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Chapter 1

Statistical inverse problems

The observable signal g = Tθ corrupted with an additive noise is first
formalised in this chapter and secondly the noisy observation of the oper-
ator.

Overview

§01 Noisy image and known operator . . . . . . . . . . . . . . . . . . . . . . . . . 1
§01|01 Stochastic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
§01|02 Noisy image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

§01|02|01 Examples of empirical mean models . . . . . . . . . . . . . 6
§01|02|02 Extension to complex-valued models . . . . . . . . . . . . . 7

§01|03 Statistical direct problem . . . . . . . . . . . . . . . . . . . . . . . . . 11
§01|04 Diagonal statistical inverse problem . . . . . . . . . . . . . . . . . . . 12

§01|04|01 Examples of diagonal inverse empirical mean models . . . . 14
§01|05 Non-diagonal statistical inverse problem . . . . . . . . . . . . . . . . . 19

§01|05|01 Examples of non-diagonal inverse empirical mean models . . 21
§02 Noisy image and noisy operator . . . . . . . . . . . . . . . . . . . . . . . . . 23

§02|01 Noisy non-diagonal operator . . . . . . . . . . . . . . . . . . . . . . . 23
§02|01|01 Examples of empirical mean models . . . . . . . . . . . . . 24

§02|02 Non-diagonal statistical inverse problem with noisy operator . . . . . . 26
§02|02|01 Examples of non-diagonal inverse empirical mean models with

noisy operator . . . . . . . . . . . . . . . . . . . . . . . . . 28
§02|03 Noisy diagonal operator . . . . . . . . . . . . . . . . . . . . . . . . . 31

§02|03|01 Examples of empirical mean models . . . . . . . . . . . . . 31
§02|04 Diagonal statistical inverse problem with noisy operator . . . . . . . . 33

§02|04|01 Examples of diagonal inverse empirical mean models with
noisy operator . . . . . . . . . . . . . . . . . . . . . . . . . 35

§01 Noisy image and known operator

Let (H, 〈·, ·〉
H

) and (G, 〈·, ·〉
G

) be separable real Hilbert spaces and let T : H → G be a known
linear, bounded operator, T ∈ L(H,G) in short. We are interested in the reconstruction of θ ∈ H

from a noisy version of g = Tθ, which we formalise first in this section by introducing stochastic
processes.

§01|00.01 Notation. For x, y ∈ R we agree on the following notations bxc := max
{
k ∈ Z: k ∈ (−∞, x]

}
(integer part), x∨ y = max(x, y) (maximum), x∧ y = min(x, y) (minimum), {x}

+
= max(x, 0)

(positive part), {x}
−

= max(−x, 0) (negative part) and |x| = {x}
+

+ {x}
−

(modulus).

(a) For c ∈ R and A ⊆ R := R ∪ {±∞} = [−∞,∞] we set A>c := A ∩ [c,∞], A6c :=
A∩ [−∞, c],A>c := A∩ (c,∞],A<c := A∩ [∞, c),A\c := A \ {c}, andA := A∪ {±∞}.
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(b) For b ∈ R and a ∈ R<b we write Ja, bK := [a, b]∩Z, Ja, bM := [a, b)∩Z, La, bK := (a, b]∩Z,
and La, bM := (a, b) ∩ Z. Moreover, let JnK := J1, nK and JnM := J1, nM for n ∈ N = Z>0.

(c) For a σ-algebra A we denote by AA := A ∩ A the trace of A over a set A which is
for A ∈ A a σ-algebra too. For c ∈ R we set A>c := A ∩ [c,∞], A>c := A ∩ (c,∞],
A6c := A ∩ [∞, c], and A<c := A ∩ [∞, c). We denote by B := B

R
the Borel-σ-algebra

over the compactified real line R, where the sets {−∞}, {∞} and R are in R closed and
open, respectively, and hence Borel-measurable. Note that B := BR is the Borel-σ-algebra
over R.

(d) Given two measurable space (Ω,A ) and (Ω2,A2) we denote by M(A ,A2) the set of all A -
A2 measurable functions mapping Ω into Ω2. We call f ∈ M(A ) := M(A ,B) and f ∈
M(A ) := M(A ,B) real and numerical, respectively. Similarly, f ∈M>0

(A ) := M(A ,B>0) (or
f ∈ M>0

(A ) := M(A ,B>0)) and f ∈ M>0
(A ) := M(A ,B>0) (or f ∈ M>0

(A ) := M(A ,B>0)) is
called positiv and strictly positive. If A = B then we write M>0 := M>0

(B), M>0 := M>0
(B),

M>0 := M>0
(B), and M>0 := M>0

(B) for short. �

§01|01 Stochastic process

§01|01.01 Notation. Here and subsequently, a non-empty and generally non-finite subset J of N, Z or
R and a subset U of J denote an index set. We consider the product spaces RJ = j∈J R

and RU = u∈U R, where we identify the family y• = (y
j
)j∈J ∈ R

J and the map y• : J → R

with j 7→ y
j
. Eventually, we define arithmetic operations on elements of RJ coordinate-wise,

for example meaning a•b• = (ajbj)j∈J and ra• = (raj)j∈J for a•, b• ∈ R
J and r ∈ R. Let us

further introduce 0• := (0)j∈J and 1• := (1)j∈J . The map ΠU : R
J → R

U given by y• =
(y

j
)j∈J 7→ (y

j
)j∈U =: ΠUy• is called canonical projection. In particular, for each j ∈ J the

coordinate map Πj
:= Π{j} : R

J → R is given by y• = (y
j ′
)j ′∈J 7→ y

j
=: Πj

y•. Moreover,
R
J is equipped with the product Borel-σ-algebra B

⊗J
:=
⊗

j∈J B . Recall that B
⊗J equals

the smallest σ-algebra on RJ such that all coordinate maps Πj
, j ∈ J are measurable. i.e.,

B
⊗J

= σ(Πj
, j ∈ J ). Moreover, let (J ,J , ν) be a measure space with σ-algebra J over J

containing all elemenatry events
{
j
}

, j ∈ J , and σ-finite measure ν ∈Mσ(J ). We denote by
L2(ν) := L2(J , ν) := L2(J ,J , ν) ⊆M(J ) the usual set of square integrable numerical functions
defined on (J ,J , ν). Define the set of equivalence classes J := L2

(ν) := L2
(J ,J , ν), which

forms a Hilbert space endowed with usual inner product 〈·, ·〉
J

:= 〈·, ·〉
L2(ν )

and induced norm
‖·‖

J
:= ‖·‖

L2(ν ). �

§01|01.02 Comment. Given a measurable space (Ω,A , µ), s ∈ R>0 and the usual space Ls(Ω,A , µ) of
Ls(µ)-integrable functions introduce for each h ∈ M(A ), the µ-equivalence class {h}µ :={
h◦ ∈M(A ): h = h◦ µ-a.e.

}
. Define the set of equivalence classes Ls

(µ) := Ls
(A , µ) := Ls

(Ω,A , µ)

:=
{
{h}µ : h ∈ Ls(A , µ)

}
and ‖{h}µ‖Ls(µ) := ‖h‖

Ls(µ) for {h}µ ∈ Ls(µ). For s ∈ R>1, (Ls
(µ), ‖·‖

Ls(µ))

is a complete normed vector space, i.e. a Banach space. Formally, we denote by {•}µ : Ls(µ)→
Ls

(µ) the natural injection h 7→ {h}µ . In case s = 2 the norm ‖{h}µ‖L2(µ) := ‖h‖
L2

(µ) =

(µ(|h|2))1/2 is induced by the inner product ({h}µ , {h◦}µ) 7→ 〈{h}µ , {h◦}µ〉L2(µ)
:= µ(hh◦), and

hence (L2
(µ), 〈·, ·〉

L2(µ)
) is a Hilbert space. As usual we identify the equivalence class {h}µ with

its representative h, and write h ∈ L2
(µ) for short. If λ = µ is the Lebesgue-measure then we

write shortly (L2, 〈·, ·〉L2

) and {•} : L2 → L2. �

§01|01.03 Stochastic process. Let (Yj )j∈J be a family of real-valued random variables on a common
probability space (Ω,A ,P), that is, Yj ∈ A for each j ∈ J . Consider the RJ -valued random
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variable Y• := (Yj )j∈J ∈ M(A ,B
⊗J

), i.e. Y• : Ω → R
J is a A -B⊗J -measurable map given by

ω 7→ (Yj (ω))j∈J =: Y• (ω). Y• is called a stochastic process. Its distribution PY• := P ◦ Y −1

•

is the image probability measure of P under the map Y• , i.e. Y• ∼ P
Y• or PY• ∈ W (B

⊗J
) for

short. Further, denote by PYU = P ◦ Y −1

U = P
Y• ◦ Π−1

U the distribution of the stochastic pro-
cess YU := ΠUY• = (Yu )u∈U on U ⊆ J . The family (PYU )U⊆J finite is called family of finite-
dimensional distributions of Y• or PY• . In particular, PYj = PΠj

Y• = P
Y• ◦ Π−1

j
∈ W (B) de-

notes the distribution of Yj = Πj
Y• . Furthermore, for j, j◦ ∈ H we write P(Yj ) = P

Y• (Πj
)

and Cov(Yj , Yj◦ ) := P(Yj Yj◦ ) − P(Yj )P(Yj◦ ) = P
Y• (ΠjΠj◦

) − PY• (Πj
)PY• (Πj◦

), if it exists, for the
expectation of Yj and the covariance of Yj and Yj◦ with respect to P. �

§01|01.04 Assumption. The stochastic process Y• = (Yj )j∈J on a measurable space (Ω,A ) as a function
Ω × J → R with (ω, j) 7→ Yj (ω) is A ⊗J -B-measurable, Y• ∈M(A ⊗J ) for short. �

§01|01.05 Definition. Let Y• = (Yj )j∈J ∼ PY• be a stochastic process satisfying Assumption §01|01.04. If
P(|Yj |) ∈ R>0, i.e. Yj ∈ L1(P) or Πj

∈ L1(P
Y• ) in equal, for each j ∈ J , then m• := (mj :=

P(Yj ))j∈J ∈ R
J is called mean function of Y• where m• ∈ M(J ) due to Assumption §01|01.04.

If in addition ν(m2
•) ∈ R>0, hence m• ∈ J, then m• is called (J-)mean. IfP(|Yj |2) <∞, i.e., Yj ∈

L2(P) or Πj
∈ L2(P

Y• ) in equal, for each j ∈ J , then cov•,• = (cov
j ,j◦

:= Cov(Yj , Yj◦ ))j ,j◦∈J ∈ R
J 2

is called covariance function of Y• , where cov•,• ∈ M(J 2) due to Assumption §01|01.04. A linear
and bounded (continuous) operator from J into itself, Γ ∈ L(J) for short, satisfying 〈Γx•, y•〉J =∫
J

∫
J yj cov

j ,j◦
x
j◦
ν(dj)ν(dj◦) for all y•, x• ∈ J = L2

(ν) is called covariance operatorof Y• or PY• .
If Y• admits a mean function m• ∈M(J ) (respectively mean m• ∈ J) and a covariance function
cov•,• ∈ M(J 2) (respectively covariance operator Γ ∈ L(J)) then we write shortly Y• ∼ P

(m•,cov•,•)

(respectively Y• ∼ P
(m•,Γ)

). �

§01|01.06 Notation. For notional convenience we eventually identify Yj and Πj
, i.e. Y• ∼ P for short. We

denote by W (B) the set of all probability measures on (R,B), by W2
(B) ⊆ W (B) the subset of

all probability measures with finite second moment, by P
(µ,σ2)
∈ W2

(B) a probability measure with
mean µ ∈ R and variance σ2 ∈ R>0, and by P{0}×R>0

=
{

P
(0,σ2)
∈ W2

(B): σ ∈ R>0

}
the subset of all

probability distributions with finite second moment and mean zero. For P
(µj ,σ

2
j )
∈ W2

(B), j ∈ N,
we denote by ⊗j∈NP

(µj ,σ
2
j )

the associated product measure on (R
N
,B

⊗N
). �

§01|01.07 Remark. A covariance operator Γ ∈ L(J) associated with a stochastic process Y• ∼ P
Y• is

self-adjoint and non-negative definite, Γ ∈ L>(J) for short. If

sup
{
P(|ν(y•Y• )|2): y• ∈ J = L2(ν), ‖y•‖J 6 1

}
∈ R>0,

which holds for example if P(‖Y• ‖2
J
) ∈ R>0 or in equal ‖Y• ‖J ∈ L2(P) (implying Y• ∈ J P-a.s.),

then there exists a covariance operator Γ ∈ L>(J) satisfying 〈Γx•, y•〉J = Cov(ν(x•Y• ), ν(y•Y• )) for

all x•, y• ∈ J. Observe that ‖Y• ‖2
J

= sup
{∣∣ν(y•Y• )

∣∣2: y• ∈ J, ‖y•‖J 6 1
}

. Note that ‖Y• ‖J ∈ L2(P) is
a sufficent condition for the existence of a covariance operator, but it is not a necessary condition
(see Lemma §01|01.18). �

§01|01.08 Lemma. Let Y• = (Yj )j∈J ∼ PY• be a stochastic process satisfying Assumption §01|01.04 and
Yj ∈ L2(P) for each j ∈ J , and let v ∈ R>1.
(i) If for all h• ∈ J

P
(
|ν(h•Y• )|2

)
6 v‖h•‖2

J
(01.01)

then Y• admits a covariance operator Γ ∈ L>(J) satisfying ‖Γ‖
L(J)
6 v .

Statistics of inverse problems 3
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(ii) If for all h• ∈ J in addition to (01.01) we have also

P
(
|ν(h•Y• )|2

)
−
∣∣P(ν(h•Y• )

)∣∣2 > v−1‖h•‖2

J
(01.02)

then Γ ∈ L>(J) is invertible with inverse Γ−1 ∈ L(J) where ‖Γ−1‖
L(J)
6 v .

Consequently, if (01.01) and (01.01) are satisfied for all h• ∈ J then we have

v−1‖h•‖2

J
6 ‖h•‖2

Γ
= 〈Γh•, h•〉J 6 v‖h•‖2

`2
∀h• ∈ J. (01.03)

§01|01.09 Proof of Lemma §01|01.08. Given in the lecture. �

§01|01.10 Empirical mean function. Assume a probability space (Z,Z ,P) and a stochastic process ψ
•

=
(ψ

j
)j∈J ∈ M(Z ⊗J ), i.e. Z × J 3 (z, j) 7→ ψ

j
(z) ∈ R is Z ⊗J -B-measurable, satisfying

in addition ψ
j
∈ L1(P) := L1(Z,Z ,P) for each j ∈ J . Consider the product probability space

(Z
n
,Z

⊗n
,P⊗n) and Y• = (Yj )j∈J with Yj := P̂n(ψj) ∈ Z

⊗n where z = (zi)i∈JnK 7→ Yj (z) =

(P̂n(ψj))(z) = 1
n

∑
i∈JnK ψj(zi) for each j ∈ J . By construction m• = (mj = P(ψ

j
))j∈J =

P(ψ
•
) ∈ M(J ) is the mean function of Y• . The statistic ε̇j := n1/2(P̂n(ψj)− P(ψ

j
)) ∈ M(Z

⊗n
) is

centred, i.e. ε̇j ∈ L1(P
⊗n) with P⊗n(ε̇j) = 0, and we have

ε̇• = (ε̇j)j∈J = n1/2(P̂n − P)(ψ
•
) = n1/2(P̂n(ψ•)− P(ψ

•
)) ∈M(Z

⊗n ⊗J ).

exploiting ψ
•
∈ M(Z ⊗J ). Since Yj = mj + n−1/2ε̇j for each j ∈ J by construction we write

shortly Y• = m• + n−1/2ε̇• and call Y• empirical mean function. If for each j ∈ J in addition we
assume ψ

j
∈ L2(P) then we obtain Yj = P̂n(ψj) ∈ L2(P

⊗n) and, hence ε̇j ∈ L2(P
⊗n) by construction.

By exploiting ψ
•
∈M(Z ⊗J ) the covariance function cov•,• ∈M(J 2) of ε̇• = (ε̇j)j∈J is given for

each j, j◦ ∈ J by

cov
j ,j◦

= Cov(ε̇j , ε̇j◦) = P(ψ
j
ψ
j◦
)− P(ψ

j
)P(ψ

j◦
) = nCov(Yj , Yj◦ ).

Consequently, we have ε̇• ∼ P
(0,cov•,•)

and Y• = m• + n−1/2ε̇• ∼ P
(m•,n−1cov•,•)

. There exists a co-

variance operator Γ ∈ L>(J), if in addition sup
{
P(
∣∣ν(a•ψ•)

∣∣2): a• ∈ J = L2(ν), ‖a•‖J 6 1
}
∈ R>0,

which holds whenever ‖ψ
•
‖
J
∈ L2(P) or in equal P(‖ψ

•
‖2
J
) ∈ R>0. Observe that ‖ψ

•
‖2
J

=

sup
{∣∣ν(a•ψ•)

∣∣2: a• ∈ J, ‖a•‖J 6 1
}

. Note that ‖ψ
•
‖
J
∈ L2(P) is a sufficent condition for the ex-

istence of a covariance operator, but it is not necessary. �

§01|01.11 White noise process. A stochastic process Ẇ• = (Ẇj)j∈J is called white noise process, if
(Ẇj)j∈J is a family of independent and identically P

(0,1)
-distributed real random variables, where

each Ẇj has zero mean and variance one, Ẇj ∼ P
(0,1)

and Ẇ• ∼ P⊗J(0,1) in short. �

§01|01.12 Notation. In other words, the distribution PẆ• of a white noise process Ẇ• = (Ẇj)j∈J ∼ P
Ẇ•

equals the product of its marginal P
(0,1)

-distributions, i.e. PẆ• = ⊗j∈JPẆj = ⊗j∈J P
(0,1)

= P⊗J(0,1) . �

§01|01.13 Remark. The centred stochastic process ε̇• := (ε̇j)j∈J of error terms considered in an Empirical
mean function §01|01.10 is in general not a white noise process. �

§01|01.14 Notation. We denote by `2 := L2
(ν
N
) = L2

(N, 2N, ν
N
) the space of all square-summable real-valued

sequences endowed with counting measure ν
N

:=
∑

j∈N δ{j} over the index set N.

§01|01.15 Property. Let Ẇ• := (Ẇj)j∈N ∼ P⊗N
(0,1)

be a white noise process. By assumption Ẇ• admits
0• := (0)j∈N as `2-mean and Γ = id`2 ∈ L>(`2) as covariance operator, i.e. Ẇ• ∼ P

(0•,id`2 )
, since

〈a•, b•〉̀
2

=
∑

j∈N ajbj =
∑

j∈N aj
∑

jo∈N
cov

j ,jo
bjo = 〈Γa•, b•〉̀

2

for all a•, b• ∈ `2. �
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§01|01.16 Gaussian process. A stochastic process Y• = (Yj )j∈J ∼ P
(m•,cov•,•)

satisfying Assumption §01|01.04
with mean function m• ∈ M(J ) and covariance function cov•,• ∈ M(J 2) is called a Gaussian
process, if the family of finite-dimensional distributions (PYU )U⊆J finite consists of normal distri-
butions, that is, YU = (Yu )u∈U is normally distributed with mean vector (mu)u∈U and covariance
matrix (cov

u,u′
)u,u′∈U . We write shortly Y• ∼ N(m•,cov•,•)

or Y• ∼ N(m•,Γ), if in addition there exist a
covariance operator Γ ∈ L>(J) associated with Y• . The Gaussian process Ḃ• ∼ N(0•,idJ ) with J-mean
zero and covariance operator idJ is called iso-Gaussian process or Gaussian white noise process,
which equals Ḃ• ∼ N

⊗N
(0,1) in the particular case J = L2

(ν
N
) = `2. �

§01|01.17 Definition Random function. Let (H, 〈·, ·〉
H

) be an Hilbert space equipped with its Borel-σ-algebra
BH, which is induced by its topology. A random variable Y ∈ M(A ,BH), i.e. an A -BH-
measurable map Y : (Ω,A ) → (H,BH), is called an H-valued random variable or a random
function in H. �

§01|01.18 Lemma. Consider (`2, 〈·, ·〉̀
2

). There does not exist a non-zero random function Y• = (Yj )j∈N in
`2 which is a Gaussian white noise process.

§01|01.19 Proof of Lemma §01|01.18. Given in the lecture. �

§01|02 Noisy image

§01|02.01 Assumption. The Hilbert space J = L2
(J ,J , ν) with σ-finite measure ν ∈ Mσ(J ), σ-algebra

J over J containing all elementary events
{
j
}

, j ∈ J , and the surjective partial isometry
V ∈ L(G,J), i.e. VV

?
= idJ , are fixed and presumed to be known in advance. �

§01|02.02 Notation. Come back to the reconstruction of θ ∈ H from a noisy version of g = Tθ ∈ G.
Under Assumption §01|02.01 setting A := VT ∈ L(H,J) and g

•
= (g

j
)j∈J := Vg ∈ J we write

g
•
= Aθ. Keep in mind, that we identify the equivalence class and its representative g

•
. �

§01|02.03 Noisy image. Let ε̇• = (ε̇j)j∈J be a stochastic process satisfying Assumption §01|01.04 with
mean zero and let n ∈ N be a sample size. The stochastic process ĝ

•
= g

•
+ n−1/2ε̇• with J-mean

g
•

is called a noisy version of the image g
•

= Vg ∈ J, or noisy image for short. We denote
by Pn

g the distribution of ĝ
•
. If ε̇• admits (possibly depending on g) a covariance function, say

covg•,• ∈ M(J 2), or a covariance operator, say Γg ∈ L>(J), then we eventually write ε̇• ∼ P
(0•,covg•,•)

and
ĝ
•
∼ P

(g
•
,n−1covg•,•)

or ε̇• ∼ P
(0•,Γg )

and ĝ
•
∼ P

(g
•
,n−1Γg

•
)
for short. �

§01|02.04 Empirical mean model. For each g ∈ G let Pg ∈ W (Z ) be a probability measure on a mea-
surable space (Z,Z ). Similar to an Empirical mean function §01|01.10 consider a stochastic
process ψ

•
= (ψ

j
)j∈J ∈ M(Z ⊗J ) which in addition for all g ∈ G satisfies ψ

j
∈ L1(Pg ) for

each j ∈ J and Pg (ψ•) = (g
j

= Pg (ψj))j∈J = g
•

= Vg . Considering a statistical product
experiment (Z

n
,Z

⊗n
,P⊗G = (P⊗g )g∈G) as in an Empirical mean function §01|01.10 we define

ĝ
•

= (ĝ
j

:= P̂n(ψj))j∈J = P̂n(ψ•) ∈ M(Z
⊗n ⊗J ). For g ∈ G assuming a P⊗ng -sample the J-mean

of ĝ
•

is by construction Pg (ψ•) = g
•
= Vg ∈ J. Moreover, the stochastic process

ε̇• = (ε̇j)j∈J = n1/2(P̂n − Pg )(ψ•) = n1/2(P̂n(ψ•)− Pg (ψ•)) ∈M(Z
⊗n ⊗J ).

is centred, i.e. ε̇j ∈ L1
(P⊗ng ) = L1

(Z
n
,Z

⊗n
,P⊗ng ) with P⊗ng (ε̇j) = 0 for each j ∈ J , and exploiting

ψ
•
∈ M(Z ⊗J ) it satisfies Assumption §01|01.04. Since ĝ

j
= g

j
+ n−1/2ε̇j for each j ∈ J the

stochastic process ĝ
•
= g

•
+ n−1/2ε̇• is a noisy version of the image g

•
= Vg ∈ J. �

§01|02.05 Sequence model. Consider J = `2 = L2
(ν
N
) as in §01|01.14. Let ε̇• = (ε̇j)j∈N be a real-valued

stochastic process (satisfying always Assumption §01|01.04) with mean zero and let n ∈ N be

Statistics of inverse problems 5
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a sample size. The observable noisy version ĝ
•

= g
•
+ n−1/2ε̇• ∼ P

n
g
•

with `2-mean g
•
∈ `2 as in

§01|01.14 takes the form of a sequence model

ĝ
j

= g
j
+ n−1/2ε̇j , j ∈ N. (01.04)

If ε̇• admits a covariance function (possibly depending on g
•
), say covg••,• ∈ R

N
2

, then we eventually
write ĝ

•
∼ P

(g
•
,n−1cov

g
•
•,•)

for short. If in addition ε̇• admits a covariance operator Γg
•
∈ L>(`2) (an infinite

matrix) then we write ĝ
•
∼ P

(g
•
,n−1Γg

•
)
. �

§01|02.06 Gaussian sequence model. Let Ḃ• := (Ḃj)j∈N ∼ N
⊗N
(0,1) be a Gaussian white noise process. The

observable noisy version ĝ
•

= g
•
+ n−1/2Ḃ• with `2-mean g

•
∈ `2 takes the form of a Gaussian

sequence model

ĝ
j

= g
j
+ n−1/2Ḃj , j ∈ N with (Ḃj)j∈N ∼ N

⊗N
(0,1) (01.05)

and we denote by N
n

g
•

the distribution of the stochastic process ĝ
•
. �

§01|02|01 Examples of empirical mean models

§01|02.07 Notation. Consider over D ∈ B the measure space (D,BD, λD) where λD ∈ Mσ(BD) denotes
the restriction of the Lebesgue measure λ ∈ Mσ(B) to the Borel-σ-algebra BD = B ∩ D,
and the Hilbert space L2

(λD) := L2
(D,BD, λD) =: G. Let (vj)j∈N be an orthonormal system in

L2
(λD). The linear operator V : L2

(λD) → `2 with g 7→ Vg := g• = (gj := 〈g, vj〉L2(λD)
)j∈N

is a surjective partial isometry V ∈ L(L2
(λD), `2). Its adjoint operator V

? ∈ L(`2,L2
(λD)) satisfies

V
?
a• =

∑
j∈N ajvj = ν

N
(a•v•) ∈ L2

(λD) for all a• ∈ `2 (the limit is taken in `2). We call g• = (gj)j∈N
(generalised) Fourier coefficients and V (generalised) Fourier series transform. �

§01|02.08 Density estimation on D. Let D2 be a set of square-integrable Lebesgue densities on (D,BD),
and hence D2 ⊆ L2

(λD) =: G. We denote for each density g ∈ D2 by Pg := gλD ∈ W (BD)

the associated probability measure. Assuming an iid. sample (Xi)i∈JnK of size n ∈ N we
consider the statistical product experiment

(
D

n
,B

⊗n
D ,P⊗nD2

:= (P⊗ng )g∈D2

)
. Let V ∈ L(L2

(λD), `2)

be a generalised Fourier series transform (see Notation §01|02.07) which is fixed and known in
advanced. Evidently, for each density g ∈ D2 ⊆ L2

(λD) the generalised Fourier coefficients
g
•
= (g

j
)j∈N = Vg for each j ∈ N satisfy

g
j

= 〈g, vj〉L2(λD)
= λD(gvj) = gλD(vj) = Pg (vj),

i.e. vj ∈ L1
(D,BD,Pg ) =: L1

(Pg ). Moreover, the stochastic process v• = (vj)j∈N on (D,BD,Pp) is
BD ⊗ 2N-B-measurable, i.e v• ∈ M(BD ⊗ 2N). Similar to an Empirical mean model §01|02.04 we
define ĝ

•
= (ĝ

j
:= P̂n(vj))j∈N = P̂n(v•) ∈M(B

⊗n
D ⊗ 2N) where for each j ∈ N

x = (x
i
)i∈JnK 7→ ĝ

j
(x) = (P̂n(vj))(x) = n−1

∑
i∈JnK

vj(xi).

By construction g
•
= (g

j
= Pg (vj))j∈N = Pg (v•) ∈M(2N) is the `2-mean of ĝ

•
. For each j ∈ N the

statistic ε̇j := n1/2(P̂n(vj)− Pg (vj)) ∈ M(B
⊗n
D ) is centred, i.e. ε̇j ∈ L1

(D
n
,B

⊗n
D ,P⊗ng ) =: L1

(P⊗ng ) with
P
⊗n
g (ε̇j) = 0, and exploiting v• ∈M(BD ⊗ 2N) the stochastic process

ε̇• = (ε̇j)j∈N = n1/2(P̂n − Pg )(v•) = n1/2(P̂n(v•)− Pg (v•)) ∈M(B
⊗n
D ⊗ 2N)

satisfies Assumption §01|01.04. Since ĝ
j

= g
j

+ n−1/2ε̇j for each j ∈ N by construction ĝ
•

=
g
•
+ n−1/2ε̇• is a noisy version of g

•
. �
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§01|02.09 Regression with uniform design. Consider the measure space ([0, 1],B
[0,1]
, λ[0,1]) where λ[0,1] de-

notes the restriction of the Lebesgue measure to the Borel-σ-algebra B
[0,1]

over [0, 1], and the
Hilbert space L2

(λ[0,1]) := L2
([0, 1],B

[0,1]
, λ[0,1]) of square Lebesgue-integrable functions. Let (X, Y ) be

a [0, 1]×R-valued random vector. We denote byPX ∈ W (B
[0,1]

) the marginal distribution ofX , by
P
Y |X a regular conditional distribution of Y given X , and by PX,Y = P

X � PY |X ∈ W (B
[0,1]
⊗B)

the joint distribution of (X, Y ). We tactically identifyX and Y with the coordinate map Π[0,1]
and

ΠR
, respectively, and thus (X, Y ) with the identity id[0,1]×R such that P = P

X,Y ∈ W (B
[0,1]
⊗B).

If in addition Y ∈ L1
(P) = L1

([0, 1]×R,B
[0,1]
⊗B,P) then PY |X (idR) = P

(
Y
∣∣X) =: g ∈ M(B

[0,1]
)

is unique up to PX -a.s. equality. Moreover, we have g ∈ L1
(PX ) = L1

([0, 1],B
[0,1]
,PX ) and the error

term ξ := Y − g(X ) satisfies ξ ∈ L1
(P) with P(ξ) = 0. Let us denote in this situation by PY |X

g

and Pg := P
X � PY |X

g ∈ W (B
[0,1]
⊗B), respectively, a regular conditional distribution of Y given

X and the joint distribution of (X, Y ). Keep however in mind, that even if g ∈ L1
(PX ) is fixed

the conditional distribution PY |X
g is still not fully specified. We assume in what follows that the

regressor X is uniformly distributed on the interval [0, 1], i.e. X ∼ U[0,1] = λ[0,1] = P
X and that

g ∈ F
2
⊆ L2

(PX ) = L2
(λ[0,1]) =: G identifying again equivalence classes and their representatives.

Denote by Ug := U[0,1] � PY |X
g the joint distribution of (X, Y ) without fully specifying the condi-

tional distribution PY |X
g . For g, h ∈ L2

(PX ) ⊆ L1
(PX ) we have gh ∈ L1

(PX ) and thus PX (gh) ∈ R.
Keep in mind that X and Y equals the coordinate map Π[0,1]

and ΠR
, respectively. Consequently,

if Y ∈ L2
(Ug) and h ∈ L2

(PX ) = L2
(λ[0,1]), hence h(X ) ∈ L2

(Ug), then we obtain Y h(X ) ∈ L1
(Ug)

and

Ug(Y h(X )) = P
X

(P
Y |X
g (Y )h) = P

X
(gh) = λ[0,1](gh) = 〈g, h〉

L2(λ[0,1])
∈ R

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment

(
([0, 1]×R)n, (B

[0,1]
⊗B)⊗n,U⊗nF2 := (U⊗ng )g∈F2

)
of size n ∈ N and for g ∈ F

2

we denote by ((X
i
, Y

i
))i∈JnK ∼ U⊗ng an iid. sample of (X, Y ) ∼ Ug = U[0,1] � PY |X

g . Let
V ∈ L(L2

(λ[0,1]), `2) be a generalised Fourier series transform as in Notation §01|02.07 which is fixed
and known in advanced. Evidently, for each g ∈ F

2
⊆ L2

(λ[0,1]) the generalised Fourier coefficients
g
•
= (g

j
)j∈N = Vg for each j ∈ N satisfy

g
j

= 〈g, vj〉G = λ[0,1](gvj) = Ug(Y vj(X )).

Therefore the stochastic process ψ
•

= (ψ
j
(X, Y ) := Y vj(X ))j∈N ∈ M((B

[0,1]
⊗B)⊗ 2N) fulfils

Assumption §01|01.04 and g
•

= Ug(ψ•). Similar to an Empirical mean model §01|02.04 we define
ĝ
•

= (ĝ
j

:= P̂n(ψj))j∈N = P̂n(ψ•) ∈ M((B
[0,1]
⊗B)⊗n ⊗ 2N). By construction g

•
= Ug(ψ•) ∈ M(2N) is the

`2-mean of ĝ
•
. For each j ∈ N the statistic ε̇j := n1/2(P̂n(ψj)− Ug(ψj)) ∈M((B

[0,1]
⊗B)⊗n) is centred,

i.e. ε̇j ∈ L1
(U⊗ng ) with U⊗ng (ε̇j) = 0, and exploiting ψ

•
∈M((B

[0,1]
⊗B)⊗ 2N) the stochastic process

ε̇• = (ε̇j)j∈N = n1/2(P̂n − Ug)(ψ•) = n1/2(P̂n(ψ•)− Ug(ψ•)) ∈M((B
[0,1]
⊗B)⊗n ⊗ 2N)

satisfies Assumption §01|01.04. Since ĝ
j

= g
j

+ n−1/2ε̇j for each j ∈ N by construction ĝ
•

=
g
•
+ n−1/2ε̇• is a noisy version of g

•
. �

§01|02|02 Extension to complex-valued models

§01|02.10 Notation Reminder. Given a non-empty and generally non-finite subset J of N, Z or R and
a subset U of J as an index set consider the complex product spaces CJ = j∈J C and
C
U

= u∈U C, where we identify the family y• = (y
j
)j∈J ∈ C

J and the map y• : J → C

with j 7→ y
j
. Eventually, we define arithmetic operations on elements of CJ coordinate-wise, for

example meaning a•b• = (ajbj)j∈J and ra• = (raj)j∈J for a•, b• ∈ C
J and r ∈ C. Let us further

Statistics of inverse problems 7
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introduce 0• := (0)j∈J , 1• := (1)j∈J , and the imaginary unit ı. The map ΠU : C
J → C

U given
by y• = (y

j
)j∈J 7→ (y

j
)j∈U =: ΠUy• is called canonical projection. In particular, for each j ∈ J

the coordinate map Πj
:= Π{j} : C

J → C is given by y• = (y
j ′
)j ′∈J 7→ y

j
=: Πj

y•. Let B denote
the Borel-σ-algebra over C (with a slight abuse of notation). Moreover, CJ is equipped with the
product Borel-σ-algebra B

⊗J
:=
⊗

j∈J B . Recall that B
⊗J equals the smallest σ-algebra on

C
J such that all coordinate maps Πj

, j ∈ J are measurable. i.e., B
⊗J

= σ(Πj
, j ∈ J ). More-

over, let (J ,J , ν) be a measure space with σ-finite measure ν ∈ Mσ(J ). We write for each
J -B-measurable h : J → C shortly h ∈M(J ) with a slight abuse of notation. For s ∈ R>1 =
[1,∞] we introduce the usual space Ls(ν) := Ls(J ,J , ν) of Ls(ν)-integrable complex-valued
functions. Define further the set of equivalence classes Ls

(ν) := Ls
(J ,J , ν) :=

{
{h}ν : h ∈ Ls(ν)

}
(see Comment §01|01.02). In case s = 2 the norm ‖{h}µ‖L2(ν ) := ‖h‖

L2
(ν ) = (ν(|h|2)1/2 is in-

duced by the inner product ({h}ν , {ho}ν ) 7→ 〈{h}ν , {ho}ν 〉L2(ν )
:= ν(hho) (denoting by z the

complex conjugate of z ∈ C), and hence (L2
(ν), 〈·, ·〉

L2(ν )
) is a complex Hilbert space. As usual

we identify the equivalence class {h}ν with its representative h, and write h ∈ L2
(ν) for short. If

λ = ν is the Lebesgue-measure then we write also shortly (Ls, ‖·‖Ls). and (L2, 〈·, ·〉L2

).
Let (Yj )j∈J be a family of complex-valued random variables on a common probability space
(Ω,A ,P), that is, Yj ∈ M(A ) for each j ∈ J . Consider the CJ -valued random variable
Y• := (Yj )j∈J ∈ M(A ,B

⊗J
) where Y• : Ω → C

J is a A -B⊗J -measurable map given by
ω 7→ (Yj (ω))j∈J =: Y• (ω). Y• is called a (complex-valued) stochastic process. Its distribu-
tion PY• := P ◦ Y −1

• is the image probability measure of P under the map Y• , i.e. Y• ∼ P
Y• or

P
Y• ∈ W (B

⊗J
) for short. Further, denote by PYU = P ◦ Y −1

U = P
Y• ◦ Π−1

U the distribution of the
stochastic process YU := ΠUY• = (Yu )u∈U on U ⊆ J . The family (PYU )U⊆J finite is called family
of finite-dimensional distributions of Y• or PY• . In particular, PYj = PΠj

Y• = P
Y• ◦ Π−1

j
∈ W (B)

denotes the distribution of Yj = Πj
Y• . Furthermore, for j, j

o
∈ J we write P(Yj ) = P

Y• (Πj
) and

Cov(Yj , Yjo ) := P(Yj Yjo
) − P(Yj )P(Yjo

), if it exists, for the expectation of Yj and the covariance
of Yj and Yjo with respect to P. �

§01|02.11 Assumption. The complex-valued stochastic process Y• = (Yj )j∈J on a common measurable
space (Ω,A ) as a function Ω × J → C with (ω, j) 7→ Yj (ω) is A ⊗J -B-measurable,
Y• ∈M(A ⊗J ) for short. �

§01|02.12 Notation. Consider the complex Hilbert spaces L2
(λ[0,1)) := L2

([0, 1),B
[0,1)
, λ[0,1)) and J := `2(Z) =

L2
(ν
Z
) = L2

(Z, 2Z, ν
Z
) where the latter is the space of all square-summable complex-valued se-

quences endowed with counting measure ν
Z

:=
∑

j∈Z δ{j} over the index set Z. For each j ∈ Z
introduce the exponential ej ∈ M(B

[0,1)
) with ej(x) := exp(−ı2πxj) for x ∈ [0, 1) forming to-

gether the exponential basis (ej)j∈Z in L2
(λ[0,1)). Moreover, the complex-valued stochastic process

e• = (ej)j∈Z on ([0, 1),B
[0,1)

) is B
[0,1)
⊗ 2Z-B-measurable, i.e. satisfies Assumption §01|02.11. The

linear operator F : L2
(λ[0,1)) → `2(Z) with g 7→ Fg := g• = (gj := 〈g, ej〉L2(λ[0,1))

)j∈Z = λ[0,1)(ge•) is a
bijective isometry (unitary) F ∈ L(L2

(λ[0,1)), `2(Z)). Its adjoint operator F
? ∈ L(`2(Z),L2

(λ[0,1))) satisfies

ν
Z
(λ[0,1)(ge•)a•) = ν

Z
((Fg)a•) = 〈Fg, a•〉̀

2

= 〈g,F?
a•〉L2(λ[0,1))

= λ[0,1)(gF?a•) = λ[0,1)(gνZ(a•e•))

and hence F
?
a• =

∑
j∈Z ajej = ν

Z
(a•e•) ∈ L2

(λ[0,1)) for all a• ∈ `2(Z) (the limit is taken in L2
(λ[0,1))).

We call g• = (gj)j∈Z Fourier coefficients and F Fourier-series transform. �

§01|02.13 Density estimation on [0, 1). Let D2 be a set of square-integrable Lebesgue densities on ([0, 1),B
[0,1]

),
and hence D2 ⊆ L2

(λ[0,1)) (by the usual embedding of real-valued functions) as in Notation §01|02.10.
We denote for each Lebesgue density g on ([0, 1),B

[0,1]
) by Pg := gλ[0,1) ∈ W (B

[0,1)
) the associ-

ated probability measure. We consider the statistical product experiment
(
[0, 1)n,B⊗n

[0,1)
,P⊗nD2

:=

8 Statistics of inverse problems
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(P⊗ng )g∈D2

)
. Let F ∈ L(L2

(λ[0,1)), `2(Z)) be the Fourier-series transform (see Notation §01|02.12). Evi-
dently, for each g ∈ D2 ⊆ L2

(λ[0,1)) ⊆ L1
(λ[0,1)) its Fourier-series g

•
= (g

j
)j∈Z = Fg for each j ∈ Z

satisfy

g
j

= 〈g, ej〉L2(λ[0,1))
= λ[0,1)(gej) = Pg (ej).

The complex-valued stochastic process e• = (ej)j∈Z on ([0, 1),B
[0,1)

) is (B
[0,1]
⊗2Z)-B-measurable,

i.e. e• ∈ M(B
[0,1)
⊗ 2Z) for short. We define ĝ

•
= (ĝ

j
:= P̂n(ej))j∈Z = P̂n(e•) ∈ M(B⊗n

[0,1)
⊗ 2Z) similar to

an Empirical mean model §01|02.04 where for each j ∈ Z

x = (x
i
)i∈JnK 7→ ĝ

j
(x) = (P̂n(ej))(x) = n−1

∑
i∈JnK

ej(xi) = n−1
∑
i∈JnK

exp(ı2πjx
i
).

By construction g
•

= (g
j

= Pg (ej))j∈Z = Pg (e•) ∈ M(2Z) is the `2(Z)-mean of ĝ
•
. For each j ∈ Z

the statistic ε̇j := n1/2(P̂n(ej)− Pg (ej)) ∈ M(B⊗n
[0,1)

) is centred, i.e. ε̇j ∈ L1
(P⊗ng ) with P⊗ng (ε̇j) = 0,

and exploiting e• = (ej)j∈Z ∈M(B
[0,1)
⊗ 2Z) the complex valued stochastic process

ε̇• = (ε̇j)j∈Z = n1/2(P̂n − Pg )(e•) = n1/2(P̂n(e•)− Pg (e•)) ∈M(B⊗n
[0,1)
⊗ 2Z)

satisfies Assumption §01|02.11. Since ĝ
j

= g
j

+ n−1/2ε̇j for each j ∈ Z by construction ĝ
•

=
g
•
+ n−1/2ε̇• is a noisy version of g

•
. �

§01|02.14 Regression with uniform design. Consider the measure space ([0, 1),B
[0,1)
, λ[0,1)) and the com-

plex Hilbert space L2
(λ[0,1)) as in Notation §01|02.10. Let F

2
be a set of square-integrable real-valued

regression function on ([0, 1],B
[0,1]

), and hence F
2
⊆ L2

(λ[0,1)) =: G (by the usual embedding of
real-valued functions). We consider as in Regression with uniform design §01|02.09 the statisti-
cal product experiment

(
([0, 1)×R)n, (B

[0,1)
⊗B)⊗n,U⊗nF2 := (U⊗ng )g∈F2

)
of size n ∈ N and for

g ∈ F
2

we denote by ((X
i
, Y

i
))i∈JnK ∼ U⊗ng an iid. sample of (X, Y ) ∼ Ug = U[0,1) � PY |X

g . Let
F ∈ L(L2

(λ[0,1]), `2(Z)) be the Fourier-series transform (see Notation §01|02.12). For each g ∈ F
2
⊆

L2
(λ[0,1)) the Fourier coefficients g

•
= (g

j
)j∈Z = Fg for each j ∈ Z satisfy

g
j

= 〈g, ej〉L2(λ[0,1))
= λ[0,1)(gej) = Ug(Y ej(X )).

The complex-valued stochastic process ψ
•

= (ψ
j
(X, Y ) := Y ej(X ))j∈Z ∈ M((B

[0,1)
⊗B)⊗ 2Z)

fulfils Assumption §01|02.11 and g
•

= Ug(ψ•). Similar to an Empirical mean model §01|02.04 we
define ĝ

•
= (ĝ

j
:= P̂n(ψj))j∈Z = P̂n(ψ•) ∈M((B

[0,1)
⊗B)⊗n ⊗ 2Z) where for each j ∈ Z

ĝ
j

= P̂n(ψj) = n−1
∑
i∈JnK

Y
i
ej(Xi

) = n−1
∑
i∈JnK

Y
i
exp(ı2πjX

i
).

By construction g
•

= Ug(ψ•) ∈ M(2Z) is the `2(Z)-mean of ĝ
•
. For each j ∈ Z the statistic

ε̇j := n1/2(P̂n(ψj)− Ug(ψj)) ∈ M((B
[0,1)
⊗B)⊗n) is centred, i.e. ε̇j ∈ L1

(U⊗ng ) with U⊗ng (ε̇j) = 0, and
exploiting ψ

•
∈M((B

[0,1)
⊗B)⊗ 2Z) the complex-valued stochastic process

ε̇• = (ε̇j)j∈Z = n1/2(P̂n − Ug)(ψ•) = n1/2(P̂n(ψ•)− Ug(ψ•)) ∈M((B
[0,1)
⊗B)⊗n ⊗ 2Z)

satisfies Assumption §01|02.11. Since ĝ
j

= g
j

+ n−1/2ε̇j for each j ∈ Z by construction ĝ
•

=
g
•
+ n−1/2ε̇• is a noisy version of g

•
. �

§01|02.15 Notation. Consider the complex Hilbert space L2 := L2
(λ) = L2

(R,B, λ) as in Notation §01|02.10.
Let F ∈ denote the Fourier-Plancherel transform satisfying

g
j

:= (Fg)j =

∫
R

g(x) exp(ı2πxj)λ(dx), j ∈ R, ∀g ∈ L1 ∩ L2.

Statistics of inverse problems 9
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Introducing e• = (ej)j∈R ∈ M(B
2
) given by ej(x) := exp(−ı2πxj) for x, j ∈ R we evidently

have ej , e•(x) ∈M(B) and (keep for each j ∈ R in mind that ej ∈ L∞ but ej 6∈ L2)

g
•
= (g

j
)j∈R = Fg = (Fg)• = ((Fg)j = λ(gej))j∈R = λ(ge•), ∀g ∈ L1 ∩ L2.

Moreover, F is unitary with adjoint F
? ∈ L(L2) satisfying

λ(λ(ge•)h•) = λ((Fg)•h•) = 〈Fg, h•〉L2

= 〈g,F?
h•〉L2

= λ(gF?h•) = λ(gλ(h•e•))

and hence (F
?
h•)(x) = λ(h•e•(x)), x ∈ R, for all h• ∈ L1 ∩ L2. For g ∈ L1 ∩ L2 we write

g
•

:= (g
j

:= λ(gej))j∈R = λ(ge•) = Fg such that g = F
?
g
•

(with a slight abuse of notation). We
note that the complex-valued stochastic process e• = (ej)j∈R on (R,B) is B

2-B-measurable,
i.e. e• = (ej)j∈R ∈M(B

2
) for short, and thus satisfies Assumption §01|02.11. �

§01|02.16 Density estimation on R. Let D2 be a set of square-integrable Lebesgue densities on (R,B),
and hence D2 ⊆ L2 =: G (by the usual embedding of real-valued functions). We denote for
each density g ∈ D2 by Pg := gλ ∈ W (B) the associated probability measure. We consider
the statistical product experiment

(
R
n
,B

⊗n
,P⊗nD2

:= (P⊗ng )g∈D2

)
. Let F ∈ L(L2) be the Fourier-

Plancherel transform (see Notation §01|02.15). Evidently, for each g ∈ D2 ⊆ L2 and hence
g ∈ L1 ∩ L2 its Fourier-Plancherel transform g

•
= (g

j
)j∈R = Fg for each j ∈ R satisfies

g
j

= λ(gej) = Pg (ej).

The stochastic process (ej)j∈R on (R,B) is B
2-B-measurable, i.e. e• = (ej)j∈R ∈ M(B

2
) for

short. Similar to an Empirical mean model §01|02.04 we define ĝ
•

= (ĝ
j

:= P̂n(ej))j∈R = P̂n(e•) ∈
M(B

⊗n ⊗B) where for each j ∈ R

x = (x
i
)i∈JnK 7→ ĝ

j
(x) = (P̂n(ej))(x) = n−1

∑
i∈JnK

ej(xi) = n−1
∑
i∈JnK

exp(ı2πjx
i
).

By construction g
•

= (g
j

= Pg (ej))j∈R = Pg (e•) ∈ M(B) is the L2-mean of ĝ
•
. For each j ∈ R the

statistic ε̇j := n1/2(P̂n(ej)− Pg (ej)) ∈ M(B
⊗n

) is centred, i.e. ε̇j ∈ L1
(P⊗ng ) with P⊗ng (ε̇j) = 0. Since

e• = (ej)j∈R ∈M(B
2
) the stochastic process

ε̇• = (ε̇j)j∈R = n1/2(P̂n − Pg )(e•) = n1/2(P̂n(e•)− Pg (e•)) ∈M(B
⊗n ⊗B)

satisfies Assumption §01|02.11 and, by construction ĝ
•
= g

•
+ n−1/2ε̇• is a noisy version of g

•
. �

§01|02.17 Notation. Consider on the measurable space (R>0,B>0) the restriction λ>0 ∈ Mσ(B>0) of the
Lebesgue-measure λ onR>0, and for c ∈ R the σ-finite measure xcλ>0 ∈Mσ(B>0) with Lebesgue-
density xc ∈ M(B>0) given by x 7→ xc(x) := xc . For s ∈ R>1 introduce the complex vector space
Ls

(xc) := Ls
(xcλ>0) := Ls

(R>0,B>0, xcλ>0) of all complex-valued Ls
(xcλ>0)-integrable functions. Given

the complex Hilbert space L2 := L2
(λ) := L2

(R,B , λ) of all complex-valued square-Lebesgue-
integrable functions let Mc ∈ L(L2

(x2c−1),L2) denote the Mellin transform satisfying

g
j

:= (Mcg)j =

∫
R>0

xc−1+ı2πjg(x)λ>0(dx) =

∫
R>0

xı2πjg(x)(xc−1λ>0)(dx)

=

∫
R>0

x−c+ı2πjg(x)(x2c−1λ>0)(dx), j ∈ R, ∀g ∈ L1
(xc−1) ∩ L2

(x2c−1).
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Introducing x• = (xj)j∈R ∈ M(B>0 ⊗B) given by xj
(x) := x−ı2πj for x ∈ R>0, j ∈ R we evidently

have x•(x) ∈ B , ej ◦ log = xı2πj = xj ∈ B>0, and

g
•
= (g

j
)j∈R = Mcg = (Mcg)• = ((Mcg)j = xc−1λ>0(xjg))j∈R

= (x2c−1λ>0(x
−cxjg))j∈R, ∀g ∈ L1

(xc−1) ∩ L2
(x2c−1).

Moreover, Mc is unitary with adjoint M
?
c ∈ L(L2,L2

(x2c−1)) satisfying

λ((x2c−1λ>0)(x
−cx•g)h•) = λ((Mcg)•h•) = 〈Mcg, h•〉L2

= 〈g,M?

ch•〉L2(x
2c−1)

= (x2c−1λ>0)(gM?
ch•) = (x2c−1λ>0)(gλ(x•h•)x

−c), ∀g• ∈ L1 ∩ L2

and hence (M
?
ch•)(x) = λ(x•(x)h•)x−c = (λ(x•h•)x

−c)(x), x ∈ R>0 for all h• ∈ L1 ∩ L2. For
g ∈ L1

(xc−1) ∩ L2
(x2c−1) we write g

•
:= (g

j
:= x2c−1λ>0(x

−cxjg) = λ>0(x
c−1xjg))j∈R = Mcg such

that g = M
?
cg• (with a slight abuse of notation). We note that for each c ∈ R the complex-

valued stochastic process xcx• = (xcxj)j∈R on (R>0,B>0) is B>0 ⊗B-B-measurable, i.e. xcx• =
(xcxj)j∈R ∈M(B>0 ⊗B) for short, and thus satisfies Assumption §01|02.11. �

§01|02.18 Density estimation on R>0. Let D2 ⊆ L1
(xc−1)∩L2

(x2c−1) with L2
(x2c−1) =: G (by the usual embed-

ding of real-valued functions) be a set of densities on (R>0,B>0) for some c ∈ R fixed and pre-
sumed to be known in advance. We denote for each density g ∈ D2 by Pg := gλ>0 ∈ W (B>0) the
associated probability measure. We consider the statistical product experiment

(
R
n

>0,B
⊗n
>0 ,P

⊗n
D2

:=
(P⊗ng )g∈D2

)
. Let Mc ∈ L(L2

(x2c−1),L2) be the Mellin transform (see Notation §01|02.17). Evidently,
for each g ∈ D2 ⊆ L1

(xc−1) ∩ L2
(x2c−1) its Mellin transform g

•
= (g

j
)j∈R = Mcg for each j ∈ R

satisfies

g
j

= λ>0(x
c−1xjg) = Pg (x

c−1xj).

The complex-valued stochastic process xc−1x• = (xc−1xj)j∈R on (R>0,B>0) is (B>0 ⊗ B)-B-
measurable, i.e. xc−1x• = (xc−1xj)j∈R ∈ M(B>0 ⊗B) for short. Similar to an Empirical mean
model §01|02.04 we define ĝ

•
= (ĝ

j
:= P̂n(x

c−1xj))j∈R = P̂n(x
c−1x•) ∈ M(B

⊗n
>0 ⊗B) where for each

j ∈ R

x = (x
i
)i∈JnK 7→ ĝ

j
(x) = (P̂n(x

c−1xj))(x) = n−1
∑
i∈JnK

xc−1(x
i
)xj(xi) = n−1

∑
i∈JnK

xc−1+ı2πj
i .

By construction g
•

= (g
j

= Pg (x
c−1xj))j∈R ∈ M(B) is the L2-mean of ĝ

•
. For each j ∈ R the

statistic ε̇j := n1/2(P̂n(x
c−1xj)− Pg (xc−1xj)) ∈ M(B

⊗n
>0 ) is centred, i.e. ε̇j ∈ L1

(P⊗ng ) with P⊗ng (ε̇j) =
0. By exploiting xc−1x• = (xc−1xj)j∈R ∈M(B>0 ⊗B) the stochastic process

ε̇• = (ε̇j)j∈R = n1/2(P̂n − Pg )(xc−1x•) = n1/2(P̂n(x
c−1x•)− Pg (xc−1x•)) ∈M(B

⊗n
>0 ⊗B)

satisfies Assumption §01|02.11 and, by construction ĝ
•
= g

•
+ n−1/2ε̇• is a noisy version of g

•
. �

§01|03 Statistical direct problem

§01|03.01 Assumption. The Hilbert space J = L2
(J ,J , ν) with σ-finite measure ν ∈ Mσ(J ) and the

surjective partial isometries V ∈ L(G,J) and U := A = VT ∈ L(H,J), i.e. VV
?

= idJ = UU
?,

are fixed and presumed to be known in advance. �

§01|03.02 Notation. Under Assumption §01|03.01 we consider the reconstruction of θ• = Uθ ∈ J (or in
equal θ = U

?
θ• ∈ H) from a noisy version of g

•
= Vg = Aθ = Uθ = θ• ∈ J. Keep in mind, that

we identify the equivalence class and its representative θ•. �

Statistics of inverse problems 11
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§01|03.03 Statistical direct problem. Consider as in Definition §01|02.03 a stochastic process ε̇• = (ε̇j)j∈J
satisfying Assumption §01|01.04 with mean zero and a sample size n ∈ N. Under Assump-
tion §01|03.01 the observable noisy image has J-mean θ• = Uθ ∈ J, takes the form θ̂• = θ•+n

−1/2ε̇•
and is called a noisy version of the parameter θ ∈ H, or noisy parameter for short. We denote
by Pn

θ the distribution of θ̂•. If ε̇• admits (possibly depending on θ) a covariance function, say
covθ•,• ∈ M(J 2), or a covariance operator, say Γθ ∈ L>(J), then we eventually write ε̇• ∼ P

(0•,covθ•,•)

and θ̂• ∼ P
(θ•,n−1covθ•,•)

or ε̇• ∼ P
(0•,Γθ )

and θ̂• ∼ P
(θ•,n−1Γθ )

for short. The reconstruction of θ• ∈ J (in equal
θ = U?θ• ∈ H) from its noisy version θ̂• ∼ Pn

θ is called a statistical direct problem. �

§01|03.04 Direct empirical mean model. Consider the reconstruction of θ• ∈ J (in equal θ = U?θ• ∈ H)
in an Empirical mean model as in §01|02.04. Under Assumption §01|03.01 the observable noisy
image has J-mean Uθ = θ• ∈ J, i.e. it is a noisy version of the parameter, and takes the
form an Empirical mean model as in §01|02.04, that is θ̂• = θ• + n−1/2ε̇• with error process ε̇• =

n1/2(P̂n(ψ•)− Pθ (ψ•)) ∈M(Z
⊗n ⊗J ) satisfying Assumption §01|01.04. �

§01|03.05 Direct sequence model (dSM). Consider J = `2 = L2
(ν
N
) as in §01|01.14. Let ε̇• = (ε̇j)j∈N be a

sequence of real-valued random variables with mean zero and let n ∈ N be a sample size. The
observable noisy version θ̂• = θ• +n−1/2ε̇• ∼ P

n
θ with `2-mean θ• ∈ `2 takes the form of a Sequence

model as in §01|02.05, that is

θ̂j = θj + n−1/2ε̇j , j ∈ N. (01.06)

If ε̇• admits a covariance function (possibly depending on θ•), say covθ•,• ∈ M(2N
2

) = R
N

2

, then we
eventually write θ̂• ∼ P

(θ•,n−1covθ•,•)
for short. If in addition ε̇• admits a covariance operator Γθ• ∈ L>(`2)

(an infinite matrix) then we write θ̂• ∼ P
(θ•,n−1Γθ)

. �

§01|03.06 Gaussian direct sequence model (GdSM). Let Ḃ• := (Ḃj)j∈N ∼ N
⊗N
(0,1) be a Gaussian white

noise process. The observable noisy version θ̂• = θ• + n−1/2Ḃ• with `2-mean θ• ∈ `2 takes the form
of a Gaussian sequence model as in §01|02.06, that is

θ̂j = θj + n−1/2Ḃj , j ∈ N with (Ḃj)j∈N ∼ N
⊗N
(0,1). (01.07)

We denote by N
n

θ the distribution of the stochastic process θ̂•. �

§01|04 Diagonal statistical inverse problem

§01|04.01 Notation. Consider the measure space (J ,J , ν) and the Hilbert space J = L2
(ν) as in No-

tation §01|01.01. For w• ∈ R
J define the multiplication map Mw : R

J → R
J with a• 7→

Mwa• := w•a• := (wjaj)j∈J . If w• ∈ M(J ), i.e. w• is J -B-measurable, then we have
Mw : M(J ) → M(J ) too. If in addition w• ∈ L∞(ν) then we have also Mw ∈ L(J) identify-
ing again equivalence classes and representatives. We set

LM(J) :=
{

Mw: w• ∈ L∞(ν)
}
⊆ L(J)

noting that ‖Mw‖L(J)
= sup

{
‖w•a•‖J : ‖a•‖J 6 1

}
6 ‖w•‖L∞(ν ) for each Mw ∈ LM(J). Finally, given

surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J) we define

LU,V
(LM(J)) := V?(LM(J))U :=

{
V?MwU ∈ L(H,G): Mw ∈ LM(J)

}
.

As a consequence, for each T ∈ LU,V(LM(J)) we have VTU? = Mw ∈ LM(J) for some w• ∈ L∞(ν). �
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§01|04.02 Notation. ForA ∈J we denote by 1A• = (1Aj )j∈J the indicator function where for each j ∈ J ,
1Aj = 1 if j ∈ A and 1Aj = 0 otherwise. Obviously, 1A• is J -B-measurable, i.e. 1A• ∈M(J ), and
it belongs to L∞(ν), and to L2

(ν) whenever ν(A) ∈ R>0. Since {j} ∈J we have 1{j}• ∈J and
1{j}• ∈ L∞(ν). In particular, it follows 1• = 1J• ∈ L∞(ν) and M1 ∈ LM(J). For each w• ∈ L∞(ν) set

Jw• := {{a•w•}ν : a• ∈ L2(ν)} = {a•w• : a• ∈ J = L2
(ν)}

and hence in particular J1A• = {a•1A• : a• ∈ J}. Given 0• = (0)j∈J for w• ∈ M(J ) we write
further

Nw := {w• = 0•} := {j ∈ J : wj = 0} ∈J ,

and denote by dom(Mw) = {a• ∈ J : a•w• ∈ J}, ran(Mw) = {a•w• : a• ∈ dom(Mw) ⊆ J}
and ker(Mw) = {a• ∈ J : {a•w•}ν = 0•}, respectively, the domain, range and nullspace of
Mw : J ⊇ dom(Mw) → J. We write w• ∈ M6=0,ν

(J ), if w• ∈ M(J ) and ν(Nw) = 0. Similarly, for
w• ∈M(J ) with ν({w• 6 0•}) = 0 we write w• ∈M>0,ν

(J ). �

§01|04.03 Notation. Consider the special case (J ,J , ν) = (N, 2N, ν
N
) where (1{j}• )j∈N forms an or-

thonormal basis in `2. For each infinite matrix A•|• ∈ L(`2) ⊆ RN
2

= M(2N
2

) with

A•|• = (Aj |jo := 〈A•|•1
{jo}
• ,1{j}• 〉̀

2

)j ,jo∈N

and for each j, j◦ ∈ N and a• ∈ `2 we have

Aj |• := (Aj |j◦)j◦∈N = A
?

•|•1
{j}
• ∈ `2, A•|j◦ := (Aj |j◦)j∈N = A•|•1

{j}
• ∈ `2,

and 〈Aj |•, a•〉̀
2

= ν
N
(Aj |•a•) =

∑
j◦∈N

Aj |j◦aj◦ = 〈A•|•a•,1
{j}
• 〉̀

2

∈ R.

If A•|• ∈ L(`2) equals a multiplication operator A•|• = Ms ∈ LM(`2) for some s• ∈ `∞ (where `∞ :=
L∞(ν

N
) is the set of all bounded real-valued sequences with respect to the counting measure ν

N
over

N) then we call A•|• ∈ L(`2) diagonal. Note that A•|• ∈ L(`2) is diagonal if and only if Aj ,j◦
= 0 for

all j ∈ N and j◦ ∈ N\j = N \ {j}. For each T ∈ LU,V(LM(`2)) with T•|• = VTU? = Ms ∈ LM(`2), the
sequence s• ∈ `∞ is called singular values of T and (s•,U,V) singular value decomposition of
T. In other words, each T ∈ LU,V(LM(J)) is diagonal wrt. to U and V. �

§01|04.04 Assumption. For J = L2
(ν), surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J), fixed and

presumed to be known in advance, T ∈ LU,V(LM(J)) ⊆ L(H,G) and hence A = VT = MsU or in
equal s• ∈ L∞(ν) is also presumed to be known where g

•
= VTθ = MsUθ = Msθ• = s•θ• ∈ J or in

equal g
•
∈ Js•. �

§01|04.05 Notation. Under Assumption §01|04.04 given s• ∈ L∞(ν) and g
•
∈ Js• we consider the reconstruc-

tion of θ• = Uθ ∈ J (or in equal θ = U
?
θ• ∈ H) from a noisy version of g

•
= Vg = Aθ = s•θ• ∈ J.

Keep in mind, that we identify the equivalence class and its representative g
•
. �

§01|04.06 Diagonal statistical inverse problem. Consider as in Definition §01|02.03 a stochastic process
ε̇• = (ε̇j)j∈J satisfying Assumption §01|01.04 with mean zero and a sample size n ∈ N. Under
Assumption §01|04.04, where s• ∈ L∞(ν) is known in advance, the observable noisy image has J-
mean g

•
= s•θ• and takes the form ĝ

•
= g

•
+n−1/2ε̇• = s•θ•+n

−1/2ε̇•. We denote byPn
θ•|s• the distribution

of ĝ
•
. If ε̇• admits (possibly depending on g

•
= s•θ•) a covariance function, say covθ |s••,• ∈ M(J 2),

or a covariance operator, say Γθ•|s• ∈ L>(J), then we eventually write ε̇• ∼ P
(0•,covθ•|s••,• )

and ĝ
•
∼ P

(g
•
,n−1covθ•|s••,• )

or ε̇• ∼ P
(0•,Γθ•|s•)

and ĝ
•
∼ P

(g
•
,n−1Γθ•|s•)

for short. The reconstruction of θ• ∈ J (in equal θ = U?θ• ∈ H)
from a noisy version ĝ

•
∼ Pn

θ•|s• of the image g
•

= s•θ• ∈ J is called a diagonal statistical inverse
problem. �
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§01|04.07 Diagonal inverse empirical mean model (dieMM). Consider the reconstruction of θ• ∈ J (in
equal θ = U?θ• ∈ H) in an Empirical mean model as in §01|02.04. Under Assumption §01|04.04,
where s• ∈ L∞(ν) is known in advance, the observable noisy image has J-mean Vg = g

•
= s•θ• ∈

Js• ⊆ J and takes the form of an Empirical mean model as in §01|02.04, that is ĝ
•

= s•θ• + n−1/2ε̇•
with error process

ε̇• = n1/2(P̂n − Pg )(ψ•) = n1/2(P̂n(ψ•)− Pg (ψ•)) ∈M(Z
⊗n ⊗J )

satisfying Assumption §01|01.04. �

§01|04.08 Diagonal inverse sequence model (diSM). Consider J = `2 = L2
(ν
N
) as in §01|01.14. Let

ε̇• = (ε̇j)j∈N be a sequence of real-valued random variables with mean zero and let n ∈ N be
a sample size. Under Assumption §01|04.04, where s• ∈ `∞ is known in advance, the observable
noisy image has `2-mean g

•
= s•θ• ∈ `2 and takes the form of a Sequence model as in §01|02.05,

that is ĝ
•
= g

•
+ n−1/2ε̇• = s•θ• + n−1/2ε̇• or in equal

ĝ
j

= g
j
+ n−1/2ε̇j = sjθj + n−1/2ε̇j , j ∈ N. (01.08)

We denote by Pn
θ|s the distribution of ĝ

•
. �

§01|04.09 Gaussian diagonal inverse sequence model (GdiSM). Let Ḃ• := (Ḃj)j∈N ∼ N
⊗N
(0,1) be a Gaussian

white noise process. The observable noisy version ĝ
•

= g
•
+ n−1/2Ḃ• with `2-mean g

•
= s•θ• takes

the form of a Gaussian sequence model as in §01|02.06, that is

ĝ
j

= sjθj + n−1/2Ḃj , j ∈ N with (Ḃj)j∈N ∼ N
⊗N
(0,1). (01.09)

We denote by N
n

θ|s the distribution of the stochastic process ĝ
•
. �

§01|04|01 Examples of diagonal inverse empirical mean models

§01|04.10 Diagonal inverse regression with uniform design. Consider the measure space ([0, 1],B
[0,1]
, λ[0,1])

and the Hilbert space L2
(λ[0,1]) as in Model §01|02.09. Let T ∈ LU,V(LM(`2)) ⊆ L(H,L2

([0, 1])) be known
in advance, i.e. T•|• = VTU? = Ms ∈ LM(`2) and in other words T has a known singular
value decomposition (s•,U,V) with sequence of singular values s• ∈ `∞. Let (X, Y ) be a
[0, 1] × R-valued random vector. As in Model §01|02.09 we assume in what follows that the
regressor X is uniformly distributed on the interval [0, 1], i.e. X ∼ U[0,1] = λ[0,1] = P

X and
that given Tθ = g ∈ L2

([0, 1]) for some θ ∈ H the joint distribution of (X, Y ) is given by
Uθ |T := U[0,1]�PY |X

Tθ without fully specifying the regular conditional distribution PY |X
Tθ which how-

ever satisfies PY |X
Tθ (idR) = PTθ

(
Y
∣∣X) = Tθ = g ∈ L2

([0, 1]). Keep in mind that we tactically
identify X and Y with the coordinate map Π[0,1]

and ΠR
, respectively, and thus (X, Y ) with the

identity id[0,1]×R. Consequently, if Y ∈ L2
(Uθ |T) and h ∈ L2

(PX ) = L2
(λ[0,1]), hence h(X ) ∈ L2

(Uθ |T),
then we obtain Y h(X ) ∈ L1

(Uθ |T) and

Uθ |T(Y h(X )) = P
X

(P
Y |X

Tθ (Y )h) = P
X(

(Tθ)h
)

= λ[0,1]

(
(Tθ)h

)
= 〈Tθ, h〉

L2(λ[0,1])
∈ R

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment

(
([0, 1]×R)n, (B

[0,1]
⊗B)⊗n,U⊗nΘ×{T} := (U⊗nθ |T )θ∈Θ

)
of size n ∈ N and for θ ∈ Θ

we denote by ((X
i
, Y

i
))i∈JnK ∼ U⊗nθ |T an iid. sample of (X, Y ) ∼ Uθ |T = U[0,1] � PY |X

Tθ . Keep in
mind that V ∈ L(L2

(λ[0,1]), `2) and U ∈ L(H, `2) are generalised Fourier series transform as in No-
tation §01|02.07 which are fixed and known in advanced. Evidently, for each θ ∈ Θ ⊆ H the
generalised Fourier coefficients θ• = (θj)j∈N = Uθ and g

•
= (g

j
)j∈N = Vg = Msθ• = s•θ• satisfy

g
j

= sjθj = 〈Msθ•,1
{j}
• 〉̀

2

= 〈Tθ,V?
1{j}• 〉L2(λ[0,1])

= 〈Tθ, vj〉L2(λ[0,1])
= Uθ |T(Y vj(X ))

14 Statistics of inverse problems
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for each j ∈ N. The stochastic process ψ
•

= (ψ
j
(X, Y ) := Y vj(X ))j∈N ∈ M((B

[0,1]
⊗B)⊗ 2N)

fulfils Assumption §01|01.04 and g
•

= s•θ• = Uθ |T(ψ
•
). Similar to an Empirical mean model

§01|02.04 we define ĝ
•

= (ĝ
j

:= P̂n(ψj))j∈N ∈ M((B
[0,1]
⊗B)⊗n ⊗ 2N). By construction g

•
= s•θ• =

Uθ |T(ψ
•
) ∈ M(2N) is the `2-mean of ĝ

•
. For each j ∈ N the statistic ε̇j := n1/2(P̂n(ψj)− Uθ |T(ψ

j
)) ∈

M((B
[0,1]
⊗B)⊗n) is centred, i.e. ε̇j ∈ L1

(U⊗nθ |T ) with U⊗nθ |T (ε̇j) = 0, and exploiting ψ
•
∈ (B

[0,1]
⊗B)⊗ 2N

the stochastic process

ε̇• = (ε̇j)j∈N = n1/2(P̂n − Uθ |T)(ψ
•
) = n1/2(P̂n(ψ•)− Uθ |T(ψ

•
)) ∈M((B

[0,1]
⊗B)⊗n ⊗ 2N)

satisfies Assumption §01|01.04, and by construction ĝ
•

= g
•
+ n−1/2ε̇• = s•θ• + n−1/2ε̇• is a noisy

version of g
•
= s•θ•. �

§01|04.11 Notation (Circular additive convolution). Let q,p be two Lebesgue densities on ([0, 1),B
[0,1]

), then
their circular additive convolution is given by

g (y) := (q ~ p)(y) :=

∫
[0,1)

q(y − x− by − xc)p(x)λ[0,1)(dx) ∀y ∈ [0, 1).

We note that g is again a density on ([0, 1),B
[0,1]

). Consider the complex Hilbert spaces L2
(λ[0,1))

and J := `2(Z), the exponentials e• := (ej)j∈Z given by ej(x) := exp(−ı2πjx) for x ∈ [0, 1) and
j ∈ Z, and the Fourier-series transform F ∈ L(L2

(λ[0,1)), `2(Z)) with

g 7→ Fg := g• = ((Fg)j := gj := 〈g, ej〉L2(λ[0,1))
)j∈Z

(see Notations §01|02.10 and §01|02.12). Let ϕ ∈ L1
(λ[0,1)) and let b·c be the floor function, then the

circular additive convolution operator ~ϕ : L2
(λ[0,1))→ L2

(λ[0,1)) with h 7→ ~ϕh defined by

(~ϕh)(t) := (ϕ ~ h)(t) :=

∫
[0,1)

ϕ(t− s− bt− sc)h(s)λ[0,1)(ds) ∀t ∈ [0, 1)

satisfies ‖~ϕ‖L(L2(λ[0,1)))
6 ‖ϕ‖

L1(λ[0,1))
= λ[0,1)(|ϕ|). Since ϕ ∈ L1

(λ[0,1)) and for each j ∈ Z, ej ∈ L∞(λ[0,1))

we have ϕej ∈ L1
(λ[0,1)) too. More precisely, for each j ∈ Z we have

|λ[0,1)(ϕej)| 6 ‖ϕej‖L1(λ[0,1))
6 ‖ϕ‖

L1(λ[0,1))
‖ej‖L∞(λ[0,1))

= ‖ϕ‖
L1(λ[0,1))

and hence ϕ• := λ[0,1)(ϕe•) = (λ[0,1)(ϕej))j∈Z ∈ `∞(Z) with a slight abuse of notation satisfies
‖ϕ•‖`∞(Z)

= ‖λ[0,1)(ϕe•)‖`∞(Z)
6 ‖ϕ‖

L1(λ[0,1))
. Obviously, if ϕ ∈ L2

(λ[0,1)) (implying ϕ ∈ L1
(λ[0,1))) then

ϕ• = λ[0,1)(ϕe•) = (λ[0,1)(ϕej) = 〈ϕ, ej〉L2(λ[0,1))
)j∈Z = Fϕ ∈ `2(Z). However, for each ϕ ∈ L1

(λ[0,1)) and
h ∈ L2

(λ[0,1)) the circular convolution theorem states

(~ϕh)j = 〈~ϕh, ej〉L2(λ[0,1))
= λ[0,1)(ϕej)〈h, ej〉L2(λ[0,1))

= λ[0,1)(ϕej)(Fh)j = ϕ
j
hj ∀j ∈ Z,

or (~ϕh)• = F(~ϕh) = λ[0,1)(ϕe•)(Fh) = ϕ•h• in short. Consequently, (ϕ•,F,F) is a singular
value decomposition of ~ϕ with ϕ• ∈ `∞(Z), and thus ~ϕ ∈ LF,F(LM(`2(Z))) = F

?
(LM(`2(Z)))F. �

§01|04.12 Cicular density deconvolution. Consider the complex Hilbert spaces L2
(λ[0,1)) and J := `2(Z). Let

D2 be a set of square-integrable Lebesgue densities on ([0, 1),B
[0,1)

), and hence D2 ⊆ L2
(λ[0,1)) ⊆

L1
(λ[0,1)) (by the usual embedding of real-valued functions) as in Notation §01|02.10. We denote for

each density p ∈ L1
(λ[0,1)) by Pp := pλ[0,1) ∈ W (B

[0,1)
) the associated probability measure. Given a

Lebesque density q ∈ L1
(λ[0,1)) presumed to be fixed and known in advance for each Lebesgue den-

sity p ∈ D2 we consider the Lebesque density g = q ~ p ∈ L2
(λ[0,1)) (see Notation §01|04.11) and

denote by Pp|q := (q~p)λ[0,1) = gλ[0,1) ∈ W (B
[0,1)

) the associated probability measure. We consider
the statistical product experiment

(
[0, 1)n,B⊗n

[0,1)
,P⊗nD2×{q} := (P⊗np|q )p∈D2

)
. Let F ∈ L(L2

(λ[0,1)), `2(Z)) be

Statistics of inverse problems 15



Table of contents

the Fourier-series transform (see Notation §01|02.12). Evidently, for g ∈ L2
(λ[0,1)) ⊆ L1

(λ[0,1)) its
Fourier-series g

•
= (g

j
)j∈Z = Fg satisfies g

j
= λ[0,1)(gej) = Pp|q(ej) for each j ∈ Z. Moreover,

considering the Fourier-series p• = (p
j
)j∈Z = Fp of p ∈ D2 ⊆ L2

(λ[0,1)) by the circular convolu-
tion theorem we have g

•
= F(q~p) = q•p• with q• = λ[0,1)(qe•) ∈ `∞(Z) and p• = Fp ∈ `2(Z) (see

Notation §01|04.11). Moreover, the stochastic process e• = (ej)j∈Z on ([0, 1),B
[0,1)

) is (B
[0,1]
⊗2Z)-

B-measurable, i.e. e• ∈ M(B
[0,1)
⊗ 2Z) for short. We define ĝ

•
= (ĝ

j
:= P̂n(ej))j∈Z = P̂n(e•) ∈

M(B⊗n
[0,1)
⊗ 2Z) similar to an Empirical mean model §01|02.04 where for each j ∈ Z

y = (y
i
)i∈JnK 7→ ĝ

j
(y) = (P̂n(ej))(y) = n−1

∑
i∈JnK

ej(yi) = n−1
∑
i∈JnK

exp(ı2πjy
i
).

By construction g
•

= q•p• = Pp|q(e•) ∈ `2(Z) is the mean of ĝ
•
. For each j ∈ Z the statistic

ε̇j := n1/2(P̂n(ej)− Pp|q(ej)) ∈M(B⊗n
[0,1)

) is centred, i.e. ε̇j ∈ L1
(P⊗np|q ) with P⊗np|q (ε̇j) = 0, and exploiting

e• = (ej)j∈Z ∈M(B
[0,1)
⊗ 2Z) the complex valued stochastic process

ε̇• = (ε̇j)j∈Z = n1/2(P̂n − Pp|q)(e•) = n1/2(P̂n(e•)− Pp|q(e•)) ∈M(B⊗n
[0,1)
⊗ 2Z)

satisfies Assumption §01|02.11. Since ĝ
j

= g
j

+ n−1/2ε̇j = q
j
p
j

+ n−1/2ε̇j for each j ∈ R by
construction ĝ

•
= g

•
+ n−1/2ε̇• = q•p• + n−1/2ε̇• is a noisy version of g

•
= q•p•.

§01|04.13 Cicular regression deconvolution with uniform design. Consider the measure space
([0, 1],B

[0,1)
, λ[0,1)) and the complex Hilbert spaces L2

(λ[0,1)) and `2(Z) as in Notation §01|02.10. Let
the circular convolution operator ~ϕ ∈ LF,F(LM(`2(Z))) ⊆ L(L2

(λ[0,1))) with ϕ ∈ L1
(λ[0,1)) be known in ad-

vance (see Notation §01|04.11), i.e. F ~ϕ F
?

= Mϕ•
∈ LM(`2(Z)) and in other words ~ϕ has a known

singular value decomposition (ϕ•,F,F) with sequence of singular values ϕ• ∈ `∞(Z). Let (X, Y )
be a [0, 1) × R-valued random vector. As in Model §01|02.14 we assume in what follows that
the regressor X is uniformly distributed on the interval [0, 1), i.e. X ∼ U[0,1) = λ[0,1) = P

X and
that given ~ϕf =: g ∈ L2

(λ[0,1)) for some f ∈ F
2
⊆ L2

(λ[0,1)) = H the joint distribution of (X, Y )
is given by Uf |ϕ := U[0,1) � PY |X

~ϕf and without fully specifying the regular conditional distribution
P
Y |X
~ϕf which however satisfies PY |X

~ϕf (idR) = P~ϕf
(
Y
∣∣X) = ~ϕf = g ∈ L2

(λ[0,1)). Keep in mind
that we tactically identify X and Y with the coordinate map Π[0,1)

and ΠR
, respectively, and thus

(X, Y ) with the identity id[0,1)×R. Consequently, if Y ∈ L2
(Uf |ϕ) and h ∈ L2

(PX ) = L2
(λ[0,1)), hence

h(X ) ∈ L2
(Uf |ϕ), then we obtain Y h(X ) ∈ L1

(Uf |ϕ) and

Uf |ϕ(Y h(X )) = P
X

(P
Y |X
~ϕf (Y )h) = P

X(
(~ϕf )h

)
= λ[0,1)

(
(~ϕf )h

)
= 〈~ϕf , h〉L2(λ[0,1))

∈ C

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment

(
([0, 1)×R)n, (B

[0,1)
⊗B)⊗n,U⊗nF2×{ϕ} := (U⊗nf |ϕ )f∈F2

)
of size n ∈ N and for f ∈ F

2

we denote by ((X
i
, Y

i
))i∈JnK ∼ U⊗nf |ϕ an iid. sample of (X, Y ) ∼ Uf |ϕ = U[0,1) � PY |X

~ϕf . Keep
in mind that F ∈ L(L2

(λ[0,1)), `2(Z)) is the Fourier series transform as in Notation §01|02.12 which is
fixed and evidently known in advanced. For each f ∈ F

2
⊆ L2

(λ[0,1)) = H the Fourier coefficients
f• = (f

j
)j∈Z = Ff and g

•
= (g

j
)j∈Z = Fg = F(~ϕf ) = Mϕ•

f• = ϕ•f• (Notation §01|04.11) satisfy

g
j

= ϕ
j
f
j

= 〈Mϕ•
f•,1

{j}
• 〉̀

2(Z)
= 〈~ϕf ,F

?
1{j}• 〉L2(λ[0,1))

= 〈~ϕf , ej〉L2(λ[0,1))
= Uf |ϕ(Y ej(X ))

for each j ∈ Z. The stochastic process ψ
•

= (ψ
j
(X, Y ) := Y ej(X ))j∈Z ∈M((B

[0,1)
⊗B)⊗ 2Z) fulfils

Assumption §01|01.04 and g
•

= ϕ•f• = Uf |ϕ(ψ•). Similar to an Empirical mean model §01|02.04 we
define ĝ

•
= (ĝ

j
:= P̂n(ψj))j∈Z = P̂n(ψ•) ∈ M((B

[0,1)
⊗B)⊗n ⊗ 2Z). By construction g

•
= ϕ•f• =

Uf |ϕ(ψ•) ∈ `2(Z) is the mean of ĝ
•
. For each j ∈ Z the statistic ε̇j := n1/2(P̂n(ψj)− Uf |ϕ(ψj)) ∈

M((B
[0,1)
⊗B)⊗n) is centred, i.e. ε̇j ∈ L1

(U⊗nf |ϕ ) with U⊗nf |ϕ (ε̇j) = 0, and exploiting ψ
•
∈ M((B

[0,1)
⊗B)⊗ 2Z)

the stochastic process

ε̇• = (ε̇j)j∈Z = n1/2(P̂n − Uf |ϕ)(ψ•) = n1/2(P̂n(ψ•)− Uf |ϕ(ψ•)) ∈M((B
[0,1)
⊗B)⊗n ⊗ 2Z)
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satisfies Assumption §01|01.04, and by construction ĝ
•

= g
•
+ n−1/2ε̇• = ϕ•f• + n−1/2ε̇• is a noisy

version of g
•
= ϕ•f•. �

§01|04.14 Notation (Additive convolution on R). Let q,p be two Lebesgue densities on (R,B), then their
additive convolution is given by

g (y) := (q ∗p)(y) :=

∫
R

q(y−x)p(x)λ(dx) =

∫
R

p(y−x)q(x)λ(dx) for λ-a.e. y ∈ R.

We note that g is again a density on (R,B) (keep in mind that we identify representatives
and equivalence classes). Consider the complex Hilbert space L2 = L2

(λ), the exponentials
e• := (ej)j∈R ∈ M(B

2
) given by ej(x) := exp(−ı2πjx) for x, j ∈ R, and the Fourier-Plancherel

transform F ∈ L(L2) satisfying

Fh = h• = ((Fh)j := hj := λ(hej))j∈R = λ(he•), ∀h ∈ L1 ∩ L2

(see Notations §01|02.10 and §01|02.15). Consider p ∈ Lp and q ∈ Lq with conjugate exponents
(1/p+1/q = 1) then the integral

∫
R
p(y−x)q(x)λ(dx) exists for all y ∈ R and hence (q∗p)(y)

is for all y ∈ R defined. In the case q ∈ L1 and p ∈ Lp with p ∈ R>1 the integral (q ∗p)(y) exists
for λ-a.e. y ∈ R only. However, the λ-a.e.-defined function q ∗ p belongs to Lp and satisfies
‖q ∗ p‖

Lp
6 ‖q‖

L1
‖p‖

Lp
. Werner [2011] p.337 for p = 2 and general case p ∈ R>1 lecture notes

P. Maréchal (Analyse pour les problèmes inverses d’imagerie). For ϕ ∈ L1 the additive convolution
operator ∗ϕ : L2 → L2 with h 7→ ∗ϕh defined by

(∗ϕh)(t) := (ϕ ∗ h)(t) :=

∫
R

ϕ(t− s)h(s)λ(ds) for λ-a.e. y ∈ R

satisfies ‖∗ϕ‖L(L2)
6 ‖ϕ‖

L1
= λ(|ϕ|). Since ϕ ∈ L1 and for each j ∈ R, ej ∈ L∞ we have ϕej ∈ L1

too. More precisely, for each j ∈ R we have

|λ(ϕej)| 6 ‖ϕej‖L1
6 ‖ϕ‖

L1
‖ej‖L∞ = ‖ϕ‖

L1

and hence ϕ• := λ(ϕe•) = (ϕ
j

:= λ(ϕej))j∈R ∈ L∞ with a slight abuse of notation satisfies
‖ϕ•‖L∞ = ‖λ(ϕe•)‖L∞ 6 ‖ϕ‖L1

. Obviously, if ϕ ∈ L1 ∩ L2 then ϕ• = λ(ϕe•) = Fϕ ∈ L2.
However, for each ϕ ∈ L1 and h ∈ L1 ∩ L2 the convolution theorem states

(∗ϕh)j = λ((∗ϕh)ej) = λ(ϕej)λ(hej) = ϕ
j
(Fh)j = ϕ

j
hj for λ-a.e. j ∈ R.

or (∗ϕh)• = F(∗ϕh) = λ(ϕe•)(Fh) = ϕ•h• λ-a.s. in short. Consequently, (ϕ•,F,F) is a singular
value decomposition of ∗ϕ with ϕ• ∈ L∞, and thus ∗ϕ ∈ LF,F(LM(L2)) = F

?
(LM(L2))F. �

§01|04.15 Density additive deconvolution on R. Consider the complex Hilbert space L2 = L2
(λ). Let D2

be a set of square-integrable Lebesgue densities on (R,B), and hence D2 ⊆ L2 ∩ L1 (by the
usual embedding of real-valued functions) as in Notation §01|02.10. We denote for each density
p ∈ L1 by Pp := pλ ∈ W (B) the associated probability measure. Given a Lebesque density
q ∈ L1

(λ) presumed to be fixed and known in advance for each Lebesgue density p ∈ D2 we
consider the Lebesque density g = ∗qp = q ∗p ∈ L2∩L1 (see Notation §01|04.14) and denote by
Pp|q := (q ∗ p)λ = gλ ∈ W (B) the associated probability measure. We consider the statistical
product experiment

(
R
n
,B

⊗n
,P⊗nD2×{q} := (P⊗np|q )p∈D2

)
. Let F ∈ L(L2) be the Fourier-Plancherel

transform (see Notation §01|02.15). Evidently, for g ∈ L2 ∩ L1 its Fourier-Plancherel transform
g
•

= (g
j
)j∈R = Fg satisfies g

j
= λ(gej) = Pp|q(ej) for all j ∈ R. Moreover, considering

the Fourier-Plancherel transform p• = (p
j
)j∈R = Fp of p ∈ D2 ⊆ L2 ∩ L1 by the additive

convolution theorem we have g
•

= F(∗qp) = λ(qe•)(Fp) = q•p• λ-a.s. with q• = λ(qe•) ∈ L∞
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and p• = Fp ∈ L2 (see Notation §01|04.14). Moreover, the stochastic process e• = (ej)j∈R on
(R,B) is B

2-B-measurable, i.e. e• ∈M(B
2
) for short. We define

ĝ
•
= (ĝ

j
:= P̂n(ej))j∈R = P̂n(e•) ∈M(B

⊗n ⊗B)

similar to an Empirical mean model §01|02.04 where for each j ∈ R

y = (y
i
)i∈JnK 7→ ĝ

j
(y) = (P̂n(ej))(y) = n−1

∑
i∈JnK

ej(yi) = n−1
∑
i∈JnK

exp(ı2πjy
i
).

By construction g
•

= q•p• = Pp|q(e•) ∈ L2 is the mean of ĝ
•
. For each j ∈ R the statistic

ε̇j := n1/2(P̂n(ej)− Pp|q(ej)) ∈M(B
⊗n

) is centred, i.e. ε̇j ∈ L1
(P⊗np|q ) with P⊗np|q (ε̇j) = 0, and exploiting

e• = (ej)j∈R ∈M(B
2
) the complex valued stochastic process

ε̇• = (ε̇j)j∈R = n1/2(P̂n − Pp|q)(e•) = n1/2(P̂n(e•)− Pp|q(e•)) ∈M(B
⊗n ⊗B)

satisfies Assumption §01|02.11, and by construction ĝ
•

= g
•
+ n−1/2ε̇• = q•p• + n−1/2ε̇• is a noisy

version of g
•
= q•p•.

§01|04.16 Notation (Multiplicative convolution on R>0). Let q,p be two Lebesgue densities on (R>0,B>0
)

satisfying , then their multiplicative convolution is given by

g (y) := (q � p)(y) :=

∫
R>0

q(y/x)p(x)x−1λ>0(dx)

=

∫
R>0

p(y/x)q(x)x−1λ>0(dx) for λ>0-a.e. y ∈ R>0.

We note that g is again a density on (R>0,B>0
) (keep in mind that we identify representatives

and equivalence classes). For c ∈ R fixed and known in advance consider the complex Hilbert
spaces L2

(xc) = L2
(R>0,B>0, xcλ>0) and L2 = L2

(R,B , λ), the kernel xcx• = (xcxj)j∈R ∈ M(B>0 ⊗B)

given by (xcxj)(x) = xcxı2πj for x ∈ R>0, j ∈ R and the Mellin transform Mc ∈ L(L2
(x2c−1),L2) (see

Notation §01|02.17) satisfying

Mch = h• = ((Mch)j = xc−1λ>0(xjh) = x2c−1λ>0(x
−cxjh))j∈R, ∀h ∈ L1

(xc−1) ∩ L2
(x2c−1)

(see Notations §01|02.10 and §01|02.17). Consider p,q ∈ L1
(xc−1) = L1

(R>0,B>0, xc−1λ>0) then the
integral

∫
R>0

p(y/x)q(x)x−1λ>0(dx) exists for λ>0-a.e. y ∈ R>0 and hence (q � p)(y) is for
λ>0-a.e. y ∈ R defined and the λ>0-a.e.-defined function q � p belongs to L1

(xc−1) and satisfies
‖q � p‖

L1(x
c−1) 6 ‖q‖L1(x

c−1)‖p‖L1(x
c−1). In case p ∈ L1

(xc−1) ∩ L2
(x2c−1) and q ∈ L1

(xc−1) the integral
(q�p)(y) is for λ>0-a.e. y ∈ R defined and the λ>0-a.e.-defined function q�p belongs to L2

(x2c−1)

and satisfies ‖q � p‖
L2(x

2c−1) 6 ‖q‖L1(x
c−1)‖p‖L2(x

2c−1). (Phd thesis of S. Brenner Miguel [2023]). For
ϕ ∈ L1

(xc−1) the multiplicative convolution operator �ϕ : L2
(x2c−1) → L2

(x2c−1) with h 7→ �ϕh
defined by

(�ϕh)(t) := (ϕ � h)(t) :=

∫
R>0

ϕ(t/s)h(s)s−1λ>0(ds) for λ>0-a.e. y ∈ R>0

satisfies ‖�ϕ‖L(L2(x
2c−1))
6 ‖ϕ‖

L1(x
c−1) = xc−1λ>0(|ϕ|). Since ϕ ∈ L1

(xc−1) and for each j ∈ R, xj ∈
L∞(λ>0) we have xjϕ ∈ L1

(xc−1) too. More precisely, for each j ∈ R we have

|xc−1λ>0(xjϕ)| 6 ‖xjϕ‖L1(x
c−1) 6 ‖ϕ‖L1(x

c−1)‖xj‖L∞(λ>0)
= ‖ϕ‖

L1(x
c−1)
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and hence ϕ• := xc−1λ>0(x•ϕ) = (ϕ
j

:= xc−1λ>0(xjϕ))j∈R ∈ L∞ with a slight abuse of notation
satisfies ‖ϕ•‖L∞ = ‖xc−1λ>0(x•ϕ)‖

L∞
6 ‖ϕ‖

L1(x
c−1) = xc−1λ>0(|ϕ|). Obviously, if ϕ ∈ L1

(xc−1) ∩
L2

(x2c−1) then ϕ• = xc−1λ>0(x•ϕ) = (x2c−1λ>0(x
−cxjϕ))j∈R = Mcϕ ∈ L2. However, for each ϕ ∈

L1
(xc−1) and h ∈ L1

(xc−1) ∩ L2
(x2c−1) the convolution theorem states

(�ϕh)j = xc−1λ>0(xj(�ϕh)) = xc−1λ>0(xjϕ)xc−1λ>0(xjh)

= xc−1λ>0(xjϕ)(Mch)j = ϕ
j
hj for λ-a.e. j ∈ R.

or (�ϕh)• = Mc(�ϕh) = xc−1λ>0(x•ϕ)(Mch) = ϕ•h• λ-a.s. in short. Consequently, (ϕ•,Mc,Mc) is
a singular value decomposition of �ϕ with ϕ• ∈ L∞, and thus �ϕ ∈ LMc ,Mc (LM(L2)) = M

?
c (LM(L2))Mc. �

§01|04.17 Density multiplicative deconvolution on R>0. Consider the complex Hilbert spaces L2
(x2c−1) =

L2
(R>0,B>0, x2c−1λ>0) and L2 = L2

(λ). Let D2 ⊆ L1
(xc−1) ∩ L2

(x2c−1) be a set of Lebesgue-densities on
(R>0,B>0

) (by the usual embedding of real-valued functions) as in Notation §01|02.10. We denote
for each Lebesgue density p on (R>0,B>0

) by Pp := pλ>0 ∈ W (B
>0

) the associated probability
measure. Given a Lebesque density q ∈ L1

(xc−1) presumed to be fixed and known in advance for
each Lebesgue density p ∈ D2 we consider the Lebesque density g = �qp = q � p ∈ L1

(xc−1) ∩
L2

(x2c−1) (see Notation §01|04.16) and denote by Pp|q := (q � p)λ>0 = gλ>0 ∈ W (B
>0

) the asso-
ciated probability measure. We consider the statistical product experiment

(
R
n

>0,B
⊗n
>0
,P⊗nD2×{q} :=

(P⊗np|q )p∈D2

)
. Let Mc ∈ L(L2

(x2c−1),L2) be the Mellin transform (see Notation §01|02.17). Evidently,
for g ∈ L1

(xc−1) ∩ L2
(x2c−1) its Mellin transform g

•
= (g

j
)j∈R = Mcg satisfies g

j
= xc−1λ>0(xjg) =

Pp|q(x
c−1xj) for all j ∈ R. Moreover, considering the Mellin transform p• = (p

j
)j∈R = Mcp of

p ∈ D2 ⊆ L1
(xc−1) ∩ L2

(x2c−1) by the multiplicative convolution theorem we have g
•
= Mc(�qp) =

xc−1λ>0(x•q)(Mcp) = q•p• λ-a.s. with q• = xc−1λ>0(x•q) ∈ L∞ and p• = Mcp ∈ L2 (see No-
tation §01|04.16). Moreover, the complex-valued stochastic process xc−1x• = (xc−1xj)j∈R ∈
M(B>0 ⊗B) on (R>0,B>0) is B>0 ⊗ B-B-measurable, i.e. xc−1x• ∈ M(B>0 ⊗B) for short. We
define

ĝ
•
= (ĝ

j
:= P̂n(x

c−1xj))j∈R = P̂n(x
c−1x•) ∈M(B⊗n

>0
⊗B)

similar to an Empirical mean model §01|02.04 where for each j ∈ R

y = (y
i
)i∈JnK 7→ ĝ

j
(y) = (P̂n(x

c−1xj))(y) = n−1
∑
i∈JnK

(xc−1xj)(yi) = n−1
∑
i∈JnK

yc−1+ı2πj
i

.

By construction g
•

= q•p• = Pp|q(x
c−1x•) ∈ L2 is the mean of ĝ

•
. For each j ∈ R the statistic

ε̇j := n1/2(P̂n(x
c−1xj)− Pp|q(xc−1xj)) ∈ M(B

⊗n
>0 ) is centred, i.e. ε̇j ∈ L1

(P⊗np|q ) with P⊗np|q (ε̇j) = 0, and
exploiting xc−1x• = (xc−1xj)j∈R ∈M(B>0 ⊗B) the complex valued stochastic process

ε̇• = (ε̇j)j∈R = n1/2(P̂n − Pp|q)(xc−1x•) = n1/2(P̂n(x
c−1x•)− Pp|q(xc−1x•)) ∈M(B

⊗n
>0 ⊗B)

satisfies Assumption §01|02.11, and by construction ĝ
•

= g
•
+ n−1/2ε̇• = q•p• + n−1/2ε̇• is a noisy

version of g
•
= q•p•.

§01|05 Non-diagonal statistical inverse problem

§01|05.01 Notation. Consider the measure space (J ,J , ν) and the Hilbert space J = L2
(ν) as in Nota-

tion §01|01.01. For T•|• ∈ M(J 2) denote for each j, j
o
∈ J by T•|jo : J → R and T

j |• : J → R

the map j 7→ T
j |jo

and j
o
7→ T

j |jo
, respectively. Then we have T•|jo,Tj |• ∈ M(J ) for each

j, j
o
∈ J . If in addition T

j |• ∈ J for ν -a.e. j ∈ J then for each a• ∈ J it follows (T•|•a•)j :=
〈T

j |•, a•〉J = ν(T
j |•a•) ∈ R for ν -a.e. j ∈ J and thus (T•|•a•)• : j 7→ (T•|•a•)j is ν -a.e. defined

Statistics of inverse problems 19



Table of contents

and (T•|•a•)• ∈ M(J ). If for each a• ∈ J in addition ‖(T•|•a•)•‖2
J

= ν((T•|•a•)
2

• ) ∈ R>0 and hence
(T•|•a•)• ∈ J, then setting a• 7→ Ta• := (T•|•a•)• defines an integral operator T : J → J which we
identify here and subsequently with its kernel T•|• ∈M(J 2). Evidently, the operator T•|• : J → J

is bounded, i.e. T•|• ∈ L(J), if ‖T•|•‖L(J)
= sup

{
ν((T•|•a•)

2

• ): a• ∈ J, ‖a•‖J 6 1
}
∈ R>0. We set

L•|•(J) :=
{

T•|• ∈ L(J): with kernel T•|• ∈M(J 2)

}
. Finally, given surjective partial isometries U ∈

L(H,J) and V ∈ L(G,J) we define LU,V(L•|•(J)) := V?(L•|•(J))U :=
{

V?T•|•U ∈ L(H,G): T•|• ∈ L•|•(J)
}

.
As a consequence, for each T ∈ LU,V(L•|•(J)) we have VTU? = T•|• ∈ L•|•(J) for some kernel

T•|• ∈ M(J 2). In the special case (J ,J , ν) = (N, 2N, ν
N
), where RN

2

= M(2N
2

) is the set of all
infinite real-valued matrices, we have L•|•(`2) = L(`2) (compare Notation §01|04.03). �

§01|05.02 Assumption. For J = L2
(ν), surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J), fixed and

presumed to be known in advance, T ∈ LU,V(L•|•(J)) and hence T•|• = VTU? ∈ L•|•(J) with kernel
T•|• ∈M(J 2) is also known where g

•
= T•|•θ• ∈ J or inequal g

•
∈ ran(T•|•) =

{
T•|•a•: a• ∈ J

}
. �

§01|05.03 Notation. Under Assumption §01|05.02 given T•|• ∈ L•|•(J) and g
•
∈ ran(T•|•) we consider the

reconstruction of θ• = Uθ ∈ J (or in equal θ = U
?
θ• ∈ H) from a noisy version of the image g

•
=

VTU
?
θ• = T•|•θ• ∈ J. Keep in mind, that we identify the equivalence class and its representative

g
•
. �

§01|05.04 Non-diagonal statistical inverse problem. Consider as in Definition §01|02.03 a stochastic pro-
cess ε̇• = (ε̇j)j∈J satisfying Assumption §01|01.04 with mean zero and a sample size n ∈ N. Un-
der Assumption §01|05.02, where T•|• ∈ L•|•(J) with kernel T•|• ∈ M(J 2) is known in advance, the
observable noisy image has J-mean g

•
= T•|•θ• and takes the form ĝ

•
= g

•
+n−1/2ε̇• = T•|•θ•+n

−1/2ε̇•
or in equal

ĝ
j

= g
j
+ n−1/2ε̇j = 〈T

j |•, θ•〉J + n−1/2ε̇j , ν -a.e. j ∈ J . (01.10)

We denote byPn
θ•|T•|• the distribution of ĝ

•
. If ε̇• admits (possibly depending on g = Tθ) a covariance

function, say covTθ
•,• ∈ M(J 2), or a covariance operator, say ΓTθ ∈ L>(J), then we eventually write

ε̇• ∼ P
(0•,covTθ

•,• )
and ĝ

•
∼ P

(g
•
,n−1covTθ

•,• )
or ε̇• ∼ P

(0•,ΓTθ)
and ĝ

•
∼ P

(g
•
,n−1ΓTθ)

for short. The reconstruction of θ• ∈ J

(in equal θ = U?θ• ∈ H) from a noisy version ĝ
•
∼ Pn

g of the image g
•

= T•|•θ• ∈ J is called a
non-diagonal statistical inverse problem. �

§01|05.05 Non-diagonal inverse empirical mean model (nieMM). Consider the reconstruction of θ• ∈
J (in equal θ = U?θ• ∈ H) in an Empirical mean model as in §01|02.04. Under Assump-
tion §01|05.02, where T•|• ∈ L•|•(J) with kernel T•|• ∈ M(J 2) is known in advance, the observable
noisy image has J-mean Vg = g

•
= T•|•θ• ∈ J and takes the form of an Empirical mean model

as in §01|02.04, that is ĝ
•
= T•|•θ• + n−1/2ε̇• or in equal (01.10) with error process

ε̇• = n1/2(P̂n − Pg )(ψ•) = n1/2(P̂n(ψ•)− Pg (ψ•)) ∈M(Z
⊗n ⊗J )

satisfying Assumption §01|01.04. �

§01|05.06 Comment. In the special case J = `2 (compare Notation §01|04.03) a Diagonal statistical inverse
problem §01|04.06 with multiplication operator, i.e. T•|• = Ms, is indeed the diagonal case of the
statistical inverse problem given in Assumption §01|05.02. Moreover, introducing 1• := (1)j∈N
the multiplication operator id•|• := M1 ∈ LM(`2) with diagonal kernel id•|• ∈ M(2N

2

) equals the
identity on `2, i.e. id`2 = id•|•. As a consequence for J = `2 a statistical direct problem as
in Definition §01|03.03 is also a statistical inverse problem with known identity operator, i.e.
T•|• = id•|•. �
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§01|05.07 Non-diagonal inverse sequence model (niSM). Consider J = `2 = L2
(ν
N
) as in §01|01.14. Let

ε̇• = (ε̇j)j∈N be a sequence of real-valued random variables with mean zero and let n ∈ N be a
sample size. Under Assumption §01|05.02, where T•|• ∈ L•|•(`2) with kernel T•|• ∈ M(2N

2

) is known
in advance, the observable noisy image has `2-mean g

•
= T•|•θ• and takes the form of a Sequence

model as in §01|02.05, that is ĝ
•
= g

•
+ n−1/2ε̇• = T•|•θ• + n−1/2ε̇• or in equal

ĝ
j

= g
j
+ n−1/2ε̇j = 〈T

j |•, θ•〉̀
2

+ n−1/2ε̇j , j ∈ N. (01.11)

We denote by Pn
θ|T the distribution of ĝ

•
. �

§01|05.08 Gaussian non-diagonal inverse sequence model (GniSM). Let Ḃ• := (Ḃj)j∈N ∼ N
⊗N
(0,1) be a

Gaussian white noise process. The observable noisy version ĝ
•

= g
•

+ n−1/2Ḃ• with `2-mean
g
•
= T•|•θ• takes the form of a Gaussian sequence model as in §01|02.06, that is

ĝ
j

= 〈T
j |•, θ•〉̀

2

+ n−1/2Ḃj , j ∈ N with (Ḃj)j∈N ∼ N
⊗N
(0,1). (01.12)

We denote by N
n

θ|T the distribution of the stochastic process ĝ
•
. �

§01|05|01 Examples of non-diagonal inverse empirical mean models

§01|05.09 Non-diagonal inverse regression with uniform design. Consider the measure space
([0, 1],B

[0,1]
, λ[0,1]) and the real Hilbert space L2

(λ[0,1]) as in Model §01|02.09. Let T ∈ LU,V(L•|•(`2))

and hence T•|• = VTU? ∈ L•|•(`2) with kernel T•|• ∈ M(2N
2

) be known in advance. Let (X, Y )
be a [0, 1] × R-valued random vector. As in Model §01|02.09 we assume in what follows that
the regressor X is uniformly distributed on the interval [0, 1], i.e. X ∼ U[0,1] = λ[0,1] = P

X and
that given Tθ = g ∈ L2

([0, 1]) for some θ ∈ H the joint distribution of (X, Y ) is given by
Uθ |T := U[0,1]�PY |X

Tθ without fully specifying the regular conditional distribution PY |X
Tθ which how-

ever satisfies PY |X
Tθ (idR) = PTθ

(
Y
∣∣X) = Tθ = g ∈ L2

([0, 1]). Keep in mind that we tactically
identify X and Y with the coordinate map Π[0,1]

and ΠR
, respectively, and thus (X, Y ) with the

identity id[0,1]×R. Consequently, if Y ∈ L2
(Uθ |T) and h ∈ L2

(PX ) = L2
(λ[0,1]), hence h(X ) ∈ L2

(Uθ |T),
then we obtain Y h(X ) ∈ L1

(Uθ |T) and

Uθ |T(Y h(X )) = P
X

(P
Y |X

Tθ (Y )h) = P
X(

(Tθ)h
)

= λ[0,1]

(
(Tθ)h

)
= 〈Tθ, h〉

L2(λ[0,1])
∈ R

identifying again equivalence classes and their representatives. We consider the statistical prod-
uct experiment

(
([0, 1]×R)n, (B

[0,1]
⊗B)⊗n,U⊗nΘ×{T} := (U⊗nθ |T )θ∈Θ

)
of size n ∈ N and for θ ∈ Θ

we denote by ((X
i
, Y

i
))i∈JnK ∼ U⊗nθ |T an iid. sample of (X, Y ) ∼ Uθ |T = U[0,1] � PY |X

Tθ . Keep in
mind that V ∈ L(L2

(λ[0,1]), `2) and U ∈ L(H, `2) are generalised Fourier series transform as in No-
tation §01|02.07 which are fixed and known in advance. Evidently, for each θ ∈ Θ ⊆ H the
generalised Fourier coefficients θ• = (θj)j∈N = Uθ and g

•
= (g

j
)j∈N = Vg = T•|•θ• satisfy

g
j

= 〈T
j |•, θ•〉̀

2

= 〈T•|•θ•,1{j}• 〉̀
2

= 〈Tθ,V?
1{j}• 〉L2(λ[0,1])

= λ[0,1]

(
(Tθ)vj

)
= Uθ |T(Y vj(X ))

for each j ∈ N. The stochastic process ψ
•

= (ψ
j
(X, Y ) := Y vj(X ))j∈N ∈ M((B

[0,1]
⊗B)⊗ 2N)

fulfils Assumption §01|01.04 and g
•

= T•|•θ• = Uθ |T(ψ
•
). Similar to an Empirical mean model

§01|02.04 we define ĝ
•

= (ĝ
j

:= P̂n(ψj))j∈N ∈ M((B
[0,1]
⊗B)⊗n ⊗ 2N). By construction g

•
= T•|•θ• =

Uθ |T(ψ
•
) ∈ M(2N) is the `2-mean of ĝ

•
. For each j ∈ N the statistic ε̇j := n1/2(P̂n(ψj)− Uθ |T(ψ

j
)) ∈

M((B
[0,1]
⊗B)⊗n) is centred, i.e. ε̇j ∈ L1

(U⊗nθ |T ) with U⊗nθ |T (ε̇j) = 0, and exploiting ψ
•
∈ M((B

[0,1]
⊗B)⊗ 2N)

the stochastic process

ε̇• = (ε̇j)j∈N = n1/2(P̂n − Uθ |T)(ψ
•
) = n1/2(P̂n(ψ•)− Uθ |T(ψ

•
)) ∈M((B

[0,1]
⊗B)⊗n ⊗ 2N)

satisfies Assumption §01|01.04. Since ĝ
j

= g
j

+ n−1/2ε̇j = 〈T
j |•, θ•〉̀

2

+ n−1/2ε̇j for each j ∈ N by
construction ĝ

•
= g

•
+ n−1/2ε̇• = T•|•θ• + n−1/2ε̇• is a noisy version of g

•
= T•|•θ•. �

Statistics of inverse problems 21



Table of contents

§01|05.10 Regression with known design. Consider the measure space (D,BD, λD) where λD denotes the
restriction of the Lebesgue measure to the Borel-σ-algebra BD over D ∈ B , and the real Hilbert
space L2

(λD) := L2
(D,BD, λD) of square Lebesgue-integrable real-valued functions. Let (X, Y )

be a D × R-valued random vector. We assume in what follows that the marginal distribution
P
X ∈ W (BD) of the regressor X admits a Lebesgue density ϕ ∈ L1

(λD) presumed to be fixed
and known in advance, that is PX = ϕλD. For a real random variable ξ ∼ P

ξ ∈ W (B) and
a ∈ R we denote by Pξ

a ∈ W (B) the distribution of a + ξ . We assume that for each B ∈ B
the map Pξ

• (B) : a 7→ P
ξ
a (B) is B-B

[0,1]
-measurable. Then Pξ

• : R×B → [0, 1] with (a,B) 7→
P
ξ
a (B) is a Markov kernel from (R,B) to (R,B). In this situation, for any f ∈ M(BD) the

map Pξ
f (X ) : D × B → [0, 1] with (x,B) 7→ P

ξ
f (x)(B) is a Markov kernel from (D,BD) to

(R,B). If ξ and X are independent and Y = f (X ) + ξ for some f ∈M(BD), which is assumed
throughtout this model, then Pξ

f (X ) is a regular version of the conditional distribution of Y given
X , in symbols PY |X

f = P
ξ
f (X ). In other words there exists a PX -null set N ∈ BD such that

P
Y |X=x
f (B) = P

ξ
f (x)(B) for all B ∈ B and x ∈ N c (Witting [1985], Satz 129, p.130). In summary the

joint distribution of (X, Y ) is given by PX,Y
f |ϕ := ϕλD � Pξ

f (X ) without fully specifying the error
distribution Pξ ∈ W (B) and thus the regular conditional distribution PY |X

f = P
ξ
f (X ). (Since λD

dominates ϕλD each representative of {f}λD
induces the same joint distribution PX,Y

{f }λD
|ϕ = P

X,Y
f |ϕ ∈

W (BD ⊗B).) We tactically identify X and Y with the coordinate map ΠD
and ΠR

, respectively,
and thus (X, Y ) with the identity idD×R such that Pf |ϕ = P

X,Y
f |ϕ ∈ W (BD ⊗B). Let in addition

ϕ ∈ L∞(λD), then Mϕ ∈ LM(L2
(λD)) with h 7→ Mϕh := ϕh. Note that then for each h ∈ L2

(λD) we
have Mϕh ∈ L2

(λD) and hence for each representative h ∈ L2(ϕλD). (Since λD dominates ϕλD for
each h ∈ M(B

[0,1]
) we have {h}λD

⊆ {h}ϕλD
. If λD and ϕλD dominate mutually each other, i.e.

they share the same null sets, then {h}ϕλD
= {h}λD

and hence L2
(λD) ⊆ L2

(ϕλD).) If in addition
P
ξ ∈ P{0}×R>0

⊆ W2
(B), i.e. ξ has mean zero and a finite second moment, and f ∈ L2

(λD), then
for each representative f ∈ L2(ϕλD), f (X ) ∈ L2(Pf |ϕ) and Y ∈ L2(Pf |ϕ) too. In particular it follows
P
Y |X
f (idR) = Pf

(
Y
∣∣X) = {f}ϕλD

∈ L2
(PX ) = L2

(ϕλD). Consequently, for each h ∈ L2
(λD), hence

h(X ) ∈ L2(Pf |ϕ) we obtain Y h(X ) ∈ L1(Pf |ϕ) and

Pf |ϕ(Y h(X )) = P
X

(P
Y |X
f (Y )h) = ϕλD

(
fh
)

= λD

(
ϕfh

)
= 〈Mϕf , h〉L2(λD)

∈ R
identifying again equivalence classes and their representatives. We note that Mϕ ∈ LM(L2

(λD)) with
density ϕ ∈ L∞(λD) is positive semi-definite, i.e. Mϕ ∈ L>(L2

(λD)) and if in addition ϕ ∈ M>0,λD

(BD)

(i.e. ϕ ∈ M>0
(BD) and λD(Nϕ) = 0) then it is stictly positive definite, i.e. Mϕ ∈ L	(L2

(λD)). Keep in
mind that U ∈ L(L2

(λD), `2) is generalised Fourier series transform as in Notation §01|02.07 which
is fixed and known in advance. Evidently, we have Mϕ

•|• := UMϕU
? ∈ L

>
•|•(`2) ⊆ L•|•(`2) = L(`2)

and for each f ∈ F
2
⊆ L2

(λD) and g := Mϕf ∈ L2
(λD) the generalised Fourier coefficients

f• = (f
j
)j∈N = Uf and g

•
= (g

j
)j∈N = Ug = Mϕ

•|•f• for each j ∈ N satisfy

g
j

= 〈Mϕ
j |•, f•〉̀

2

= 〈Mϕ
•|•f•,1

{j}
• 〉̀

2

= 〈Mϕf ,U
?
1{j}• 〉L2(λD)

= 〈Mϕf , uj〉L2(λD)
= Pf |ϕ(Y uj(X )) ∈ R

The stochastic process ψ
•

= (ψ
j
(X, Y ) := Y uj(X ))j∈N ∈ M((BD ⊗B)⊗ 2N) fulfils Assump-

tion §01|01.04 and g
•

= Mϕ
•|•f• = Pf |ϕ(ψ•). Similar to an Empirical mean model §01|02.04 we con-

sider the statistical product experiment
(
(D ×R)n, (BD ⊗B)⊗n,P⊗nF2×{ϕ} := (P⊗nf |ϕ )f∈F2

)
of size

n ∈ N and for f ∈ F
2

we denote by ((X
i
, Y

i
))i∈JnK ∼ P

⊗n
f |ϕ an iid. sample of (X, Y ) ∼

Pf |ϕ = ϕλD � PY |X
f . We define ĝ

•
= (ĝ

j
:= P̂n(ψj))j∈N = P̂n(ψ•) ∈ M((BD ⊗B)⊗n ⊗ 2N). By con-

struction g
•

= Mϕ
•|•f• = Pf |ϕ(ψ•) ∈ M(2N) is the `2-mean of ĝ

•
. For each j ∈ N the statistic

ε̇j := n1/2(P̂n(ψj)− Pf |ϕ(ψj)) ∈ M((BD ⊗B)⊗n) is centred, i.e. ε̇j ∈ L1
(P⊗nf |ϕ ) with P⊗nf |ϕ (ε̇j) = 0, and

exploiting ψ
•
∈M((BD ⊗B)⊗ 2N) the stochastic process

ε̇• = (ε̇j)j∈N = n1/2(P̂n − Pf |ϕ)(ψ•) = n1/2(P̂n(ψ•)− Pf |ϕ(ψ•)) ∈M((BD ⊗B)⊗n ⊗ 2N)

satisfies Assumption §01|01.04. Since ĝ
j

= g
j
+ n−1/2ε̇j = 〈Mϕ

j |•, f•〉̀
2

+ n−1/2ε̇j for each j ∈ N by
construction ĝ

•
= g

•
+ n−1/2ε̇• = Mϕ

•|•f• + n−1/2ε̇• is a noisy version of g
•
= Mϕ

•|•f•. �
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§02 Noisy image and noisy operator

§02|00.01 Assumption. The Hilbert space J = L2
(J ,J , ν) with σ-finite measure ν ∈ Mσ(J ), σ-algebra

J over J containing all elementary events
{
j
}

, j ∈ J , and the surjective partial isometries
U ∈ L(H,J) and V ∈ L(G,J), i.e. UU

?
= idJ = VV

?, are fixed and presumed to be known in
advance. �

§02|01 Noisy non-diagonal operator

§02|01.01 Notation. Under Assumption §02|00.01 we consider the reconstruction of θ• = Uθ ∈ J (or in
equal θ = U

?
θ• ∈ H) from noisy versions of Vg = g

•
= T•|•θ• ∈ J and T•|• = VTU? ∈ L•|•(J). �

§02|01.02 Assumption. The real-valued stochastic process Y•|• = (Yj |j◦)j ,j◦∈J on a common measurable
space (Ω,A ) as a function Ω × J 2 → R with (ω, j, j◦) 7→ Yj |j◦(ω) is A ⊗J 2-B-measurable,
Y•|• ∈M(A ⊗J 2) for short. �

§02|01.03 Noisy non-diagonal operator. Let η̇•|• = (η̇j |j◦)j ,j◦∈J be a stochastic process satisfying As-
sumption §02|01.02 with mean zero and let k ∈ N be a sample size. The stochastic process
T̂•|• = T•|• + k−1/2η̇•|• with mean kernel T•|• ∈M(J 2) is called a noisy version of the non-diagonal
operator T•|• = VTU? ∈ L•|•(J), or noisy non-diagonal operator for short. We denote by Pk

T

the distribution of T̂•|•. If η̇•|• admits a covariance function (possibly depending on T), say
cov ∈M(J 4), then we eventually write η̇•|• ∼ P

(0•|•,cov)
and T̂•|• ∼ P

(T•|•,k
−1cov)

for short. �

§02|01.04 Empirical mean model. For each T ∈ T ⊆ LU,V(L•|•(J)) let PT ∈ W (Z ) be a probability measure
on a measurable space (Z,Z ). Similar to an Empirical mean function §01|01.10 consider a
stochastic process ψ

•|• = (ψ
j |j◦

)j ,j◦∈J ∈ M(Z ⊗J 2) which in addition for all T ∈ T with T•|• =
VTU? ∈ L•|•(J) and kernel T•|• ∈ M(J 2) satisfies ψ

j |j◦
∈ L1(PT) := L1(Z,Z ,PT) for each j, j◦ ∈

J and PT(ψ
•|•) = (T

j |j◦
= PT(ψ

j |j◦
))j ,j◦∈J = T•|•. Considering a statistical product experiment

(Z
k
,Z

⊗k
,P⊗kT = (P⊗kT )T∈T ) similar to an Empirical mean function §01|01.10 we define T̂•|• =

(T̂
j |j◦

:= P̂k(ψj |j◦))j ,j◦∈J = P̂k(ψ•|•) ∈ M(Z
⊗k ⊗J 2). For T ∈ T assuming a P⊗kT -sample the mean

kernel of T̂•|• is by construction PT(ψ
•|•) = T•|• = VTU? ∈ L•|•(J). Moreover for each j, j◦ ∈ J the

statistic η̇j |j◦ := k1/2(P̂k(ψj |j◦)− PT(ψ
j |j◦

)) ∈ M(Z
⊗k

) is centred, i.e. η̇j |j◦ ∈ L1
(P⊗kT ) = L1

(Z
k
,Z

⊗k
,P⊗kT )

with P⊗kT (η̇j |j◦) = 0, and exploiting ψ
•|• ∈M(Z ⊗J 2) the stochastic process

η̇•|• = (η̇j |j◦)j ,j◦∈J = k1/2(P̂k − PT)(ψ
•|•) = k1/2(P̂k(ψ•|•)− PT(ψ

•|•)) ∈M(Z
⊗k ⊗J 2)

satisfies Assumption §01|01.04. Since T̂
j |j◦

= T
j |j◦

+ k−1/2η̇j |j◦ for each j, j◦ ∈ J the stochastic
process T̂•|• = T•|• + k−1/2η̇•|• is a noisy version of the operator T•|• = VTU? ∈ L•|•(J). �

§02|01.05 Bivariate sequence model. Consider the measure space (J ,J , ν) = (N, 2N, ν
N
) as in §01|01.14.

Let η̇•|• = (η̇j |j◦)j ,j◦∈N be a real-valued stochastic process satisfying Assumption §01|01.04 with
mean zero and let k ∈ N be a sample size. The observable noisy version T̂•|• = T•|• + k−1/2η̇•|• ∼
P
k

T with mean kernel T•|• ∈M(2N
2

) = R
N

2

takes the form of a bivariate sequence model

T̂
j |j◦

= T
j |j◦

+ k−1/2η̇j |j◦, j , j◦ ∈ N. (02.01)

If η̇•|• admits a covariance function (possibly depending on T•|•), say cov ∈ M(2N
4

), then we
eventually write T̂•|• ∼ P

(T•|•,k
−1cov)

for short. �
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§02|01.06 Gaussian bivariate sequence model. Let Ẇ•|• := (Ẇj |j◦
)j ,j◦∈N ∼ N

⊗N
2

(0,1) be a Gaussian white noise
process. The observable noisy version T̂•|• = T•|• + k−1/2Ẇ•|• with mean kernel T•|• ∈M(2N

2

) takes
the form of a Gaussian bivariate sequence model

T̂
j |j◦

= T
j |j◦

+ k−1/2Ẇj |j◦
, j , j◦ ∈ N with (Ẇj |j◦

)j ,j◦∈N ∼ N
⊗N

2

(0,1) (02.02)

and we denote by N
k

T the distribution of the stochastic process T̂•|•. �

§02|01|01 Examples of empirical mean models

§02|01.07 Conditional expectation operator. Consider the Borel-measurable spaces (X,BX) and (Z,BZ)
for X,Z ∈ B . Let (Z,X ) be a Z × X-valued random vector. We denote by PZ ∈ W (BZ)

and PX ∈ W (BX) the marginal distribution of Z and X , respectively, by PX |Z a regular con-
ditional distribution of X given Z , and by PZ,X = P

Z � PX |Z ∈ W (BZ ⊗BX) the joint dis-
tribution of (Z,X ). We tactically identify Z and X with the coordinate map ΠZ

and ΠX
, re-

spectively, and thus (Z,X ) with the identity idZ×X such that P = P
Z,X ∈ W (BZ ⊗BX). In-

troduce further the Hilbert spaces L2
(PX ) := L2

(X,BX,P
X ) =: H, L2

(PZ) := L2
(Z,BZ,P

Z) =: G

and L2
(PZ,X ) := L2

(Z × X,BZ ⊗BX,P
Z,X ). For each h ∈ H = L2

(PX ), and hence h(X ) ∈ L2
(PZ,X )

we have PX |Zh := P
X |Z(h) = P

(
h(X )

∣∣Z) ∈ L2
(PZ) = G. We call PX |Z : H → G with

h 7→ P
X |Zh conditional expectation operator. Since by exploiting Jensens inequality for each

h ∈ H = L2
(PX ) we have

‖PX |Z
h‖2

G
= P

Z(|PX |Z
(h)|2

)
= P

Z(|P(h(X )
∣∣Z)|2) 6 PZ(

P
(
h

2
(X )

∣∣Z)) = P
X

(h
2
) = ‖h‖2

H

it follows PX |Z ∈ L(H,G) with ‖PX |Z‖
L(H,G)
6 1. Its adjoint (PX |Z)

? ∈ L(G,H) satisfies (PX |Z)
?

=

P
Z |X . Moreover, for each h ∈ H = L2

(PX ) and g ∈ G = L2
(PZ), hence h(X ), g(Z) ∈ L2

(PZ,X ),
we have

〈PX |Z
h, g〉

G
= P

Z,X(
g(Z)P

(
h(X )

∣∣Z)) = P
Z,X(

g(Z)h(X )
)

= 〈h,PZ |X
g〉

H
.

Evidently, the conditional expectation operatorPX |Z determines fully (and vice versa) the regular
conditional distribution PX |Z of X given Z . However, in general the marginal distributions PX

and PZ , and hence the Hilbert spaces H = L2
(PX ) and G = L2

(PZ) are not known in advance.
We assume in what follows that X = Z = [0, 1] and that X and Z is uniformly distributed
on the interval [0, 1], i.e. X ∼ U[0,1] = λ[0,1] = P

X and Z ∼ U[0,1] = λ[0,1] = P
Z . We denote by

U
P
X |Z := U[0,1] � PX |Z the joint distribution of (Z,X ) which is now fully specified once the con-

ditional expectation operator PX |Z ∈ T ⊆ L(H,G) is known. We consider the statistical product
experiment

(
[0, 1]2k ,B⊗2k

[0,1]
,U⊗kT := (U⊗k

P
X |Z)PX |Z∈T

)
of size k ∈ N and for PX |Z ∈ T we denote by

((Z
i
, X

i
))i∈JkK ∼ U⊗k

P
X |Z an iid. sample of (Z,X ) ∼ U

P
X |Z = U[0,1] � PX |Z . Let U,V ∈ L(L2

(λ[0,1]), `2)

be generalised Fourier series transforms as in Notation §01|02.07 which are fixed and known
in advanced. Then PX |Z

•|• := VPX |ZU
? ∈ L•|•(`2) is an operator with kernel (infinite matrix)

P
X |Z
•|• ∈ M(2N

2

) satisfying PX |Z
•|• = (PX |Z

j |j◦ = 〈PX |Zuj◦
, vj〉G = U

P
X |Z

(
uj◦

(X )vj(Z)
)
)j ,j◦∈N. Therefore

the stochastic process ψ
•|• = (ψ

j |j◦
(Z,X ) := uj◦

(X )vj(Z))j ,j◦∈N ∈ M(B2
[0,1]
⊗ 2N

2

) fulfils Assump-
tion §02|01.02 and PX |Z

•|• = U
P
X |Z(ψ

•|•). Similar to an Empirical mean model §02|01.04 we define
P̂
X |Z
•|• = (P̂X |Z

j |j◦ := P̂n(ψj |j◦))j ,j◦∈N ∈M(B⊗2k
[0,1]
⊗ 2N

2

). By construction PX |Z
•|• = U

P
X |Z(ψ

•|•) ∈M(2N
2

) is the
mean kernel of P̂X |Z

•|• . For each j, j◦ ∈ N the statistic η̇j |j◦ := k1/2(P̂k(ψj |j◦)− U
P
X |Z(ψ

j |j◦
)) ∈ M(B⊗2k

[0,1]
)

is centred, i.e. η̇j |j◦ ∈ L1
(U⊗k

P
X |Z) with U⊗k

P
X |Z(η̇j |j◦) = 0, and exploiting ψ

•|• ∈ M(B2
[0,1]
⊗ 2N

2

) the stochastic
process

η̇•|• = (η̇j |j◦)j ,j◦∈N = k1/2(P̂k − UP
X |Z)(ψ

•|•) = k1/2(P̂k(ψ•|•)− UP
X |Z(ψ

•|•)) ∈M(B⊗2k

[0,1]
⊗ 2N

2

)
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satisfies Assumption §02|01.02. Since P̂X |Z
j |j◦ = P

X |Z
j |j◦ + k−1/2η̇j |j◦ for each j, j◦ ∈ N by construction

P̂
X |Z
•|• = P

X |Z
•|• + k−1/2η̇•|• is a noisy version of PX |Z

•|• . �

§02|01.08 Covariance operator. Let (H, 〈·, ·〉
H

) be a separable Hilbert space equipped with its Borel-σ-
algebra BH and X be an H-valued random function. We tactically identify X with the identity
idH on H such that X is defined on the measure space (H,BH,P) and X ∼ P = P

X ∈ W (BH).
Here and subsequently, we assume that ‖X‖2

H
∈ L2

(P) and P(〈x,X 〉
H

) = 0 for all x ∈ H.

In this situation X admits a covariance operator ΓX ∈ L>(H) (see Remark §01|01.07). Let
us denote by P

Γ
X ∈ W (BH) the destribution of X which is not fully specified given ΓX ∈

T ⊆ L>(H). We consider the statistical product experiment (H
k
,B

⊗k
H ,P⊗kT = (P⊗k

Γ
X )ΓX∈T ). Let

(uj)j∈N be an orthonormal system in H and denote by U ∈ L(H, `2) its associated generalised
Fourier series transform (see Notation §01|02.07). Then ΓX

•|• = UΓXU
? ∈ L

>
•|•(`2) is a posi-

tive semi-definite operator with kernel (infinite matrix) ΓX
•|• ∈ M(2N

2

) which satisfies ΓX
•|• =

(ΓX
j |j◦ = P

Γ
X

(
〈uj , X 〉H〈X, uj◦

〉
H

)
)j ,j◦∈N. The process ψ

•|• = (ψ
j |j◦

(X ) := 〈uj , X 〉H〈X, uj◦
〉
H

)j ,j◦∈N ∈
M(BH ⊗ 2N

2

) fulfils Assumption §02|01.02 and ΓX
•|• = P

Γ
X (ψ

•|•). Similar to an Empirical mean model
§02|01.04 we define Γ̂X

•|• = (Γ̂X
j |j◦ := P̂k(ψj |j◦))j ,j◦∈N ∈M(B

⊗k
H ⊗ 2N

2

). By construction ΓX
•|• = P

Γ
X (ψ

•|•) ∈
M(2N

2

) is the mean kernel of Γ̂X
•|• . For each j, j◦ ∈ N the statistic η̇j |j◦ := n1/2(P̂k(ψj |j◦)− PΓ

X (ψ
j |j◦

)) ∈
M(B

⊗k
H ) is centred, i.e. η̇j |j◦ ∈ L1

(P⊗k
Γ
X ) with P⊗k

Γ
X (η̇j |j◦) = 0, and exploiting ψ

•|• ∈ M(BH ⊗ 2N
2

) the
stochastic process

η̇•|• = (η̇j |j◦)j ,j◦∈N = k1/2(P̂k − PΓ
X )(ψ

•|•) = k1/2(P̂k(ψ•|•)− PΓ
X (ψ

•|•)) ∈M(B
⊗k
H ⊗ 2N

2

)

satisfies Assumption §02|01.02. Since Γ̂X
j |j◦ = ΓX

j |j◦ + k−1/2η̇j |j◦ for each j, j◦ ∈ N by construction
Γ̂X
•|• = ΓX

•|• + k−1/2η̇•|• is a noisy version of ΓX
•|• . �

§02|01.09 Cross-covariance operator. Let (H, 〈·, ·〉
H

) and (G, 〈·, ·〉
G

) be separable Hilbert space equipped
with its Borel-σ-algebra BH and BG , respectively. Consider an H-valued random functionX and
an G-valued random function Z . Then (Z,X ) is an (G×H,BG⊗BH)-valued random function.
We denote by PZ ∈ W (BG) and PX ∈ W (BH) the marginal distribution of Z and X , respectively,
and by PZ,X ∈ W (BG ⊗BH) the joint distribution of (Z,X ). We tactically identify Z and X with
the coordinate map ΠG

and ΠH
, respectively, and thus (Z,X ) with the identity idG×H such that

P = P
Z,X ∈ W (BG ⊗BH). Here and subsequently, we assume that ‖Z‖2

G
∈ L2(P), ‖X‖2

H
∈ L2(P),

P(〈z, Z〉
G

) = 0 and P(〈x,X 〉
H

) = 0 for all z ∈ G and x ∈ H. In this situation Z and X
admits a covariance operator ΓZ ∈ L>(G) and ΓX ∈ L>(H), respectively (see Remark §01|01.07),
and (Z,X ) admits a cross-covariance operator ΓZX ∈ L(H,G) satisfying

〈ΓZX
x, z〉

G
= P

X,Z(〈z, Z〉
G
〈X, x〉

H

)
∀x ∈ H, z ∈ G.

where ‖ΓZX‖
L(H,G)
6 ‖ΓZ‖1/2

L(H)
‖ΓX‖1/2

L(G)
(Baker [1973] p.275). Let us denote by P

Γ
ZX ∈ W (BG ⊗BH)

the destribution of (Z,X ) which is not fully specified given ΓZX ∈ T ⊆ L(H,G). We consider
the statistical product experiment ((G × H)k , (BG ⊗BH)⊗k ,P⊗kT = (P⊗k

Γ
ZX )ΓZX∈T ). Let U ∈ L(H, `2)

and V ∈ L(G, `2) be generalised Fourier series transforms as in Notation §01|02.07 which are fixed
and known in advanced. Then ΓZX

•|• := VΓZXU
? ∈ L•|•(`2) is an operator with kernel (infinite

matrix) ΓZX
•|• ∈ M(2N

2

) satisfying ΓZX
•|• = (ΓZX

j |j◦ = 〈ΓZXuj◦
, vj〉G = P

Γ
ZX

(
〈vj , Z〉G〈X, uj◦

〉
H

)
)j ,j◦∈N.

Therefore the stochastic processψ
•|• = (ψ

j |j◦
(Z,X ) := 〈vj , Z〉G〈X, uj◦

〉
H

)j ,j◦∈N ∈M((BG ⊗BH)⊗ 2N
2

)

fulfils Assumption §02|01.02 and ΓZX
•|• = P

Γ
ZX (ψ

•|•). Similar to an Empirical mean model §02|01.04
we define Γ̂ZX

•|• = (Γ̂ZX
j |j◦ := P̂n(ψj |j◦))j ,j◦∈N ∈M((BG ⊗BH)⊗k ⊗ 2N

2

). By construction ΓZX
•|• = P

Γ
ZX (ψ

•|•) ∈
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M(2N
2

) is the mean kernel of Γ̂ZX
•|• . For each j, j◦ ∈ N the statistic η̇j |j◦ := k1/2(P̂k(ψj |j◦)− PΓ

ZX (ψ
j |j◦

)) ∈
M((BG ⊗BH)⊗k) is centred, i.e. η̇j |j◦ ∈ L1

(P
Γ
ZX⊗k) with P⊗k

Γ
ZX (η̇j |j◦) = 0, and the stochastic process

η̇•|• = (η̇j |j◦)j ,j◦∈N = k1/2(P̂k − PΓ
ZX )(ψ

•|•) = k1/2(P̂k(ψ•|•)− PΓ
ZX (ψ

•|•)) ∈M((BG ⊗BH)⊗k ⊗ 2N
2

)

satisfies Assumption §02|01.02 exploiting ψ
•|• ∈ M((BG ⊗BH)⊗k ⊗ 2N

2

). Since Γ̂ZX
j |j◦ = ΓZX

j |j◦ + k−1/2η̇j |j◦
for each j, j◦ ∈ N by construction Γ̂ZX

•|• = ΓZX
•|• + k−1/2η̇•|• is a noisy version of ΓZX

•|• . �

§02|01.10 Design operator. Consider the measure space (D,BD, λD) where λD denotes the restriction of
the Lebesgue measure to the Borel-σ-algebra BD over D ∈ B , and the real Hilbert space
L2

(λD) := L2
(D,BD, λD) of square Lebesgue-integrable real-valued functions. Let Pϕ ∈ W (BD)

admit a Lebesgue density ϕ ∈ L1
(λD), that is Pϕ = ϕλD (compare Regression with known design

§01|05.10). Let in addition ϕ ∈ L∞(λD), then Mϕ ∈ LM(L2
(λD)) with h 7→ Mϕh := ϕh. Note that

then for each h ∈ L2
(λD) we have Mϕh ∈ L2

(λD). Consequently, for each g, h ∈ L2
(λD), hence

g, h ∈ L2(Pϕ) we obtain gh ∈ L1(Pϕ) and

Pϕ(gh) = ϕλD

(
gh
)

= λD

(
ϕgh

)
= 〈Mϕg, h〉L2(λD)

∈ R

identifying again equivalence classes and their representatives. We note that Mϕ ∈ LM(L2
(λD)) with

density ϕ ∈ L∞(λD) is positive semi-definite, i.e. Mϕ ∈ L>(L2
(λD)) and if in addition ϕ ∈ M>0,λD

(BD)

(i.e. ϕ ∈ M>0
(BD) and λD(Nϕ) = 0) then it is stictly positive definite, i.e. Mϕ ∈ L	(L2

(λD)). Keep in
mind that U ∈ L(L2

(λD), `2) is generalised Fourier series transform as in Notation §01|02.07 which
is fixed and known in advance. Evidently, we have Mϕ

•|• := UMϕU
? ∈ L

>
•|•(`2) ⊆ L•|•(`2) = L(`2)

satisfying Mϕ
•|• = (Mϕ

j |j◦ = 〈Mϕ
•|•uj◦

, uj〉G = Pϕ(uj◦
uj))j ,j◦∈N. Therefore the stochastic process

ψ
•|• = (ψ

j |j◦
:= uj◦

uj)j ,j◦∈N ∈ M(BD ⊗ 2N
2

) fulfils Assumption §02|01.02 and Mϕ
•|• = Pϕ(ψ•|•). Similar

to an Empirical mean model §02|01.04 we define M̂•|• = (M̂j |j◦ := P̂k(ψj |j◦))j ,j◦∈N ∈ M(B
⊗k
D ⊗ 2N

2

).
By construction Mϕ

•|• = Pϕ(ψ•|•) ∈M(2N
2

) is the mean kernel of M̂•|•. For each j, j◦ ∈ N the statistic
η̇j |j◦ := k1/2(P̂k(ψj |j◦)− Pϕ(ψj |j◦)) ∈ M(B

⊗k
D ) is centred, i.e. η̇j |j◦ ∈ L1

(P⊗kϕ ) with P⊗kϕ (η̇j |j◦) = 0, and
exploiting ψ

•|• ∈M(BD ⊗ 2N
2

) the stochastic process

η̇•|• = (η̇j |j◦)j ,j◦∈N = k1/2(P̂k − Pϕ)(ψ•|•) = k1/2(P̂k(ψ•|•)− Pϕ(ψ•|•)) ∈M(B
⊗k
D ⊗ 2N

2

)

satisfies Assumption §02|01.02. Since M̂j |j◦ = Mϕ
j |j◦ + k−1/2η̇j |j◦ for each j, j◦ ∈ N by construction

M̂•|• = Mϕ
•|• + k−1/2η̇•|• is a noisy version of Mϕ

•|•. �

§02|02 Non-diagonal statistical inverse problem with noisy operator

§02|02.01 Assumption. For J = L2
(ν), surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J), fixed and

presumed to be known in advance, the operator T ∈ LU,V(L•|•(J)) and hence T•|• = VTU? ∈ L•|•(J)

with kernel T•|• ∈ J 2 is not known in advance where g
•

= T•|•θ• ∈ J or inequal g
•
∈ ran(T•|•) ={

T•|•a•: a• ∈ J
}

. �

§02|02.02 Notation. Under Assumption §02|02.01 given T•|• ∈ L•|•(J) and g
•
∈ ran(T•|•) we consider the

reconstruction of θ• = Uθ ∈ J (or in equal θ = U
?
θ• ∈ H) from a noisy version of the image

g
•

= VTU
?
θ• = T•|•θ• ∈ J and a noisy version of the operator T•|• ∈ L•|•(J). Keep in mind, that we

identify the equivalence class and its representative g
•
. �

§02|02.03 Non-diagonal statistical inverse problem with noisy operator. As in Definition §01|02.03 con-
sider a stochastic process ε̇• = (ε̇j)j∈J satisfying Assumption §01|01.04 with mean zero and
a sample size n ∈ N, and in addition as in Definition §02|01.03 a stochastic process η̇•|• =
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(η̇j |j◦)j ,j◦∈J satisfying Assumption §02|01.02 with mean zero and a sample size k ∈ N. Under
Assumption §02|02.01 where T•|• ∈ L•|•(J) with kernel T•|• ∈ M(J 2) is not known anymore, the
observable noisy image (Definition §01|02.03) has J-mean g

•
= T•|•θ• and the observable noisy

non-diagonal operator (Definition §02|01.03) has mean kernel T•|• ∈ M(J 2), and take the form
ĝ
•
= g

•
+ n−1/2ε̇• and T̂•|• = T•|• + k−1/2η̇•|•, respectively, or in equal

ĝ
j

= 〈T
j |•, θ•〉J + n−1/2ε̇j and T̂

j |j◦
= T

j |j◦
+ k−1/2η̇j |j◦, j , j◦ ∈ J . (02.03)

We denote by Pn,k
θ |T the joint distribution of (ĝ

•
, T̂•|•). The reconstruction of θ• ∈ J (or in equal

θ = U
?
θ• ∈ H) from a noisy version (ĝ

•
, T̂•|•) ∼ P

n,k
θ |T of the image g

•
= VTU

?
θ• = T•|•θ• ∈ J

and the operator T ∈ LU,V(L•|•(J)) is called a non-diagonal statistical inverse problem with noisy
operator. �

§02|02.04 Non-diagonal inverse empirical mean model (nieMM) with noisy operator. Consider the
reconstruction of θ• ∈ J (in equal θ = U?θ• ∈ H) in an Empirical mean model as in §01|02.04.
Under Assumption §02|02.01, where T•|• ∈ L•|•(J) with kernel T•|• ∈M(J 2) is not known in advance,
the observable noisy image has J-mean Vg = g

•
= T•|•θ• ∈ J and the observable noisy non-

diagonal operator (Definition §02|01.03) has mean kernel T•|• ∈ J 2, and take, respectively, the
form of an Empirical mean model as in §01|02.04 and Empirical mean model as in §02|01.04. More
precisely, for each θ ∈ Θ ⊆ H and T ∈ T ⊆ LU,V(L•|•(J)) let Pθ |T ∈ W (Z ) be a probability measure
on a measurable space (Z,Z ). Similar to §01|02.04 and §02|01.04 consider stochastic processes
ψΘ|T
•
∈ Z ⊗J and ψT

•|• ∈ Z ⊗J 2 which in addition for all θ ∈ Θ and T ∈ T satisfy ψΘ|T
j

, ψT

j ,j◦
∈

L1(Pθ |T) for each j, j◦ ∈ J and Pθ |T(ψΘ|T
•

) = g
•

= T•|•θ• and Pθ |T(ψT

•|•) = T•|•. The observable noisy
versions take the form ĝ

•
= T•|•θ• + n−1/2ε̇• and T̂•|• = T•|• + k−1/2η̇•|•, or in equal (02.03) with error

processes ε̇• = n1/2(P̂n(ψ
Θ|T
•

) − Pθ |T(ψΘ|T
•

)) ∈ M(Z
⊗n ⊗J ) and η̇•|• = k1/2(P̂k(ψ

T

•|•) − Pθ |T(ψT

•|•)) ∈
M(Z

⊗k ⊗J 2) satisfying Assumption §01|01.04 and Assumption §02|01.02. �

§02|02.05 Non-diagonal inverse sequence model (niSM) with noisy operator. Consider J = `2 = L2
(ν
N
)

as in §01|01.14. Let ε̇• = (ε̇j)j∈N and η̇•|• = (η̇j |j◦)j ,j◦∈N be real-valued stochastic processes
satisfying Assumption §01|01.04 and Assumption §02|01.02 with mean zero and let n, k ∈ N be
sample sizes. Under Assumption §02|02.01, where T•|• ∈ L•|•(`2) with kernel T•|• ∈ M(2N

2

) is not
known in advance, the observable noisy image has `2-mean g

•
= T•|•θ• and the observable noisy

operator has mean kernel T•|• ∈ M(2N
2

), and take the form of a Sequence model as in §01|02.05
and Bivariate sequence model as in §02|01.05, that is ĝ

•
= T•|•θ• + n−1/2ε̇• and T̂•|• = T•|• + k−1/2η̇•|•

or in equal

ĝ
j

= 〈T
j |•, θ•〉̀

2

+ n−1/2ε̇j and T̂
j |j◦

= T
j |j◦

+ k−1/2η̇j |j◦, j , j◦ ∈ N. (02.04)

We denote by Pn,k
θ |T the joint distribution of (ĝ

•
, T̂•|•). �

§02|02.06 Gaussian non-diagonal inverse sequence model (GniSM) with noisy operator. Consider
J = `2 as in §01|01.14. Let Ḃ• := (Ḃj)j∈N ∼ N

⊗N
(0,1) and Ẇ•|• := (Ẇj |j◦

)j ,j◦∈N ∼ N
⊗N

2

(0,1) be Gaus-
sian white noise process. The observable noisy versions ĝ

•
= g

•
+ n−1/2Ḃ• with `2-mean g

•
= T•|•θ•

and T̂•|• = T•|• + k−1/2Ẇ•|• with mean kernel T•|• ∈ M(2N
2

) take the form of a Gaussian sequence
model as in §01|02.06 and Gaussian bivariate sequence model as in §02|01.06, that is

ĝ
j

= 〈T
j |•, θ•〉̀

2

+ n−1/2Ḃj and T̂
j |j◦

= T
j |j◦

+ k−1/2Ẇj |j◦
, j , j◦ ∈ N

with (Ḃj)j∈N ∼ N
⊗N
(0,1) and (Ẇj |j◦

)j ,j◦∈N ∼ N
⊗N

2

(0,1) . (02.05)

We denote by N
n,k

θ |T the joint distribution of the stochastic process (ĝ
•
, T̂•|•). �
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§02|02|01 Examples of non-diagonal inverse empirical mean models with noisy
operator

§02|02.07 Instrumental regression. Consider for Z,X ∈ B the Borel-measurable spaces (Z,BZ), (X,BX)
and (R,B). Let (Z,X, Y ) be a Z × X × R-valued random vector with joint distribution
P
Z,X,Y ∈ W (BZ ⊗BX ⊗B). We denote by PZ ∈ W (BZ) the marginal distribution of Z , by
P
X |Z and PY |Z a regular conditional distribution of X given Z and Y given Z , respectively,

and by PZ,X = P
Z � PX |Z ∈ W (BZ ⊗BX) and PZ,Y = P

Z � PY |Z ∈ W (BZ ⊗B) the marginal
distributions of (Z,X ) and (Z, Y ). We tactically identify Z , X and Y with the coordinate
map ΠZ

, ΠX
and ΠR

, respectively, and thus (Z,X, Y ) with the identity idZ×X×R such that
P = P

Z,X,Y ∈ W (BZ ⊗BX ⊗B). If in addition Y ∈ L1
(P) = L1

(Z × X ×R,BZ ⊗BX ⊗B,P) then
P
Y |Z(idBY

) = P
(
Y
∣∣Z) =: g ∈ L1

(PZ) is unique up to PZ -a.s. equality (compare Regression with
uniform design §01|02.09). Introduce further the Hilbert spaces L2

(PX ) := L2
(X,BX,P

X ), L2
(PZ) :=

L2
(Z,BZ,P

Z) and as in §02|01.07 the conditional expectation operator PX |Z ∈ L(L2
(PX ),L2

(PZ)) with
h 7→ P

X |Zh := P
X |Z(h) = P

(
h(X )

∣∣Z). In what follows we assume that Y ∈ L2
(P) and hence

g ∈ L2
(PZ), and that in addition g ∈ ran(PX |Z) ⊆ L2

(PZ). In this situation there exists f ∈ L2
(PX )

such that for any h ∈ L2
(PZ)

〈g, h〉
L2(P

Z
)
= P

Z(
P
(
Y
∣∣Z)h(Z)

)
= P

Z(
P
(
f (X )

∣∣Z)h(Z)
)

= 〈PX |Z
f , h〉

L2(P
Z

)

or in equal P-a.s. we have Y = f (X ) + ξ with P
(
ξ
∣∣Z) = 0. We note that for all h ∈ L2

(PZ)

we have 〈g, h〉
L2(P

Z
)

= P(Y h(Z)). We assume moreover that X = Z = [0, 1] and that X and
Z is uniformly distributed on the interval [0, 1], i.e. X ∼ U[0,1] = λ[0,1] = P

X and Z ∼ U[0,1] =
λ[0,1] = P

Z . Consequently, we set H := L2
(PX ) = L2

(λ[0,1]) and G := L2
(PZ) = L2

(λ[0,1]). We denote
by U

P
X |Z := U[0,1] � PX |Z the joint distribution of (Z,X ) which is now fully specified once the

conditional expectation operator PX |Z ∈ T ⊆ L(L2
(λ[0,1])) is given (see Model §02|01.07). Moreover,

for PX |Z ∈ T ⊆ L(L2
(λ[0,1])) and f ∈ F

2
⊆ L2

(λ[0,1]) = H, and hence g := P
X |Zf ∈ L2

(λ[0,1]) = G,
we denote by Uf |PX |Z := U[0,1] � PY |Z

g the joint distribution of (Z, Y ) without fully specifying the
regular conditional distribution PY |Z

g which however satisfies PY |Z
g (idBY

) = Pg
(
Y
∣∣Z) = g =

P
X |Zf (see Model §01|05.09). Let U,V ∈ L(L2

(λ[0,1]), `2) be generalised Fourier series transforms
as in Notation §01|02.07 which are fixed and known in advance. Following Model §02|01.07
P
X |Z
•|• := VPX |ZU

? ∈ L•|•(`2) is an operator with kernel (infinite matrix) PX |Z
•|• ∈ M(2N

2

) sat-
isfying PX |Z

•|• = (PX |Z
j |j◦ = 〈PX |Zuj◦

, vj〉G = U
P
X |Z

(
uj◦

(X )vj(Z)
)
)j ,j◦∈N. Therefore the stochas-

tic process ψ
•|• = (ψ

j |j◦
(Z,X ) := uj◦

(X )vj(Z))j ,j◦∈N ∈ M(B2
[0,1]
⊗ 2N

2

) fulfils Assumption §02|01.02
and PX |Z

•|• = U
P
X |Z(ψ

•|•). Moreover, similar to Model §01|05.09 for each f ∈ F
2
⊆ L2

(λ[0,1]) = H

the generalised Fourier coefficients g
•

= (g
j
)j∈N = Vg = VPX |ZU

?
Uf = P

X |Z
•|• f•, satisfy

g
•

= Uf |PX |Z(Y v•(Z)). The stochastic process ψ
•

= (ψ
j

:= Y vj(X ))j∈N ∈ M((B
[0,1]
⊗B)⊗ 2N) ful-

fils Assumption §01|01.04 and g
•

= P
X |Z
•|• f• = Uf |PX |Z(ψ

F2|T
•

). The observable noisy versions take the
form ĝ

•
= P

X |Z
•|• f• + n−1/2ε̇• and P̂X |Z

•|• = P
X |Z
•|• + k−1/2η̇•|•, or in equal (02.03) with error processes

ε̇• = n1/2(P̂n − Uf |PX |Z)(ψ•) = n1/2(P̂n(ψ•)− Uf |PX |Z(ψ•)) ∈M((B
[0,1]
⊗B)⊗n ⊗ 2N) and

η̇•|• = k1/2(P̂k − UP
X |Z)(ψ

•|•) = k1/2(P̂k(ψ•|•)− UP
X |Z(ψ

•|•)) ∈ M(B⊗2k

[0,1]
⊗ 2N

2

)

satisfying Assumption §01|01.04 and Assumption §02|01.02. �

§02|02.08 Functional linear regression. Let (H, 〈·, ·〉
H

) be a separable Hilbert space equipped with its
Borel-σ-algebra BH and let (X, Y ) be an H × R-valued random vector with joint distribution
P
X,Y ∈ W (BH ⊗B). We denote by PX ∈ W (BH) the marginal distribution of X . We tactically

identify X and Y with the coordinate map ΠH
and ΠR

, respectively, and thus (X, Y ) with the
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identity idH×R such that P = P
X,Y ∈ W (BH ⊗B). Here and subsequently, we assume that

Y , ‖X‖2
H
∈ L2

(P) = L2
(H ×R,BH ⊗B,P) and P(〈x,X 〉

H
) = 0 for all x ∈ H. In this situation X

admits a covariance operator ΓX ∈ L>(H) (see Remark §01|01.07) and there is g ∈ H satisfying
〈g, x〉

H
= P(Y 〈X, x〉

H
) for all x ∈ H. In what follows we assume that in addition g ∈ ran(ΓX ) ⊆

H. In this situation there exists f ∈ H such that

〈g, x〉
H

= P(Y 〈X, x〉
H

) = P(〈X, f 〉
H
〈X, x〉

H
) = 〈ΓX

f , x〉
H
∀x ∈ H

or in equal P-a.s. we have Y = 〈X, f 〉
H

+ ξ with P(ξ〈X, x〉
H

) = 0 for all x ∈ H. Let us denote
byP

Γ
X ∈ W (BH) the marginal destribution ofX which is not fully specified given ΓX ∈ T ⊆ L>(H)

(see Model §02|01.08). Moreover, for ΓX ∈ T ⊆ L>(H) and f ∈ F
2
⊆ H, and hence g := ΓXf ∈ H,

we denote by P
f |ΓX the joint distribution of (X, Y ) without fully specifying the distribution which

however is assumed to satisfy P
f |ΓX (Y 〈X, x〉H) = P

Γ
X (〈X, f 〉

H
〈X, x〉

H
) for all x ∈ H. Let U ∈

L(H, `2) be a generalised Fourier series transform as in Notation §01|02.07 which is fixed and known
in advance. Following Model §02|01.08 ΓX

•|• := UΓXU
? ∈ L•|•(`2) is an operator with kernel (infi-

nite matrix) ΓX
•|• ∈ M(2N

2

) satisfying ΓX
•|• = (ΓX

j |j◦ = 〈ΓXuj◦
, uj〉H = P

Γ
X

(
〈X, uj◦

〉
H
〈X, uj〉H

)
)j ,j◦∈N.

Therefore the stochastic process ψ
•|• = (ψ

j |j◦
(X ) := 〈X, uj◦

〉
H
〈X, uj〉H)j ,j◦∈N ∈ M(BH ⊗ 2N

2

) ful-
fils Assumption §02|01.02 and ΓX

•|• = P
Γ
X (ψ

•|•). Moreover, for each f ∈ F
2
⊆ H the generalised

Fourier coefficients g
•
= (g

j
)j∈N = Ug = UΓXU

?
Uf = ΓX

•|• f•, satisfy g
•
= P

f |ΓX (Y 〈X, u•〉H). The
stochastic process ψ

•
= (ψ

j
:= Y 〈X, uj〉H)j∈N ∈ M((BH ⊗B)⊗ 2N) fulfils Assumption §01|01.04

and g
•

= ΓX
•|• f• = P

f |ΓX (ψ•). The observable noisy versions take the form ĝ
•

= ΓX
•|• f• + n−1/2ε̇• and

Γ̂X
•|• = ΓX

•|• + k−1/2η̇•|•, or in equal (02.03) with error processes

ε̇• = n1/2(P̂n − Pf |ΓX )(ψ•) = n1/2(P̂n(ψ•)− Pf |ΓX (ψ•)) ∈M((BH ⊗B)⊗n ⊗ 2N) and

η̇•|• = k1/2(P̂k − PΓ
X )(ψ

•|•) = k1/2(P̂k(ψ•|•) − PΓ
X (ψ

•|•)) ∈ M(B
⊗k
H ⊗ 2N

2

)

satisfying Assumption §01|01.04 and Assumption §02|01.02. �

§02|02.09 Functional linear instrumental regression. Let (H, 〈·, ·〉
H

) and (G, 〈·, ·〉
G

) be separable Hilbert
space equipped with its Borel-σ-algebra BH and BG , respectively, and let (Z,X, Y ) be an
G × H × R-valued random vector with joint distribution PZ,X,Y ∈ W (BG ⊗BH ⊗B). We de-
note by PZ ∈ W (BZ), PZ,X ∈ W (BG ⊗BH), and PZ,Y ∈ W (BG ⊗B) the marginal distribution
of Z , (Z,X ) and (Z, Y ), respectively. We tactically identify Z , X and Y with the coordinate
map ΠG

, ΠH
and ΠR

, respectively, and thus (Z,X, Y ) with the identity idG×H×R such that P =

P
Z,X,Y ∈ W (BG ⊗BH ⊗B). Here and subsequently, we assume that Y , ‖Z‖2

G
, ‖X‖2

H
∈ L2

(P) =

L2
(G × H ×R,BG ⊗BH ⊗B,P), P(〈z, Z〉

G
) = 0 and P(〈x,X 〉

H
) = 0 for all z ∈ G and x ∈ H. In

this situation (Z,X ) admits a cross-covariance operator ΓZX ∈ L(H,G) (see Model §02|01.09)
and there is g ∈ G satisfying 〈g, z〉

G
= P(Y 〈Z, z〉

G
) for all z ∈ G. In what follows we assume

that in addition g ∈ ran(ΓZX ) ⊆ G. In this situation there exists f ∈ H such that

〈g, z〉
G

= P(Y 〈Z, z〉
G

) = P(〈X, f 〉
H
〈Z, z〉

G
) = 〈ΓZX

f , z〉
G

or in equalP-a.s. we have Y = 〈X, f 〉
H

+ξ withP(ξ〈Z, z〉
G

) = 0 for all z ∈ G. Let us denote by
P

Γ
ZX ∈ W (BG ⊗BH) the marginal destribution of (Z,X ) which is not fully specified given ΓZX ∈

T ⊆ L(H,G) (see Model §02|01.09). Moreover, for ΓZX ∈ T ⊆ L(H,G) and f ∈ F
2
⊆ H, and hence

g := ΓZXf ∈ G, we denote by P
f |ΓZX the joint distribution of (Z,X, Y ) without fully specifying

the distribution which however is assumed to satisfy P
f |ΓZX (Y 〈Z, z〉G) = P

Γ
ZX (〈X, f 〉

H
〈Z, z〉

G
)
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for all z ∈ G. Let U ∈ L(H, `2) and V ∈ L(G, `2) be generalised Fourier series transforms
as in Notation §01|02.07 which are fixed and known in advance. Following Model §02|01.09
ΓZX
•|• := VΓZXU

? ∈ L•|•(`2) is an operator with kernel (infinite matrix) ΓZX
•|• ∈ M(2N

2

) satisfying
ΓZX
•|• = (ΓZX

j |j◦ = 〈ΓZXuj◦
, vj〉G = P

Γ
ZX

(
〈X, uj◦

〉
H
〈Z, vj〉G

)
)j ,j◦∈N. Therefore the stochastic pro-

cess ψ
•|• = (ψ

j |j◦
(Z,X ) := 〈X, uj◦

〉
H
〈Z, vj〉G)j ,j◦∈N ∈M(BG ⊗BH ⊗ 2N

2

) fulfils Assumption §02|01.02
and ΓZX

•|• = P
Γ
ZX (ψ

•|•). Moreover, for each f ∈ F
2
⊆ H the generalised Fourier coefficients

g
•

= (g
j
)j∈N = Vg = VΓZXU

?
Uf = ΓZX

•|• f•, satisfy g
•

= P
f |ΓZX (Y 〈Z, v•〉G). The stochastic

process ψ
•

= (ψ
j
(Z, Y ) := Y 〈Z, vj〉G)j∈N ∈ M((BG ⊗B)⊗ 2N) fulfils Assumption §01|01.04 and

g
•

= ΓZX
•|• f• = P

f |ΓZX (ψ•). The observable noisy versions take the form ĝ
•

= ΓZX
•|• f• + n−1/2ε̇• and

Γ̂ZX
•|• = ΓZX

•|• + k−1/2η̇•|•, or in equal (02.03) with error processes

ε̇• = n1/2(P̂n − Pf |ΓZX )(ψ•) = n1/2(P̂n(ψ•)− Pf |ΓZX (ψ•)) ∈M((BG ⊗B)⊗n ⊗ 2N) and

η̇•|• = k1/2(P̂k − PΓ
ZX )(ψ

•|•) = k1/2(P̂k(ψ•|•)− PΓ
ZX (ψ

•|•)) ∈ M((BG ⊗BH)⊗k ⊗ 2N
2

)

satisfying Assumption §01|01.04 and Assumption §02|01.02. �

§02|02.10 Regression with unknown design. Consider the measure space (D,BD, λD)
where λD denotes the restriction of the Lebesgue measure to the Borel-σ-algebra BD over D ∈
B , and the real Hilbert space L2

(λD) := L2
(D,BD, λD) of square Lebesgue-integrable real-valued

functions. Let (X, Y ) be a D × R-valued random vector. We assume in what follows that the
marginal distribution PX ∈ W (BD) of the regressor X admits a Lebesgue density ϕ ∈ L1

(λD),
that is PX = ϕλD, which is not known in advance. Moreover, let the joint distribution of (X, Y )
be given by PX,Y

f |ϕ := ϕλD � Pξ
f (X ) without fully specifying the error distribution Pξ ∈ W (B) and

thus the regular conditional distribution PY |X
f = P

ξ
f (X ) (compare Model §01|05.10). We tactically

identify X and Y with the coordinate map ΠD
and ΠR

, respectively, and thus (X, Y ) with the
identity idD×R such that Pf |ϕ = P

X,Y
f |ϕ ∈ W (BD ⊗B). In addition we assume that ϕ ∈ L∞(λD), and

hence Mϕ ∈ LM(L2
(λD)), Pξ ∈ P{0}×R>0

⊆ W2
(B), i.e. ξ has mean zero and a finite second moment, and

f ∈ L2
(λD), then g = Mϕf ∈ L2

(λD) for each h ∈ L2
(λD) satisfies

Pf |ϕ(Y h(X )) = P
X

(P
Y |X
f (Y )h) = ϕλD

(
fh
)

= λD

(
ϕfh

)
= 〈Mϕf , h〉L2(λD)

= 〈g, h〉
L2(λD)
∈ R.

Let U ∈ L(L2
(λD), `2) be a generalised Fourier series transform as in Notation §01|02.07 which is

fixed and known in advance. Evidently, we have Mϕ
•|• := UMϕU

? ∈ L
>
•|•(`2) ⊆ L•|•(`2) = L(`2)

and for each f ∈ F
2
⊆ L2

(λD) and g := Mϕf ∈ L2
(λD) the generalised Fourier coefficients

f• = (f
j
)j∈N = Uf and g

•
= (g

j
)j∈N = Ug = Mϕ

•|•f• for each j ∈ N satisfy

g
j

= 〈Mϕ
j |•, f•〉̀

2

= 〈Mϕ
•|•f•,1

{j}
• 〉̀

2

= 〈Mϕf ,U
?
1{j}• 〉L2(λD)

= 〈Mϕf , uj〉L2(λD)
= Pf |ϕ(Y uj(X )) ∈ R

The stochastic processψ
•

= (ψ
j
(X, Y ) := Y uj(X ))j∈N ∈M((BD ⊗B)⊗ 2N) fulfils Assumption §01|01.04

and g
•

= Mϕ
•|•f• = Pf |ϕ(ψ•) (compare Model §01|05.10). Moreover, considering the marginal

distribution Pϕ = ϕλD of X we have Mϕ
•|• := UMϕU

? ∈ L
>
•|•(`2) ⊆ L•|•(`2) = L(`2) satisfy-

ing Mϕ
•|• = (Mϕ

j |j◦ = 〈Mϕ
•|•uj◦

, uj〉G = Pϕ(uj◦
uj))j ,j◦∈N. Therefore the stochastic process ψ

•|• =

(ψ
j |j◦

:= uj◦
(X )uj(X ))j ,j◦∈N ∈ M(BD ⊗ 2N

2

) fulfils Assumption §02|01.02 and Mϕ
•|• = Pϕ(ψ•|•) (com-

pare Model §02|01.10). The observable noisy versions take the form ĝ
•

= Mϕ
•|•f• + n−1/2ε̇• and

M̂•|• = Mϕ
•|• + n−1/2η̇•|•, or in equal (02.03) with error processes

ε̇• = n1/2(P̂n − Pf |ϕ)(ψ•) = n1/2(P̂n(ψ•)− Pf |ϕ(ψ•)) ∈M((BD ⊗B)⊗n ⊗ 2N) and

η̇•|• = k1/2(P̂k − Pϕ)(ψ•|•) = k1/2(P̂k(ψ•|•) − Pϕ(ψ•|•)) ∈ M(B
⊗n
D ⊗ 2N

2

)

satisfying Assumption §01|01.04 and Assumption §02|01.02. �
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§02|03 Noisy diagonal operator

§02|03.01 Notation. Under Assumption §02|00.01 we consider the reconstruction of θ• = Uθ ∈ J (or in
equal θ = U

?
θ• ∈ H) from noisy versions of Vg = g

•
= s•θ• ∈ J and s• ∈ L∞(ν) or in equal

Ms = VTU
? ∈ LM(J). �

§02|03.02 Noisy diagonal operator. Let η̇• = (η̇
j
)j∈J be a stochastic process satisfying Assumption §01|01.04

with mean zero and let k ∈ N be a sample size. The stochastic process ŝ• = s• + k−1/2η̇• with
mean function s• ∈ J is called a noisy version of s• ∈ L∞(ν) and hence the diagonal operator
Ms ∈ LM(J), or noisy diagonal operator for short. We denote by Pk

s the distribution of ŝ•. If η̇•
admits a covariance function (possibly depending on s), say covs

•,• ∈ J 2, then we eventually
write η̇• ∼ P

(0•,covs
•,•)

and ŝ• ∼ P
(s•,k−1covs

•,•)
for short. �

§02|03.03 Comment. Similar to a noisy image (Definition §01|02.03) we consider Empirical mean model
§01|02.04, Sequence model §01|02.05 or Gaussian sequence model §01|02.06. Examples are pro-
vided in Subsubsection §01|02|01. �

§02|03|01 Examples of empirical mean models

§02|03.04 Covariance operator under second order stationarity. Consider the complex Hilbert spaces
L2

(λ[0,1)) and J := `2(Z). Let (L2
(λ[0,1)), 〈·, ·〉

L2(λ[0,1))
) be equipped with its Borel-σ-algebra BL2(λ[0,1)) and

X be a L2
(λ[0,1))-valued real random function (by the usual embedding of real-valued functions as

in Notation §01|02.10). We tactically identify X with the identity idL2(λ[0,1)) on L2
(λ[0,1)) such that X

is defined on the measure space (L2
(λ[0,1)),BL2(λ[0,1)),P) and X ∼ P = P

X ∈ W (BL2(λ[0,1))). Here and
subsequently, we assume that ‖X‖2

L2(λ[0,1))
∈ L2

(P) and P(〈X, x〉
L2(λ[0,1))

) = 0 for all x ∈ L2
(λ[0,1)). In

this situation X admits a covariance operator ΓX ∈ L>(L2
(λ[0,1))) (see Remark §01|01.07). Moreover,

let X be second order stationary, i.e. there exists cX ∈M(B
[0,1]

) such that

cov
t,s

= Cov(X (t), X (s)) = cX (t− s− bt− sc), ∀s, t ∈ [0, 1).

Evidently, since ‖X‖2
L2(λ[0,1))

∈ L2
(P) we have

‖cX‖2

L2(λ[0,1))
= λ[0,1)(|cX |2) =

∫
[0,1)

|Cov(X (0), X (t))|2λ[0,1)(dt)

6 P(|X (0)|2)

∫
[0,1)

P(|X (t)|2)λ[0,1)(dt) = P(|X (0)|2)P(‖X‖2

L2(λ[0,1))
) ∈ R>0

and hence cX ∈ L2
(λ[0,1)) too. Furthermore, the covariance operator ΓX ∈ L>(L2

(λ[0,1))) equals a
circular additive convolution (see Notation §01|04.11), since for all x, y ∈ L2

(λ[0,1))

〈ΓX
x, y〉

L2(λ[0,1))
= Cov(〈X, y〉

L2(λ[0,1))
, 〈X, x〉

L2(λ[0,1))
) = P(λ[0,1)(Xy)λ[0,1)(Xx))

=

∫
[0,1)

∫
[0,1)

y(t)Cov(X (t), X (s))x(s)λ[0,1)(ds)λ[0,1)(dt)

=

∫
[0,1)

y(t)

∫
[0,1)

cX (t− s− bt− sc)x(s)λ[0,1)(ds)λ[0,1)(dt)

=

∫
[0,1)

(cX ~ x)(t)y(t)λ[0,1)(dt) = 〈~cXx, y〉L2(λ[0,1))
,

hence ~cX = ΓX ∈ L>(L2
(λ[0,1))) in short. Let F ∈ L(L2

(λ[0,1)), `2(Z)) be the Fourier-series transform
with h 7→ Fh := h• = λ[0,1)(he•) and exponential basis e• := (ej)j∈Z (see Notations §01|02.10
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and §01|02.12). Since cX ∈ L2
(λ[0,1)) we denote cX• = FcX . Then the circular convolution theorem

states (~cXh)• = F(~cXh) = (FcX )(Fh) = cX• h•. Consequently, (cX• ,F,F) is an eigen value
decomposition of ~cX ∈ L>(L2

(λ[0,1))) with cX• ∈ `2(Z) ⊆ `∞(Z), and thus ΓX = ~cX ∈ LF,F(LM(`2(Z))) =
F
?
(LM(`2(Z)))F. Let us denote by PcX ∈ W (BL2(λ[0,1))) the destribution of X which is not fully specified

given cX ∈ D2 ⊆ L2
(λ[0,1)). We consider the statistical product experiment

((L2
(λ[0,1)))k ,B

⊗k
L2(λ[0,1)),P

⊗k
D2

= (P
⊗k

cX )cX∈D2
).

The stochastic processψ
•

= (ψ
j
(X ) := |〈X, ej〉L2(λ[0,1))

|2)j∈Z ∈M(BL2(λ[0,1)) ⊗ 2Z) fulfils Assumption §01|01.04
and cX• = PcX (ψ•) since for each j ∈ Z we have

PcX (|〈X, ej〉L2(λ[0,1))
|2) = 〈ΓX

ej , ej〉L2(λ[0,1))
= 〈~cXej , ej〉L2(λ[0,1))

= 〈cX• Fej ,Fej 〉̀
2(Z)

= 〈cX• 1{j}• ,1{j}• 〉̀
2(Z)

= cXj .

Similar to an Empirical mean model §01|02.04 we define ĉX• = (̂cXj := P̂k(ψj))j∈Z ∈ M(B
⊗k
L2(λ[0,1)) ⊗ 2Z).

By construction cX• = PcX (ψ•) ∈ M(2Z) is the mean sequence of ĉX• . For each j ∈ Z the statistic
η̇
j

:= k1/2(P̂k(ψj)− PcX (ψj)) ∈ M(B
⊗k
L2(λ[0,1))) is centred, i.e. η̇

j
∈ L1

(P⊗kcX ) with P⊗kcX (η̇
j
) = 0, and

exploiting ψ
•
∈M(BL2(λ[0,1)) ⊗ 2Z) the stochastic process

η̇• = (η̇
j
)j∈Z = k1/2(P̂k − PcX )(ψ•) = k1/2(P̂k(ψ•)− PcX (ψ•)) ∈M(B

⊗k
L2(λ[0,1)) ⊗ 2Z)

satisfies Assumption §01|01.04 and by construction ĉX• = cX• +k−1/2η̇• is a noisy version of cX• . �

§02|03.05 Cross-covariance operator under second order stationarity. Consider the complex Hilbert
spaces L2

(λ[0,1)) and J := `2(Z). Let (L2
(λ[0,1)), 〈·, ·〉

L2(λ[0,1))
) be equipped with its Borel-σ-algebra

BL2(λ[0,1)) and let X and Z be a L2
(λ[0,1))-valued real random function (by the usual embedding of

real-valued functions as in Notation §01|02.10). Then (Z,X ) is an ((L2
(λ[0,1)))2,B

⊗2

L2(λ[0,1)))-valued
random function. We denote by PZ ,PX ∈ W (BL2(λ[0,1))) the marginal distribution of Z and X ,
respectively, and by PZ,X ∈ W (B

⊗2

L2(λ[0,1))) the joint distribution of (Z,X ). We tactically take Z
and X as coordinate map, and thus identify (Z,X ) with the identity id(L2(λ[0,1)))2 such that P =

P
Z,X ∈ W (B

⊗2

L2(λ[0,1))). Here and subsequently, we assume that ‖Z‖2
L2(λ[0,1))

∈ L2(P), ‖X‖2
L2(λ[0,1))

∈ L2(P),
P(〈Z, z〉

L2(λ[0,1))
) = 0 and P(〈X, x〉

L2(λ[0,1))
) = 0 for all z, x ∈ L2

(λ[0,1)). In this situation (Z,X )

admits a cross-covariance operator ΓZX ∈ L(L2
(λ[0,1))) (see Model §02|01.09). Moreover, let (Z,X )

be second order stationary, i.e. there exists cZX ∈M(B
[0,1]

) such that

covZX
t,s

= Cov(Z(t), X (s)) = cZX (t− s− bt− sc), ∀s, t ∈ [0, 1).

Evidently, since ‖X‖2
L2(λ[0,1))

∈ L2
(P) we have

‖cZX‖2

L2(λ[0,1))
= λ[0,1)(|cZX |2) =

∫
[0,1)

|Cov(Z(0), X (t))|2λ[0,1)(dt)

6 P(|Z(0)|2)

∫
[0,1)

P(|X (t)|2)λ[0,1)(dt) = P(|Z(0)|2)P(‖X‖2

L2(λ[0,1))
) ∈ R>0

and hence cZX ∈ L2
(λ[0,1)) too. Furthermore, the cross-covariance operator ΓZX ∈ L(L2

(λ[0,1))) equals
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a circular additive convolution (see Notation §01|04.11), since for all x, y ∈ L2
(λ[0,1))

〈ΓZX
x, z〉

L2(λ[0,1))
= Cov(〈Z, z〉

L2(λ[0,1))
, 〈X, x〉

L2(λ[0,1))
) = P(λ[0,1)(Zz)λ[0,1)(Xx))

=

∫
[0,1)

∫
[0,1)

z(t)Cov(Z(t), X (s))x(s)λ[0,1)(ds)λ[0,1)(dt)

=

∫
[0,1)

z(t)

∫
[0,1)

cZX (t− s− bt− sc)x(s)λ[0,1)(ds)λ[0,1)(dt)

=

∫
[0,1)

(cZX ~ x)(t)z(t)λ[0,1)(dt) = 〈~cZXx, z〉L2(λ[0,1))
,

hence ~cZX = ΓZX ∈ L(L2
(λ[0,1))) in short. Let F ∈ L(L2

(λ[0,1)), `2(Z)) be the Fourier-series transform
with h 7→ Fh := h• = λ[0,1)(he•) and exponential basis e• := (ej)j∈Z (see Notations §01|02.10
and §01|02.12). Since cZX ∈ L2

(λ[0,1)) we denote cZX• = FcZX . Then the circular convolution
theorem states (~cZXh)• = F(~cZXh) = (FcZX )(Fh) = cZX• h•. Consequently, (cX• ,F,F) is a
singular value decomposition of ~cZX ∈ L(L2

(λ[0,1))) with cZX• ∈ `2(Z) ⊆ `∞(Z), and thus ΓZX =
~cZX ∈ LF,F(LM(`2(Z))) = F

?
(LM(`2(Z)))F. Let us denote by PcZX ∈ W (BL2(λ[0,1))) the joint destribution of

(Z,X ) which is not fully specified given cZX ∈ D2 ⊆ L2
(λ[0,1)). We consider the statistical product

experiment

((L2
(λ[0,1)))2k ,B

⊗2k

L2(λ[0,1)),P
⊗k

D2
= (P

⊗k
cZX )cZX∈D2

).

The stochastic process ψ
•

= (ψ
j
(Z,X ) := 〈Z, ej〉L2(λ[0,1))

〈ej , X 〉L2(λ[0,1))
)j∈Z ∈M(B

2

L2(λ[0,1)) ⊗ 2Z) fulfils As-
sumption §01|01.04 and cZX• = PcZX (ψ•) since for each j ∈ Z we have

PcZX (〈Z, ej〉L2(λ[0,1))
〈ej , X 〉L2(λ[0,1))

) = Cov(〈Z, ej〉L2(λ[0,1))
, 〈X, ej〉L2(λ[0,1))

)

= 〈ΓZX
ej , ej〉L2(λ[0,1))

= 〈~cZXej , ej〉L2(λ[0,1))
= 〈cZX• Fej ,Fej 〉̀

2(Z)
= cZXj .

Similar to an Empirical mean model §01|02.04 we define ĉZX• = (̂cZXj := P̂k(ψj))j∈Z ∈M(B
⊗2k

L2(λ[0,1)) ⊗ 2Z).
By construction cZX• = PcZX (ψ•) ∈ M(2Z) is the mean sequence of ĉZX• . For each j ∈ Z the statis-
tic η̇

j
:= k1/2(P̂k(ψj)− PcZX (ψj)) ∈ M(B

⊗2k

L2(λ[0,1))) is centred, i.e. η̇
j
∈ L1

(P⊗kcZX ) with P⊗kcZX (η̇
j
) = 0, and

exploiting ψ
•
∈M(B

2

L2(λ[0,1)) ⊗ 2Z) the stochastic process

η̇• = (η̇
j
)j∈Z = k1/2(P̂k − PcZX )(ψ•) = k1/2(P̂k(ψ•)− PcZX (ψ•)) ∈M(B

⊗2k

L2(λ[0,1)) ⊗ 2Z)

satisfies Assumption §01|01.04 and by construction ĉZX• = cZX• + k−1/2η̇• is a noisy version of
cZX• . �

§02|04 Diagonal statistical inverse problem with noisy operator

§02|04.01 Assumption. For J = L2
(ν), surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J), fixed

and presumed to be known in advance, the operator T ∈ LU,V(LM(J)) ⊆ L(H,G) and hence Ms =
VTU

? ∈ LM(J) or in equal s• ∈ L∞(ν) is not known in advance where g
•
= VTθ = Msθ• = s•θ• ∈ J

or in equal g
•
∈ Js•. �

§02|04.02 Notation. Under Assumption §02|04.01 given g
•
∈ Js• for s• ∈ L∞(ν) we consider the reconstruc-

tion of θ• = Uθ ∈ J (or in equal θ = U
?
θ• ∈ H) from a noisy version of g

•
= Vg = Msθ• = s•θ• ∈

J and a noisy version of s• ∈ L∞(ν). Keep in mind, that we identify the equivalence class and its
representative g

•
. �
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§02|04.03 Diagonal statistical inverse problem with noisy operator. Consider as in Definition §01|02.03
stochastic processes ε̇• = (ε̇j)j∈J and η̇• = (η̇

j
)j∈J satisfying Assumption §01|01.04 with mean

zero and sample sizes n, k ∈ N. Under Assumption §02|04.01 where s• ∈ L∞(ν) is not known
in advanced, the observable noisy image and operator, respectively, has J-mean g

•
= s•θ• and

mean-function s• ∈ L∞(ν), and takes the form ĝ
•
= g

•
+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇• or in equal

ĝ
j

= sjθj + n−1/2ε̇j and ŝ
j

= sj + k−1/2η̇
j
, j ∈ J . (02.06)

We denote by Pn,k
θ |s the joint distribution of (ĝ

•
, ŝ•). The reconstruction of θ• ∈ J (in equal θ =

U?θ• ∈ H) from a noisy version (ĝ
•
, ŝ•) ∼ P

n,k
θ |s of the image g

•
= s•θ• ∈ J and s• ∈ L∞(ν) is called

a diagonal statistical inverse problem with noisy operator. �

§02|04.04 Diagonal inverse empirical mean model (dieMM) with noisy operator. Consider the recon-
struction of θ• ∈ J (in equal θ = U?θ• ∈ H) in an Empirical mean model as in §01|02.04. Under
Assumption §02|04.01, where Ms ∈ LM(J) with s• ∈ L∞(ν) is not known in advance, the observable
noisy image has J-mean Vg = g

•
= s•θ• ∈ J and the observable noisy diagonal operator has

mean function s• ∈ L∞(ν), and takes each the form of an Empirical mean model as in §01|02.04.
More precisely, for each θ ∈ Θ ⊆ H and s• ∈ S ⊆ L∞(ν) let Pθ |s ∈ W (Z ) be a probabil-
ity measure on a measurable space (Z,Z ). Similar to §01|02.04 consider stochastic processes
ψΘ

•
, ψS

•
∈ Z ⊗J which in addition for all θ ∈ Θ and s• ∈ S satisfy ψΘ

j
, ψS

j
∈ L1(Pθ |s) for each

j ∈ J and Pθ |s(ψ
Θ

•
) = g

•
= s•θ• and Pθ |s(ψ

S

•
) = s•. The observable noisy versions take the form

ĝ
•
= s•θ• + n−1/2ε̇• and ŝ• = s• + k−1/2η̇•, or in equal (02.06) with error processes

ε̇• = n1/2(P̂n − Pθ |s)(ψΘ

•
) = n1/2(P̂n(ψ

Θ

•
)− Pθ |s(ψΘ

•
)) ∈M(Z

⊗n ⊗J ) and

η̇• = k1/2(P̂k − Pθ |s)(ψS

•
) = k1/2(P̂k(ψ

S

•
) − Pθ |s(ψS

•
)) ∈ M(Z

⊗k ⊗J )

satisfying Assumption §01|01.04. �

§02|04.05 Diagonal inverse sequence model (diSM) with noisy operator. Consider J = `2 = L2
(ν
N
)

as in §01|01.14. Let ε̇• = (ε̇j)j∈N and η̇• = (η̇
j
)j∈N be real-valued stochastic processes satisfy-

ing Assumption §01|01.04 with mean zero and let n, k ∈ N be sample sizes. Under Assump-
tion §02|04.01, where Ms ∈ LM(J) with s• ∈ L∞(ν) is not known in advance, the observable noisy
image has `2-mean g

•
= T•|•θ• and the observable noisy operator has mean function s• ∈ L∞(ν),

and take both the form of a Sequence model as in §01|02.05, that is ĝ
•

= T•|•θ• + n−1/2ε̇• and
ŝ• = s• + k−1/2η̇• or in equal

ĝ
j

= sjθj + n−1/2ε̇j and ŝ
j

= sj + k−1/2η̇
j
, j ∈ N. (02.07)

We denote by Pn,k
θ|s the joint distribution of (ĝ

•
, ŝ•). �

§02|04.06 Gaussian diagonal inverse sequence model (GdiSM) with noisy operator. Consider Gaus-
sian white noise processes Ḃ• := (Ḃj)j∈N ∼ N

⊗N
(0,1) and Ẇ• := (Ẇj)j∈N ∼ N

⊗N
(0,1). The observable

noisy versions ĝ
•
= g

•
+ n−1/2Ḃ• with `2-mean g

•
= T•|•θ• and ŝ• = s• + k−1/2Ẇ• with mean function

s• ∈ L∞(ν) take both the form of a Gaussian sequence model as in §01|02.06, that is

ĝ
j

= sjθj + n−1/2Ḃj and ŝ
j

= sj + k−1/2Ẇj , j ∈ N
with (Ḃj)j∈N ∼ N

⊗N
(0,1) and (Ẇj)j∈N ∼ N

⊗N
(0,1). (02.08)

We denote by N
n,k

θ|s the joint distribution of the stochastic process (ĝ
•
, ŝ•). �
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§02|04|01 Examples of diagonal inverse empirical mean models with noisy
operator

§02|04.07 Cicular density deconvolution with unkown error density. Similar to Model §01|04.12 con-
sider the complex Hilbert spaces L2

(λ[0,1)) and J := `2(Z). Let D1 ⊆ L1
(λ[0,1)) and D2 ⊆ L2

(λ[0,1)) ⊆
L1

(λ[0,1)) be sets of Lebesgue densities on ([0, 1),B
[0,1)

) (by the usual embedding of real-valued func-
tions as in Notation §01|02.10). We denote for each density p ∈ L1

(λ[0,1)) by Pp := pλ[0,1) ∈ W (B
[0,1)

)

the associated probability measure. Given a Lebesque error density q ∈ D1 which is not known
anymore for each Lebesgue density p ∈ D2 we consider the Lebesque density g = q ~ p ∈
L2

(λ[0,1)) (see Notation §01|04.11) and denote by Pp|q := (q ~ p)λ[0,1) = gλ[0,1) ∈ W (B
[0,1)

) the associ-
ated probability measure. We consider the statistical product experiment(

[0, 1)n+k ,B⊗(n+k)

[0,1)
,P

n⊗k
D2×D1

:= (P
⊗n

p|q ⊗ P
⊗k

q )p∈D2,q∈D1

)
.

Let F ∈ L(L2
(λ[0,1)), `2(Z)) be the Fourier-series transform (see Notation §01|02.12). Evidently, for

g ∈ L2
(λ[0,1)) ⊆ L1

(λ[0,1)) its Fourier-series g
•

= (g
j
)j∈Z = Fg satisfies g

j
= λ[0,1)(gej) = Pp|q(ej) for

each j ∈ Z. Moreover, considering the Fourier-series p• = (p
j
)j∈Z = Fp of p ∈ D2 ⊆ L2

(λ[0,1))

by the circular convolution theorem we have g
•

= F(q ~ p) = q•p• with q• = λ[0,1)(qe•) =
Pq(ej) ∈ `∞(Z) and p• = Fp ∈ `2(Z) (see Notation §01|04.11). Moreover, the stochastic pro-
cess e• = (ej)j∈Z on ([0, 1),B

[0,1)
) is (B

[0,1]
⊗ 2Z)-B-measurable, i.e. e• ∈ M(B

[0,1)
⊗ 2Z) for short

(compare Model §01|04.12). We define ĝ
•

= (ĝ
j

:= P̂n(ej))j∈Z = P̂n(e•) ∈ M(B⊗n
[0,1)
⊗ 2Z) and

q̂• = (q̂
j

:= P̂k(ej))j∈Z = P̂k(e•) ∈ M(B⊗k
[0,1)
⊗ 2Z) similar to an Empirical mean model §01|02.04

where by construction g
•

= q•p• = Pp|q(e•) is the `2(Z)-mean of ĝ
•

and q• = Pq(e•) ∈ `∞(Z) is
the mean sequence of q̂•. The observable noisy versions take the form ĝ

•
= q•p• + n−1/2ε̇• and

q̂• = q• + k−1/2η̇•, or in equal (02.06) with error processes

ε̇• = n1/2(P̂n − Pp|q)(e•) = n1/2(P̂n(e•)− Pp|q(e•))∈M(B⊗n
[0,1)
⊗ 2Z) and

η̇• = k1/2(P̂k − Pq)(e•) = k1/2(P̂k(e•) − Pq(e•)) ∈ M(B⊗k
[0,1)
⊗ 2Z)

satisfying Assumption §01|01.04. �

§02|04.08 Density additive deconvolution on R with unkown error density. Similar to Model §01|04.15
consider the complex Hilbert space L2 = L2

(λ). Let D1 ⊆ L1 and D2 ⊆ L2∩L1 be sets of Lebesgue
densities on (R,B) (by the usual embedding of real-valued functions as in Notation §01|02.10).
We denote for each density p ∈ L1 by Pp := pλ ∈ W (B) the associated probability measure.
Given a Lebesque density q ∈ D1 which is not known anymore for each Lebesgue density p ∈ D2

we consider the Lebesque density g = ∗qp = q ∗ p ∈ L2∩L1 (see Notation §01|04.14) and denote
byPp|q := (q∗p)λ = gλ ∈ W (B) the associated probability measure. We consider the statistical
product experiment(

R
n+k
,B

⊗(n+k)
,P

n⊗k
D2×D1

:= (P
⊗n

p|q ⊗ P
⊗k

q )p∈D2,q∈D1

)
.

Let F ∈ L(L2) be the Fourier-Plancherel transform (see Notation §01|02.15). Evidently, for g ∈
L2 ∩ L1 its Fourier-Plancherel transform g

•
= (g

j
)j∈R = Fg satisfies g

j
= λ(gej) = Pp|q(ej)

for all j ∈ R. Moreover, considering the Fourier-Plancherel transform p• = (p
j
)j∈R = Fp of

p ∈ D2 ⊆ L2∩L1 by the additive convolution theorem we have g
•
= F(∗qp) = λ(qe•)(Fp) = q•p•

λ-a.s. with q• = λ(qe•) = Pq(e•) ∈ L∞ and p• = Fp ∈ L2 (see Notation §01|04.14). Moreover, the
complex-valued stochastic process e• = (ej)j∈R on (R,B) is B

2-B-measurable, i.e. e• ∈M(B
2
)

for short (compare Model §01|04.15). We define ĝ
•

= (ĝ
j

:= P̂n(ej))j∈R = P̂n(e•) ∈ M(B
⊗n ⊗B)

and q̂• = (q̂
j

:= P̂k(ej))j∈R = P̂k(e•) ∈ M(B
⊗k ⊗B) similar to an Empirical mean model §01|02.04
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where by construction g
•

= q•p• = Pp|q(e•) is the L2-mean of ĝ
•

and q• = Pq(e•) ∈ L∞ is the
mean function of q̂•. The observable noisy versions take the form ĝ

•
= q•p• + n−1/2ε̇• and q̂• =

q• + k−1/2η̇•, or in equal (02.06) with error processes

ε̇• = n1/2(P̂n − Pp|q)(e•) = n1/2(P̂n(e•)− Pp|q(e•))∈M(B
⊗n ⊗B) and

η̇• = k1/2(P̂k − Pq)(e•) = k1/2(P̂k(e•) − Pq(e•)) ∈ M(B
⊗k ⊗B)

satisfying Assumption §01|01.04. �

§02|04.09 Density multiplicative deconvolution on R>0 with unkown error density. Consider the com-
plex Hilbert spaces L2

(x2c−1) = L2
(R>0,B>0, x2c−1λ>0) and L2 = L2

(λ) as in Model §01|04.17. Let
D1 ⊆ L1

(xc−1) and D2 ⊆ L1
(xc−1) ∩ L2

(x2c−1) be sets of Lebesgue-densities on (R>0,B>0
) (by the

usual embedding of real-valued functions as in Notation §01|02.10). We denote for each Lebesgue
density p on (R>0,B>0

) by colnoPp := pλ>0 ∈ W (B
>0

) the associated probability measure. Given
a Lebesque density q ∈ L1

(xc−1) which is not known anymore for each Lebesgue density p ∈ D2

we consider the Lebesque density g = �qp = q � p ∈ L1
(xc−1)∩L2

(x2c−1) (see Notation §01|04.16)
and denote by Pp|q := (q � p)λ>0 = gλ>0 ∈ W (B

>0
) the associated probability measure. We

consider the statistical product experiment(
R
n+k

>0 ,B
⊗(n+k)

>0
,P

n⊗k
D2×D1

:= (P
⊗n

p|q ⊗ P
⊗k

q )p∈D2,q∈D1

)
.

Let Mc ∈ L(L2
(x2c−1),L2) be the Mellin transform (see Notation §01|02.17). Evidently, for g ∈

L1
(xc−1)∩L2

(x2c−1) its Mellin transform g
•
= (g

j
)j∈R = Mcg satisfies g

j
= xc−1λ>0(xjg) = Pp|q(x

c−1xj)
for all j ∈ R. Moreover, considering the Mellin transform p• = (p

j
)j∈R = Mcp of p ∈

D2 ⊆ L1
(xc−1) ∩ L2

(x2c−1) by the multiplicative convolution theorem we have g
•

= Mc(�qp) =
xc−1λ>0(x•q)(Mcp) = q•p• λ-a.s. with q• = xc−1λ>0(x•q) = Pq(x

c−1x•) ∈ L∞ and p• = Mcp ∈ L2

(see Notation §01|04.16). Moreover, the complex-valued stochastic process xc−1x• = (xc−1xj)j∈R ∈
M(B>0 ⊗B) on (R>0,B>0) is B>0 ⊗B-B-measurable, i.e. xc−1x• ∈ M(B>0 ⊗B) for short. We de-
fine ĝ

•
= (ĝ

j
:= P̂n(x

c−1xj))j∈R = P̂n(x
c−1x•) ∈ M(B⊗n

>0
⊗B) and q̂• = (q̂

j
:= P̂k(x

c−1xj))j∈R =

P̂k(x
c−1x•) ∈ M(B⊗k

>0
⊗B) similar to an Empirical mean model §01|02.04 where by construction

g
•

= q•p• = Pp|q(x
c−1x•) is the L2-mean of ĝ

•
and q• = Pq(x

c−1x•) ∈ L∞ is the mean function of q̂•.
The observable noisy versions take the form ĝ

•
= q•p• + n−1/2ε̇• and q̂• = q• + k−1/2η̇•, or in equal

(02.06) with error processes

ε̇• = n1/2(P̂n − Pp|q)(xc−1x•) = n1/2(P̂n(x
c−1x•)− Pp|q(xc−1x•))∈M(B⊗n

>0
⊗B) and

η̇• = k1/2(P̂k − Pq)(xc−1x•) = k1/2(P̂k(x
c−1x•)− Pq(xc−1x•)) ∈ M(B⊗k

>0
⊗B)

satisfying Assumption §01|01.04. �

§02|04.10 Functional linear regression under second order stationarity. Consider the complex Hilbert
spaces L2

(λ[0,1)) and J := `2(Z). Let (L2
(λ[0,1)), 〈·, ·〉

L2(λ[0,1))
) be equipped with its Borel-σ-algebra

BL2(λ[0,1)) and let (X, Y ) be an L2
(λ[0,1)) × R-valued random vector with joint distribution PX,Y ∈

W (BL2(λ[0,1)) ⊗B). We denote byPX ∈ W (BL2(λ[0,1))) the marginal distribution of the real random function
X (by the usual embedding of real-valued functions as in Notation §01|02.10). We tactically
identify X and Y with the coordinate map ΠL2(λ[0,1))

and ΠR
, respectively, and thus (X, Y ) with the

identity idL2(λ[0,1))×R such that P = P
X,Y ∈ W (BL2(λ[0,1)) ⊗B). Here and subsequently, we assume that

Y , ‖X‖2
L2(λ[0,1))

∈ L2
(P) = L2

(L2
(λ[0,1))×R,BL2(λ[0,1)) ⊗B,P), P(〈x,X 〉

L2(λ[0,1))
) = 0 for all x ∈ L2

(λ[0,1)), and
that X is second order stationary as in Model §02|03.04. In this situation X admits a covariance
operator ΓX ∈ L>(L2

(λ[0,1))) which equals a circular additive convolution, that is ~cX = ΓX ∈
L>(L2

(λ[0,1))) with cX ∈ L2
(λ[0,1)) (see Model §02|03.04) and there is g ∈ L2

(λ[0,1)) satisfying 〈g, x〉
L2(λ[0,1))

=
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P(Y 〈X, x〉
L2(λ[0,1))

) for all x ∈ L2
(λ[0,1)). In what follows we assume that in addition g ∈ ran(ΓX ) ⊆

L2
(λ[0,1)). In this situation there exists f ∈ L2

(λ[0,1)) such that

〈g, x〉
L2(λ[0,1))

= P(Y 〈X, x〉
L2(λ[0,1))

) = P(〈f ,X 〉
L2(λ[0,1))

〈X, x〉
L2(λ[0,1))

) = 〈ΓX
f , x〉

L2(λ[0,1))
∀x ∈ L2

(λ[0,1))

or in equal P-a.s. we have Y = 〈f ,X 〉
L2(λ[0,1))

+ ξ with P(ξ〈X, x〉
L2(λ[0,1))

) = 0 for all x ∈ L2
(λ[0,1)).

Let us denote by PcX ∈ W (BL2(λ[0,1))) the marginal destribution of X which is not fully specified given
cX ∈ D2 ⊆ L2

(λ[0,1)) (see Model §02|03.04). Moreover, for cX ∈ D2 ⊆ L2
(λ[0,1)) and f ∈ F

2
⊆ L2

(λ[0,1)),
and hence g := ~cXf ∈ L2

(λ[0,1)), we denote by Pf |cX the joint distribution of (X, Y ) without
fully specifying the distribution which however is assumed to satisfy Pf |cX (Y 〈X, x〉L2(λ[0,1))

) =
PcX (〈f ,X 〉L2(λ[0,1))

〈X, x〉
L2(λ[0,1))

) for all x ∈ L2
(λ[0,1)). Let F ∈ L(L2

(λ[0,1)), `2(Z)) be the Fourier-series trans-
form with h 7→ Fh := h• = λ[0,1)(he•) and exponential basis e• := (ej)j∈Z (see Notations §01|02.10
and §01|02.12). Following Model §02|03.04 McX = F~cXF

?
= FΓXF

? ∈ LM(`2(Z)) is a multiplica-
tion operator with cX• ∈ `2(Z) ⊆ `∞(Z) satisfying cX• = (cXj = PcX (|〈X, ej〉L2(λ[0,1))

|2))j∈Z. There-
fore the complex-valued stochastic process |λ[0,1)(Xe•)|2 = (|λ[0,1)(Xej)|2 = |〈X, ej〉L2(λ[0,1))

|2)j∈Z ∈
M(BL2(λ[0,1)) ⊗ 2Z) fulfils Assumption §01|01.04 and cX• = PcX (|λ[0,1)(Xe•)|2). Moreover, for each f ∈
F

2
⊆ L2

(λ[0,1)) the Fourier coefficients g
•

= (g
j
)j∈Z = Fg = FΓXF

?
Ff = McXf• = cX• f•, sat-

isfy g
•

= (g
j

= Pf |cX (Y 〈X, ej〉L2(λ[0,1))
))j∈Z. The complex-valued stochastic process Y λ[0,1)(Xe•) =

(Y λ[0,1)(Xej) = Y 〈X, ej〉L2(λ[0,1))
)j∈Z ∈ M((BL2(λ[0,1)) ⊗B)⊗ 2Z) fulfils Assumption §01|01.04 and g

•
=

cX• f• = Pf |cX (Y λ[0,1)(Xe•)). The observable noisy versions take the form ĝ
•

= cX• f• + n−1/2ε̇• and
ĉX• = cX• + k−1/2η̇•, or in equal (02.06) with error processes

ε̇• = n1/2(P̂n − Pf |cX )(|λ[0,1)(Xe•)|2) ∈M((BL2(λ[0,1)) ⊗B)⊗n ⊗ 2Z) and

η̇• = k1/2(P̂k − PcX )(Y λ[0,1)(Xe•)) ∈ M(B
⊗k
L2(λ[0,1)) ⊗ 2Z)

satisfying Assumption §01|01.04. �

§02|04.11 Functional linear instrumental regression under second order stationarity. Consider the
complex Hilbert spaces L2

(λ[0,1)) and J := `2(Z). Let (L2
(λ[0,1)), 〈·, ·〉

L2(λ[0,1))
) be equipped with its

Borel-σ-algebra BL2(λ[0,1)) and let (Z,X, Y ) be an L2
(λ[0,1))

2 × R-valued random vector with joint
distribution PZ,X,Y ∈ W (B

2

L2(λ[0,1)) ⊗B). We denote by PZ ,PZ ∈ W (BL2(λ[0,1))) the marginal distributions
of the real random functions Z and X (by the usual embedding of real-valued functions as
in Notation §01|02.10). Moreover, denote by PZ,X ∈ W (B

2

L2(λ[0,1))), and PZ,Y ∈ W (BL2(λ[0,1)) ⊗B) the
marginal distribution of (Z,X ) and (Z, Y ), respectively. We tactically take Z , X and Y as
coordinate maps and thus identify (Z,X, Y ) with the identity idL2(λ[0,1))2×R such thatP = P

Z,X,Y ∈
W (B

2

L2(λ[0,1)) ⊗B). Here and subsequently, given L2
(P) := L2

((L2
(λ[0,1)))2 ×R,B2

L2(λ[0,1)) ⊗B,P) we assume that
Y , ‖Z‖2

L2(λ[0,1))
, ‖X‖2

L2(λ[0,1))
∈ L2

(P), P(〈Z, z〉
L2(λ[0,1))

) = 0, P(〈x,X 〉
L2(λ[0,1))

) = 0 for all z, x ∈ L2
(λ[0,1)),

and that (Z,X ) is second order stationary as in Model §02|03.05. In this situation (Z,X ) admits
a cross-covariance operator ΓZX ∈ L(L2

(λ[0,1))) which equals a circular additive convolution, that
is ~cZX = ΓZX ∈ L(L2

(λ[0,1))) with cZX ∈ L2
(λ[0,1)) (see Model §02|01.09) and there is g ∈ L2

(λ[0,1))

satisfying 〈g, z〉
L2(λ[0,1))

= P(Y 〈Z, z〉
L2(λ[0,1))

) for all z ∈ L2
(λ[0,1)). In what follows we assume that in

addition g ∈ ran(ΓZX ) ⊆ L2
(λ[0,1)). In this situation there exists f ∈ L2

(λ[0,1)) such that

〈g, z〉
L2(λ[0,1))

= P(Y 〈Z, z〉
L2(λ[0,1))

) = P(〈f ,X 〉
L2(λ[0,1))

〈Z, z〉
L2(λ[0,1))

) = 〈ΓZX
f , z〉

L2(λ[0,1))
∀z ∈ L2

(λ[0,1))

or in equal P-a.s. we have Y = 〈f ,X 〉
L2(λ[0,1))

+ ξ with P(ξ〈Z, z〉
L2(λ[0,1))

) = 0 for all z ∈ L2
(λ[0,1)).

Let us denote by PcZX ∈ W (B
2

L2(λ[0,1))) the marginal destribution of (Z,X ) which is not fully spec-
ified given cZX ∈ D2 ⊆ L2

(λ[0,1)) (see Model §02|03.05). Moreover, for cZX ∈ D2 ⊆ L2
(λ[0,1))

and f ∈ F
2
⊆ L2

(λ[0,1)), and hence g := ~cZXf ∈ L2
(λ[0,1)), we denote by Pf |cZX the joint distribu-

tion of (Z,X, Y ) without fully specifying the distribution which however is assumed to satisfy
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Pf |cZX (Y 〈Z, z〉L2(λ[0,1))
) = PcZX (〈f ,X 〉L2(λ[0,1))

〈Z, z〉
L2(λ[0,1))

) for all z ∈ L2
(λ[0,1)). Let F ∈ L(L2

(λ[0,1)), `2(Z))

be the Fourier-series transform with h 7→ Fh := h• = λ[0,1)(he•) and exponential basis e• :=
(ej)j∈Z (see Notations §01|02.10 and §01|02.12). Similar to Model §02|03.05 McZX = F~cZXF

?
=

FΓZXF
? ∈ LM(`2(Z)) is a multiplication operator with cZX• ∈ `2(Z) ⊆ `∞(Z) which satisfies

cZX• = (cZXj = PcZX (〈Z, ej〉L2(λ[0,1))
〈ej , X 〉L2(λ[0,1))

))j∈Z. Therefore the complex-valued stochastic pro-
cess λ[0,1)(Ze•)λ[0,1)(Xe•) = (λ[0,1)(Zej)λ[0,1)(Xej) = 〈Z, ej〉L2(λ[0,1))

〈ej , X 〉L2(λ[0,1))
)j∈Z ∈M(BL2(λ[0,1)) ⊗ 2Z) ful-

fils Assumption §01|01.04 and cZX• = PcZX (λ[0,1)(Ze•)λ[0,1)(Xe•)). Moreover, for each f ∈ F
2
⊆

L2
(λ[0,1)) the Fourier coefficients g

•
= (g

j
)j∈Z = Fg = FΓZXF

?
Ff = McZXf• = cZX• f•, sat-

isfy g
•

= (g
j

= Pf |cZX (Y 〈Z, ej〉L2(λ[0,1))
))j∈Z. The complex-valued stochastic process Y λ[0,1)(Ze•) =

(Y λ[0,1)(Zej) = Y 〈Z, ej〉L2(λ[0,1))
)j∈Z ∈M((BL2(λ[0,1)) ⊗B)⊗ 2Z) fulfils Assumption §01|01.04 and g

•
= cZX• f• =

Pf |cZX (Y λ[0,1)(Ze•)). The observable noisy versions take the form ĝ
•

= cZX• f• + n−1/2ε̇• and ĉZX• =
cZX• + k−1/2η̇•, or in equal (02.06) with error processes

ε̇• = n1/2(P̂n − Pf |cZX )(λ[0,1)(Ze•)λ[0,1)(Xe•)) ∈M((BL2(λ[0,1)) ⊗B)⊗n ⊗ 2Z) and

η̇• = k1/2(P̂k − PcX )(Y λ[0,1)(Ze•)) ∈ M(B
⊗k
L2(λ[0,1)) ⊗ 2Z)

satisfying Assumption §01|01.04. �
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Chapter 2

Regularisation of inverse problems

Given g• = T•|•θ• the regularised reconstruction of θ• in a direct problem
and an inverse problem with linear operator T•|• in a diagonal or general
case is presented.

Overview

§03 Ill-posed inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
§04 Regularisation by orthogonal projection . . . . . . . . . . . . . . . . . . . . . 41

§04|01 Weigthed norms and inner products . . . . . . . . . . . . . . . . . . . 42
§04|02 Direct problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

§04|02|01 Global and maximal global v-error . . . . . . . . . . . . . . 43
§04|02|02 Local and maximal local φ-error . . . . . . . . . . . . . . . 44

§04|03 Diagonal inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 45
§04|03|01 Global and maximal global v-error . . . . . . . . . . . . . . 45
§04|03|02 Local and maximal local φ-error . . . . . . . . . . . . . . . 46

§05 (Generalised) linear Galerkin approach . . . . . . . . . . . . . . . . . . . . . . 47
§05|01 Linear Galerkin approach . . . . . . . . . . . . . . . . . . . . . . . . 47

§05|01|01 Global and maximal global v-error . . . . . . . . . . . . . . 50
§05|01|02 Global and maximal global φ-error . . . . . . . . . . . . . . 51

§05|02 Generalised linear Galerkin approach . . . . . . . . . . . . . . . . . . 52
§05|02|01 Global and maximal global v-error . . . . . . . . . . . . . . 53
§05|02|02 Global and maximal global φ-error . . . . . . . . . . . . . . 53

§06 Spectral regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
§06|01 (Generalised) Tikhonov regularisation . . . . . . . . . . . . . . . . . . 55
§06|02 Spectral regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

§06|02|01 Maximal global v-error . . . . . . . . . . . . . . . . . . . . 57
§06|02|02 Maximal local φ-error . . . . . . . . . . . . . . . . . . . . . 60

§03 Ill-posed inverse problems

Let H and G be separable Hilbert spaces over K ∈ {R,C} endowed with inner product 〈·, ·〉
H

and 〈·, ·〉
G

and induced norm ‖·‖
H

and ‖·‖
G

, respectively. Consider a linear bounded operator
T : H → G, for short T ∈ L(H,G).

§03|00.01 Definition. Given g ∈ G the reconstruction of a solution θ ∈ H of the equation g = Tθ is
called inverse problem. �

§03|00.02 Definition (Hadamard [1932]). An inverse problem g = Tθ is called well-posed if (a) a solution
θ exists, (b) the solution θ is unique, and (c) the solution depends continuously on g . An inverse
problem which is not well-posed is called ill-posed. �
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Chapter 2 Regularisation of inverse problems §03 Ill-posed inverse problems

For a broader overview on inverse problems we refer the reader to the monograph by Kress
[1989] or Engl et al. [2000].

§03|00.03 Property (Existence and identification). There exists an unique solution of the equation g = Tθ if
and only if the following two conditions are satisfied

(existence) g belongs to the range ran(T) of T,

(identification) The operator T is injective, i.e., its null space ker(T) =
{

0
}

is trivial. �

§03|00.04 Remark. If there does not exist a solution typically one might consider a least-square solution
which exists if and only if g ∈ ran(T) ⊕ ker(T?). A least-square solution with minimal norm,
if it exists, could be recovered, in case the solution is not unique. Nevertheless, the main issue
is often the stability of the inverse problem. More precisely, if the solution does not depend
continuously on g , i.e., the inverse T−1 of T is not continuous, a reconstruction θ̂ = T−1ĝ may
be far from the solution θ even if the noisy version ĝ is close to g . �

§03|00.05 Property. Denote by Πran(T)
the orthogonal projection onto the closure ran(T) of the range of T.

For each g ∈ G the following assertions are equivalent (i) θ minimises h 7→ ‖g − Th‖
G

over
H (least square solution); (ii) Πran(T)

g = Tθ; (iii) T?g = T?Tθ (normal equation). �

§03|00.06 Remark. We note that g ∈ ran(T) ⊕ ran(T)⊥ implies Πran(T)
g ∈ ran(T) and hence the preimage

T−1({Πran(T)
g}) = {h ∈ H : Th = Πran(T)

g} is not empty. More precisely, due to Property §03|00.05
it equals the set of least square solutions, i.e. T−1({ΠR(T)

g}) = {θ ∈ H : T?g = T?Tθ}. �

§03|00.07 Notation. In the sequel keep in mind that for each T ∈ L(H,G) its restriction T
res

: ker(T)⊥ →
ran(T) is bijective and thus has an inverse T−1

res
: ran(T) → ker(T)⊥. Here and subsequently we

identify T and T
res

. �

§03|00.08 Definition. For T ∈ L(H,G) the Moore-Penrose inverse (generalised or pseudo inverse) T† is the
unique linear extension of T−1 : ran(T)→ ker(T)⊥ to the domain dom(T†) := ran(T)⊕ ran(T)⊥

with ker(T†) = ran(T)⊥ satisfying T†g := T−1
Πran(T)

g for any g ∈ dom(T†). �

§03|00.09 Remark. We note that TT†T = T, T†TT† = T†, T†T = Πker(T)⊥ and TT†g = Πran(T)
g for any

g ∈ dom(T†). If T is injective, and hence T?T, then T?T : H → ran(T?T) is invertible, which
in turn, for any g ∈ ran(T) ⊕ ran(T)⊥, implies that (T?T)†T?g is the unique solution of the
normal equation, and thus T−1({Πran(T)

g}) =
{

T†g
}

=
{

(T?T)†T?g
}

. If T is invertible then
T† = T−1. �

§03|00.10 Property. For each g ∈ dom(T†), T†g belongs to T−1

res
({Πran(T)

g}) and, hence is a least square
solution. Moreover, T†g is the unique least square solution with minimal ‖·‖

H
-norm, that is,

‖T†g‖
H

= inf{‖h‖
H

: h ∈ T−1

res
({Πran(T)

g})}. �

We eventually approximate the operator T by sequence (Tm)m∈N of operators in L(H,G),
where for each m the operator Tm ∈ L(H,G) has a finite dimensional image. If ‖Tm −T‖

L(H,G)
=

o(1) as m → ∞, then T is compact (reference), i.e. T ∈ K(H,G) for short, and the inverse
problem is generally ill-posed due to the next property.

§03|00.11 Property. If H and G are infinite dimensional and T ∈ K(H,G) is injective, then

inf
{
‖Th‖

G
: ‖h‖

H
= 1, h ∈ H

}
= 0,

which in turn implies that T−1

res
: ran(T)→ H, and hence also T†, is not continuous. �
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Coming back to the reconstruction of θ ∈ H from a noisy version of the image g = Tθ ∈ G

and eventually a noisy version of the operator T ∈ L(H,G) as introduced in Chapter 1. Through-
out this manuscript introducing the measure space (J ,J , ν) with index set J being con-
tained in N Z or R, surjective partial isometries U ∈ L(H,L2

(ν)) and V ∈ L(G,L2
(ν)), which

are fixed and presumed to be known in advance, we write g
•

= Aθ with A := VT ∈ L(H,L2
(ν)),

VTU
? ∈ L(L2

(ν)), g
•
= (g

j
)j∈J := Vg ∈ L2

(ν) and θ• = (θj)j∈J := Uθ ∈ L2
(ν). Concerning the

operator VTU
? we distinguish two cases, in Section §04 it behaves like a multiplication, i.e.

VTU
?

= Ms ∈ LM(J) for some s• ∈ L∞(ν), while in Section §05 and Section §06 we consider the
non-diagonal case VTU

?
= T•|• ∈ L•|•(`2).

§04 Regularisation by orthogonal projection

§04|00.01 Notation (Reminder). Consider the measure space (J ,J , ν) and the Hilbert space J = L2
(ν)

as in Notation §01|01.01. For w• ∈ R
J define the multiplication map Mw : R

J → R
J with

a• 7→ Mwa• := w•a• := (wjaj)j∈J . If w• ∈ M(J ), i.e. w• is J -B-measurable, then we have
Mw : M(J ) → M(J ) too. If in addition w• ∈ L∞(ν) then we have also Mw ∈ L(J) identifying
again equivalence classes and representatives. We set LM(J) :=

{
Mw: w• ∈ L∞(ν)

}
⊆ L(J) noting

that ‖Mw‖L(J)
= sup

{
‖w•a•‖J : ‖a•‖J 6 1

}
6 ‖w•‖L∞(ν ) for each Mw ∈ LM(J) (see Notation §01|04.01).

Finally, given surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J) we define LU,V(LM(J)) :=
V

?
(LM(J))U :=

{
V

?
MwU ∈ L(H,G): Mw ∈ LM(J)

}
. As a consequence, for each T ∈ LU,V(LM(J)) we have

VTU
?

= Mw ∈ LM(J) for some w• ∈ L∞(ν). �

§04|00.02 Notation (Reminder (see §01|04.02)). For A ∈ J we denote by 1A• = (1Aj )j∈J the indicator
function where for each j ∈ J , 1Aj = 1 if j ∈ A and 1Aj = 0 otherwise. Obviously, 1A• is
J -B-measurable, i.e. 1A• ∈M(J ), and it belongs to L∞(ν), and to L2

(ν) whenever ν(A) ∈ R>0.
Since {j} ∈J we have 1{j}• ∈J and 1{j}• ∈ L∞(ν). Obviously, we have 1• = 1J• ∈ L∞(ν) and
M1 ∈ LM(J). For each w• ∈ L∞(ν) set Jw• := {{a•w•}ν : a• ∈ L2(ν)} = {a•w• : a• ∈ J = L2

(ν)} and
hence in particular J1A• = {a•1A• : a• ∈ J}. Given 0• = (0)j∈J for w• ∈ M(J ) we write further
Nw := {w• = 0•} := {j ∈ J : wj = 0} ∈ J , and denote by dom(Mw) = {a• ∈ J : a•w• ∈ J},
ran(Mw) = {a•w• : a• ∈ dom(Mw) ⊆ J} and ker(Mw) = {a• ∈ J : {a•w•}ν = 0•}, respectively, the
domain, range and nullspace of Mw : J ⊇ dom(Mw)→ J. We write w• ∈M6=0,ν

(J ), if w• ∈M(J )

and ν(Nw) = 0. Similarly, for w• ∈ M(J ) with ν({w• 6 0•}) = 0 we write w• ∈ M>0,ν
(J ). For

w• ∈M(J ) we denote its Moore-Penrose inverse by w†• := w−1
• 1

N c

w

• ∈M(J ) meaning w†j := w−1
j

if j ∈ N c

w and w†j := 0 if j ∈ Nw. Obviously, we have w†• w•w
†
• = w†• , w•w

†
• w• = w• and

w•w
†
• = w†• w• = 1N

c

w

• . �

§04|00.03 Property. For each w• ∈ L∞(ν) the multiplication Mw ∈ L(J) is a linear bounded operator.
Keeping Nw = {w• = 0} ∈ J in mind its range and null space is given by ran(Mw) = Jw•

and ker(Mw) = J1Nw

• = ran(M
1Nw

), respectively. Mw ∈ LM(J) is consequently injective if and only
if w• ∈ M6=0,ν

(J ), i.e. w• ∈ M(J ) and ν(Nw) = 0. If in addition w• ∈ M>0,ν
(J ) ∩ L∞(ν) then

the multiplication Mw ∈ L>(J) ⊆ L(J) is a positive semi-definite operator, which is injective if
and only if w• ∈ M>0,ν

(J ). For each A ∈ J setting Ac := J \A ∈ J the range and null
space of the multiplication M

1A
∈ L>(J) ⊆ L(J) is given by ran(M

1A
) = J1A• and ker(M

1A
) = J1A

c

• ,
respectively. Obviously, we have M2

1A
= M

1A
and hence M

1A
is an orthogonal projection and

J = J1A• ⊕ J1A
c

• . Moreover, the map M1 = idJ equals the identity on J. �

§04|00.04 Assumption. For J = L2
(ν), surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J), fixed and

presumed to be known in advance, let T ∈ LU,V(LM(J)) ⊆ L(H,G) and hence VTU
?

= Ms ∈ LM(J) for
some s• ∈ L∞(ν), let g

•
∈ dom(Ms†), and hence s†•g• ∈ J = L2

(ν). �
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In the sequel we consider first in Subsection §04|02 the direct problem, that is s• = 1• and then
secondly in Subsection §04|03 the diagonal inverse problem, that is s• ∈ L∞(ν).

§04|01 Weigthed norms and inner products

§04|01.01 Notation (Reminder (see §01|00.01)). Extending the real line by the points−∞ and +∞ we define
R := R ∪ {±∞} and denote by B the Borel-σ-field over R where the trace of BR = B ∩ R
over R equals B . Thereby, each a• ∈ M(J ) is in a canonical way also J -B measurable,
a• ∈ M(J ) for short. For w• ∈ M(J ) and hence w2

• ∈ M>0
(J ), consider the measure w2

• ν on
(J ,J ), i.e., w2

• = dw2
• ν/dν is the Radon-Nikodym density of w2

• ν with respect to ν . We write
shortly 〈·, ·〉

w
:= 〈·, ·〉

L2(w
2
• ν )

and ‖·‖w := ‖·‖
L2(w

2
• ν ). For w• ∈ M(J ) with Moore-Penrose inverse

w†• := w−1
• 1

N c

w

• ∈ M(J ) we set Jw := Lw
2
(ν) := dom(Mw†) and write w2|†

• := (w†• )
2 = (w2

• )
† for

short. �

§04|01.02 Property. Let w• ∈ M(J ). Then w2
• ν ∈ Mσ(J ) is a σ-finite measure satisfying w2

• ν(|a•|2) =
ν(|w•a•|2) for each a• ∈ L2(w

2
• ν), and L2

(w2
• ν) endowed with inner product 〈·, ·〉

w
= 〈·, ·〉

L2(w
2
• ν )

=
〈Mw·,Mw·〉L2(ν )

is a separable Hilbert space. If in addition w• ∈M(J ) ∩ L∞(ν), then

L2(w
2|†
• ν) = L2(ν)w• + M(J )1Nw

• = {w•h• : h• ∈ L2(ν)}+ {h•1Nw

• : h• ∈M(J )}. (04.01)

Indeed, for each h• ∈M(J ) consider the decomposition h• = w•w
†
• h• + h•1

Nw

• . The claim follows
immediately from the equivalence of h• ∈ L2(w

2|†
• ν) and w†• h• ∈ L2(ν). Since w• ∈ L∞(ν) the map

Mw : L2(ν)→ L2(ν) is well-defined, and (similar to (04.01))

dom(Mw†) = {h• ∈ L2(ν) : w†• h• ∈ L2(ν)} = L2(ν)w• + L2(ν)1Nw

• ⊆ L2(w
2|†
• ν).

Consequently, if in addition Nw = ∅, then dom(Mw†) = L2(w
2|†
• ν). If w• ∈ L∞(ν) then Mw ∈ LM(J),

and (with Moore-Penrose inverse w†• of a representative w• ∈ M(J )) Mw† : J ⊇ dom(Mw†) → J.
Moreover, we have dom(Mw) = J, ran(Mw) = Jw• and ker(Mw) = J1Nw

• (see Property §04|00.03).
Therewith, it follows dom(Mw†) = Jw• ⊕ J1Nw

• . Consequently, if in addition ν(Nw) = 0, then
Jw = Lw

2
(ν) = dom(Mw†) = Jw• = L2

(w2|†
• ν). The last equality follows from (04.01) since both

measures w2|†
• ν and ν share the same null sets (i.e. they mutually dominate each other). �

§04|02 Direct problem

We assume throughout this subsection that Assumption §04|00.04 is satisfied with s• = 1• ∈ L∞(ν).

§04|02.01 Notation. For a non-empty and generally non-finite subset J of N, Z or R and m ∈ N we set
JmK := [−m,m]∩J and assuming JmK ∈J we write shortly 1m• = (1mj )j∈J := 1JmK

• ∈M(J ).
Furthermore, we define 1m|⊥• := 1• − 1m• ∈M(J ). �

§04|02.02 Property. For each m ∈ N, M1m ∈ L>(J) and M
1m|⊥
∈ L>(J) is the orthogonal projection onto the

linear subspace J1m• ⊆ J and its orthogonal complement J1m|⊥• = (J1m• )⊥ ⊆ J, respectively, that
is J = J1m• ⊕ J1m|⊥• . We have point-wise 1m• −1• = o(1) as m→∞ meaning that for each j ∈ J
holds 1mj − 1j = o(1) as m → ∞. Considering the orthogonal projection M1m ∈ L>(J) and the
identity M1 = idJ ∈ L>(J) point-wise convergence M1m − idJ = o(1) as m →∞ holds too, that
is, ‖(M1m − idJ)a•‖J = ‖(1m• − 1•)a•‖J = ‖1m|⊥• a•‖J = o(1) as m →∞ for all a• ∈ J. �

§04|02.03 Orthogonal projection. Givenm ∈ Nwe define for each θ• = Uθ ∈ J its orthogonal projection
θm• := θ•1

m
• ∈ J1m• (and θm := U

?
θm• ∈ H). �
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§04|02|01 Global and maximal global v-error

We shall measure first globally the accuracy of the orthogonal projection θm• := θ•1
m
• of θ• ∈ J.

§04|02.04 Property. If v• ∈ M6=0,ν
(J ) (i.e. v• ∈ M(J ) and ν(Nv) = 0) and θ• ∈ L2

(v2
• ν) (i.e. ‖θ•‖2v = v2

• ν(θ2
• ) ∈

R>0), then for each m ∈ N we have θm• ∈ L2
(v2
• ν) too, since ‖θm• ‖2

v
= v2

• ν(θ2
• 1

m
• ) 6 v2

• ν(θ2
• ).

Moreover, it holds ‖θm• − θ•‖2
v

= ‖θ•1m|⊥• ‖2
v

= v2
• ν(θ2

• 1
m|⊥
• ) 6 v2

• ν(θ2
• ) ∈ R>0 and ‖θm• − θ•‖2

v
= o(1)

as m →∞ by dominated convergence. �

§04|02.05 Comment. We assume throughout this chapter that the Hilbert space J = L2
(J ,J , ν) and the

surjective partial isometry U ∈ L(H,J) is fixed and known in advance. Considering a v-error
means the weight sequences v• ∈ M(J ) is also fixed and known in advance. Consequently, the
condition v• ∈M6=0,ν

(J ) does not impose an additional restriction. �

§04|02.06 Global v-error. Given v• ∈ M6=0,ν
(J ), m ∈ N, a solution θ• = Uθ ∈ L2

(v2
• ν) and its orthogonal

projection θm• = θ•1
m
• ∈ J1m• we call ‖θm• − θ•‖v = ‖θ•1m|⊥• ‖v ∈ R>0 global v-error. �

§04|02.07 Assumption. Consider weights a•, v• ∈M6=0,ν
(J ) (i.e. a•, v• ∈M(J ) and ν(Na) = 0 = ν(Nv)), such

that a• ∈ L∞(ν) and (av)• := (ajvj)j∈J = a•v• ∈ L∞(ν). We write (av)(m) := ‖(av)•1
m|⊥
• ‖L∞(ν ) ∈ R>0

for each m ∈ N. �

§04|02.08 Notation. For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,R>0,Q,Z, . . . } we
write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing and
non-increasing. If in addition an → ∞ and bn → 0 as n → ∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ L∞(ν) we set w(0) := ‖w•‖L∞(ν ) and w(•) = (w(j) := ‖w•1

j |⊥
• ‖L∞(ν ))j∈N,

where by construction w(•) ∈ (R>0)N↘ . �

§04|02.09 Reminder. Under Assumption §04|02.07 we have Ja = La
2
(ν) = dom(Ma†) = Ja• = L2

(a2|†
• ν)

and the three measures ν , a2|†
• ν and v2

• ν dominate mutually each other, i.e. they share the same
null sets (see Property §04|01.02). Consequently, Ja ⊆ J = L2

(ν) and if h• ∈ L2
(a2|†
• ν) satisfies

v2
• ν(h2

•) ∈ R>0, for example, then h• ∈ L2
(v2
• ν) too. �

§04|02.10 Notation. Under Assumption §04|02.07 and given a constant r ∈ R>0 we consider Ja = La
2
(ν) =

L2
(a2|†
• ν) endowed with ‖·‖a† := ‖·‖

Ja := ‖·‖
L2(a

2|†
• ν ) and the ellipsoid

Ja,r :=
{
h• ∈ Ja: ‖h•‖2a† = a2|†• ν(h2•) = ν(a2|†• h

2
•) 6 r2

}
⊆ Ja. �

§04|02.11 Property. Under Assumption §04|02.07 we have Ja ⊆ L2
(v2
• ν). Indeed, for each h• ∈ Ja (i.e.,

‖h•‖a† ∈ R>0) follows ‖h•‖2
v

= ν(h2
•a

2|†
• (av)2

• ) 6 ‖h•‖2
a†
‖(av)•‖2

L∞(ν )
∈ R>0. �

§04|02.12 Abstract smoothness condition. Under Assumption §04|02.07 a solution θ• ∈ J satisfies an
abstract smoothness condition if there is r ∈ R>0 such that θ• ∈ Ja,r ⊆ Ja. �

§04|02.13 Lemma. Under Assumption §04|02.07 for each m ∈ N and solution θ• ∈ Ja,r ⊆ L2
(v2
• ν) its or-

thogonal projection θm• := θ•1
m
• ∈ J1m• satisfies ‖θm• − θ•‖v = ‖θ•1m|⊥• ‖v6 r (av)(m).

§04|02.14 Proof of Lemma §04|02.13. Given in the lecture. �

§04|02.15 Maximal global v-error. Under Assumption §04|02.07 for m ∈ N, a solution θ• = Uθ ∈ Ja,r

and its orthogonal projection θm• = θ•1
m
• ∈ J1m• we call sup

{
‖θm• − θ•‖v: θ• ∈ Ja,r

}
maximal global

v-error over the class of solutions Ja,r. �
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§04|02|02 Local and maximal local φ-error

Secondly, we measure locally the accuracy of the orthogonal projection θm• := θ•1
m
• of θ• ∈ J.

§04|02.16 Notation. For φ
•
∈ M(J ) and dom(φν) :=

{
h• ∈ J = L2

(ν): φ
•
h• ∈ L1(ν)

}
we consider the linear

functional φν : J ⊇ dom(φν) → R given by h• 7→ φν(h•) := ν(φ
•
h•) with a slight abuse of

notations. �

§04|02.17 Comment. If φ
•
∈ J = L2

(ν), then it follows dom(φν) = J and ‖φν‖
L(J,R)

= ‖φ
•
‖
J
∈ R>0.

Consequently, we have φν ∈ L(J,R) and φν(h•) = 〈h•, φ•〉J , in other words φ
•

is a Fréchet-Riesz
representative of the continuous linear functional φν . �

§04|02.18 Property. If φ
•
∈ M6=0,ν

(J ) (i.e. φ• ∈ M(J ) and ν(Nφ) = 0) and θ• ∈ dom(φν) (i.e. θ•φ• ∈ L1(ν)),
then for each m ∈ N we have θm• ∈ dom(φν) too, since ‖φ

•
θm• ‖L1(ν ) = ν(|φ

•
θ•|1m• ) 6 ν(|φ

•
θ•|).

Moreover, it holds

|φν(θ•)− φν(θ
m
• )| 6 |φ

•
|ν(|θm• − θ•|) = |φ

•
|ν(|θ•|1m|⊥• ) 6 ν(|φ

•
θ•|) ∈ R>0

and |φν(θ•)− φν(θm• )| = o(1) as m →∞ by dominated convergence. �

§04|02.19 Comment. We assume throughout this chapter that the Hilbert space J = L2
(J ,J , ν) and the

surjective partial isometry U ∈ L(H,J) is fixed and known in advance (Assumption §04|00.04).
Considering a φ-error means the linear function φν and hence in equal φ

•
∈ J is also fixed

and known in advance. Consequently, the condition φ
•
∈M6=0,ν

(J ) does not impose an additional
restriction. �

§04|02.20 Local φ-error. Given φ
•
∈ M6=0,ν

(J ), m ∈ N, a solution θ• = Uθ ∈ dom(φν) and its orthogonal
projection θm• = θ•1

m
• ∈ J1m• we call |φν(θ•)− φν(θm• )| = |φν(θ•1

m|⊥
• )| ∈ R>0 local φ-error. �

§04|02.21 Assumption. Consider φ
•
, a• ∈ M6=0,ν

(J ) (i.e. φ• , a• ∈ M(J ) and ν(Nφ) = 0 = ν(Na)), such that
a• ∈ L∞(ν) and (aφ)• := (ajφj )j∈J = a•φ• ∈ L2

(ν) and hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1
m|⊥
• ‖L2(ν ) = o(1) as

m →∞. �

§04|02.22 Reminder. Under Assumption §04|02.21 we have Ja = La
2
(ν) = dom(Ma†) = Ja• = L2

(a2|†
• ν)

and the three measures ν , |φ
•
|ν and a2|†

• ν dominate mutually each other (see Property §04|01.02).
Consequently, Ja ⊆ J = L2

(ν) and if h• ∈ L2
(a2|†
• ν) satisfies ν(|φ

•
h•|) ∈ R>0, for example, then

h• ∈ L1
(|φ

•
|ν) too. �

§04|02.23 Property. Under Assumption §04|02.21 we have Ja ⊆ dom(φν). Indeed, for each h• ∈ Ja, i.e.
‖h•‖a† ∈ R>0, we have ‖φ

•
h•‖L1(ν ) = ν(|h•a†•(aφ)•|) 6 ‖h•‖a†‖(aφ)•‖L2(ν ) ∈ R>0. �

§04|02.24 Notation (Reminder). Under Assumption §04|02.21 a solution θ• = Uθ ∈ J satisfies an abstract
smoothness condition if there is r ∈ R>0 such that θ• ∈ Ja,r =

{
h• ∈ Ja: ‖h•‖2a† 6 r2

}
⊆ Ja where

‖·‖a† = ‖·‖
Ja := ‖·‖

L2(a
2|†
• ν ) (see Definition §04|02.12). Since (aφ)• ∈ L2

(ν) we have ‖a•1m|⊥• ‖φ =

‖(aφ)•1
m|⊥
• ‖L2(ν ) = o(1) as m →∞ by dominated convergence. �

§04|02.25 Lemma. Under Assumption §04|02.21 for each m ∈ N and θ• ∈ Ja•,r ⊆ dom(φν) its orthogonal
projection θm• := θ•1

m
• ∈ J1m• of satisfies |φν(θ• − θm• )| = |φν(θ•1

m|⊥
• )| 6 ν(|φ

•
θ•|1m|⊥• )6 r ‖a•1m|⊥• ‖φ.

§04|02.26 Proof of Lemma §04|02.25. Given in the lecture. �

§04|02.27 Maximal local φ-error. Under Assumption §04|02.21 for m ∈ N, a solution θ• = Uθ ∈ Ja,r and
its orthogonal projection θm• = θ•1

m
• ∈ J1m• we call sup

{
|φν(θ•)− φ•ν(θm• )|: θ• ∈ Ja,r

}
maximal

local φ-error over the class of solutions Ja,r . �
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§04|03 Diagonal inverse problem

We assume throughout this subsection that Assumption §04|00.04 is satisfied with s• ∈ L∞(ν).

§04|03.01 Reminder. Under Assumption §04|00.04 we consider T ∈ LU,V(LM(J)) ⊆ L(H,G), and hence VTU
?

=
Ms ∈ LM(J) and g

•
= Msθ• = s•θ• ∈ J for some s• ∈ L∞(ν). Due to Property §04|01.02 the

Moore-Penrose inverse of Ms ∈ LM(J) satisfies M†
s = Ms† : J ⊇ dom(Ms†) → J with dom(Ms†) =

Js• ⊕ J1Ns

• = Js. For each m ∈ N, M1m ∈ L>(J) and M
1m|⊥
∈ L>(J) is the orthogonal projec-

tion onto the linear subspace J1m• ⊆ J and its orthogonal complement J1m|⊥• = (J1m• )⊥ ⊆ J,
respectively, that is J = J1m• ⊕ J1m|⊥• (see Property §04|02.02). Given g

•
∈ J we call θ• ∈ J

satisfying ‖g
•
− s•θ•‖J = inf

{
‖g

•
− s•h•‖J : h• ∈ J

}
a least squares solution, if it exists (see Prop-

erty §03|00.05). �

§04|03.02 Property. For s• ∈ L∞(ν) and each g
•
∈ dom(Ms†) = Js• ⊕ J1Ns•

• is θ• = Ms†g• = s†•g• the unique
least square solution with minimal ‖·‖

J
-norm in the set s†•g• + J1Ns

• of all least square solutions.
If in addition ν(Ns) = 0 (i.e. Ms is injective), then θ• = s†•g• is the unique least square solution.
Given m ∈ N for each g

•
∈ dom(Ms†) we have g

•
1m• ∈ dom(Ms†) too. In particular, for θ• = s†•g• it

follows θ•1m• = (s†•g•)1
m
• = s†• (g•1

m
• ) ∈ J1m• . �

§04|03.03 Orthogonal projection. Given m ∈ N we define for each g
•
∈ dom(Ms†) and θ• = s†•g• ∈ J the

orthogonal projections gm
•

= g
•
1m• ∈ J1m• and θm• = (s†•g•)1

m
• = s†•gm• ∈ J1m• . �

§04|03.04 Assumption. Consider weights a•, t• ∈M>0,ν
(J ) ∩ L∞(ν) and hence (ta)• := t•a• ∈ L∞(ν). �

§04|03.05 Link condition. Given weights t• ∈ M>0,ν
(J ) ∩ L∞(ν), an operator Ms ∈ LM(J), and hence s• ∈

L∞(ν), satisfies a link condition if there is d ∈ R>1 such that

Ms ∈ Mt,d :=
{

Mw ∈ LM(J): |w•| 6 dt• ∧ t• 6 d|w•| ν -a.e.
}
. �

§04|03.06 Property. Given weights t• ∈M>0,ν
(J ) ∩ L∞(ν) and introducing ‖·‖t := ‖Mt·‖J we have

Mt,d =
{

M ∈ LM(J): d−1‖h•‖t 6 ‖Mh•‖J 6 d‖h•‖t, ∀h• ∈ J
}

moreover, for each M ∈ Mt,d and for all s ∈ R (exploiting Ms
t = Mts) holds

d
−|s|‖h•‖ts 6 ‖M

s
h•‖J 6 d

|s|‖h•‖ts , ∀h• ∈ dom(Mts). �

§04|03.07 Comment. Given M ∈ Mt,d there exists w• ∈M6=0,ν
(J )∩L∞(ν) such that M = Mw. Consequently,

we have ν(Nw) = 0 and hence for each s ∈ R the value ws
j is well-defined for all j ∈ N c

w , and
thus ws

• is ν -a.e. defined. In particular it follows w†• = w−1
• ν -a.e., and hence M† = Mw−1.

Similarly, we have Ms = Mws for each s ∈ R. �

§04|03.08 Property. Under Assumption §04|03.04 let θ• ∈ J and Ms ∈ LM(J) satisfy, respectively, an abstract
smoothness condition θ• ∈ Ja•,r as in Definition §04|02.12 and a link condition Ms ∈ Mt,d as in
Definition §04|03.05, then g

•
= s•θ• ∈ J fulfils an abstract smoothness condition g

•
∈ J(ta),dr , since

d
−2‖g

•
‖2

(ta)†
= d

−2
(ta)2|†

• ν(g2
•
) 6 a2|†

• s2|†
• ν(g2

•
) = a2|†

• ν(s2|†
• g

2
•
) = a2|†

• ν(θ
2
• ) = ‖θ•‖2

a†
6 r2. �

§04|03|01 Global and maximal global v-error

We measure similar to Subsubsection §04|02|01 first globally the accuracy of the orthogonal
projection θm• = s†•gm• ∈ J1m• of θ• = s†•g• ∈ J.
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§04|03.09 Property (Global v-error). If v• ∈M6=0,ν
(J ) and θ• = s†•g• ∈ L2

(v2
• ν), then for each m ∈ N we have

θm• ∈ L2
(v2
• ν) too, since ‖θm• ‖2

v
= v2

• ν(θ2
• 1

m
• ) 6 v2

• ν(θ2
• ). Moreover, it holds

‖θm• − θ•‖2

v
= ‖θ•1m|⊥• ‖2

v
= v2

• ν(θ
2
• 1

m|⊥
• ) 6 v2

• ν(θ
2
• ) ∈ R>0

and ‖θm• − θ•‖2
v

= o(1) as m →∞ by dominated convergence. �

§04|03.10 Assumption. Consider weights a•, v• ∈ M>0,ν
(J ) such that a• ∈ L∞(ν) and (av)• := a•v• ∈ L∞(ν).

We write (av)(•) = ((av)(m) := ‖(av)•1
m|⊥
• ‖L∞(ν ))m∈N, where by construction (av)(•) ∈ (R>0)N↘

(compare Notation §04|02.08). �

§04|03.11 Reminder. Under Assumption §04|03.10 we have Ja = La
2
(ν) = dom(Ma†•

) = Ja• = L2
(a2|†
• ν)

and the three measures ν , a2|†
• ν and v2

• ν dominate mutually each other, i.e. they share the same
null sets (see Property §04|01.02). Consequently, Ja ⊆ J = L2

(ν) and if h• ∈ L2
(a2|†
• ν) satisfies

v2
• ν(h2

•) ∈ R>0, for example, then h• ∈ L2
(v2
• ν) too. Moreover under Assumption §04|03.10 we

have Ja,r ⊆ Ja ⊆ L2
(v2
• ν) (see Definition §04|02.12 and Property §04|02.11). �

§04|03.12 Property (Maximal global v-error). Under Assumption §04|03.10 for each m ∈ N and for each
solution θ• = s†•g• ∈ Ja,r ⊆ L2

(v2
• ν) its orthogonal projection θm• := θ•1

m
• = s†•gm• ∈ J1m• satisfies

‖θm• − θ•‖v = ‖θ•1m|⊥• ‖v6 r (av)(m)

as shown in Proof §04|02.14. �

§04|03|02 Local and maximal local φ-error

Secondly, we measure locally the accuracy of the orthogonal projection θm• = s†•gm• ∈ J1m• of
θ• = s†•g• ∈ J.

§04|03.13 Property (Local φ-error). If φ
•
∈ M6=0,ν

(J ) and θ• = s†•g• ∈ dom(φν), then for each m ∈ N we
have θm• ∈ dom(φν) too, since ‖φ

•
θm• ‖L1(ν ) = ν(|φ

•
θ•|1m• ) 6 ν(|φ

•
θ•|). Moreover, it holds

|φν(θ•)− φν(θ
m
• )| 6 |φ

•
|ν(|θm• − θ•|) = |φ

•
|ν(|θ•|1m|⊥• ) 6 ν(|φ

•
θ•|) ∈ R>0

and |φν(θ•)− φν(θm• )| = o(1) as m →∞ by dominated convergence. �

§04|03.14 Assumption. Consider a•, φ• ∈ M>0,ν
(J ) such that a• ∈ L∞(ν) and (aφ)• := (ajφj )j∈J = a•φ• ∈

L2
(ν) and hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖L2(ν ) = o(1) as m →∞. �

§04|03.15 Reminder. Under Assumption §04|03.14 we have Ja = La
2
(ν) = dom(Ma†) = Ja• = L2

(a2|†
• ν)

and the three measures ν , |φ
•
|ν and a2|†

• ν dominate mutually each other (see Property §04|01.02).
Consequently, Ja ⊆ J = L2

(ν) and if h• ∈ L2
(a2|†
• ν) satisfies ν(|φ

•
h•|) ∈ R>0, for example, then

h• ∈ L1
(|φ

•
|ν) too. Moreover, under Assumption §04|03.14 we have Ja,r ⊆ Ja ⊆ dom(φν) (see

Definition §04|02.12 and Property §04|02.11). �

§04|03.16 Property (Maximal local φ-error). Under Assumption §04|03.14 for each m ∈ N and for each
solution θ• = s†•g• ∈ Ja,r ⊆ dom(φν) its orthogonal projection θm• := θ•1

m
• = s†•gm• ∈ J1m• satisfies

|φν(θ• − θm• )| = |φν(θ•1
m|⊥
• )| 6 ν(|φ

•
θ•|1m|⊥• )6 r ‖a•1m|⊥• ‖φ

as shown in Proof §04|02.26. �
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§05 (Generalised) linear Galerkin approach

§05|00.01 Notation. Consider J = `2 := L2
(ν
N
) = L2

(N, 2N, ν
N
) with counting measure ν

N
:=
∑

j∈N δ{j},
surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2). For each T ∈ L(H,G) and T•|• :=
VTU? ∈ L(`2) = L•|•(`2) (compare Notation §01|04.03) we identify the kernel (infinite dimensional
matrix) T•|• = (T

j ,jo
)j ,jo∈N ∈ R

N
2

and the map from `2 into itself given by

a• 7→ T•|•a• := (
∑
jo∈N

T
j |jo
ajo = 〈T

j |•, a•〉̀
2

= ν
N
(T

j ,•a•))j∈N

(compare Notation §01|05.01). Moreover, we denote by L
	
•|•(`2) the subset of all strictly positive

definite operator in L•|•(`2). For each T•|• ∈ L
	
•|•(`2) we denote its Moore-Penrose inverse by T†•|• :

`2 ⊇ dom(T†•|•)→ `2 (see Definition §03|00.08). �

§05|00.02 Notation (Property). For m ∈ N set 1m|⊥• := 1• − 1m• ∈ R
N where 0• = 1m|⊥• 1m• = 1m• 1

m|⊥
• ∈ RN.

(a) For a• ∈ R
N introduce its sub-vector [a•]m := (ai)i∈JmK ∈ R

m where [a•]m = [a•1
m
• ]m.

(b) For A•|• = (Aj |jo)j ,jo∈N ∈ R
N

2

introduce its sub-matrix [A•|•]m := (Aj |jo)j ,jo∈JmK ∈ R
(m,m).

Clearly, if we restrict Am
•|• := M1mA•|•M1m ∈ L(`2) with

a• 7→ A
m

•|•a• = (1mj
∑
jo∈JmK

Aj ,jo
ajo = 1mj 〈Aj |•1

m
• , a•〉̀

2

= 1mj νN(Aj |•a•1
m
• ))j∈N

to an operator fromR
m (ran(M1m) = `21

m
• ) to itself, then it is represented by the matrix [A•|•]m.

Note that the adjoint A?
•|• ∈ L(`2) of A•|• ∈ L(`2) and the transposed matrix [A•|•]

?

m ∈ R
(m,m) of

[A•|•]m satisfy [A?
•|•]m = [A•|•]

?

m. If [A•|•]
†
m ∈ R

(m,m) denotes the Moore-Penrose inverse of [A•|•]m
(as linear map from R

m into itself), then the Moore-Penrose inverse Am|†
•|• ∈ L(`2) of Am

•|• (see
Definition §03|00.08), restricted to an operator from R

m to itself can be represented by the
matrix [A•|•]

†
m. In particular, if [A•|•]m is regular (invertible), and hence [A•|•]

†
m = [A•|•]

−1

m , then
we have Am

•|•A
m|†
•|• = M1m = Am|†

•|• Am
•|•.

(c) Given Mw ∈ LM(`2), the diagonal matrix [Mw]m ∈ R
(m,m) has [w•]m as its diagonal entries. Note

that [Mw]sm = [Mws]m = [Ms
w]m for all s ∈ R>0 and [Mw]†m = [Mw†]m = [M†

w]m.

(d) Keep in mind the Euclidean norm ‖·‖ of a vector and the weighted norm ‖·‖t := ‖Mt·‖`2
with t• ∈ R

N

>0. For all a• ∈ `21
m
• (and (ta)• := t•a• ∈ `21

m
• ) we have

‖a•‖2

t
= ‖Mta•‖2

`2
= ‖(ta)•‖2

`2
= ‖(ta)•1

m
• ‖2

`2
= [a•]

?
m[Mt2]m[a•]m

= [(ta)•]
?
m[(ta)•]m = ‖[Mt]m[a•]m‖2 = ‖[(ta)•]m‖2.

(e) Let ‖A‖
spec

:= sup
{
‖Ax‖: ‖x‖ ∈ [0, 1]

}
denote the spectral norm of a matrix A. Then we

have ‖Am
•|•‖L(`2)

= ‖M1mA•|•M1m‖L(`2)
= ‖[A•|•]m‖spec

and for s ∈ R>0 hence

‖(Mm
t )s‖

L(`2)
= ‖M1mM

s
t M1m‖L(`2)

= ‖[Mts]m‖spec
= ‖ts•1m• ‖`∞ = max

{
|tsj |: j ∈ JmK

}
. �

§05|01 Linear Galerkin approach

§05|01.01 Assumption. For J = `2, surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2) fixed and
presumed to be known in advance, the operator T ∈ L(H,G) satisfies T•|• = VTU? ∈ L

	
•|•(`2) ⊆

L•|•(`2) = L(`2). Let g
•
∈ dom(T†•|•) = ran(T•|•), and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. �
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§05|01.02 Linear Galerkin approach. Let T•|• ∈ L
	
•|•(`2) and g

•
∈ `2. For m ∈ N any element θm• ∈ `21

m
• , i.e.

0• = θm• (1• − 1m• ) = θm• 1
m|⊥
• , satisfying

〈θm• ,T•|•θ
m
• 〉̀

2

− 2〈θm• , g•〉̀ 2

6 〈a•,T•|•a•〉̀
2

− 2〈a•, g•〉̀ 2

for all a• ∈ `21
m
•

is called a Galerkin solution in `21
m
• . �

§05|01.03 Lemma. Let T•|• ∈ L
	
•|•(`2) and g

•
∈ `2. (i) For all m ∈ N the matrix [T•|•]m ∈ R(m,m) is

strictly positive definite. (ii) The Galerkin solution θm• ∈ `21
m
• , i.e. 0• = θm• (1• − 1m• ) = θm• 1

m|⊥
• ,

is uniquely determined by [θm• ]m = [T•|•]
−1

m
[g
•
]
m
, and hence θm• = Tm|†

•|• g•. (iii) If in addition
g
•
∈ dom(T†•|•) and θ• := T†•|•g• ∈ `2, then the Galerkin solution θm• minimises in `21

m
• the functional

a• → F (a•) = ‖T1/2

•|• (a• − θ•)‖2
`2

.

§05|01.04 Proof of Lemma §05|01.03. Given in the lecture. �

§05|01.05 Remark. Consider for θ• ∈ `2 its orthogonal projection 1m• θ• and 1m|⊥• θ• onto the subspace `21
m
•

and its orthogonal complement `21
m|⊥
• := (`21

m
• )⊥, respectively, then the approximation error

‖1m• θ•−θ•‖`2 = ‖(1•−1m• )θ•‖`2 = ‖1m|⊥• θ•‖`2 converges to zero asm→∞ by Lebesgue’s dominated
convergence theorem. On the other hand, if g

•
∈ dom(T†•|•) and θ• := T†•|•g• ∈ `2 then the Galerkin

solution θm• ∈ `21
m
• satisfies [1m• θ• − θm• ]m = −[T•|•]

−1

m
[T•|•(1• − 1m• )θ•]m = −[T•|•]

−1

m
[T•|•1

m|⊥
• θ•]m and,

hence it does generally not correspond to the orthogonal projection 1m|⊥• θ• = (1• − 1m• )θ•. More-
over, the approximation error sup

{
‖θm• − θ•‖`2 : m ∈ N>n

}
does generally not converge to zero as

n→∞. However, if

CT := sup
{
‖Tm|†

•|• T•|•M1m|⊥‖L(`2)
: m ∈ N

}
= sup

{
‖[T•|•]

−1

m
[T•|•1

m|⊥
• a•]m‖: ‖a•‖`2 = 1, a• ∈ `2,m ∈ N

}
∈ R>0

then ‖θm• − θ•‖`2 6 (1 + CT)‖1m|⊥• θ•‖`2 which implies sup
{
‖θm• − θ•‖`2 : m ∈ N>n

}
= o(1) as m →

∞. Here and subsequently, we will restrict ourselves to classes of solutions and operators which
ensure the convergence. Obviously, this is a minimal regularity condition for us if we aim to
estimate the Galerkin solution. �

§05|01.06 Notation (Reminder §04|02.08). For sequences a•, b• ∈ (K)N taking its values inK ∈ {R>0,Q,Z, . . . }
we write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b• is monotonically, respectively, non-decreasing
and non-increasing. If in addition an →∞ and bn → 0 as n→∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. �

§05|01.07 Property. If t• ∈ (R>0)N↘ is monotonically non-increasing, then for all m ∈ N we have

‖t−1
• 1

m
• ‖−1

`∞
= min

{
tj : j ∈ JmK

}
> sup

{
tj : j ∈ N>m

}
= ‖t•1m|⊥• ‖`∞ = t(m),

and hence 1 > t(m)‖t−1
• 1

m
• ‖`∞ = ‖t•1m|⊥• ‖`∞‖t

−1
• 1

m
• ‖`∞ . �

§05|01.08 Link condition. Given weights t• ∈ R
N

>0 ∩ `∞ an operator T•|• ∈ L
>
•|•(`2) satisfies a link condition if

there is d ∈ R>1 such that

T•|• ∈ T
	
t,d :=

{
A•|• ∈ L

>
•|•(`2): d−1‖a•‖t 6 ‖T•|•a•‖`2 6 d‖a•‖t for all a• ∈ `2

}
and we set Tt,d :=

{
A•|• ∈ L•|•(`2): (A?•|•A•|•)

1/2 ∈ T
	
t,d

}
.
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§05|01.09 Remark. Note that t• ∈ R
N

>0 ∩ `∞ for each A•|• ∈ T 	
t,d implies ker(A•|•) = {0•}, i.e. A•|• is injective

and hence strictly positive definite. We shall emphasise that for T•|• ∈ L•|•(`2) the condition T•|• ∈
Tt,d is equivalent to

d
−1‖a•‖t 6 ‖T•|•a•‖`2 6 d‖a•‖t for all a• ∈ `2. (05.01)

Observe further that Ms ∈ LM(`2) satisfies the link condition Ms ∈ Tt,d as in Definition §05|01.08 if
and only if |s•| 6 dt• ∧ t• 6 d|s•| (νN-a.e.), i.e. Ms ∈ Mt,d as in Definition §04|03.05. Thereby, we
have Mt,d ⊆ Tt,d. We shall emphasise, that there are operators satisfying the link condition T 	

t,d

which do not belong to Mt,d, i.e., they are non-diagonal. Let us briefly give a construction of one
of those. We consider a small perturbation of Mt, that is, T•|• = Mt + MtA•|•Mt where A•|• ∈ L

>
•|•(`2)

is a positive definite operator with spectral norm c := ‖MtA•|•‖L(`2)
< 1. Obviously, T•|• is strictly

positive definite, and ‖T•|•a•‖`2 6 ‖id`2 + MtA•|•‖L(`2)
‖Mta•‖`2 6 (1 + c)‖a•‖t. On the other hand,

we have ‖(id`2 + MtA•|•)
−1‖

L(`2)
= 1

1−‖MtA•|•‖L(`2)
= 1

1−c by the Neumann series argument ??, which

in turn implies ‖a•‖t = ‖Mta•‖`2 = ‖(id`2 + MtA•|•)
−1‖

L(`2)
‖T•|•a•‖`2 6

1
1−c‖T•|•a•‖`2 . Combining

both bounds the operator T•|• satisfies the link condition T•|• ∈ T 	
t,d for all d > max(1 + c, 1

1−c)
and is obviously not a multiplication operator, i.e. diagonal. �

§05|01.10 Property. If T•|• ∈ T 	
t,d with t• ∈ R

N

>0 ∩ `∞ and d ∈ R>1 then for all s ∈ [−1, 1] we have

(inequality of Heinz [1951]) d−|s|‖a•‖ts 6 ‖T
s

•|•a•‖`2 6 d|s|‖a•‖ts for all a• ∈ dom(Mts). �

§05|01.11 Comment. Given T•|• ∈ T 	
t,d we have ker(T•|•) = {0•} = ker(T?

•|•) and on ran(T•|•) = dom(T†•|•)

(which is dense in `2) we have T−1

•|• = T†•|•. Similarly, for each s ∈ R>0 on ran(Ts

•|•) = dom(Ts|†
•|• ) we

have T−s•|• = Ts|†
•|• = (Ts

•|•)
†. �

§05|01.12 Notation. Given weights a• ∈ R
N

>0 ∩ `∞ introduce `a
2

:= `2(a
−2
• ) := L2

(a−2
• νN) = `2a• = ran(Ma) =

Ja ⊆ `2 = J endowed with ‖·‖a−1 := ‖Ma−1·‖`2 (as in Property §04|01.02). We assume in the
following that θ• ∈ `2 satisfies an abstract smoothness condition (Definition §04|02.12), i.e., there
is r ∈ R>0 such that θ• ∈ `a,r2

:= Ja,r =
{
h• ∈ `a2 : ‖h•‖a−1 6 r

}
⊆ `a

2
⊆ `2. �

§05|01.13 Source condition. Given T•|• ∈ L•|•(`2), the solution θ• ∈ `2 satisfies a source condition, if there is
s ∈ R>0 such that θ• ∈ ran((T?

•|•T•|•)
s/2), that is, θ• = (T?

•|•T•|•)
s/2a• for some a• ∈ `2. �

§05|01.14 Corollary. For a, t ∈ R>0 and v• ∈ R
N

>0 ∩ `∞ set t• := vt
• , a• := va

• ∈ R
N

>0 ∩ `∞. Consider `a•
2

= `2a•
and assume that T•|• ∈ T 	

t,d. If a 6 t then (i) for any θ• ∈ `a
2

we have θ• = Ta/t

•|• h• with
‖h•‖`2 6 da/t‖θ•‖a−1 , and conversely (ii) for any θ• = Ta/t

•|• h• with h• ∈ `2 we obtain θ• ∈ `a2 with
‖θ•‖a−1 6 da/t‖h•‖`2 .

§05|01.15 Proof of Corollary §05|01.14. Given in the lecture. �

§05|01.16 Comment. Under the assumptions of Corollary §05|01.14 if T•|• ∈ Tt,d and a 6 t then (i) for
any θ• ∈ `a

2
we have θ• = (T?

•|•T•|•)
a/(2t)h• with ‖h•‖`2 6 da/t‖θ•‖a−1 , and conversely (ii) for any

θ• = (T?

•|•T•|•)
a/(2t)h• with h• ∈ `2 we obtain θ• ∈ `a2 with ‖θ•‖a−1 6 da/t‖h•‖`2 . �

§05|01.17 Corollary. Given d, r ∈ R>0 and t•, a• ∈ R
N

>0 ∩ `∞ set (ta)• := t•a• ∈ R
N

>0 ∩ `∞. If T•|• ∈ Tt,d and
θ• ∈ `a,r2

, then we have g
•
= T•|•θ• ∈ `

(ta),dr

2
.

§05|01.18 Proof of Corollary §05|01.17. Given in the lecture. �

§05|01.19 Remark. Keeping the orthonormal basis (1{j}• )j∈N in `2 in mind (Notation §01|04.02) each Me ∈
LM(`2) with e• ∈ `∞ is self-adjoint with eigensystem ((ej ,1

{j}
• ))j∈N. Indeed, for all j ∈ N we have
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Me1
{j}
• = ej1

{j}
• . Recall that K(`2) denotes the subset of L(`2) containing all compact operators. If

A•|• ∈ K(`2) is compact and in addition self-adjoint, then A•|• admits an eigensystem ((ej , ej))j∈N
where e• ∈ `∞ contains each eigenvalue of A•|• repeated according to its multiplicity (with zero
as only accumulation point) and e• = (ej)j∈N is the associated eigenbasis. We denote by K

	
(`2)

the subset of L	(`2) containing all compact operators. If A•|• ∈ K
	
(`2) then we have e• ∈ (R>0)N↓0

(possibly after a reordering). �

§05|01.20 Lemma. Consider as in Definition §05|01.08 a link condition T 	
t,d with t• ∈ (R>0)N↘ . Let the oper-

ator T•|• ∈ K
	
(`2) admit ((ej , ej))j∈N as eigensystem where e• ∈ (R>0)N↘ contains each eigenvalue

of T•|• repeated according to its multiplicity and the associated eigenbasis e• = (ej)j∈N does
eventually not correspond to the ONB (1{j}• )j∈N. If T•|• ∈ T 	

t,d, then we have d−1 6 ej/tj 6 d for
all j ∈ N.

§05|01.21 Proof of Lemma §05|01.20. Given in the lecture. �

§05|01.22 Lemma. Consider the link condition T•|• ∈ T 	
t,d as in Definition §05|01.08 with t• ∈ (R>0)N↘ . For

all m ∈ N and s ∈ [0, 1] we have (i) ts(m)‖[T•|•]
−s
m
‖

spec
6
(
d(d + 2)

)
s 6

(
3d2
)
s,

(ii) ‖[T•|•]
−s
m

[Mt]
s
m‖spec

6
(
d(d + 2)

)
s 6

(
3d2
)
s and (iii) ‖[T•|•]

s

m
[Mt]

−s
m ‖spec

6 ds.

§05|01.23 Proof of Lemma §05|01.22. Given in the lecture. �

§05|01|01 Global and maximal global v-error

We shall measure first globally the accuracy of the Galerkin solution θm• ∈ `21
m
• of θ• = T†•|•g• ∈ `2.

§05|01.24 Property (Global v-error). Consider v• ∈ (R>0)N, T•|• ∈ L
	
•|•(`2) and g

•
∈ dom(T†•|•) = ran(T•|•) ⊆ `2

and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. Given m ∈ N we have v2
• 1

m
• ∈ `∞ and hence `21

m
• ⊆ `2(v

2
• ).

Consequently, denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a Galerkin solution we have θm• ∈ `2(v

2
• ) with

‖θm• ‖v 6 ‖[Mv•
]m[T•|•]

−1

m
‖

spec
‖[g

•
]
m
‖ ∈ R>0.

If CT := sup
{
‖Mv•

Tm|†
•|• T•|•M1m|⊥

‖
L(`2)

: m ∈ N
}
∈ R>0 then

‖θm• − θ•‖v 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
‖θj• − θ•‖v: j ∈ Jm,∞M

}
= o(1) as m →∞. �

§05|01.25 Notation (Reminder §04|02.08). For w• ∈ `∞ we set w2
(0) := ‖w2

• ‖`∞ and w2
(•) = (w2

(j) := ‖w2
• 1

j |⊥
• ‖`∞)j∈N,

where by construction w2
(j) = sup

{
w2
i : i ∈ N>j

}
, j ∈ Z>0 and w2

(•) ∈ (R>0)N↘ . Evidently, if in ad-
dition w2

• ∈ (R>0)N↘ then we have w2
(•) = (w2

(j) = w2
j+1)j∈N. �

§05|01.26 Assumption. Consider weights t•, a• ∈ (R>0)N↘ and v• ∈ (R\0)
N such that (av)• := a•v• ∈ `∞ and

(t/v)• = t•v
−1
• ∈ `∞ are satisfied. In addition there exists C(t/v) ∈ (0, 1] such that for all m ∈ N

(t/v)2
(m−1) > min

{
(t/v)2

j : j ∈ JmK
}
> C(t/v)(t/v)2

(m) (05.02)

or in equal C(t/v)‖(t/v)−2
• 1

m
• ‖`∞ 6 (t/v)−2

(m). �

§05|01.27 Reminder. Under Assumption §05|01.26 we have Ja = `a
2

= dom(Ma†) = `2a• = `2(a
−2
• ) and the

three measures ν
N
, a−2

• νN and v2
• νN dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). Consequently, since (av)• ∈ `∞ and

‖h•‖v = ‖(av)•a
−1
• h•‖`2 6 ‖(av)•‖`∞‖h•‖a−1 ∈ R>0 for each h• ∈ `a2
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we have `a
2
⊆ `2(v

2
• ). Moreover, since t•, a• ∈ (R>0)N↘ for each s ∈ [0, 1] we have t1−s• , ts• ∈ (R>0)N↘

and (ats)• = a•t
s
• ∈ (R>0)N↘ . We note further if in addition (t/v)• ∈ (R>0)N↘ is satisfied, then

Assumption §05|01.26 (05.02) is fulfilled with C(t/v) = 1 due to Property §05|01.07. �

§05|01.28 Lemma (Maximal global v-error). Let Assumption §05|01.26, T•|• ∈ T 	
t,d, g• ∈ dom(T†•|•) = ran(T•|•) ⊆

`2 and θ• = T†•|•g• = T−1

•|• g• ∈ `
a•,r

2
be satisfied. Given m ∈ N denoting by θm• = Tm|†

•|• g• ∈ `21
m
• a

Galerkin solution for any s ∈ [0, 1] we obtain

‖θ• − θm• ‖2

v
6 (9d

6
C
−2

(t/v) + 1) (av)2
(m)‖1m|⊥• θ•‖2

a−1 , ‖θm• ‖a−1 6 3d
3 ‖θ•‖a−1 , and

‖Ts

•|•(θ• − θ
m
• )‖2

`2
6 (9d

6
+ 1)d

2s
(ats)2(m)‖1m|⊥• θ•‖2

a−1 . (05.03)

§05|01.29 Proof of Lemma §05|01.28. Given in the lecture. �

§05|01|02 Global and maximal global φ-error

Secondly we measure locally the accuracy of the Galerkin solution θm• ∈ `21
m
• of θ• = T†•|•g• ∈ `2.

§05|01.30 Reminder. Given φ
•
∈ RN\0 for dom(φν

N
) := {h• ∈ `2 : φ

•
h• ∈ `1} we consider as in Nota-

tion §04|02.16 the linear functional φν
N

: `2 ⊇ dom(φν
N
)→ R defined by

h• 7→ φν
N
(h•) := ν

N
(φ
•
h•) =

∑
j∈N

φ
j
hj.

For each θ• ∈ dom(φν
N
) and m ∈ N by Property §04|02.18 we have θ•1m• ∈ dom(φν

N
) with

|φν
N
(θ• − θ•1m• )| 6 |φ

•
|ν
N
(|θ•|1m|⊥• ) 6 ν

N
(|φ

•
θ•|) ∈ R>0,

and |φν
N
(θ• − θ•1m• )||φν(θ•)− φν(θm• )| = o(1) as m →∞ by dominated convergence. �

§05|01.31 Property (Local φ-error). Consider φ
•
∈ RN\0, T•|• ∈ L	(`2) and g

•
∈ dom(T†•|•) = ran(T•|•) ⊆ `2 and

hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. Given m ∈ N we have φ2

•
1m• ∈ `2 and hence `21

m
• ⊆ dom(φν

N
).

Consequently, denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a Galerkin solution we have θm• ∈ dom(φν

N
) with

‖φ
•
θ
m
• ‖`1 6 ‖[T•|•]

−1

m
[φ
•
]
m
‖‖[g

•
]
m
‖ ∈ R>0.

If CT := sup
{
‖M

1m|⊥
T•|•T

m|†
•|• φ•‖`2 : m ∈ N

}
∈ R>0 then

|φν
N
(θ

m
• − θ•)| 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
|φν

N
(θj• − θ•)|: j ∈ Jm,∞M

}
= o(1) as m →∞. �

§05|01.32 Assumption. Let t•, a• ∈ (R>0)N↘ and φ
•
∈ RN\0 such that (at)• ∈ (R>0)N↓0 and (aφ)• ∈ `2. �

§05|01.33 Reminder. Under Assumption §05|01.32 we have Ja = `a
2

= dom(Ma†) = `2a• = `2(a
−2
• ) and the

three measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null
sets (see Property §04|01.02). Consequently, since (aφ)• ∈ `2 and (Property §04|02.23)

‖φ
•
h•‖`1 = ν

N
(|h•a−1

• (aφ)•|) 6 ‖(aφ)•‖`2‖h•‖a−1 ∈ R>0 for each h• ∈ `a2

we have `a
2
⊆ dom(φν

N
). Moreover, from (aφ)• ∈ `2 follows ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1)

as m → ∞. For s ∈ [0, 1] from (ats)• = a•t
s
• ∈ (R>0)N↘ follows (ats)(•) = ((ats)(m) := (ats)m+1 =

‖(ats)•1m|⊥• ‖`∞)m∈N ∈ (R>0)N↘ . �
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§05|01.34 Lemma (Maximal local φ-error). Let Assumption §05|01.32, T•|• ∈ T 	
t,d, g• ∈ dom(T†•|•) = ran(T•|•) ⊆

`2 and θ• = T†•|•g• = T−1

•|• g• ∈ `
a•,r

2
be satisfied. Given m ∈ N denoting by θm• = Tm|†

•|• g• ∈ `21
m
• a

Galerkin solution for any s ∈ [0, 1] we obtain

|φν
N
(θ

m
• − θ•)|2 6 3d

3
(3d

3
+ 1)‖1m|⊥• θ•‖2

a−1

(
‖a•1m|⊥• ‖2

φ
+ (ats)2(m)‖t−s• 1m• ‖2

φ

)
. (05.04)

§05|01.35 Proof of Lemma §05|01.34. Given in the lecture. �

§05|01.36 Lemma. For each m ∈ N denote bias2
m

:= ‖a•1m|⊥• ‖2
φ

+ (ats)2(m)‖t−s• 1m• ‖2
φ
. If (aφ)• ∈ `2 and

(ats)• ∈ (R>0)N↓0 then it follows bias2
• ∈ (R>0)N↓0 .

§05|01.37 Proof of Lemma §05|01.36. Given in the lecture. �

§05|02 Generalised linear Galerkin approach

§05|02.01 Generalised linear Galerkin approach. Given T•|• ∈ L(`2) and g
•
∈ `2 any element θm• ∈ `21

m
•

satisfying Tm

•|•θ
m
• = 1m• g•, i.e., [T•|•]m[θm• ]m = [g

•
]m, is called a generalised Galerkin solution. �

§05|02.02 Notation. We denote by LR(`2) the subset of all injective A•|• ∈ L(`2) such that [A•|•]m ∈ R
(m,m)

is regular for all m ∈ N. For each m ∈ N and A•|• ∈ LR(`2), the inverse [A•|•]
−1
m ∈ R

(m,m) of
[A•|•]m ∈ R

(m,m) exists. Note that L	(`2) ⊆ LR(`2) (Lemma §05|01.22). �

§05|02.03 Assumption. For J = `2, surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2) fixed and
presumed to be known in advance, the operator T ∈ L(H,G) satisfies T•|• = VTU? ∈ LR(`2) ⊆
L(`2) = L•|•(`2). Let g

•
∈ dom(T†•|•) = ran(T•|•), and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. �

§05|02.04 Remark. We consider a generalised linear Galerkin approach under Assumption §05|02.03, i.e.
[T•|•]m is assumed to be regular for each m ∈ N, so that [T•|•]

−1

m
always exists. We shall emphasise

that it is a non-trivial problem to determine when such an assumption holds (cf. Efromovich
and Koltchinskii [2001] and references therein). However, if [T•|•]m is regular, then for each
g
•
∈ `2 the generalised Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• is by [θm• ]m = [T•|•]

−1

m
[g
•
]m uniquely

determined. �

§05|02.05 Generalised link condition. Given weights t• ∈ (R>0)N ∩ `∞ an operator T•|• ∈ LR(`2) satisfies a
generalised link condition if there exist D ∈ R>1 and d ∈ [1,D] such that

T•|• ∈ Tt,d,D :=
{

T•|• ∈ Tt,d ∩ LR
(`2): ‖[Mt]m[T•|•]

−1
m
‖
spec

= ‖[T?

•|•]
−1
m

[Mt]m‖spec 6 D for all m ∈ N
}
. �

§05|02.06 Remark. We shall emphasise that Tt,d,D contains the subset Mt,d of diagonal operator satisfy-
ing the link condition, i.e. Mt,d ⊆ Tt,d (see Remark §05|01.09). Indeed, any Mw ∈ Mt,d satisfies
‖[Mt]m[Mw]−1

m ‖spec
= ‖t•w−1

• 1
m
• ‖`∞ 6 d 6 D. Moreover, we have T 	

t,d ⊆ Tt,d,D whenever D > 3d2

due to Lemma §05|01.22 (ii). The link condition T•|• ∈ Tt,d or in equal (T?

•|•T•|•)
1/2 ∈ T 	

t,d does not
depend on an unitary V, i.e. V?V = idG , (or more generally surjective partial isometry with
ran(T) ⊆ ran(V

?
) implying T?V

?
VT = T?T) since for each T ∈ L(H,G) with VTU

?
= T•|•

we have T?

•|•T•|• = UT?V
?
VTU

?
= UT?TU

?. The general link condition Definition §05|02.05
however involves both surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2). It is worth
pointing out, that for each T ∈ L(H,G) and surjective partial isometry U ∈ L(H, `2) satisfying
(UT?TU

?
)1/2 ∈ T 	

t,d we can theoretically construct a surjective partial isometry V ∈ L(G, `2) such
that VTU? = T•|• ∈ L(`2) satisfies T•|•T

?

•|• = UT?TU? and T?

•|• = UT?V? ∈ T 	
t,d. Consequently,

from Lemma §05|01.22 (ii) it follows ‖[Mt]m[T•|•]
−1

m
‖

spec
= ‖[T?

•|•]
−1

m
[Mt]m‖spec

6 3d2 for each m ∈ N,
which implies T•|• ∈ Tt,d,D for all D > 3d2. The fundamental inequality of Heinz [1951] in
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Property §05|01.10 implies ‖(UT?TU
?
)−1/21{j}• ‖`2 6 dt−1

j ∈ R>0 for each j ∈ N. Thereby, the
sequence (UT?TU

?
)−1/21{j}• is an element of `2 and, hence vj := TU

?
(UT?TU

?
)−1/21{j}• , j ∈ N

belongs to G. Then it is easily checked that (vj)j∈N is an orthonormal sequence in G which de-
termines a surjective partial isometry V ∈ L(G, `2) (Notation §01|02.07). By construction we have
T?

•|• = UT?V
?

= UT?TU
?
(UT?TU

?
)−1/2 = (UT?TU

?
)1/2 ∈ L>(`2), hence T•|• = (UT?TU

?
)1/2 ∈

L>(`2), and thus T•|• ∈ T 	
t,d or in equal (T•|•T

?

•|•)
1/2 = (T?

•|•T•|•)
1/2 = (UT?TU

?
)1/2 ∈ T 	

t,d and
T•|• ∈ Tt,d. �

§05|02.07 Property. If T•|•,T
?

•|• ∈ Tt,d then also T•|• ∈ Tt,d,D for each D > 3d2.(!) �
(!) Wieso ??

§05|02|01 Global and maximal global v-error

We shall measure first globally the accuracy of the Galerkin solution θm• ∈ `21
m
• of θ• = T†•|•g• ∈ `2.

§05|02.08 Property (Global v-error). Consider v• ∈ (R>0)N, T•|• ∈ LR(`2) and g
•
∈ dom(T†•|•) = ran(T•|•) ⊆ `2

and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. Given m ∈ N we have v2
• 1

m
• ∈ `∞ and hence `21

m
• ⊆ `2(v

2
• ).

Consequently, denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a generalised Galerkin solution we have θm• ∈

`2(v
2
• ) with

‖θm• ‖`2(v•)
6 ‖[Mv•

]m[T•|•]
−1

m
‖

spec
‖[g

•
]
m
‖ ∈ R>0.

If CT := sup
{
‖MvT

m|†
•|• T•|•M1m|⊥

‖
L(`2)

: m ∈ N
}
∈ R>0 then

‖θm• − θ•‖v 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
‖θj• − θ•‖v: j ∈ N>m

}
= o(1) as m →∞. �

§05|02.09 Lemma (Maximal global v-error). Under Assumption §05|01.26 let T•|• ∈ Tt,d,D, g
•
∈ dom(T†•|•) =

ran(T•|•) ⊆ `2 and θ• = T†•|•g• = T−1

•|• g• ∈ `a•,r
2

. Given m ∈ N denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a

generalised Galerkin solution for any s ∈ [0, 1] we obtain

‖θ• − θm• ‖2

v
6 (D

2
d

2
C
−2

(t/v) + 1) (av)2
(m)‖1m|⊥• θ•‖2

a−1 , ‖θm• ‖a−1 6 Dd ‖θ•‖a−1 , and

‖Ts

•|•(θ• − θ
m
• )‖`2 6 (Dd + 1)d

s
(ats)(m)‖1m|⊥• θ•‖a−1 . (05.05)

§05|02.10 Proof of Lemma §05|02.09. Given in the lecture. �

§05|02|02 Global and maximal global φ-error

Secondly we measure locally the accuracy of the generalised Galerkin solution θm• ∈ `21
m
• of

θ• = T†•|•g• ∈ `2.

§05|02.11 Reminder. Given φ
•
∈ (R\0)

N for dom(φν
N
) := {h• ∈ `2 : φ

•
h• ∈ `1} we consider as in Nota-

tion §04|02.16 the linear functional φν
N

: `2 ⊇ dom(φν
N
)→ R defined by

h• 7→ φν
N
(h•) := ν

N
(φ
•
h•) =

∑
j∈N

φ
j
hj.

For each θ• ∈ dom(φν
N
) and m ∈ N by Property §04|02.18 we have θ•1m• ∈ dom(φν

N
) with

|φν
N
(θ• − θ•1m• )| 6 |φ

•
|ν
N
(|θ•|1m|⊥• ) 6 ν

N
(|φ

•
θ•|) ∈ R>0,

and |φν
N
(θ• − θ•1m• )||φν(θ•)− φν(θm• )| = o(1) as m →∞ by dominated convergence. �
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§05|02.12 Property (Local φ-error). Consider φ
•
∈ (R\0)

N, T•|• ∈ L	(`2) and g
•
∈ dom(T†•|•) = ran(T•|•) ⊆ `2

and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. Given m ∈ N we have φ2

•
1m• ∈ `2 and hence `21

m
• ⊆ dom(φν

N
).

Consequently, denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a Galerkin solution we have θm• ∈ dom(φν

N
) with

‖φ
•
θ
m
• ‖`1 6 ‖[T•|•]

−1

m
[φ
•
]
m
‖‖[g

•
]
m
‖ ∈ R>0.

If CT := sup
{
‖M

1m|⊥
T?

•|•(T
m|†
•|• )

?
φ
•
‖`2 : m ∈ N

}
∈ R>0 then

|φν
N
(θ

m
• − θ•)| 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
|φν

N
(θj• − θ•)|: j ∈ N>m

}
= o(1) as m →∞. �

§05|02.13 Reminder. Under Assumption §05|01.32 we have Ja = `a
2

= dom(Ma†) = `2a• = `2(a
−2
• ) and the

three measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null
sets (see Property §04|01.02). Consequently, since (aφ)• ∈ `2 and (Property §04|02.23)

‖φ
•
h•‖`1 = ν

N
(|h•a†•(aφ)•|) 6 ‖(aφ)•‖`2‖h•‖a−1 ∈ R>0 for each h• ∈ `a2

we have `a
2
⊆ dom(φν

N
). Moreover, from (aφ)• ∈ `2 follows ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1)

as m → ∞. For s ∈ [0, 1] from (ats)• = a•t
s
• ∈ (R>0)N↘ follows (ats)(•) = ((ats)(m) := (ats)m+1 =

‖(ats)•1m|⊥• ‖`∞)m∈N ∈ (R>0)N↘ . �

§05|02.14 Lemma (Maximal local φ-error). Under Assumption §05|01.32 let T ∈ Tt,d,D, g
•
∈ dom(T†•|•) =

ran(T•|•) ⊆ `2 and θ• = T†•|•g• = T−1

•|• g• ∈ `a•,r
2

. Given m ∈ N denoting by θm• = Tm|†
•|• g• ∈ `21

m
• a

generalised Galerkin solution for any s ∈ [0, 1] we obtain

|φν
N
(θ

m
• − θ•)|2 6 (1 + Dd)Dd‖1m|⊥• θ•‖2

a−1

(
‖a•1m|⊥• ‖2

φ
+ (ats)2(m)‖t−s• 1m• ‖2

φ

)
. (05.06)

§05|02.15 Proof of Lemma §05|02.14. Given in the lecture. �

§06 Spectral regularisation

§06|00.01 Notation. Consider the measure space (J ,J , ν) and the Hilbert space J = L2
(ν) as in Nota-

tion §01|01.01. We suppose that U ∈ L(H,J) and V ∈ L(G,J) are surjective partial isometries,
hence VV? = idJ = UU?. As in Definition §03|00.08 we denote for A := VTU? ∈ L(J) its
Moore-Penrose inverse by A† : J ⊇ dom(A†)→ J. �

§06|00.02 Comment. In case the operator T ∈ L(H,G) is fixed and presumed to be known in advance,
a spectral regularisation is formally not restricted to the diagonal or non-diagonal case as con-
sidered in Subsection §01|04 and Subsection §01|05, respectively. Consequently, we use in this
section the symbol A := VTU? ∈ L(J). However, in case of a noisy operator we will restrict
ourselves to the diagonal and non-diagonal case introduced in Definition §02|04.03 and Defini-
tion §02|02.03. �

§06|00.03 Assumption. For J = L2
(ν) let U ∈ L(H,J) and V ∈ L(G,J) be surjective partial isometries

fixed and presumed to be known in advance, let T ∈ L(H,G), hence A = VTU
? ∈ L(J) with

Moore-Penrose inverse A† : J ⊇ dom(A†)→ J and let g
•
∈ dom(A†), and hence θ• = A†g

•
∈ J. �

§06|00.04 Definition. A collection
{

R
α
∈ L(J): α ∈ (0, 1)

}
of operators is called regularisation of A† if for

any g
•
∈ dom(A†) holds ‖R

α
g
•
− A†g

•
‖
J
→ 0 as α → 0. �

§06|00.05 Remark. If A† is not bounded, then we have ‖R
α
‖
L(J)
→∞ as α → 0. However, for g

•
∈ dom(A†)

if (gn
•
)n∈N is a sequence in J such that ‖gn

•
−g

•
‖
J
6 n−1 for all n ∈ N, then there exists a sequence

(α
n
)n∈N in (0, 1) such that ‖R

αn
gn
•
− A†g

•
‖
J

= o(1) as n→∞. �
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§06|01 (Generalised) Tikhonov regularisation

§06|01.01 Definition. The collection
{

Aα|−1A? ∈ L(J): Aα|−1 := (A?A + αidJ)−1 ∈ L	(J), α ∈ (0, 1)
}

of operators
is called Tikhonov regularisation of A† : J ⊇ dom(A†)→ J. �

§06|01.02 Remark. Given A ∈ L(J) consider for each α ∈ (0, 1) the strictly positive definite operator
Aα = A?A + αidJ∈ L	(J) where

(‖A‖2

L(J)
+ α)‖h•‖2

J
> ‖Aα

h•‖J‖h•‖J > 〈A
α
h•, h•〉J > α‖h•‖2

J
∈ R>0 (06.01)

for any h• ∈ J\0 = J \ {0•} by applying the Cauchy-Schwarz inequality and, hence

inf
{
‖Aα

h•‖J : ‖h•‖J = 1, h• ∈ J
}
> α ∈ R>0. (06.02)

Using the last bound Aα ∈ L	(J) has a closed range ran(Aα). Indeed, if (Aαan• )j∈N converges, say
to g

•
∈ J, then (Aαhn•)j∈N is a Cauchy sequence and also (hn•)j∈N by (06.01). Since J is complete,

(hn•)j∈N converges, say to h• ∈ J. Since Aα is continuous, (Aαhn•)j∈N converges to Aαh• = g
•
.

In other words the range is closed. Since Aα ∈ L(`2) is injective with closed range it follows
ran(Aα) = ker(Aα)⊥ = J, which in turn implies Aα is invertible, and due to the open mapping
theorem with inverse Aα|−1 = (Aα)−1 ∈ L(J). Moreover, exploiting ran(Aα) = J and (06.02) we
have ‖Aα|−1‖

L(2)
6 α−1 since

‖Aα|−1‖
L(2)

= sup
{
‖Aα|−1

g
•
‖
J
: g
•
∈ J, ‖g

•
‖
J

= 1
}

= sup
{‖Aα|−1

g
•
‖
J

‖g
•
‖
J

: g
•
∈ J\0 = ran(Aα)\{0•}

}
= sup

{ ‖h•‖J
‖Aαh•‖J

: h• ∈ J\0

}
= sup

{
‖Aα

h•‖−1

J
: h• ∈ J, ‖h•‖J = 1

}
6 α−1.

Consequently, the collection
{

Aα|−1A? = (A?A + αidJ)−1A? ∈ L(J): α ∈ (0, 1)
}

is well-defined.
�

§06|01.03 Lemma. For each h• ∈ ker(A)⊥ holds ‖α(A?A + αidJ)−1h•‖J = o(1) as α → 0.

§06|01.04 Proof of Lemma §06|01.03. Given in the lecture. �

§06|01.05 Remark. Let g
•
∈ dom(A†), θ• = A†g

•
∈ J and θα• := Aα|−1A?g

•
∈ J we have

A
α
(θ• − θα• ) = A

?
AA

†
g
•
+ αθ• − A

α
A
α|−1

A
?
g
•
= A

?
g
•
+ αθ• − A

?
g
•
= αθ•,

and rewriting the last identity Aα|−1A?g
•
−A†g

•
= −αAα|−1θ•. Consequently, from Lemma §06|01.03

follows ‖Aα|−1A?g
•
−A†g

•
‖
J

= o(1) as α → 0 since θ• = A†g
•
∈ J. Thereby, the Tikhonov collection

as in Definition §06|01.01 is indeed a regularisation in the sense of Definition §06|00.04. �

§06|01.06 Lemma. For each C ∈ L(J) the following statements are equivalent:
(i) θα• minimises the generalised Tikhonov functional h• 7→ Fα(h•) := 1

2
‖g

•
−Ah•‖2

J
+ α

2
‖Ch•‖2

J

(ii) θα• is solution of the normal equation: A?g
•
= (A?A + αC?C)θα• .

§06|01.07 Proof of Lemma §06|01.06. Given in the lecture. �

§06|01.08 Remark. Observe that ker(A)∩ker(C) = ker(A?A + αC?C) which in turn implies, that the solution
of the generalised Tikhonov functional, if it exists, is unique if and only if ker(A)∩ker(C) = {0•}.
Recall that there exists a solution, for example, if (A?A + αC?C) has a continuous inverse. �
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§06|01.09 Corollary. Given the Tikhonov regularisation
{

Aα|−1A? = (A?A + αidJ)−1A? ∈ L(J): α ∈ (0, 1)
}

as in Definition §06|01.01 for each g
•
∈ J, θα• := Aα|−1A?g

•
∈ J is the unique minimiser in J of the

Tikhonov functional h• 7→ 1
2
‖g

•
− Ah•‖2

J
+ α

2
‖h•‖2

J
. �

§06|01.10 Proof of Corollary §06|01.09. Given in the lecture. �

§06|01.11 Definition. Given an operator C ∈ L(J) satisfying (gTR1) ran(C) is closed and (gTR2) there
exists c ∈ R>0 such that for any h• ∈ ker(C) it holds ‖Ah•‖J > c‖h•‖J , the collection{

gTR
α

:= (A
?
A + αC

?
C)−1A

? ∈ L(J): α ∈ (0, 1)
}

is called generalised Tikhonov regularisation of A†. �

§06|01.12 Remark. Assumption (gTR1) and (gTR2) ensure together that the generalised Tikhonov regu-
larisation is well-defined. More precisely, introduce inner products 〈·, ·〉∗ := 〈A·,A·〉

J
+〈C·,C·〉

J

and 〈·, ·〉
C

:= 〈·, ·〉
J

+ 〈C·,C·〉
J

on J with associated norms ‖·‖∗ and ‖·‖C. Since J is complete
with respect to both norms (due to (gTR1) and (gTR2)), it follows from ?? that ‖·‖∗ and ‖·‖C are
equivalent (keeping in mind that ‖h•‖2

∗ 6 max(‖A‖2
L(J)
, 1)‖h•‖2

C
). Consequently, there is K > 0

such that ‖h•‖∗ > K‖a•‖C and thus ‖Ah•‖2
J

+‖Ch•‖2
J
> K2(‖h•‖2

J
+‖Ch•‖2

J
). Exploiting the last

inequality we obtain ‖A?Ah• + αC?Ch•‖J > K2 min(1, α)‖h•‖J for any h• ∈ J. In analogy to
the arguments exploiting (06.01) in Remark §06|01.02, A?A +αC?C is injective with closed range
and, thus it has a continuous inverse, i.e., (A?A + αC?C)−1 ∈ L(J). Consequently, the gener-
alised Tikhonov regularisation

{
gTR

α
:= (A?A + αC?C)−1A? ∈ L(J): α ∈ (0, 1)

}
is well-defined.

Moreover, keeping in mind Lemma §06|01.06 θα• := gTR
α
g
•
∈ J is obviously a solution of the

normal equation, and thus the unique minimiser of the generalised Tikhonov functional. �

§06|01.13 Corollary. Consider the generalised Tikhonov regularisation as in Definition §06|01.11. For
each g

•
∈ J, θα• := gTR

α
g
•
= (A?A+αC?C)−1A?g

•
is the unique minimiser in J of the generalised

Tikhonov functional h• 7→ 1
2
‖g

•
− Ah•‖2

J
+ α

2
‖Ch•‖2

J
. �

§06|01.14 Proof of Corollary §06|01.13. Given in the lecture. �

§06|01.15 Remark. Introduce further the adjoint A?
∗ and C?

∗ of A and C, respectively, with respect to the
inner product 〈·, ·〉∗ introduced in Remark §06|01.12, i.e., 〈Ah•, g•〉J = 〈h•,A?

∗g•〉∗ and 〈Ch•, g•〉J =

〈h•,C?

∗ g•〉∗ for all h•, g• ∈ J. In particular, for each g
•
, h• ∈ J we have (a) A?

∗g• = (A?A +
C?C)−1A?g

•
, (b) C?

∗ g• = (A?A+C?C)−1C?g
•
and (c) (A?

∗A+C?

∗ C)h• = h• (i.e., A?
∗A+C?

∗ C = idJ).
We note that ker(A?

∗) = ker(A?) and ran(A?
∗) = ker(A)⊥∗ where ker(A)⊥∗ denotes the orthogonal

complement of ker(A) in (J, 〈·, ·〉∗). �

Consider the restriction of A as bijective map from ker(A)⊥∗ to ran(A) and denote its inverse
by A−1

∗ : ran(A) → ker(A)⊥∗ . Given the orthogonal projection Πran(A)
onto ran(A) its associated

Moore-Penrose inverse A†∗ (see Definition §03|00.08) defined on dom(A†∗) = ran(A)⊕ ran(A)⊥ =
dom(A†) is given by A†∗ := A−1

∗ Πran(A)
.

§06|01.16 Proposition. Consider the generalised Tikhonov regularisation
{

gTR
α
∈ L(J): α ∈ (0, 1)

}
as in

Definition §06|01.11. Under the conditions (gTR1) and (gTR2) of Definition §06|01.11 for g
•
∈ J

and θα• = gTR
α
g
•
= (A?A + αC?C)−1A?g

•
∈ J the following statements are equivalent:

(i) g
•
∈ dom(A†∗) = ran(A)⊕ ran(A)⊥ = dom(A†);

(ii) there is θ∗• ∈ J such that ‖θα• − θ∗• ‖∗ = o(1) as α → 0.
Moreover, under the equivalent conditions we have θ∗• = A†∗g•.
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§06|01.17 Proof of Proposition §06|01.16. Given in the lecture. �

§06|01.18 Remark. Due to Proposition §06|01.16 the generalised Tikhonov regularisation as in Defini-
tion §06|01.11 is indeed a regularisation in the sense of Definition §06|00.04. Moreover, we shall
emphasise that ‖θα• − θ∗• ‖∗ = o(1) if and only if ‖Aθα• −Aθ∗• ‖J = o(1) and ‖Cθα• −Cθ∗• ‖J = o(1),
which in turn implies ‖θα• −θ∗• ‖J = o(1). Keep further in mind that A?

∗g• = A?
∗Aθ• holds if and only

if A?g
•
= A?Aθ• is true, since A?A+C?C is continuously invertible. Thereby, for each g

•
∈ dom(A†)

the set of least squares solution A−1(Πran(A)
g
•
) satisfies A−1(Πran(A)

g
•
) =

{
h• ∈ J: A?Ah• = A?g

•

}
={

h• ∈ J: A?∗Ah• = A?∗g•

}
= {θ∗• } + ker(A) with θ∗• = A†∗g•. Each θ• ∈ A−1(Πran(A)

g
•
) can thus be writ-

ten as θ• = θ∗• + h• for some h• ∈ ker(A) with θ∗• ∈ ker(A)⊥∗ , and hence, Aθ• = Aθ∗• and ‖θ∗• ‖2
∗ 6

‖θ∗• ‖2
∗ + ‖h•‖2

∗ = ‖θ•‖2
∗ , which together implies ‖Cθ∗• ‖2

J
6 ‖Cθ•‖2

J
for any θ• ∈ A−1(Πran(A)

g
•
). In

other words, θ∗• is the unique least squares solution with minimal ‖C·‖
J
-norm. �

§06|02 Spectral regularisation

§06|02.01 Definition. For A ∈ L(J) let {r
α
, α ∈ (0, 1)} be a collection of real-valued Borel-measurable

functions defined on [0, ‖A‖2
L(J)

]. The collection
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of opera-

tors is called spectral regularisation of A† : J ⊇ dom(A†)→ J if
(sR1) for all α ∈ (0, 1) there exists Cα ∈ R>0 such that |r

α
(x)| 6 Cα for all x ∈ [0, ‖A‖2

L(J)
],

(sR2) for all x ∈ (0, ‖A‖2
L(J)

] holds |1− xr
α
(x)| = o(1) as α → 0, and

(sR3) there is K ∈ R>0 such that |xr
α
(x)| 6 K for all x ∈ [0, ‖A‖2

L(J)
] and α ∈ (0, 1). �

§06|02.02 Proposition. For A ∈ L(J) a spectral regularisation
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
as in

Definition §06|02.01 is a regularisation in the sense of Definition §06|00.04.

§06|02.03 Proof of Proposition §06|02.02. Given in the lecture. �

§06|02.04 Remark. We shall emphasise that under (sR3) for any g
•
6∈ dom(A†) it can be shown that

‖R
α
g
•
‖
J

= ‖r
α
(A?A)A?g

•
‖
J
→∞ as α → 0 (Engl et al. [2000], Theorem 4.1, p. 72). �

§06|02|01 Maximal global v-error

Given A ∈ L(J) and a spectral regularisation
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of A† : J ⊇

dom(A†)→ J as in Definition §06|02.01 for g
•
∈ dom(A†) and α ∈ (0, 1) we shall measure globally

the accuracy of the approximation θα• := R
α
g
•
= r

α
(A?A)A?g

•
∈ J of θ• := A†g

•
∈ J.

§06|02.05 Source condition. Given A ∈ L(J) and g
•
∈ dom(A†), the solution θ• = A†g

•
∈ J satisfies a source

condition, if there is s ∈ R>0 such that θ• ∈ ran((A?A)s/2), i.e. θ• = (A?A)s/2h• for h• ∈ J. �

§06|02.06 Proposition. Given A ∈ L(J) let
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a spectral regularisa-

tion of A† : J ⊇ dom(A†) → J as in Definition §06|02.01. Assume Definition §06|02.01 (sR1), and
(sR3), and in addition replace (sR2) by
(sR2a) there is s◦ ∈ R>1 such that for all s ∈ [0, s◦] there is a constant Cs ∈ R>0 satisfying

sup
{
xs|1− xr

α
(x)|: x ∈ [0, ‖A‖2

L(J)
]
}
6 Csα

s ∀α ∈ (0, 1).

For g
•
∈ dom(A†) and α ∈ (0, 1) consider θα• = R

α
g
•

= r
α
(A?A)A?g

•
∈ J and θ• := A†g

•
∈ J. If

there are s ∈ [0, 2s◦] and h• ∈ J such that θ• = (A?A)s/2h• (i.e. θ• ∈ ran((A?A)s/2) satisfies a source
condition as in Definition §06|02.05), then we have

‖θα• − θ•‖J 6 Cs/2α
s/2‖h•‖J ∀α ∈ (0, 1). (06.03)
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§06|02.07 Proof of Proposition §06|02.06. Given in the lecture. �

§06|02.08 Link condition. Given weights t• ∈ M>0
(J ) ∩ L∞(ν) an operator A ∈ L>(J) satisfies a link

condition if there is d ∈ R>1 such that

A ∈ T
	
t,d :=

{
T ∈ L>(J): d−1‖a•‖t 6 ‖Ta•‖J 6 d‖a•‖t for all a• ∈ J

}
and we set Tt,d :=

{
T ∈ L(J): (T?T)1/2 ∈ T

	
t,d

}
. �

§06|02.09 Property. If A ∈ T 	
t,d with t• ∈M>0

(J ) ∩ L∞(ν) and d ∈ R>1 then for all s ∈ [−1, 1] we have

(inequality of Heinz [1951]) d−|s|‖a•‖ts 6 ‖A
sa•‖J 6 d|s|‖a•‖ts for all a• ∈ dom(Mts). �

§06|02.10 Comment. Given A ∈ T 	
t,d we have ker(A) = {0•} and on ran(A) (which is dense in J) we have

A−1 = A†. Similarly, for each s ∈ R>0 on ran(As) we have A−s = As|† = (As)†. �

§06|02.11 Assumption. Consider v• ∈M>0,ν
(J )∩L∞(ν), and for t ∈ R>0, a ∈ (0, t] set t• := vt

• and a• := va
•

where t•, a• ∈M>0,ν
(J ) ∩ L∞(ν) and hence ν(Nv) = ν(Na) = ν(Nt ) = 0. �

§06|02.12 Reminder. Under Assumption §06|02.11 we have Ja = La
2
(ν) = dom(Ma−1) = Ja• = L2

(a−2
• ν) and

the measures ν , v2
• ν , t2•ν and a−2

• ν dominate mutually each other (see Property §04|01.02). Conse-
quently, Ja ⊆ J = L2

(ν) and Ja ⊆ L2
(v2
• ν) (Property §04|02.11) since (av)• = v1+a

• ∈ L∞(ν). We as-
sume in the following that θ• ∈ J satisfies an abstract smoothness condition (Definition §04|02.12),
i.e., there is r ∈ R>0 such that θ• ∈ Ja,r = {h• ∈ Ja : ‖h•‖a−1 6 r} ⊆ Ja ⊆ J. Under Assump-
tion §06|02.11 by Corollary §05|01.14 (see Comment §05|01.16) if A ∈ Tt,d (or in equal (A?A)1/2 ∈
T 	

t,d) then (i) for any θ• ∈ Ja we have θ• = (A?A)a/(2t)h• with ‖h•‖J 6 da/t‖θ•‖a−1 , and conversely
(ii) for any θ• = (A?A)a/(2t)h• with h• ∈ L2

(ν) we obtain θ• ∈ Ja with ‖θ•‖a−1 6 da/t‖h•‖J . �

§06|02.13 Corollary. Let Assumption §06|02.11 with (ta)• = vt+a
• ∈ M>0,ν

(J ) ∩ L∞(ν) and d, r ∈ R>0 be
satisfied. If A ∈ Tt,d and θ• ∈ Ja,r , then we have g

•
= Aθ• ∈ J(ta),dr .

§06|02.14 Proof of Corollary §06|02.13. Given in the lecture. �

§06|02.15 Proposition. Given A ∈ L(J) let
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a spectral regulari-

sation of A† : J ⊇ dom(A†) → J as in Definition §06|02.01. Assume (sR1), (sR2), and (sR3)
(Definition §06|02.01) and (sR2a) (Proposition §06|02.06). For g

•
∈ dom(A†) and α ∈ (0, 1) con-

sider θα• = R
α
g
•

= r
α
(A?A)A?g

•
∈ J and θ• := A†g

•
∈ J. Under Assumption §06|02.11 if T ∈ Tt,d

(link condition as in Definition §06|02.08) and θ• ∈ Ja,r (abstract smoothness condition as in
Definition §04|02.12), then for any q ∈ [−a, t] we have

‖θα• − θ•‖vq 6 C(q+a)/(2t) d
(a+|q|)/t

r α(a+q)/(2t), ∀α ∈ (0, 1). (06.04)

§06|02.16 Proof of Proof §06|02.16. Given in the lecture. �

§06|02.17 Remark. Let us briefly comment on the Assumption §06|02.11 imposed in Proposition §06|02.15.
We set θ0

• := θ• and write
{
θα• : α ∈ [0, 1)

}
= {θ•} ∪

{
θα• = R

α
Aθ• = r

α
(A?A)A?Aθ•: α ∈ (0, 1)

}
,

shortly. Note that, under q > −a the global vq-error is well-defined on Ja since
{
θα• : α ∈ [0, 1)

}
⊆

L2
(v2qν) for all θ• ∈ Ja. Moreover, the additional condition q 6 t together with a 6 t allows us to

apply the inequality of Heinz [1951] Property §06|02.09. We can dismiss those upper bounds, if
A and Mv commute. However, if A and Mv do not commute, then the smallest upper bound of
the global approximation bias is up to a constant α since (a+ q)/(2t) ∈ [0, 1]. �

§06|02.18 Example. Let us discuss certain spectral regularisations satisfying (sR1), (sR2a) and (sR3).
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(a) Tikhonov regularisation as defined in §06|01.01 is given by x 7→ r
α
(x) = (x + α)−1 and

satisfies (sR1) and (sR3) with Cα = α−1 and K = 1, and (sR2a) with s◦ = 1 and Cs =
ss(1− s)1−s.

(b) Spectral cut-off given by the piecewise continuous function x 7→ r
α
(x) = 1

x
1[α,∞)(x) satisfies

(sR1) and (sR3) with Cα = α−1 and K = 1, and (sR2a) with s◦ =∞ and Cs = 1.

(c) A special iterative regularisation is the Landweber iteration. This method is based on a
transformation of the normal equation into an equivalent fixed point equation θ• = θ• +
ωA?(g

•
−Aθ•) with ω ∈ (0, ‖A‖−2

L(J)
]. Then the corresponding fixed point operator idJ−ωA?A

is non-expansive and θ• may be approximated by θm• determined by θj• := θj−1
• + ωA?(g

•
−

Aθj−1
• ), j ∈ JmK, and θ0

• := 0. Note, that without loss of generality, we can assume ‖A‖
L(J)
6

1 and drop the parameter ω. By induction the iterate θm• can be expressed non-recursively
through θm• =

∑
j∈JmK (idJ − A?A)j−1A?g

•
and thus x 7→ r

1/m
(x) =

∑
j∈JmK (1− x)j−1 where

1−xr
1/m

(x) = (1− x)m . Under the assumption ‖A‖
L(J)
6 1, the Landweber iteration is thus

a spectral regularisation with α = 1/m satisfying (sR1) and (sR3) with Cα = α−1 and K = 1.
Moreover, (sR2a) holds with s◦ =∞ and Cs = sse−s. �

§06|02.19 Notation. Given A ∈ L>(J), i.e., A is positive definite, we eventually consider a spectral regular-
isation

{
R
α

:= r
α
(A) ∈ L(J): α ∈ (0, 1)

}
of A† for a given collection

{
r
α
: α ∈ (0, 1)

}
of real-valued

Borel-measurable functions defined on [0, ‖A‖
L(J)

] satisfying
(sR1’) for all α ∈ (0, 1) there exists Cα ∈ R>0 such that |r

α
(x)| 6 Cα for all x ∈ [0, ‖A‖

L(J)
],

(sR2’a) there are s◦ ∈ [1,∞) and Cs ∈ R>0 for all s ∈ [0, s◦] such that xs|1 − xr
α
(x)| 6 Csα

s for
all x ∈ [0, ‖A‖

L(J)
] and α ∈ (0, 1),

(sR3’) there is K ∈ R>0 such that |xr
α
(x)| 6 K for all x ∈ [0, ‖A‖

L(J)
] and α ∈ (0, 1).

We shall measure in the sequel the accuracy of the approximation θα• = R
α
g
•

= r
α
(A)g

•
∈ J

of θ• := A†g
•
∈ J for g

•
∈ dom(A†), by its global approximation error. For convenient no-

tation we eventually use the notation θ0
• := θ• and write and write

{
θα• : α ∈ [0, 1)

}
= {θ•} ∪{

θα• = R
α
Aθ• = r

α
(A)Aθ•: α ∈ (0, 1)

}
. �

§06|02.20 Proposition. Given A ∈ L>(J) let
{

R
α

= r
α
(A) ∈ L>(J): α ∈ (0, 1)

}
be a spectral regularisation

of A† satisfying (sR1’), (sR2’a) and (sR3’) in Notation §06|02.19. For g
•
∈ dom(A†) and α ∈ (0, 1)

consider θα• = R
α
g
•
= r

α
(A)g

•
∈ J and θ• := A†g

•
∈ J.

(i) If there are s ∈ [0, s◦] and h• ∈ J such that θ• = Ash• (i.e. θ• ∈ ran(As) satisfies a source
condition as in Definition §06|02.05), then we have

‖θα• − θ•‖J 6 Csα
s‖h•‖J ∀α ∈ (0, 1). (06.05)

(ii) Under Assumption §06|02.11 if T ∈ T 	
t,d (link condition as in Definition §06|02.08) and θ• ∈

Ja,r (abstract smoothness condition as in Definition §04|02.12), then for any q ∈ [−a, t ∧
(ts◦ − a)] we have

‖θα• − θ•‖vq 6 C(q+a)/t d
(a+|q|)/t

r α(a+q)/t ∀α ∈ (0, 1). (06.06)

§06|02.21 Proof of Proposition §06|02.20. Given in the lecture. �

§06|02.22 Remark. If (sR2’a) is satisfied for some s◦ > 2 (excluding the Tikhonov regularisation as dis-
cussed in Example §06|02.18 (a)) then (06.06) in Proposition §06|02.20 (ii) holds for any q ∈
[−a, t] as in Proposition §06|02.15. �
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§06|02|02 Maximal local φ-error

Given A ∈ L(J) and a spectral regularisation
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of A† : J ⊇

dom(A†)→ J as in Definition §06|02.01 for g
•
∈ dom(A†) and α ∈ (0, 1) we shall measure locally

the accuracy of the approximation θα• := R
α
g
•
= r

α
(A?A)A?g

•
∈ J of θ• := A†g

•
∈ J.

§06|02.23 Reminder. For φ
•
∈ M6=0,ν

(J ) and dom(φν) :=
{
h• ∈ J = L2

(ν): φ
•
h• ∈ L1(ν)

}
we consider the

linear functional φν : J ⊇ dom(φν) → R given by h• 7→ φν(h•) := ν(φ
•
h•) with a slight abuse

of notations. Under Assumption §06|02.11 we have Ja = La
2
(ν) = dom(Ma−1) = Ja• = L2

(a−2
• ν) and

the measures ν , v2
• ν , φ2

•
ν , t2•ν and a−2

• ν dominate mutually each other (see Property §04|01.02).
Consequently, Ja ⊆ J = L2

(ν) and Ja ⊆ L2
(v2
• ν) (Property §04|02.11) since (av)• = v1+a

• ∈
L∞(ν). We assume in the following that θ• ∈ Ja,r and A ∈ Tt,d satisfies, respectively, an abstract
smoothness condition (Definition §04|02.12) and link condition (Definition §06|02.08). Under
Assumption §06|02.11 due to Proposition §06|02.15 we have θα• − θ• ∈ L2

(v2q
• ν), and thus if in

addition v−q• ∈ L2
(φ2

•
ν) also θα• − θ• ∈ dom(φν). �

§06|02.24 Proposition. Given A ∈ L(J) let
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a spectral regular-

isation of A† : J ⊇ dom(A†) → J as in Definition §06|02.01. Assume (sR1), (sR3) (Defini-
tion §06|02.01) and (sR2a) (Proposition §06|02.06). For g

•
∈ dom(A†) and α ∈ (0, 1) consider

θα• = R
α
g
•

= r
α
(A?A)A?g

•
∈ J and θ• := A†g

•
∈ J. Under Assumption §06|02.11 if A ∈ Tt,d

(link condition) and θ• ∈ Ja,r (abstract smoothness condition), then for any q ∈ [−a, t] such that
v−q• ∈ L2

(φ2

•
ν) with φ

•
∈M6=0,ν

(J ) we have

|φν(θ
α
• − θ•)| 6 C(q+a)/(2t) d

(a+|q|)/t
r ‖v−q• ‖φ α

(a+q)/(2t), ∀α ∈ (0, 1). (06.07)

§06|02.25 Proof of Proposition §06|02.24. Given in the lecture. �

§06|02.26 Proposition. Given A ∈ L>(J) let
{

R
α

= r
α
(A) ∈ L>(J): α ∈ (0, 1)

}
be a spectral regularisation

of A† satisfying (sR1’), (sR2’a) and (sR3’) in Notation §06|02.19. For g
•
∈ dom(A†) and α ∈ (0, 1)

consider θα• = R
α
g
•

= r
α
(A)g

•
∈ J and θ• := A†g

•
∈ J. Under Assumption §06|02.11 if T ∈ T 	

t,d

(link condition) and θ• ∈ Ja,r (abstract smoothness condition), then for any q ∈ [−a, t∧ (ts◦−a)]
such that v−q• ∈ L2

(φ2

•
ν) with φ

•
∈M6=0,ν

(J ) we have

|φν(θ
α
• − θ•)| 6 C(q+a)/t d

(a+|q|)/t
r ‖v−q• ‖φ α

(a+q)/t ∀α ∈ (0, 1). (06.08)

§06|02.27 Proof of Proposition §06|02.26. Given in the lecture. �

§06|02.28 Remark. If (sR2’a) is satisfied for some s◦ > 2 (excluding the Tikhonov regularisation as dis-
cussed in Example §06|02.18 (a)) then Proposition §06|02.26 holds for any q ∈ [−a, t] as in Propo-
sition §06|02.24. �
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Chapter 3

Regularised estimation

Making use of the regularisation approaches presented in Chapter 2 we
introduce estimators of the solution θ ∈ H based on a noisy observation
of the image g = Tθ and eventually in addition of the operator T.
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§07 Orthogonal projection estimator

§07|00.01 Notation (§04|00.01 continued). Consider the measure space (J ,J , ν) and the Hilbert space
J = L2

(ν) as in Notation §01|01.01. For w• ∈ R
J define the multiplication map Mw : R

J → R
J

with a• 7→ Mwa• := w•a• := (wjaj)j∈J . If w• ∈M(J ), i.e. w• is J -B-measurable, then we have
Mw : M(J ) → M(J ) too. If in addition w• ∈ L∞(ν) then we have also Mw ∈ L(J) identifying
again equivalence classes and representatives. We set LM(J) :=

{
Mw: w• ∈ L∞(ν)

}
⊆ L(J) noting

that ‖Mw‖L(J)
= sup

{
‖w•a•‖J : ‖a•‖J 6 1

}
6 ‖w•‖L∞(ν ) for each Mw ∈ LM(J) (see Notation §01|04.01).

Finally, given surjective partial isometries U ∈ L(H,J) and V ∈ L(G,J) we define LU,V(LM(J)) :=
V

?
(LM(J))U :=

{
V

?
MwU ∈ L(H,G): Mw ∈ LM(J)

}
. As a consequence, for each T ∈ LU,V(LM(J)) we have

VTU
?

= Mw ∈ LM(J) for some w• ∈ L∞(ν). �
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§07|00.02 Assumption. The separable Hilbert space J = L2
(J ,J , ν) with σ-algebra J overJ containing

all elementary events
{
j
}

, j ∈ J , and all events JmK := [−m,m] ∩ J , m ∈ N, and with σ-
finite measure ν ∈ Mσ(J ) such that ν(JmK) ∈ R>0, for all m ∈ N, and the surjective partial
isometries U ∈ L(H,J) and V ∈ L(G,J) are fixed and presumed to be known in advance. The
operator satisfies T ∈ LU,V(LM(J)) ⊆ L(H,G) and hence VTU

?
= Ms ∈ LM(J) for some s• ∈ L∞(ν) and

the image fulfils g
•
∈ dom(Ms†), and hence s†•g• ∈ J = L2

(ν). �

§07|00.03 Reminder. Under Assumption §07|00.02 we consider T ∈ LU,V(LM(J)) ⊆ L(H,G), and hence VTU
?

=
Ms ∈ LM(J) and g

•
= Msθ• = s•θ• ∈ J for some s• ∈ L∞(ν). Due to Property §04|01.02 the Moore-

Penrose inverse of Ms ∈ LM(J) satisfies M†
s = Ms† : J ⊇ dom(Ms†) → J with dom(Ms†) = Js• ⊕

J1Ns

• = Js. For each m ∈ N, M1m ∈ L>(J) and M
1m|⊥
∈ L>(J) is the orthogonal projection onto the

linear subspace J1m• ⊆ J and its orthogonal complement J1m|⊥• = (J1m• )⊥ ⊆ J, respectively, that
is J = J1m• ⊕ J1m|⊥• (see Property §04|02.02). Given g

•
∈ J we call θ• ∈ J satisfying ‖g

•
− s•θ•‖J =

inf
{
‖g

•
− s•h•‖J : h• ∈ J

}
a least squares solution, if it exists (see Property §03|00.05). Writing

s†• = s−1
• 1

N c

s

• and Ns = {j ∈ N : sj ∈ R\0} for each g
•
∈ dom(Ms†) = Js• ⊕ J1Ns•

• is θ• = Ms†g• = s†•g•
the unique least square solution with minimal ‖·‖

J
-norm in the set s†•g• + J1Ns

• of all least square
solutions (Property §04|03.02). If in addition ν(Ns) = 0, i.e. Ms is injective, then θ• = s†•g• is the
unique least square solution. Given m ∈ N for each g

•
∈ dom(Ms†) we have g

•
1m• ∈ dom(Ms†) too.

In particular, for θ• = s†•g• follows θ•1m• = (s†•g•)1
m
• = s†• (g•1

m
• ) ∈ J1m• . �

§07|01 Diagonal statistical inverse problem

§07|01.01 Assumption. Consider a stochastic process ε̇• = (ε̇j)j∈J on a probability space (Ω,A ,P) sat-
isfying Assumption §01|01.04 (i.e. ε̇• ∈ M(A ⊗J )) with mean zero (i.e. P(ε̇•) = (P(ε̇j))j∈J = 0•),
a sample size n ∈ N and let Assumption §07|00.02 be satisfied where s• ∈ L∞(ν) is known in
advance. For θ• ∈ J the observable noisy image with mean g

•
= s•θ• ∈ J = L2

(ν) takes the form
ĝ
•
= g

•
+ n−1/2ε̇•. We denote by Pn

θ|s the distribution of ĝ
•
. �

§07|01.02 Definition. Under Assumption §07|01.01 for θ• ∈ J and s• ∈ L∞(ν) consider a noisy version
ĝ
•
∼ Pn

θ|s of g
•

= s•θ• ∈ dom(Ms†). For each m ∈ N we call ĝm
•

:= ĝ
•
1m• and θ̂m• := s†• ĝm• = s†• ĝ•1

m
•

orthogonal projection estimator (OPE) of g
•

and θ• = s†•g• ∈ J, respectively. �

§07|01|01 Examples

§07|01.03 GdiSM (§01|04.09 continued). Considering `2 = L2
(N, 2N, ν

N
) for J = `2 let Assumption §07|00.02

be satisfied where VTU
?

= Ms ∈ LM(`2) for some s• ∈ `∞ = L∞(ν
N
) is known in advance. We

illustrate the OPE in a Gaussian diagonal inverse sequence model (GdiSM) as in §01|04.09. Here
the observable stochastic process ĝ

•
= g

•
+ n−1/2Ḃ• ∼ N

n

θ|s is a noisy version of g
•

= s•θ• ∈ `2 with
θ• = s†•g• ∈ Θ ⊆ `2 and Ḃ• ∼ N

⊗N
(0,1). Consequently, ĝ

•
admits a N

n

θ|s-distribution belonging to the
family N

n

Θ×{s•} := (N
n

θ|s)θ•∈Θ . Summarising the observations satisfy a statistical product experiment
(R

N
,B

⊗N
,N

n

Θ×{s•}) where Θ ⊆ `2. �

§07|01.04 Property (GdiSM §07|01.03 continued). The error process Ḃ• ∼ N
⊗N
(0,1) as in Model §07|01.03 admits

a covariance operator id`2 ∈ L>(`2) which is evidently invertible with inverse id`2 ∈ L(`2) where
‖id`2‖L(`2)

= 1 and N
⊗N
(0,1)(Ḃ

2
• ) = 1•. For all h• ∈ `2 we have ‖h•‖2

`2
= ‖h•‖2

id`2
= 〈id`2h•, h•〉̀

2

. �

§07|01.05 Property. For σ2
• ∈ R

N

>0 ∩ `∞ and P
(0,σ2

j )
∈ W2

(B), j ∈ N, a stochastic process Y• ∼ ⊗j∈NP
(µj ,σ

2
j )

of
independent random variables admits Mσ2 ∈ LM(`2)∩L>(`2) as covariance operator with ‖Mσ2‖

L(`2)
=
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‖σ2
• ‖`∞ , since

〈Mσ2a•, b•〉̀
2

=
∑
j∈N

σ2
j ajbj =

∑
j∈N

aj
∑
j◦∈N

Cov(Yj , Yj◦ )bj◦ ∀a•, b• ∈ `2.

If σ2
• , σ

−2
• ∈ R

N

>0 ∩ `∞ then Mσ2 ∈ LM(`2) is invertible with inverse M−1
σ2 = Mσ−2 ∈ LM(`2) and

‖M−1
σ2 ‖

L(`2)
= ‖σ−2

• ‖`∞ . �

§07|01.06 diSM (§01|04.08 continued). For J = `2 let Assumption §07|00.02 be satisfied where s• ∈ `∞ =
L∞(ν

N
) is known in advance. We illustrate the OPE in a Diagonal inverse sequence model (diSM)

as in §01|04.08. Here the observable stochastic process ĝ
•

= g
•

+ n−1/2ε̇• is a noisy version of
g
•
= s•θ• ∈ `2 with θ• = s†•g• ∈ Θ ⊆ `2 and ε̇• ∼ ⊗j∈NP

ε̇j , where

(iSM1) for σ• ∈ Σ ⊆ RN>0 ∩ `∞ and Pε̇j = P
(0,σ2

j )
∈ W2

(B) for all j ∈ N,

(iSM2) Σ ⊆ RN>0 ∩ `∞ and for each σ• ∈ Σ we have σ−1
• ∈ R

N

>0 ∩ `∞ too.
Under (iSM1) ĝ

•
admits a Pn

θ|s|σ-distribution belonging to the family Pn
Θ×{s•}×Σ := (Pn

θ|s|σ)θ•∈Θ,σ•∈Σ .
Summarising the observations satisfy a statistical product experiment (R

N
,B

⊗N
,Pn

Θ×{s•}×Σ) where
Θ ⊆ `2 and Σ ⊆ RN>0 ∩ `∞. �

§07|01.07 Property (diSM §07|01.06 continued).
(i) Under (iSM1) the error process ε̇• ∼ ⊗j∈NP

(0,σ2
j )

admits a covariance operator Mσ2 ∈ LM(`2) ∩
L>(`2), i.e. ε̇• ∼ P

(0•,Mσ2
)
, satisfying ‖Mσ2‖

L(`2)
= ‖σ2

• ‖`∞ (Property §07|01.05) and Pn
θ|s|σ(ε̇2

• ) = σ2
• .

(ii) Under (iSM1) and (iSM2) the covariance operator Mσ2 ∈ LM(`2)∩L>(`2) is invertible with inverse
Mσ−2 ∈ LM(`2) ∩ L(`2) satisfying ‖Mσ−2‖

L(`2)
= ‖σ−2

• ‖`∞ .
Under (iSM1) and (iSM2) setting vσ := max(‖σ−2

• ‖`∞ , ‖σ
2
• ‖`∞) we evidently have ‖Mσ2‖

L(`2)
6 vσ

and ‖Mσ−2‖
L(`2)
6 vσ . Consequently, from Lemma §01|01.08 (01.03) we obtain

v−1
σ ‖h•‖2

`2
6 ‖h•‖2

M
σ2

= 〈Mσ2h•, h•〉̀
2

6 vσ‖h•‖2

`2
∀h• ∈ `2. �

§07|01.08 dieMM (§01|04.07 continued). For J = L2
(ν) let Assumption §07|00.02 be satisfied where s• ∈

L∞(ν) is known in advance. We illustrate the OPE in a Diagonal inverse empirical mean model
(dieMM) as in §01|04.07. Here the observable stochastic process ĝ

•
= g

•
+ n−1/2ε̇• is a noisy

version of g
•

= s•θ• ∈ J with θ• = s†•g• ∈ Θ ⊆ J, and error process ε̇• = n1/2(P̂n(ψ•) − Pθ|s(ψ•)) ∈
M(Z

⊗n ⊗J ) satisfying Assumption §01|01.04. More precisely, on a measurable space (Z,Z ) for
each θ• ∈ Θ ⊆ J there is a probability measure Pθ|s ∈ W (Z ). Consider a stochastic process
ψ
•

= (ψ
j
)j∈J ∈M(Z ⊗J ) which in addition for s• ∈ L∞(ν) and for each θ• ∈ Θ ⊆ J satisfies

(dieMM1) ψ
j
∈ L1(Pθ|s) := L1(Z,Z ,Pθ|s) ν -a.e. j ∈ J and Pθ|s(ψ•) = s•θ• = g

•
ν -a.s.,

(dieMM2) (ψ
•
− Pθ|s(ψ•))1

m
• ∈ L∞(ν) Pθ|s-a.s. for each m ∈ N,

(dieMM3) there is vθ|s|ψ ∈ R>1 such that ‖Pθ|s(ψ2

•
)‖

L∞(ν ) 6 vθ|s|ψ and

Pθ|s
(
|ν(h•ψ•)|

2
)
6 vθ|s|ψ‖h•‖2

J
, ∀h• ∈ J,

(dieMM4) v θ|s• := Pθ|s(ψ
2

•
)− |Pθ|s(ψ•)|2 ∈M>0,ν

(J ) ∩ L∞(ν), ‖(v θ|s• )−1‖
L∞(ν ) 6 vθ|s|ψ and

Pθ|s
(
|ν(h•ψ•)|

2
)
> Pθ|s

(
|ν(h•ψ•)|

2
)
−
∣∣Pθ|s(ν(h•ψ•)

)∣∣2 > v−1
θ|s|ψ‖h•‖2

J
, ∀h• ∈ J.

We consider a statistical product experiment (Z
n
,Z

⊗n
,P⊗nΘ×{s•} = (P⊗nθ|s )θ•∈Θ) as in an Empirical

mean function §01|01.10 where Θ ⊆ J. �

Statistics of inverse problems 63



Chapter 3 Regularised estimation §07 Orthogonal projection estimator

§07|01.09 Property (dieMM §07|01.08 continued).
(i) Under (dieMM1)–(dieMM3) due to Lemma §01|01.08 (i) the stochastic process ψ

•
∈M(Z ⊗J )

and hence the error process ε̇• = n1/2(P̂n − Pθ|s)(ψ•) ∈ M(Z
⊗n ⊗J ) admits a covariance

operator Γθ|s ∈ L>(J) satisfying ‖Γθ|s‖L(J)
6 vθ|s|ψ.

(ii) Under (dieMM1)–(dieMM4) due to Lemma §01|01.08 (ii) the covariance operator Γθ|s ∈ L>(J) is
invertible with inverse Γ−1

θ|s ∈ L(J) satisfying ‖Γ−1
θ|s ‖L(J)

6 vθ|s|ψ.
Consequently, from Lemma §01|01.08 (01.03) we obtain

v−1
θ|s|ψ‖h•‖2

J
6 ‖h•‖2

Γθ|s
= 〈Γθ|sh•, h•〉J 6 vθ|s|ψ‖h•‖2

J
∀h• ∈ J. �

§07|01|02 Global and maximal global v-risk

We measure first the accuracy of the OPE θ̂m• := s†• ĝm• of the projection θm• = s†•gm• ∈ J1m• with
g
•
= s•θ• ∈ dom(Ms†) by the mean of its global v-error introduced in §04|03|01, i.e. its v-risk.

§07|01.10 Reminder. If v• ∈M6=0,ν
(J ) and θ• ∈ L2

(v2
• ν) then we have θm• ∈ L2

(v2
• ν) too and ‖θm• − θ•‖2

v
= o(1)

as m →∞ (Property §04|03.09). �

§07|01.11 Assumption. Consider a noisy version ĝ
•
= g

•
+ n−1/2ε̇• ∼ P

n
θ|s satisfying Assumption §07|01.01,

(dSIPg1) v θ|s• := P
n
θ•|s•(ε̇2

• ) := (v θ|sj := P
n
θ|s(|ε̇j |2))j∈J ∈ L∞(ν) and

(dSIPg2) ε̇•1
m
• ∈ L∞(ν) P

n
θ|s -a.s., for each m ∈ N. �

§07|01.12 Comment. Under Assumption §07|01.11 and v• ∈ M6=0,ν
(J ) set (s†v)• := s†•v• ∈ M(J ). If s†•1m• ∈

L2
(v2
• ν) then we have (s†v)•ε̇•1

m
• ∈ J P

n
θ|s -a.s.. If in addition θ• ∈ L2

(v2
• ν), and hence θm• ∈ L2

(v2
• ν)

(Property §04|03.09), then it follows

v•θ̂
m

• = (s†v)• ĝ• 1
m
• = n−1/2(s†v)•ε̇•1

m
• + v•θ

m
• ∈ J = L2

(ν) P
n

θ|s -a.s.. (07.01)

If J ⊆ Z (at most countable) and νJ is the counting measure over the index set J then As-
sumption §01|01.04 and (dSIPg1) v θ|s• = P

n
θ|s(ε̇2

• ) ∈ L∞(νJ ) implies the additional assumption (dSIPg2)
ε̇•1

m
• ∈ L∞(νJ ) P

n
θ|s -a.s.. However, the last implication does generally not hold, if J ∈ {R,R>0}

for example. �

§07|01|02|01 Global v-risk

§07|01.13 Assumption. Let v• ∈M6=0,ν
(J ), θ• ∈ L2

(v2
• ν), and s†•1

m
• ∈ L2

(v2
• ν) for all m ∈ N be satisfied. �

§07|01.14 Definition. Under Assumptions §07|01.11 and §07|01.13 the global v-risk of an OPE θ̂m• = s†• ĝm• =
s†• ĝ•1

m
• ∈ L2

(v2
• ν) P

n
θ|s -a.s. satisfies

P
n

θ|s(‖θ̂
m

• − θ•‖2

v
) = P

n

θ|s(‖s†• (ĝ• − g•)1
m
• ‖2

v
) + ‖θ•1m|⊥• ‖2

v
(07.02)

with variance term P
n
θ|s(‖s†• (ĝ• − g•)1

m
• ‖2

v
) = n−1P

n
θ|s(‖(s†v)•ε̇•1

m
• ‖2

J
) and bias term ‖θ•1m|⊥• ‖v. �

§07|01.15 Property. Under Assumptions §07|01.11 and §07|01.13 we have

P
n

θ|s

(
‖(s†v)•ε̇•1

m
• ‖2

J

)
=

∫
J
P
n

θ|s(|ε̇j |2)(s†v)2
j1

m
j ν(dj) = ν(v θ|s• (s†v)2

•1
m
• ) (07.03)

and consequently Pn
θ|s(‖s†• (ĝ• − g•)1

m
• ‖2

v
) 6 n−1‖v θ|s• ‖L∞(ν )‖s†•1m• ‖2

v
∈ R>0. �
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§07|01.16 Notation. For a• ∈ R
N with minimal value in B ⊆ N we define

arg min
{
am : m ∈ B

}
:= min

{
m ∈ B: am 6 aj , ∀j ∈ B

}
. �

§07|01.17 Proposition (Upper bound). Under Assumptions §07|01.11 and §07|01.13 for all n,m ∈ N setting

R
m

n
(θ•, s•, v•) := ‖θ•1m|⊥• ‖2

v
+ n−1‖s†•1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n
(θ•, s•, v•) : m ∈ N

}
and R

◦
n
(θ•, s•, v•) := R

m◦n
n

(θ•, s•, v•) = min
{

R
m

n
(θ•, s•, v•) : m ∈ N

}
(07.04)

we have Pn
θ|s(‖θ̂m

◦
n

• − θ•‖2
v
) 6 (1 ∨ ‖v θ•|s•• ‖L∞(ν )) R◦

n
(θ•, s•, v•) for all n ∈ N.

§07|01.18 Proof of Proposition §07|01.17. Given in the lecture. �

§07|01.19 Definition. Let θ• ∈ L2
(v2
• ν) and θ̂m• ∈ L2

(v2
• ν) P

n
θ|s -a.s. for all m ∈ N. If there exist C ∈ R>0 and

for each n ∈ N, R◦
n
∈ R>0 and m◦

n
∈ N satisfying

C
−1

R
◦
n
6 inf

m∈N
P
n

θ|s‖θ̂
m

• − θ•‖2

v
6 Pn

θ|s‖θ̂
m◦n
• − θ•‖2

v
6 C R

◦
n
∀n ∈ N,

then we call R◦
n

oracle bound, m◦
n

oracle dimension and θ̂m
◦
n

• oracle optimal (up to the constant
C). As a consequence, up to the constant C2 the statistic θ̂m

◦
n

• attains the lower global v-risk bound
within the family of OPE’s, that is, Pn

θ|s‖θ̂m
◦
n

• − θ•‖2
v
6 C2 infm∈NP

n
θ|s‖θ̂m• − θ•‖2

v
. �

§07|01.20 Oracle inequality. Under Assumptions §07|01.11 and §07|01.13 if in addition

1 6 max(‖v θ|s• ‖L∞(ν ), ‖(v θ|s• )
−1‖

L∞(ν )) 6 vθ|s ∈ R>1

is satisfied then (07.04) implies

v−1
θ|s R

m

n
(θ•, s•, v•) 6 P

n

θ|s(‖θ̂
m

• − θ•‖2

v
) = n−1ν(v θ|s• (s†v)2

•1
m
• ) + ‖θ•1m|⊥• ‖2

v

6 vθ|sR
m

n
(θ•, s•, v•) ∀m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality

v−1
θ|s R

◦
n
(θ•, s•, v•) 6 inf

m∈N
P
n

θ|s(‖θ̂
m

• − θ•‖2

v
) 6 Pn

θ|s(‖θ̂
m◦n
• − θ•‖2

v
)

6 vθ|s R
◦
n
(θ•, s•, v•) 6 v2

θ|s inf
m∈N

P
n

θ|s(‖θ̂
m

• − θ•‖2

v
) ∀n ∈ N, (07.05)

and, hence R◦
n
(θ•, s•, v•), m◦n and the statistic θ̂m

◦
n

• , respectively, is an oracle bound, an oracle di-
mension and oracle optimal (up to the constant v2

θ|s). �

§07|01.21 Remark. For each fixed m ∈ N with ‖s†•1m• ‖v ∈ R>0 we have n−1‖s†•1m• ‖v = o(1) as n → ∞.
As a consequence, if ‖s†•1m• ‖v ∈ R>0 for all m ∈ N and ‖θ•1m|⊥• ‖v = o(1) as m → ∞ then we
obtain R◦

n
(θ•, s•, v•) = o(1) as n → ∞, and thus, R◦

n
(θ•, s•, v•) is also called an oracle rate. Indeed,

for all δ ∈ R>0 there exists m
δ
∈ N and n

δ
∈ N such that we have both ‖θ•1mδ|⊥

• ‖2
v
6 δ/2 and

n−1‖s†•1mδ

• ‖2
v
6 δ/2 for all n ∈ N>nδ , and whence R◦

n
(θ•, s•, v•) 6 Rmδ

n
(θ•, s•, v•) 6 δ. However, note

that the oracle dimension m◦
n

= m◦
n
(θ•, s•, v•) as defined in Proposition §07|01.17 depends on the

unknown parameter of interest θ•, and thus also the oracle optimal statistic θ̂m
◦
n

• . In other words
θ̂m

◦
n

• is not a feasible estimator. �
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§07|01.22 Corollary (GdiSM §07|01.03 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|s as in Model §07|01.03,
where Ḃ• ∼ N

⊗N
(0,1), s• ∈ `∞, θ• ∈ `2 and hence g

•
= s•θ• ∈ dom(Ms†) ⊆ `2. Given v• ∈ R

N

\0 and
θ• ∈ `2(v

2
• ) the (infeasible) OPE θ̂m

◦
n

• = s†• ĝm
◦
n

•
∈ `2(v

2
• ) with oracle dimension m◦

n
as in (07.04)

satisfies

N
n

θ|s

(
‖θ̂m

◦
n

• − θ•‖2

v

)
= R

◦
n
(θ•, s•, v•) = inf

m∈N
N
n

θ|s

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant 1).

§07|01.23 Proof of Corollary §07|01.22. Given in the lecture. �

§07|01.24 Corollary (diSM §07|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §07|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) and (iSM2) with max(‖σ−2
• ‖`∞ , ‖σ

2
• ‖`∞) =: vσ ∈ R>1, s• ∈ `∞,

θ• ∈ `2 and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Given v• ∈ R
N

\0 and θ• ∈ `2(v
2
• ) the (infeasible) OPE

θ̂m
◦
n

• = s†• ĝm
◦
n

•
∈ `2(v

2
• ) with oracle dimension m◦

n
as in (07.04) satisfies

Pn
θ|s|σ

(
‖θ̂m

◦
n

• − θ•‖2

v

)
6 vσR

◦
n
(θ•, s•, v•) 6 v2

σ inf
m∈N

Pn
θ|s|σ

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant vσ).

§07|01.25 Proof of Corollary §07|01.24. Given in the lecture. �

§07|01.26 Corollary (dieMM §07|01.08 continued). Let ĝ
•

= g
•

+ n−1/2ε̇• be defined on (Z
n
,Z

⊗n
,P⊗nθ|s ) as

in Model §07|01.08, where ψ
•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM4) for some vθ|s|ψ ∈ R>1,

s• ∈ L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Under Assumption §07|01.13 the
(infeasible) OPE θ̂m

◦
n

• = s†• ĝm
◦
n

•
∈ L2

(v2
• ν) P

⊗n
θ|s -a.s. with oracle dimension m◦

n
as in (07.04) satisfies

P
⊗n
θ|s

(
‖θ̂m

◦
n

• − θ•‖2

v

)
6 vθ|s|ψR

◦
n
(θ•, s•, v•) 6 v2

θ|s|ψ inf
m∈N

P
⊗n
θ|s

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant vθ|s|ψ).

§07|01.27 Proof of Corollary §07|01.26. Given in the lecture. �

§07|01.28 Illustration. We illustrate the last results considering usual behaviour for θ•, s•, v• ∈ M6=0,ν
(J ).

We distinguish the following two cases

(p) s†• ∈ L2
(v2
• ν) or there is m ∈ N with ‖θm• − θ•‖2

v
= 0,

(np) s†• 6∈ L2
(v2
• ν) and for all m ∈ N holds ‖θm• − θ•‖2

v
∈ R>0.

Interestingly, in case (p) the oracle bound is parametric, that is, nR◦
n
(θ•, s•, v•) = O(1), in case

(np) the oracle bound is nonparametric, i.e. limn→∞ nR◦
n
(θ•, s•, v•) = ∞. In case (np) consider

the following three specifications:

Table 01 [§07]

Order of the oracle rate R◦
n
(θ•, s•, v•) as n →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

v2j = j2v θ2j s2j ‖θ•1m|⊥• ‖2
v

‖s†•1m• ‖2
v

m◦
n

R◦
n
(θ•, s•, v•)

(o-m) v ∈ (−1/2− t, a) j−2a−1 j−2t m−2(a−v) m2v+2t+1 n
1

2a+2t+1 n−
2(a−v)

2a+2t+1

v + t = −1/2 j−2a−1 j−2t m−2a−2t−1 logm
( n
logn

) 1
2a+2t+1

logn
n

(o-s) a− v ∈ R>0 j−2a−1 e−j
2t

m−2(a−v) m(1−2(t−v))+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t m(1−2(a−v))+e−m
2a

m2v+2t+1 (log n)
1
2a

(logn)
2t+2v+1

2a

n

v + t = −1/2 e−j
2a

j−2t e−m
2a

logm (log n)
1
2a

log logn
n
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We note that in case (o-m) and (s-m) for v + t < −1/2 the oracle rate R◦
n
(θ•, s•, v•) is parametric. �

§07|01|02|02 Maximal global v-risk

§07|01.29 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Q,Z, . . . }
we write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing
and non-increasing. If in addition an →∞ and bn → 0 as n→∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ L∞(ν) we set w(0) := ‖w•‖L∞(ν ) and w(•) = (w(j) := ‖w•1

j |⊥
• ‖L∞(ν ))j∈N,

where by construction w(•) ∈ (R>0)N↘ . �

§07|01.30 Assumption. Consider weights a•, t•, v• ∈ M>0,ν
(J ) (i.e. ν(Na) = ν(Nt ) = 0 = ν(Nv)), such that

a•, t• ∈ L∞(ν), (av)• = a•v• ∈ L∞(ν), (av)(•) ∈ (R>0)N↓0 , and t†•1
m
• ∈ L2

(v2
• ν) for all m ∈ N. �

§07|01.31 Reminder. Under Assumption §07|01.30 we have Ja = La
2
(ν) = dom(Ma†) = Ja• ⊆ J and the

three measures ν , a2|†
• ν and v2

• ν dominate mutually each other, i.e. they share the same null sets
(see Property §04|01.02). We consider Ja endowed with ‖·‖a† = ‖Ma†·‖J and given a constant
r ∈ R>0 the ellipsoid Ja,r := {h• ∈ Ja : ‖h•‖a† 6 r} ⊆ Ja. Since (av)• ∈ L∞(ν), and hence
(av)(m) := ‖(av)•1

m|⊥
• ‖L∞(ν ) ∈ R>0 for each m ∈ N we have Ja ⊆ L2

(v2
• ν) (Property §04|02.11), and

‖θ•1m|⊥• ‖v 6 r (av)(m) for all θ• ∈ Ja,r (Lemma §04|02.13). Consequently, if Assumption §07|01.30,
θ• ∈ Ja,r and s†•1

m
• ∈ L2

(v2
• ν) for all m ∈ N are satisfied, then Assumption §07|01.13 is fulfilled.

Moreover, under Assumption §07|01.30 for each Ms ∈ Mt,d we have ‖s†•1m• ‖v 6 d‖t†•1m• ‖v ∈ R>0

for all m ∈ N (Definition §04|03.05). Therefore, if Assumption §07|01.30, θ• ∈ Ja,r and Ms ∈ Mt,d

are satisfied, then Assumption §07|01.13 is also fulfilled. �

§07|01.32 Proposition (Upper bound). Under Assumptions §07|01.11 and §07|01.30 let s†•1m• ∈ L2
(v2
• ν) for all

m ∈ N. Setting for n,m ∈ N

R
m

n
(a•, s•, v•) := [(av)2

(m) ∨ n−1‖s†•1m• ‖2

v
], m?

n
:= arg min

{
R
m

n
(a•, s•, v•) : m ∈ N

}
and R

?

n
(a•, s•, v•) := R

m?
n

n
(a•, s•, v•) = min

{
R
m

n
(a•, s•, v•) : m ∈ N

}
(07.06)

and ‖v θ|s• ‖L∞(ν ) =: vθ|s ∈ R>0, for all θ• ∈ Ja,r , hence g
•
= s•θ• ∈ dom(Ms†) ⊆ J, we have

P
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
) 6 (vθ|s + r2) R

?

n
(a•, s•, v•) ∀n ∈ N.

§07|01.33 Proof of Proposition §07|01.32. Given in the lecture. �

§07|01.34 Remark. Under the assumptions of Proposition §07|01.32 if there exists in addition vs• ∈ R>0

satisfying ‖v θ|s• ‖L∞(ν ) 6 vs for all θ• ∈ Ja,r then

sup
{
P
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
): θ• ∈ Ja•,r

}
6 (vs + r2)R

?

n
(a, s•, v•) ∀n ∈ N.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, s•, v•) = o(1) as n → ∞, whenever

‖s†•1m• ‖v• ∈ R>0 for all m ∈ N (note that (av)(m) = o(1) as m → ∞ by Assumption §07|01.30
which is satisfied, for example, if (av)• = a•v• ∈ J or in equal a• ∈ L2

(v2
• ν)). Note that the

dimension m?
n

:= m?
n
(a•, s•, v•) as defined in (07.06) does not depend on the unknown parameter

of interest θ• but on the class Ja,r only, and thus also the statistic θ̂m
?
n

• . In other words, if the
regularity of θ• is known in advance, then the OPE θ̂m

?
n

• is a feasible estimator. �

§07|01.35 Corollary (Upper bound). Under Assumptions §07|01.11 and §07|01.30 setting for n,m ∈ N

R
m

n
(a•, t•, v•) := [(av)2

(m) ∨ n−1‖t†•1m• ‖2

v
], m?

n
:= arg min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
and R

?

n
(a•, t•, v•) := R

m?
n

n
(a•, t•, v•) = min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
(07.07)

Statistics of inverse problems 67



Chapter 3 Regularised estimation §07 Orthogonal projection estimator

and ‖v θ|s• ‖L∞(ν ) =: vθ|s ∈ R>0, for each Ms ∈ Mt,d known in advance, for all θ• ∈ Ja,r, hence
g
•
= s•θ• ∈ dom(Ms†) ⊆ J, we have

P
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
) 6 (d

2
vθ|s + r2) R

?

n
(a•, t•, v•) ∀n ∈ N.

§07|01.36 Proof of Corollary §07|01.35. Given in the lecture. �

§07|01.37 Remark. Under the assumptions of Corollary §07|01.35 if there exists in addition v ∈ R>0 satis-
fying ‖v θ|s• ‖L∞(ν ) 6 v for all θ• ∈ Ja,r and Ms ∈ Mt,d then

sup
{
P
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
): θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 (vd

2
+ r2) R

?

n
(a•, t•, v•) ∀n ∈ N.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, t•, v•) = o(1) as n → ∞ since

‖t†•1m• ‖v ∈ R>0 for all m ∈ N and (av)(m) = o(1) as m → ∞ by Assumption §07|01.30. Note
that the dimension m?

n
:= m?

n
(a•, t•, v•) as defined in (07.07) does neither depend on the unknown

parameter of interest θ• nor on the known multiplication operator Ms but on the classes Ja,r and
Mt,d only, and thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• is known in advance,
then the OPE θ̂m

?
n

• is a feasible estimator. �

§07|01.38 Corollary (GdiSM §07|01.03 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|s as in Model §07|01.03,
where Ḃ• ∼ N

⊗N
(0,1), s• ∈ `∞, θ• ∈ `2 and hence g

•
= s•θ• ∈ dom(Ms†) ⊆ `2. Under Assump-

tion §07|01.30 the OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ `2(v
2
• ) satisfies

(i) with dimension m?
n

= m?
n
(a•, s•, v•) as in (07.06) and constant C = 1 + r2

sup
{

N
n

θ|s

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

}
6 C R

?

n
(a•, s•, v•) ∀n ∈ N; (07.08)

(ii) with dimension m?
n

= m?
n
(a•, t•, v•) as in (07.07) and constant C = d2 + r2

sup
{

N
n

θ|s

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,Ms ∈ Mt,d

}
6 C R

?

n
(a•, t•, v•) ∀n ∈ N. (07.09)

§07|01.39 Proof of Corollary §07|01.38. Given in the lecture. �

§07|01.40 Corollary (diSM §07|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §07|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) with ‖σ2
• ‖`∞ =: vσ ∈ R>0, s• ∈ `∞, θ• ∈ `2 and hence

g
•
= s•θ• ∈ dom(Ms†) ⊆ `2. Under Assumption §07|01.30 the OPE θ̂m

?
n

• = s†• ĝ•1
m?

n

• ∈ `2(v
2
• ) satisfies

(i) with dimension m?
n

= m?
n
(a•, s•, v•) as in (07.06) and constant C = vσ + r2

sup
{

Pn
θ|s|σ

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

}
6 C R

?

n
(a•, s•, v•) ∀n ∈ N; (07.10)

(ii) with dimension m?
n

= m?
n
(a•, t•, v•) as in (07.07) and constant C = vσd

2 + r2

sup
{

Pn
θ|s|σ

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,Ms ∈ Mt,d

}
6 C R

?

n
(a•, t•, v•) ∀n ∈ N. (07.11)

§07|01.41 Proof of Corollary §07|01.40. Given in the lecture. �

§07|01.42 Corollary (dieMM §07|01.08 continued). Let ĝ
•

= g
•

+ n−1/2ε̇• be defined on (Z
n
,Z

⊗n
,P⊗nθ|s ) as

in Model §07|01.08, where ψ
•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM3) for some vθ|s|ψ ∈ R>1,

s• ∈ L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Under Assumption §07|01.30 the OPE
θ̂m

?
n

• = s†• ĝ•1
m?

n

• ∈ L2
(v2
• ν) P

⊗n
θ|s -a.s. satisfies
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(i) with constant

Ca,r,s := sup
{
vθ|s|ψ: θ• ∈ Ja,r

}
+ r2

and dimension m?
n

= m?
n
(a•, s•, v•) as in (07.06)

sup
{
P
⊗n
θ|s

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ Ja,r

}
6 Ca,r,s R

?

n
(a•, s•, v•) ∀n ∈ N (07.12)

provided s†•1
m
• ∈ L2

(v2
• ν) for all m ∈ N;

(ii) with constant

Ca,r,t,d := d
2
sup

{
vθ|s|ψ: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
+ r2

and dimension m?
n

= m?
n
(a•, t•, v•) as in (07.07)

sup
{
P
⊗n
θ|s

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 Ca,r,t,d R

?

n
(a•, t•, v•) ∀n ∈ N. (07.13)

§07|01.43 Proof of Corollary §07|01.42. Given in the lecture. �

§07|01.44 Illustration. We illustrate the last results considering usual behaviour for a•, s•, t•, v• ∈M6=0,ν
(J )

and w• ∈ {s•, t•}. We distinguish similar to Illustration §07|01.28 the following two cases (p) w†• ∈
L2

(v2
• ν), and (np) w†• 6∈ L2

(v2
• ν). Interestingly, in case (p) the bounds in Proposition §07|01.32

and Corollary §07|01.35 are parametric, that is, nR?

n
(a•,w•, v•) = O(1), in case (np) the bounds

are nonparametric, i.e. limn→∞ nR?

n
(a•,w•, v•) = ∞. In case (np) consider the following three

specifications:

Table 02 [§07]

Order of the oracle rate R?

n
(a•,w•, v•) as n →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

v2j = j2v a2j w2
j (av)2

(m) ‖w†•1m• ‖2
v

m?
n

R?

n
(a•,w•, v•)

(o-m) v ∈ (−1/2− t, a) j−2a j−2t m−2(a−v) m2v+2t+1 n
1

2a+2t+1 n−
2(a−v)

2a+2t+1

v + t = −1/2 j−2a j−2t m−2a−2t−1 logm
( n
logn

) 1
2a+2t+1

logn
n

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m(1−2(t−v))+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t m2ve−m
2a

m2v+2t+1 (log n)
1
2a

(logn)
2t+2v+1

2a

n

v + t = −1/2 e−j
2a

j−2t m2ve−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v + t < −1/2 the rate R?

n
(a•,w•, v•) is parametric. �

§07|01|03 Local and maximal local φ-risk

Secondly, we measure the accuracy of the OPE θ̂m• := s†• ĝm• of θm• = s†•gm• ∈ J1m• with g
•

= s•θ• ∈
dom(Ms†) by the mean of its local φ-error introduced in §04|03|02, i.e. its φ-risk.

§07|01.45 Reminder. If φ
•
∈M6=0,ν

(J ) and θ• ∈ dom(φν), then for each m ∈ N we have θm• ∈ dom(φν) too
and |φν(θ•)− φν(θm• )| = o(1) as m →∞ (Property §04|03.13). �

§07|01.46 Assumption. Consider a noisy version ĝ
•

= g
•
+ n−1/2ε̇• ∼ P

n
θ|s satisfying Assumption §07|01.01.

In addition
(dSIPl1) ε̇• admits a covariance operator, say Γθ|s ∈ L>(J), i.e. ε̇• ∼ P

(0•,Γθ|s)
, and
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(dSIPl2) ε̇•1
m
• ∈ J P

n
θ|s -a.s., for each m ∈ N. �

§07|01.47 Comment. Under Assumption §07|01.46 and φ
•
∈ M6=0,ν

(J ) set (s†φ)• := s†•φ• ∈ M(J ). If s†•1m• ∈
L2

(φ2

•
ν) then we have s†• ε̇•1

m
• ∈ dom(φν) P

n
θ|s -a.s. since ν(|(s†φ)•ε̇•1

m
• |) 6 ‖s†•1m• ‖φ‖ε̇•1

m
• ‖J ∈ R>0

P
n
θ|s -a.s.. If in addition θ• ∈ dom(φν), and hence θm• ∈ dom(φν) (Property §04|03.13), then it

follows

θ̂
m

• = s†• ĝ• 1
m
• = n−1/2s†• ε̇•1

m
• + θ

m
• ∈ dom(φν) P

n

θ|s -a.s.. (07.14)

If J ⊆ Z (at most countable) and νJ is the counting measure over the index set J then Assump-
tion §01|01.04 and (dSIPl1) ε̇• ∼ P

(0•,Γθ|s)
implies v θ|s• = P

n
θ|s(|ε̇•|2) ∈ L∞(νJ ) and hence the additional

assumption (dSIPl2) ε̇•1
m
• ∈ J = L2

(νJ ) P
n
θ|s -a.s.. However, the last implication does generally not

hold, if J ∈ {R,R>0} for example. �

§07|01|03|01 Local φ-risk

§07|01.48 Assumption. Let φ
•
∈M6=0,ν

(J ), θ• ∈ dom(φν), and s†•1
m
• ∈ L2

(φ2

•
ν) for all m ∈ N be satisfied. �

§07|01.49 Definition. Under Assumptions §07|01.46 and §07|01.48 the local φ-risk of an OPE θ̂m• = s†• ĝm• =
s†• ĝ•1

m
• ∈ dom(φν) P

n
θ|s -a.s. satisfies

P
n

θ|s(|φν(θ̂
m

• − θ•)|2) = P
n

θ|s(|φν(s†• (ĝ• − g•)1
m
• )|2) + |φν(θ•1

m|⊥
• )|2. (07.15)

with variance Pn
θ|s(|φν(s†• (ĝ• − g•)1

m
• )|2) = n−1P

(0•,Γθ|s)
(|φν(s†• ε̇•1

m
• )|2) and bias |φν(θ•1

m|⊥
• )|. �

§07|01.50 Property. Under Assumptions §07|01.46 and §07|01.48 we have

P
(0•,Γθ|s)

(|φν(s†• ε̇•1
m
• )|2) = P

(0•,Γθ|s)
(|ν(ε̇•(s

†φ)•1
m
• )|2)

= 〈Γθ|s((s†φ)•1
m
• ), (s†φ)•1

m
• 〉J =: ‖(s†φ)•1

m
• ‖2

Γθ|s
(07.16)

and consequently Pn
θ|s(|φν(s†• (ĝ• − g•)1

m
• )|2) 6 n−1‖Γθ|s‖L(J)

‖s†•1m• ‖2
φ
∈ R>0. �

§07|01.51 Proposition (Upper bound). Under Assumptions §07|01.46 and §07|01.48 for all m,n ∈ N setting

R
m

n
(θ•, s•, φ•) := |φν(θ•1

m|⊥
• )|2 + n−1‖s†•1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n
(θ•, s•, φ•) : m ∈ N

}
and R

◦
n
(θ•, s•, φ•) := R

m◦n
n

(θ•, s•, φ•) := min
{

R
m

n
(θ•, s•, φ•) : m ∈ N

}
(07.17)

we have Pn
θ|s(|φν(θ̂m

◦
n

• − θ•)|2) 6 (1 ∨ ‖Γθ|s‖L(J)
)R◦

n
(θ•, s•, φ•) for all n ∈ N.

§07|01.52 Proof of Proposition §07|01.51. Given in the lecture. �

§07|01.53 Definition. Let θ• ∈ dom(φν) and θ̂m• ∈ dom(φν) P
n
θ|s -a.s. for all m ∈ N. If there exist C ∈ R>0

and for each n ∈ N, R◦
n
∈ R>0 and m◦

n
∈ N satisfying

C
−1

R
◦
n
6 inf

m∈N
P
n

θ|s(|φν(θ̂
m

• − θ•)|2) 6 Pn

θ|s(|φν(θ̂
m◦n
• − θ•)|2) 6 C R

◦
n
∀n ∈ N,

then we call R◦
n

oracle bound, m◦
n

oracle dimension and θ̂m
◦
n

• oracle optimal (up to the constant
C). As a consequence, up to the constant C2 the statistic θ̂m

◦
n

• attains the lower local φ-risk bound
within the family of OPE’s, that is, Pn

θ|s(|φν(θ̂m
◦
n

• − θ•)|2) 6 C2 infm∈NP
n
θ|s(|φν(θ̂m• − θ•)|2). �
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§07|01.54 Comment. If Γθ|s ∈ L>(J) is invertible with inverse Γ−1
θ|s ∈ L(J), i.e. Γθ•|φ•Γ

−1
θ|s = idJ = Γ−1

θ•|φ• Γθ|s, then
we write shortly 1 6 max(‖Γθ|s‖L(J)

, ‖Γ−1
θ|s ‖L(J)

) 6 vθ|s ∈ R>1. In this situation for all h• ∈ J we
have v−1

θ|s ‖h•‖2
J
6 ‖h•‖2

Γθ|s
= 〈Γθ|sh•, h•〉J 6 vθ|s‖h•‖2

J
. �

§07|01.55 Oracle inequality. Under Assumptions §07|01.46 and §07|01.48 if in addition

1 6 max(‖Γθ|s‖L(J)
, ‖Γ−1

θ|s ‖L(J)
) 6 vθ|s ∈ R>1

is satisfied then (07.17) (and Comment §07|01.54) implies

v−1
θ|s R

m

n
(θ•, s•, φ•) 6 P

n

θ|s(|φν(θ̂
m

• − θ•)|2) = n−1‖(s†φ)•1
m
• ‖2

Γθ|s
+ |φν(θ•1

m|⊥
• )|2

6 vθ|sR
m

n
(θ•, s•, φ•) ∀m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality

v−1
θ|s R

◦
n
(θ•, s•, φ•) 6 inf

m∈N
P
n

θ|s(|φν(θ̂
m

• − θ•)|2) 6 Pn

θ|s(|φν(θ̂
m◦n
• − θ•)|2)

6 vθ|sR
◦
n
(θ•, s•, φ•) 6 v2

θ|s inf
m∈N

P
n

θ|s(|φν(θ̂
m

• − θ•)|2) ∀n ∈ N, (07.18)

and hence R◦
n
(θ•, s•, φ•), m

◦
n

and the statistic θ̂m
◦
n

• , respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v2

θ|s). �

§07|01.56 Remark. Arguing similarly as in Remark §07|01.21 we note that R◦
n
(θ•, s•, φ•) = o(1) as n → ∞,

whenever ‖s†•1m• ‖2
φ
∈ R>0 for all m ∈ N and |φν(θ•1

m|⊥
• )
∣∣ = o(1) as m → ∞. The latter is

satisfied, for example, if θ• = s†•g• ∈ dom(φν). The oracle dimension m◦
n

= m◦
n
(θ•, s•, φ•) as defined

in (§07|01.51) depends again on the unknown parameter of interest θ•, and thus also the oracle
optimal statistic θ̂m

◦
n

• . In other words θ̂m
◦
n

• is not a feasible estimator. �

§07|01.57 Corollary (GdiSM §07|01.03 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|s as in Model §07|01.03,
where Ḃ• ∼ N

⊗N
(0,1), s• ∈ `∞, θ• ∈ `2 and hence g

•
= s•θ• ∈ dom(Ms†) ⊆ `2. Given φ

•
∈ RN\0 and

θ• ∈ dom(φν
N
) the (infeasible) OPE θ̂m

◦
n

• = s†• ĝ•1
m◦n
• ∈ dom(φν

N
) with oracle dimension m◦

n
as in

(07.17) satisfies

N
n

θ|s(|φνN(θ̂
m◦n
• − θ•)|2) = R

◦
n
(θ•, s•, φ•) = inf

m∈N
N
n

θ|s(|φνN(θ̂
m

• − θ•)|2),

and hence it is oracle optimal (with constant 1).

§07|01.58 Proof of Corollary §07|01.57. Given in the lecture. �

§07|01.59 Corollary (diSM §07|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §07|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) and (iSM2) with max(‖σ−2
• ‖`∞ , ‖σ

2
• ‖`∞) =: vσ ∈ R>1, s• ∈ `∞,

θ• ∈ `2 and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Given φ
•
∈ RN\0 and θ• ∈ dom(φν

N
) the (infeasible)

OPE θ̂m
◦
n

• = s†• ĝ•1
m◦n
• ∈ dom(φν

N
) with oracle dimension m◦

n
as in (07.17) satisfies

Pn
θ|s|σ(|φνN(θ̂

m◦n
• − θ•)|2) 6 vσR

◦
n
(θ•, s•, φ•) 6 v2

σ inf
m∈N

Pn
θ|s|σ(|φνN(θ̂

m

• − θ•)|2),

and hence it is oracle optimal (with constant vσ).

§07|01.60 Proof of Corollary §07|01.59. Given in the lecture. �
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§07|01.61 Corollary (dieMM §07|01.08 continued). Let ĝ
•

= g
•

+ n−1/2ε̇• be defined on (Z
n
,Z

⊗n
,P⊗nθ|s ) as

in Model §07|01.08, where ψ
•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM4) for some vθ|s|ψ ∈ R>1,

s• ∈ L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Under Assumption §07|01.48 the
(infeasible) OPE θ̂m

◦
n

• = s†• ĝ•1
m◦n
• ∈ dom(φν) with oracle dimension m◦

n
as in (07.17) satisfies

P
n

θ|s(|φν(θ̂
m◦n
• − θ•)|2) 6 vθ|s|ψR

◦
n
(θ•, s•, φ•) 6 v2

θ|s|ψ inf
m∈N

P
n

θ|s(|φν(θ̂
m

• − θ•)|2),

and hence it is oracle optimal (with constant vθ|s|ψ).

§07|01.62 Proof of Corollary §07|01.61. Given in the lecture. �

§07|01.63 Illustration. We illustrate the last results considering usual behaviour for θ•, s•, φ• ∈ M6=0,ν
(J ).

Similar to the two cases (p) and (np) in Illustration §07|01.28 we distinguish here the following
two cases
(p) s†• ∈ L2

(φ2

•
ν) or there is K ∈ N with sup

{
|φν(θ•1

m|⊥
• )|2: m ∈ N>K

}
= 0,

(np) s†• 6∈ L2
(φ2

•
ν) and for all m ∈ N holds sup

{
|φν(θ•1

m|⊥
• )|2: m ∈ N>K

}
∈ R>0.

In case (p) the oracle bound is again parametric, i.e. nR◦
n
(θ•, s•, φ•) = O(1), while in case (np)

the oracle bound is nonparametric, i.e. limn→∞ nR◦
n
(θ•, s•, φ•) = ∞. In case (np) consider the

following three specifications:

Table 03 [§07]

Order of the oracle rate R◦
n
(θ•, s•, φ•) as n →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

φ
j

= jv−1/2 θj s2j |φν(θ•1
m|⊥
• )|2 ‖s†•1m• ‖2

φ
m◦

n
R◦

n
(θ•, s•, φ•)

(o-m) v ∈ (−t, a) j−a−1/2 j−2t m−2(a−v) m2v+2t n
1

2a+2t n−
a−v
a+t

v = −t j−a−1/2 j−2t m−2(a+t) logm
( n
logn

) 1
2(a+t)

logn
n

(o-s) a− v ∈ R>0 j
−a−1/2 e−j

2t

m−2(a−v) m2(v−t)+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t m(1−4a+2v)+e−2m
2a

m2v+2t (log n)
1
2a

(logn)
t+v
a

n

v = −t e−j
2a

j−2t m(1−4a−2t))+e−2m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v < −t the oracle rate R◦
n
(θ•, s•, φ•) is parametric. �

§07|01|03|02 Maximal local φ-risk

§07|01.64 Assumption. Consider weights a•, t• ∈ M>0,ν
(J ) and φ

•
∈ M6=0,ν

(J ) (i.e. ν(Na) = ν(Nt ) = 0 =

ν(Nφ)), such that a•, t• ∈ L∞(ν), a• ∈ L2
(φ2

•
ν), and t†•1

m
• ∈ L2

(φ2

•
ν) for all m ∈ N. �

§07|01.65 Reminder. Under Assumption §07|01.64 we have Ja = La
2
(ν) = dom(Ma†) = Ja• ⊆ J and the

three measures ν , a2|†
• ν and |φ

•
|ν dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). We consider Ja endowed with ‖·‖a† = ‖Ma†·‖J and given a constant
r ∈ R>0 the ellipsoid Ja,r := {h• ∈ Ja : ‖h•‖a† 6 r} ⊆ Ja. Since a• ∈ L2

(φ2

•
ν), and hence

‖a•1m|⊥• ‖φ = ‖(aφ)•1
m|⊥
• ‖J ∈ R>0 for each m ∈ N (‖a•1m|⊥• ‖φ = o(1) as m → ∞ by dominated

convergence) we have Ja ⊆ dom(φν) (Property §04|02.23), and |φν(θ•1
m|⊥
• )| 6 r ‖a•1m|⊥• ‖φ for

all θ• ∈ Ja,r (Lemma §04|02.25). Consequently, if Assumption §07|01.64, θ• ∈ Ja,r and s†•1
m
• ∈

L2
(φ2

•
ν) for all m ∈ N are satisfied, then Assumption §07|01.48 is fulfilled. Moreover, under

Assumption §07|01.64 for each Ms ∈ Mt,d we have ‖s†•1m• ‖φ 6 d‖t†•1m• ‖φ ∈ R>0 for all m ∈ N
(Definition §04|03.05). Therefore, if Assumption §07|01.64, θ• ∈ Ja,r and Ms ∈ Mt,d are satisfied,
then Assumption §07|01.48 is also fulfilled. �
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§07|01.66 Proposition (Upper bound). Under Assumptions §07|01.46 and §07|01.64 let s†•1m• ∈ L2
(φ2

•
ν) for all

m ∈ N. Setting for n,m ∈ N

R
m

n
(a•, s•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖s†•1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n
(a•, s•, φ•) : m ∈ N

}
and R

?

n
(a•, s•, φ•) := R

m?
n

n
(a•, s•, φ•) = min

{
R
m

n
(a•, s•, φ•) : m ∈ N

}
(07.19)

and ‖Γθ|s‖L(J)
=: vθ|s ∈ R>0, for all θ• = s†•g• ∈ Ja,r we have

P
n

θ|s(|φν(θ̂
m?

n

• − θ•)|2) 6 (vθ|s ∨ r2) R
?

n
(a•, s•, φ•) ∀n ∈ N.

§07|01.67 Proof of Proposition §07|01.66. Given in the lecture. �

§07|01.68 Remark. Under the assumptions of Proposition §07|01.66 if there exists in addition vs ∈ R>0

satisfying ‖Γθ|s‖L(J)
6 vs for all θ• ∈ Ja,r then

sup
{
P
n

θ|s(|φν(θ̂
m?

n

• − θ•)|2): θ• ∈ Ja,r
}
6 (vs ∨ r2) R

?

n
(a•, s•, φ•) ∀n ∈ N.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, s•, φ•) = o(1) as n → ∞, whenever

‖s†•1m• ‖2
φ
∈ R>0 for all m ∈ N and ‖a•1m|⊥• ‖φ = o(1) as m → ∞. The latter is satisfied since

a• ∈ L2
(φ2

•
ν) by Assumption §07|01.64. Note that the dimension m?

n
:= m?

n
(a•, s•, φ•) as defined in

(07.19) does not depend on the unknown parameter of interest θ• but on the class Ja,r only, and
thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• is known in advance, then the
OPE θ̂m

?
n

• is a feasible estimator. �

§07|01.69 Corollary (Upper bound). Under Assumptions §07|01.46 and §07|01.64 setting for n,m ∈ N

R
m

n
(a•, t•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖t†•1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
and R

?

n
(a•, t•, φ•) := R

m?
n

n
(a•, t•, φ•) = min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
(07.20)

and ‖Γθ|s‖L(J)
=: vθ|s ∈ R>0, for each Ms ∈ Mt,d known in advance, for all θ• ∈ Ja,r, hence

g
•
= s•θ• ∈ dom(Ms†) ⊆ J, we have

P
n

θ|s(|φν(θ̂
m?

n

• − θ•)|2) 6 (d
2
vθ|s ∨ r2) R

?

n
(a•, t•, φ•) ∀n ∈ N.

§07|01.70 Proof of Corollary §07|01.69. Given in the lecture. �

§07|01.71 Remark. Under the assumptions of Corollary §07|01.69 if there exists in addition v ∈ R>0 satis-
fying ‖Γθ|s‖L(J)

6 v for all θ• ∈ Ja,r and Ms ∈ Mt,d then

sup
{
P
n

θ|s(|φν(θ̂
m?

n

• − θ•)|2): θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 (vd

2 ∨ r2) R
?

n
(a•, t•, φ•) ∀n ∈ N.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, t•, φ•) = o(1) as n → ∞ since

‖t†•1m• ‖φ ∈ R>0 for all m ∈ N and ‖a•1m|⊥• ‖φ = o(1) as m → ∞ by Assumption §07|01.64. Note
that the dimension m?

n
:= m?

n
(a•, t•, φ•) as defined in (07.20) does neither depend on the unknown

parameter of interest θ• nor on the known multiplication operator Ms but on the classes Ja,r and
Mt,d only, and thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• is known in advance,
then the OPE θ̂m

?
n

• is a feasible estimator. �

§07|01.72 Corollary (GdiSM §07|01.03 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|s as in Model §07|01.03,
where Ḃ• ∼ N

⊗N
(0,1), s• ∈ `∞, θ• ∈ `2 and hence g

•
= s•θ• ∈ dom(Ms†) ⊆ `2. Under Assump-

tion §07|01.64 the OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ dom(φν
N
) satisfies
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(i) with dimension m?
n

= m?
n
(a•, s•, φ•) as in (07.19) and constant Cr = 1 ∨ r2

sup
{

N
n

θ|s

(
|φν

N
(θ̂

m?
n

• − θ•)|2
)
: θ• ∈ `a,r2

}
6 Cr R

?

n
(a•, s•, φ•) ∀n ∈ N (07.21)

(ii) with dimension m?
n

= m?
n
(a•, t•, φ•) as in (07.20) and constant Cr,d = d2 ∨ r2

sup
{

N
n

θ|s(|φνN(θ̂
m?

n

• − θ•)|2): θ• ∈ `a,r2
,Ms ∈ Mt,d

}
6 Cr,d R

?

n
(a•, t•, φ•) ∀n ∈ N. (07.22)

§07|01.73 Proof of Corollary §07|01.72. Given in the lecture. �

§07|01.74 Corollary (diSM §07|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §07|01.06,
where ε̇• ∼ P

(0•,Mσ2
)

satisfies (iSM1) with ‖σ2
• ‖`∞ =: vσ ∈ R>0, s• ∈ `∞, θ• ∈ `2 and hence g

•
= s•θ• ∈

dom(Ms†) ⊆ `2. Under Assumption §07|01.64 the OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ dom(φν
N
) satisfies

(i) with dimension m?
n

= m?
n
(a•, s•, φ•) as in (07.19) and constant Cr,σ = vσ ∨ r2

sup
{

Pn
θ|s|σ(|φνN(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2

}
6 Cr,σ R

?

n
(a•, s•, φ•) ∀n ∈ N (07.23)

(ii) with dimension m?
n

= m?
n
(a•, t•, φ•) as in (07.20) and constant Cr,d,σ = vσd

2 ∨ r2

sup
{

Pn
θ|s|σ(|φνN(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2
,Ms ∈ Mt,d

}
6 C R

?

n
(a•, t•, φ•) ∀n ∈ N. (07.24)

§07|01.75 Proof of Corollary §07|01.74. Given in the lecture. �

§07|01.76 Corollary (dieMM §07|01.08 continued). Let ĝ
•

= g
•

+ n−1/2ε̇• be defined on (Z
n
,Z

⊗n
,P⊗nθ|s ) as

in Model §07|01.08, where ψ
•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM3) for some vθ|s|ψ ∈ R>1,

s• ∈ L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Under Assumption §07|01.64 the OPE
θ̂m

?
n

• = s†• ĝ•1
m?

n

• ∈ dom(φν) P
⊗n
θ|s -a.s. satisfies

(i) with constant

Ca,r,s := sup
{
vθ|s|ψ: θ• ∈ Ja,r

}
∨ r2

and with dimension m?
n

= m?
n
(a•, s•, φ•) as in (07.19)

sup
{
P
⊗n
θ|s

(
|φν

N
(θ̂

m?
n

• − θ•)|2
)
: θ• ∈ Ja,r

}
6 Ca,r,s R

?

n
(a•, s•, φ•) ∀n ∈ N (07.25)

provided s†•1
m
• ∈ L2

(φ2

•
ν) for all m ∈ N;

(ii) with constant

Ca,r,t,d := d
2
sup

{
vθ|s|ψ: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
∨ r2

and dimension m?
n

= m?
n
(a•, t•, φ•) as in (07.20)

sup
{
P
⊗n
θ|s

(
|φν

N
(θ̂

m?
n

• − θ•)|2
)
: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 Ca,r,t,d R

?

n
(a•, t•, φ•) ∀n ∈ N. (07.26)

§07|01.77 Proof of Corollary §07|01.76. Given in the lecture. �

§07|01.78 Illustration. We illustrate the last results considering usual behaviour for a•, s•, t•, φ• ∈M6=0,ν
(J )

and w• ∈ {s•, t•}. We distinguish the following two cases (p) w†• ∈ L2
(φ2

•
ν), and (np) w†• 6∈ L2

(φ2

•
ν).

Interestingly, in case (p) the bound in Proposition §07|01.66 is parametric, that is, nR?

n
(a•,w•, φ•) =

O(1), in case (np) the bound is nonparametric, i.e. limn→∞ nR?

n
(a•,w•, φ•) = ∞. In case (np)

consider the following three specifications:
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Table 04 [§07]

Order of the rate R?

n
(a•,w•, φ•) as n →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

φ2

j
= j2v−1 a2j w2

j ‖a•1m|⊥• ‖2
φ
‖w†•1m• ‖2

φ
m?

n
R?

n
(a•,w•, φ•)

(o-m) v ∈ (−t, a) j−2a j−2t m−2(a−v) m2v+2t n
1

2a+2t n−
a−v
a+t

v = −t j−2a j−2t m−2(a+t) logm
( n
logn

) 1
2(a+t)

logn
n

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m2(v−t)+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t e−m
2a

m2v+2t (log n)
1
2a

(logn)
t+v
a

n

v = −t e−j
2a

j−2t e−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v < −t the rate R?

n
(a•,w•, φ•) is parametric. �

§07|02 Diagonal statistical inverse problem with noisy operator

§07|02.01 Assumption. Consider stochastic processes ε̇• = (ε̇j)j∈J and η̇• = (η̇
j
)j∈J on a probability

space (Ω,A ,P) satisfying Assumption §01|01.04 (i.e. ε̇•, η̇• ∈ M(A ⊗J )) with mean zero (i.e.
P(ε̇•) = 0• = P(η̇•)), sample sizes n, k ∈ N and let Assumption §07|00.02 and in addition s• ∈
M6=0,ν

(J )∩L∞(ν) be satisfied where s• ∈M6=0,ν
(J )∩L∞(ν) is not known anymore. The observable

noisy image and operator, respectively, has mean g
•
= s•θ• ∈ J = L2

(ν) and mean-function s• ∈
M6=0,ν

(J ) ∩ L∞(ν), and takes the form ĝ
•

= g
•
+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇•. We denote by Pn,k

θ|s

the joint distribution of (ĝ
•
, ŝ•). Denoting by Pn

θ|s and Pk
s the marginal distribution of ĝ

•
and ŝ•,

respectively, if ε̇• and η̇• are independent then we write Pn⊗k
θ|s = P

n
θ|s ⊗ Pk

s for the joint product
distribution of (ĝ

•
, ŝ•). �

§07|02.02 Comment. We restrict ourselves in this section to the case s• ∈ M6=0,ν
(J ) only, which ensure

identification of the solution θ• of the equation g
•
= s•θ•. �

§07|02.03 Notation. Introduce the random index set {ŝ2
• > k−1} := {j ∈ J : k ŝ2

j
> 1} ∈ J , for each

j ∈ J the elementary random variable 1{ŝ2• >k−1}
j taking the value one on the event {ŝ2

j
> k−1} and

zero otherwise, and the stochastic process 1{ŝ2• >k−1}
• := (1{ŝ

2
• >k

−1}
j )j∈J ∈M(A ⊗J ) satisfying hence

Assumption §01|01.04. Furthermore, we define ŝ(k)
• := ŝ•1

{ŝ2• >k−1}
• and denote its Moore-Penrose

inverse by ŝ(k)|†
• = ŝ−1

• 1
{ŝ2• >k−1}
• . We eventually use the elementary identity ŝ(k)

• ŝ(k)|†
• = 1{ŝ

2
• >k

−1}
• =

ŝ(k)|†
• ŝ(k)

• and the upper bound ‖ŝ(k)|†
• ‖L∞(ν ) 6 k1/2. �

§07|02.04 Definition. Under Assumption §07|02.01 for θ• ∈ J let (ĝ
•
, ŝ•) ∼ P

n,k
θ|s be noisy versions of

g
•

= s•θ• ∈ dom(Ms†) and s• ∈ L∞(ν). For each m ∈ N we call θ̂m• := ŝ(k)|†
• ĝm

•
= ŝ†• 1

{ŝ2• >k−1}
• ĝ

•
1m•

thresholded orthogonal projection estimator (tOPE) of θ• = s†•g• ∈ J where ĝm
•

= ĝ
•
1m• is an

orthogonal projection estimator (OPE) of g
•
. �

§07|02|01 Examples

§07|02.05 GdiSM with noisy operator (§02|04.06 continued). Considering J = `2 = L2
(N, 2N, ν

N
) let As-

sumption §07|00.02 be satisfied where s• ∈ S ⊆ RN\0 ∩ `∞ is not known anymore. We illustrate
the tOPE in a Gaussian diagonal inverse sequence model (GdiSM) with noisy operator as in
§02|04.06. Here the observable process ŝ• = s• + k−1/2Ẇ• ∼ N

k

s and ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|s is
a noisy version of s• ∈ S ⊆ RN\0 ∩ `∞ and g

•
= s•θ• ∈ dom(Ms†) ⊆ `2 with θ• ∈ Θ ⊆ `2, respec-
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tively, where Ḃ• ∼ N
⊗N
(0,1) and Ẇ• ∼ N

⊗N
(0,1) are independent. Consequently, (ĝ

•
, ŝ•) admits a joint

N
n⊗k
θ|s = N

n

θ|s ⊗ N
k

s distribution belonging to the family N
n⊗k
Θ×S := (N

n

θ|s ⊗ N
k

s )θ•∈Θ,s•∈S. Summarising

the observations satisfy a statistical product experiment
(
R
N

2

,B
⊗N

2

,N
n⊗k
Θ×S

)
where Θ ⊆ `2 and

S ⊆ RN\0 ∩ `∞. �

§07|02.06 Property (GdiSM with noisy operator §07|02.05 continued). For Ẇ• := (Ẇj)j∈N ∼ N
⊗N
(0,1) we have

N(0,1) ∈ W4
(B) with 31• = N

⊗N
(0,1)(Ẇ

4
• ), 1• = N

⊗N
(0,1)(Ẇ

2
• ), and 0• = N

⊗N
(0,1)(Ẇ•). �

§07|02.07 diSM with noisy operator (§02|04.05 continued). For J = `2 let Assumption §07|00.02 be sat-
isfied where s• ∈ S ⊆ R

N

\0 ∩ `∞ is not known anymore. We illustrate the tOPE in a Diagonal
inverse sequence model (diSM) with noisy operator as in §02|04.05. Here the observable stochas-
tic process ŝ• = s• + k−1/2η̇• and ĝ

•
= g

•
+ n−1/2ε̇• is a noisy version of s• ∈ S ⊆ RN\0 ∩ `∞ and

g
•

= s•θ• ∈ dom(Ms†) ⊆ `2 with θ• ∈ Θ ⊆ `2, respectively, where ε̇• ∼ ⊗j∈NP
ε̇j and η̇• ∼ ⊗j∈NP

η̇j

are independent. In addition, let ε̇• satisfy (iSM1) of Model §07|01.06 for σ• ∈ Σ ⊆ RN>0 ∩ `∞ and
(diSMnO1) for ξ• ∈ Ξ ⊆ RN>0 ∩ `∞ we have Pη̇j ∈ W4

(B) with ξ4
j

= P(η̇4
j
) and 0 = P(η̇

j
) for all

j ∈ N.
Under (iSM1) ĝ

•
admits a Pn

θ|s|σ-distribution belonging to the family Pn
Θ×S×Σ := (Pn

θ|s|σ)θ•∈Θ,s•∈S,σ•∈Σ

and under (diSMnO1) ŝ• admits a Pk
s|ξ -distribution belonging to the family Pk

S×Ξ := (Pk
s|ξ )s•∈S,ξ•∈Ξ .

Consequently, (ĝ
•
, ŝ•) admits a joint Pn⊗k

θ|s|σ |ξ = Pn
θ|s|σ ⊗ Pk

s|ξ distribution belonging to the family
Pn⊗k

Θ×S×Σ×Ξ := (Pn
θ|s|σ⊗Pk

s|ξ )θ•∈Θ,s•∈S,σ∈Σ,ξ∈Ξ . Summarising the observations satisfy a statistical product

experiment
(
R
N

2

,B
⊗N

2

,Pn⊗k
Θ×S×Σ×Ξ

)
where Σ,Ξ ⊆ RN>0 ∩ `∞. S ⊆ RN\0 ∩ `∞ and Θ ⊆ `2. �

§07|02.08 Property (diSM with noisy operator §07|02.07 continued). Under (diSMnO1) the process η̇• ∼ ⊗j∈NP
η̇j

satisfies Pη̇j ∈ W4
(B) with ξ4

j
= P

η̇j (η̇4
j
), ξ2

j
> Pη̇j (η̇2

j
), and 0 = P

η̇j (η̇
j
) for all j ∈ N. �

§07|02.09 dieMM with noisy operator (§02|04.04 continued). For J = L2
(ν) let Assumption §07|00.02 be

satisfied where s• ∈ S ⊆ M6=0,ν
(J ) ∩ L∞(ν) is not known anymore. We illustrate the tOPE in

a Diagonal inverse empirical mean model (dieMM) with noisy operator as in §02|04.04. Here
the observable stochastic processes ŝ• = s• + k−1/2η̇• and ĝ

•
= g

•
+ n−1/2ε̇• are noisy version

of s• ∈ S and g
•

= s•θ• ∈ J with θ• ∈ Θ ⊆ J, respectively, and independent error processes
ε̇• = n1/2(P̂n(ψ•) − Pθ|s(ψ•)) ∈ M(Z

⊗n ⊗J ) and η̇• = k1/2(P̂k(ϕ•) − Ps (ϕ•)) ∈ M(Z
⊗k ⊗J ) satisfying

Assumption §01|01.04. More precisely, on a measurable space (Z,Z ) for each θ• ∈ Θ and s• ∈ S

there are probability measures Pθ|s,Ps ∈ W (Z ). Similar to Model §02|04.04 consider stochastic
processes ψ

•
, ϕ

•
∈ M(Z ⊗J ). In addition for all θ• ∈ Θ and s• ∈ S the process ψ

•
∈ M(Z ⊗J )

satisfies (dieMM1)-(dieMM3) of Model §07|01.08 for vθ|s|ψ ∈ R>1 and the process ϕ
•
∈ M(Z ⊗J )

fulfils
(dieMMnO1) ϕ

j
∈ L1(Ps ) := L1(Z,Z ,Ps ) ν -a.e. j ∈ J and Ps (ϕ•) = s• ν -a.s.,

(dieMMnO2) there is v2
s|ϕ ∈ R>1 such that ‖Ps (ϕ4

•
)‖

L∞(ν ) 6 v2
s|ϕ and hence ‖Ps (ϕ2

•
)‖

L∞(ν ) 6 vs|ϕ.

We consider a statistical product experiment (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

Θ×S = (P⊗nθ|s ⊗ P⊗ks )θ•∈Θ,s•∈S) as in
an Empirical mean function §01|01.10 where S ⊆M6=0,ν

(J ) ∩ L∞(ν) and Θ ⊆ J. �

§07|02.10 Property (dieMM with noisy operator §07|02.09 continued). Under (dieMMnO1) and (dieMMnO2) the
process η̇• = k1/2(P̂k−Ps )(ϕ•) ∈M(Z

⊗k ⊗J ) satisfies v2
s|ϕ > ‖P⊗ks (η̇4

• )‖
L∞(ν ), vs|ϕ > ‖P

⊗k
s (η̇2

• )‖
L∞(ν ),

and 0 = P
⊗k

s (η̇
j
) for ν -a.e. j ∈ J . �

§07|02|02 Global and maximal global v-risk

We measure first the accuracy of the tOPE θ̂m• := ŝ(k)|†
• ĝm

•
of the projection θm• = s†•gm• ∈ J1m• with
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g
•

= s•θ• ∈ dom(Ms†) and s• ∈ M6=0,ν
(J ) ∩ L∞(ν) by the mean of its global v-error introduced in

§04|03|01, i.e. its v-risk.

§07|02.11 Reminder. If v• ∈ M6=0,ν
(J ) and θ• ∈ L2

(v2
• ν) then for each m ∈ N we have θm• ∈ L2

(v2
• ν) too and

‖θm• − θ•‖2
v

= o(1) as m →∞ (Property §04|03.09). �

§07|02.12 Assumption. Let (ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ P

n⊗k
θ|s := P

n
θ|s ⊗ Pk

s be independent noisy
versions satisfying Assumption §07|02.01. In addition
(dSIPg1) v θ|s• := P

n
θ|s(ε̇2

• ) := (v θ|sj := P
n
θ|s(ε̇2

j ))j∈J ∈ L∞(ν), K2

θ|s := 1 ∨ ‖v θ|s• ‖L∞(ν ),

(dSIPg2) ε̇•1
m
• ∈ L∞(ν) P

n
θ|s -a.s. for each m ∈ N, and

(dSIPnO) v s|(2)
• := P

k
s (η̇4

• ) := (v s|(2)
j := P

k
s (η̇4

j
))j∈J ∈ L∞(ν), K4

s := 1 ∨ ‖v s|(2)
• ‖

L∞(ν ).

Moreover, from (dSIPnO) (i.e. v s|(2)
• = P

k
s (η̇4

• ) ∈ L∞(ν)) follows Pk
s (η̇2

j
) =: v s

j 6 (v s|(2)
j )1/2 for ν -a.e.

j ∈ J , and hence ‖v s
• ∨ 1•‖L∞(ν ) 6 K2

s . �

§07|02.13 Notation. Since ‖ŝ(k)|†
• ‖L∞(ν ) 6 k1/2 (Notation §07|02.03), s• ∈ L∞(ν) and 1m• ∈ L∞(ν) for all

m ∈ N, for (ŝ(k)|†s)• := ŝ(k)|†
• s• ∈ M(A ⊗J ) we have (ŝ(k)|†s)•1

m
• ∈ L∞(ν) for all m ∈ N too. If

in addition 1m• ∈ L2
(v2
• ν) for all m ∈ N then for (ŝ(k)|†v)• := ŝ(k)|†

• v• ∈ M(A ⊗J ) we also have
(ŝ(k)|†v)•1

m
• ∈ J for all m ∈ N. �

§07|02.14 Comment. Under Assumption §07|02.12 and v• ∈ M6=0,ν
(J ) if 1m• ∈ L2

(v2
• ν) for all m ∈ N

then we have (ŝ(k)|†v)•ε̇•1
m
• ∈ J P

n⊗k
θ|s -a.s.. If in addition θ• ∈ L2

(v2
• ν), and hence θm• ∈ L2

(v2
• ν)

(Property §04|03.09), then it follows

v•θ̂
m

• = (ŝ(k)|†v)• ĝ• 1
m
• = n−1/2(ŝ(k)|†v)•ε̇•1

m
• + (ŝ(k)|†s)•v•θ

m
• ∈ J P

n⊗k
θ|s -a.s.. (07.27)

If J ⊆ Z (at most countable) and νJ is the counting measure over the index set J then Assump-
tion §01|01.04 and (dSIPg1) (i.e. v θ|s• = P

n
θ|s(ε̇2

• ) ∈ L∞(νJ )) imply the additional assumption (dSIPg2)
ε̇•1

m
• ∈ L∞(νJ ) P

n
θ|s -a.s.. However, the last implication does generally not hold, if J ∈ {R,R>0}

for example. �

§07|02|02|01 Global v-risk

§07|02.15 Assumption. Let v• ∈M6=0,ν
(J ), θ• ∈ L2

(v2
• ν), and s†•1

m
• ,1

m
• ∈ L2

(v2
• ν) for m ∈ N be satisfied. �

§07|02.16 Definition. Under Assumptions §07|02.12 and §07|02.15 for m ∈ N the global v-risk of a thresh-
olded OPE θ̂m• = ŝ(k)|†

• ĝm
•

= ŝ†• 1
{ŝ2• >k−1}
• ĝ

•
1m• ∈ L2

(v2
• ν) P

n⊗k
θ|s -a.s. satisfies

P
n⊗k
θ|s (‖θ̂m• − θ•‖2

v
) = P

n⊗k
θ|s (‖ŝ(k)|†

• (ĝ
•
− ŝ•θ•)1

m
• ‖2

v
) + P

k

s (‖1{ŝ2• <k−1}
• θ•1

m
• ‖2

v
) + ‖θ•1m|⊥• ‖2

v
(07.28)

with variance terms Pn⊗k
θ|s (‖ŝ(k)|†

• (ĝ
•
− ŝ•θ•)1

m
• ‖2

v
), Pk

s (‖1{ŝ2• <k−1}
• θ•1

m
• ‖2

v
) and bias term ‖θ•1m|⊥• ‖v.

§07|02.17 Property. Under Assumptions §07|02.12 and §07|02.15 for each m ∈ N we have

P
n⊗k
θ|s ‖ŝ(k)|†

• (ĝ
•
− ŝ•θ•)1

m
• ‖2

v
= P

n

θ|s ⊗ P
k

s ‖ŝ(k)|†
• (n−1/2ε̇• + (s• − ŝ•)θ•)1

m
• ‖2

v

= n−1ν
(
P
k

s ((ŝ(k)|†s)
2

• ) v
θ|s
• (s†v)2

•1
m
•

)
+ ν
(
P
k

s (|̂s(k)|†
j
|2|s• − ŝ•|

2)v2
• θ

2
• 1

m
•

)
(s• ∈M6=0,ν

(J ) by Assumption §07|02.01) and Pk
s ‖1{ŝ

2
• <k

−1}
• θ•1

m
• ‖2

v
= ν

(
P
k

s (ŝ2
• < k−1)v2

• θ
2
• 1

m
•

)
. �

§07|02.18 Lemma. Under Assumption §07|02.12 (dSIPnO) for all j ∈ J we have

(i) Pk
s ((ŝ(k)|†s)2

j ) 6 2(v s
j + 1) 6 4(1 ∨ v s|(2)

j )
1/2,
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(ii) Pk
s (ŝ2

j
< k−1) 6 4(1 ∨ v s

j )(1 ∨ ks2
j )
−1 6 4(1 ∨ v s|(2)

j )
1/2

(1 ∨ ks2
j )
−1, and

(iii) Pk
s (|sj − ŝ

j
|2 |̂s(k)|†

j
|2) 6 2(v s|(2)

j + v s
j )(1 ∨ ks2

j )
−1 6 4(1 ∨ v s|(2)

j )(1 ∨ ks2
j )
−1.

§07|02.19 Proof of Lemma §07|02.18. Given in the lecture. �

§07|02.20 Reminder. If Assumptions §07|01.11 and §07|01.13 are satisfied, then for all n,m ∈ N setting

R
m

n
(θ•, s•, v•) := ‖θ•1m|⊥• ‖2

v
+ n−1‖s†•1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n
(θ•, s•, v•) : m ∈ N

}
and R

◦
n
(θ•, s•, v•) := R

m◦n
n

(θ•, s•, v•) = min
{

R
m

n
(θ•, s•, v•) : m ∈ N

}
(07.29)

the OPE θ̂m
◦
n

• := s†• ĝm• with known s• ∈ L∞(ν) fulfils Pn
θ|s(‖θ̂m

◦
n

• − θ•‖2
v
) 6 (1 ∨ ‖v θ|s• ‖L∞(ν )) R◦

n
(θ•, s•, v•)

due to Proposition §07|01.17. Keep in mind that Assumption §07|01.11 is part of Assumption §07|02.12
and that Assumption §07|01.13 is part of Assumption §07|02.15. �

§07|02.21 Proposition (Upper bound). Let Assumptions §07|02.12 and §07|02.15 be satisfied. The thresh-
olded OPE θ̂m• = ŝ(k)|†

• ĝm
•
∈ L2

(v2
• ν) P

n⊗k
θ|s -a.s. for all n, k,m ∈ N fulfils

P
n⊗k
θ|s (‖θ̂m• − θ•‖2

v
) 6 4‖v s

• ∨ 1•‖L∞(ν )‖v θ|s• ∨ 1•‖L∞(ν ) R
m

n
(θ•, s•, v•)

+ 2(‖v s|(2)
• ‖

L∞(ν ) + 3‖v s
• ∨ 1•‖L∞(ν ))‖(1 ∨ ks2

• )
−1/2θ•1

m
• ‖2

v
(07.30)

6 4K
2

sK
2

θ|s R
m

n
(θ•, s•, v•) + 8K

4

s‖(1 ∨ ks2
• )
−1/2θ•1

m
• ‖2

v
. (07.31)

§07|02.22 Proof of Proposition §07|02.21. Given in the lecture. �

§07|02.23 Comment. For each m ∈ N we have

‖(1 ∨ ks2
• )
−1/2θ•1

m
• ‖2

v
6 ‖(1 ∨ ks2

• )
−1/2θ•‖2

v
= ‖(1 ∨ ks2

• )
−1/2θ•1

m
• ‖2

v
+ ‖(1 ∨ ks2

• )
−1/2θ•1

m|⊥
• ‖2

v

6 ‖(1 ∨ ks2
• )
−1/2θ•1

m
• ‖2

v
+ ‖θ•1m|⊥• ‖2

v
. (07.32)

Consequently, under the assumptions of Proposition §07|02.21 from (??) (Proof §07|02.22) follows

P
n⊗k
θ|s

(
‖θ̂m• − θ•‖2

v

)
6 2K

2

sK
2

θ|s R
m

n
(θ•, s•, v•) + 8K

4

s‖θ•(1 ∨ ks2
• )
−1/21m• ‖2

v

6 2K
2

sK
2

θ|s R
m

n
(θ•, s•, v•) + 8K

4

s‖θ•(1 ∨ ks2
• )
−1/2‖2

v

6 10K
4

sK
2

θ|s R
m

n
(θ•, s•, v•) + 8K

4

s‖θ•(1 ∨ ks2
• )
−1/21m• ‖2

v
.

Selecting m◦
n

:= arg min
{

Rm

n
(θ•, s•, v•) : m ∈ N

}
and R◦

n
(θ•, s•, v•) = Rm◦n

n
(θ•, s•, v•) as in (07.29)

(Reminder §07|02.20) we obtain

P
n⊗k
θ|s

(
‖θ̂m

◦
n

• − θ•‖2

v

)
6 2K

2

sK
2

θ|s R
◦
n
(θ•, s•, v•) + 8K

4

s‖θ•(1 ∨ ks2
• )
−1/2‖2

v
. (07.33)

We shall emphasise, that the upper bound consists (up to the constants) of the sum of the two
terms R◦

n
(θ•, s•, v•) and ‖θ•(1 ∨ ks2

• )
−1/2‖2

v
depending each on one of the sample sizes n and k only.

Moreover, R◦
n
(θ•, s•, v•) is the oracle rate (Property §07|01.20) in case of an in advanced known

Ms ∈ LM(J). �

§07|02.24 Corollary (GdiSM with noisy operator §07|02.05 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2Ḃ•, s• + k−1/2Ẇ•) ∼ N

n⊗k
θ|s = N

n

θ|s ⊗ N
k

s as in Model §07|02.05, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ• ∼ N
⊗N
(0,1) are independent, s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2.
Given v• ∈ R

N

\0 and θ• ∈ `2(v
2
• ) the (infeasible) thresholded OPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ `2(v

2
• ) with

oracle dimension m◦
n

as in (07.29) satisfies

N
n⊗k
θ|s (‖θ̂m

◦
n

• − θ•‖2

v
) 6 4R

◦
n
(θ•, s•, v•) + 12‖(1 ∨ ks2

• )
−1/2θ•‖2

v
∀n, k ∈ N (07.34)

where R◦
n
(θ•, s•, v•) is the oracle rate in a GdiSM §07|01.03 (see Corollary §07|01.22).
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§07|02.25 Proof of Corollary §07|02.24. Given in the lecture. �

§07|02.26 Corollary (diSM with noisy operator §07|02.07 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ Pn⊗k

θ|s|σ |ξ = Pn
θ|s|σ ⊗ Pk

s|ξ as in Model §07|02.07, where ε̇• and
η̇• satisfy (iSM1) and (diSMnO1) with Kσ := ‖σ•‖`∞ ∨ 1 ∈ R>1 and Kξ := ‖ξ•‖`∞ ∨ 1 ∈ R>1,
respectively, s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Given v• ∈ R
N

\0 and
θ• ∈ `2(v

2
• ) the (infeasible) thresholded OPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ `2(v

2
• ) with oracle dimension m◦

n
as

in (07.29) satisfies

Pn⊗k
θ|s|σ |ξ(‖θ̂

m◦n
• − θ•‖2

v
) 6 4K

2

σK
2

ξ R
◦
n
(θ•, s•, v•) + 8K

4

ξ ‖(1 ∨ ks2
• )
−1/2θ•‖2

v
∀n, k ∈ N (07.35)

where R◦
n
(θ•, s•, v•) is the oracle rate in a diSM §07|01.06 (see Corollary §07|01.24).

§07|02.27 Proof of Corollary §07|02.26. Given in the lecture. �

§07|02.28 Corollary (dieMM with noisy operator §07|02.09 continued). Consider independent noisy versions
ĝ
•

= g
•

+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇• defined on (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

θ|s = P
⊗n
θ|s ⊗ P⊗ks ) as in

Model §07|02.09, where ψ
•
, ϕ

•
∈ M(Z ⊗J ) satisfy (dieMM1)–(dieMM3) (Model §07|01.08) and

(dieMMnO1)–(dieMMnO2) (Model §07|02.09) with vθ|s|ψ, vs|ϕ ∈ R>1, respectively, s• ∈ M6=0,ν
(J ) ∩

L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Given Assumption §07|02.15 the (infeasible)
thresholded OPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ L2

(v2
• ν) with oracle dimension m◦

n
as in (07.29) satisfies

P
n⊗k
θ|s (‖θ̂m

◦
n

• − θ•‖2

v
) 6 4vθ|s|ψvs|ϕ R

◦
n
(θ•, s•, v•) + 8v2

s|ϕ ‖(1 ∨ ks2
• )
−1/2θ•‖2

v
∀n, k ∈ N (07.36)

where R◦
n
(θ•, s•, v•) is the oracle rate in a dieMM §07|01.08 (see Corollary §07|01.26).

§07|02.29 Proof of Corollary §07|02.28. Given in the lecture. �

§07|02.30 Illustration. We illustrate the last results considering usual behaviour for θ•, s•, v• ∈ M6=0,ν
(J ).

We distinguish again the two cases (p) and (np) in Illustration §07|01.28, where in case (p) the
term R◦

n
(θ•, s•, v•) is parametric, that is, nR◦

n
(θ•, s•, v•) = O(1), in case (np) it is nonparametric, i.e.

limn→∞ nR◦
n
(θ•, s•, v•) = ∞. In case (np) we consider again the three specifications (o-m), (o-s)

and (s-m) introduced in Illustration §07|01.28 where also in Table 01 [§07] the order of the oracle
dimension m◦

n
and the oracle rate R◦

n
(θ•, s•, v•) as n → ∞ are given. The next table depict the

oracle rate R◦
n
(θ•, s•, v•) and the rate of the additional term ‖(1 ∨ ks2

• )
−1/2θ•‖2

v
as n, k →∞:

Table 05 [§07]

Order of R◦
n
(θ•, s•, v•) and ‖(1 ∨ ks2

• )
−1/2θ•‖2

v
as n, k →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0)

v2j = j2v θ2j s2j R◦
n
(θ•, s•, v•) θ2j v

2
j s−2j θ2j v

2
j ‖(1 ∨ ks2

• )
−1/2θ•‖2

v

(o-m) v ∈ (−1/2− t, a) j−2a−1 j−2t n−
2(a−v)
2a+2t+1 j−2(a−v)−1 j2(t+v−a)−1

a− v < t k−
a−v
t

a− v = t (k/ log k)−1

a− v > t k−1

(o-s) a− v ∈ R>0 j−2a−1 e−j
2t

(log n)−
a−v
t j−2(a−v)−1 j−2(a−v)−1ej

2t

(log k)−
a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t n−1(log n)
2(t+v)+1

2a j2ve−j
2a

j2(t+v)e−j
2a

k−1

We note that in case (o-m) and (s-m) for v + t < −1/2 the oracle rate R◦
n
(θ•, s•, v•) is parametric. �
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§07|02|02|02 Maximal global v-risk

§07|02.31 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Q,Z, . . . }
we write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing
and non-increasing. If in addition an →∞ and bn → 0 as n→∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ L∞(ν) we set w(0) := ‖w•‖L∞(ν ) and w(•) = (w(j) := ‖w•1

j |⊥
• ‖L∞(ν ))j∈N,

where by construction w(•) ∈ (R>0)N↘ . �

§07|02.32 Assumption. Consider weights a•, t•, v• ∈ M>0,ν
(J ) (i.e. ν(Na) = ν(Nt ) = 0 = ν(Nv)), such that

a•, t• ∈ L∞(ν), (av)• = a•v• ∈ L∞(ν), (av)(•) ∈ (R>0)N↓0 , and t†•1
m
• ,1

m
• ∈ L2

(v2
• ν) for all m ∈ N. �

§07|02.33 Reminder. Under Assumption §07|02.32 we have Ja = La
2
(ν) = dom(Ma†•

) = Ja• ⊆ J and the
three measures ν , a2|†

• ν and v2
• ν dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). We consider Ja endowed with ‖·‖a† = ‖Ma†·‖J and given a constant
r ∈ R>0 the ellipsoid Ja,r := {h• ∈ Ja : ‖h•‖a† 6 r} ⊆ Ja. Since (av)• ∈ L∞(ν), and hence
(av)(m) := ‖(av)•1

m|⊥
• ‖L∞(ν ) ∈ R>0 for each m ∈ N we have Ja ⊆ L2

(v2
• ν) (Property §04|02.11), and

‖θ•1m|⊥• ‖v 6 r (av)(m) for all θ• ∈ Ja,r (Lemma §04|02.13). Let in addition Ms ∈ Mt,d satisfy a link
condition as in Definition §04|03.05 with weights t• ∈ M>0,ν

(J ) ∩ L∞(ν), and radius d ∈ R>0. We
set (t†v)• := (t†jvj)j∈J = t†•v• ∈ M(J ). Obviously, for each m ∈ N the condition t†•1

m
• ∈ L2

(v2
• ν)

(due to Assumption §07|02.32) implies s†•1m• ∈ L2
(v2
• ν) too. Consequently, if Assumption §07|02.32,

θ• ∈ Ja,r and Ms ∈ Mt,d are satisfied, then Assumption §07|02.15 is also fulfilled. Keep in mind if
Assumptions §07|01.11 and §07|01.30 are satisfied, then for n,m ∈ N setting

R
m

n
(a•, t•, v•) := [(av)2

(m) ∨ n−1‖t†•1m• ‖2

v
], m?

n
:= arg min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
and R

?

n
(a•, t•, v•) := R

m?
n

n
(a•, t•, v•) = min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
(07.37)

for each Ms ∈ Mt,d known in advance, for all θ• ∈ Ja,r , and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J, and
for each n ∈ N the OPE θ̂m

?
n

• := s†• ĝm
?
n

•
∈ L2

(v2
• ν) fulfils

P
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
) 6 (‖v θ|s• ‖L∞(ν )d

2
+ r2) R

?

n
(a•, t•, v•) ∀n ∈ N.

due to Corollary §07|01.35. We shall emphasise that Assumptions §07|02.12 and §07|02.32 contains
Assumptions §07|01.11 and §07|01.30, respectively. �

§07|02.34 Proposition (Upper bound). Let Assumptions §07|02.12 and §07|02.32 be satisfied. If Ms• ∈ Mt,d

with d ∈ R>0, and θ• ∈ Ja,r with r ∈ R>0, then the thresholded OPE θ̂m• = ŝ(k)|†
• ĝm

•
∈ L2

(v2
• ν)

P
n⊗k
θ|s -a.s. for all n, k,m ∈ N fulfils

P
n⊗k
θ|s (‖θ̂m• − θ•‖2

v
) 6 (4‖v s

• ∨ 1•‖L∞(ν )‖v θ|s• ∨ 1•‖L∞(ν )d
2

+ r2) R
m

n
(a•, t•, v•)

+ 2(‖v s|(2)
• ‖

L∞(ν ) + 3‖v s
• ∨ 1•‖L∞(ν ))d

2
r2‖(1 ∨ kt2•)−1(av)2

• ‖L∞(ν ) (07.38)

6 (4K
2

sK
2

θ|sd
2

+ r2) R
m

n
(a•, t•, v•) + 8K

4

sd
2
r2‖(1 ∨ kt2• )−1(av)2

• ‖L∞(ν ). (07.39)

§07|02.35 Proof of Proposition §07|02.34. Given in the lecture. �

§07|02.36 Remark. If in addition there exists v ∈ R>0 satisfying v > (Ks ∨ Kθ|s) for all θ• ∈ Ja,r and
Ms ∈ Mt,d then the maximal global v-risk of the thresholded OPE θ̂m

?
n

• with optimally chosen
dimension m?

n
:= arg min

{
Rm

n
(a•, t•, v•) : m ∈ N

}
and R?

n
(a•, t•, v•) = min

{
Rm

n
(a•, t•, v•) : m ∈ N

}
as in (07.37) fulfils

sup
{
P
n⊗k
θ|s ‖θ̂

m?
n

• − θ•‖2

v
: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 (4v4d

2
+ r2 + 8v4r2d

2
) R

?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2• )−1‖
L∞(ν ) for all n, k ∈ N.
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Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, t•, v•) = o(1) as n → ∞ since

(t†v)•1
m
• ∈ L∞(ν) for all m ∈ N and (av)(m) = o(1) as m → ∞ by Assumption §07|02.32.

Moreover, we have ‖(av)2
• (1 ∨ kt2• )−1‖

L∞(ν ) = o(1) as m → ∞ by dominated convergence. Note
that the dimension m?

n
:= m?

n
(a•, t•, v•) as defined in (07.37) does depend neither on the unknown

parameter of interest θ• nor on the unknown operator Ms but on the classes Ja,r and Mt,d only, and
thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• and Ms• is known in advance, then
the thresholded OPE θ̂m

?
n

• is a feasible estimator. �

§07|02.37 Corollary (GdiSM with noisy operator §07|02.05 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2Ḃ•, s• + k−1/2Ẇ•) ∼ N

n⊗k
θ|s = N

n

θ|s ⊗ N
k

s as in Model §07|02.05, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ• ∼ N
⊗N
(0,1) are independent, s• ∈ R

N

\0 ∩ `∞, θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2.
Under Assumption §07|02.32 the thresholded OPE θ̂m

?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ `2(v

2
• ) with dimension m?

n
as

in (07.37) satisfies

sup
{

N
n⊗k
θ|s (‖θ̂m

?
n

• − θ•‖2

v
): θ• ∈ `a,r2

,Ms ∈ Mt,d

}
6 Cr,d R

?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2•)−1‖`∞ (07.40)

with constant Cr,d = r2 + 4d2 + 12r2d2.

§07|02.38 Proof of Corollary §07|02.37. Given in the lecture. �

§07|02.39 Corollary (diSM with noisy operator §07|02.07 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ Pn⊗k

θ|s|σ |ξ = Pn
θ|s|σ ⊗ Pk

s|ξ as in Model §07|02.07, where ε̇• and η̇•
satisfy (iSM1) and (diSMnO1) with Kσ := ‖σ•‖`∞∨1 ∈ R>1 and Kξ := ‖ξ•‖`∞∨1 ∈ R>1, respectively,
s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Under Assumption §07|02.32 the
thresholded OPE θ̂m

?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ `2(v

2
• ) with dimension m?

n
as in (07.37) satisfies

sup
{

Pn⊗k
θ|s|σ |ξ(‖θ̂

m?
n

• − θ•‖2

v
): θ• ∈ `a,r2

,Ms ∈ Mt,d

}
6 Cr,d,σ,ξ R

?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2•)−1‖`∞ (07.41)

with constant Cr,d,σ,ξ = r2 + 4K2

ξK
2

σd
2 + 8K4

ξr
2d2.

§07|02.40 Proof of Corollary §07|02.39. Given in the lecture. �

§07|02.41 Corollary (dieMM with noisy operator §07|02.09 continued). Consider independent noisy versions
ĝ
•

= g
•

+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇• defined on (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

θ|s = P
⊗n
θ|s ⊗ P⊗ks ) as in

Model §07|02.09, where ψ
•
, ϕ

•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM3) (Model §07|01.08) and

(dieMMnO1)–(dieMMnO2) (Model §07|02.09) with vθ|s|ψ, vs|ϕ ∈ R>1, respectively, s• ∈ M6=0,ν
(J ) ∩

L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ J. Under Assumption §07|02.32 the thresholded
OPE θ̂m

?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ L2

(v2
• ν) with dimension m?

n
as in (07.37) satisfies

sup
{

Pn⊗k
θ|s|σ |ξ(‖θ̂

m?
n

• − θ•‖2

v
): θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 Ca,r,t,d R

?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2•)−1‖`∞ (07.42)

with constant Ca,r,t,d = r2 + 4d2 sup
{
vθ|s|ψvs|ϕ: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
+ 8r2d2 sup

{
v2
s|ϕ: Ms ∈ Mt,d

}
.

§07|02.42 Proof of Corollary §07|02.41. Given in the lecture. �

§07|02.43 Illustration. We illustrate the last results considering usual behaviour for a•, t•, v• ∈ M6=0,ν
(J ).

We distinguish again the two cases (p) and (np) in Illustration §07|01.44, where in case (p) the
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term R?

n
(a•, t•, v•) is parametric, that is, nR?

n
(a•, t•, v•) = O(1), in case (np) it is nonparametric,

i.e. limn→∞ nR?

n
(a•, t•, v•) = ∞. In case (np) we consider again three specifications similar to

(o-m), (o-s) and (s-m) introduced in Illustration §07|01.44 where also in Table 02 [§07] the order of
the dimension m?

n
and the rate R?

n
(a•, t•, v•) as n → ∞ are given. The next table depict the rate

R?

n
(a•, t•, v•) and the additional term ‖(1 ∨ kt2•)−1(av)2

• ‖L∞(ν ) as n, k →∞:

Table 06 [§07]

Order of R?

n
(a•, t•, v•) and ‖(1 ∨ kt2• )−1(av)2

• ‖L∞(ν ) as n, k →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0)

v2j = j2v a2j t2j R?

n
(a•, t•, v•) (av)2j t−2j (av)2j ‖(1 ∨ kt2• )−1(av)2

• ‖L∞(ν )

(o-m) v ∈ (−1/2− t, a) j−2a j−2t n−
2(a−v)
2a+2t+1 j−2(a−v) j2(t+v−a)

a− v 6 t k−
a−v
t

a− v > t k−1

(o-s) a− v ∈ R>0 j−2a e−j
2t

(log n)−
a−v
t j−2(a−v) j2(v−a)ej

2t

(log k)−
a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t n−1(log n)
2(t+v)+1

2a j2ve−j
2a

j2(t+v)e−j
2a

k−1

We note that in case (o-m) and (s-m) for v + t < −1/2 the rate R?

n
(a•, t•, v•) is parametric. �

§07|02|03 Local and maximal local φ-risk

Secondly, we measure the accuracy of the tOPE θ̂m• := ŝ(k)|†
• ĝm

•
of θm• = s†•gm• ∈ J1m• with

g
•

= s•θ• ∈ dom(Ms†) and s• ∈ M6=0,ν
(J ) ∩ L∞(ν) by the mean of its local φ-error introduced in

§04|03|02, i.e. its φ-risk.

§07|02.44 Reminder. If φ
•
∈M6=0,ν

(J ) and θ• ∈ dom(φν), then for each m ∈ N we have θm• ∈ dom(φν) too
and |φν(θ•)− φν(θm• )| = o(1) as m →∞ (Property §04|03.13). �

§07|02.45 Assumption. Let (ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ P

n⊗k
θ|s := P

n
θ|s ⊗ Pk

s be independent noisy
versions satisfying Assumption §07|02.01. In addition
(dSIPl1) ε̇• admit a covariance operator, say Γθ|s ∈ L>(J), i.e. ε̇• ∼ P

(0•,Γθ|s)
, K2

θ|s := 1 ∨ ‖Γθ|s‖L(J)
,

(dSIPl2) ε̇•1
m
• ∈ J = L2

(ν) P
n
θ|s -a.s. for each m ∈ N, and

(dSIPnO) v s|(2)
• := P

k
s (η̇4

• ) := (v s|(2)
j := P

k
s (η̇4

j
))j∈J ∈ L∞(ν), K4

s := 1 ∨ ‖v s|(2)
• ‖

L∞(ν ).

Moreover, from (dSIPnO) (i.e. v s|(2)
• = P

k
s (η̇4

• ) ∈ L∞(ν)) follows Pk
s (η̇2

j
) =: v s

j 6 (v s|(2)
j )1/2 for ν -a.e.

j ∈ J , and hence ‖v s
• ∨ 1•‖L∞(ν ) 6 K2

s . �

§07|02.46 Notation. Since ‖ŝ(k)|†
• ‖L∞(ν ) 6 k1/2 (Notation §07|02.03), s• ∈ L∞(ν) and 1m• ∈ L2

(ν) = J (using
ν(JmK) ∈ R>0 by Assumption §07|00.02) for all m ∈ N, for (ŝ(k)|†s)• := ŝ(k)|†

• s• ∈ M(A ⊗J ) we
have (ŝ(k)|†s)•1

m
• ∈ L∞(ν) for all m ∈ N too. If in addition 1m• ∈ L2

(φ2

•
ν) for all m ∈ N then for

(ŝ(k)|†φ)• := ŝ(k)|†
• φ

•
∈M(A ⊗J ) we also have (ŝ(k)|†φ)•1

m
• ∈ J for all m ∈ N. �

§07|02.47 Comment. Under Assumption §07|02.45 and φ
•
∈ M6=0,ν

(J ) if 1m• ∈ L2
(φ2

•
ν) for all m ∈ N

then we have ŝ(k)|†
• ε̇•1

m
• ∈ dom(φν) P

n⊗k
θ|s -a.s. (since ν(|(ŝ(k)|†φ)•ε̇•1

m
• |) 6 ‖(ŝ(k)|†φ)•1

m
• ‖J‖ε̇•1

m
• ‖J ∈ R>0

P
n⊗k
θ|s -a.s.). If in addition θ• ∈ dom(φν), and hence θm• ∈ dom(φν) (Property §04|03.13), then it

follows

θ̂
m

• = ŝ(k)|†
• ĝ

•
1m• = n−1/2 ŝ(k)|†

• ε̇•1
m
• + (ŝ(k)|†s)•θ

m
• ∈ dom(φν) P

n⊗k
θ|s -a.s.. (07.43)

If J ⊆ Z (at most countable) and νJ is the counting measure over the index set J then As-
sumption §01|01.04 and (dSIPl1) (i.e. ε̇• ∼ P(0•,Γθ|s)

) implies v θ|s• = P
n
θ|s(|ε̇•|2) ∈ L∞(νJ ) and hence the
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additional assumption (dSIPl2) ε̇•1
m
• ∈ J = L2

(νJ ) P
n
θ•|s•-a.s.. However, the last implication does

generally not hold, if J ∈ {R,R>0} for example. �

§07|02|03|01 Local φ-risk

§07|02.48 Assumption. Let φ
•
∈M6=0,ν

(J ), θ• ∈ dom(φν), s†•1m• ,1
m
• ∈ L2

(φ2

•
ν) for m ∈ N be satisfied. �

§07|02.49 Definition. Under Assumptions §07|02.45 and §07|02.48for m ∈ N the local φ-risk of a thresh-
olded OPE θ̂m• = ŝ(k)|†

• ĝm
•

= ŝ†• 1
{ŝ2• >k−1}
• ĝ

•
1m• ∈ dom(φν) P

n⊗k
θ|s -a.s. satisfies

P
n⊗k
θ|s (|φν(θ̂

m

• − θ•)|2) = P
n⊗k
θ|s (|ν((ŝ(k)|†φ)•(ĝ• − g•)1

m
• )|2)

+ P
k

s (|ν(((ŝ(k)|†s)•1
m
• − 1•)φ•θ•)|

2). (07.44)

with variance Pn⊗k
θ|s (|ν((ŝ(k)|†φ)•(ĝ• − g•)1

m
• )|2) and bias Pk

s (|ν(((ŝ(k)|†s)•1
m
• − 1•)φ•θ•)|2). �

§07|02.50 Property. Under Assumptions §07|02.45 and §07|02.48 (exploiting the independence of (ŝ(k)|†φ)•
and ε̇•, ε̇• ∼ P

(0•,Γθ|s)
with Γθ|s ∈ L>(J), and (ŝ(k)|†φ)•1

m
• ∈ L2

(ν)) we have

nP
n⊗k
θ|s (|ν((ŝ(k)|†φ)•(ĝ• − g•)1

m
• )|2) = P

n⊗k
θ|s (|ν((ŝ(k)|†φ)•ε̇•1

m
• )|2)

= P
k

s 〈Γθ|s((ŝ(k)|†φ)•1
m
• ), (ŝ(k)|†φ)•1

m
• 〉J 6 ‖Γθ|s‖L(J)

ν(P
k

s• (|̂s(k)|†
• |2)φ

2

•
1m• ).

Since s• ∈M6=0,ν
(J ) and s†•1

m
• ∈ L2

(φ2

•
ν) the last bound together with Lemma §07|02.18 (i) implies

nP
n⊗k
θ|s (|ν((ŝ(k)|†φ)•(ĝ• − g•)1

m
• )|2) 6 ‖Γθ|s‖L(J)

ν(P
k

s ((ŝ(k)|†s)
2

• )(s†φ)2
•1

m
• )

6 ‖Γθ|s‖L(J)
2(‖v s

• ‖L∞(ν ) + 1)‖s†•1m• ‖2

φ
6 ‖Γθ|s‖L(J)

4‖v s
• ∨ 1•‖L∞(ν )‖s†•1m• ‖2

φ
. (07.45)

Moreover, assuming θ• ∈ dom(φν) and hence θ•1m• ∈ dom(φν), we obtain (using ŝ(k)|†
• ŝ• = 1{ŝ

2
• <k

−1}
•

and applying the generalised Minkowski inequality)

1
3
P
k

s

(
|ν(((ŝ(k)|†s)•1

m
• − 1•)φ•θ•)|

2
)
− |φν(θ•1

m|⊥
• )|2

6 Pk

s (|ν(ŝ(k)|†
• (s• − ŝ•)φ•θ•1

m
• )|2) + P

k

s (|ν(1{ŝ
2
• <k

−1}
• φ

•
θ•1

m
• )|2)

6
∣∣ν(|φ

•
θ•1

m
• |(P

k

s (|s• − ŝ•|
2|̂s(k)|†

• |
2
))

1/2)∣∣2 + |ν
(
|φ
•
θ•1

m
• |(P

k

s (ŝ2
• < k−1))

1/2)|2
6 2(‖v s|(2)

• ‖
L∞(ν ) + ‖v s

• ‖L∞(ν ) + 2‖v s
• ∨ 1•‖L∞(ν ))‖θ•1m• (1 ∨ ks2

• )
−1/2‖2

L1(|φ• |ν )
(07.46)

where the last inequality follows from Lemma §07|02.18 (ii) and (iii). �

§07|02.51 Reminder. If Assumptions §07|01.46 and §07|01.48 are satisfied then for all m,n ∈ N setting

R
m

n
(θ•, s•, φ•) := |φν(θ•1

m|⊥
• )|2 + n−1‖s†•1m• ‖2

φ
•

, m◦
n

:= arg min
{

R
m

n
(θ•, s•, φ•) : m ∈ N

}
and R

◦
n
(θ•, s•, φ•) := R

m◦n
n

(θ•, s•, φ•) := min
{

R
m

n
(θ•, s•, φ•) : m ∈ N

}
(07.47)

the OPE θ̂m
◦
n

• := s†• ĝm• with known s• ∈ L∞(ν) fulfillsPn
θ|s(|φν(θ̂m

◦
n

• −θ•)|2) 6 (1∨‖Γθ|s‖L(J)
)R◦

n
(θ•, s•, φ•)

due to Proposition §07|01.51. Keep in mind that Assumption §07|01.46 is part of Assumption §07|02.45
and that Assumption §07|01.48 is part of Assumption §07|02.48. �

§07|02.52 Proposition (Upper bound). Let Assumptions §07|02.45 and §07|02.48 be satisfied. The thresh-
olded OPE θ̂m• = ŝ(k)|†

• ĝm
•
∈ dom(φν) P

n⊗k
θ|s -a.s. for all n, k,m ∈ N fulfills

P
n⊗k
θ|s (|φν(θ̂

m

• − θ•)|2) 6 4(‖Γθ|s‖L(J)
∨ 1)‖v s

• ∨ 1•‖L∞(ν )R
m

n
(θ•, s•, φ•)

+ 6(‖v s|(2)
• ‖

L∞(ν ) + 3‖v s
• ∨ 1•‖L∞(ν ))‖θ•1m• (1 ∨ ks2

• )
−1/2‖2

L1(|φ• |ν )
(07.48)

6 4K
2

θ|sK
2

s R
m

n
(θ•, s•, φ•) + 24K

4

s ‖θ•1m• (1 ∨ ks2
• )
−1/2‖2

L1(|φ• |ν )
. (07.49)
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§07|02.53 Proof of Proposition §07|02.52. Given in the lecture. �

§07|02.54 Comment. Selecting m◦
n

:= arg min
{

Rm

n
(θ•, s•, φ•) : m ∈ N

}
and R◦

n
(θ•, s•, v•) = Rm◦n

n
(θ•, s•, φ•) as in

(07.47) (Reminder §07|02.51) from Proposition §07|02.52 we obtain immediately

P
n⊗k
θ|s (|φν(θ̂

m◦n
• − θ•)|2) 6 4K

2

sK
2

θ|s R
◦
n
(θ•, s•, φ•) + 24K

4

s‖θ•1m
◦
n

• (1 ∨ ks2
• )
−1/2‖2

L1(|φ• |ν )
. (07.50)

We shall emphasise, that R◦
n
(θ•, s•, φ•) is the oracle rate (Property §07|01.55) if Ms ∈ LM(J) is known

in advance. Furthermore, for each m ∈ N we have

‖θ•1m• (1 ∨ ks2
• )
−1/2‖

L1(|φ• |ν ) 6 ‖θ•(1 ∨ ks2
• )
−1/2‖

L1(|φ• |ν )

= ‖θ•(1 ∨ ks2
• )
−1/21m• ‖L1(|φ• |ν ) + ‖θ•(1 ∨ ks2

• )
−1/21m|⊥• ‖L1(|φ• |ν )

6 ‖θ•(1 ∨ ks2
• )
−1/21m• ‖L1(|φ• |ν ) + ‖θ•1m|⊥• ‖L1(|φ• |ν ). (07.51)

Consequently, under the assumptions of Proposition §07|02.52 from (??) (Proof §07|02.53) follows

P
n⊗k
θ|s (|φν(θ̂

m

• − θ•)|2) 6 4K
2

θ|sK
2

s R
m

n
(θ•, s•, φ•) + 24K

4

s ‖θ•1m• (1 ∨ ks2
• )
−1/2‖2

L1(|φ• |ν )

6 4K
2

θ|sK
2

s R
m

n
(θ•, s•, φ•) + 24K

4

s ‖θ•(1 ∨ ks2
• )
−1/2‖2

L1(|φ• |ν )

6 28K
4

sK
2

θ|s

(
‖θ•1m|⊥• ‖2

L1(|φ• |ν )
+ n−1‖s†•1m• ‖2

φ

)
+ 24Ks‖θ•1m• (1 ∨ ks2

• )
−1/2‖2

L1(|φ• |ν )
.

Selecting m�
n

:= arg min
{
‖θ•1m|⊥• ‖2

L1(|φ• |ν )
+ n−1‖s†•1m• ‖2

φ
: m ∈ N

}
we obtain

P
n⊗k
θ|s (|φν(θ̂

m�n
• − θ•)|2) 6 3K

1/2

s Kθ|s min
{
‖θ•1m|⊥• ‖2

L1(|φ• |ν )
+ n−1‖s†•1m• ‖2

φ
: m ∈ N

}
+ 24Ks‖θ•(1 ∨ ks2

• )
−1/2‖2

L1(|φ• |ν )
.

We shall emphasise, that the last upper bound consists (up to the constants) of the sum of the
two terms depending each on one of the sample sizes n and k only. However, the first term
min

{
‖θ•1m|⊥• ‖2

L1(|φ• |ν )
+ n−1‖s†•1m• ‖2

φ
: m ∈ N

}
is generally larger than the oracle rate R◦

n
(θ•, s•, φ•). �

§07|02.55 Corollary (GdiSM with noisy operator §07|02.05 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2Ḃ•, s• + k−1/2Ẇ•) ∼ N

n⊗k
θ|s = N

n

θ|s ⊗ N
k

s as in Model §07|02.05, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ• ∼ N
⊗N
(0,1) are independent, s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2.
Given φ

•
∈ RN\0 and θ• ∈ dom(φν

N
) the (infeasible) thresholded OPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ dom(φν

N
)

with oracle dimension m◦
n

as in (07.47) satisfies

N
n⊗k
θ|s (|φν

N
(θ̂

m◦n
• − θ•)|2) 6 4R

◦
n
(θ•, s•, φ•) + 36‖(1 ∨ ks2

• )
−1/2θ•‖2

`1(|φ
•
|)

(07.52)

where R◦
n
(θ•, s•, φ•) is the oracle rate in a GdiSM §07|01.03 (see Corollary §07|01.57).

§07|02.56 Proof of Corollary §07|02.55. Given in the lecture. �

§07|02.57 Corollary (diSM with noisy operator §07|02.07 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ Pn⊗k

θ|s|σ |ξ = Pn
θ|s|σ ⊗ Pk

s|ξ as in Model §07|02.07, where ε̇• and
η̇• satisfy (iSM1) and (diSMnO1) with Kσ := ‖σ•‖`∞ ∨ 1 ∈ R>1 and Kξ := ‖ξ•‖`∞ ∨ 1 ∈ R>1,
respectively, s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Given φ
•
∈ RN\0 and

θ• ∈ dom(φν
N
) the (infeasible) thresholded OPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ dom(φν

N
) with oracle dimension

m◦
n

as in (07.47) satisfies

Pn⊗k
θ|s|σ |ξ(|φνN(θ̂

m◦n
• − θ•)|2) 6 4K

2

σK
2

ξ R
◦
n
(θ•, s•, φ•) + 24K

4

ξ‖(1 ∨ ks2
• )
−1/2θ•‖2

`1(|φ
•
|)
∀n, k ∈ N (07.53)

where R◦
n
(θ•, s•, φ•) is the oracle rate in a diSM §07|01.06 (see Corollary §07|01.59).
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§07|02.58 Proof of Corollary §07|02.57. Given in the lecture. �

§07|02.59 Corollary (dieMM with noisy operator §07|02.09 continued). Consider independent noisy versions
ĝ
•

= g
•

+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇• defined on (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

θ|s = P
⊗n
θ|s ⊗ P⊗ks ) as in

Model §07|02.09, where ψ
•
, ϕ

•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM3) (Model §07|01.08) and

(dieMMnO1)–(dieMMnO2) (Model §07|02.09) with vθ|s|ψ, vs|ϕ ∈ R>1, respectively, s• ∈ M6=0,ν
(J ) ∩

L∞(ν), θ• ∈ J and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Given Assumption §07|02.48 the (infeasible)
tOPE θ̂m

◦
n

• = ŝ(k)|†
• ĝm

◦
n

•
∈ dom(φν) with oracle dimension m◦

n
as in (07.29) satisfies

P
n⊗k
θ|s (|φν

N
(θ̂

m◦n
• −θ•)|2) 6 4vθ|s|ψvs|ϕ R

◦
n
(θ•, s•, φ•)+24v2

s|ϕ‖(1 ∨ ks2
• )
−1/2θ•‖2

`1(|φ
•
|)
∀n, k ∈ N (07.54)

where R◦
n
(θ•, s•, φ•) is the oracle rate in a dieMM §07|01.08 (see Corollary §07|01.61).

§07|02.60 Proof of Corollary §07|02.59. Given in the lecture. �

§07|02.61 Illustration. We illustrate the last results considering usual behaviour for θ•, s•, φ• ∈ M6=0,ν
(J ).

We distinguish again the two cases (p) and (np) in Illustration §07|01.63, where in case (p) the
term R◦

n
(θ•, s•, φ•) is parametric, that is, nR◦

n
(θ•, s•, φ•) = O(1), in case (np) it is nonparametric, i.e.

limn→∞ nR◦
n
(θ•, s•, φ•) = ∞. In case (np) we consider again the three specifications (o-m), (o-s)

and (s-m) introduced in Illustration §07|01.63 where also in Table 03 [§07] the order of the oracle
dimension m◦

n
and the oracle rate R◦

n
(θ•, s•, φ•) as n → ∞ are given. The next table depict the

oracle rate R◦
n
(θ•, s•, φ•) and the rate of the additional term ‖(1 ∨ ks2

• )
−1/2θ•‖2

`1(|φ
•
|)

as n, k →∞:

Table 07 [§07]

Order of R◦
n
(θ•, s•, φ•) and ‖(1 ∨ ks2

• )
−1/2θ•‖2

`1(|φ
•
|)

as n, k →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0)

φ
j

= jv−1/2 θj s† R◦
n
(θ•, s•, φ•) θjφj s†j θjφj ‖(1 ∨ ks2

• )
−1/2θ•‖2

`1(|φ
•
|)

(o-m) v ∈ (−t, a) j−a−1/2 j−2t n−
a−v
a+t jv−a−1 jt+v−a−1

a− v < t k−
a−v
t

a− v = t k−1(log k)2

a− v > t k−1

(o-s) a− v ∈ R>0 j
−a−1/2 e−j

2t

(log n)−
a−v
t jv−a−1 jv−a−1ej

2t

(log k)−
a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t
(logn)

(t+v)
a

n jv−1/2e−j
2a

jt+v−1/2e−j
2a

k−1

We note that in case (o-m) and (s-m) for v < −t the oracle rate R◦
n
(θ•, s•, φ•) is parametric. �

§07|02|03|02 Maximal local φ-risk

§07|02.62 Assumption. Consider weights a•, t• ∈ M>0,ν
(J ) and φ

•
∈ M6=0,ν

(J ) (i.e. ν(Na) = ν(Nt ) = 0 =

ν(Nφ)), such that a•, t• ∈ L∞(ν), a• ∈ L2
(φ2

•
ν), and t†•1

m
• ,1

m
• ∈ L2

(φ2

•
ν) for all m ∈ N. �

§07|02.63 Reminder. Under Assumption §07|02.62 we have Ja = La
2
(ν) = dom(Ma†) = Ja• ⊆ J and the

three measures ν , a2|†
• ν and |φ

•
|ν dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). We consider Ja endowed with ‖·‖a† = ‖Ma†·‖J and given a constant r ∈
R>0 the ellipsoid Ja,r := {h• ∈ Ja : ‖h•‖a† 6 r} ⊆ Ja. Since a• ∈ L2

(φ2

•
ν), and hence ‖a•1m|⊥• ‖φ =

‖(aφ)•1
m|⊥
• ‖J ∈ R>0 for each m ∈ N (‖a•1m|⊥• ‖φ = o(1) as m → ∞ by dominated convergence)

we have Ja ⊆ dom(φν) (Property §04|02.23), and |φν(θ•1
m|⊥
• )| 6 r ‖a•1m|⊥• ‖φ for all θ• ∈ Ja,r

(Lemma §04|02.25). Let in addition Ms ∈ Mt,d satisfy a link condition as in Definition §04|03.05
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with weights t• ∈ M>0,ν
(J ) ∩ L∞(ν), and radius d ∈ R>0. We set (t†φ)• := (t†jφj )j∈J = t†•φ• ∈J .

Obviously, for m ∈ N the condition t†•1
m
• ∈ L2

(φ2

•
ν) due to Assumption §07|02.62 implies s†•1m• ∈

L2
(φ2

•
ν) too. Consequently, if Assumption §07|02.62, θ• ∈ Ja,r and Ms ∈ Mt,d are satisfied, then

Assumption §07|02.48 is also fulfilled. Keep in mind if Assumptions §07|01.48 and §07|01.64 are
satisfied, then for n,m ∈ N setting

R
m

n
(a•, t•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖t†•1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
and R

?

n
(a•, t•, φ•) := R

m?
n

n
(a•, t•, φ•) = min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
(07.55)

for all θ• = s†•g• ∈ Ja,r , known Ms ∈ Mt,d and n ∈ N the OPE θ̂m
?
n

• := s†• ĝm
?
n

•
fulfills

P
n

θ|s(|φν(θ̂
m?

n

• − θ•)|2) 6 (d
2‖Γθ|s‖L(J)

∨ r2) R
?

n
(a•, t•, φ•).

due to Corollary §07|01.69. We shall emphasise that Assumptions §07|02.45 and §07|02.62 contains
Assumptions §07|01.46 and §07|01.64, respectively. �

§07|02.64 Proposition Upper bound. Let Assumptions §07|02.45 and §07|02.62 be satisfied. If Ms ∈ Mt,d

with d ∈ R>0, and θ• ∈ Ja,r with r ∈ R>0, then for all n, k,m ∈ N the thresholded OPE
θ̂m• = ŝ(k)|†

• ĝm
•
∈ dom(φν) P

n⊗k
θ|s -a.s. fulfills

P
n⊗k
θ|s (|φν(θ̂

m

• − θ•)|2) 6 (3r2 ∨ 4(‖Γθ|s‖L(J)
∨ 1)‖v s

• ∨ 1•‖L∞(ν )d
2
)R

m

n
(a•, t•, φ•)

+ 6(‖v s|(2)
• ‖

L∞(ν ) + 3‖v s
• ∨ 1•‖L∞(ν ))d

2
r2‖(1 ∨ kt2•)−1/2a•1

m
• ‖2

φ
(07.56)

6 (3r2 ∨ 4K
2

θ|sK
2

sd
2
)R

m

n
(a•, t•, φ•) + 24K

4

s•
d

2
r2‖(1 ∨ kt2•)−1/2a•1

m
• ‖2

φ
. (07.57)

§07|02.65 Proof of Proposition §07|02.64. Given in the lecture. �

§07|02.66 Remark. Selecting m?
n

:= arg min
{

Rm

n
(a•, t•, φ•) : m ∈ N

}
and R?

n
(a•, t•, φ•) = Rm?

n

n
(a•, t•, φ•) as in

(07.55) (Reminder §07|02.63) we obtain

P
n⊗k
θ|s (|φν(θ̂

m?
n

• − θ•)|2) 6 (3r2 ∨ 4K
2

θ|sK
2

sd
2
) R

?

n
(a•, t•, φ•) + 24K

4

s•
d

2
r2‖(1 ∨ kt2•)−1/2a•‖2

φ
(07.58)

where R?

n
(a•, t•, φ•) is the rate (Corollary §07|01.69) if Ms ∈ LM(J) is known in advance. Furthermore,

for each m ∈ N we have

‖(1 ∨ kt2•)−1/2a•1
m
• ‖2

φ
6 ‖(1 ∨ kt2• )−1/2a•‖2

φ
= ‖(1 ∨ kt2• )−1/2a•1

m
• ‖2

φ
+ ‖(1 ∨ kt2• )−1/2a•1

m|⊥
• ‖2

φ

6 ‖(1 ∨ kt2• )−1/2a•1
m
• ‖2

φ
+ ‖a•1m|⊥• ‖2

φ
. (07.59)

Consequently, under the assumptions of Proposition §07|02.64 from (??) (Proof §07|02.65) follows
immediately

P
n⊗k
θ|s (|φν(θ̂

m

• − θ•)|2) 6 (3r2 ∨ 4K
2

θ|sK
2

sd
2
)R

m

n
(a•, t•, φ•) + 24K

4

s•
d

2
r2‖(1 ∨ kt2• )−1/2a•1

m
• ‖2

φ

6 (3r2 ∨ 4K
2

θ|sK
2

sd
2
)R

m

n
(a•, t•, φ•) + 24K

4

s•
d

2
r2‖(1 ∨ kt2•)−1/2a•‖2

φ

6 (3r2 ∨ 4K
2

θ|sK
2

sd
2

+ 24K
4

s•
d

2
r2)R

m

n
(a•, t•, φ•) + 24K

4

s•
d

2
r2‖(1 ∨ kt2•)−1/2a•1

m
• ‖2

φ

We shall emphasise, that the upper bound (07.58) consists (up to the constants) of the sum of
the two terms R?

n
(a•, t•, φ•) and ‖(1 ∨ kt2•)−1/2a•‖2

φ
depending each on one of the sample sizes n

and k only. If in addition there exists v ∈ R>0 satisfying v > (Kθ|s ∨ Ks) for all θ• ∈ Ja,r and
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Ms ∈ Mt,d then for all n, k ∈ N the maximal local φ-risk of the thresholded OPE θ̂m
?
n

• with
optimally choosen dimension m?

n
is bounded by

sup
{
P
n⊗k
θ|s (|φν(θ̂

m?
n

• − θ•)|2): θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 (3r2 ∨ 4K

2

θ|sK
2

sd
2

+ 24K
4

s•
d

2
r2) R

?

n
(a•, t•, φ•) ∨ ‖(1 ∨ kt2•)

−1/2a•‖2

φ
.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, t•, φ•) = o(1) as n → ∞ since

t†•1
m
• ∈ L2

(φ2

•
ν) for all m ∈ N and ‖a•1m|⊥• ‖2

φ
= o(1) as m → ∞ by Assumption §07|02.62.

Moreover, we have ‖(1 ∨ kt2•)−1/2a•‖2
φ

= o(1) as k → ∞ by dominated convergence. Note that
the dimension m?

n
:= m?

n
(a•, t•, φ•) does depend neither on the unknown parameter of interest θ•

nor on the unknown operator Ms but on the classes Ja,r and Mt,d only, and thus also the statistic
θ̂m

?
n

• . In other words, if the regularity of θ• and Ms is known in advance, then the OPE θ̂m
?
n

• is a
feasible estimator. �

§07|02.67 Corollary (GdiSM with noisy operator §07|02.05 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2Ḃ•, s• + k−1/2Ẇ•) ∼ N

n⊗k
θ|s = N

n

θ|s ⊗ N
k

s as in Model §07|02.05, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ• ∼ N
⊗N
(0,1) are independent, s• ∈ R

N

\0 ∩ `∞, θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2.
Under Assumption §07|02.62 the thresholded OPE θ̂m

?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ dom(φν

N
) with dimension m?

n

as in (07.55) satisfies

sup
{

N
n⊗k
θ|s (|φν

N
(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2
,Ms ∈ Mt,d

}
6 Cr,d R

?

n
(a•, t•, φ•) ∨ ‖(1 ∨ kt2•)

−1/2a•‖2

φ
. (07.60)

with constant Cr,d = 3r2 ∨ 4d2 + 36r2d2.

§07|02.68 Proof of Corollary §07|02.67. Given in the lecture. �

§07|02.69 Corollary (diSM with noisy operator §07|02.07 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•, s• + k−1/2η̇•) ∼ Pn⊗k

θ|s|σ |ξ = Pn
θ|s|σ ⊗ Pk

s|ξ as in Model §07|02.07, where ε̇• and η̇•
satisfy (iSM1) and (diSMnO1) with Kσ := ‖σ•‖`∞∨1 ∈ R>1 and Kξ := ‖ξ•‖`∞∨1 ∈ R>1, respectively,
s• ∈ R

N

\0 ∩ `∞ and θ• ∈ `2, and hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2. Under Assumption §07|02.62 the
thresholded OPE θ̂m

?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ dom(φν

N
) with dimension m?

n
as in (07.55) satisfies

sup
{

Pn⊗k
θ|s|σ |ξ(|φνN(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2
,Ms ∈ Mt,d

}
6 Cr,d,σ,ξ R

?

n
(a•, t•, φ•) ∨ ‖(1 ∨ kt2• )

−1/2a•‖2

φ
(07.61)

with constant Cr,d,σ,ξ = 3r2 ∨ 4K2

ξK
2

σd
2 + 24K4

ξr
2d2.

§07|02.70 Proof of Corollary §07|02.69. Given in the lecture. �

§07|02.71 Corollary (dieMM with noisy operator §07|02.09 continued). Consider independent noisy versions
ĝ
•

= g
•

+ n−1/2ε̇• and ŝ• = s• + k−1/2η̇• defined on (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

θ|s = P
⊗n
θ|s ⊗ P⊗ks ) as

in Model §07|02.09, where ψ
•
, ϕ

•
∈ M(Z ⊗J ) satisfies (dieMM1)–(dieMM3) and (dieMMnO1)–

(dieMMnO2) with vθ|s|ψ, vs|ϕ ∈ R>1, respectively, s• ∈M6=0,ν
(J )∩ L∞(ν), θ• ∈ J and hence g

•
= s•θ• ∈

dom(Ms†) ⊆ J. Under Assumption §07|02.62 the thresholded OPE θ̂m
?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ dom(φν

N
) with

dimension m?
n

as in (07.55) satisfies

sup
{

Pn⊗k
θ|s|σ |ξ(|φνN(θ̂

m?
n

• − θ•)|2): θ• ∈ Ja,r ,Ms ∈ Mt,d

}
6 Cr,d R

?

n
(a•, t•, φ•) ∨ ‖(1 ∨ kt2• )

−1/2a•‖2

φ
(07.62)

with constant Cr,d = 3r2 ∨ 4d2 sup
{
vθ|s|ψvs|ϕ: θ• ∈ Ja,r ,Ms ∈ Mt,d

}
+ 24r2d2 sup

{
v2
s|ϕ: Ms ∈ Mt,d

}
.
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§07|02.72 Proof of Corollary §07|02.71. Given in the lecture. �

§07|02.73 Illustration. We illustrate the last results considering usual behaviour for a•, t•, φ• ∈ M6=0,ν
(J ).

We distinguish again the two cases (p) and (np) in Illustration §07|02.73 where in case (p) the
term R?

n
(a•, t•, φ•) is parametric, that is, nR?

n
(a•, t•, φ•) = O(1), in case (np) it is nonparametric, i.e.

limn→∞ nR?

n
(a•, t•, φ•) =∞. In case (np) we consider again the three specifications (o-m), (o-s) and

(s-m) introduced in Illustration §07|01.78 where also in Table 04 [§07] the order of the dimension
m?

n
and the rate R?

n
(a•, t•, φ•) as n → ∞ are given. The next table depict the rate R?

n
(a•, t•, φ•) and

the additional term ‖(1 ∨ kt2•)−1/2a•‖2
φ

as n, k →∞ only:

Table 08 [§07]

Order of R?

n
(a•, t•, φ•) and ‖(1 ∨ kt2•)−1a•‖2

φ
as n, k →∞

(j ∈ J ) (a ∈ R>0) (t ∈ R>0)

φ2

j
= j2v−1 a2j t2j R?

n
(a•, t•, φ•) (aφ)2j t−2j (aφ)2j ‖(1 ∨ kt2• )−1/2a•‖2

φ

(o-m) v ∈ (−t, a) j−2a j−2t n−
a−v
a+t j−2(a−v)−1 j2(t+v−a)−1

a− v 6 t k−
a−v
t

a− v > t k−1

(o-s) a− v ∈ R>0 j−2a e−j
2t

(log n)−
a−v
t j2(v−a)−1 j2(v−a)−1ej

2t

(log k)−
a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t n−1(log n)
t+v
a j2v−1e−j

2a

j2(t+v)−1e−j
2a

k−1

We note that in case (o-m) and (s-m) for v < −t the rate R?

n
(a•, t•, φ•) is parametric. �

§08 (Generalised) Galerkin estimator

§08|00.01 Notation (Reminder). Consider J = `2 := L2
(ν
N
) = L2

(N, 2N, ν
N
) with counting measure ν

N
:=∑

j∈N δ{j}, surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2). For each T ∈ L(H,G)

and T•|• := VTU? ∈ L(`2) = L•|•(`2) (compare Notation §01|04.03) we identify the kernel (infinite

dimensional matrix) T•|• = (T
j ,jo

)j ,jo∈N ∈ R
N

2

and the map from `2 into itself given by

a• 7→ T•|•a• := (
∑
jo∈N

T
j |jo
ajo = 〈T

j |•, a•〉̀
2

= ν
N
(T

j ,•a•))j∈N

(compare Notation §01|05.01). Moreover, we denote by L
	
•|•(`2) the subset of all strictly positive

definite operator in L•|•(`2). For each T•|• ∈ L
	
•|•(`2) we denote its Moore-Penrose inverse by T†•|• : `2 ⊇

dom(T†•|•)→ `2 (see Definition §03|00.08). We denote byLR
•|•(`2) the subset of all injective A•|• ∈ L•|•(`2)

such that [A•|•]m ∈ R
(m,m) is regular for all m ∈ N. For each m ∈ N and A•|• ∈ L

R
•|•(`2), the inverse

[A•|•]
−1
m ∈ R

(m,m) of [A•|•]m ∈ R
(m,m) exists. Note that L	•|•(`2) ⊆ L

R
•|•(`2) (Lemma §05|01.22). �

§08|00.02 Assumption. For J = `2, surjective partial isometries U ∈ L(H, `2) and V ∈ L(G, `2) fixed and
presumed to be known in advance, the operator T ∈ L(H,G) satisfies either T•|• = VTU? ∈ L

	
•|•(`2) ⊆

L•|•(`2) = L(`2) or more generally T•|• = VTU? ∈ L
R
•|•(`2) ⊆ L•|•(`2) = L(`2). Let g

•
∈ dom(T†•|•) =

ran(T•|•), and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. �

§08|00.03 Reminder. Under Assumption §08|00.02 we consider T•|• ∈ L
	
•|•(`2) or more generally T•|• ∈ L

R
•|•(`2)

and g
•
∈ dom(T†•|•) = ran(T•|•), and hence θ• = T†•|•g• = T−1

•|• g• ∈ `2. For eachm ∈ N and A•|• ∈ L•|•(`2)

we write Am
•|• := M1mA•|•M1m ∈ L•|•(`2), which restricted to an operator fromRm (ran(M1m) = `21

m
• ) to

itself, can be represented by the matrix [A•|•]m ∈ R
(m,m) (see Notation §05|00.02). If [A•|•]

†
m ∈ R

(m,m)
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denotes the Moore-Penrose inverse of [A•|•]m (as linear map from R
m into itself), then the Moore-

Penrose inverse Am|†
•|• = (Am

•|•)
† ∈ L•|•(`2) of Am

•|• (see Definition §03|00.08), restricted to an operator
from R

m to itself can be represented by the matrix [A•|•]
†
m. In particular, if A•|• ∈ L

	
•|•(`2), i.e. [A•|•]m

is regular (invertible), and hence [A•|•]
†
m = [A•|•]

−1

m , then we have Am
•|•A

m|†
•|• = M1m = Am|†

•|• Am
•|•. For

T•|• ∈ L
	
•|•(`2) and m ∈ N we call any element θm• ∈ `21

m
• i.e. 0• = θm• (1•−1m• ) = θm• 1

m|⊥
• , satisfying

〈θm• ,T•|•θ
m
• 〉̀

2

− 2〈θm• , g•〉̀ 2

6 〈a•,T•|•a•〉̀
2

− 2〈a•, g•〉̀ 2

for all a• ∈ `21
m
•

a Galerkin solution in `21
m
• . Since T•|• ∈ L

	
•|•(`2) the Galerkin solution is uniquely determined

by [θm• ]m = [T•|•]
−1

m
[g
•
]
m
, and hence θm• = Tm|†

•|• g• (Lemma §05|01.03). More generally, under As-
sumption §08|00.02 with T•|• ∈ L

R
•|•(`2) we call the unique solution θm• = Tm|†

•|• g• of [T•|•]m[θm• ]m =

[g
•
]m generalised Galerkin solution (Definition §05|02.01). Keep in mind that L	•|•(`2) ⊆ L

R
•|•(`2)

(Lemma §05|01.22). �

§08|01 Non-diagonal statistical inverse problem

§08|01.01 Assumption. Consider a stochastic process ε̇• = (ε̇j)j∈N on a probability space (Ω,A ,P) sat-
isfying Assumption §01|01.04 (i.e. ε̇• ∈ M(A ⊗ 2N)) with mean zero (i.e. P(ε̇•) = (P(ε̇j))j∈N = 0•),
a sample size n ∈ N and let Assumption §08|00.02 be satisfied where T•|• ∈ L

	
•|•(`2) or T•|• ∈ L

R
•|•(`2)

is known in advance. For θ• ∈ `2 the observable noisy image with mean g
•

= T•|•θ• ∈ `2 takes the
form ĝ

•
= g

•
+ n−1/2ε̇•. We denote by Pn

θ|T the distribution of ĝ
•
. In addition

(nSIP) ε̇• admits a covariance operator, say Γθ|T ∈ L
>
•|•(`2) with ‖Γθ|T‖L(`2)

6 vθ|T ∈ R>1. �

§08|01.02 Definition. Under Assumption §08|01.01 for θ• ∈ `2 and T•|• ∈ L
R
•|•(`2) consider a noisy version

ĝ
•
∼ Pn

θ|T of g
•

= T•|•θ• ∈ dom(T†•|•). For each m ∈ N we call θ̂m• = Tm|†
•|• ĝ• = Tm|†

•|• ĝ•1
m
• = Tm|†

•|• ĝ
m
•

(generalised) Galerkin estimator (GE) of θ• = T†•|•g• = T−1

•|• g• ∈ `2. �

§08|01.03 Comment. The (generalised) Galerkin solution θm• = Tm|†
•|• g• ∈ `21

m
• does generally not cor-

respond to the orthogonal projection 1m|⊥• θ• = (1• − 1m• )θ•. Moreover, the approximation er-
ror sup

{
‖θj• − θ•‖`2 : j ∈ N>m

}
does generally not converge to zero as m → ∞ (compare Re-

mark §05|01.05). Here and subsequently, we will restrict ourselves to classes of solutions and
operators which ensure the convergence. Obviously, this is a minimal regularity condition for us
if we aim to estimate the Galerkin solution.

§08|01|01 Examples

§08|01.04 GniSM (§01|05.08 continued). Let Assumption §08|00.02 be satisfied where T•|• ∈ L
	
•|•(`2) or T•|• ∈

L
R
•|•(`2) is known in advance. We illustrate the (generalised) GE in a Gaussian non-diagonal inverse

sequence model (GniSM) as in §01|05.08. Here the observable stochastic process ĝ
•

= g
•

+

n−1/2Ḃ• ∼ N
n

θ|T is a noisy version of g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• ∈ Θ ⊆ `2 and Ḃ• ∼
N
⊗N
(0,1). Consequently, ĝ

•
admits a N

n

θ|T-distribution belonging to the family N
n

Θ×{T•|•}
:= (N

n

θ|T)θ•∈Θ .
Summarising the observations satisfy a statistical product experiment (R

N
,B

⊗N
,N

n

Θ×{T•|•}
) where

Θ ⊆ `2. �

§08|01.05 Reminder (GniSM §08|01.04 continued). Due to Property §07|01.04 the error process Ḃ• ∼ N
⊗N
(0,1)

admits as covariance operator Γθ|s = id`2 ∈ L	(`2) and hence Assumption §08|01.01 is satisfied. �

§08|01.06 niSM (§01|05.07 continued). Let Assumption §08|00.02 be satisfied where T•|• ∈ L
	
•|•(`2) or T•|• ∈

L
R
•|•(`2) is known in advanced. We illustrate the (generalised) GE in a Non-diagonal inverse se-

quence model (niSM) as in §01|05.07. Here the observable stochastic process ĝ
•
= g

•
+n−1/2ε̇• is a
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noisy version of g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• ∈ Θ ⊆ `2 and ε̇• ∼ ⊗j∈NP
ε̇j satisfying (iSM1)

and (iSM2) introduced in diSM §07|01.06. Under (iSM1) ĝ
•

admits a Pn
θ|T|σ-distribution belonging to

the family Pn
Θ×{T•|•}×Σ := (Pn

θ|T|σ)θ•∈Θ,σ•∈Σ . Summarising the observations satisfy a statistical product
experiment (R

N
,B

⊗N
,Pn

Θ×{T•|•}×Σ) where Θ ⊆ `2 and Σ ⊆ RN>0 ∩ `∞. �

§08|01.07 Reminder (niSM §08|01.06 continued). Due to Property §07|01.07 (i) under (iSM1) the process ε̇• ∼
⊗j∈NP

(0,σ2
j )

admits as covariance operator Γθ|s = Mσ2 ∈ LM(`2)∩L>(`2) and hence Assumption §08|01.01
is satisfied. �

§08|01.08 nieMM (§01|05.05 continued). Let Assumption §08|00.02 be satisfied where T•|• ∈ L
	
•|•(`2) or T•|• ∈

L
R
•|•(`2) is known in advanced. We illustrate the (generalised) GE in a Non-diagonal inverse empir-

ical mean model (nieMM) as in §01|05.05. Here the observable stochastic process ĝ
•
= g

•
+n−1/2ε̇•

is a noisy version of g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• = g
•
∈ Θ ⊆ `2, and error process

ε̇• = n1/2(P̂n(ψ•) − Pθ|T(ψ
•
)) ∈ M(Z

⊗n ⊗ 2N) satisfying Assumption §01|01.04. More precisely, on
a measurable space (Z,Z ) for T•|• ∈ L

R
•|•(`2) and for each θ• ∈ Θ ⊆ `2 there is a probability

measure Pθ|T ∈ W (Z ). Consider a stochastic process ψ
•

= (ψ
j
)j∈N ∈ M(Z ⊗ 2N) which similar

to (dieMM1)–(dieMM4) introduced in dieMM §07|01.08 in addition for T•|• ∈ L
R
•|•(`2) (or T•|• ∈ L

	
•|•(`2))

and for each θ• ∈ Θ ⊆ `2 satisfies
(nieMM1) ψ

j
∈ L1(Pθ|T) := L1(Z,Z ,Pθ|T) for all j ∈ N and Pθ|T(ψ

•
) = T•|•θ• = g

•
,

(dieMM2) for each m ∈ N we have (ψ
•
− Pθ|s(ψ•))1

m
• ∈ `∞ Pθ|T-a.s. due to (nieMM1),

(nieMM2) there is vθ|T|ψ ∈ R>1 such that ‖Pθ|T(ψ2

•
)‖`∞ 6 vθ|T|ψ and

Pθ|T
(
|ν
N
(h•ψ•)|

2
)
6 vθ|T|ψ‖h•‖2

`2
, ∀h• ∈ `2,

(nieMM3) v θ|T• := Pθ|T(ψ2

•
)− |Pθ|T(ψ

•
)|2 ∈ RN>0 ∩ `∞, ‖(v θ|T• )−1‖`∞ 6 vθ|T|ψ and

Pθ|T
(
|ν
N
(h•ψ•)|

2
)
> Pθ|T

(
|ν
N
(h•ψ•)|

2
)
−
∣∣Pθ|T(νN(h•ψ•)

)∣∣2 > v−1
θ|T|ψ‖h•‖2

`2
, ∀h• ∈ `2.

We consider a statistical product experiment (Z
n
,Z

⊗n
,P⊗nΘ×{T•|•} = (P⊗nθ|T )θ•∈Θ) as in an Empirical

mean function §01|01.10 where Θ ⊆ `2. �

§08|01.09 Reminder (nieMM §08|01.08 continued). Due to Property §07|01.09 (i) under (nieMM1) and (nieMM2)
the error process ε̇• = n1/2(P̂n(ψ•)−Pθ|T(ψ

•
)) ∈M(Z

⊗n ⊗ 2N) admits a covariance operator Γθ|T ∈ L>(`2)

and hence Assumption §08|01.01 is satisfied. �

§08|01|02 Global and maximal global v-risk

We measure first the accuracy of the (generalised) GE θ̂m• := Tm|†
•|• ĝ• of the (generalised) Galerkin

solution θm• = Tm|†
•|• g• ∈ `21

m
• with g

•
= T•|•θ• ∈ dom(T†•|•) by the mean of its global v-error

introduced in §05|01|01 and §05|02|01, i.e. its v-risk.

§08|01.10 Reminder. If v• ∈ R
N

\0 then we have v2
• 1

m
• ∈ `∞ and `21

m
• ⊆ `2(v

2
• ). Consequently, for each

θ• ∈ `2(v
2
• ) the (generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• satisfies θm• ∈ `2(v

2
• ) too. If in

addition CT := sup
{
‖MvT

m|†
•|• T•|•M1m|⊥

‖
L(`2)

: m ∈ N
}
∈ R>0 then ‖θm• − θ•‖v 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
‖θj• − θ•‖v: j ∈ N>m

}
= o(1) as m → ∞ (Property §05|01.24 and Prop-

erty §05|02.08). �

§08|01.11 Comment. Under Assumption §08|01.01 since θm• ,T
m|†
•|• 1

m
• ∈ `21

m
• for each m ∈ N we have

Tm|†
•|• ε̇• ∈ `21

m
• P

n
θ|T-a.s.. Indeed, ε̇• ∼ P

(0•,Γθ|T)
with Γθ|T ∈ L>(`2) by Assumption §08|01.01 (nSIP) implies
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P
n
θ|T(ε̇2

• ) ∈ `∞, hence ε̇•1
m
• ∈ `∞ P

n
θ|T-a.s. and ‖Tm|†

•|• ε̇•‖`2 6 ‖T
m|†
•|• 1

m
• ‖`2‖ε̇•1

m
• ‖`∞ ∈ R>0 P

n
θ|T-a.s..

Given v• ∈ R
N

\0 from `21
m
• ⊆ `2(v

2
• ) (Reminder §08|01.10) it follows

θ̂
m

• = T
m|†
•|• ĝ

•
= n−1/2T

m|†
•|• ε̇• + θ

m
• ∈ `21

m
• ⊆ `2(v

2
• ) P

n

θ|T-a.s.. �

§08|01|02|01 Global v-risk

§08|01.12 Assumption. Let v• ∈ R
N

\0 and θ• ∈ `2(v
2
• ) be satisfied. �

§08|01.13 Definition. Under Assumptions §08|01.01 and §08|01.12 the global v-risk of a (generalised) GE
θ̂m• = Tm|†

•|• ĝ• ∈ `21
m
• ⊆ `2(v

2
• ) P

n
θ|T-a.s. satisfies

P
n

θ|T(‖θ̂m• − θ•‖2

v
) = P

n

θ|T‖T
m|†
•|• (ĝ

•
− g

•
)‖2

v
+ ‖θm• − θ•‖2

v
(08.01)

with variance Pn
θ|T(‖Tm|†

•|• (ĝ
•
− g

•
)‖2

v
) = n−1P

n
θ|T(‖Tm|†

•|• ε̇•‖2
v
) and bias ‖θm• − θ•‖v. �

§08|01.14 Notation (Reminder). Let A ∈ L(`2) be a Hilbert-Schmidt operator, A ∈ HS(`2) for short, where
‖A‖2

HS
:= tr(A?A) = tr(AA?) ∈ R>0. If Γ ∈ L(`2) then tr(A?ΓA) 6 ‖Γ‖

L(`2)
tr(A?A) =

‖Γ‖
L(`2)
‖A‖2

HS
. For arbitrary A ∈ L(`2) we have MvA

m = Mm
v Am ∈ HS(`2). �

§08|01.15 Property. Under Assumptions §08|01.01 and §08|01.12 we have

P
n

θ|T(‖Tm|†
•|• ε̇•‖2

v
) = tr(MvT

m|†
•|• Γθ|T(T

m|†
•|• )

?
Mv) = tr([Mv]m[T•|•]

−1

m
[Γθ|T]m([T•|•]

−1

m
)
?
[Mv]m) (08.02)

and consequently Pn
θ|T(‖Tm|†

•|• (ĝ
•
− g

•
)‖2

v
) 6 n−1‖Γθ|T‖L(`2)

‖MvT
m|†
•|• ‖2

HS
∈ R>0. �

§08|01.16 Proposition (Upper bound). Under Assumptions §08|01.01 and §08|01.12 for all n,m ∈ N with
(generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• setting

R
m

n
(θ•,T•|•, v•) := ‖θm• − θ•‖2

v
+ n−1‖MvT

m|†
•|• ‖2

HS
, m◦

n
:= arg min

{
R
m

n
(θ•,T•|•, v•) : m ∈ N

}
and R

◦
n
(θ•,T•|•, v•) := R

m◦n
n

(θ•,T•|•, v•) = min
{

R
m

n
(θ•,T•|•, v•) : m ∈ N

}
(08.03)

we have Pn
θ|T(‖θ̂m

◦
n

• − θ•‖2
v
) 6 (1 ∨ ‖Γθ|T‖L(`2)

)R◦
n
(θ•,T•|•, v•) for all n ∈ N.

§08|01.17 Proof of Proposition §08|01.16. Given in the lecture. �

§08|01.18 Comment. Let A ∈ HS(`2) and Γ ∈ L	(`2) be invertible with inverse Γ−1 ∈ L	(`2). If we set
v := max(‖Γ‖

L(`2)
, ‖Γ−1‖

L(`2)
) ∈ R>0, then we have v−1‖A‖2

HS
6 tr(AΓA?) 6 v‖A‖2

HS
by using

Notation §08|01.14. �

§08|01.19 Oracle inequality. Under Assumptions §08|01.01 and §08|01.12 if in addition

1 6 max(‖Γθ|T‖L(`2)
, ‖Γ−1

θ|T ‖L(`2)
) 6 vθ|T ∈ R>1

is satisfied, then (08.03) (and Comment §08|01.18) implies

v−1
θ|T R

m

n
(θ•,T•|•, v•) 6 P

n

θ|T‖θ̂
m

• − θ•‖2

v
= n−1 tr(MvT

m|†
•|• Γθ|T(T

m|†
•|• )

−1
Mv) + ‖θm• − θ•‖2

v

6 vθ|TR
m

n
(θ•,T•|•, v•) ∀n,m ∈ N.

As a consequence we immediately obtain the following oracle inequality

v−1
θ|T R

◦
n
(θ•,T•|•, v•) 6 inf

m∈N
P
n

θ|T(‖θ̂m• − θ•‖2

v
) 6 Pn

θ|T(‖θ̂m
◦
n

• − θ•‖2

v
)

6 vθ|TR
◦
n
(θ•,T•|•, v•) 6 v2

θ|T inf
m∈N

P
n

θ|T(‖θ̂m• − θ•‖2

v
) ∀n ∈ N, (08.04)
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and, hence R◦
n
(θ•,T•|•, v•), m◦n and the statistic θ̂m

◦
n

• , respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant v2

θ|T). �

§08|01.20 Remark. Arguing similarly as in Remark §07|01.21 we note that ‖MvT
m|†
•|• ‖HS

∈ R>0 for all
m ∈ N and hence R◦

n
(θ•,T•|•, v•) = o(1) as n →∞, whenever ‖θm• − θ•‖v = o(1) as m →∞ (see

Reminder §08|01.10). Note that the oracle dimension m◦
n

:= m◦
n
(θ•,T•|•, v•) as defined in Proposi-

tion §08|01.16 depends on the unknown parameter of interest θ•, and thus also the oracle optimal
statistic θ̂m

◦
n

• . In other words θ̂m
◦
n

• is not a feasible estimator. �

§08|01.21 Corollary (GniSM §08|01.04 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|T as in Model §08|01.04,
where Ḃ• ∼ N

⊗N
(0,1), T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given

Assumption §08|01.12 the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ `2(v

2
• ) with oracle

dimension m◦
n

as in (08.03) satisfies

N
n

θ|T

(
‖θ̂m

◦
n

• − θ•‖2

v

)
= R

◦
n
(θ•,T•|•, v•) = inf

m∈N
N
n

θ|T

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant 1).

§08|01.22 Proof of Corollary §08|01.21. Given in the lecture. �

§08|01.23 Corollary (niSM §08|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|T|σ as in Model §08|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) and (iSM2) with max(‖σ−2
• ‖`∞ , ‖σ

2
• ‖`∞) =: vσ ∈ R>1, T•|• ∈

L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|01.12

the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ `2(v

2
• ) with oracle dimension m◦

n
as in

(08.03) satisfies

Pn
θ|T|σ

(
‖θ̂m

◦
n

• − θ•‖2

v

)
6 vσR

◦
n
(θ•,T•|•, v•) 6 v2

σ inf
m∈N

Pn
θ|T|σ

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant vσ).

§08|01.24 Proof of Corollary §08|01.23. Given in the lecture. �

§08|01.25 Corollary (nieMM §08|01.08 continued). Let ĝ
•

= g
•
+ n−1/2ε̇• be defined on (Z

n
,Z

⊗n
,P⊗nθ|T ) as in

Model §08|01.08, where ψ
•
∈ M(Z ⊗ 2N) satisfies (nieMM1)–(nieMM3) for some vθ|T|ψ ∈ R>1, T•|• ∈

L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|01.12

the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ `2(v

2
• ) P

⊗n
θ|T -a.s. with oracle dimension m◦

n

as in (08.03) satisfies

P
n

θ|T

(
‖θ̂m

◦
n

• − θ•‖2

v

)
6 vθ|T|ψR

◦
n
(θ•,T•|•, v•) 6 v2

θ|T|ψ inf
m∈N

P
n

θ|T

(
‖θ̂m• − θ•‖2

v

)
∀n ∈ N,

and hence it is oracle optimal (with constant vθ|T|ψ).

§08|01.26 Proof of Corollary §08|01.25. Given in the lecture. �

§08|01.27 Illustration. We distinguish the following two cases

(p) sup
{
‖MvT

m|†
•|• ‖2

HS
: m ∈ N

}
∈ R>0 or sup

{
‖θm• − θ•‖2

v
: m ∈ N>K

}
= 0 for some K ∈ N,

(np) sup
{
‖MvT

m|†
•|• ‖2

HS
: m ∈ N

}
=∞ and sup

{
‖θm• − θ•‖2

v
: m ∈ N>K

}
∈ R>0 for all K ∈ N.

Note that θ•1K|⊥• = 0• implies the case (p). Interestingly, in case (p) the oracle bound is para-
metric, that is, nR◦

n
(θ•,T•|•, v•) = O(1), in case (np) the oracle bound is nonparametric, i.e.

limn→∞ nR◦
n
(θ•,T•|•, v•) = ∞. In case (np) we consider similar to (o-m), (o-s) and (s-m) in Illus-

tration §07|01.28 the following specifications:
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Table 01 [§08]

Order of the oracle rate R◦
n
(θ•,T•|•, v•) as n →∞

(squared bias) (variance)

(m ∈ N) ‖θm• − θ•‖2
v

‖MvT
m|†
•|• ‖2

HS
m◦

n
R◦

n
(θ•,T•|•, v•)

(vm = mv) (a ∈ R>0) (t ∈ R>0)

(o-m) v ∈ (−1/2− t, a) m−2(a−v) m2(t+v)+1 n
1

2a+2t+1 n−
2(a−v)

2a+2t+1

v + t = −1/2 m−2a−2t−1 logm
( n
logn

) 1
2a+2t+1

logn
n

(o-s) a− v ∈ R>0 m−2(a−v) m(1−2(t−v))+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 m(1−2(a−v))+e−m
2a

m2(t+v)+1 (log n)
1
2a

(logn)
2t+2v+1

2a

n

v + t = −1/2 e−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v + t < −1/2 the oracle rate R◦
n
(θ•,T•|•, v•) is parametric. �

§08|01|02|02 Maximal global v-risk

§08|01.28 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Z, . . . } we
write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing and
non-increasing. If in addition an → ∞ and bn → 0 as n → ∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ `∞ we set w(0) := ‖w•‖`∞ and w(•) = (w(j) := ‖w•1

j |⊥
• ‖`∞)j∈N, where

by construction w(•) ∈ (R>0)N↘ . �

§08|01.29 Assumption. Consider weights t•, a• ∈ (R>0)N↘ and v• ∈ R
N

>0 such that (av)• := a•v• ∈ `∞,
(av)(•) ∈ (R>0)N↓0 , and (t/v)• = t•v

−1
• ∈ `∞ are satisfied. In addition there exists C(t/v) ∈ (0, 1] such

that for all m ∈ N

(t/v)2
(m−1) > min

{
(t/v)2

j : j ∈ JmK
}
> C(t/v)(t/v)2

(m) (08.05)

or in equal C(t/v)‖(t/v)−2
• 1

m
• ‖`∞ 6 (t/v)−2

(m). �

§08|01.30 Reminder. Under Assumption §08|01.29 we have `a
2

= dom(Ma−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and v2
• νN dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). We consider `a
2

endowed with ‖·‖a−1 = ‖Ma−1·‖`2 and given a constant
r ∈ R>0 the ellipsoid `a,r

2
:= {a• ∈ `a2 : ‖a•‖a−1 6 r} ⊆ `a

2
. Since (av)• ∈ `∞, and hence (av)(m) :=

‖(av)•1
m|⊥
• ‖`∞ ∈ R>0 for each m ∈ N we have `a

2
⊆ `2(v

2
• ) (Property §04|02.11). Consequently,

if Assumption §08|01.29 and θ• ∈ `a,r
2

are satisfied, then Assumption §08|01.12 is also fulfilled.
Since v•, t• ∈ R

N

\0 under Assumption §08|01.29, we have ‖t−1
• 1

m
• ‖v = ‖(v/t)•1m• ‖`2 ∈ R>0 for

each m ∈ N. Under the Assumptions §08|00.02 and §08|01.29 considering the generalised link
condition T•|• ∈ Tt,d,D with band D ∈ [1,∞) and d ∈ [1,D] as in Definition §05|02.05 we have
supm∈N{‖[Mt]m[T•|•]

−1

m
‖

spec
} 6 D, and hence

‖MvT
m|†
•|• ‖2

HS
= tr(M

m
v T

m|†
•|• (T

m|†
•|• )?M

m
v ) = tr([M

m
v ]m[T•|•]

−1

m
([T•|•]

−1

m
)?[M

m
v ]m)

= tr([M
m
(v/t)]m[Mt]m[T•|•]

−1

m
([T•|•]

−1

m
)?[Mt]m[M

m
(v/t)]m) 6 ‖[Mt]m[T•|•]

−1

m
‖2

spec
tr([M

m
(v/t)]

2
m)

6 D
2‖t−1

• 1
m
• ‖2

v
(08.06)

using tr([Mm
(v/t)]

2
m) = ‖(v/t)•1m• ‖2

`2
= ‖t−1

• 1
m
• ‖2

v
. Moreover, for each m ∈ N the generalised
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Galerkin solution θm• := Tm|†
•|• g• ∈ `21

m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies (Lemma §05|02.09)

‖θ• − θm• ‖2

v
6 (D

2
d

2
C
−2

(t/v) + 1)(av)2
(m)r

2.

Note that under Assumptions §08|00.02 and §08|01.29 the link condition T•|• ∈ T 	
t,d with band d ∈

R>1 as in Definition §05|01.08 implies supm∈N{‖[Mt•
]m[T•|•]

−1

m
‖

spec
} 6 3d2 (Lemma §05|01.22), and

hence for each m ∈ N we have (08.06) with D = 3d2 and the Galerkin solution θm• := Tm|†
•|• g• ∈

`21
m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies ‖θ• − θm• ‖2

v
6 (9d6C−2

(t/v) + 1)(av)2
(m)r

2 (Lemma §05|01.28). �

§08|01.31 Proposition. Under Assumptions §08|01.01 and §08|01.29 setting for n,m ∈ N

R
m

n
(a•, t•, v•) := [(av)2

(m) ∨ n−1‖t−1
• 1

m
• ‖2

v
], m?

n
:= arg min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
and R

?

n
(a•, t•, v•) := R

m?
n

n
(a•, t•, v•) = min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
(08.07)

and ‖Γθ|T‖L(`2)
=: vθ|T ∈ R>0, for T•|• ∈ Tt,d,D and for all θ• ∈ `a,r2

, hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2,
we have

P
n

θ|T(‖θ̂m
?
n

• − θ•‖2

v
) 6 (D

2
vθ|T + 2C

−2

(t/v)D
2
d

2
r2) R

?

n
(a•, t•, v•) ∀n ∈ N

(or for T•|• ∈ T 	
t,d with D = 3d2).

§08|01.32 Proof of Proposition §08|01.31. Given in the lecture. �

§08|01.33 Remark. Under the assumptions of Proposition §08|01.31 if there exists in addition v ∈ R>0

satisfying ‖Γθ|T‖L(`2)
6 v for all θ• ∈ `a,r2

and T•|• ∈ Tt,d,D (or T•|• ∈ T 	
t,d), then we have

sup
{
P
n

θ|T

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 (D

2
v + 2C

−2

(t/v)D
2
d

2
r2) R

?

n
(a•, t•, v•) ∀n ∈ N.

Arguing similarly as in Remark §07|01.21 we note that R?

n
(a•, t•, v•) = o(1) as n → ∞ since

‖t−1
• 1

m
• ‖v ∈ R>0 for all m ∈ N, and (av)(m) = o(1) as m → ∞ by Assumption §08|01.29. The

latter is satisfied, for example, if (av)• ∈ `2 (in equal a• ∈ `2(v
2
• )). Note that the dimension

m?
n

:= m?
n
(a•, t•, v•) as defined in (08.07) does not depend on the unknown parameter of interest θ•

but on the classes `a,r
2

and Tt,d,D only, and thus also the statistic θ̂m
?
n

• . In other words, if the regularity
of θ• and T•|• is known in advance, then the (generalised) GE θ̂m

?
n

• is a feasible estimator. �

§08|01.34 Corollary (GniSM §08|01.04 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|T as in Model §08|01.04,
where Ḃ• ∼ N

⊗N
(0,1), T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2 and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under

Assumption §08|01.29 the (generalised) GE θ̂m
?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ `2(v
2
• ) with dimension m?

n
as

in (08.07) satisfies

sup
{

N
n

θ|T

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 C R

?

n
(a•, t•, v•) ∀n ∈ N (08.08)

with constant C = D2 + 2C−2

(t/v)D
2d2r2 (for T•|• ∈ T 	

t,d with D = 3d2).

§08|01.35 Proof of Corollary §08|01.34. Given in the lecture. �

§08|01.36 Corollary (niSM §08|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|T|σ as in Model §08|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) with ‖σ2
• ‖`∞ =: vσ ∈ R>0, T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2),

θ• ∈ `2 and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under Assumption §08|01.29 the (generalised) GE
θ̂m

?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ `2(v
2
• ) with dimension m?

n
as in (08.07) satisfies

sup
{

Pn
θ|T|σ

(
‖θ̂m

◦
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 C R

?

n
(a•, t•, v•) ∀n ∈ N

with constant C = D2vσ + 2C−2

(t/v)D
2d2r2 (for T•|• ∈ T 	

t,d with D = 3d2).
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§08|01.37 Proof of Corollary §08|01.36. Given in the lecture. �

§08|01.38 Corollary (nieMM §08|01.08 continued). Let ĝ
•

= g
•
+ n−1/2ε̇• be defined on (Z

n
,Z

⊗n
,P⊗nθ|T ) as in

Model §08|01.08, where ψ
•
∈ M(Z ⊗ 2N) satisfies (nieMM1) and (nieMM2) for some vθ|T|ψ ∈ R>1,

T•|• ∈ L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2 and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under Assump-

tion §08|01.29 the (generalised) GE θ̂m
?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ `2(v
2
• ) with dimensionm?

n
as in (08.07)

satisfies

sup
{
P
⊗n
θ|s

(
‖θ̂m

◦
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 Ca,r,t,d,D R

?

n
(a•, t•, v•) ∀n ∈ N

with constant Ca,r,t,d,D = D2 sup
{
vθ|T|ψ: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
+ 2C−2

(t/v)D
2d2r2 (for T•|• ∈ T 	

t,d with D =

3d2).

§08|01.39 Proof of Corollary §08|01.38. Given in the lecture. �

§08|01.40 Illustration. We distinguish the following two cases (p) (v/t)• ∈ `2, and (np) (v/t)• 6∈ `2. Inter-
estingly, in case (p) the bound in Proposition §08|01.31 is parametric, that is, nR?

n
(a•, t•, v•) = O(1),

in case (np) the bound is nonparametric, i.e. limn→∞ nR?

n
(a•, t•, v•) = ∞. In case (np) we con-

sider similar to (o-m), (o-s) and (s-m) in Illustration §07|01.44 the following three specifications:

Table 02 [§08]

Order of the rate R?

n
(a•, t•, v•) as n →∞

(j ∈ N) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

v2j = j2v a2j t2j (av)2
(m) ‖t−1

• 1
m
• ‖2

v
m?

n
R?

n
(a•, t•, v•)

(o-m) v ∈ (−1/2− t, a) j−2a j−2t m−2(a−v) m2v+2t+1 n
1

2a+2t+1 n−
2(a−v)

2a+2t+1

v + t = −1/2 j−2a j−2t m−2a−2t−1 logm
( n
logn

) 1
2a+2t+1

logn
n

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m(1−2(t−v))+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t m2ve−m
2a

m2v+2t+1 (log n)
1
2a

(logn)
2t+2v+1

2a

n

v + t = −1/2 e−j
2a

j−2t m2ve−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v + t < −1/2 the rate R?

n
(a•, t•, v•) is parametric. �

§08|01|03 Local and maximal local φ-risk

Secondly, we measure the accuracy of the (generalised) GE θ̂m• := Tm|†
•|• ĝ• of the (generalised)

Galerkin solution θm• = Tm|†
•|• g• ∈ `21

m
• with g

•
= T•|•θ• ∈ dom(T†•|•) by the mean of its local φ-error

introduced in §05|01|02 and §05|02|02, i.e. its φ-risk.

§08|01.41 Reminder. If φ
•
∈ RN\0 then we have φ2

•
1m• ∈ `2 and `21

m
• ⊆ dom(φν

N
). Consequently, for each

θ• ∈ dom(φν
N
) the (generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• satisfies θm• ∈ dom(φν

N
)

too. If in addition CT := sup
{
‖M

1m|⊥
T?

•|•(T
m|†
•|• )

?
φ
•
‖`2 : m ∈ N

}
∈ R>0 then |φν

N
(θm• − θ•)| 6 (1 +

CT)‖1m|⊥• θ•‖`2 which implies sup
{
|φν

N
(θj• − θ•)|: j ∈ N>m

}
= o(1) as m →∞ (Property §05|01.31

and Property §05|02.12). �

§08|01.42 Comment. Under Assumption §08|01.01 since θm• ,T
m|†
•|• 1

m
• ∈ `21

m
• for each m ∈ N we have

Tm|†
•|• ε̇• ∈ `21

m
• P

n
θ|T-a.s.. Indeed, ε̇• ∼ P

(0•,Γθ|T)
with Γθ|T ∈ L>(`2) by Assumption §08|01.01 (nSIP) implies

P
n
θ|T(ε̇2

• ) ∈ `∞, hence ε̇•1
m
• ∈ `∞ P

n
g
•

-a.s. and ‖Tm|†
•|• ε̇•‖`2 6 ‖T

m|†
•|• 1

m
• ‖`2‖ε̇•1

m
• ‖`∞ ∈ R>0 P

n
θ|T-a.s..
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Given φ
•
∈ RN\0 from `21

m
• ⊆ dom(φν

N
) (Reminder §08|01.41) it follows

θ̂
m

• = T
m|†
•|• ĝ

•
= n−1/2T

m|†
•|• ε̇• + θ

m
• ∈ `21

m
• ⊆ dom(φν

N
) P

n

θ|T-a.s.. �

§08|01|03|01 Local φ-risk

§08|01.43 Assumption. Let φ
•
∈ RN\0 and θ• ∈ dom(φν

N
) be satisfied. �

§08|01.44 Definition. Under Assumptions §08|01.01 and §08|01.43 the local φ-risk of a (generalised) GE
θ̂m• = Tm|†

•|• ĝ• ∈ `21
m
• ⊆ dom(φν

N
) P

n
θ|T-a.s. satisfies

P
n

θ|T(|φν
N
(θ̂

m

• − θ•)|2) = P
n

θ|T(|φν
N
(T

m|†
•|• (ĝ

•
− g

•
))|2) + |φν

N
(θ

m
• − θ•)|2 (08.09)

with variance Pn
θ|T(|φν

N
(Tm|†

•|• (ĝ
•
− g

•
))|2) = n−1P

n
θ|T(|φν

N
(Tm|†

•|• ε̇•)|2) and bias |φν
N
(θm• − θ•)|. �

§08|01.45 Property. Under Assumptions §08|01.01 and §08|01.43 we have

P
n

θ|T(|φν
N
(T

m|†
•|• ε̇•)|2) = P

n

θ|T(|〈φ
•
1m• ,T

m|†
•|• ε̇•〉̀

2

|2) = P
n

θ|T(|〈(Tm|†
•|• )

?
φ
m

•
, ε̇•〉̀

2

|2)

= 〈Γθ|T(T
m|†
•|• )

?
φ
m

•
, (T

m|†
•|• )

?
φ
m

•
〉̀

2

= ‖(Tm|†
•|• )

?
φ
m

•
‖2

Γθ|T
(08.10)

and consequently Pn
θ|T(|φν

N
(Tm|†

•|• (ĝ
•
− g

•
))|2) 6 n−1‖Γθ|T‖L(`2)

‖(Tm|†
•|• )

?
φm
•
‖2
`2
∈ R>0. �

§08|01.46 Proposition (Upper bound). Under Assumptions §08|01.01 and §08|01.43 for all n,m ∈ N with
(generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• setting

R
m

n
(θ•,T•|•, φ•) := |φν

N
(θ

m
• −θ•)|2+n−1‖(Tm|†

•|• )
?
φ
m

•
‖2

`2
, m◦

n
:= arg min

{
R
m

n
(θ•,T•|•, φ•) : m ∈ N

}
and R

◦
n
(θ•,T•|•, φ•) := R

m◦n
n

(θ•,T•|•, φ•) = min
{

R
m

n
(θ•,T•|•, φ•) : m ∈ N

}
(08.11)

we have Pn
θ|T(|φν

N
(θ̂m

◦
n

• − θ•)|2) 6 (1 ∨ ‖Γθ|T‖L(`2)
)R◦

n
(θ•,T•|•, φ•) for all n ∈ N.

§08|01.47 Proof of Proposition §08|01.46. Given in the lecture. �

§08|01.48 Reminder. If Γθ|T ∈ L>(`2) is invertible with inverse Γ−1
θ|T ∈ L(`2), i.e. Γθ•|φ•Γ

−1
θ|T = id`2 = Γ−1

θ•|T Γθ|T, then
we write shortly 1 6 max(‖Γθ|T‖L(`2)

, ‖Γ−1
θ|T ‖L(`2)

) 6 vθ|T ∈ R>1. In this situation for all h• ∈ `2 we
have v−1

θ|T‖h•‖2
`2
6 ‖h•‖2

Γθ|T
= 〈Γθ|Th•, h•〉J 6 vθ|T‖h•‖2

`2
. �

§08|01.49 Oracle inequality. Under Assumptions §08|01.01 and §08|01.43 if in addition

1 6 max(‖Γθ|T‖L(`2)
, ‖Γ−1

θ|T ‖L(`2)
) 6 vθ|T ∈ R>1

is satisfied then (08.11) (and Reminder §08|01.48) implies

v−1
θ|T R

m

n
(θ•,T•|•, φ•) 6 P

n

θ|T(|φν
N
(θ̂

m

• − θ•)|2) = n−1‖(Tm|†
•|• )

?
φ
m

•
‖2

Γθ|T
+ |φν

N
(θ

m
• − θ•)|2

6 vθ|TR
m

n
(θ•,T•|•, φ•) ∀n,m ∈ N.

As a consequence we immediately obtain the following oracle inequality

v−1
θ|T R

◦
n
(θ•,T•|•, φ•) 6 inf

m∈N
P
n

θ|T(|φν
N
(θ̂

m

• − θ•)|2) 6 Pn

θ|T(|φν
N
(θ̂

m◦n
• − θ•)|2)

6 vθ|TR
◦
n
(θ•,T•|•, φ•) 6 v2

θ|T inf
m∈N

P
n

θ|T(|φν
N
(θ̂

m

• − θ•)|2) ∀n ∈ N, (08.12)

and hence R◦
n
(θ•,T•|•, φ•), m

◦
n

and the statistic θ̂m
◦
n

• , respectively, is an oracle bound, an oracle
dimension and oracle optimal (up to the constant v2

θ|T). �
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§08|01.50 Remark. Arguing similarly as in Remark §07|01.21 we note that ‖(Tm|†
•|• )

?
φm
•
‖2
`2
∈ R>0 for all

m ∈ N and hence R◦
n
(θ•,T•|•, φ•) = o(1) as n →∞, whenever |φν

N
(θm• − θ•)|2 = o(1) as m →∞

(see Reminder §08|01.41). Note that the oracle dimensionm◦
n

:= m◦
n
(θ•,T•|•, φ•) as defined in (08.11)

depends on the unknown parameter of interest θ•, and thus also the oracle optimal statistic θ̂m
◦
n

• .
In other words θ̂m

◦
n

• is not a feasible estimator. �

§08|01.51 Corollary (GniSM §08|01.04 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|T as in Model §08|01.04,
where Ḃ• ∼ N

⊗N
(0,1), T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2.

Given Assumption §08|01.43 the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ dom(φν

N
)

with oracle dimension m◦
n

as in (08.11) satisfies

N
n

θ|T

(
|φν

N
(θ̂

m◦n
• − θ•)|2

)
= R

◦
n
(θ•,T•|•, φ•) = inf

m∈N
N
n

θ|T

(
|φν

N
(θ̂

m

• − θ•)|2
)
,

and hence it is oracle optimal (with constant 1).

§08|01.52 Proof of Corollary §08|01.51. Given in the lecture. �

§08|01.53 Corollary (niSM §08|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|T|σ as in Model §08|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) and (iSM2) with max(‖σ−2
• ‖`∞ , ‖σ

2
• ‖`∞) =: vσ ∈ R>1, T•|• ∈

L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|01.43

the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ dom(φν

N
) with oracle dimension m◦

n
as

in (08.11) satisfies

Pn
θ|T|σ

(
|φν

N
(θ̂

m◦n
• − θ•)|2

)
6 vσR

◦
n
(θ•,T, φ•) 6 v2

σ inf
m∈N

Pn
θ|T|σ

(
|φν

N
(θ̂

m

• − θ•)|2
)
,

and hence it is oracle optimal (with constant vσ).

§08|01.54 Proof of Corollary §08|01.53. Given in the lecture. �

§08|01.55 Corollary (nieMM §08|01.08 continued). Let ĝ
•

= g
•
+ n−1/2ε̇• be defined on (Z

n
,Z

⊗n
,P⊗nθ|T ) as in

Model §08|01.08, where ψ
•
∈ M(Z ⊗ 2N) satisfies (nieMM1)–(nieMM3) for some vθ|T|ψ ∈ R>1, T•|• ∈

L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2, and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|01.43

the (infeasible, generalised) GE θ̂m
◦
n

• = Tm◦n |†
•|• ĝ

•
∈ `21

m◦n
• ⊆ dom(φν

N
) with oracle dimension m◦

n
as

in (08.11) satisfies

P
n

θ|T

(
|φν

N
(θ̂

m◦n
• − θ•)|2

)
6 vθ|T|ψR

◦
n
(θ•,T•|•, v•) 6 v2

θ|T|ψ inf
m∈N

P
n

θ|T

(
|φν

N
(θ̂

m

• − θ•)|2
)
,

and hence it is oracle optimal (with constant vθ|T|ψ).

§08|01.56 Proof of Corollary §08|01.55. Given in the lecture. �

§08|01.57 Illustration. We distinguish the following two cases

(p) sup
{
‖(Tm|†

•|• )
?
φm
•
‖2
`2

: m ∈ N
}
∈ R>0 or sup

{
|φν(θ̂m• − θ•)|2: m ∈ N>K

}
= 0 for K ∈ N,

(np) sup
{
‖(Tm|†

•|• )
?
φm
•
‖2
`2

: m ∈ N
}

= ∞ and sup
{
|φν(θ̂m• − θ•)|2: m ∈ N>K

}
∈ R>0 for all K ∈

N.

Note that θ•1K|⊥• = 0• implies the case (p). Interestingly, in case (p) the oracle bound is para-
metric, that is, nR◦

n
(θ•,T•|•, φ•) = O(1), in case (np) the oracle bound is nonparametric, i.e.

limn→∞ nR◦
n
(θ•,T•|•, φ•) = ∞. In case (np) we consider similar to (o-m), (o-s) and (s-m) in Illus-

tration §07|01.63 the following specifications:
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Table 03 [§08]

Order of the oracle rate R◦
n
(θ•,T•|•, φ•) as n →∞

(squarred bias) (variance)

(m ∈ N) |φν
N
(θ̂m• − θ•)|2 ‖(Tm|†

•|• )
?
φm
•
‖2
`2

m◦
n

R◦
n
(θ•,T•|•, φ•)

(φ
m

= mv−1/2) (a ∈ R>0) (t ∈ R>0)

(o-m) v ∈ (−t, a) m−2(a−v) m2t+2v n
1

2a+2t n−
a−v
a+t

v = −t m−2(a+t) logm
( n
logn

) 1
2(a+t)

logn
n

(o-s) a− v ∈ R>0 m−2(a−v) m2(v−t)+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t ∈ R>0 m(1−4a+2v)+e−m
2a

m2t+v (log n)
1
2a

(logn)
t+v
a

n

v = −t m(1−4a−2t)+e−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v < −t the oracle rate R◦
n
(θ•,T•|•, φ•) is parametric. �

§08|01|03|02 Maximal local φ-risk

§08|01.58 Assumption. Consider weights t•, a• ∈ (R>0)N↘ and φ
•
∈ RN\0 such that (aφ)• := a•φ• ∈ `2 and

(at)• := a•t• ∈ (R>0)N↓0 . �

§08|01.59 Comment. Assuming t•, a• ∈ (R>0)N↘ and hence (at)2

• ∈ (R>0)N↘ is rather weak. If in addition
lim inf
j→∞

(at)2

j
> c ∈ R>0 is satisfied, and hence (at)2

• , a
2
• , t

2
• 6∈ (R>0)N↓0 , then a2

• 6∈ (R>0)N↓0 and the

assumption (aφ)• ∈ `2 implies φ
•
∈ `2, which together with t2• 6∈ (R>0)N↓0 implies (φ/t)• ∈ `2,

and thus the rate R?

n
(a•, t•, φ•) is parametric (Illustration §08|01.72). Since we are interested in the

case of a non-parametric rate, the additional assumption (at)2

• ∈ (R>0)N↓0 imposes a rather weak
condition satisfied also in Illustration §08|01.72. �

§08|01.60 Reminder. Under Assumption §08|01.58 we have `a
2

= dom(Ma−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null sets
(see Property §04|01.02). We consider `a

2
endowed with ‖·‖a−1 = ‖Ma−1·‖`2 and given a con-

stant r ∈ R>0 the ellipsoid `a,r
2

:= {a• ∈ `a•
2

: ‖a•‖a−1 6 r} ⊆ `a
2
. Since (aφ)• ∈ `2 we

have `a
2
⊆ dom(φν

N
) (Property §04|02.23). Consequently, if Assumption §08|01.58 and θ• ∈ `a,r

2

are satisfied, then Assumption §08|01.43 is also fulfilled. Moreover, from (aφ)• ∈ `2 follows
‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. For s ∈ [0, 1] from (ats)• = a•t

s
• ∈ (R>0)N↘

follows (ats)(•) = ((ats)(m) := (ats)m+1 = ‖(ats)•1m|⊥• ‖`∞)m∈N ∈ (R>0)N↘ . Since φ
•
, t• ∈ R

N

\0 un-
der Assumption §08|01.58, we have `21

m
• ⊆ dom(φν

N
) and ‖t−1

• 1
m
• ‖φ = ‖(φ/t)•1m• ‖`2 ∈ R>0 for

each m ∈ N. Under the Assumptions §08|00.02 and §08|01.58 considering the generalised link
condition T•|• ∈ Tt,d,D with band D ∈ R>1 and d ∈ [1,D] as in Definition §05|02.05 we have
supm∈N{‖([T•|•]

−1

m
)
?
[Mt]m‖spec

} 6 D, and hence

‖(Tm|†
•|• )

?
φ
m

•
‖`2 = ‖([T•|•]

−1

m
)
?
[φ
•
]m‖ = ‖([T•|•]

−1

m
)
?
[Mt]m[Mt]

−1
m [φ

•
]m‖

6 ‖([T•|•]
−1

m
)
?
[Mt]m‖spec

‖[Mt−1]m[φ
•
]m‖6 D‖t−1

• 1
m
• ‖φ (08.13)

using ‖[Mt−1]m[φ
•
]m‖ = ‖t−1

• 1
m
• ‖φ. Moreover, for each m ∈ N the generalised Galerkin solution

θm• := Tm|†
•|• g• ∈ `21

m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies (Lemma §05|02.14)

|φν
N
(θ

m
• − θ•)|2 6 Dd(Dd + 1)r2

(
‖a•1m|⊥• ‖2

φ
+ (at)2

(m)
‖t−1
• 1

m
• ‖2

φ

)
. (08.14)
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Under Assumptions §08|00.02 and §08|01.58 the link condition T•|• ∈ T 	
t,d with band d ∈ R>1 as in

Definition §05|01.08 implies supm∈N{‖([T•|•]
−1

m
)
?
[Mt]m‖spec

} 6 3d2 (Lemma §05|01.22), and hence
for each m ∈ N we have (08.13) with D = 3d2 and the Galerkin solution θm• := Tm|†

•|• g• ∈ `21
m
• of

θ• = T†•|•g• ∈ `
a,r

2
satisfies (08.14) with D = 3d2 (Lemma §05|01.34). �

§08|01.61 Lemma. Under Assumption §08|01.58 setting for n,m ∈ N

R
m

n
(a•, t•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖t−1

• 1
m
• ‖2

φ
, m?

n
:= arg min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
and R

?

n
(a•, t•, φ•) := R

m?
n

n
(a•, t•, φ•) = min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
(08.15)

we have (at)2

m?
n

> n−1 > (at)2

m?
n+1

= (at)2

(m?
n)

for all n ∈ N>(at)−2
2

, i.e. (at)2

2
> n−1 is satisfied.

§08|01.62 Proof of Lemma §08|01.61. Given in the lecture. �

§08|01.63 Proposition (Upper bound). Under Assumptions §08|01.01 and §08|01.58 settingm?
n

and R?

n
(a•, t•, φ•)

for n ∈ N as in (08.15) and ‖Γθ|T‖L(`2)
=: vθ|T ∈ R>0, for T•|• ∈ Tt,d,D and for all θ• ∈ `a,r2

, hence
g
•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2, we have

P
n

θ|T(|φν
N
(θ̂

m?
n

• − θ•)|2) 6 D
2
(vθ|T + 2d

2
r2) R

?

n
(a•, t•, φ•) ∀n ∈ N>(at)−2

2

(or for T•|• ∈ T 	
t,d with D = 3d2).

§08|01.64 Proof of Proposition §08|01.63. Given in the lecture. �

§08|01.65 Remark. Under the assumptions of Proposition §08|01.63 if there exists in addition v ∈ R>0

satisfying ‖Γθ|T‖L(`2)
6 v for all θ• ∈ `a,r2

and T•|• ∈ Tt,d,D (or T•|• ∈ T 	
t,d), then we have

sup
{
P
n

θ|T(|φν
N
(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2
,T•|• ∈ Tt,d,D

}
6 D

2
(v + 2d

2
r2) R

?

n
(a•, t•, φ•) ∀n ∈ N>(at)−2

2

Arguing similarly as in Remark §07|01.56 we note that ‖t−1
• 1

m
• ‖φ ∈ R>0 for all m ∈ N and

(‖φ
•
1m|⊥• ‖2

a•
= o(1) as m →∞ (since (aφ)• ∈ `2), and hence R?

n
(a•, t•, φ•) = o(1) as n →∞. Note

that the dimension m?
n

:= m?
n
(a•, t•, φ•) as defined in (08.15) does not depend on the unknown

parameter of interest θ• but on the classes `a,r
2

and Tt,d,D only, and thus also the statistic θ̂m
?
n

• . In
other words, if the regularity of θ• and T•|• is known in advance, then the (generalised) GE θ̂m

?
n

• is
a feasible estimator. �

§08|01.66 Corollary (GniSM §08|01.04 continued). Consider ĝ
•

= g
•
+ n−1/2Ḃ• ∼ N

n

θ|T as in Model §08|01.04,
where Ḃ• ∼ N

⊗N
(0,1), T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2 and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under

Assumption §08|01.58 the (generalised) GE θ̂m
?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ dom(φν
N
) with dimension m?

n

as in (08.15) satisfies

sup
{

N
n

θ|T

(
|φν

N
(θ̂

m?
n

• − θ•)|2
)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 Cr,d,D R

?

n
(a•, t•, φ•) ∀n ∈ N>(at)−2

2
(08.16)

with constant Cr,d,D = D2(1 + 2d2r2) (for T•|• ∈ T 	
t,d with D = 3d2).

§08|01.67 Proof of Corollary §08|01.66. Given in the lecture. �

§08|01.68 Corollary (niSM §08|01.06 continued). Consider ĝ
•

= g
•
+ n−1/2ε̇• ∼ Pn

θ|T|σ as in Model §08|01.06,
where ε̇• ∼ ⊗j∈NP

(0,σ2
j )

satisfies (iSM1) with ‖σ2
• ‖`∞ =: vσ ∈ R>0, T•|• ∈ L

>
•|•(`2) or T•|• ∈ L

R
•|•(`2),

θ• ∈ `2 and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under Assumption §08|01.58 the (generalised) GE
θ̂m

?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ dom(φν
N
) with dimension m?

n
as in (08.15) satisfies

sup
{

Pn
θ|T|σ

(
|φν

N
(θ̂

m?
n

• − θ•)|2
)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 Cr,d,D,σ R

?

n
(a•, t•, φ•) ∀n ∈ N>(at)−2

2

with constant Cr,d,D,σ = D2(‖σ2
• ‖`∞ + 2d2r2) (for T•|• ∈ T 	

t,d with D = 3d2).
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§08|01.69 Proof of Corollary §08|01.68. Given in the lecture. �

§08|01.70 Corollary (nieMM §08|01.08 continued). Let ĝ
•

= g
•
+ n−1/2ε̇• be defined on (Z

n
,Z

⊗n
,P⊗nθ|T ) as in

Model §08|01.08, where ψ
•
∈ M(Z ⊗ 2N) satisfies (nieMM1) and (nieMM2) for some vθ|T|ψ ∈ R>1,

T•|• ∈ L
>
•|•(`2) or T•|• ∈ L

R
•|•(`2), θ• ∈ `2 and hence g

•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Under Assump-

tion §08|01.58 the (generalised) GE θ̂m
?
n

• = Tm?
n |†

•|• ĝ
•
∈ `21

m?
n

• ⊆ dom(φν
N
) with dimension m?

n
as in

(08.15) satisfies

sup
{
P
⊗n
θ|T

(
|φν

N
(θ̂

m◦n
• − θ•)|2

)
: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
6 Cr,a•,d,D,t•

R
?

n
(a•, t•, φ•) ∀n ∈ N>(at)−2

2

with constant Cr,a•,d,D,t•
= D2(sup

{
vθ|T|ψ: θ• ∈ `a,r2

,T•|• ∈ Tt,d,D

}
+ 2d2r2) (for T•|• ∈ T 	

t,d with D = 3d2).

§08|01.71 Proof of Corollary §08|01.70. Given in the lecture. �

§08|01.72 Illustration. We distinguish the following two cases (p) (φ/t)• ∈ `2, and (np) (φ/t)• 6∈ `2. Inter-
estingly, in case (p) the bound in Proposition §08|01.63 is parametric, that is, nR?

n
(a•, t•, φ•) = O(1),

in case (p) the bound is nonparametric, i.e. limn→∞ nR?

n
(a•, t•, φ•) = ∞. In case (p) we consider

similar to (o-m), (o-s) and (s-m) in Illustration §07|01.78 the following specifications:

Table 04 [§08]

Order of the rate R?

n
(a•, t•, φ•) as n →∞

(j ∈ N) (a ∈ R>0) (t ∈ R>0) (squarred bias) (variance)

φ2

j
= j2v−1 a2j t2j ‖a•1m|⊥• ‖2

φ
‖t−1
• 1

m
• ‖2

φ
m?

n
R?

n
(a•, t•, φ•)

(o-m) v ∈ (−t, a) j−2a j−2t m−2(a−v) m2v+2t n
1

2a+2t n−
a−v
a+t

v = −t j−2a j−2t m−2(a+t) logm
( n
logn

) 1
2(a+t)

logn
n

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m2(v−t)+em
2t

(log n)
1
2t (log n)−

a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t e−m
2a

m2v+2t (log n)
1
2a

(logn)
t+v
a

n

v = −t e−j
2a

j−2t e−m
2a

logm (log n)
1
2a

log logn
n

We note that in case (o-m) and (s-m) for v < −t the rate R?

n
(a•, t•, φ•) is parametric. �

§08|02 Non-diagonal statistical inverse problem with noisy operator

§08|02.01 Notation Reminder. For A•|• = (Aj |jo)j ,jo∈N ∈ R
N

2

we denote by Am
•|• := M1mA•|•M1m∈ L(`2) with

a• 7→ A
m

•|•a• = (1mj
∑
jo∈JmK

Aj ,jo
ajo = 1mj 〈Aj |•1

m
• , a•〉̀

2

= 1mj νN(Aj ,•a•1
m
• ))j∈N

the operator which restricted to a linear map from R
m (ran(M1m) = `21

m
• ) into itself is represented

by the sub-matrix [A•|•]m := (Aj |jo)j ,jo∈JmK ∈ R
(m,m) (compare Notation §05|00.02). Moreover,

‖·‖ and ‖A‖
spec

:= sup{‖Ax‖ : ‖x‖ 6 1} denotes, respectively, the Euclidean norm of a
vector and the spectral norm of a matrix A. Clearly, we have ‖Am

•|•‖L(`2)
= ‖M1mA•|•M1m‖L(`2)

=
‖[A•|•]m‖spec

. Furthermore, Am
•|• ∈ L(`2) is a Hilbert-Schmidt operator (§08|01.14), i.e. Am

•|• ∈ HS(`2),
and MwAm

•|• = Mm
w Am ∈ HS(`2) for arbitrary w• ∈ R

N. Moreover, introduce `p(N
2
) := Lp

(N
2
, 2N

2

, ν
N

2)

for p ∈ R>1. �

§08|02.02 Assumption. Consider a stochastic process ε̇• = (ε̇j)j∈N satisfying Assumption §01|01.04 with
mean zero and a sample size n ∈ N, and in addition a stochastic process η̇•|• = (η̇j |jo)j ,jo∈N satis-
fying Assumption §02|01.02, with mean zero and a sample size k ∈ N. Let Assumption §08|00.02
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be satisfied where T•|• ∈ L
	
•|•(`2) or T•|• ∈ L

R
•|•(`2) is not known anymore. For θ• ∈ `2 the observable

noisy image with mean g
•

= T•|•θ• ∈ `2 and the observable noisy non-diagonal operator with

mean kernel T•|• ∈ R
N

2

takes the form ĝ
•
= g

•
+ n−1/2ε̇• and T̂•|• = T•|• + k−1/2η̇•|•, respectively. We

denote by Pn,k
θ|T the joint distribution of (ĝ

•
, T̂•|•). Denoting by Pn

θ|T and Pk
T the marginal distribution

of ĝ
•

and T̂•|•, respectively, if ε̇• and η̇•|• are independent then we write Pn⊗k
θ|T = P

n
θ|T ⊗ Pk

T for the
joint product distribution of (ĝ

•
, T̂•|•). In addition ε̇• satisfies (nSIP) (Assumption §08|01.01) with

vθ|T ∈ R>1 and η̇•|• fulfils
(nSIPnO1) there is vT ∈ R>1 such that η̇•|• for all m ∈ N and a•, b• ∈ `2 satisfies

P
k

T

(
|〈b•, η̇m•|•a•〉̀

2

|2
)
6 vT‖a•‖2

`2
‖b•‖2

`2

implying Pk
T (η̇2

j |j◦) =: vT
j |j◦ 6 vT for all j, j◦ ∈ N, and hence 1 ∨ ‖vT

•|•‖`∞(N
2
)
6 vT;

(nSIPnO2) there is l ∈ N and K2

T ∈ R>vT such that η̇•|• satisfies

vT|(l)
•|• := P

k

T (η̇2l
•|•) := (vT|(l)

j |j◦ := P
k

T (η̇2l
j |j◦

))j ,j◦∈N ∈ `∞(N
2
),

and 1 ∨ ‖vT|(l)
•|• ‖`∞(N

2
)
6 K2l

T where 1 ∨ ‖vT
•|•‖`∞(N

2
)
6 vT 6 K2

T. �

§08|02.03 Lemma. Let Assumption §08|02.02 (nSIPnO1) and (nSIPnO2) be satisfied, and let m ∈ N.
(i) Under (nSIPnO1) for any A•|• ∈ HS(`2) and a• ∈ `2 we have

P
k

T

(
‖A•|•η̇

m
•|•a•‖2

`2

)
6 vT‖A•|•‖2

HS
‖a•‖2

`2

and in particular, m−1P
k

T

(
‖η̇m•|•a•‖2

`2

)
6 vT‖a•‖2

`2
by using ‖idm

•|•‖2
HS

= m.

(ii) Under (nSIPnO2) for all x ∈ R>0 we have

P
k

T

(
‖η̇m•|•‖L(`2)

> x
)
6 m2lx−2lK

2l

T

and Pk
T

(
‖η̇m•|•‖2

L(`2)
1{‖η̇m•|•‖L(`2)

> x}
)
6 m2lx−2(l−1)K2l

T .

§08|02.04 Proof of Lemma §08|02.03. Given in the lecture. �

§08|02.05 Notation. For each m ∈ N and T•|• ∈ LR(`2) we introduce below an observable event Ω
m,k∧n

and its complement Ωc

m,k∧n such that on the event Ω
m,k∧n the random matrix [T̂•|•]m ∈ R

(m,m) is

regular and hence its inverse [T̂•|•]
−1

m
∈ R(m,m) always exists. We denote by 1Ω

m,k∧n the observable
elementary random variable which takes the value 1 on the event Ω

m,k∧n and zero otherwise. We
denote by T̂m

•|• := M1m•
T̂•|•M1m•

∈ L(`2) the random operator which restricted to a linear map from
R
m into itself can be represented by the random matrix [T̂•|•]m. Note that its Moore-Penrose

inverse T̂m|†
•|• ∈ L(`2) restricted to a linear map from R

m into itself can be represented by the

Moore-Penrose inverse matrix [T̂•|•]
†

m
of [T̂•|•]m (see Definition §03|00.08). On the event Ω

m,k∧n we
have T̂m

•|• T̂
m|†
•|• = T̂m|†

•|• T̂m

•|• = M1m•
. Let 0•,• ∈ L(`2) be the zero operator mapping `2 to {0•}. The

random operator, which equals A•|• ∈ L(`2) on Ω
m,k∧n and 0•,• on Ωc

m,k∧n, is denoted by A(k∧n)
•|• :=

A•|•1Ω
m,k∧n ∈ L(`2). Let T̂m|(k∧n)

•|• := T̂m

•|•1Ω
m,k∧n ∈ L(`2) and denote its Moore-Penrose inverse by

T̂m|(k∧n)|†
•|• ∈ L(`2) where trivially T̂m|(k∧n)|†

•|• = T̂m|†
•|• 1Ω

m,k∧n. We eventually use the elementary identity
T̂m|†
•|• T̂m

•|•1Ω
m,k∧n = T̂m|(k∧n)|†

•|• T̂m|(k∧n)

•|• = T̂m|(k∧n)

•|• T̂m|(k∧n)|†
•|• = M1m•

1Ω
m,k∧n. �

§08|02.06 Definition. Under Assumption §08|02.02 let (ĝ
•
, T̂•|•) ∼ P

n,k
θ|T be noisy versions of g

•
∈ dom(T†•|•)

and T•|• ∈ L
R
•|•(`2) (or T•|• ∈ L

	
•|•(`2)). For each m ∈ N we call θ̂m• = T̂m|(k∧n)|†

•|• ĝ
•

= T̂m|†
•|• 1Ω

m,k∧nĝ•1
m
• =

T̂m|†
•|• 1Ω

m,k∧nĝm• (generalised) thresholded Galerkin estimator (tGE) of θ• = T†•|•g• ∈ `2. �
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§08|02.07 Remark. Under Assumption §08|02.02 we have ε̇•1
m
• ∈ `∞ P

n
θ|T-a.s. and T̂m

•|• ∈ L(`2) with ran(T̂m

•|• ) ⊆
`21

m
• P

k
T -a.s. for each m ∈ N. Consequently, ran(T̂m|(k∧n)|†

•|• ) ⊆ `21
m
• P

k
T -a.s., and T̂m|(k∧n)|†

•|• ε̇• ∈ `21
m
•

P
n⊗k
θ|T -a.s., and hence

θ̂
m

• = T̂
m|(k∧n)|†
•|• ĝ

•
= n−1/2T̂

m|(k∧n)|†
•|• ε̇• + T̂

m|(k∧n)|†
•|• g

•
∈ `21

m
• P

n⊗k
θ|T -a.s..

Let us recall that the (generalised) Galerkin solution θm• ∈ `21
m
• does generally not correspond to

the orthogonal projection 1m|⊥• θ• = (1• − 1m• )θ•. Moreover, the approximation error sup{‖θm• −
θ•‖`2 : m > n} does generally not converge to zero as n→∞ (compare Remark §05|01.05). Here
and subsequently, we will restrict ourselves to classes of solutions and operators which ensure
the convergence. Obviously, this is a minimal regularity condition for us if we aim to estimate
the Galerkin solution. �

§08|02|01 Examples

§08|02.08 GniSM with noisy operator (§02|02.06 continued). Let Assumption §08|00.02 be satisfied where
T•|• ∈ T ⊆ L

	
•|•(`2) or T•|• ∈ T ⊆ L

R
•|•(`2) is not known anymore. We illustrate the (generalised) tGE

in a Gaussian non-diagonal inverse sequence model (GniSM) with noisy operator as in §02|02.06.
Here the observable stochastic processes T̂•|• = T•|• + k−1/2Ẇ•|• ∼ N

k

T and ĝ
•
= g

•
+ n−1/2Ḃ• ∼ N

n

θ|T

are noisy version of T•|• ∈ T and g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• ∈ Θ ⊆ `2, respectively,

where Ẇ•|• := (Ẇj |jo
)j ,jo∈N ∼ N

⊗N
2

(0,1) and Ḃ• ∼ N
⊗N
(0,1) are independent. Consequently, (ĝ

•
, T̂•|•) admits

a joint N
n⊗k
θ|T = N

n

θ|T ⊗ N
k

T -distribution belonging to the family N
n⊗k
Θ×T := (N

n

θ|T ⊗ N
k

T )θ•∈Θ,T•|•∈T .

Summarising the observations satisfy a statistical product experiment (R
N

3

,B
⊗N

3

,N
n⊗k
Θ×T ) where

Θ ⊆ `2 and T ⊆ L
	
•|•(`2) or T ⊆ L

R
•|•(`2). �

§08|02.09 Property (GniSM with noisy operator §08|02.08 continued). Let Ẇ•|• ∼ N
⊗N

2

(0,1) and Ḃ• ∼ N
⊗N
(0,1) be

independent as in Model §08|02.08. Then Assumption §08|02.02 is satisfied:
(i) Due to Property §07|01.04 Ḃ• admits id`2 ∈ L>(`2) as covariance operator with ‖id`2‖L(`2)

= 1,
i.e. (nSIP) is fulfilled with vθ|T = 1. For all h• ∈ `2 we have ‖h•‖2

`2
= ‖h•‖2

id`2
= 〈id`2h•, h•〉̀

2

.

(ii) For all m ∈ N and a•, b• ∈ `2 we have Ẇm
•|• a• ∼ ‖am• ‖`2Ḃ

m
• , 〈b•, Ḃm

• 〉̀
2

∼ N(0,‖bm• ‖2
`2

), and hence

N
⊗N

2

(0,1)

(
|〈b•, Ẇm

•|• a•〉̀
2

|2
)

= ‖am• ‖2

`2
‖bm• ‖2

`2
6 ‖a•‖2

`2
‖b•‖2

`2
,

i.e. (nSIPnO1) is satisfied with vT = 1.

(iii) For any l ∈ N setting K2l

2l :=
∏

j∈JlK(2j − 1) =: (2l − 1)!! we have K2

2l > 1 and 1 ∨
‖vT|(l)
•|• ‖`∞(N

2
)
= K2l

2l , i.e. (nSIPnO2) is satisfied with KT = K2l. �

§08|02.10 niSM with noisy operator (§02|02.05 continued). Let Assumption §08|00.02 be satisfied where
T•|• ∈ T ⊆ L

	
•|•(`2) or T•|• ∈ T ⊆ L

R
•|•(`2) is not known anymore. We illustrate the (generalised)

GE in a Non-diagonal inverse sequence model (niSM) with noisy operator as in §02|02.05. Here
the observable stochastic process T̂•|• = T•|• + k−1/2η̇•|• ∼ P

k
T and ĝ

•
= g

•
+ n−1/2ε̇• ∼ P

n
θ |T is

a noisy version of T•|• ∈ T and g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• ∈ Θ ⊆ `2, respectively,
where ε̇• ∼ ⊗j∈NP

ε̇j and η̇•|• ∼ ⊗j ,j◦∈NP
η̇j |j◦ are independent. In addition, let ε̇• satisfy (iSM1) of

Model §07|01.06 for σ• ∈ Σ ⊆ RN>0 ∩ `∞ and let η̇•|• fulfill

(niSMnO1) for ξ•|• ∈ Ξ ⊆ (R>0)N
2

∩ `∞(N
2
) we have η̇j |j◦ ∼ P

(0,ξ2j |j◦)
∈ W2

(B), for all j, j◦ ∈ N,

(niSMnO2) for l ∈ N and ξ(2l)
•|• ∈ Ξ2l ⊆ (R>0)N

2

∩`∞(N
2
) we have ξ(2l)

•|• := (ξ(2l)
j |j◦ := P

(0,ξ2j |j◦)
(η̇2l

j |j◦))j ,j◦∈N.
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Under (iSM1) ĝ
•

admits a Pn
θ|T|σ-distribution belonging to the family Pn

Θ×T×Σ := (Pn
θ|T|σ)θ•∈Θ,T•|•∈T ,σ•∈Σ

and under (niSMnO1), (niSMnO2) T̂•|• admits a Pk

T|ξ |ξ(2l)-distribution belonging to the family Pk
T×Ξ×Ξ2l :=

(Pk

T|ξ |ξ(2l))T•|•∈T ,ξ•|•∈Ξ,ξ(2l)•|• ∈Ξ2l . Summarising (ĝ
•
, T̂•|•) admits a joint Pn⊗k

θ|T|σ |ξ |ξ(2l) = Pn
θ|T|σ ⊗ Pk

T|ξ |ξ(2l) distribu-
tion belonging to the family Pn⊗k

Θ×T×Σ×Ξ×Ξ2l := (Pn
θ|T|σ ⊗ Pk

T|ξ |ξ(2l))θ•∈Θ,T•|•∈T ,σ•∈Σ,ξ•|•∈Ξ,ξ(2l)•|• ∈Ξ2l and the ob-

servations satisfy a statistical product experiment
(
R
N

3

,B
⊗N

3

,Pn⊗k
Θ×T×Σ×Ξ×Ξ(2l)

)
where Θ ⊆ `2 and

T ⊆ L
	
•|•(`2) or T ⊆ L

R
•|•(`2). �

§08|02.11 Lemma (niSM with noisy operator §08|01.06 continued). Consider error processes η̇•|• and ε̇• as
in Model §08|02.10 satisfying(iSM1), (niSMnO1) and (niSMnO2). Then Assumption §08|02.02 is
satisfied:
(i) Due to Property §07|01.07 (i) under (iSM1), ε̇• admits Γθ|s = Mσ2 ∈ LM(`2) ∩ L>(`2) as covariance

operator with ‖Mσ2‖
L(`2)

= ‖σ2
• ‖`∞ 6 ‖σ

2
• ‖`∞ ∨ 1 =: vσ ∈ R>1, i.e. (nSIP) is fulfilled with

vθ|T = vσ . For all h• ∈ `2 we have ‖h•‖2
M

σ2

= 〈Mσ2h•, h•〉̀
2

6 vσ‖h•‖2
`2

.

(ii) Under (niSMnO1) for all m ∈ N and a•, b• ∈ `2 with 1 ∨ ‖ξ2
•|•‖`∞(N

2
)
=: vξ ∈ R>1 we have

Pk

T|ξ |ξ(2l)

(
|〈b•, η̇m•|•a•〉̀

2

|2
)
6 vξ‖a•‖2

`2
‖b•‖2

`2

i.e. (nSIPnO1) is satisfied with vT = vξ .

(iii) Under (niSMnO2) setting 1∨‖ξ(2l)
•|• ‖`∞(N

2
)
=: K2l

ξ(2l) ∈ R>1 we have K2

ξ(2l) > vξ and 1∨‖vT|(l)
•|• ‖`∞(N

2
)
6

K2l

ξ(2l), i.e. (nSIPnO2) is satisfied with KT = Kξ(2l).

§08|02.12 Proof of Lemma §08|02.11. Given in the lecture. �

§08|02.13 nieMM with noisy operator (§02|02.04 continued). Let Assumption §08|00.02 be satisfied where
T•|• ∈ T ⊆ L

	
•|•(`2) or T•|• ∈ T ⊆ L

R
•|•(`2) is not known anymore. We illustrate the (generalised) tGE

in a Non-diagonal inverse empirical mean model (nieMM) with noisy operator as in §02|02.04.
Here the observable stochastic processes T̂•|• = T•|• + k−1/2η̇•|• ∼ P

k
T and ĝ

•
= g

•
+ n−1/2ε̇• are

noisy version of T•|• ∈ T and g
•
= T•|•θ• ∈ dom(T†•|•) ⊆ `2 with θ• ∈ Θ ⊆ `2, and independent error

processes ε̇• = n1/2(P̂n(ψ•)−Pθ |T(ψ
•
)) ∈M(Z

⊗n ⊗ 2N) and η̇•|• = k1/2(P̂k(ϕ•|•)−PT(ϕ
•|•)) ∈M(Z

⊗k ⊗ 2N
2

)

satisfying Assumption §01|01.04 and Assumption §02|01.02. More precisely, on a measurable
space (Z,Z ) for each θ• ∈ Θ ⊆ `2 and T•|• ∈ T there are probability measures Pθ|T,PT ∈ W (Z ).
Similar to Model §02|02.04 consider stochastic processes ψ

•
∈M(Z ⊗ 2N) and ϕ

•|• ∈M(Z ⊗ 2N
2

). In
addition for all θ• ∈ Θ and T•|• ∈ T the process ψ

•
∈ M(Z ⊗ 2N) satisfies (nieMM1) and (nieMM2)

of Model §08|01.08 for vθ|T|ψ ∈ R>1 and the process ϕ
•|• ∈M(Z ⊗ 2N

2

) fulfils
(nieMMnO1) ϕ

j |j◦
∈ L1(PT) := L1(Z,Z ,PT) for all j, j◦ ∈ N and PT(ϕ

•|•) = T•|•,

(nieMMnO2) there is vT|ϕ ∈ R>1 such that ϕ
•|• for all m ∈ N and a•, b• ∈ `2 satisfies

PT

(
|〈b•, ϕm

•|• a•〉̀ 2

|2
)
6 vT|ψ‖a•‖2

`2
‖b•‖2

`2
.

(nieMMnO3) there is l ∈ N and K2

T|ϕ ∈ R>vT|ψ such that ϕ
•|• satisfies

PT(ϕ
2l

•|• ) := (PT(ϕ
2l

j |j◦
))j ,j◦∈N ∈ `∞(N

2
),

and 1 ∨ ‖PT(|ϕ
•|• − PTϕ•|•|2l)‖`∞(N

2
)
6 K2l

T|ϕ.

We consider a statistical product experiment (Z
n+k
,Z

⊗(n+k)
,Pn⊗k

Θ×T = (P⊗nθ|T ⊗P⊗kT )θ•∈Θ,T•|•∈T ) as in
an Empirical mean function §01|01.10 where Θ ⊆ `2 and T ⊆ L

	
•|•(`2) or T ⊆ L

R
•|•(`2). �
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§08|02.14 Lemma (nieMM with noisy operator §08|01.08 continued). Consider error processes η̇•|• and ε̇• as
in Model §08|02.13 where ψ

•
∈ M(Z ⊗ 2N) satisfies (nieMM1) and (nieMM2) and ϕ

•|• ∈ M(Z ⊗ 2N
2

)

fulfils (nieMMnO1)-(nieMMnO3). Then Assumption §08|02.02 is satisfied:
(i) Due to Property §07|01.09 (i) under (nieMM1) and (nieMM2) ε̇• admits a covariance operator

Γθ|T ∈ L>(`2) satisfying ‖Γθ|T‖L(`2)
6 vθ|T|ψ. i.e. (nSIP) is fulfilled with vθ|T = vθ|T|ψ. For all h• ∈ `2

we have ‖h•‖2
Γθ|T

= 〈Γθ|Th•, h•〉̀
2

6 vθ|T|ψ‖h•‖2
`2

.

(ii) Under (nieMMnO1) and (nieMMnO2) for all m ∈ N and a•, b• ∈ `2 we have

P
⊗k

T

(
|〈b•, η̇m•|•a•〉̀

2

|2
)
6 vT|ϕ‖a•‖2

`2
‖b•‖2

`2

i.e. (nSIPnO1) is satisfied with vT = vT|ϕ.

(iii) Under (nieMMnO1) and (nieMMnO3) there exists a constant C2l ∈ R>1 depending on l ∈ N
only such that we have 1 ∨ ‖vT|(l)

•|• ‖`∞(N
2
)
6 C2lK

2l

T|ϕ, i.e. (nSIPnO2) is satisfied with KT =

C1/2l

2l KT|ϕ ∈ R>1.

§08|02.15 Proof of Lemma §08|02.14. Given in the lecture. �

§08|02|02 Global and maximal global v-risk

We measure first the accuracy of the thresholded (generalised) GE θ̂m• := T̂m|(n∧k)|†
•|• ĝ

•
of the (gen-

eralised) Galerkin solution θm• = Tm|†
•|• g• ∈ `21

m
• with g

•
= T•|•θ• ∈ dom(T†•|•) and T•|• ∈ LR(`2) by the

mean of its global v-error introduced in §05|01|01 and §05|02|01, i.e. its v-risk.

§08|02.16 Reminder. If v• ∈ (R\0)
N then we have v2

• 1
m
• ∈ `∞ and `21

m
• ⊆ `2(v

2
• ). Consequently, for each

θ• ∈ `2(v
2
• ) the (generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• satisfies θm• ∈ `2(v

2
• ) too. If in

addition CT := sup
{
‖MvT

m|†
•|• T•|•M1m|⊥

‖
L(`2)

: m ∈ N
}
∈ R>0 then ‖θm• − θ•‖v 6 (1 + CT)‖1m|⊥• θ•‖`2

which implies sup
{
‖θj• − θ•‖v: j ∈ N>m

}
= o(1) as m → ∞ (Property §05|01.24 and Prop-

erty §05|02.08). �

§08|02.17 Comment. Under Assumption §08|02.02 we have ε̇•1
m
• ∈ `∞ P

n
θ|T-a.s. and T̂m

•|• ∈ L(`2) with
ran(T̂m

•|• ) ⊆ `21
m
• P

k
T -a.s. for each m ∈ N. Consequently, ran(T̂m|(k∧n)|†

•|• ) ⊆ `21
m
• P

k
T -a.s., and

T̂m|(k∧n)|†
•|• ε̇• ∈ `21

m
• P

n⊗k
θ|T -a.s., and hence

θ̂
m

• = T̂
m|(k∧n)|†
•|• ĝ

•
= n−1/2T̂

m|(k∧n)|†
•|• ε̇• + T̂

m|(k∧n)|†
•|• g

•
∈ `21

m
• ⊆ `2(v

2
• ) P

n⊗k
θ|T -a.s.. �

§08|02|02|01 Global v-risk

§08|02.18 Assumption. Let v• ∈ R
N

\0 and θ• ∈ `2(v
2
• ) be satisfied. �

§08|02.19 Definition. Under Assumptions §08|02.02 and §08|02.18 the global v-risk of a (generalised) tGE
θ̂m• = T̂m|(k∧n)|†

•|• ĝ
•
∈ `21

m
• ⊆ `2(v

2
• ) P

n⊗k
θ|T -a.s. satisfies

P
n⊗k
θ|T (‖θ̂m• − θ•‖2

v
) = P

n⊗k
θ|T (‖T̂m|(k∧n)|†

•|• (ĝ
•
− g

•
)‖2

v
) + P

k

T (‖T̂m|(k∧n)|†
•|• g

•
− θ•‖2

v
) (08.17)

with Pn⊗k
θ|T (‖T̂m|(k∧n)|†

•|• (ĝ
•
− g

•
)‖2

v
) = n−1P

k
T

(
tr(MvT̂

m|†
•|• Γθ|T(T̂m|†

•|• )
?
Mv)1Ω

m,k∧n

)
(see Property §08|01.15).

�

§08|02.20 Property. Under Assumption §08|02.02 we have

P
k

T (‖T̂m|(k∧n)|†
•|• g

•
− θ•‖2

v
) = P

k

T (‖T̂m|†
•|• (T

m

•|• − T̂
m

•|• )θ
m
• + (θ

m
• − θ•)‖2

v
1Ω

m,k∧n) + ‖θ•‖2

v
P
k

T (Ω
c

m,k∧n)

6 2P
k

T (‖T̂m|†
•|• (T

m

•|• − T̂
m

•|• )θ
m
• ‖2

v
1Ω

m,k∧n) + 2‖θm• − θ•‖2

v
+ ‖θ•‖2

v
P
k

T (Ω
c

m,k∧n)
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(since T̂m|†
•|• T̂m

•|•1Ω
m,k∧n = T̂m|(k∧n)|†

•|• T̂m|(k∧n)

•|• = M1m•
1Ω

m,k∧n). �

§08|02.21 Notation (Reminder). Let A ∈ L(`2) be a Hilbert-Schmidt operator, A ∈ HS(`2) for short, where
‖A‖2

HS
:= tr(A?A) = tr(AA?) ∈ R>0. If Γ ∈ L(`2) then tr(A?ΓA) 6 ‖Γ‖

L(`2)
tr(A?A) =

‖Γ‖
L(`2)
‖A‖2

HS
. For arbitrary A ∈ L(`2) we have MvA

m = Mm
v Am ∈ HS(`2). �

§08|02.22 Notation. For eachm ∈ N and T•|• ∈ LR(`2) we consider the observable event and its complement

Ω
m,k∧n := {‖[Mv]m[T̂•|•]

−1

m
‖2

HS
6 k ∧ n} and Ω

c

m,k∧n := {‖[Mv]m[T̂•|•]
−1

m
‖2

HS
> k ∧n}. (08.18)

On the event Ω
m,k∧n the random matrix [T̂•|•]m ∈ R

(m,m) is regular with inverse [T̂•|•]
−1

m
∈ R(m,m).

Moreover, setting Am
•|• := η̇m•|•T

m|†
•|• we introduce an unobserved event and its complement

f
m,k

:= {4m‖Am

•|•‖2

L(`2)
6 k} and fc

m,k
:= {4m‖Am

•|•‖2

L(`2)
> k}. (08.19)

Note that 1f
m,k

= 1{4m‖Am
•|•‖2

L(`2)
6 k} denotes an unobserved elementary random variable. �

§08|02.23 Lemma. Under Assumptions §08|02.02 and §08|02.18 for all m, k, n ∈ N we have
(i) if 4‖MvT

m|†
•|• ‖2

HS
6 k ∧ n then f

m,k
⊆ Ω

m,k∧n,

(ii) Pk
T

(
tr(MvT̂

m|†
•|• Γθ|T(T̂m|†

•|• )?Mv)1Ω
m,k∧n

)
6 vθ|T(4‖MvT

m|†
•|• ‖2

HS
+ (k ∧ n)Pk

T (fc

m,k
)), and

(iii) Pk
T (‖T̂m|†

•|• (Tm

•|• − T̂m

•|• )θ
m
• ‖2

v
1Ω

m,k∧n) 6 4k−1vT‖MvT
m|†
•|• ‖2

HS
‖θm• ‖2

`2
+ Pk

T (‖η̇m•|•θm• ‖2
`2
1fc

m,k
).

with Ω
m,k∧n and f

m,k
as in (08.18) and (08.19), respectively.

§08|02.24 Proof of Lemma §08|02.23. Given in the lecture. �

§08|02.25 Proposition (Upper bound). Under Assumptions §08|02.02 and §08|02.18 for all n,m ∈ N with
(generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• setting similar to (08.03)

R
m

n∧k(θ•,T•|•, v•) := ‖θm• − θ•‖2

v
+ (n ∧ k)−1‖MvT

m|†
•|• ‖2

HS
,

m◦
n∧k := arg min

{
R
m

n∧k(θ•,T•|•, v•) : m ∈ N
}

and

R
◦
n∧k(θ•,T•|•, v•) := R

m◦n∧k
n∧k (θ•,T•|•, v•) = min

{
R
m

n∧k(θ•,T•|•, v•) : m ∈ N
}

(08.20)

for all m ∈ N the (generalised) tGE θ̂m• = T̂m|(k∧n)|†
•|• ĝ

•
∈ `21

m
• P

n⊗k
θ|T -a.s. satisfies

P
n⊗k
θ|T (‖θ̂m• − θ•‖2

v
) 6 (4vθ|T + 8vT‖θm• ‖2

`2
) R

m

n∧k(θ•,T•|•, v•)

+ vθ|TP
k

T (fc

m,k
) + 2P

k

T (‖η̇m•|•θm• ‖2

`2
1fc

m,k
) + ‖θ•‖2

v
P
k

T (Ω
c

m,k∧n) (08.21)

with Ω
m,k∧n and f

m,k
as in (08.18) and (08.19), respectively.

§08|02.26 Proof of Proposition §08|02.25. Given in the lecture. �

§08|02.27 Corollary. Under the assumptions of Proposition §08|02.25 the (infeasible, generalised) tGE
θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ `2(v

2
• ) P

n⊗k
θ|T -a.s. with Ω

m◦n∧k ,k∧n
as in (08.18) and (infeasible) dimen-

sion m◦
n∧k as in (08.20) for each k, n ∈ N with R◦

n∧k(θ•,T•|•, v•) 6 1/4 satisfies

P
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 (4vθ|T + 8vT‖θm

◦
n∧k

• ‖2

`2
) R

◦
n∧k(θ•,T•|•, v•)

+ 22lK
2l

T

{(
vθ|T + ‖θ•‖2

v

)
k−1m◦

n∧k‖T
m◦n∧k |†
•|• ‖2

L(`2)
+ ‖θm

◦
n∧k

• ‖2

L(`2)
/4
}

× (m◦
n∧k)

2(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1

(08.22)
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and if in addition

(m◦
n∧k)

2(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1
6 R

◦
n∧k(θ•,T•|•, v•) 6 1/4 (08.23)

then we have

P
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 R

◦
n∧k(θ•,T•|•, v•)

×
{

(4 + 22lK
2l

T (m◦
n∧k)

−2)vθ|T + (8vT + 22l−2K
2l

T )‖θm
◦
n∧k

• ‖2

`2
+ 22lK

2l

T (m◦
n∧k)

−2‖θ•‖2

v

}
6 22l+2K

2l

T

(
vθ|T + ‖θm

◦
n∧k

• ‖2

`2
+ ‖θ•‖2

v

)
R
◦
n∧k(θ•,T•|•, v•) (08.24)

§08|02.28 Proof of Corollary §08|02.27. Given in the lecture. �

§08|02.29 Remark. Considerm◦
n∧k = arg min

{
Rm

n∧k(θ•,T•|•, v•) : m ∈ N
}

and R◦
n∧k(θ•,T•|•, v•) = Rm◦n∧k

n∧k (θ•,T•|•, v•)

as in (08.20). Arguing similarly as in Remark §07|01.21 we note that ‖MvT
m|†
•|• ‖HS

∈ R>0 for all
m ∈ N and hence R◦

n∧k(θ•,T•|•, v•) = o(1) as n ∧ k →∞, whenever ‖θm• − θ•‖v = o(1) as m →∞
(c.f. Remark §05|01.05). In this situation if sup{‖θm• ‖2

`2
: m ∈ N} 6 K2

θ |T ∈ R>0 then from
(08.24) in Corollary §08|02.27 follows

P
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 22l+2K

2l

T

(
vθ|T + K

2

θ |T + ‖θ•‖2

v

)
R
◦
n∧k(θ•,T•|•, v•).

However, the dimension m◦
n∧k = m◦

n∧k(θ•,T•|•, v•) as defined in (08.03) depends on the unknown
parameter of interest θ• and the nuissance parameter T•|•, and thus also the statistic θ̂m

◦
n∧k

• . In other
words θ̂m

◦
n∧k

• is not a feasible estimator. �

§08|02.30 Corollary (GniSM with noisy operator §08|02.08 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+n−1/2Ḃ•,T•|•+k

−1/2Ẇ•|•) ∼ N
n⊗k
θ|T = N

n

θ|T⊗N
k

T as in Model §08|02.08, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ•|• ∼ N
⊗N

2

(0,1) are independent, T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2.
Given Assumption §08|02.18 for each k, n ∈ N fulfilling (08.23) the (infeasible, generalised) tGE
θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ `2(v

2
• ) satisfies

N
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 22l+2((2l − 1)!!)

(
1 + ‖θm

◦
n∧k

• ‖2

`2
+ ‖θ•‖2

v

)
R
◦
n∧k(θ•,T•|•, v•)

where R◦
n
(θ•,T•|•, v•) is the oracle rate in a GniSM §08|01.04 (see Corollary §08|01.21).

§08|02.31 Proof of Corollary §08|02.30. Given in the lecture. �

§08|02.32 Corollary (niSM with noisy operator §08|02.10 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) ∼ Pn⊗k

θ|T|σ |ξ |ξ(2l) as in Model §08|02.10, where ε̇• and η̇•|• satisfies
(iSM1) with vσ = ‖σ2

• ‖`∞ ∨ 1 and (niSMnO1)–(niSMnO2) with K2l

ξ(2l) := 1 ∨ ‖ξ(2l)
•|• ‖`∞(N

2
)
, respectively,

T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|02.18 for each
k, n ∈ N fulfilling (08.23) the (infeasible, generalised) tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ `2(v

2
• )

satisfies

Pn⊗k
θ|T|σ |ξ |ξ(2l)(‖θ̂

m◦n∧k
• − θ•‖2

v
) 6 22l+2K

2l

ξ(2l)

(
vσ + ‖θm

◦
n∧k

• ‖2

`2
+ ‖θ•‖2

v

)
R
◦
n∧k(θ•,T•|•, v•)

where R◦
n
(θ•,T•|•, v•) is the oracle rate in a niSM §08|01.06 (see Corollary §08|01.23).

§08|02.33 Proof of Corollary §08|02.32. Given in the lecture. �
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§08|02.34 Corollary (nieMM with noisy operator §08|02.13 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) defined on (Z

n+k
,Z

⊗(n+k)
,Pn⊗k

θ|T ) as in Model §08|02.13,
where ψ

•
∈ M(Z ⊗ 2N) and ϕ

•|• ∈ M(Z ⊗ 2N
2

) satisfies (nieMM1)-(nieMM2) for vθ|T|ψ ∈ R>1 and
(nieMMnO1)-(nieMMnO3) for KT|ϕ ∈ R>1, respectively, T•|• ∈ T and θ• ∈ `2, and hence g

•
= T•|•θ• ∈

dom(T†•|•) ⊆ `2. Given Assumption §08|02.18 for each k, n ∈ N fulfilling (08.23) the (infeasible,
generalised) tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ `2(v

2
• ) satisfies

P
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 C2lK

2l

T|ϕ

(
vθ|T|ψ + ‖θm

◦
n∧k

• ‖2

`2
+ ‖θ•‖2

v

)
R
◦
n∧k(θ•,T•|•, v•)

where C2l ∈ R>1 is a constant depending on l ∈ N only and R◦
n
(θ•,T•|•, v•) is the oracle rate in a

nieMM §08|01.08 (see Corollary §08|01.25).

§08|02.35 Proof of Corollary §08|02.34. Given in the lecture. �

§08|02.36 Illustration. We distinguish as in Illustration §08|01.27 the two cases (p) and (np), where θ•1K|⊥• =
0• implies the case (p). In case (p) the oracle bound is parametric, that is, nR◦

n
(θ•,T•|•, v•) = O(1),

in case (np) the oracle bound is nonparametric, i.e. limn→∞ nR◦
n
(θ•,T•|•, v•) = ∞. In case (np)

consider similar to (o-m), (o-s) and (s-m) in Illustration §08|01.27 the following specifications:

Table 05 [§08]

Order of the rate R◦
n∧k(θ•,T•|•, v•) as n ∧ k →∞

(squared bias) (variance)

(m ∈ N) ‖θm• − θ•‖2
v

‖MvT
m|†
•|• ‖2

HS
m◦

n∧k R◦
n∧k(θ•,T•|•, v•)

(vm = mv) (a ∈ R>0) (t ∈ R>0)

(o-m) v ∈ (−1/2− t, a) m−2(a−v) m2(t+v)+1 (n ∧ k)
1

2a+2t+1 (n ∧ k)−
2(a−v)

2a+2t+1

v + t = −1/2 m−2a−2t−1 logm
( n∧k
logn∧k

) 1
2a+2t+1 logn∧k

n∧k

(o-s) a− v ∈ R>0 m−2(a−v) m(1−2(t−v))+em
2t

(log n ∧ k)
1
2t (log n ∧ k)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 m(1−2(a−v))+e−m
2a

m2(t+v)+1 (log n ∧ k)
1
2a

(logn∧k)
2t+2v+1

2a

n∧k

v + t = −1/2 e−m
2a

logm (log n ∧ k)
1
2a

log logn∧k
n∧k

We note that in case (o-m) and (s-m) for v+t < −1/2 the rate R◦
n∧k(θ•,T•|•, v•) is parametric. The tGE

attains the rate R◦
n∧k := R◦

n∧k(θ•,T•|•, v•) due to Corollary §08|02.27 under the additional condition

(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1
6 (m◦

n∧k)
−2R

◦
n∧k(θ•,T•|•, v•). (08.25)

Since (m◦
n∧k)

−2R◦
n∧k(θ•,T•|•, v•) = o(1) also k−1(m◦

n∧k)
3‖Tm◦n∧k |†

•|• ‖2
L(`2)

= o(1) is necessary as n∧k →∞.
The next table depicts the order of both terms in case (o-m), (o-s) and (s-m).

Table 06 [§08]

Order as n ∧ k →∞

(o-m) (o-s) (s-m)

v ∈ (−1/2− t, a) a− v ∈ R>0 v + t + 1/2 ∈ R>0

(m◦
n∧k)

−2R◦
n∧k(θ•,T•|•, v•) (n ∧ k)−

2(a−v)+2
2a+2t+1 (log n ∧ k)−

2a−2v+2
2t

(logn∧k)
2t+2v−1

2a

n∧k

(n ∧ k)−1(m◦
n∧k)

3‖Tm◦
n∧k |†

•|• ‖2
L(`2)

(n ∧ k)−
2a−2

2a+2t+1 (n ∧ k)−c
(logn∧k)

2t+3
2a

n∧k

In case (o-s) a value l > 2 and (s-m) a value l > 3 is sufficient to ensure (08.25) as n ∧ k →∞. In
case (o-m) assuming a > 1 we have k−1(m◦

n∧k)
3‖Tm◦n∧k |†

•|• ‖2
L(`2)

= o(1) as n ∧ k →∞. In this situation
we have (08.25) if 2(a− 1)(l − 1) > 2(a− v) + 2 or in equal l > (2a− v)/(a− 1). �
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§08|02|02|02 Maximal global v-risk

§08|02.37 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Z, . . . } we
write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing and
non-increasing. If in addition an → ∞ and bn → 0 as n → ∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ `∞ we set w(0) := ‖w•‖`∞ and w(•) = (w(j) := ‖w•1

j |⊥
• ‖`∞)j∈N, where

by construction w(•) ∈ (R>0)N↘ . �

§08|02.38 Assumption. Consider weights t•, a• ∈ (R>0)N↘ and v• ∈ R
N

>0 such that (av)• := a•v• ∈ `∞,
(av)(•) ∈ (R>0)N↓0 , and (t/v)• = t•v

−1
• ∈ `∞ are satisfied. In addition there exists C(t/v) ∈ (0, 1] such

that for all m ∈ N

(t/v)2
(m−1) > min

{
(t/v)2

j : j ∈ JmK
}
> C(t/v)(t/v)2

(m) (08.26)

or in equal C(t/v)‖(t/v)−2
• 1

m
• ‖`∞ 6 (t/v)−2

(m). �

§08|02.39 Reminder. Under Assumption §08|02.38 we have `a
2

= dom(Ma−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and v2
• νN dominate mutually each other, i.e. they share the same null sets

(see Property §04|01.02). We consider `a
2

endowed with ‖·‖a−1 = ‖Ma−1·‖`2 and given a constant
r ∈ R>0 the ellipsoid `a,r

2
:= {a• ∈ `a2 : ‖a•‖a−1 6 r} ⊆ `a

2
. Since (av)• ∈ `∞, and hence (av)(m) :=

‖(av)•1
m|⊥
• ‖`∞ ∈ R>0 for each m ∈ N we have `a

2
⊆ `2(v

2
• ) (Property §04|02.11). Consequently,

if Assumption §08|02.38 and θ• ∈ `a,r
2

are satisfied, then Assumption §08|02.18 is also fulfilled.
Since v•, t• ∈ R

N

\0 under Assumption §08|02.38, we have ‖t−1
• 1

m
• ‖v = ‖(v/t)•1m• ‖`2 ∈ R>0 for

each m ∈ N. Under the Assumptions §08|00.02 and §08|02.38 considering the generalised link
condition T•|• ∈ Tt,d,D with band D ∈ [1,∞) and d ∈ [1,D] as in Definition §05|02.05 we have
supm∈N{‖[Mt]m[T•|•]

−1

m
‖

spec
} 6 D, and hence ‖Tm|†

•|• ‖L(`2)
6 Dt−1

m and ‖MvT
m|†
•|• ‖HS

6 D‖t−1
• 1

m
• ‖v

shown in (08.06) using tr([Mm
(v/t)]

2
m) = ‖(v/t)•1m• ‖2

`2
= ‖t−1

• 1
m
• ‖2

v
. Moreover, for each m ∈ N the

generalised Galerkin solution θm• := Tm|†
•|• g• ∈ `21

m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies (Lemma §05|02.09)

‖θm• ‖`2 6 a1‖θ
m
• ‖a−1 6 a1Ddr and ‖θ• − θm• ‖2

v
6 (D

2
d

2
C
−2

(t/v) + 1)(av)2
(m)r

2.

Note that under Assumptions §08|00.02 and §08|02.38 the link condition T•|• ∈ T 	
t,d with band

d ∈ R>1 as in Definition §05|01.08 implies supm∈N{‖[Mt•
]m[T•|•]

−1

m
‖

spec
} 6 3d2 (Lemma §05|01.22),

and hence for each m ∈ N we have ‖MvT
m|†
•|• ‖2

HS
6 9d4‖t−1

• 1
m
• ‖2

v
and the Galerkin solution θm• :=

Tm|†
•|• g• ∈ `21

m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies ‖θm• ‖`2 6 3a1d

3r and ‖θ•− θm• ‖2
v
6 (9d6C−2

(t/v) + 1)(av)2
(m)r

2

(Lemma §05|01.28). �

§08|02.40 Corollary. Under Assumptions §08|02.02 and §08|02.38 let θ• := T†•|•g• ∈ `
a•,r

2
and T•|• ∈ Tt,d,D (or

T•|• ∈ T 	
t,d with D = 3d2), for all m, k, n ∈ N we have

(i) if 4D2‖t−1
• 1

m
• ‖2

v
6 k ∧ n then f

m,k
⊆ Ω

m,k∧n,

(ii) Pk
T

(
tr(MvT̂

m|†
•|• Γθ|T(T̂m|†

•|• )?Mv)1Ω
m,k∧n

)
6 vθ|T(4D2‖t−1

• 1
m
• ‖2

v
+ (k ∧ n)Pk

T (fc

m,k
)), and

(iii) Pk
T (‖T̂m|†

•|• (Tm

•|• − T̂m

•|• )θ
m
• ‖2

v
1Ω

m,k∧n) 6 4k−1vTD2‖t−1
• 1

m
• ‖2

v
‖θm• ‖2

`2
+ Pk

T (‖η̇m•|•θm• ‖2
`2
1fc

m,k
).

with Ω
m,k∧n and f

m,k
as in (08.18) and (08.19), respectively.

§08|02.41 Proof of Corollary §08|02.40. Given in the lecture. �

§08|02.42 Proposition (Upper bound). Under Assumptions §08|02.02 and §08|02.38 let θ• := T†•|•g• ∈ `
a•,r

2
and
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T•|• ∈ Tt,d,D (or T•|• ∈ T 	
t,d with D = 3d2) for all n,m ∈ N setting similar to (08.07)

R
m

n∧k(a•, t•, v•) := [(av)2
(m) ∨ (n ∧ k)−1‖t−1

• 1
m
• ‖2

v
],

m?
n∧k := arg min

{
R
m

n∧k(a•, t•, v•) : m ∈ N
}

and

R
?

n∧k(a•, t•, v•) := R
m?

n∧k

n∧k (a•, t•, v•) = min
{

R
m

n∧k(a•, t•, v•) : m ∈ N
}

(08.27)

for all m ∈ N the (generalised) tGE θ̂m• = T̂m|(k∧n)|†
•|• ĝ

•
∈ `21

m
• P

n⊗k
θ|T -a.s. satisfies

P
n⊗k
θ|T (‖θ̂m• − θ•‖2

v
) 6 2D

2
(C
−2

(t/v)d
2
r2 + 2vθ|T + 4vTa

2
1D

2
d

2
r2) R

m

n∧k(a•, t•, v•)

+ vθ|TP
k

T (fc

m,k
) + 2P

k

T (‖η̇m•|•θm• ‖2

`2
1fc

m,k
) + ‖θ•‖2

v
P
k

T (Ω
c

m,k∧n) (08.28)

with Ω
m,k∧n and f

m,k
as in (08.18) and (08.19), respectively.

§08|02.43 Proof of Proposition §08|02.42. Given in the lecture. �

§08|02.44 Corollary. Under the assumptions of Proposition §08|02.42 for k, n ∈ N with R?

n∧k(a•, t•, v•) 6

1/(4D2) the (generalised) tGE θ̂m
?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ `2(v
2
• ) P

n⊗k
θ|T -a.s. with Ω

m?
n∧k ,k∧n

as in
(08.18) and dimension m?

n∧k as in (08.27) satisfies

P
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
) 6 2D

2
(C
−2

(t/v)d
2
r2 + 2vθ|T + 4vTa

2
1D

2
d

2
r2) R

?

n∧k(a•, t•, v•)

+ 22lK
2l

T D
2(l−1)

{
D

2
(
vθ|T + (av)2

(0)r
2
)
k−1m?

n∧kt
−2
m?

n∧k
+ a2

1D
2
d

2
r2/4

}
× (m?

n∧k)
2(k−1(m?

n∧k)
3t−2
m?

n∧k
)l−1. (08.29)

and if in addition

(m?
n∧k)

2(k−1(m?
n∧k)

3t−2
m?

n∧k
)l−1 6 R

?

n∧k(a•, t•, v•) 6 1/(4D
2
) (08.30)

then we have

P
n⊗k
θ|T (‖θ̂m

◦
n∧k

• − θ•‖2

v
) 6 22l+2K

2l

T D
2l
(vθ|T + (av)2

(0)r
2 + (C

−2

(t/v) + a2
1)d

2
r2) R

?

n∧k(a•, t•, v•). (08.31)

§08|02.45 Proof of Corollary §08|02.44. Given in the lecture. �

§08|02.46 Remark. Arguing similarly as in Remark §07|01.21 we note that ‖t−1
• 1

m
• ‖2

v•
∈ R>0 for all m ∈ N

and hence R?

n∧k(a•, t•, v•) = o(1) as n ∧ k →∞, whenever (av)(m) = o(1) as m →∞, i.e. (av)• ∈
(R>0)N↓0 . If there is in addition C ∈ R>1 such that K2l

T 6 C and vθ|T 6 C for all θ• := T†•|•g• ∈ `
a,r

2

and T•|• ∈ Tt,d,D then from the bound (08.31) Corollary §08|02.44 follows immediately

sup
{
P
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, v•)

× 22l+2CD
2l
(C + (av)2

(0)r
2 + (C

−2

(t/v) + a2
1)d

2
r2).

Note that the dimension m?
n∧k := m?

n∧k(a•, t•, v•) does not depend on the unknown parameter of
interest θ• but on the classes `a•,r

2
and Tt,d,D only, and thus also the statistic θ̂m

?
n

• . In other words,
if the regularity of θ• and T•|• is known in advance, then the thresholded GE θ̂m

?
n

• is a feasible
estimator. �

§08|02.47 Corollary (GniSM with noisy operator §08|02.08 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2Ḃ•,T•|• + k−1/2Ẇ•|•) ∼ N

n⊗k
θ|T = N

n

θ|T ⊗ N
k

T as in Model §08|02.08, where

Ḃ• ∼ N
⊗N
(0,1) and Ẇ•|• ∼ N

⊗N
2

(0,1) are independent, T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈
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dom(T†•|•) ⊆ `2. Given Assumption §08|02.38 for each k, n ∈ N fulfilling (08.30) the (generalised)
tGE θ̂m

?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ `2(v
2
• ) satisfies

sup
{

N
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, v•)

× 22l+2((2l − 1)!!)D
2l
(1 + (av)2

(0)r
2 + (C

−2

(t/v) + a2
1)d

2
r2)

where R?

n
(a•, t•, v•) is the rate in a GniSM §08|01.04 (see Corollary §08|01.34).

§08|02.48 Proof of Corollary §08|02.47. Given in the lecture. �

§08|02.49 Corollary (niSM with noisy operator §08|02.10 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) ∼ Pn⊗k

θ|T|σ |ξ |ξ(2l) as in Model §08|02.10, where ε̇• and η̇•|• satisfies
(iSM1) with vσ = ‖σ2

• ‖`∞ ∨ 1 and (niSMnO1)–(niSMnO2) with K2l

ξ(2l) := 1 ∨ ‖ξ(2l)
•|• ‖`∞(N

2
)
, respectively,

T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|02.38 for each
k, n ∈ N fulfilling (08.30) the (generalised) tGE θ̂m

?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ `2(v
2
• ) satisfies

sup
{

Pn⊗k
θ|T|σ |ξ |ξ(2l)(‖θ̂

m?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, v•)

× 22l+2K
2l

ξ(2l)D
2l
(vσ + (av)2

(0)r
2 + (C

−2

(t/v) + a2
1)d

2
r2)

where R?

n
(a•, t•, v•) is the rate in a niSM §08|01.06 (see Corollary §08|01.36).

§08|02.50 Proof of Corollary §08|02.49. Given in the lecture. �

§08|02.51 Corollary (nieMM with noisy operator §08|02.13 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) defined on (Z

n+k
,Z

⊗(n+k)
,Pn⊗k

θ|T ) as in Model §08|02.13,
where ψ

•
∈ M(Z ⊗ 2N) and ϕ

•|• ∈ M(Z ⊗ 2N
2

) satisfies (nieMM1)-(nieMM2) for vθ|T|ψ ∈ R>1 and
(nieMMnO1)-(nieMMnO3) for KT|ϕ ∈ R>1, respectively, T•|• ∈ T and θ• ∈ `2, and hence g

•
= T•|•θ• ∈

dom(T†•|•) ⊆ `2. Given Assumption §08|02.38 for each k, n ∈ N fulfilling (08.30) the (generalised)
tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ `2(v

2
• ) satisfies

sup
{
P
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, v•)

×C2l sup
{

K
2l

T|ϕ: T•|• ∈ Tt,d,D

}
D

2l
(sup

{
vθ|T|ψ: T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
+ (av)2

(0)r
2 +(C

−2

(t/v) +a2
1)d

2
r2)

where C2l ∈ R>1 is a constant depending on l ∈ N only and R?

n
(a•, t•, v•) is the rate in a nieMM

§08|01.08 (see Corollary §08|01.38).

§08|02.52 Proof of Corollary §08|02.51. Given in the lecture. �

§08|02.53 Illustration. We distinguish again the two cases (p) and (np) given in Illustration §08|01.40
where in case (p) the bound in Corollary §08|02.44 is parametric, that is, (n ∧ k)R?

n∧k(a•, t•, v•) =
O(1), in case (np) the bound is nonparametric, i.e. limn→∞(n ∧ k)R?

n∧k(a•, t•, v•) = ∞. In
case (np) we consider similar to (o-m), (o-s) and (s-m) in Illustration §07|01.44 the following three
specifications:
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Table 07 [§08]

Order of the rate R?

n∧k(a•, t•, v•) as n ∧ k →∞

(j ∈ N) (a ∈ R>0) (t ∈ R>0) (squared bias) (variance)

v2j = j2v a2j t2j (av)2
(m) ‖t−1

• 1
m
• ‖2

v
m?

n∧k R?

n∧k(a•, t•, v•)

(o-m) v ∈ (−1/2− t, a) j−2a j−2t m−2(a−v) m2v+2t+1 (n ∧ k)
1

2a+2t+1 (n ∧ k)−
2(a−v)

2a+2t+1

v + t = −1/2 j−2a j−2t m−2a−2t−1 logm
( n∧k
logn∧k

) 1
2a+2t+1 logn∧k

n∧k

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m(1−2(t−v))+em
2t

(log n ∧ k)
1
2t (log n ∧ k)−

a−v
t

(s-m) v + t + 1/2 ∈ R>0 e−j
2a

j−2t m2ve−m
2a

m2v+2t+1 (log n ∧ k)
1
2a

(logn∧k)
2t+2v+1

2a

n∧k
v + t = −1/2 e−j

2a

j−2t m2ve−m
2a

logm (log n ∧ k)
1
2a

log logn∧k
n∧k

We note that in case (o-m) and (s-m) for v + t < −1/2 the rate R?

n
(a•, t•, v•) is parametric. The tGE

attains the rate R?

n∧k := R?

n∧k(a•, t•, v•) due to Corollary §08|02.44 under the additional condition

(k−1(m?
n∧k)

3t−2
m?

n∧k
)l−1 6 (m?

n∧k)
−2R

?

n∧k(a•, t•, v•). (08.32)

Since (m?
n∧k)

−2R◦
n∧k(a•, t•, v•) = o(1) also k−1(m?

n∧k)
3t−2
m?

n∧k
= o(1) is necessary as n ∧ k → ∞. The

next table depicts the order of both terms in case (o-m), (o-s) and (s-m).

Table 08 [§08]

Order as n ∧ k →∞

(o-m) (o-s) (s-m)

v ∈ (−1/2− t, a) a− v ∈ R>0 v + t + 1/2 ∈ R>0

(m◦
n∧k)

−2R?

n∧k(a•, t•, v•) (n ∧ k)−
2(a−v)+2
2a+2t+1 (log n ∧ k)−

2a−2v+2
2t

(logn∧k)
2t+2v−1

2a

n∧k

(n ∧ k)−1(m?
n∧k)

3t−2m?

n∧k
(n ∧ k)−

2a−2
2a+2t+1 (n ∧ k)−c

(logn∧k)
2t+3
2a

n∧k

In case (o-s) a value l > 2 and (s-m) a value l > 3 is sufficient to ensure (08.32) as n ∧ k → ∞.
In case (o-m) assuming a > 1 we have k−1(m◦

n∧k)
3t−2
m?

n∧k
= o(1) as n ∧ k → ∞. In this situation we

have (08.32) if 2(a− 1)(l − 1) > 2(a− v) + 2 or in equal l > (2a− v)/(a− 1). �

§08|02|03 Local and maximal local φ-risk

We measure the accuracy of the (generalised) tGE θ̂m• := T̂m|(n∧k)|†
•|• ĝ

•
of the (generalised) Galerkin

solution θm• = Tm|†
•|• g• ∈ `21

m
• with g

•
= T•|•θ• ∈ dom(T†•|•) by the mean of its local φ-error introduced

in §05|01|02 and §05|02|02, i.e. its φ-risk.

§08|02.54 Reminder. If φ
•
∈ RN\0 then we have φ2

•
1m• ∈ `2 and `21

m
• ⊆ dom(φν

N
). Consequently, for each

θ• ∈ dom(φν
N
) the (generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• satisfies θm• ∈ dom(φν

N
)

too. If in addition CT := sup
{
‖M

1m|⊥
T?

•|•(T
m|†
•|• )

?
φ
•
‖`2 : m ∈ N

}
∈ R>0 then |φν

N
(θm• − θ•)| 6 (1 +

CT)‖1m|⊥• θ•‖`2 which implies sup
{
|φν

N
(θj• − θ•)|: j ∈ N>m

}
= o(1) as m →∞ (Property §05|01.31

and Property §05|02.12). �

§08|02.55 Comment. Under Assumption §08|02.02 we have ε̇•1
m
• ∈ `∞ P

n
θ|T-a.s. and T̂m

•|• ∈ L(`2) with
ran(T̂m

•|• ) ⊆ `21
m
• P

k
T -a.s. for each m ∈ N. Consequently, ran(T̂m|(k∧n)|†

•|• ) ⊆ `21
m
• P

k
T -a.s., and

T̂m|(k∧n)|†
•|• ε̇• ∈ `21

m
• P

n⊗k
θ|T -a.s., and hence

θ̂
m

• = T̂
m|(k∧n)|†
•|• ĝ

•
= n−1/2T̂

m|(k∧n)|†
•|• ε̇• + T̂

m|(k∧n)|†
•|• g

•
∈ `21

m
• ⊆ dom(φν

N
) P

n⊗k
θ|T -a.s.. �
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§08|02|03|01 Local φ-risk

§08|02.56 Assumption. Let φ
•
∈ RN\0 and θ• ∈ dom(φν

N
) be satisfied. �

§08|02.57 Definition. Under Assumptions §08|02.02 and §08|02.56 the local φ-risk of a (generalised) tGE
θ̂m• = T̂m|(n∧k)|†

•|• ĝ
•
∈ `21

m
• ⊆ dom(φν

N
) P

n
θ|T-a.s. satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m

• − θ•)|2) = P
n⊗k
θ|T (|φν

N
(T̂

m|(k∧n)|†
•|• (ĝ

•
−g

•
))|2)+P

k

T (|φν
N
(T̂

m|(k∧n)|†
•|• g

•
−θ•)|2) (08.33)

with Pn⊗k
θ|T (|φν

N
(T̂m|(k∧n)|†

•|• (ĝ
•
− g

•
))|2) = n−1P

k
T ‖(T̂m|(k∧n)|†

•|• )
?
φm
•
‖2

Γθ|T
(see Property §08|01.45). �

§08|02.58 Property. Under Assumption §08|02.02 we have

P
k

T (|φν
N
(T̂

m|(k∧n)|†
•|• g

•
−θ•)|2) = P

k

T (|φν
N
(T̂

m|†
•|• (T

m

•|•−T̂
m

•|• )θ
m
• +(θ

m
• −θ•))|21Ω

m,k∧n)+|φνN(θ•)|2P
k

T (Ω
c

m,k∧n)

6 2P
k

T (|φν
N
(T̂

m|†
•|• (T

m

•|• − T̂
m

•|• )θ
m
• )|21Ω

m,k∧n) + 2|φν
N
(θ

m
• − θ•)|2 + |φν

N
(θ•)|2P

k

T (Ω
c

m,k∧n)

(since T̂m|†
•|• T̂m

•|•1Ω
m,k∧n = T̂m|(k∧n)|†

•|• T̂m|(k∧n)

•|• = M1m•
1Ω

m,k∧n). �

§08|02.59 Notation (Reminder). Let A ∈ L(`2) be a Hilbert-Schmidt operator, A ∈ HS(`2) for short, where
‖A‖2

HS
:= tr(A?A) = tr(AA?) ∈ R>0. If Γ ∈ L(`2) then tr(A?ΓA) 6 ‖Γ‖

L(`2)
tr(A?A) =

‖Γ‖
L(`2)
‖A‖2

HS
. For arbitrary A ∈ L(`2) we have MvA

m = Mm
v Am ∈ HS(`2). �

§08|02.60 Notation. For eachm ∈ N and T•|• ∈ LR(`2) we consider the observable event and its complement

Ω
m,k∧n := {‖([T̂•|•]

−1

m
)
?

[φ
•
]m‖2 6 k ∧ n} and Ω

c

m,k∧n := {‖([T̂•|•]
−1

m
)
?

[φ
•
]m‖2 > k ∧n}. (08.34)

On the event Ω
m,k∧n the random matrix [T̂•|•]m ∈ R

(m,m) is regular with inverse [T̂•|•]
−1

m
∈ R(m,m).

Moreover, setting Am
•|• := η̇m•|•T

m|†
•|• we introduce an unobserved event and its complement

f
m,k

:= {4m‖Am

•|•‖2

L(`2)
6 k} and fc

m,k
:= {4m‖Am

•|•‖2

L(`2)
> k}. (08.35)

Note that 1f
m,k

= 1{4m‖Am
•|•‖2

L(`2)
6 k} denotes an unobserved elementary random variable. �

§08|02.61 Lemma. Under Assumptions §08|02.02 and §08|02.56 for all m, k, n ∈ N we have
(i) if 4‖(Tm|†

•|• )
?
φm
•
‖2
`2
6 k ∧ n then f

m,k
⊆ Ω

m,k∧n,

(ii) Pk
T

(
‖(T̂m|†

•|• )
?

φm
•
‖2

Γθ|T
1Ω

m,k∧n

)
6 vθ|T(4‖(Tm|†

•|• )
?
φm
•
‖2
`2

+ (k ∧ n)Pk
T (fc

m,k
)), and

(iii) Pk
T (|φν

N
(T̂m|†

•|• (Tm

•|• − T̂m

•|• )θ
m
• )|21Ω

m,k∧n) 6 4k−1vT‖(Tm|†
•|• )

?
φm
•
‖2
`2
‖θm• ‖2

`2
+ Pk

T (‖η̇m•|•θm• ‖2
`2
1fc

m,k
).

with Ω
m,k∧n and f

m,k
as in (08.34) and (08.35), respectively.

§08|02.62 Proof of Lemma §08|02.61. Given in the lecture. �

§08|02.63 Proposition (Upper bound). Under Assumptions §08|02.02 and §08|02.56 for all n,m ∈ N with
(generalised) Galerkin solution θm• = Tm|†

•|• g• ∈ `21
m
• ⊆ dom(φν

N
) setting similar to (08.11)

R
m

n∧k(θ•,T•|•, φ•) := |φν
N
(θ

m
• − θ•)|2 + (n ∧ k)−1‖(Tm|†

•|• )
?
φ
m

•
‖2

`2
,

m◦
n∧k := arg min

{
R
m

n∧k(θ•,T•|•, φ•) : m ∈ N
}

and

R
◦
n∧k(θ•,T•|•, φ•) := R

m◦n∧k
n∧k (θ•,T•|•, φ•) = min

{
R
m

n∧k(θ•,T•|•, φ•) : m ∈ N
}

(08.36)
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for all m ∈ N the (generalised) tGE θ̂m• = T̂m|(k∧n)|†
•|• ĝ

•
∈ `21

m
• ⊆ dom(φν

N
) P

n⊗k
θ|T -a.s. satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m

• − θ•)|2) 6 (4vθ|T + 8vT‖θm• ‖2

`2
) R

m

n∧k(θ•,T•|•, φ•)

+ vθ|TP
k

T (fc

m,k
) + 2P

k

T (‖η̇m•|•θm• ‖2

`2
1fc

m,k
) + |φν

N
(θ•)|2P

k

T (Ω
c

m,k∧n) (08.37)

with Ω
m,k∧n and f

m,k
as in (08.34) and (08.35), respectively.

§08|02.64 Proof of Proposition §08|02.63. Given in the lecture. �

§08|02.65 Corollary. Under the assumptions of Proposition §08|02.63 the (infeasible, generalised) tGE
θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ dom(φν

N
) P

n⊗k
θ|T -a.s. with Ω

m◦n∧k ,k∧n
as in (08.34) and (infeasible)

dimension m◦
n∧k as in (08.36) for each k, n ∈ N with R◦

n∧k(θ•,T•|•, φ•) 6 1/4 satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m◦n∧k
• − θ•)|2) 6 (4vθ|T + 8vT‖θm

◦
n∧k

• ‖2

`2
) R

◦
n∧k(θ•,T•|•, φ•)

+ 22lK
2l

T

{(
vθ|T + |φν

N
(θ•)|2

)
k−1m◦

n∧k‖T
m◦n∧k |†
•|• ‖2

L(`2)
+ ‖θm

◦
n∧k

• ‖2

L(`2)
/4
}

× (m◦
n∧k)

2(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1

(08.38)

and if in addition

(m◦
n∧k)

2(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1
6 R

◦
n∧k(θ•,T•|•, φ•) 6 1/4 (08.39)

then we have

P
n⊗k
θ|T (|φν

N
(θ̂

m◦n∧k
• − θ•)|2) 6 R

◦
n∧k(θ•,T•|•, φ•)

×
{

(4 + 22lK
2l

T (m◦
n∧k)

−2)vθ|T + (8vT + 22l−2K
2l

T )‖θm
◦
n∧k

• ‖2

`2
+ 22lK

2l

T (m◦
n∧k)

−2|φν
N
(θ•)|2

}
6 22l+2K

2l

T

(
vθ|T + ‖θm

◦
n∧k

• ‖2

`2
+ |φν

N
(θ•)|2

)
R
◦
n∧k(θ•,T•|•, φ•) (08.40)

§08|02.66 Proof of Corollary §08|02.65. Given in the lecture. �

§08|02.67 Remark. Considerm◦
n∧k = arg min

{
Rm

n∧k(θ•,T•|•, φ•) : m ∈ N
}

and R◦
n∧k(θ•,T•|•, φ•) = Rm◦n∧k

n∧k (θ•,T•|•, φ•)

as in (08.36). Arguing similarly as in Remark §07|01.21 we note that ‖(Tm|†
•|• )

?
φm
•
‖2
`2
∈ R>0 for all

m ∈ N and hence R◦
n∧k(θ•,T•|•, φ•) = o(1) as n ∧ k → ∞, whenever |φν

N
(θm• − θ•)| = o(1) as

m → ∞ (c.f. Remark §05|01.05). In this situation if sup{‖θm• ‖2
`2

: m ∈ N} 6 K2

θ |T ∈ R>0 then
from (08.40) in Corollary §08|02.65 follows

P
n⊗k
θ|T (|φν

N
(θ̂

m◦n∧k
• − θ•)|2) 6 22l+2K

2l

T

(
vθ|T + K

2

θ |T + |φν
N
(θ•)|2

)
R
◦
n∧k(θ•,T•|•, φ•).

However, the dimension m◦
n∧k = m◦

n∧k(θ•,T•|•, φ•) as defined in (08.11) depends on the unknown
parameter of interest θ• and the nuissance parameter T•|•, and thus also the statistic θ̂m

◦
n∧k

• . In other
words θ̂m

◦
n∧k

• is not a feasible estimator. �

§08|02.68 Corollary (GniSM with noisy operator §08|02.08 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+n−1/2Ḃ•,T•|•+k

−1/2Ẇ•|•) ∼ N
n⊗k
θ|T = N

n

θ|T⊗N
k

T as in Model §08|02.08, where Ḃ• ∼ N
⊗N
(0,1)

and Ẇ•|• ∼ N
⊗N

2

(0,1) are independent, T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2.
Given Assumption §08|02.18 for each k, n ∈ N fulfilling (08.23) the (infeasible, generalised) tGE
θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ dom(φν

N
) satisfies

N
n⊗k
θ|T (|φν

N
(θ̂

m◦n∧k
• − θ•)|2) 6 22l+2((2l − 1)!!)

(
1 + ‖θm

◦
n∧k

• ‖2

`2
+ |φν

N
(θ•)|2

)
R
◦
n∧k(θ•,T•|•, φ•)

where R◦
n
(θ•,T•|•, φ•) is the oracle rate in a GniSM §08|01.04 (see Corollary §08|01.51).
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§08|02.69 Proof of Corollary §08|02.68. Given in the lecture. �

§08|02.70 Corollary (niSM with noisy operator §08|02.10 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) ∼ Pn⊗k

θ|T|σ |ξ |ξ(2l) as in Model §08|02.10, where ε̇• and η̇•|• satisfies
(iSM1) with vσ = ‖σ2

• ‖`∞ ∨ 1 and (niSMnO1)–(niSMnO2) with K2l

ξ(2l) := 1 ∨ ‖ξ(2l)
•|• ‖`∞(N

2
)
, respectively,

T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|02.56 for
each k, n ∈ N fulfilling (08.39) the (infeasible, generalised) tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆

dom(φν
N
) satisfies

Pn⊗k
θ|T|σ |ξ |ξ(2l)(|φνN(θ̂

m◦n∧k
• − θ•)|2) 6 22l+2K

2l

ξ(2l)

(
vσ + ‖θm

◦
n∧k

• ‖2

`2
+ |φν

N
(θ•)|2

)
R
◦
n∧k(θ•,T•|•, φ•)

where R◦
n
(θ•,T•|•, φ•) is the oracle rate in a niSM §08|01.06 (see Corollary §08|01.53).

§08|02.71 Proof of Corollary §08|02.70. Given in the lecture. �

§08|02.72 Corollary (nieMM with noisy operator §08|02.13 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) defined on (Z

n+k
,Z

⊗(n+k)
,Pn⊗k

θ|T ) as in Model §08|02.13,
where ψ

•
∈ M(Z ⊗ 2N) and ϕ

•|• ∈ M(Z ⊗ 2N
2

) satisfies (nieMM1)-(nieMM2) for vθ|T|ψ ∈ R>1 and
(nieMMnO1)-(nieMMnO3) for KT|ϕ ∈ R>1, respectively, T•|• ∈ T and θ• ∈ `2, and hence g

•
= T•|•θ• ∈

dom(T†•|•) ⊆ `2. Given Assumption §08|02.56 for each k, n ∈ N fulfilling (08.39) the (infeasible,
generalised) tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ dom(φν

N
) satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m◦n∧k
• − θ•)|2) 6 C2lK

2l

T|ϕ

(
vθ|T|ψ + ‖θm

◦
n∧k

• ‖2

`2
+ |φν

N
(θ•)|2

)
R
◦
n∧k(θ•,T•|•, φ•)

where C2l ∈ R>1 is a constant depending on l ∈ N only and R◦
n
(θ•,T•|•, φ•) is the oracle rate in a

nieMM §08|01.08 (see Corollary §08|01.55).

§08|02.73 Proof of Corollary §08|02.72. Given in the lecture. �

§08|02.74 Illustration. We distinguish as in Illustration §08|01.57 the two cases (p) and (np), where (p) is
implied by θ•1K|⊥• = 0•. In case (p) the oracle bound is parametric, that is, nR◦

n
(θ•,T•|•, φ•) = O(1),

in case (np) the oracle bound is nonparametric, i.e. limn→∞ nR◦
n
(θ•,T•|•, φ•) = ∞. In case (np)

consider similar to (o-m), (o-s) and (s-m) in Illustration §08|01.57 the following specifications:

Table 09 [§08]

Order of the rate R◦
n∧k(θ•,T•|•, φ•) as n ∧ k →∞

(squarred bias) (variance)

(m ∈ N) |φν
N
(θ̂m• − θ•)|2 ‖(Tm|†

•|• )
?
φm
•
‖2
`2

m◦
n∧k R◦

n∧k(θ•,T•|•, φ•)

(φ
m

= mv−1/2) (a ∈ R>0) (t ∈ R>0)

(o-m) v ∈ (−t, a) m−2(a−v) m2t+2v (n ∧ k)
1

2a+2t (n ∧ k)−
a−v
a+t

v = −t m−2(a+t) logm
( n∧k
logn∧k

) 1
2(a+t) logn∧k

n∧k

(o-s) a− v ∈ R>0 m−2(a−v) m2(v−t)+em
2t

(log n ∧ k)
1
2t (log n ∧ k)−

a−v
t

(s-m) v + t ∈ R>0 m(1−4a+2v)+e−m
2a

m2t+v (log n ∧ k)
1
2a

(logn∧k)
t+v
a

n∧k

v = −t m(1−4a−2t)+e−m
2a

logm (log n ∧ k)
1
2a

log logn∧k
n∧k

We note that in case (o-m) and (s-m) for v < −t the rate R◦
n∧k(θ•,T•|•, φ•) is parametric. The tGE

attains the rate R◦
n∧k := R◦

n∧k(θ•,T•|•, φ•) due to Corollary §08|02.65 under the additional condition

(k−1(m◦
n∧k)

3‖Tm◦n∧k |†
•|• ‖2

L(`2)
)
l−1
6 (m◦

n∧k)
−2R

◦
n∧k(θ•,T•|•, φ•). (08.41)
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Since (m◦
n∧k)

−2R◦
n∧k(θ•,T•|•, φ•) = o(1) also k−1(m◦

n∧k)
3‖Tm◦n∧k |†

•|• ‖2
L(`2)

= o(1) is necessary as n∧k →∞.
The next table depicts the order of both terms in case (o-m), (o-s) and (s-m).

Table 10 [§08]

Order as n ∧ k →∞

(o-m) (o-s) (s-m)

v ∈ (−t, a) a− v ∈ R>0 v + t ∈ R>0

(m◦
n∧k)

−2R◦
n∧k(θ•,T•|•, φ• ) (n ∧ k)−

2(a−v)+2
2a+2t (log n ∧ k)−

2a−2v+2
2t

(logn∧k)
2t+2v−2

2a

n∧k

(n ∧ k)−1(m◦
n∧k)

3‖Tm◦
n∧k |†

•|• ‖2
L(`2)

(n ∧ k)−
2a−3
2a+2t (n ∧ k)−c

(logn∧k)
2t+3
2a

n∧k

In case (o-s) a value l > 2 and (s-m) a value l > 3 is sufficient to ensure (08.41) as n ∧ k → ∞.
In case (o-m) assuming a > 3/2 we have k−1(m◦

n∧k)
3‖Tm◦n∧k |†

•|• ‖2
L(`2)

= o(1) as n ∧ k → ∞. In this
situation we have (08.41) if (2a−3)(l−1) > 2(a−v)+2 or in equal l > (4a−2v−1)/(2a−3). �

§08|02|03|02 Maximal local φ-risk

§08|02.75 Assumption. Consider weights t•, a• ∈ (R>0)N↘ and φ
•
∈ RN\0 such that (aφ)• := a•φ• ∈ `2 and

(at)• := a•t• ∈ (R>0)N↓0 . �

§08|02.76 Comment. Assuming t•, a• ∈ (R>0)N↘ and hence (at)2

• ∈ (R>0)N↘ is rather weak. If in addition
lim inf
j→∞

(at)2

j
> c ∈ R>0 is satisfied, and hence (at)2

• , a
2
• , t

2
• 6∈ (R>0)N↓0 , then a2

• 6∈ (R>0)N↓0 and the

assumption (aφ)• ∈ `2 implies φ
•
∈ `2, which together with t2• 6∈ (R>0)N↓0 implies (φ/t)• ∈ `2,

and thus the rate R?

n
(a•, t•, φ•) is parametric (Illustration §08|01.72). Since we are interested in the

case of a non-parametric rate, the additional assumption (at)2

• ∈ (R>0)N↓0 imposes a rather weak
condition satisfied also in Illustration §08|01.72. �

§08|02.77 Reminder. Under Assumption §08|02.75 we have `a
2

= dom(Ma−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null sets
(see Property §04|01.02). We consider `a

2
endowed with ‖·‖a−1 = ‖Ma−1·‖`2 and given a con-

stant r ∈ R>0 the ellipsoid `a,r
2

:= {a• ∈ `a•
2

: ‖a•‖a−1 6 r} ⊆ `a
2
. Since (aφ)• ∈ `2 we

have `a
2
⊆ dom(φν

N
) (Property §04|02.23). Consequently, if Assumption §08|02.75 and θ• ∈ `a,r

2

are satisfied, then Assumption §08|02.56 is also fulfilled. Moreover, from (aφ)• ∈ `2 follows
‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. For s ∈ [0, 1] from (ats)• = a•t

s
• ∈ (R>0)N↘

follows (ats)(•) = ((ats)(m) := (ats)m+1 = ‖(ats)•1m|⊥• ‖`∞)m∈N ∈ (R>0)N↘ . Since φ
•
, t• ∈ R

N

\0 un-
der Assumption §08|02.75, we have `21

m
• ⊆ dom(φν

N
) and ‖t−1

• 1
m
• ‖φ = ‖(φ/t)•1m• ‖`2 ∈ R>0 for

each m ∈ N. Under the Assumptions §08|00.02 and §08|02.75 considering the generalised link
condition T•|• ∈ Tt,d,D with band D ∈ R>1 and d ∈ [1,D] as in Definition §05|02.05 we have
supm∈N{‖([T•|•]

−1

m
)
?
[Mt]m‖spec

} 6 D, and hence

‖(Tm|†
•|• )

?
φ
m

•
‖`2 = ‖([T•|•]

−1

m
)
?
[φ
•
]m‖ = ‖([T•|•]

−1

m
)
?
[Mt]m[Mt]

−1
m [φ

•
]m‖

6 ‖([T•|•]
−1

m
)
?
[Mt]m‖spec

‖[Mt−1]m[φ
•
]m‖6 D‖t−1

• 1
m
• ‖φ (08.42)

using ‖[Mt−1]m[φ
•
]m‖ = ‖t−1

• 1
m
• ‖φ. Moreover, for each m ∈ N the generalised Galerkin solution

θm• := Tm|†
•|• g• ∈ `21

m
• of θ• = T†•|•g• ∈ `

a,r

2
satisfies (Lemma §05|02.14)

|φν
N
(θ

m
• − θ•)|2 6 Dd(Dd + 1)r2

(
‖a•1m|⊥• ‖2

φ
+ (at)2

(m)
‖t−1
• 1

m
• ‖2

φ

)
. (08.43)

Under Assumptions §08|00.02 and §08|02.75 the link condition T•|• ∈ T 	
t,d with band d ∈ R>1 as in

Definition §05|01.08 implies supm∈N{‖([T•|•]
−1

m
)
?
[Mt]m‖spec

} 6 3d2 (Lemma §05|01.22), and hence
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for each m ∈ N we have (08.42) with D = 3d2 and the Galerkin solution θm• := Tm|†
•|• g• ∈ `21

m
• of

θ• = T†•|•g• ∈ `
a,r

2
satisfies (08.43) with D = 3d2 (Lemma §05|01.34). �

§08|02.78 Corollary. Under Assumptions §08|02.02 and §08|02.75 let θ• := T†•|•g• ∈ `
a•,r

2
and T•|• ∈ Tt,d,D (or

T•|• ∈ T 	
t,d with D = 3d2), for all m, k, n ∈ N we have

(i) if 4D2‖t−1
• 1

m
• ‖2

φ
6 k ∧ n then f

m,k
⊆ Ω

m,k∧n,

(ii) Pk
T

(
‖(T̂m|†

•|• )
?

φm
•
‖2

Γθ|T
1Ω

m,k∧n

)
6 vθ|T(4D2‖t−1

• 1
m
• ‖2

φ
+ (k ∧ n)Pk

T (fc

m,k
)), and

(iii) Pk
T (|φν

N
(T̂m|†

•|• (Tm

•|• − T̂m

•|• )θ
m
• )|21Ω

m,k∧n) 6 4k−1vTD2‖t−1
• 1

m
• ‖2

φ
‖θm• ‖2

`2
+ Pk

T (‖η̇m•|•θm• ‖2
`2
1fc

m,k
).

with Ω
m,k∧n and f

m,k
as in (08.34) and (08.35), respectively.

§08|02.79 Proof of Corollary §08|02.78. Given in the lecture. �

§08|02.80 Proposition (Upper bound). Under Assumptions §08|02.02 and §08|02.75 let θ• := T†•|•g• ∈ `
a•,r

2
and

T•|• ∈ Tt,d,D (or T•|• ∈ T 	
t,d with D = 3d2) for all n,m ∈ N setting similar to (08.15)

R
m

n∧k(a•, t•, φ•) := ‖a•1m|⊥• ‖2

φ
+ (n ∧ k)−1‖t−1

• 1
m
• ‖2

φ
,

m?
n∧k := arg min

{
R
m

n∧k(a•, t•, φ•) : m ∈ N
}

and

R
?

n∧k(a•, t•, φ•) := R
m?

n∧k

n∧k (a•, t•, φ•) = min
{

R
m

n∧k(a•, t•, φ•) : m ∈ N
}

(08.44)

for all m ∈ N the (generalised) tGE θ̂m• = T̂m|(k∧n)|†
•|• ĝ

•
∈ `21

m
• P

n⊗k
θ|T -a.s. satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m

• − θ•)|2) 6 4D
2
((1 ∨ (at)2

(m)
(n ∧ k))d

2
r2 + vθ|T + 2vTa

2
1D

2
d

2
r2) R

m

n∧k(a•, t•, φ•)

+ vθ|TP
k

T (fc

m,k
) + 2P

k

T (‖η̇m•|•θm• ‖2

`2
1fc

m,k
) + |φν

N
(θ•)|2P

k

T (Ω
c

m,k∧n) (08.45)

with Ω
m,k∧n and f

m,k
as in (08.34) and (08.35), respectively.

§08|02.81 Proof of Proposition §08|02.80. Given in the lecture. �

§08|02.82 Corollary. Under the assumptions of Proposition §08|02.80 for k, n ∈ N with R?

n∧k(a•, t•, φ•) 6

1/(4D2) the (generalised) tGE θ̂m
?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ dom(φν
N
) P

n⊗k
θ|T -a.s. with Ω

m?
n∧k ,k∧n

as
in (08.34) and dimension m?

n∧k as in (08.44) satisfies

P
n⊗k
θ|T (|φν

N
(θ̂

m?
n∧k

• − θ•)|2) 6 4D
2
(d

2
r2 + vθ|T + 2vTa

2
1D

2
d

2
r2) R

?

n∧k(a•, t•, φ•)

+ 22lK
2l

T D
2(l−1)

{
D

2
(
vθ|T + ‖a•‖2

φ
r2
)
k−1m?

n∧kt
−2
m?

n∧k
+ a2

1D
2
d

2
r2/4

}
× (m?

n∧k)
2(k−1(m?

n∧k)
3t−2
m?

n∧k
)l−1. (08.46)

and if in addition

(m?
n∧k)

2(k−1(m?
n∧k)

3t−2
m?

n∧k
)l−1 6 R

?

n∧k(a•, t•, φ•) 6 1/(4D
2
) (08.47)

then we have

P
n⊗k
θ|T (|φν

N
(θ̂

m?
n∧k

• − θ•)|2) 6 22l+2K
2l

T D
2l
(vθ|T + ‖a•‖2

φ
r2 + (1 ∨ a2

1)d
2
r2)R

?

n∧k(a•, t•, φ•). (08.48)

§08|02.83 Proof of Corollary §08|02.82. Given in the lecture. �
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§08|02.84 Remark. Arguing similarly as in Remark §07|01.56 we note that ‖t−1
• 1

m
• ‖φ ∈ R>0 for all m ∈ N

and (‖φ
•
1m|⊥• ‖2

a•
= o(1) as m → ∞ (since (aφ)• ∈ `2), and hence R?

n
(a•, t•, φ•) = o(1) as n → ∞.

If there is in addition C ∈ R>1 such that K2l

T 6 C and vθ|T 6 C for all θ• := T†•|•g• ∈ `a,r
2

and
T•|• ∈ Tt,d,D then from the bound (08.48) Corollary §08|02.82 follows immediately

sup
{
P
n⊗k
θ|T (|φν

N
(θ̂

m?
n∧k

• − θ•)|2): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, φ•)

× 22l+2CD
2l
(C + ‖a•‖2

φ
r2 + (1 ∨ a2

1)d
2
r2).

Note that the dimension m?
n∧k := m?

n∧k(a•, t•, φ•) as defined in (08.44) does not depend on the
unknown parameter of interest θ• but on the classes `a•,r

2
and Tt,d,D only, and thus also the statistic

θ̂m
?
n∧k

• . In other words, if the regularity of θ• and T•|• is known in advance, then the thresholded GE
θ̂m

?
n∧k

• is a feasible estimator. �

§08|02.85 Corollary (GniSM with noisy operator §08|02.08 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2Ḃ•,T•|• + k−1/2Ẇ•|•) ∼ N

n⊗k
θ|T = N

n

θ|T ⊗ N
k

T as in Model §08|02.08, where

Ḃ• ∼ N
⊗N
(0,1) and Ẇ•|• ∼ N

⊗N
2

(0,1) are independent, T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈
dom(T†•|•) ⊆ `2. Given Assumption §08|02.75 for each k, n ∈ N fulfilling (08.47) the (generalised)
tGE θ̂m

?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ dom(φν
N
) satisfies

sup
{

N
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, φ•)

× 22l+2((2l − 1)!!)D
2l
(1 + ‖a•‖2

φ
r2 + (1 ∨ a2

1)d
2
r2)

where R?

n
(a•, t•, φ•) is the rate in a GniSM §08|01.04 (see Corollary §08|01.66).

§08|02.86 Proof of Corollary §08|02.85. Given in the lecture. �

§08|02.87 Corollary (niSM with noisy operator §08|02.10 continued). Consider independent noisy versions
(ĝ
•
, ŝ•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) ∼ Pn⊗k

θ|T|σ |ξ |ξ(2l) as in Model §08|02.10, where ε̇• and η̇•|• satisfies
(iSM1) with vσ = ‖σ2

• ‖`∞ ∨ 1 and (niSMnO1)–(niSMnO2) with K2l

ξ(2l) := 1 ∨ ‖ξ(2l)
•|• ‖`∞(N

2
)
, respectively,

T•|• ∈ T and θ• ∈ `2, and hence g
•

= T•|•θ• ∈ dom(T†•|•) ⊆ `2. Given Assumption §08|02.75 for
each k, n ∈ N fulfilling (08.47) the (generalised) tGE θ̂m

?
n∧k

• = T̂m?
n∧k |(k∧n)|†

•|• ĝ
•
∈ `21

m?
n∧k

• ⊆ dom(φν
N
)

satisfies

sup
{

Pn⊗k
θ|T|σ |ξ |ξ(2l)(‖θ̂

m?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, φ•)

× 22l+2K
2l

ξ(2l)D
2l
(vσ + ‖a•‖2

φ
r2 + (1 ∨ a2

1)d
2
r2)

where R?

n
(a•, t•, φ•) is the rate in a niSM §08|01.06 (see Corollary §08|01.68).

§08|02.88 Proof of Corollary §08|02.87. Given in the lecture. �

§08|02.89 Corollary (nieMM with noisy operator §08|02.13 continued). Consider independent noisy versions
(ĝ
•
, T̂•|•) = (g

•
+ n−1/2ε̇•,T•|• + k−1/2η̇•|•) defined on (Z

n+k
,Z

⊗(n+k)
,Pn⊗k

θ|T ) as in Model §08|02.13,
where ψ

•
∈ M(Z ⊗ 2N) and ϕ

•|• ∈ M(Z ⊗ 2N
2

) satisfies (nieMM1)-(nieMM2) for vθ|T|ψ ∈ R>1 and
(nieMMnO1)-(nieMMnO3) for KT|ϕ ∈ R>1, respectively, T•|• ∈ T and θ• ∈ `2, and hence g

•
= T•|•θ• ∈

dom(T†•|•) ⊆ `2. Given Assumption §08|02.75 for each k, n ∈ N fulfilling (08.47) the (generalised)
tGE θ̂m

◦
n∧k

• = T̂m◦n∧k |(k∧n)|†
•|• ĝ

•
∈ `21

m◦n∧k
• ⊆ dom(φν

N
) satisfies

sup
{
P
n⊗k
θ|T (‖θ̂m

?
n∧k

• − θ•‖2

v
): T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
6 R

?

n∧k(a•, t•, φ•)

× C2l sup
{

K
2l

T|ϕ: T•|• ∈ Tt,d,D

}
D

2l
(sup

{
vθ|T|ψ: T•|• ∈ Tt,d,D , θ• ∈ `a,r2

}
+ ‖a•‖2

φ
r2 + (1 ∨ a2

1)d
2
r2)
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where C2l ∈ R>1 is a constant depending on l ∈ N only and R?

n
(a•, t•, φ•) is the rate in a nieMM

§08|01.08 (see Corollary §08|01.70).

§08|02.90 Proof of Corollary §08|02.89. Given in the lecture. �

§08|02.91 Illustration. We distinguish as in Illustration §08|01.72 the two cases (p) and (np). Interestingly,
in case (p) the bound is parametric, that is, nR?

n
(a•, t•, φ•) = O(1), in case (np) the bound is

nonparametric, i.e. limn→∞ nR?

n
(a•, t•, φ•) = ∞. In case (np) consider similar to (o-m), (o-s) and

(s-m) in Illustration §08|01.72 the following specifications:

Table 11 [§08]

Order of the rate R?

n∧k(a•, t•, φ•) as n ∧ k →∞

(j ∈ N) (a ∈ R>0) (t ∈ R>0) (squarred bias) (variance)

φ2

j
= j2v−1 a2j t2j ‖a•1m|⊥• ‖2

φ
‖t−1
• 1

m
• ‖2

φ
m?

n∧k R?

n∧k(a•, t•, φ•)

(o-m) v ∈ (−t, a) j−2a j−2t m−2(a−v) m2v+2t (n ∧ k)
1

2a+2t (n ∧ k)−
a−v
a+t

v = −t j−2a j−2t m−2(a+t) logm
( n∧k
logn∧k

) 1
2(a+t) logn∧k

n∧k

(o-s) a− v ∈ R>0 j−2a e−j
2t

m−2(a−v) m2(v−t)+em
2t

(log n ∧ k)
1
2t (log n ∧ k)−

a−v
t

(s-m) v + t ∈ R>0 e−j
2a

j−2t e−m
2a

m2v+2t (log n ∧ k)
1
2a

(logn∧k)
t+v
a

n∧k

v = −t e−j
2a

j−2t e−m
2a

logm (log n ∧ k)
1
2a

log logn∧k
n∧k

We note that in case (o-m) and (s-m) for v < −t the rate R?

n∧k(a•, t•, φ•) is parametric. The tGE attains
the rate R?

n∧k := R?

n∧k(a•, t•, φ•) due to Corollary §08|02.82 under the additional condition

(k−1(m?
n∧k)

3t−2
m?

n∧k
)l−1 6 (m?

n∧k)
−2R

?

n∧k(a•, t•, φ•). (08.49)

Since (m?
n∧k)

−2R?

n∧k(a•, t•, φ•) = o(1) also k−1(m?
n∧k)

3t−2
m?

n∧k
= o(1) is necessary as n ∧ k → ∞. The

next table depicts the order of both terms in case (o-m), (o-s) and (s-m).

Table 12 [§08]

Order as n ∧ k →∞

(o-m) (o-s) (s-m)

v ∈ (−t, a) a− v ∈ R>0 v + t ∈ R>0

(m◦
n∧k)

−2R?

n∧k(a•, t•, v•) (n ∧ k)−
2(a−v)+2

2a+2t (log n ∧ k)−
2a−2v+2

2t
(logn∧k)

2t+2v−2
2a

n∧k

(n ∧ k)−1(m?
n∧k)

3t−2m?

n∧k
(n ∧ k)−

2a−3
2a+2t (n ∧ k)−c

(logn∧k)
2t+3
2a

n∧k

In case (o-s) a value l > 2 and (s-m) a value l > 3 is sufficient to ensure (08.49) as n ∧ k →∞. In
case (o-m) assuming a > 3/2 we have k−1(m◦

n∧k)
3t−2
m?

n∧k
= o(1) as n ∧ k → ∞. In this situation we

have (08.49) if (2a− 3)(l − 1) > 2(a− v) + 2 or in equal l > (4a− 2v − 1)/(2a− 3). �

§09 Spectral regularisation estimator

§09|00.01 Notation. Consider the measure space (J ,J , ν) and the Hilbert space J = L2
(ν) as in Nota-

tion §01|01.01. We suppose that U ∈ L(H,J) and V ∈ L(G,J) are surjective partial isometries,
hence VV? = idJ = UU?. As in Definition §03|00.08 we denote for A := VTU? ∈ L(J) its
Moore-Penrose inverse by A† : J ⊇ dom(A†)→ J. �

§09|00.02 Assumption. For J = L2
(ν) let U ∈ L(H,J) and V ∈ L(G,J) be surjective partial isometries

fixed and presumed to be known in advance, let T ∈ L(H,G), hence A = VTU
? ∈ L(J) with

Moore-Penrose inverse A† : J ⊇ dom(A†)→ J and let g
•
∈ dom(A†), and hence θ• = A†g

•
∈ J. �
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§09|00.03 Reminder. Under Assumption §09|00.02 we consider θ• ∈ J and A ∈ L(J) and hence g
•
= Aθ• ∈

ran(A) ⊆ dom(A†). Let
{

r
α
: α ∈ (0, 1)

}
be a collection of real-valued Borel-measurable functions

defined on [0, ‖T•|•‖2
L(J)

] satisfying (see §06|02.01)

(sR1) for all α ∈ (0, 1) there exists Cα ∈ R>0 such that |r
α
(x)| 6 Cα for all x ∈ [0, ‖A‖2

L(J)
],

(sR2) for all x ∈ (0, ‖A‖2
L(J)

] holds |1− xr
α
(x)| = o(1) as α → 0, and

(sR3) there is K ∈ R>0 such that |xr
α
(x)| 6 K for all x ∈ [0, ‖A‖2

L(J)
] and α ∈ (0, 1),

Then the collection
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of operators is called spectral regulari-

sation of A† : J ⊇ dom(A†)→ J. �

§09|01 Statistical inverse problem

§09|01.01 Assumption. Consider a random function g̃
•
∈ M(A ,BJ) on a measurable space (Ω,A ) with

values in J (Definition §01|01.17). Let Assumption §08|00.02 be satisfied where A ∈ L(J) is
known in advance. For θ• ∈ J, hence image g

•
= Aθ• ∈ J, and probability measure Pθ|A ∈ W (A )

on (Ω,A ) the random function g̃
•

has a finite second moment (i.e. Pθ|A(‖g̃•‖2J) ∈ R>0). �

§09|01.02 Definition. Under Assumption §09|01.01 for θ• ∈ J, A ∈ L(J), and a continuous spectral regu-
larisation

{
R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of A† as in Definition §06|02.01 we call θ̃α• = R

α
g̃
•

spectral regularisation estimator (sRE) of θ•. �

§09|01.03 Comment. Since g
•
= Aθ• ∈ dom(A†) and hence θ• = A†g

•
the spectral regularised approximation

θα• := R
α
g
•

= r
α
(A?A)A?g

•
∈ J converges to θ• as α → 0, i.e. the approximation error ‖θα• − θ•‖J

converges to zero as α → 0 (compare Proposition §06|02.02). �

§09|01|01 Global risk

§09|01.04 Lemma (J-consistency). Let
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a continuous spectral reg-

ularisation of A† as in Definition §06|02.01. Assume Definition §06|02.01 (sR1) and (sR2), and in
addition replace (sR3) by
(sR3a) for all s ∈ [0, 1] there exists Ks ∈ R>0 such that xs|r

α
(x)| 6 Csα

s−1 for all x ∈ [0, ‖A‖2
L(`2)

]

and α ∈ (0, 1).

Under Assumption §09|01.01 a sRE θ̃α• = R
α
g̃
•

of θ• = A†g
•
∈ J satisfies for all α ∈ (0, 1)

Pθ|A(‖θ̃α• − θ•‖2

J
) 6 2K

2

1/2α
−1Pθ|A(‖g̃

•
− g

•
‖2

J
) + 2‖θα• − θ•‖2

J
(09.01)

If g̃
•

is a J-consistent estimator of g
•
, that is Pn

θ|A(‖g̃
•
− g

•
‖2
J
) = o(1) as n →∞, then

P
n

θ|A(‖θ̃αn• − θ‖2

J
) = o(1) as n →∞

for any sequence (α
n
)n∈N such that α

n
= o(1) and α−1

n
P
n
θ|A(‖g̃

•
− g

•
‖2
J
) = o(1) as n →∞.

§09|01.05 Proof of Lemma §09|01.04. Given in the lecture. �

§09|01.06 Reminder. Given A ∈ L(J) let
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a spectral regularisation

of A† : J ⊇ dom(A†) → J as in Definition §06|02.01. Assume Definition §06|02.01 (sR1), and
(sR3), and in addition replace (sR2) by
(sR2a) there are s◦ ∈ R>1 Cs ∈ R>0 for all s ∈ [0, s◦] such that xs|1 − xr

α
(x)| 6 Csα

s for all
x ∈ [0, ‖A‖2

L(J)
] and α ∈ (0, 1).
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For θ• ∈ J, g
•

= Aθ• ∈ dom(A†), and α ∈ (0, 1) consider θα• = R
α
g
•

= r
α
(A?A)A?g

•
∈ J. If

θ• = A†g
•
∈ J fulfills a source condition as in Definition §06|02.05, that is, there are s ∈ [0, 2s◦]

and h• ∈ J such that θ• = (A?A)s/2h• or in equal θ• ∈ ran((A?A)s/2), then we have

‖θα• − θ•‖J 6 Cs/2α
s/2‖h•‖J ∀α ∈ (0, 1) (09.02)

due to Proposition §06|02.06. �

§09|01.07 Corollary. Let the assumptions of Lemma §09|01.04 be satisfied and in addition let (sR2) be
replaced by (sR2a). If θ• = A†g

•
∈ J fulfills a source condition as in Definition §06|02.05, that is,

there are s ∈ [0, 2s◦] and h• ∈ J such that θ• = (A?A)s/2h• then the sRE θ̃αn• = R
αn
g̃
•
of θ• = A†g

•
∈ J

with α◦ :=
(
Pθ|A(‖g̃

•
− g

•
‖2
J
)
)

1/(1+s) fulfills

Pθ|A(‖θ̃α◦• − θ•‖2

J
) 6 2(K

2

1/2 + C
2

s/2‖h•‖2

J
)
(
Pθ|A(‖g̃

•
− g

•
‖2

J
)
)
s/(1+s)

. (09.03)

§09|01.08 Proof of Corollary §09|01.07. Given in the lecture. �

§09|01.09 Reminder. Given A ∈ L>(J), i.e., A is positive definite, we eventually consider as in Nota-
tion §06|02.19 a spectral regularisation

{
R
α

:= r
α
(A) ∈ L(J): α ∈ (0, 1)

}
of A† for a given collec-

tion
{

r
α
: α ∈ (0, 1)

}
of real-valued Borel-measurable functions defined on [0, ‖A‖

L(J)
] satisfying

(sR1’) for all α ∈ (0, 1) there exists Cα ∈ R>0 such that |r
α
(x)| 6 Cα for all x ∈ [0, ‖A‖

L(J)
],

(sR2’a) there are s◦ ∈ [1,∞) and Cs ∈ R>0 for all s ∈ [0, s◦] such that xs|1 − xr
α
(x)| 6 Csα

s for
all x ∈ [0, ‖A‖

L(J)
] and α ∈ (0, 1),

(sR3’) there is K ∈ R>0 such that |xr
α
(x)| 6 K for all x ∈ [0, ‖A‖

L(J)
] and α ∈ (0, 1).

We consider the spectral regularised approximation θα• = R
α
g
•
= r

α
(A)g

•
∈ J of θ• := A†g

•
∈ J for

g
•
∈ dom(A†). Under Assumption §09|01.01 we call θ̃α• = R

α
g̃
•

spectral regularisation estimator
(sRE) of θ•. �

§09|01.10 Lemma (J-consistency). Given A ∈ L>(J) let
{

R
α

:= r
α
(A) ∈ L(J): α ∈ (0, 1)

}
be a continuous

spectral regularisation of A† as in Notation §06|02.19. Assume Notation §06|02.19 (sR1’) and
(sR2’a), and in addition replace (sR3’) by
(sR3’a) for all s ∈ [0, 1] there exists Ks ∈ R>0 such that xs|r

α
(x)| 6 Ksα

s−1 for all x ∈ [0, ‖A‖
L(J)

]
and α ∈ (0, 1).

Under Assumption §09|01.01 a sRE θ̃α• = R
α
g̃
•

of θ• = A†g
•
∈ J satisfies for all α ∈ (0, 1)

Pθ|A(‖θ̃α• − θ•‖2

J
) 6 2K

2

0α
−2Pθ|A(‖g̃

•
− g

•
‖2

J
) + 2‖θα• − θ•‖2

J
(09.04)

If g̃
•

is a J-consistent estimator of g
•
, that is Pn

θ|A(‖g̃
•
− g

•
‖2
J
) = o(1) as n →∞, then

P
n

θ|A(‖θ̃αn• − θ‖2

J
) = o(1) as n →∞

for any sequence (α
n
)n∈N such that α

n
= o(1) and α−2

n
P
n
θ|A(‖g̃

•
− g

•
‖2
`2

) = o(1) as n →∞.

§09|01.11 Proof of Lemma §09|01.10. Given in the lecture. �

§09|01.12 Reminder. Given A ∈ L>(J) let
{

R
α

:= r
α
(A) ∈ L(J): α ∈ (0, 1)

}
be a spectral regularisation of

A† : J ⊇ dom(A†) → J as in Notation §06|02.19. Assume Notation §06|02.19 (sR1’), (sR2’a), and
(sR3’). For θ• ∈ J, g

•
= Aθ• ∈ dom(A†), and α ∈ (0, 1) consider θα• = R

α
g
•

= r
α
(A)g

•
∈ J. If
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θ• = A†g
•
∈ J fulfills a source condition as in Definition §06|02.05, that is, there are s ∈ [0, 2s◦]

and h• ∈ J such that θ• = Ash• or in equal θ• ∈ ran(As), then we have

‖θα• − θ•‖J 6 Csα
s‖h•‖J ∀α ∈ (0, 1) (09.05)

due to Proposition §06|02.20. �

§09|01.13 Corollary. Let the assumptions of Lemma §09|01.10 be satisfied. If θ• = A†g
•
∈ J fulfills a source

condition as in Definition §06|02.05, that is, there are s ∈ [0, 2s◦] and h• ∈ J such that θ• = (A)sh•
then the sRE θ̃αn• = R

αn
g̃
•

of θ• = A†g
•
∈ J with α◦ :=

(
Pθ|A(‖g̃

•
− g

•
‖2
J
)
)

1/(2+2s) fulfills

Pθ|A(‖θ̃α◦• − θ•‖2

J
) 6 2(K

2

0 + C
2

s‖h•‖2

J
)
(
Pθ|A(‖g̃

•
− g

•
‖2

J
)
)
s/(1+s)

. (09.06)

§09|01.14 Proof of Corollary §09|01.13. Given in the lecture. �

§09|01|02 Maximal global v-risk

§09|01.15 Assumption. Consider the separable Hilbert space J = L2
(J ,J , ν) with σ-algebra J over J

containing all elementary events
{
j
}

, j ∈ J , and all events JmK := [−m,m] ∩ J , m ∈ N,
and with σ-finite measure ν ∈ Mσ(J ) such that ν(JmK) ∈ R>0, for all m ∈ N. Let Assump-
tion §09|00.02 be satisfied where A ∈ L(J) is known in advance. For θ• ∈ J, and hence image
g
•

= Aθ• ∈ J, let Pθ|A ∈ W (A ) be a probability measure on (Ω,A ). Consider a stochastic pro-
cess ε̇• = (ε̇j)j∈J on (Ω,A ) satisfying Assumption §01|01.04 (i.e. ε̇• ∈M(A ⊗J )) which for each
θ• ∈ J and A ∈ L(J) in addition fulfills
(SIPg1) ε̇j ∈ L1(Pθ|A) := L1(Ω,A ,Pθ|A) for all j ∈ J and Pθ|A(ε̇•) = (Pθ|A(ε̇j))j∈J = 0•,

(SIPg2) v θ|A• := Pθ|A(ε̇2
• ) := (v θ|Aj := Pθ|A(ε̇2

j ))j∈J ∈ L∞(ν) and

(SIPg3) ε̇•1
m
• ∈ L∞(ν) Pθ|A-a.s., for each m ∈ N.

Given a sample size n ∈ N the observable noisy image with mean g
•

= Aθ• ∈ J takes the form
ĝ
•
= g

•
+ n−1/2ε̇•. We denote by Pn

θ|A the distribution of ĝ
•
. �

§09|01.16 Comment. Under Assumption §09|01.15 we have ε̇•1
m
• ∈ J Pθ|A-a.s.. Since g

•
∈ J, and hence

gm
•

= g
•
1m• ∈ J (Property §04|03.09), it follows

ĝm
•

= ĝ
•
1m• = n−1/2ε̇•1

m
• + gm

•
∈ J P

n

θ|A-a.s.. (09.07)

If J ⊆ Z (at most countable) and νJ is the counting measure over the index set J then As-
sumption §01|01.04 and (SIPg2) v θ|A• = Pθ|A(ε̇2

• ) ∈ L∞(νJ ) implies the additional assumption (SIPg3)
ε̇•1

m
• ∈ L∞(νJ ) P

n
θ|s -a.s.. However, the last implication does generally not hold, if J ∈ {R,R>0}

for example. �

§09|01.17 Assumption. Consider v• ∈M>0,ν
(J )∩L∞(ν), and for t ∈ R>0, a ∈ (0, t] set t• := vt

• and a• := va
•

where t•, a• ∈M>0,ν
(J ) ∩ L∞(ν) and hence ν(Nv) = ν(Na) = ν(Nt ) = 0. �

§09|01.18 Reminder. Under Assumption §09|01.17 we have Ja = La
2
(ν) = dom(Ma−1) = Ja• = L2

(a−2
• ν) and

the measures ν , v2
• ν , t2•ν and a−2

• ν dominate mutually each other (see Property §04|01.02). Conse-
quently, Ja ⊆ J = L2

(ν) and Ja ⊆ L2
(v2
• ν) (Property §04|02.11) since (av)• = v1+a

• ∈ L∞(ν). We as-
sume in the following that θ• ∈ J satisfies an abstract smoothness condition (Definition §04|02.12),
i.e., there is r ∈ R>0 such that θ• ∈ Ja,r = {h• ∈ Ja : ‖h•‖a−1 6 r} ⊆ Ja ⊆ J. Under Assump-
tion §06|02.11 by Corollary §05|01.14 (see Comment §05|01.16) if A ∈ Tt,d (or in equal (A?A)1/2 ∈
T 	

t,d) then (i) for any θ• ∈ Ja we have θ• = (A?A)a/(2t)h• with ‖h•‖J 6 da/t‖θ•‖a−1 , and conversely
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(ii) for any θ• = (A?A)a/(2t)h• with h• ∈ L2
(ν) we obtain θ• ∈ Ja with ‖θ•‖a−1 6 da/t‖h•‖J . In partic-

ular since (ta)• = vt+a
• ∈M>0,ν

(J )∩L∞(ν) if A ∈ Tt,d and θ• ∈ Ja,r, then due to Corollary §06|02.13
we have g

•
= Aθ• ∈ J(ta),dr . �

§09|01.19 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Q,Z, . . . }
we write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing
and non-increasing. If in addition an →∞ and bn → 0 as n→∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. For w• ∈ L∞(ν) we set w(0) := ‖w•‖L∞(ν ) and w(•) = (w(j) := ‖w•1

j |⊥
• ‖L∞(ν ))j∈N,

where by construction w(•) ∈ (R>0)N↘ . �

§09|01.20 Corollary. Under Assumptions §09|01.15 and §09|01.17 setting for n,m ∈ N

R
m

n
((at)•) := [(at)

(m)
∨ n−1m], m?

n
:= arg min

{
R
m

n
((at)•) : m ∈ N

}
and R

?

n
((at)•) := R

m?
n

n
((at)•) = min

{
R
m

n
((at)•) : m ∈ N

}
(09.08)

and ‖v θ|A• ‖L∞(ν ) 6 vθ|A ∈ R>0, for A ∈ Tt,d and for all θ• ∈ Ja,r , hence g
•
= Aθ• ∈ dom(A†) ⊆ J, the

orthogonal projection estimator (OPE) ĝm
•

:= ĝ
•
1m• fulfills

P
n

θ|A(‖ĝm
•
− g

•
‖2

J
) 6 (vθ|A + d

2
r2) R

m

n
((at)•) ∀m,n ∈ N

and hence Pn
θ|A(‖ĝm?

n

•
− g

•
‖2
J
) 6 (vθ|A + d2r2) R?

n
((at)•).

§09|01.21 Proof of Corollary §09|01.20. Given in the lecture. �

Consider the OPE ĝm
•

:= ĝ
•
1m• for the orthogonal projection gm

•
= g

•
1m• ∈ J1m• of g

•
= Aθ• ∈

J. Given a continuous spectral regularisation
{

R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
of A† as in

Definition §06|02.01 We measure the accuracy of the sRE θ̂α,m• = R
α
ĝm
•

of θ• = A†g
•
∈ J by the

mean of its global v-error introduced in §04|03|01, i.e. its v-risk.

§09|01.22 Proposition. Under Assumptions §09|01.15 and §09|01.17 with ‖v θ|A• ‖L∞(ν ) 6 vθ|A ∈ R>0 let{
R
α

:= r
α
(A?A)A? ∈ L(J): α ∈ (0, 1)

}
be a continuous spectral regularisation of A† as in Defini-

tion §06|02.01 and in addition replace (sR2) and (sR3) by (sR2a) and (sR3a), respectively. Consider
for m ∈ N and α ∈ (0, 1) the sRE θ̂α,m• = R

α
ĝm
•

. If θ• ∈ Ja,r and A ∈ Tt,d then for all m ∈ N and
α ∈ (0, 1) we have

P
n

θ|A

(
‖θ̂α,m• − θ•‖2

vq

)
6
[
α(a+q)/t ∨ α(q−t)/t R

m

n
(va+t
• )
]

× 2d
2|q|/t{

C
2

(q+a)/(2t) d
2(a+|q|)/t

r2 + K
2

(q+t)/(2t) (vθ|A + d
2
r2)
}
. (09.09)

§09|01.23 Proof of Proof §09|01.23. Given in the lecture. �

§09|01.24 Corollary. Under the assumptions of Proposition §09|01.22 the SRE θ̂α
?
n ,m

?
n

• := R
α?n
ĝm

?
n

•
with m?

n

and R?

n
(vp+a• ) as in (09.08) (Corollary §09|01.20 using (at)• = va+t

• ) and α?
n

:= (R?

n
(va+t
• ))t/(a+t) for

all n satisfies

P
n

θ|A

(
‖θ̂α,m• − θ•‖2

vq

)
6 (R

?

n
(va+t
• ))(a+q)/(a+t)

× 2d
2|q|/t{

C
2

(q+a)/(2t) d
2(a+|q|)/t

r2 + K
2

(q+t)/(2t) (vθ|A + d
2
r2)
}
. (09.10)

§09|01.25 Proof of Corollary §09|01.24. Given in the lecture. �
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Chapter 4

Minimax optimal estimation

We present a general approach to derive lower bounds and thus in com-
bination with the upper bounds Chapter 3 establish minimax optimality.

Overview

§10 Minimax theory: a general approach . . . . . . . . . . . . . . . . . . . . . . . 123
§11 Deriving a lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

§11|01 Lower bound based on two hypothesis . . . . . . . . . . . . . . . . . . 128
§11|02 Lower bound based on m hypothesis . . . . . . . . . . . . . . . . . . 133

§10 Minimax theory: a general approach

Suppose that the function of interest θ belongs to a class Θ ⊆ H. For each noise level n ∈ N
let Pn

Θ := (Pn
θ )θ∈Θ denote a family of probability measures and let En

θ
be the expectation with

respect to the measure Pn
θ in Pn

Θ . Moreover, we assume that the probability measure associated
with an observable quantity belongs to Pn

Θ .

§10|00.01 GdSM (§01|03.06 continued). Given `2 = L2
(N, 2N, ν

N
) consider a Gaussian direct sequence model

(GdSM) as in §01|03.06. Here the observable stochastic process θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ is a noisy
version of θ• ∈ Θ ⊆ `2 and Ḃ• ∼ N

⊗N
(0,1). Consequently, θ̂• admits a N

n

θ -distribution belonging to the
family N

n

Θ := (N
n

θ )θ•∈Θ . Summarising the observations satisfy a statistical product experiment
(R

N
,B

⊗N
,N

n

Θ ) where Θ ⊆ `2. �

Assume furthermore, that an estimator θ̃ of θ based on observable quantities is available which
takes its values in H but does not necessarily belong to Θ. We shall measure the accuracy of any
estimator θ̃ of θ by its distance dist(θ̃, θ) where dist(·, ·) is a certain semi metric to be specified
below. Moreover, we call the quantity Pn

θ

(
d2

ist(θ̃, θ)
)

risk of the estimator θ̃ of θ.

§10|00.02 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on observable quantities with probability measure Pn

θ ∈ Pn
Θ we call

R
n
[ θ̃ |Θ ] := sup

{
P
n

θ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
its maximal risk over Θ. �

§10|00.03 Remark. An advantage of taking a maximal risk instead of a risk is that the former does not
depend on the unknown function θ. Imagine we would have taken a constant estimator, say
θ̃ = h, of θ. This would be the perfect estimator if by chance θ = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. �
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§10|00.04 Definition. Consider a maximal risk R
n
[ • |Θ ] over a family Pn

Θ of probability measures. Let θ̂
be an estimator of θ ∈ Θ, C ∈ R>0 and for each n ∈ N let R?

n
∈ R>0 satisfy

(lower) R?

n
is a lower bound up to the constant C−1 of the maximal risk over Θ, that is

inf
θ̃
R

n
[ θ̃ |Θ ] > C

−1
R
?

n

where the infimum is taken over all possible estimators of θ;

(upper) R?

n
is an upper bound up to the constant C of the maximal risk over Θ, that is

R
n
[ θ̂ |Θ ] 6 C R

?

n

Then we call R?

n
minimax-bound and the estimator θ̂ minimax-optimal (up to the constant C). As

a consequence, up to the constant C2 the estimator θ̂ attains the lower maximal risk bound that
is,R

n
[ θ̂ |Θ ] 6 C2 inf θ̃ Rn

[ θ̃ |Θ ]. �

§10|00.05 Remark. We call a minimax-bound (R?

n
)n∈N a minimax-optimal rate (of convergence) if in

addition R?

n
= o(1) as n → ∞. It is worth noting that a minimax-optimal rate is not unique

since every other rate that is equivalent of order is also minimax-optimal. �

§10|00.06 dSM (§01|03.05 continued). Given `2 = L2
(N, 2N, ν

N
) consider a Direct sequence model (dSM) as in

§01|03.05. Here the observable stochastic process θ̂• = θ•+n
−1/2ε̇• is a noisy version of θ• ∈ Θ ⊆ `2

and ε̇• ∼ ⊗j∈NP
ε̇j , where

(SM:ub) for σ• ∈ Σ ⊆ RN>0 ∩ `∞ and P
(0,1)
∈ W2

(B) we have Pε̇j = P
(0,σ2

j )
for all j ∈ N,

Under (SM:ub) θ̂• admits a Pn
θ|σ-distribution belonging to the family Pn

Θ×Σ := (Pn
θ|σ)θ•∈Θ,σ•∈Σ . Sum-

marising the observations satisfy a statistical product experiment (R
N
,B

⊗N
,Pn

Θ×Σ) where Θ ⊆ `2

and Σ ⊆ RN>0 ∩ `∞. �

More generally, given a class of solutions Θ, a class of nuissances parameters Ξ and a noise
level n ∈ N let Pn

Θ×Ξ := (Pn
θ |ξ)θ∈Θ,ξ∈Ξ denote a family of probability measures. Moreover, we

assume that the probability measure associated with an observable quantity belongs to Pn
Θ×Ξ.

Note that dismissing in Model §10|00.06 compared to Model §10|00.01 the assumption of a known
sequence of variances σ2

• the class of nuissances parameters Ξ equals Σ.

§10|00.07 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on observable quantities with probability measure Pn

θ |ξ ∈ Pn
Θ×Ξ we call

R
n
[ θ̃ |Θ,Ξ ] := sup

{
P
n

θ |ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ, ξ ∈ Ξ

}
its maximal risk over Θ × Ξ. �

§10|00.08 diSM (§01|04.08 continued). Given `2 = L2
(N, 2N, ν

N
) and `∞ = L∞(N, 2N, ν

N
) consider a Diagonal

inverse sequence model (diSM) as in §01|04.08 where s• ∈ `∞ is known in advance. Here the
observable stochastic process ĝ

•
= g

•
+ n−1/2ε̇• is a noisy version of g

•
= s•θ• ∈ `2 with θ• =

s†•g• ∈ Θ ⊆ `2 and ε̇• ∼ ⊗j∈NP
ε̇j , where ε̇• satisfies (SM:ub) in Model §10|00.06 for Σ ⊆ RN>0 ∩ `∞.

Under (SM:ub) ĝ
•

admits a Pn
θ|s|σ-distribution belonging to the family Pn

Θ×{s•}×Σ := (Pn
θ|s|σ)θ•∈Θ,σ•∈Σ .

Summarising the observations satisfy a statistical product experiment (R
N
,B

⊗N
,Pn

Θ×{s•}×Σ) where
Θ ⊆ `2 and Σ ⊆ RN>0 ∩ `∞. �

Given some transformation T defined on H let the probability measure associated with an
observable quantity belong to a family of probability measures Pn

Θ×{T}×Ξ := (Pn
θ |T|ξ)θ∈Θ,ξ∈Ξ .
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§10|00.09 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on an observable quantity with probability measure Pn

g,ξ ∈ Pn
Θ×{T}×Ξ we call

R
n
[ θ̃ |Θ, {T},Ξ ] := sup{Pn

θ |T|ξ

(
d2

ist(θ̃, θ)
)

: θ ∈ Θ, ξ ∈ Ξ}

its maximal risk over Θ ×
{

T
}
× Ξ. �

§10|00.10 diSM with noisy operator (§02|04.05 continued). Given `2 = L2
(N, 2N, ν

N
) and `∞ = L∞(N, 2N, ν

N
)

consider a Diagonal inverse sequence model (diSM) with noisy operator as in §02|04.05 where
s• ∈ S ⊆ RN\0∩ `∞ is not known anymore. Here the observable stochastic process ŝ• = s• + k−1/2η̇•
and ĝ

•
= g

•
+ n−1/2ε̇• is a noisy version of s• ∈ S ⊆ RN\0 ∩ `∞ and g

•
= s•θ• ∈ dom(Ms†) ⊆ `2 with

θ• ∈ Θ ⊆ `2, respectively, where ε̇• ∼ ⊗j∈NP
ε̇j and η̇• ∼ ⊗j∈NP

η̇j are independent. In addition,
let ε̇• satisfy (SM:ub) in Model §10|00.06 for σ• ∈ Σ ⊆ RN>0 ∩ `∞ and let η̇• fulfill
(SMnO:ub) for ξ• ∈ Ξ ⊆ RN>0 ∩ `∞ we have Pη̇j ∈ W4

(B) with ξ4
j

= P(η̇4
j
) and 0 = P(η̇

j
), j ∈ N.

Under (SM:ub) ĝ
•

admits a Pn
θ|s|σ-distribution belonging to the family Pn

Θ×S×Σ := (Pn
θ|s|σ)θ•∈Θ,s•∈S,σ•∈Σ

and under (SMnO:ub) ŝ• admits a Pk
s|ξ -distribution belonging to the family Pk

S×Ξ := (Pk
s|ξ )s•∈S,ξ•∈Ξ .

Consequently, (ĝ
•
, ŝ•) admits a joint Pn⊗k

θ|s|σ|ξ = Pn
θ|s|σ ⊗ Pk

s|ξ distribution belonging to the family
Pn⊗k

Θ×S×Σ×Ξ := (Pn
θ|s|σ⊗Pk

s|ξ )θ•∈Θ,s•∈S,σ∈Σ,ξ∈Ξ . Summarising the observations satisfy a statistical product

experiment
(
R
N

2

,B
⊗N

2

,Pn⊗k
Θ×S×Σ×Ξ

)
where Σ,Ξ ⊆ RN>0 ∩ `∞. S ⊆ RN\0 ∩ `∞ and Θ ⊆ `2. �

Finally, given a class of solutions Θ, a class of operators T , a class of nuissance parameters
Ξ and noise levels n, k ∈ N let Pn,k

Θ×T×Ξ := (Pn,k
θ |T|ξ)θ∈Θ,T∈T ,ξ∈Ξ denote a family of joint probability

measures.

§10|00.11 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on observable quantities with joint probability measure Pn,k

θ |T|ξ ∈ Pn,k
Θ×T×Ξ we call

R
n,k

[ θ̃ |Θ, T ,Ξ ] := sup
{
P
n,k

θ |T|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ,T ∈ T , ξ ∈ Ξ

}
its maximal risk over Θ × T × Ξ. �

§10|00.12 Remark. Taking the supremum over the class of operators allows us to quantify the additional
complexity due to the estimation of the operator. Moreover, if there exist an estimator θ̂, a
constant C ∈ R>0 and for each n, k ∈ N there is R?

n,k
∈ R>0 such that

(lower) R?

n,k
is a lower bound up to the constant C−1 of the maximal risk over Θ× T ×Ξ, that is

inf
θ̃
R

n,k
[ θ̃ |Θ, T ,Ξ ] > C

−1
R
?

n,k

where the infimum is taken over all possible estimators of θ;

(upper) R?

n,k
is an upper bound up to the constant C of the maximal risk over Θ× T ×Ξ, that is

R
n,k

[ θ̂ |Θ, T ,Ξ ] 6 C R
?

n,k
,

then we call R?

n,k
minimax-bound and the estimator θ̂ minimax-optimal (up to the constant C). As

a consequence, up to the constant C2 the estimator θ̂ attains the lower maximal risk bound that is,
R

n,k
[ θ̂ |Θ, T ,Ξ ] 6 C2 inf θ̃ Rn,k

[ θ̃ |Θ, T ,Ξ ]. Typically, we assume first that the nuissance parameter ξ
is known a priori, and hence Pn,k

Θ,T ,{ξ} is a class of probability measures associated with the observ-
able quantities. In this situation, we consider the maximal risk

{
P
n,k
θ |T|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ,T ∈ T

}
and we seek a bound R?

n,k
up to a constant which depends possibly on the nuissance parame-

ter ξ . However, if the bound R?

n,k
is a valid lower and upper bound up to a constant uniformly

for all nuissance parameters ξ ∈ Ξ, then it is, obviously, also a bound of the maximal risk
R

n,k
[ θ̂ |Θ, T ,Ξ ]. �
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Considering the Hilbert space `2 = L2
(N, 2N, ν

N
) and a surjective partial isometry U ∈ L(H, `),

which is fixed and presumed to be known in advance, we study statistical inverse problems where
observable quantities admit a probability measure Pn,k

θ |T|ξ ∈ Pn,k
Θ×T×Ξ for some class Θ, T and Ξ of

solutions, operators and nuissance parameters, respectively. We consider the following global
and local measures of accuracy.

§10|00.13 Notation (Reminder). For sequences a•, b• ∈ (K)N taking its values in K ∈ {R,R>0,Z, . . . }
we write a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing
and non-increasing. If in addition an → ∞ and bn → 0 as n → ∞, then we write a• ∈ (K)N↑∞
and b• ∈ (K)N↓0 for short. For w• ∈ `∞ = L∞(ν

N
) we set w[0] := 0, w[•] = (w[j ] := ‖w•1

j
•‖`∞)j∈N,

w(0) := ‖w•‖`∞ , and w(•) = (w(j) := ‖w•1
j |⊥
• ‖`∞)j∈N, where by construction w[•] ∈ (R>0)N↗ and

w(•) ∈ (R>0)N↘ . �

§10|00.14 Assumption (Maximal global v-risk). Consider weights t•, a• ∈ (R>0)N↘ and v• ∈ R
N

>0 such that
(av)• = a•v• ∈ `∞, and (av)(•) ∈ (R>0)N↓0 and there exists C(av) ∈ (0, 1] such that for all m ∈ N

(av)2
(m−1) > min

{
(av)2

j : j ∈ JmK
}
> C(av)(av)2

(m−1)

or in equal 1 > C(av)‖(av)−2
• 1

m
• ‖`∞(av)2

(m−1). �

§10|00.15 Reminder (Maximal global v-risk). Under Assumption §10|00.14 we introduce `a
2

= dom(Ma−1) =
`2a• = `2(a

−2
• ) endowed with ‖·‖a−1 := ‖·‖`2(a−2

• )
and the ellipsod `a,r

2
:=
{
h• ∈ `a2 : ‖h•‖2a−1 6 r2

}
⊆ `a

2
,

where the measures ν
N
, v2

• νN and a−2
• νN dominate mutually each other. Under Assumption §10|00.14

we consider the following global measure of accuracy. Introduce `2(v
2
• ) = L2

(v2
• νN) = dom(Mv) =

`2v−1
• ⊆ `2 and ‖·‖v = ‖Mv·‖`2 , where `a,r

2
⊆ `2(v

2
• ) (Property §04|02.11). For θ• = Uθ ∈ `a,r

2
we call

dist(θ̃•, θ•) = ‖θ̃• − θ•‖v global v-error, Pn,k
θ|T|ξ

(
‖θ̃• − θ•‖2

v

)
global v-risk and

Rv

n,k
[ θ̃• | `a,r2

, T ,Ξ ] := sup
{
P
n,k

θ|T|ξ

(
‖θ̃• − θ•‖2

v

)
: θ• ∈ Ja,r ,T ∈ T , ξ ∈ Ξ

}
maximal v-risk over `a,r

2
× T ×Ξ. Note that (av)2

(•) ∈ (R>0)N↘ by definition, hence (av)2
(•) ∈ (R>0)N↓0

is satisfied if and only if (av)2
(m) = o(1) as m → ∞ (i.e. the maximal global approxima-

tion is consistent). Moreover if (av)2
• ∈ (R>0)N↓0 then we have trivially (av)2

(•) ∈ (R>0)N↓0 and
‖(av)−2

• 1
m
• ‖`∞ = (av)−2

m = (av)−2
(m−1) for all m ∈ N, i.e. Assumption §10|00.14 is satisfied with

C(av) = 1. �

§10|00.16 Assumption (Maximal local φ-risk). Consider weights t•, a• ∈ (R>0)N↘ and φ
•
∈ RN\0 such that

(aφ)• := a•φ• ∈ `2 and (at)• := a•t• ∈ (R>0)N↓0 . �

§10|00.17 Reminder (Maximal local φ-risk). Under Assumption §10|00.16 introduce `a
2

= `2(a
−2
• ) endowed

with ‖·‖a−1 := ‖·‖`2(a−2
• )

and the ellipsod `a,r
2

:=
{
h• ∈ `a2 : ‖h•‖2a−1 6 r2

}
⊆ `a

2
, where the measures

ν
N
, |φ

•
|ν
N

and a−2
• νN dominate mutually each other. Under Assumption §10|00.16 we consider

the following local measure of accuracy. Under Assumption §10|00.16 introduce dom(φν
N
) :={

h• ∈ `2: φ•h• ∈ `1 = L1(N, 2
N, ν

N
)
}

and the linear functional φν
N

: `2 ⊇ dom(φν
N
) → R with h• 7→

φν
N
(h•) := ν

N
(φ
•
h•) where `a,r

2
⊆ dom(φν

N
) (Property §04|02.23). For θ• ∈ `a,r2

we call dist(θ̃•, θ•) =

|φν
N
(θ̃• − θ•)| local φ-error, Pn,k

θ|T|ξ

(
|φν

N
(θ̃• − θ•)|2

)
local φ-risk and

Rφ

n,k
[ θ̃• | `a,r2

, T ,Ξ ] := sup
{
P
n,k

θ|T|ξ

(
|φν

N
(θ̃• − θ•)|2

)
: θ• ∈ `a,r2

,T ∈ T , ξ ∈ Ξ
}

maximal φ-risk over `a,r
2
× T × Ξ. Imposing by Assumption §10|00.16 t•, a• ∈ (R>0)N↘ and hence

(at)2

• ∈ (R>0)N↘ is rather weak. If in addition lim inf
j→∞

(at)2

j
> c ∈ R>0 is satisfied, and hence
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(at)2

• , a
2
• , t

2
• 6∈ (R>0)N↓0 , then a2

• 6∈ (R>0)N↓0 and the assumption (aφ)• ∈ `2 implies φ
•
∈ `2, which

together with t2• 6∈ (R>0)N↓0 implies (φ/t)• ∈ `2, and thus the rate R?

n
(a•, t•, φ•) is parametric (Illustra-

tion §07|01.78 or Illustration §08|01.72). Since we are interested in the case of a non-parametric
rate, the additional assumption (at)2

• ∈ (R>0)N↓0 imposes a rather weak condition satisfied also in
Illustration §07|01.78 or Illustration §08|01.72. �

§10|00.18 Comment. We formulate the results in terms of θ• = Uθ ∈ J rather than directly for θ ∈ H.
Since U is known, considering the class H

a,r
:= U

?
Ja,r :=

{
U
?
θ•: θ• ∈ Ja,r

}
we obtain immedi-

ately also bounds over Ha,r for the maximal global risk

Rv

n,k
[ θ̃ |U?

Ja,r, T ,Ξ ] := sup
{
P
n,k

θ |T|ξ

(
‖U(θ̃ − θ)‖2

v

)
: θ ∈ H

a,r
,T ∈ T , ξ ∈ Ξ

}
and maximal local risk

Rφ

n,k
[ θ̃ |U?

Ja,r, T ,Ξ ] := sup
{
P
n,k

θ |T|ξ

(
|φν

N
(U(θ̃ − θ))|2

)
: θ ∈ H

a,r
,T ∈ T , ξ ∈ Ξ

}
which we do not explicitly state in the sequel. �

§11 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

§11|00.01 Definition. Let P0 and P1 be two probability measures on a measurable space (X,X ).
(a) The function

KL(P0 |P1 ) =

{
P0

(
log

dP0
dP1

)
=
∫

log
(dP0

dP1

)
dP0 , if P0

� P1 ,

+∞, otherwise

is called Kullback-Leibler-divergence of P0 with respect to P1 .
Let µ ∈Mσ(X ) be a P0 and P1 dominating σ-finite measure (e.g. P0 ,P1

� µ = P0 + P1 ). We write
dP0 := dP0/dµ and dP1 := dP1/dµ for short.
(b) The Hellinger distance between P0 and P1 is defined by

H(P0 ,P1 ) :=
( ∫
|
√

dP0 −
√

dP1 |2
)1/2

:= ‖
√

dP0 −
√

dP1‖L2(µ)

(c) and the Hellinger affinity is given by

ρ(P0 ,P1 ) :=

∫ √
dP0

√
dP1 := 〈

√
dP0 ,

√
dP1〉L2(µ)

,

where both do not depend on the choice of the dominating measure µ. �

§11|00.02 Remark. The Kullback-Leibler-divergence satisfies KL(P0 |P1 ) > 0 as well as KL(P0 |P1 ) = 0
if and only if P0 = P1 , but KL(·|·) is not symmetric. Moreover, for product measures holds
KL(P0,1 ⊗ P0,2|P1,1 ⊗ P1,2) = KL(P0,1|P1,1) + KL(P0,2|P1,2) and ρ(P0,1 ⊗ P0,2,P1,1 ⊗ P1,2) = ρ(P0,1,P1,1)ρ(P0,2,P1,2).

�

§11|00.03 Lemma. (i) 0 6 H2(P0 ,P1 ) 6 2; (ii) ρ(P0 ,P1 ) = 1− 1
2
H2(P0 ,P1 ); and (iii) H2(P0 ,P1 ) 6 KL(P0 |P1 ).

§11|00.04 Proof of Lemma §11|00.03. Given in the lecture course Statistik 2 (Lemma §13.12, p.54). �
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§11|00.05 Lemma. For a•, b• ∈ `∞ and n ∈ N we have KL(N
n

a |N
n

b ) = n
2
‖a• − b•‖2

`2
.

§11|00.06 Proof of Lemma §11|00.05. Given in the lecture course Statistik 2 (Lemma §13.14, p.54). �

§11|00.07 Assumption. The distribution P ∈ W (B) admits a Lebesgue-density p := dP/dλ and there
exist constants C◦, x◦ ∈ R>0 such that

∀x ∈ [−x◦, x◦] :

∫
p(u) log

( p(u)

p(u− x)

)
λ(du) 6 C◦ x

2.

�

§11|00.08 Lemma. Let Y• ∼ P
⊗N where P ∈ W (B) fulfills Assumption §11|00.07 with C◦, x◦ ∈ R>0. For

a•, b•, σ• ∈ `∞ and n ∈ N consider a• +n−1/2σ•Y• ∼ P
n
a|σ and b• +n−1/2σ•Y• ∼ P

n
b|σ. If ‖σ−2

• ‖`∞ =: vσ ∈
R>0 and n1/2v1/2

σ ‖a• − b•‖`∞ 6 x◦ then we have KL(Pn
a|σ|Pn

b|σ) 6 nvσC◦‖a• − b•‖2
`2

.

§11|00.09 Proof of Lemma §11|00.08. Given in the lecture. �

§11|00.10 Comment. For σ ∈ R\0 the normal distribution N(0,σ2) ∈ W (B) satisfy Assumption §11|00.07 with
C◦ = 1/(2σ2) and x◦ =∞ (see Proof §11|00.06). �

§11|00.11 Assumption. The semi metric dist(·, ·) is symmetric and satisfies the triangular inequality. Mor-
ever, for any estimator θ̃ and parameter θ0 and θ1 such that dist(θ0, θ1) ∈ R>0 the quantities dist(θ̃, θ0)

and dist(θ̃, θ1) are measurable. �

§11|00.12 Lemma. Let (X,X ) be a measurable space, let θ0 and θ1 be parameters with dist(θ
0, θ1) ∈ R>0,

and let Assumption §11|00.11 be satisfied.
(i) If P0 ,P1 ∈ W (X ) are probability measures then for any estimator θ̃ we have

P0

(
d2

ist(θ̃, θ
0
)
)

+ P1

(
d2

ist(θ̃, θ
1
)
)
>

1

2
d2

ist(θ
0
, θ

1
) ρ2(P0 ,P1 ). (11.01)

(ii) If P0 ,P1 ∈ W (X ) satisfy H(P0 ,P1 ) 6 1, then for any estimator θ̃ we have

P0

(
d2

ist(θ̃, θ
0
)
)

+ P1

(
d2

ist(θ̃, θ
1
)
)
>

1

8
d2

ist(θ
0
, θ

1
). (11.02)

(iii) For n ∈ N>2 let Pn
0 := ⊗j∈JnKP0|j ∈ W (X

⊗n
) and Pn

1 := ⊗j∈JnKP1|j ∈ W (X
⊗n

) be product
probability measures with marginals P0|j ,P1|j ∈ W (X ) fulfilling H(P0|j ,P1|j) 6 2n−1 for each
j ∈ JnK. Then for any estimator θ̃ we have

P
n

0

(
d2

ist(θ̃, θ
0
)
)

+ P
n

1

(
d2

ist(θ̃, θ
1
)
)
>

1

32
d2

ist(θ
0
, θ

1
). (11.03)

§11|00.13 Proof of Lemma §11|00.12. Given in the lecture. �

§11|01 Lower bound based on two hypothesis

§11|01.01 Lemma (Lower bound based on two hypothesis). Given a noise level n ∈ N let Pn
Θ := (Pn

θ )θ∈Θ be
a family of probability measures. We measure the accuracy of an estimator θ̃ by its maximal risk

R
n
[ θ̃ |Θ ] := sup

{
P
n

θ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
.
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(i) If there are θ0, θ1 ∈ Θ with dist(θ
0, θ1) ∈ R>0 and associated probability measures Pn

θ0 and Pn

θ1

such that Assumption §11|00.11 and H(Pn

θ0 ,P
n

θ1 ) 6 1 are satisfied then we have

inf θ̃ Rn
[ θ̃ |Θ ] >

1

16
d2

ist(θ
0
, θ

1
) (11.04)

where the infimum is taken over all possible estimators.

(ii) Let n ∈ N>2 and for each θ ∈ Θ let Pn
θ = ⊗j∈JnKPθ be a product probability measure

with identically Pθ -distributed marginals. If there are θ0, θ1 ∈ Θ with dist(θ
0, θ1) ∈ R>0 and

associated marginal probability measures Pθ0 and Pθ1 such that Assumption §11|00.11 and
H(Pθ0,Pθ1) 6 2n−1 are satisfied then we have

inf θ̃ Rn
[ θ̃ |Θ ] >

1

64
d2

ist(θ
0
, θ

1
) (11.05)

where the infimum is taken over all possible estimators.

§11|01.02 Proof of Lemma §11|01.01. Given in the lecture. �

§11|01.03 Remark (Lower bound for a local φ-risk). Assuming the bounded Hellinger distance as for exam-
ple in Lemma §11|01.01, Le Cam’s general method (see Le Cam [1973]) and Pinsker’s inequality
allow us to derive a lower bound for a local φ-risk as in Reminder §10|00.17. However, in this
special setting a lower bound can be obtained elementarily from Lemma §11|01.01, which in case
(i) for any estimator θ̃• states

Rφ

n
[ θ̃• |Θ ] := sup

{
P
n

θ

(
|φν

N
(θ̃• − θ•)|2

)
: θ ∈ Θ

}
>

1

16
|φν

N
(θ

0
• − θ1

• )|2.

If we consider furthermore candidates θ0
• := θ∗• and θ1

• = −θ∗ for some θ∗• ∈ Θ such that
−θ∗• ∈ Θ, then trivially |φν

N
(θ0
• − θ1

• )|2 = 4|φν
N
(θ∗• )|2 which in turn under the conditions of

Lemma §11|01.01 (i) implies

inf θ̃ R
φ

n
[ θ̃• |Θ ] >

1

4
|φν

N
(θ
∗
• )|2. (11.06)

Similarly, under the conditions of Lemma §11|01.01 (ii) we get

inf θ̃ R
φ

n
[ θ̃• |Θ ] >

1

16
|φν

N
(θ
∗
• )|2. (11.07)

Often a minimax-optimal lower bound can be found by constructing a candidate θ∗• = Uθ∗ ∈ Θ
that has the largest possible |φν

N
(θ∗• )|2-value butPn

θ∗ andPn
−θ∗ are still statistically indistinguishable

in the sense that H(Pn
θ∗ ,P

n
−θ∗) 6 1 or H(Pθ∗,P−θ∗) 6 2n−1. �

§11|01.04 Reminder (Maximal local φ-risk in diSM (§10|00.08 continued)). In Subsection §07|01 we consider
an orthogonal projection estimator (OPE) in a Diagonal inverse sequence model (diSM) as in
Model §01|04.08 (summarised in Model §10|00.08). Here the observable noisy version ĝ

•
satisfy a

statistical product experiment (R
N
,B

⊗N
,Pn

Θ×{s•}×Σ := (Pn
θ|s|σ)θ•∈Θ,σ•∈Σ) where s• ∈ `∞ is known, Θ ⊆

`2 and Σ ⊆ RN>0 ∩ `∞. Under Assumption §07|01.64 (which is implied by Assumption §10|00.16)
in Corollary §07|01.74 an upper bound for the maximal local φ-risk of an OPE is shown. More
precisly, assuming a multiplication operator Ms ∈ LM(J) (compare Notation §01|04.01), which
fulfills a link condition Ms ∈ Mt,d for d ∈ R>1 (see Assumption §04|03.04), the performance of the
OPE θ̂m• = s†• ĝ•1

m
• ∈ dom(φν

N
) with dimension m ∈ N is measured by its maximal local φ-risk

over the ellipsoid Θ = `a,r
2

with r ∈ R>0, that is

Rφ

n
[ θ̂

m

• | `a•,r2
, {Ms}, {σ•} ] := sup

{
Pn
θ|s|σ(|φνN(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2

}
∀n,m ∈ N.
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For n,m ∈ N setting (as in (07.20))

R
m

n
(a•, t•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖t†•1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
and R

?

n
(a•, t•, φ•) := R

m?
n

n
(a•, t•, φ•) = min

{
R
m

n
(a•, t•, φ•) : m ∈ N

}
(11.08)

the OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ dom(φν
N
) with optimally choosen dimension m?

n
= m?

n
(a•, t•, φ•) as in

(11.08) fulfills

Rφ

n
[ θ̂

m?
n

• | `a•,r2
, {Ms}, {σ•} ] 6(vσd

2 ∨ r2) R
?

n
(a•, t•, φ•) ∀n ∈ N (11.09)

with ‖σ2
• ‖`∞ =: vσ ∈ R>0. In the proof of the next proposition we make use of Lemma §08|01.61

which under Assumption §07|01.64 (implied by Assumption §11|00.07) states that (at)2

m?
n

> n−1 >
(at)2

m?
n+1

= (at)2

(m?
n)

for all n ∈ N with (at)2

2
> n−1, i.e. n ∈ N>(at)−2

2
. �

§11|01.05 diSM (§10|00.08 continued). Consider ĝ
•

= g
•

+ n−1/2ε̇• ∼ Pn
θ|s|σ as in Model §10|00.08, where ε̇•

satisfies (SM:ub) with P
(0,1)
∈ W (B) and σ• ∈ R

N

>0 ∩ `∞. In addition
(SM:lb) P

(0,1)
∈ W (B) fulfills Assumption §11|00.07 with Cε̇, xε̇ ∈ R>0 and σ−2

• ∈ `∞. �

§11|01.06 Corollary (diSM §11|01.05 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §11|01.05, where ε̇• fulfills (SM:ub) and (SM:lb)
with Cε̇, xε̇ ∈ R>0 ‖σ−2

• ‖`∞ =: vσ ∈ R>0. For each θ?• ∈ `2 with 2n1/2v1/2
σ ‖s•θ?• ‖`∞ 6 x

ε̇
setting

θ0
• := θ?• and θ1

• := −θ?• the distributions Pn
θτ |s|σ ∈ W (B

⊗N
), τ ∈ {0, 1}, satisfy H2(Pn

θ0|s|σ ,P
n

θ1|s|σ) 6
4nvσCε̇‖s•θ?• ‖2

`2
.

§11|01.07 Proof of Corollary §11|01.06. Given in the lecture. �

§11|01.08 Proposition (diSM §11|01.05 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §11|01.05, where ε̇• fulfills (SM:ub) and (SM:lb) with
Cε̇, xε̇ ∈ R>0 and ‖σ−2

• ‖`∞ =: vσ ∈ R>0. Let Assumption §10|00.16 and in addition

|s•| 6 dt• ν
N
-a.e. for d ∈ R>1 (11.10)

be satisfied. Then we have

inf θ̃•R
φ

n
[ θ̃• | `a•,r2

, {Ms}, {σ•} ] > R
?

n
(a•, t•, φ•)× 1

16

(
4r2 ∧ v−1

σ d
−2

(C
−1

ε̇ ∧ x2
ε̇
)
)
∀n ∈ N>(at)−2

2
(11.11)

where the infimum is taken over all possible estimators.

§11|01.09 Proof of Proposition §11|01.08. Given in the lecture. �

§11|01.10 Comment. By combining the lower bound in Proposition §11|01.08 and the upper bound in
Corollary §07|01.74 for the maximal local φ-risk of an OPE in a diSM §11|01.05 we have shown
that R?

n
(a•, t•, φ•) is a minimax-rate and the OPE with optimally chosen dimension parameter is

minimax-optimal (up to a constant). �

§11|01.11 GdiSM (§01|04.09 continued). Consider a Gaussian diagonal inverse sequence model (GdiSM)
as in §01|04.09 where s• ∈ `∞ is known in advance. Here the observable stochastic process
ĝ
•

= g
•

+ n−1/2Ḃ• ∼ N
n

θ|s is a noisy version of g
•

= s•θ• ∈ `2 with θ• = s†•g• ∈ Θ ⊆ `2 and
Ḃ• ∼ N

⊗N
(0,1). Consequently, ĝ

•
admits a N

n

θ|s-distribution belonging to the family N
n

Θ×{s•} := (N
n

θ|s)θ•∈Θ .
Summarising the observations satisfy a statistical product experiment (R

N
,B

⊗N
,N

n

Θ×{s•}) where
Θ ⊆ `2. Under Assumption §07|01.64 (which is implied by Assumption §10|00.16) in Corol-
lary §07|01.72 an upper bound for the maximal local φ-risk of an OPE is shown. More precisly,

130 Statistics of inverse problems



§11 Deriving a lower bound Chapter 4 Minimax optimal estimation

assuming a multiplication operator Ms ∈ LM(J) (compare Notation §01|04.01), which fulfills a
link condition Ms ∈ Mt,d for d ∈ R>1 (see Assumption §04|03.04), the performance of the OPE
θ̂m• = s†• ĝ•1

m
• ∈ dom(φν

N
) with dimension m ∈ N is measured by its maximal local φ-risk over

the ellipsoid Θ = `a,r
2

with r ∈ R>0, that is

Rφ

n
[ θ̂

m

• | `a•,r2
, {Ms} ] := sup

{
N
n

θ|s(|φνN(θ̂
m?

n

• − θ•)|2): θ• ∈ `a,r2

}
∀n,m ∈ N.

The OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ dom(φν
N
) with optimally choosen dimension m?

n
= m?

n
(a•, t•, φ•) as in

(11.08) fulfillsRφ

n
[ θ̂

m?
n

• | `a•,r2
, {Ms} ] 6(d2 ∨ r2) R?

n
(a•, t•, φ•) for all n ∈ N. �

§11|01.12 Corollary (GdiSM §11|01.11 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+n−1/2Ḃ• ∼ N

n

θ|s as in Model §11|01.11, where Ḃ• ∼ N
⊗N
(0,1). Let Assumption §10|00.16

and in addition (11.10) be satisfied. Then we have

inf θ̃ R
φ

n
[ θ̂

m

• | `a•,r2
, {Ms} ] > R

?

n
(a•, t•, φ•)× 1

8

(
2r2 ∧ d

−2
)
∀n ∈ N>(at)−2

2
(11.12)

where the infimum is taken over all possible estimators.

§11|01.13 Proof of Corollary §11|01.12. Given in the lecture. �

§11|01.14 Comment. By combining the lower bound in Corollary §11|01.12 and the upper bound in Corol-
lary §07|01.72 for the maximal local φ-risk of an OPE in a GdiSM §11|01.11 we have shown
that R?

n
(a•, t•, φ•) is a minimax-rate and the OPE with optimally chosen dimension parameter is

minimax-optimal (up to a constant). �

§11|01.15 Remark. LetPn⊗k
Θ×Ξ = (Pn⊗k

θ|ξ )θ∈Θ,ξ∈Ξ be a family of product measuresPn⊗k
θ|ξ = P

n
θ|ξ⊗Pk

ξ depending
on a function of interest θ ∈ Θ, a nuissance parameter ξ ∈ Ξ and noise levels n, k ∈ N. The
Lemma §11|01.01 allows us to bound from below the maximal risk for each nuissance parameter
ξ ∈ Ξ and noise level n ∈ N. To be more precise, given a noise level n ∈ N for τ ∈ {0, 1}
consider θτ ∈ Θ with associated product probability measure Pn⊗k

θτ |ξ = P
n
θτ |ξ ⊗ Pk

ξ , then we have
ρ(Pn⊗k

θ0|ξ ,Pn⊗k
θ1|ξ ) = ρ(Pn

θ0|ξ ⊗ P
k
ξ ,P

n

θ1|ξ ⊗ P
k
ξ ) = ρ(Pn

θ0|ξ,P
n

θ1|ξ) due to the independence. Consequently, if
H(Pn

θ0|ξ,P
n

θ1|ξ) 6 1, then for any estimator θ̃ we obtain

R
n,k

[ θ̃ |Θ, {ξ} ] := sup
{
P
n⊗k
θ|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
>

1

16
d2

ist(θ
0
, θ

1
)

due to Lemma §11|01.01. It is worth noting that we obtain the same lower bound when disposing
of the family Pn

Θ×{ξ} = (Pn
θ|ξ)θ∈Θ only, in other words assuming the nuissance parameter ξ ∈ Ξ is

known in advance. �

§11|01.16 Corollary (Lower bound based on two hypothesis). Let Pn⊗k
Θ×Ξ = (Pn⊗k

θ|ξ )θ∈Θ,ξ∈Ξ be a family of prod-
uct measures Pn⊗k

θ|ξ = P
n
θ|ξ ⊗Pk

ξ depending on a function of interest θ ∈ Θ, a nuissance parameter
ξ ∈ Ξ and noise levels n, k ∈ N. If for each τ ∈ {0, 1} there are θτ ∈ Θ and a nuissance
parameter ξτ ∈ Ξ with associated product probability measure Pn⊗k

θτ |ξτ = P
n
θτ |ξτ ⊗ Pk

ξτ such that
P
n

θ0|ξ0 = P
n

θ1|ξ1 and in addition H(Pk

ξ0 ,P
k

ξ1 ) 6 1 then for any estimator θ̃ we have

R
n,k

[ θ̃ |Θ,Ξ ] := sup
{
P
n⊗k
θ|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ, ξ ∈ Ξ

}
>

1

16
d2

ist(θ
0
, θ

1
). (11.13)

§11|01.17 Proof of Corollary §11|01.16. Given in the lecture. �

§11|01.18 Remark. The last assertion allows us often to derive a lower bound depending on the classes
Θ and Ξ and the noise level k but not on the noise level n. Roughly speaking this means that
we cover the influence of the estimation of the nuissance parameter. Typically we combine this
lower bound with the lower bound obtained in Lemma §11|01.01 where the nuissance parameter
is assumed to be known in advance. �
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§11|01.19 Reminder (Maximal global v-risk in diSM with noisy operator (§10|00.10 continued)). For `2 =
L2

(N, 2N, ν
N
) in Subsection §07|02 we consider a thresholded orthogonal projection estimator

(tOPE) in a Diagonal inverse sequence model (diSM) with noisy operator as in Model §02|04.05
(summarised in Model §10|00.10). Here the observable noisy versions (ĝ

•
, ŝ•) satisfy a statistical

product experiment(
R
N

2

,B
⊗N

2

,Pn⊗k
Θ×S×Σ×Ξ := (Pn⊗k

θ|s|σ |ξ := Pn
θ|s|σ ⊗ Pk

s|ξ )θ•∈Θ,s•∈S,σ∈Σ,ξ∈Ξ

)
where Σ,Ξ ⊆ RN>0∩`∞. S ⊆ RN\0∩`∞ and Θ ⊆ `2. Under Assumption §07|02.32 (which is implied
by Assumption §10|00.14) in Corollary §07|02.39 an upper bound for the maximal global v-risk of
a tOPE is shown. More precisly, assuming a multiplication operator Ms ∈ LM(`2) (compare Nota-
tion §02|04.02), which fulfills a link condition Ms ∈ Mt,d for d ∈ R>1 (see Assumption §04|03.04),
the performance of the tOPE θ̂m• := ŝ(k)|†

• ĝm
•

= ŝ†• 1
{ŝ2• >k−1}
• ĝ

•
1m• ∈ `2(v

2
• ) (see Definition §07|02.04)

with dimension m ∈ N is measured by its maximal global v-risk over the ellipsoid Θ = `a,r
2

with
r ∈ R>0 and the link condition S = Mt,d with d ∈ R>1, that is

Rv

n,k
[ θ̂

m

• | `a•,r2
,Mt,d, {σ•}, {ξ•} ] := sup

{
Pn⊗k
θ|s|σ |ξ(‖θ̂

m

• − θ•‖2

v
): θ• ∈ `a,r2

,Ms ∈ Mt,d

}
∀n, k,m ∈ N.

For n,m ∈ N setting (as in (07.37))

R
m

n
(a•, t•, v•) := [(av)2

(m) ∨ n−1‖t†•1m• ‖2

v
], m?

n
:= arg min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
and R

?

n
(a•, t•, v•) := R

m?
n

n
(a•, t•, v•) = min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
(11.14)

the OPE θ̂m
?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ `2(v

2
• ) with optimally choosen dimensionm?

n
= m?

n
(a•, t•, v•) as in (11.22)

fulfills

Rv

n,k
[ θ̂

m?
n

• | `a•,r2
,Mt,d, {σ•}, {ξ•} ] 6 R

?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2•)−1‖`∞
× (r2 + 4K

2

ξK
2

σd
2

+ 8K
4

ξr
2d

2
) ∀n, k ∈ N (11.15)

with Kσ := ‖σ•‖`∞ ∨ 1 ∈ R>1 and Kξ := ‖ξ•‖`∞ ∨ 1 ∈ R>1. �

§11|01.20 diSM with noisy operator (§10|00.10 continued). Consider (ĝ
•
= g

•
+ n−1/2ε̇•, ŝ• = s• + k−1/2η̇•) ∼

Pn⊗k
θ|s|σ|ξ = Pn

θ|s|σ⊗Pk
s|ξ as in Model §10|00.10, where η̇• ∼ ⊗j∈NP

η̇j fulfills (SMnO:ub) in Model §10|00.10
with ξ• ∈ Ξ ⊆ RN>0 ∩ `∞ and hence v η̇j := P(η̇2

j
) 6 ξ2

j
for each j ∈ N. In addition

(SMnO:lb) there exists P
(0,1)
∈ W (B) fulfilling Assumption §11|00.07 with Cη̇, xη̇ ∈ R>0 such that

P
η̇j = P

(0,v η̇
j )

for each j ∈ N and (v η̇• )−1 ∈ `∞. �

§11|01.21 Corollary (diSM with noisy operator §11|01.20 continued). Consider ŝ• = s• + k−1/2η̇• ∼ Pk
s|ξ as in

Model §11|01.20, where η̇• fulfills (SMnO:ub) and (SMnO:lb) with Cη̇, xη̇ ∈ R>0 and ‖(v η̇• )−1‖`∞ =:

vη̇ ∈ R>0. For any s0
• , s

1
• ∈ `∞ with k1/2v

1/2
η̇ ‖s0

• −s1
• ‖`∞ 6 x

η̇
we have H2(Pk

s0|ξ,P
k

s1|ξ) 6 kvη̇Cη̇‖s0
• −s1

• ‖2
`2

.

§11|01.22 Proof of Corollary §11|01.21. Given in the lecture. �

§11|01.23 Proposition (diSM with noisy operator §11|01.20 continued). Consider (ĝ
•

= g
•
+ n−1/2ε̇•, ŝ• = s• +

k−1/2η̇•) ∼ Pn⊗k
θ|s|σ|ξ = Pn

θ|s|σ ⊗ Pk
s|ξ as in Model §10|00.10, where η̇• fulfills (SMnO:ub) and (SMnO:lb)

with Cη̇, xη̇ ∈ R>0 and ‖(v η̇• )−1‖`∞ =: vη̇ ∈ R>0. If Assumption §10|00.16 is satisfied then we have

inf θ̃•R
v

n,k
[ θ̃• | `a•,r2

,Mt,d, {σ•}, {ξ•} ] > ‖(av)2
• (1 ∨ kt2• )−1‖`∞

× r2

16d2
(v−1

η̇ C
−1

η̇ ∧ v−1
η̇ x2

η̇
∧ 4(1 − d

−1
)2) ∀n, k ∈ N (11.16)

where the infimum is taken over all possible estimators.
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§11|01.24 Proof of Corollary §11|01.26. Given in the lecture. �

§11|01.25 GdiSM with noisy operator (§02|04.06 continued). Consider a Gaussian diagonal inverse se-
quence model (GdiSM) with noisy operator as in §02|04.06 where s• ∈ `∞ is not known anymore.
Here the observable process ŝ• = s• +k−1/2Ẇ• ∼ N

k

s and ĝ
•
= g

•
+n−1/2Ḃ• ∼ N

n

θ|s is a noisy version
of s• ∈ S ⊆ R

N

\0 ∩ `∞ and g
•

= s•θ• ∈ dom(Ms†) ⊆ `2 with θ• ∈ Θ ⊆ `2, respectively, where
Ḃ• ∼ N

⊗N
(0,1) and Ẇ• ∼ N

⊗N
(0,1) are independent. Consequently, (ĝ

•
, ŝ•) admits a joint N

n⊗k
θ|s = N

n

θ|s ⊗ N
k

s

distribution belonging to the family N
n⊗k
Θ×S := (N

n

θ|s ⊗ N
k

s )θ•∈Θ,s•∈S. Summarising the observations

satisfy a statistical product experiment
(
R
N

2

,B
⊗N

2

,N
n⊗k
Θ×S

)
where Θ ⊆ `2 and S ⊆ RN\0∩`∞. Under

Assumption §07|02.32 (which is implied by Assumption §10|00.14) in Corollary §07|02.37 an upper
bound for the maximal global v-risk of a tOPE is shown. More precisly, the performance of the
tOPE θ̂m• = ŝ(k)|†

• ĝm
•
∈ `2(v

2
• ) with dimension m ∈ N is measured by its maximal global v-risk

over the ellipsoid Θ = `a,r
2

with r ∈ R>0 and the link condition Mt,d with d ∈ R>1, that is

Rv

n,k
[ θ̂

m

• | `a,r2
,Mt,d ] := sup

{
N
n⊗k
θ|s (‖θ̂m

?
n

• − θ•‖2

v
): θ• ∈ `a,r2

,Ms ∈ Mt,d

}
∀n, k,m ∈ N.

The tOPE θ̂m
?
n

• = ŝ(k)|†
• ĝm

?
n

•
∈ `2(v

2
• ) with optimally choosen dimension m?

n
= m?

n
(a•, t•, v•) as in

(11.22) fulfillsRv

n,k
[ θ̂

m?
n

• | `a,r2
,Mt,d ] 6 R?

n
(a•, t•, v•) ∨ ‖(av)2

• (1 ∨ kt2•)−1‖`∞× (r2 + 4d2 + 12r2d2) for all
n, k ∈ N. �

§11|01.26 Corollary (GdiSM with noisy operator §11|01.25 continued). Consider (ĝ
•

= g
•
+ n−1/2Ḃ•, ŝ• = s• +

k−1/2Ẇ•) ∼ N
n⊗k
θ|s = N

n

θ|s ⊗ N
k

s as in Model §11|01.25, where Ḃ• ∼ N
⊗N
(0,1) and Ẇ• ∼ N

⊗N
(0,1) are

independent. Let Assumption §10|00.14 be satisfied. Then we have

inf θ̃•R
v

n,k
[ θ̃• | `a•,r2

,Mt,d ] > ‖(av)2
• (1 ∨ kt2• )−1‖`∞

× r2

32d2
(1 ∧ 8(1 − d

−1
)2) ∀n, k ∈ N (11.17)

where the infimum is taken over all possible estimators.

§11|01.27 Proof of Corollary §11|01.26. Given in the lecture. �

§11|02 Lower bound based on m hypothesis

§11|02.01 Notation. For m ∈ N set Tm := {−1, 1}m and for each τ := (τ
j
)j∈JmK ∈ Tm and j ∈ JmK

introduce τ (j) ∈ Tm given by τ (j)

j
:= −τ

j
and τ (j)

l
:= τ

l
for l ∈ JmK\{j}. �

§11|02.02 Lemma (Assouad’s cube technique). Given a noise level n ∈ N let Pn
Θ := (Pn

θ )θ∈Θ be a family
of probability measures. Suppose there exist m ∈ N and distances d(j)

ist (·, ·), j ∈ JmK such that
d2

ist(·, ·) >
∑

j∈JmK |d
(j)
ist (·, ·)|2. We measure the accuracy of an estimator θ̃ by its maximal risk

R
n
[ θ̃ |Θ ] := sup

{
P
n

θ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
.

(i) If there exists
{
θτ : τ ∈ Tm

}
⊆ Θ such that for all τ ∈ Tm and j ∈ JmK we have Assump-

tion §11|00.11 and H(Pn
θτ ,P

n

θτ
(j)) 6 1 then we obtain

inf θ̃ Rn
[ θ̃ |Θ ] > 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

|d(j)
ist (θ

τ
, θ

τ (j)

)|2 (11.18)

where the infimum is taken over all possible estimators.
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(ii) Let n ∈ N>2 and for each θ ∈ Θ let Pn
θ = ⊗j∈JnKPθ be a product probability measure with

identically Pθ -distributed marginals. If there exists
{
θτ : τ ∈ Tm

}
⊆ Θ τ ∈ Tm and j ∈ JmK

we have Assumption §11|00.11 and the marginals satisfy H(Pθτ ,Pθτ (j)) 6 2n−1 then we have

inf θ̃ Rn
[ θ̃ |Θ ] > 2−m

∑
τ∈Tm

1

64

∑
j∈JmK

|d(j)
ist (θ

τ
, θ

τ (j)

)|2 (11.19)

where the infimum is taken over all possible estimators.

§11|02.03 Proof of Lemma §11|02.02. Given in the lecture. �

§11|02.04 Remark (Lower bound for a global v-risk). For a•, b• ∈ `2(v
2
• ) consider dist(a•, b•) = ‖a• − b•‖v.

Evidently, for each j ∈ N setting d(j)
ist (a•, b•) := |vj(aj − bj)| we have

d2
ist(a•, b•) = ‖a• − b•‖2

v
>
∑
j∈JmK

v2
j |aj − bj |2 =

∑
j∈JmK

|d(j)
ist (a•, b•)|2 ∀m ∈ N.

Consequently, a lower bound for a global v-risk can be obtained elementarily from Lemma §11|02.02,
which in case (i) for any estimator θ̃• states

Rv

n
[ θ̃• |Θ ] := sup

{
P
n

θ

(
‖θ̃• − θ•‖2

v

)
: θ ∈ Θ

}
> 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

v2
j |θ

τ
j − θτ

(j)

j |
2

If we consider furthermore candidates
{
θτ• := (τ

j
θ?j 1

m
j )j∈N: τ ∈ Tm

}
⊆ Θ ⊆ `2(v

2
• ) for some θ?• ∈

`2(v
2
• ), then it is easily seen that

∑
j∈JmK v

2
j |θτj − θτ

(j)

j |2 = 4
∑

j∈JmK v
2
j |θ?j |2 = 4‖θ?• 1m• ‖2

v•
which in

turn under the conditions of Lemma §11|02.02 (i) implies

inf θ̃ R
v

n
[ θ̃• |Θ ] > 2−m

∑
τ∈Tm

1

4
‖θ?• 1m• ‖2

v
=

1

4
‖θ?• 1m• ‖2

v
. (11.20)

Similarly, under the conditions of Lemma §11|02.02 (ii) we get

inf θ̃ R
v

n
[ θ̃• |Θ ] > 2−m

∑
τ∈Tm

1

16
‖θ?• 1m• ‖2

v
=

1

16
‖θ?• 1m• ‖2

v
. (11.21)

Often a minimax-optimal lower bound can be found by choosing the parameter m and con-
structing a candidate θ∗• = Uθ? that have the largest possible ‖θ?• 1m• ‖2

v
-value although that the

associated Pn
θτ , τ ∈ Tm are still statistically indistinguishable in the sense that H(Pn

θτ ,P
n

θτ
(j)) 6 1 or

H(Pθτ ,Pθτ (j)) 6 2n−1 for all j ∈ JmK and τ ∈ Tm. �

§11|02.05 Reminder (Maximal global v-risk in diSM (§10|00.08 continued)). In Subsection §07|01 we consider
an orthogonal projection estimator (OPE) in a Diagonal inverse sequence model (diSM) as in
Model §01|04.08 (summarised in Model §10|00.08). Here the observable noisy version ĝ

•
satisfy a

statistical product experiment (R
N
,B

⊗N
,Pn

Θ×{s•}×Σ := (Pn
θ|s|σ)θ•∈Θ,σ•∈Σ) where s• ∈ `∞ is known, Θ ⊆

`2 and Σ ⊆ RN>0 ∩ `∞. Under Assumption §07|01.30 (which is implied by Assumption §10|00.14)
in Corollary §07|01.40 an upper bound for the maximal global v-risk of an OPE is shown. More
precisly, assuming a multiplication operator Ms ∈ LM(J) (compare Notation §01|04.01), which
fulfills a link condition Ms ∈ Mt,d for d ∈ R>1 (see Assumption §04|03.04), the performance of the
OPE θ̂m• = s†• ĝ•1

m
• ∈ dom(φν

N
) with dimension m ∈ N is measured by its maximal global v-risk

over the ellipsoid Θ = `a,r
2

with r ∈ R>0, that is

Rv

n
[ θ̂

m

• | `a•,r2
, {Ms}, {σ•} ] := sup

{
Pn
θ|s|σ(‖θ̂

m?
n

• − θ•‖2

v
): θ• ∈ `a,r2

}
∀n,m ∈ N.
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For n,m ∈ N setting (as in (07.07))

R
m

n
(a•, t•, v•) := (av)2

(m) ∨ n−1‖t−1
• 1

m
• ‖2

v
, m?

n
:= arg min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
and R

?

n
(a•, t•, v•) := R

m?
n

n
(a•, t•, v•) = min

{
R
m

n
(a•, t•, v•) : m ∈ N

}
(11.22)

the OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ `2(v
2
• ) with optimally choosen dimension m?

n
= m?

n
(a•, t•, v•) as in (11.22)

fulfills

Rv

n
[ θ̂

m?
n

• | `a•,r2
, {Ms}, {σ•} ] 6(vσd

2
+ r2) R

?

n
(a•, t•, v•) ∀n ∈ N (11.23)

with ‖σ2
• ‖`∞ =: vσ ∈ R>0. �

§11|02.06 Lemma. Under Assumption §10|00.14 form?
n

:= m?
n
(a•, t•, v•) and R?

n
:= Rm?

n

n
(a•, t•, v•) as in (11.22)

distinguish case i) : R?

n
= n−1‖t−1

• 1
m?

n

• ‖2
v
> (av)2

(m?
n) and case ii) : R?

n
= (av)2

(m?
n) > n−1‖t−1

• 1
m?

n

• ‖2
v
.

Then for all n ∈ N>(v/t)21 (av)−2
(1)

, i.e. (av)2
(1) > n−1(v/t)2

1 , in case i) we have (av)2
(m?

n−1) > n−1‖t−1
• 1

m?
n

• ‖2
v

and in case ii) setting

m�
n

:= min
{
m ∈ N>m?

n
: n−1‖t−1

• 1
m
• ‖2

v
> (av)2

(m)

}
(11.24)

we obtain (av)2
(m?

n) = (av)2
(m�n−1) 6 n−1‖t−1

• 1
m�n
• ‖2

v
.

§11|02.07 Proof of Lemma §11|02.06. Given in the lecture. �

§11|02.08 Corollary (diSM §11|01.05 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §11|01.05, where ε̇• fulfills (SM:ub) and (SM:lb) with
Cε̇, xε̇ ∈ R>0 ‖σ−2

• ‖`∞ =: vσ ∈ R>0. For each θ?• ∈ `2 with 2n1/2v1/2
σ ‖s•θ?• 1m• ‖`∞ 6 x

ε̇
and for

each τ ∈ Tm = {−1, 1}m as in Notation §11|02.01 setting θτ• := (τ
j
θ?j 1

m
j )j∈N the distribution

Pn
θτ |s|σ ∈ W (B

⊗N
) satisfies H2(Pn

θτ |s|σ ,P
n

θτ
(j)

|s|σ
) 6 4nvσCε̇‖s•θ?• 1m• ‖2

`∞
for all j ∈ JmK.

§11|02.09 Proof of Corollary §11|02.08. Given in the lecture. �

§11|02.10 Proposition (diSM §11|01.05 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+ n−1/2ε̇• ∼ Pn

θ|s|σ as in Model §11|01.05, where ε̇• fulfills (SM:ub) and (SM:lb) with
Cε̇, xε̇ ∈ R>0 and ‖σ−2

• ‖`∞ =: vσ ∈ R>0. Let Assumption §10|00.14 and in addition (11.10) for
d ∈ R>1 be satisfied. Then we have

inf θ̃•R
v

n
[ θ̃• | `a•,r2

, {Ms}, {σ•} ] > R
?

n
(a•, t•, v•)

× 1
16

(
4C(av)r

2 ∧ v−1
σ d

−2
(C
−1

ε̇ ∧ x2
ε̇
)
)
∀n ∈ N>(v/t)21 (av)−2

(1)
(11.25)

where the infimum is taken over all possible estimators.

§11|02.11 Proof of Proposition §11|02.10. Given in the lecture. �

§11|02.12 Comment. By combining the lower bound in Proposition §11|02.10 and the upper bound in
Corollary §07|01.40 for the maximal global v-risk of an OPE in a diSM §11|01.05 we have shown
that R?

n
(a•, t•, v•) is a minimax-rate and the OPE with optimally chosen dimension parameter is

minimax-optimal (up to a constant). �

§11|02.13 GdiSM (§11|01.11 continued). Recall that the observations satisfy a statistical product experi-
ment (R

N
,B

⊗N
,N

n

Θ×{s•}) where Θ ⊆ `2. Under Assumption §07|01.30 (which is implied by As-
sumption §10|00.14) in Corollary §07|01.38 an upper bound for the maximal global v-risk of an
OPE is shown. More precisly, assuming a multiplication operator Ms ∈ LM(J) (compare Nota-
tion §01|04.01), which fulfills a link condition Ms ∈ Mt,d for d ∈ R>1 (see Assumption §04|03.04),
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the performance of the OPE θ̂m• = s†• ĝ•1
m
• ∈ `2(v

2
• ) with dimension m ∈ N is measured by its

maximal global v-risk over the ellipsoid Θ = `a,r
2

with r ∈ R>0, that is

Rv

n
[ θ̂

m

• | `a•,r2
, {Ms} ] := sup

{
N
n

θ|s(‖θ̂
m?

n

• − θ•‖2

v
): θ• ∈ `a,r2

}
∀n,m ∈ N.

The OPE θ̂m
?
n

• = s†• ĝ•1
m?

n

• ∈ `2(v
2
• ) with optimally choosen dimensionm?

n
= m?

n
(a•, t•, v•) as in (11.22)

fulfillsRv

n
[ θ̂

m?
n

• | `a•,r2
, {Ms} ] 6(d2 + r2) R?

n
(a•, t•, v•) for all n ∈ N. �

§11|02.14 Corollary (GdiSM §11|02.13 continued). For s• ∈ `∞ , θ• ∈ `2 , hence g
•

= s•θ• ∈ dom(Ms†) ⊆ `2,
consider ĝ

•
= g

•
+n−1/2Ḃ• ∼ N

n

θ|s as in Model §11|01.11, where Ḃ• ∼ N
⊗N
(0,1). Let Assumption §10|00.14

and in addition (??) be satisfied. Then we have

inf θ̃ R
v

n
[ θ̂

m

• | `a•,r2
, {Ms} ] > R

?

n
(a•, t•, v•)× 1

8

(
2r2 ∧ d

−2
)
∀n ∈ N>(v/t)21 (av)−2

(1)
(11.26)

where the infimum is taken over all possible estimators.

§11|02.15 Proof of Corollary §11|02.14. Given in the lecture. �

§11|02.16 Comment. By combining the lower bound in Corollary §11|02.14 and the upper bound in Corol-
lary §07|01.38 for the maximal global v-risk of an OPE in a GdiSM §11|02.13 we have shown
that R?

n
(a•, t•, v•) is a minimax-rate and the OPE with optimally chosen dimension parameter is

minimax-optimal (up to a constant). �

§11|02.17 Remark. LetPn⊗k
Θ×Ξ = (Pn⊗k

θ|ξ )θ∈Θ,ξ∈Ξ be a family of product measuresPn⊗k
θ|ξ = P

n
θ|ξ⊗Pk

ξ depending
on a function of interest θ ∈ Θ, a nuissance parameter ξ ∈ Ξ and noise levels n, k ∈ N. Suppos-
ing there exist m ∈ N and distances d(j)

ist (·, ·), j ∈ JmK such that d2
ist(·, ·) >

∑
j∈JmK |d

(j)
ist (·, ·)|2 the

Lemma §11|02.02 allows us to bound from below the maximal risk for each nuissance parameter
ξ ∈ Ξ and noise level n ∈ N. To be more precise, given noise levels n, k ∈ N for each τ ∈ Tm
consider θτ ∈ Θ with associated product probability measure Pn⊗k

θτ |ξ = P
n
θτ |ξ ⊗ Pk

ξ , then for all
j ∈ JmK we have ρ(Pn⊗k

θτ |ξ ,P
n⊗k
θτ

(j)

|ξ
) = ρ(Pn

θτ |ξ ⊗ Pk
ξ ,P

n

θτ
(j)

|ξ
⊗ Pk

ξ ) = ρ(Pn
θτ |ξ,P

n

θτ
(j)

|ξ
) due to the independence.

Consequently, if H(Pn
τ ,P

n

τ (j)) 6 1 for all τ ∈ Tm and j ∈ JmK, then for any estimator θ̃ we obtain

R
n,k

[ θ̃ |Θ, {ξ} ] := sup
{
P
n⊗k
θ|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
> 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

|d(j)
ist (θ

τ
, θ

τ (j)

)|2

due to Lemma §11|02.02. It is worth noting that we obtain the same lower bound when disposing
of the family Pn

Θ×{ξ} = (Pn
θ|ξ)θ∈Θ only, in other words assuming the nuissance parameter ξ ∈ Ξ is

known in advance. �

§11|02.18 Corollary (Lower bound based onm hypothesis). LetPn⊗k
Θ×Ξ = (Pn⊗k

θ|ξ )θ∈Θ,ξ∈Ξ be a family of product
measures Pn,k

θ|ξ = P
n
θ|ξ ⊗ Pk

ξ depending on a function of interest θ ∈ Θ, a nuissance parameter
ξ ∈ Ξ and noise levels n, k ∈ N. Suppose there exist distances d(j)

ist (·, ·), j ∈ JmK such that
d2

ist(·, ·) >
∑

j∈JmK |d
(j)
ist (·, ·)|2. If there exists

{
(θτ , ξτ ): τ ∈ Tm

}
⊆ Θ × Ξ such that for all τ ∈ Tm

and j ∈ JmK Assumption §11|00.11, (C1) Pn
θτ |ξτ = P

n

θτ
(j)

|ξτ
(j) and (C2) H(Pk

ξτ ,P
k

ξτ
(j)) 6 1 are fulfilled,

then for any estimator θ̃ we have

R
n,k

[ θ̃ |Θ,Ξ ] := sup
{
P
n⊗k
θ|ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ, ξ ∈ Ξ

}
> 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

|d(j)
ist (θ

τ
, θ

τ (j)

)|2.

§11|02.19 Proof of Corollary §11|02.18. Given in the lecture. �
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§11|02.20 Remark. The last assertion allows us often to derive a lower bound depending on the classes
Θ and Ξ and the noise level k but not on the noise level n. Roughly speaking this means that
we cover the influence of the estimation of the nuissance parameter. Typically we combine this
lower bound with the lower bound obtained in Lemma §11|02.02 where the nuissance parameter
is assumed to be known in advance. �
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