), which fulfills a
link condition M, € M, , for d € R, (see Assumption §04/03.04), the performance of the OPE

g = s/g1" € dom(¢y) with dimension m € IN is measured by its maximal local ¢-risk over
the ellipsoid © = /" withr € R, thatis

R0 ] = sup AN (1o (@ — Q)P c e} Wn,m € IN.

The OPE 5 = ﬁ*g ]lm € dom(¢y,) with optimally choosen dimension m* = m’(a,,t,,¢) as in
(11.08) fulfills R0 | ¢+ {M.}] <(d* V1*) R'(a, t, ¢) foralln € N. O

§11101.12 Corollary (GdiSM §11101.11 continued). For s, € (_, 6, € (,, hence g = 560 € dom(M,) C 7,
consider = g +n" 2B ~ N, as in Model §11101.11, where B ~ NV, Let Assumption §10100.16
and in addition (11.10) be satisfied. Then we have

inf; RYLG" [ 627, {M}] > Ri(a,t.¢) x (2 Ad*) Vn € Noy (11.12)
where the infimum is taken over all possible estimators.

§1101.13 Proof of Corollary §11101.12. Given in the lecture. o

§11101.14 Comment. By combining the lower bound in Corollary §11/01.12 and the upper bound in Corol-
lary §07/01.72 for the maximal local ¢-risk of an OPE in a GdiSM §11101.11 we have shown
that R (a,, t,, ¢) is a minimax-rate and the OPE with optimally chosen dimension parameter is
minimax-optimal (up to a constant). o

s1101.15 Remark. Let 2" = (B:*")pco ez be a family of product measures B = B @ R depending

on a function of interest # € ©, a nuissance parameter £ € = and noise levels n, k € IN. The
Lemma §11101.01 allows us to bound from below the maximal risk for each nuissance parameter
¢ € = and noise level n € IN. To be more precise, given a noise level n € N for 7 € {0, 1}
consider 0" € © with associated product probability measure B" = B, ® ", then we have
p(BI B = p(Bl @R, B @ B*) = p(B, B,) due to the independence. Consequently, if
H(E'.,B',) < 1, then for any estimator 6 we obtain

0°l¢r ~0'l¢
- . 1
R, [016,{¢}] :=sup { B (02(0,6)): 6 c 0} > Eo};(@ 0"
due to Lemma §11101.01. It is worth noting that we obtain the same lower bound when disposing
of the family ., = (B)sce only, in other words assuming the nuissance parameter £ € = is
known in advance. 0

5110116 Corollary (Lower bound based on two hypothesis). Let B.2" = (B:"")gco cc= be a family of prod-
uct measures 113(;“ = B ® R" depending on a function of interest 0 € O, a nuissance parameter
¢ € = and noise levels n,k € N. If for each T € {0,1} there are 0" € © and a nuissance
parameter £ € = with associated product probability measure B'S" = B @ B such that

B'e = B and in addition H(R", R") < 1 then for any estimator § we have

(0,0)):6c0,cc2} > %aﬁt(e 0'). (11.13)

§1101.17 Proof of Corollary §11101.16. Given in the lecture. O

R.,1010.2] = sup { B (22

ist

s1101.18 Remark. The last assertion allows us often to derive a lower bound depending on the classes
© and = and the noise level £ but not on the noise level n. Roughly speaking this means that
we cover the influence of the estimation of the nuissance parameter. Typically we combine this
lower bound with the lower bound obtained in Lemma §11101.01 where the nuissance parameter
is assumed to be known in advance. O
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§11101.19 Reminder (Maximal global v-risk in diSM with noisy operator (§1000.10 continued)). For 7, =
I,(N,2% 1) in Subsection §07/02 we consider a thresholded orthogonal projection estimator
(tOPE) in a Diagonal inverse sequence model (diSM) with noisy operator as in Model §02104.05
(summarised in Model §1000.10). Here the observable noisy versions (g, 5,) satisfy a statistical
product experiment

n/A I n®k no k
(IR /9 )><S><_><_ = (1:()1\5\05 = R\w & E\g)&&@,s.ES.UGX,EEE)

where ¥, = C Rﬁ,w;. S C RN/ and © C /,. Under Assumption §07102.32 (which is implied
by Assumption §10100.14) in Corollary §07/02.39 an upper bound for the maximal global v-risk of
a tOPE is shown. More precisly, assuming a multiplication operator M, & ['(/,) (compare Nota-
tion §02104.02), which fulfills a link condmon M, e M, ford € R., (see Assumptlon §04103.04),
the performance of the tOPE (" = §"/ign = 11575 151" € £,(w) (see Definition §0702.04)
with dimension m € IN is measured by its maximal global v-risk over the ellipsoid © = /" with
r € IR, and the link condition & = M, , with d € IR.,, that is

010 M ) 6] = sup (RIS (10" — Q%) 8 e m M. em ) W, kom € IN,

For n,m € IN setting (as in (07.37))

Rl(a. . 0) = [(av),, V n’1||tf]lf"||§], m’ :=arg min {R(a,,t,v) :m € N}
and R (a.t.0):=R"(a,t,0) =min{R(a,t,0):meN} (11.14)

the OPE ()" — sWligm: € ¢,(v?) with optimally choosen dimension m* = m’(a,,t,,v,) asin (11.22)

fulfills
R 07 167 My, {a}, {6}] < Rj(at0) V[ (ao)2(1V EE) |,
x (I +AKKd + 8K*d®) Vn,k € N (11.15)
with I = [laf|, v1eR and K :=[([, Vv1eR.. u

§1101.20 diSM with noisy operator (§10100.10 continued). Consider (g = g +n"'?¢,s, = s, + k7'/*n) ~
Biit = Br, ®@B¢ asin Model §10100.10, where 1), ~ ®jenP™ fulfills (SMnO:ub) in Model §10100.10
with & € = C R, N /. and hence v’ := P( 7°) < & for each j € IN. In addition
(SMnO:1b) there exists P, € 7/ (%) fulﬁlhng Assumption §11100.07 with C,, , € IR, such that

(0,1)

P =P  foreachj € Nand (v') ' € (_. O

(0,y7)

§11101.21 Corollary (diSM with noisy operator §11101.20 continued). Consider ? =5 + kY~ Dl asin
Model §11101.20, where 1, fulfills (SMnO:ub) and (SMnO:1b) with C, .z, € R, and |[(v") ||, =

v, € R Foranys! sl (_with Iy, "||s! —s!||, < 1, we have HQ(PK?P‘{) kv, G, lls? —s!|2 .
§11101.22 Proof of Corollary §11101.21. Given in the lecture. O
§1101.23 Proposition (diSM with noisy operator §11101.20 continued). Consider (§ = g + n '%€,5, = s, +

kq) ~ B‘:ﬁ'g =B, ® E,f as in Model §10100.10, where 1), fulfills (SMnO:ub) and (SMnO:Ib)

with C o € Rogand ||(v') ||, =:v, € Ro. If Assumption §10100.16 is satisfied then we have

infg Ry, (616" Mo, {a} A€} ] = [[(a0)(1V k)7,

2

16dz( v,'C Ay a2 A4(L—d ) Wk e N (11.16)

where the infimum is taken over all possible estimators.
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§11101.24 Proof of Corollary §11101.26. Given in the lecture. O

§11101.25 GAiSM with noisy operator (§02104.06 continued). Consider a Gaussian diagonal inverse se-
quence model (GdiSM) with noisy operator as in §02104.06 where s, € (_ is not known anymore.
Here the observable process 5, = s, 4+ k~/?W, ~ N and g=g+n? B ~ N;, is a noisy version
of 5, € 8 C R]ﬁ, Ml . and g = 56 € dom(M,) C /¢, with (, € © C /,, respectively, where
B~ N, and W, Nﬂ are independent. Consequently, (g,3.) admits a joint N;~" = N, @ N

distribution belonging to the family Nj r = (N9|5 ® N )geo.scs. Summarising the observations

satisfy a statistical product experiment (R B B\ X:) where © C /,and 8 C IR,':J M /_. Under
Assumption §07/02.32 (which is implied by Assumption §10100.14) in Corollary §07102.37 an upper
bound for the maximal global v-risk of a tOPE is shown. More precisly, the performance of the
tOPE 0" = 5®Ifgm € (,(v?) with dimension m € IN is measured by its maximal global b-risk
over the ellipsoid © = /7" with r € [, and the link condition M, , with d € IR, that is

R0

n.k

(5 M, ]| = sup {Ng‘@k

9|| ): aeﬁg’r,MseMm} Vn,k,m e IN.

The tOPE " = s®Igm. € (,(v) with optimally choosen dimension m! = m’(a,,t,v,) as in
(11.22) fulfills R[4 [ £ M., ] < Ri(a.t,o) V[ (a0 (1V E€) ]|, x (12 +4d° + 12:2d°) for all
n,k € N. m

s1101.26 Corollary (GdiSM with noisy operat()r §11101.25 continued). Consider (g = g + n~ 2B 5 5 =6, +
EPW,) ~ N2 = Ny, @ N as in Model §11101.25, where 1B, ~ N and W, 1\?? are
independent. Let Assumption §10100.14 be satisfied. Then we have

mf R

n,k

(6] My, ] = [[(av)2(1V k€)™,

2

wyﬂASG—dU% Vn,k € N (11.17)

where the infimum is taken over all possible estimators.

§11101.27 Proof of Corollary §11101.26. Given in the lecture. O

§11|02 Lower bound based on m hypothesis

§1102.01 Notation. For m € IN set 7 := {—1,1}" and for each 7 := (7,)jc[m € 7, and j € [m]

(4)

introduce 7 € T, givenby 7 := —7 and 7"’ := 7, for [ € [m]\{j}. O

§11102.02 Lemma (Assouad’s cube technique). Given a noise level n € N let R' := (B")gco be a family
of probability measures. Suppose there exist m € N and distances 0 (-, ), j € [m] such that
[U oY (-, )|>. We measure the accuracy of an estimator 0 by its maximal risk

1%(7 ) = Z]eﬂm]]

RG10] :=sup {B"(22(6,0)): 6 c©}.

ist

(i) If there exists {07: TE ‘J’} C © such that for all T € T, and j € [m] we have Assump-
tion §11100.11 and H(E",P") < 1 then we obtain

inf;R[0]0] > ZmZ Z

T€ET, ]G[[m]]

(67,077

ist

(11.18)

where the infimum is taken over all possible estimators.
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(i) Letn € IN., and for each § € © let " = ®jc[,) B be a product probability measure with
identically T-distributed marginals. If there exists {97: TE ‘I} COT€eT, andj € [m]
we have Assumption §11100.11 and the marginals satisfy H(B.,P..) < 2n~" then we have

inf; R [0 2mz > RUE, ) (11.19)
T€T, ge[[m]]
where the infimum is taken over all possible estimators.
§11102.03 Proof of Lemma §11102.02. Given in the lecture. O
§11102.04 Remark (Lower bound for a global v-risk). For a,,b, € £,(v?) consider 0, (a,,b.) = |la. — b,

Evidently, for each j € IN setting 0Y(a,, b,) := \nj( a, — b;)| we have

02

2(a,b) = lla—b]2> Y ola—bP= >

Jj€[m] Jj€[m]

09 (a,,b)> Vm e N.

Consequently, a lower bound for a global v-risk can be obtained elementarily from Lemma §11102.02,
which in case (i) for any estimator € states

Ril4|0] =sup {B" (|0 —0]?):6c0} =2 )" % Sl -0

T€T, j€[m]

If we consider furthermore candidates {0" = (7' 01" )jen: 7 € ‘In} C © C /(v for some 8" €
0,(v2), then it is easily seen that ;. 07|0 — 02 = =43 1077 = 4]|0°1]|2 which in
turn under the conditions of Lemma §11102.02 (i) implies )

. (g 1 * ]- * 1
infy RA|O] > 27 Y 012 = Z 16712 (11.20)

T€T,

Similarly, under the conditions of Lemma §11102.02 (ii) we get

: or —m 1 *qm 1 *f1m,
infp R4]0] =2 > MW} = Il L. (11.21)

T€T,

Often a minimax-optimal lower bound can be found by choosing the parameter m and con-
structing a candidate §° = U#" that have the largest possible HQ*]ITH?-VMue although that the
associated "', 7 € T, are still statistically indistinguishable in the sense that H(E", P") < 1 or
HE . P.) <2n ' forall j € [m]and 7 € T,. O

§11102.05 Reminder (Maximal global v-risk in diSM (§10100.08 continued)). In Subsection §07/01 we consider
an orthogonal projection estimator (OPE) in a Diagonal inverse sequence model (diSM) as in
Model §01104.08 (summarised in Model §10/00.08). Here the observable noisy version g satisfy a
statistical product experiment (TR,I\? B Bl = (Bl )ucoqes ) where s, € [ is known, © C
/,and ¥ C R, N (.. Under Assumption §07101.30 (which is implied by Assumption §10100.14)
in Corollary §07/01.40 an upper bound for the maximal global v-risk of an OPE is shown. More
precisly, assuming a multiplication operator M, < ['(J) (compare Notation §01104.01), which
fulfills a link condition M, € M, , for d € R_, (see Assumption §04103.04), the performance of the
OPE (97" = s/g1" € dom(¢y) with dimension m € IN is measured by its maximal global v-risk
over the ellipsoid © = (" withr € R, that is

R4

AN} o] = sup {RL (10" = 0] 0 e} ¥n,m € N,
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For n,m € IN setting (as in (07.07))

n

and R (a.t.0):=R"(a,t,0) =min{R(a,t,0):meN} (11.22)

RU(e. o) = (@), V[ T2, o= arg min {R(a, t,0) : m € N}

the OPE §L = s/g 1" € (,(v’) with optimally choosen dimension m} = m’(a,,t,v,) asin (11.22)
fulfills

RG" 6+ (M}, {g}] <& + 1) R(a.t,0) VneN (11.23)

with [[o”]], =:v, € R... O

§1102.06 Lemma. Under Assumption §10100.14 for m’ := m’(a,t,v,) and R :=R" (a t,0)asin(11.22)
distinguish case i) : R = n [ 1 ]| 2 > (av)’ ., and case ii) : R = (av)}. > n ||t '1" |2
Then for all n < IN__ .. ., Le (av) > n-'(v/t);, in case i) we have (av)?._, > n g HS
and in case 11) setting

(mz—1)

my = min {m € No,.: 7' 102 > (av)?,) } (11.24)

we obtain (av);, = (av)l, < n L2

(m3)

§11102.07 Proof of Lemma §11102.06. Given in the lecture. O

§11102.08 Corollary (diSM §11101.05 continued). For s, € [, 0, € [,, hence g = s, € dom(M,) C ¢,
consider = g +n '"e ~ . asin Model §11101.05, where €, fulfills (SM:ub) and (SM:1b) with

Comoe R lla?ll, = v € R.. Foreach 0 & [, with 2n'*v"|[s.0/1"[|, < x. and for
each T € T, = {=1,1}" as in Notation §11102.01 setting 0 := (7,0°L" )]e]N the distribution
P € W (B™") satisfies H¥E i L) S 4nwaC€.||5,9,*]lf”H§ forall j € [[m]]

§11102.09 Proof of Corollary §11102.08. Given in the lecture. O

§11102.10 Proposition (diSM §11101.05 continued). For s, € [, 0, € [,, hence g = 8,6, € dom(M.) C ¢,
consider = g +n '"e ~ B asin Model §11101.05, where €, fulfills (SM:ub) and (SM:1b) with
C.r. e R, and | [ =1V, € R_.. Let Assumption §10100.14 and in addition (11.10) for
d € R., be satisfied. Then we have

infz R0 " {M.}, {a:}] = R}(a.,t,0)
LAC P AV (C A 2)) Y € Ny (11.25)

(av)

where the infimum is taken over all possible estimators.

§11102.11 Proof of Proposition §11102.10. Given in the lecture. O

§11102.12 Comment. By combining the lower bound in Proposition §11102.10 and the upper bound in
Corollary §07/01.40 for the maximal global v-risk of an OPE in a diSM §11101.05 we have shown
that R’(a,,t,,v,) is a minimax-rate and the OPE with optimally chosen dimension parameter is
minimax-optimal (up to a constant). O

§1102.13 GdiSM (§11|01 11 continued). Recall that the observations satisfy a statistical product experi-
ment (R %" VZiX ;) where © C /,. Under Assumption §07/01.30 (which is implied by As-
sumption §10100.14) in Corollary §07/01.38 an upper bound for the maximal global v-risk of an
OPE is shown. More precisly, assuming a multiplication operator M, < ['(J) (compare Nota-

tion §01104.01), which fulfills a link condition M, € M, for d € R, (see Assumption §04103.04),
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am

the performance of the OPE " = s/g1" € /,(v?) with dimension m € IN is measured by its
maximal global v-risk over the ellipsoid © = /7" withr € IR, thatis

RO (M) ] = sup {NL (167 = 6lP): 0 e 27} Yn,m € N.

The OPE é\ = sig 1" € {,(v?) with optimally choosen dimension m} = m}(a,,t,v,) asin (11.22)
fulfills R[4 [0 {M,}] <(d® +1*) R'(a. t,v) foralln € IN. O

s11102.14 Corollary (GdiSM §11102.13 continued). For s, € (_, 6| € [,, hence g = 560 € dom(M,) C 4,
consider | = g+n"" B N,,‘ as in Model \SHI()] 11, where B ~ N o Let Assumption §10100.14
and in addition (??) be satisfied. Then we have

inf; RO 607, {M}] > Ri(a,t,0) x $(28 Ad?) Vi € N (11.26)

% 1

8
where the infimum is taken over all possible estimators.

§11102.15 Proof of Corollary §11102.14. Given in the lecture. O

§11102.16 Comment. By combining the lower bound in Corollary §11102.14 and the upper bound in Corol-
lary §0701.38 for the maximal global v-risk of an OPE in a GdiSM §11102.13 we have shown
that R’ (a,,t,,v,) is a minimax-rate and the OPE with optimally chosen dimension parameter is
minimax-optimal (up to a constant). O

5110217 Remark. Let 2" = (B:*")pco ez be a family of product measures B = B @ R depending
on a function of interest § € O, a nuissance parameter ¢ € = and noise levels n, k € ]N Suppos-
ing there exist m € IN and distances 2'(-, -), j € [m] such that 02(-,-) > Zje[[m]] (-, +)|? the
Lemma §11102.02 allows us to bound from below the maximal risk for each nuissance parameter
¢ € = and noise level n € IN. To be more precise, given noise levels n,k € IN foreach 7 € T,
consider 7 € © with associated product probability measure B'Y* = B, ® R", then for all
j € [m] we have p(B"*, B) = p(B @ B, B! ©R') = p(F’, " ) due to the independence.

0 ¢

Consequently, if H(P>", 1>") < 1 forall 7 € J,, and j € [m], then for any estimator 6 we obtain

m

R, [016,1¢}] = sup { B (92(0,0)):0 c 0} > 27" Z > U@,

TeT, jE[[m]]

due to Lemma §11102.02. It is worth noting that we obtain the same lower bound when disposing
of the family ., = (B)sco only, in other words assuming the nuissance parameter £ € = is
known in advance. O

5110218 Corollary (Lower bound based on m hypothesis). Let B2 = (B:™ )gco cc= be a family of product
measures ]BE”C =B ® P" depending on a function of interest § € ©, a nuissance parameter
¢ € Z and noise levels n,k € IN. Suppose there exist distances Di(s{)(-, ), j € [m] such that
R() = D iem] (-, )2, If there exists {(07,6):7€7,} €O x E such that forall T € T,
and j € [m] Assumption §11100.11, (C1) 1. = 1" and (C2) H(P" ") < 1 are fulfilled,

then for any estimator 0 we have

09(67,67)

ist

R,1916.5] = sup {B " (24(0,0)):0 c0.c e} > 2 Z S

T7€T, jeﬂm]]

§11102.19 Proof of Corollary §11102.18. Given in the lecture. O
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§11102.20 Remark. The last assertion allows us often to derive a lower bound depending on the classes
O and = and the noise level £ but not on the noise level n. Roughly speaking this means that
we cover the influence of the estimation of the nuissance parameter. Typically we combine this
lower bound with the lower bound obtained in Lemma §11102.02 where the nuissance parameter
is assumed to be known in advance. O

Statistics of inverse problems 137






Bibliography
C. R. Baker. Joint measures and cross-covariance operators. Transactions of the american
mathematical society, 186:273-289, 1973.

S. Efromovich and V. Koltchinskii. On inverse problems with unknown operators. /EEE Trans-
actions on Information Theory, 47(7):2876-2894, 2001.

H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Kluwer Academic,
Dordrecht, 2000.

J. Hadamard. Le Probléme de Cauchy et les Equations aux Dérivées Partielles Linéaires Hyper-
boliques. Paris, Hermann, 1932.

E. Heinz. Beitrige zur Storungstheorie der Spektralzerlegung. Mathematische Annalen, 123:
415-438, 1951.

R. Kress. Linear integral equations, volume 82 of Applied Mathematical Sciences. Springer,
New York, NY, 2 edition, 1989.

L. Le Cam. Convergence of Estimates Under Dimensionality Restrictions. Annals of Statistics,
1(1):38-53, 1973.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics.
Springer, New York, 2009.

D. Werner. Funktionalanalysis. Springer-Lehrbuch, 2011.

H. Witting. Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang.
Stuttgart: B. G. Teubner., 1985.

Statistics of inverse problems 139






Index

Density deconvolution
additive on R, 17
unknown error density, 35
circular on [0,1), 15
unknown error density, 35
multiplicative on R.,, 19
unknown error density, 36
Density estimation
on [0,1), 8
onD, 6
onRR, 10
onR.,, 11

Empirical mean function, 4
Empirical mean model, 5, 23
direct, 12
inverse diagonal, 14, 63, 64, 66, 68, 72,
74
noisy operator, 34, 76, 79, 81, 85, 87
inverse non-diagonal, 20, 90, 92, 95, 97,
100
noisy operator, 27, 103, 104, 107, 110,
114, 117

Functional linear regression, 28
instrumental, 29
second order stationarity, 36
instrumental, 37

Galerkin solution, 48, 51, 52, 54
generalised, 52, 53

Inverse problem, 39
ill-posed, 39

Noisy version
image, 5
operator, 23
non-diagonal, 31

Operator
conditional expectation, 24
convolution
additive on R, 17

circular on [0, 1), 15
multiplicative on R.,, 18
covariance, 3, 25
second order stationarity, 31
cross-covariance, 25
second order stationarity, 32
design, 26
Operator classes
link condition, M, ,, 45
link condition, T,,, 48, 58
generalised, T, 5, 52
source condition, ran((T;.T,,)"*), 49
source condition, ran((A'A)”?), 57

Regression
instrumental, 28
known design, 22
uniform design, 7, 9
inverse diagonal, 14
inverse non-diagonal, 2|
unknown design, 30

Sequence model, 5
Bivariate, 23
Gaussian, 24
direct, 12, 124
direct Gaussian, 12, 123
Gaussian, 6
inverse diagonal, 14, 63, 66, 68, 71, 74,
124, 129, 130, 134, 135
noisy operator, 34, 76, 79, 81, 84, 87,
125, 132
inverse diagonal Gaussian, 14, 62, 606,
68,71, 73, 130, 131, 136
noisy operator, 34, 75, 76, 78, 81, 84,
87, 133
inverse non-diagonal, 21, 89, 90, 92, 94,
97, 99
noisy operator, 27, 103, 106, 110, 114,
117
inverse non-diagonal Gaussian, 21, 89,
92,94, 97, 99



Index Index

noisy operator, 27, 102, 106, 109, 113,
117
Solution classes
abstract smoothness condition, J**, 43
Statistical problem
direct, 12
inverse diagonal, 13
noisy operator, 34
inverse non-diagonal, 20
noisy operator, 26, 100

142 Statistics of inverse problems



	Statistical inverse problems
	Noisy image and known operator
	Stochastic process
	Noisy image
	Examples of empirical mean models
	Extension to complex-valued models

	Statistical direct problem
	Diagonal statistical inverse problem
	Examples of diagonal inverse empirical mean models

	Non-diagonal statistical inverse problem
	Examples of non-diagonal inverse empirical mean models


	Noisy image and noisy operator
	Noisy non-diagonal operator
	Examples of empirical mean models

	Non-diagonal statistical inverse problem with noisy operator
	Examples of non-diagonal inverse empirical mean models with noisy operator

	Noisy diagonal operator
	Examples of empirical mean models

	Diagonal statistical inverse problem with noisy operator
	Examples of diagonal inverse empirical mean models with noisy operator



	Regularisation of inverse problems
	Ill-posed inverse problems
	Regularisation by orthogonal projection
	Weigthed norms and inner products
	Direct problem
	Global and maximal global error
	Local and maximal local error

	Diagonal inverse problem
	Global and maximal global error
	Local and maximal local error


	(Generalised) linear Galerkin approach
	Linear Galerkin approach
	Global and maximal global error
	Global and maximal global error

	Generalised linear Galerkin approach
	Global and maximal global error
	Global and maximal global error


	Spectral regularisation
	(Generalised) Tikhonov regularisation
	Spectral regularisation
	Maximal global error
	Maximal local error



	Regularised estimation
	Orthogonal projection estimator
	Diagonal statistical inverse problem
	Examples
	Global and maximal global risk
	Local and maximal local risk

	Diagonal statistical inverse problem with noisy operator
	Examples
	Global and maximal global risk
	Local and maximal local risk


	(Generalised) Galerkin estimator
	Non-diagonal statistical inverse problem
	Examples
	Global and maximal global risk
	Local and maximal local risk

	Non-diagonal statistical inverse problem with noisy operator
	Examples
	Global and maximal global risk
	Local and maximal local risk


	Spectral regularisation estimator
	Statistical inverse problem
	Global risk
	Maximal global risk



	Minimax optimal estimation
	Minimax theory: a general approach
	Deriving a lower bound
	Lower bound based on two hypothesis
	Lower bound based on  hypothesis



