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Chapter 1

Introduction

SHORT SUMMARY

Statistical ill-posed inverse problems are becoming increasingly important in a diverse range
of disciplines, including geophysics, astronomy, medicine and economics. Roughly speaking,
in all of these applications the observable signal g = T'f is a transformation of the functional
parameter of interest f under a linear operator 7'. Statistical inference on f based on an esti-
mation of g which usually requires an inversion of 7' is thus called an inverse problem. The
lecture course focuses on statistical ill-posed inverse problems with noise in the operator where
neither the signal g nor the linear operator 7' are known in advance, although they can be es-
timated from the data. Our objective in this context is the construction of minimax-optimal
fully data-driven estimation procedures of the unknown function f. Special attention is given to
four models and their extensions, namely Gaussian inverse regression, density deconvolution,
functional linear regression and non-parametric instrumental regression, which lead naturally
to statistical ill-posed inverse problems with noise in the operator.

APPLICATIONS

Density deconvolution with unknown error distribution. The biologist who is interested in
the density f of a gene-expression intensity X, can record in a cDNA microarray the expressed
gene intensity X only corrupted by the intensity of a background noise ¢, thatis Y = X +¢. If
the additive measurement error ¢ is independent of X then the density g = f x q of Y equals
the convolution of f and the error density q. Consequently, recovering f from the estimated
density ¢ = C,f of Y is an inverse problem where C, is the convolution operator defined by
the error density q. In this situation, the density f of the random variable X has to be estimated
non-parametrically based on an iid. sample from a noisy observation Y of X which is called
a density deconvolution problem. There is a vast literature on deconvolution with known error
density which leads to a statistical ill-posed inverse problem with known operator. On the other
hand, if the error density ¢ is estimated from an additional calibration sample of the error ¢ then
the deconvolution problem corresponds to a statistical ill-posed inverse problem with noise in
the operator.

Functional linear regression. In climatology, prediction of level of ozone pollution based on
continuous measurements of pollutant indicators is often modelled by a functional linear model.
In this context a scalar response Y (i.e. the ozone concentration) is modelled in dependence of
a random function X (i.e. the daily concentration curve of a pollutant indicator). Typically
the dependence is assumed to be linear which finds its expression in a linear normal equation
g = I'f where g is the cross-correlation between Y and X, and I' is the covariance operator
associated to the indicator X. Note that both the cross-correlation function g and the covariance
operator " need to be estimated in practice. Consequently, the non-parametric estimation of the
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functional slope parameter f based on an iid. sample from (Y, X) leads to a statistical ill-posed
inverse problem with noise in the operator.

Non-parametric instrumental regression. An econometrician who wants to analyse an eco-
nomic relation between a response Y and an endogenous vector X of explanatory variables,
might incorporate a vector of exogenous instruments Z. This situation is usually treated by
considering a conditional moment equation g = K f where g = Ey | is the conditional ex-
pectation function of Y given Z and K is the conditional expectation operator of X given Z.
As these are unknown in practice, inference on f based on an iid. sample from (Y, X, Z) is a
statistical ill-posed inverse problem with noise in the operator.

STATISTICAL ILL-POSED INVERSE PROBLEMS

We study non-parametric estimation of the functional parameter of interest f in an inverse
problem, that is, its reconstruction based on an estimation of a linear transformation g = 7' f. It
is important to note that in all the applications discussed above both the signal g and the inherent
transformation 7" are unknown in practice, although they can be estimated from the data. The
estimated signal g and operator T respectively given by

G=Tf++vnW and T=T+VkB. (1.1)

are noisy versions of g and 7" contaminated by additive random errors IV and B with respective
noise levels n and k. Consequently, a statistical inference on the functional parameter of interest
f has to take into account that a random noise is present in both the estimated signal W and the
estimated operator B.

Gaussian inverse regression with noise in the operator. A particularly interesting situation
is given by model (1.1) where the random error W and B are independent Gaussian white
noises. This model is particularly useful to characterise the influence of an a priori knowledge
of the operator 7. To this end we will compare three cases: First, the operator 7' is fully known
in advance, i.e., the noise level £ is equal to zero. Second, it is partially known, that is, the
eigenfunctions of 7" are known in advance but the “observed” eigenvalues of 7" are contaminated
with an additive Gaussian error. Third, the operator 1" is unknown.

MINIMAX-OPTIMAL ESTIMATION

Typical questions in this context are the non-parametric estimation of the functional param-
eter f on an interval or in a given point, referred to as global or local estimation, respectively.
However, these are special cases in a general framework where the accuracy of an estimator f
of f given the estimations (1.1) is measured by a distance d,(f, f). A suitable choice of the
distance covers than the global as well as the local estimation problem. Moreover, denoting by

L (S )P (or EFr o, (f, £)]?) its expectation w.r.t. the probability measure 7'y associated
with the observable quantities (1.1) we call the quantity Py |Dm(f, f)|? risk of the estimator f
of f. Itis well-known that in terms of its risk the attainable accuracy of an estimation procedure
is essentially determined by the conditions imposed on f and the operator 7'. Typically, these
conditions are expressed in the form f € F and T' € T for suitable chosen classes F and
T. The class F reflects prior information on the solution f, e.g., its level of smoothness, and
the class 7 imposes among others conditions on the decay of the eigenvalues of the operator 7.

N
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Chapter 1 Introduction

Consequently, let us introduce the associated family of probability measures Pr’;. The accuracy
of f is hence measured by its maximal risk over the classes F and 7, that is,

Ro[f1Br] = sup {Brsf[o,. (F, F)I, B € B}

Moreover, fis called minimax-optimal up to a finite positive constant C' if R, [ﬂ }Lﬂ <
C'inf 7 Re [ f }U’}] where the infimum is taken over all possible estimators of f. Consequently,

minimax-optimality of an estimator fbased on observations (1.1) is usually shown by estab-
lishing both an upper and a lower bound. More precisely, we search a finite positive quantity
Ry™ depending only on the noise levels and the classes such that

Ro[fIPE] < CIRy™ and Ry* < Coinf %, [ | Pr]

where (', (5 are finite positive constants independent of the noise levels. Moreover, the quan-
tity Ry is called the minimax-optimal rate of convergence over the family Pr - := {P"} n, k €
(0,1)} if it tends to zero as n and k tend to zero.

ADAPTIVE ESTIMATION

In many cases the proposed estimation procedures rely on the choice of at least one tuning pa-
rameter, which in turn, crucially influences the attainable accuracy of the constructed estimator.
In other words, these estimation procedures can attain the minimax rate Ry over the family
P- - only if the inherent tuning parameters are chosen optimally. This optimal choice, how-
ever, follows often from a classical squared-bias-variance compromise and requires a a priori
knowledge about the classes F and 7, which is usually inaccessible in practice. This motivates
its data-driven choice in the context of non-parametric statistics since its very beginning in the
fifties of the last century. A demanding challenge is then a fully data driven method to select
the tuning parameters in such a way that the resulting data-driven estimator of f still attains
the minimax-rate up to a constant over a variety of classes F and 7. The fully data driven
estimation procedure is then called adaptive.
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Chapter 2

Theoretical basics and terminologies

2.1 Hilbert space

For a detailed and extensive survey on functional analysis we refer the reader, for example,
to Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§2.1.1 Definition. A normed vector space (H, ||-||m) over K € {R,C} that is complete (in a
Cauchy-sense) is called a (real or complex) Hilbert space if there exists an inner product (-, -)g
on H x H with |(h, h)u|*/? = ||| for all b € H. 0

§2.1.2 Property. Let (H, ||-||1) and (H, ||-||2) be complete normed vector spaces. If there exists
a constant K > 0 such that ||h||, < K ||h||, forany h € Hthen, ||-||; and ||-||2 are equivalent. ©

§2.1.3 Property.
(Cauchy-Schwarz inequality) |(hy, ho)u| < ||h1|lg - || h2l|lg for all hy, he € HL. O

§2.1.4 Examples.

(i) For k € N the Euclidean space K* endowed with the Euclidean inner product (z, ) := 'z
and the induced Euclidean norm ||z|| = (Z'x)/? for all 2,y € K* is a Hilbert space. More
generally, given a strictly positive definite (k x k)-matrix W, K* endowed with the weighted
inner product (z, y)w := y'Wax for all z, y € K* is also a Hilbert space.

(ii) Given J C Z, denote by K7 the vector space of all K-valued sequences over J where
we refer to any sequence (z;);es € K7 as a whole by omitting its index as for example
in «the sequence x» and arithmetic operations on sequences are defined element-wise, i.e.,
zy = (z;y;)jes. Inthe sequel, let ||z, := (Zjej |mj|p)1/p, forp € [1,00), and ||z| )0 :=

sup,c 7 |7;]. Thereby, for p € [1, oc], consider £7(J) := {(a:j)jej e K7, ||z, < oo}, or

¢? for short, endowed with the norm ||-||¢». In particular, ¢*(7) is the usual Hilbert space of
square summable sequences over J endowed with the inner product (z, y)s.2 1= ) ic7 TiY;
forall z,y € *(J).

(ii1) For a strictly positive sequence v consider the weighted norm HZEHZZ =Y ies Vil ) We
define ¢2(J), or £2 for short, as the completion of £(7) w.r.t. ||-||, which is a Hilbert space
endowed with the inner product (z,y) ;2 := (0x,0y)2 = > ; vix;7; forall z,y € L.

(iv) Let % be the Borel-o-algebra on K. Given a measure space (£2,.¢7, i) denote by K the
vector space of all K-valued functions f : 2 — K. Recall that || f|| = (p|fIP)VP =

([ |f(w)|pu(dw))1/p, for p € [1,00), and ||f||Lg° = inf{c : u(|f] > ¢) = 0}, where
for p € [1,00], we write LP(Q, o/, p) = {f € K%, &/-B-measurable , || f||,, < oo},
L7 (€2) or Lk for short, which is endowed with the norm ||-|| .z for short. In case p is the
Lebesgue measure, then we may write LF(2, .«7), LP(Q2), L? and ||-|| .» for short. Moreover,
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Chapter 2 Theoretical basics and terminologies 2.1 Hilbert space

L*(Q, o/, ), L2(Q) or L2 for short, is the usual Hilbert space of square p-integrable, <7 -
PB-measurable functions on () endowed with the inner product (f, g) Lz = w(fg) for all
frge L.

(v) Let X be a random variable (r.v.) on a probability space ({2, o7, P) taking its values in a
measurable space (X, %). We denote by PX := P o X ! the image probability measure of
P under X on (X, %). For p € [1, 00] we set L% := LP(X, %, PX) where L% is a Hilbert
space endowed with (f, g) ;2 = P*(fg) forall f,g € L%. O

§2.1.5 Definition. A subset U/ of a Hilbert space (H, (-, -)g) is called orthogonal if
YVuy,ug € U, uy # ug : (ug, ug)g =0

and orthonormal system (ONS) if in addition |ul|y = 1, Vu € U. We say U is an orthonormal
basis (ONB) if U C U" and U’ is ONS, then U = U, i.e., if it is a complete ONS.

§2.1.6 Examples.

(i) Consider the real Hilbert space L?([0, 1]) w.r.t. the Lebesgue measure. The trigonometric
basis {1;,7 € N} given for ¢ € [0, 1] by

Y (t) := 1, Yop(t) == V2 cos(2mkt), opsr(t) == V2sin(2rkt), k=1,2,...,

is orthonormal and complete, i.e. an ONB.

(ii) Consider the complex Hilbert space L?([0, 1)), then the exponential basis {e;, j € Z} with
e;(t) == exp(—2mjt) fort € [0,1) and j € Z,
is orthonormal and complete, i.e. an ONB. O

§2.1.7 Properties.
(Pythagorean formula) If ha, ..., h, € H are orthogonal, then ||Z;1:1 hilld = 27:1 ||hj||§}1-

(Bessel’s inequality) — IfU C H is an ONS, then ||h||7 > > wer | (s wml? for all b € H.

(Parseval’s formula) — An ONS U C H is complete if and only if ||h||3, = > wer | (s wyml? for
all h € H. O

§2.1.8 Definition. Let U be a subset of a Hilbert space (H, (-, -);). Denote by U := lin(i) the
closure of the linear subspace spanned by the elements of ¢/ and its orthogonal complement in
(H, (-, )u) by U+ := {h € H: (h,u)u = 0,Vu € lin(U) } where H = U & U*. O

§_2.l.9 ReEark. If 4/ C H is an ONS, then there exists an ONS V C H such that H =
lin(U) @ lin(V) and for all h € Hitholds h = 3", ., ,(h, u)wu+ Y, o\, (h, v)mv (in a H-sense).
In particular, if ¢/ is an ONB then h =~ (h,u)gu for all h € H. O

§2.1.10 Definition. Given J C Z, a sequence (u;);es in H is said to be orthonormal and
complete (i.e. orthonormal basis) if the subset U/ = {u;,j € J} is a complete ONS (i.e. ONB).
The Hilbert space H is called separable, if there exists a complete orthonormal sequence. m

§2.1.11 Examples. The Hilbert space (R*, (-,-)ar), (€3, (,)¢z) and (L2(), (-, -)rz) with o-
finite measure p are separable. On the contrary, given A € R define the function f, : R — C
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2.1 Hilbert space Chapter 2 Theoretical basics and terminologies

with f(z) := e and set H = lin { f, A € R}. Observe that (f, g) = lim;_c 5 fft f(s)g(s)ds
defines an inner product on . The completion of 7 w.r.t. the induced norm || f|| = |{f, f)|*/2
is a Hilbert space which is not separable, since || fy — fv| = v/2 forall A # X. O

§2.1.12 Definition. Given J C Z we call a (possibly finite) sequence (J,,)merm, M C N, a
nested sieve in J, if (i) T, C Jm, forany k € [I,m] N M and m € M, (ii) |Tn| < oo,
m € M, and (i) UpemTm = J. We write J¢ := J\Tm, m € M. Denoting [a,b] :=
[a, b] N Z (analogously, ||a, b] :=]a,b] N Z, [a,b] := [a, b]|NZ, etc.) we use typically the nested
sieve ([1,m])men and ([—m,m])meny in J = N and J = Z, respectively. Analogously,
given an ONS U = {u;,j € J} and setting U,,, := %{uj,j € Im}, m € M, for a nested
sieve (Jm)mem in J we call the (possibly finite) sequence (U, )menr a nested sieve in U =
lin {u;,j € J}. We write U}, := lin {u;,j € J¢} where U = U,, ® U.. For convenient
notations we set further 17, = (17, (j))jes With1 (j) = 1if j € Jpand 15, (j) =0
otherwise, and analogously 1 7. := (1 7¢ (j)) e O

§2.1.13 Definition. We call an ONS U = {u;,j € J} in L, (respectively, in £7)

(i) regular w.rt. a nested sieve (J)mem in J and a weight sequence v if there is a finite

constant 7, > 1 satisfying [|3°.c , 03[u;|*[|Lee < 73557, 07 forallm € M;

(i) regular w.r.t. aweight sequence fif || 3., f3|u;|*[| e < 7} for a finite constant 7,; > 1. O

§2.1.14 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L? a regular
ONS {u;, j € N} w.r.t. the nested sieve ([1,m])mnen and v = 1 is exactly equivalent to follow-
ing property: there exists a finite constant 7, > 1 such that for any h belonging to the subspace
U,., spanned by the first m functions {u;}72,, holds ||h| - < Tuy/m||A]| 2. Typical example
are bounded basis, such as the trigonometric basis, or basis satisfying the assertion, that there ex-

ists a positive constant C'; such thatfor any (ci, ..., c,n) € R™, |37 cjujlne < Coov/mlclo
where |c|s = maxi<j<m ¢;. Birgé and Massart [1997] have shown that the last property is sat-
isfied for piece-wise polynomials, splines and wavelets. O

§2.1.15 Example (§2.1.6 (i) continued). Consider the trigonometric basis {1;, j € N} in the
real Hilbert space L*([0,1]). Since sup;cy [|¢]|, < V2 setting 72 := 2 the trigonometric
basis is regular w.r.t. any nested Sieve (7,,)menm and sequence v, i.e., §2.1.13 (i) holds with
127 e, 05103l < 7% 3¢ 7, 03 Inthe particular case of the nested sieve ([[1, 1 + 2m])men

and v = 1, we have Z;gm 9517 = Loy 4+ D07 {2sin®(27j@) + 2cos?(2mje)} = 1 4 2m
and thus, the trigonometric basis is regular with Tf := 1. Moreover, the trigonometric basis is

regular w.r.t. any square-summable weight sequence f, i.e., ||f||,» < co. Indeed, in this situation
we have |37 T[] [le.. < 2 |1f[|7 and hence §2.1.13 holds with 72 = 2 ||f||%. O

2.1.1 Abstract smoothness condition

§2.1.16 Notations. Let Y = {u;,j € J} be an ONS with U = lin {u;,j € J} C H. For
any h € H consider its associated sequence of generalised Fourier coefficients [h] := ([h];);ecr
with generic elements [k, = (h,u;)m, j € J. Given a strictly positive sequence of weights
b = (v;)jes for h,g € H we define (h, g); := (v[h],0[g]),e = >, ; v3[h][g], and Ih])2 =
I|[R] ”?g = ics v?|[h];|*. Obviously, (-, -), and |||, restricted on U defines on U a (weighted)
inner product and its induced (weighted) norm, respectively. We denote by U, the completion

Statistics of inverse problems 7



Chapter 2 Theoretical basics and terminologies 2.2 Linear operator between Hilbert spaces

of Uw.rt. ||-||v. If (u;);es is complete in H then let Hj, be the completion of H w.r.t. ||-|l,. ©

§2.1.17 Example (§2.1.15 continued). Consider the real Hilbert space L?([0, 1]) and the trigono-
metric basis {1;, j € N}. Define further a weighted norm ||-||, w.r.t. the trigonometric basis,
that is, [|All, := Yoy 03[(h, ;) 12|, Denote by L3([0,1]) or Lg for short, the completion of
L2([0,1]) w.r.t. [|]lo-

(P) If weset v; = 1, vy, = vy = kP, p € N, k € N, then L2([0, 1]) is a subset of the
Sobolev space of p-times differentiable periodic functions. Moreover, up to a constant, for
any function h € L2([0, 1)), the weighted norm ||A||> equals the L2-norm of its p-th weak
derivative hP) (Tsybakov [2009]).

(E) If, on the contrary, v; = exp(—1 + k*), p > 1/2, k € N, then L2([0,1]) is a class of
analytic functions (Kawata [1972]).

Note that, the trigonometric basis is regular w.r.t. the weight sequence 1/b = v~ = (0]71) as in
§2.1.13 (ii), i.e., ||1/v]| 2 < oo, in case (P) whenever p > 1/2 and in case (E) if p > 0. O

§2.1.18 Definition (Abstract smoothness condition). Given a strictly positive sequence of weights
f = (a;)jes and an ONS U = {u;,j € J} in H consider the associated weighted norm ||-||; /5
and the completion U, 5 of U. Let r > 0 be a constant. We assume in the following that the

function of interest f belongs to the ellipsoid F; := {h € Uy : ||h|? i < 7°} and hence,
HUJ_f == 0 o

§2.1.19 Lemma. Let Fl; be a class of functions w.r.t. an ONS U = {u;,j € J} in L, (or

analogously in (%) as given in §2.1.18. If the ONS is regular w.r.t. the weight sequence f as in

§2.1.13 (ii) for some finite constant 7,; > 1, then for each f € Fi; holds || f[| o < 7s [[fl, 5 <
m

T

§2.1.20 Proof of Lemma §2.1.19. We observe that due to the Cauchy-Schwarz inequality
3 T 2 2 . . . .

§2.1.3 for each f € F]; we have HfHLff < 55112250 f2]u;j[*l| Lge» which in turn implies
the assertion by employing the definition of 7,; and 7. O

§2.1.21 Example (§2.1.17 continued). Consider in L2([0, 1]) the trigonometric basis {1;,j € N}
and a weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E) with p > 0.
In both cases setting 72 = 2|1/ b||% < oo the trigonometric basis is regular w.r.t. the weight
sequence 1/v. Consequently, setting f = 1/v and F, = {h € L2([0,1]) : ||h]|? < r?}, from
Lemma §2.1.19 follows || f||3. < 2|2 ||1/v]|% for all f € F,. O

2.2 Linear operator between Hilbert spaces

§2.2.1 Definition. A map 7 : H — G between Hilbert spaces H and G is called linear operator
if T'(ahy 4 bhy) = aThy + bThy for all hy, hy € H,a,b € K. Its domain will be denoted by
D(T), its range by R(T) and its null space by N (T). O

§2.2.2 Property. Let T' : H — G be a linear operator, then the following assertions are
equivalent: (i) T is continuous in zero. (i1) T' is bounded, i.e., there is M > 0 such that
|Th|| < M ||h||y for all h € H. (iii) T is uniformly continuous. O

8 Statistics of inverse problems



2.2 Linear operator between Hilbert spaces Chapter 2 Theoretical basics and terminologies

§2.2.3 Definition. The class of all bounded linear operators T : H — G is denoted by
Z(H,G), or .Z and in case of H = G, Z(H) for short. For T' € .Z(H, G) define its (uniform)
norm as [T = 1Tl sy = sup{IThllg  [|Ally < 1.5 € H}. -

§2.2.4 Examples.
(i) Let M be a (m x k) matrix, then M € Z(R*,R™). We write | M|, := [[M|| o g gom) for
short. (spectral norm)

(i) For finite (i.e., |J| < o0) sequences (h)jc7 in H and (g);cy in G the linear operator

> jes hj ®g; defined by f — [Zjej hj®g;]f = > jes{f, hj)m g; belongs to Z (H, G)
with |32, 7 hy ® gill2 < 32 ic 7 1l |95l - Moreover, it has a finite range contained in

lin({g;,j € T}).
(iii) Let U = {u;j,j € J} be an ONS in H and for any f € H consider its sequence of gen-
eralised Fourier coefficients [f] = ([f];);jes given by [f], == (f,u;)m, 7 € J. The

associated (generalised) Fourier series transform U defined by f — U f := [f] belongs to
L(H,A(T)) with U] = 1.

(iv) For a sequence A = (\;)jes consider the multiplication operator Mx : KJ — K7
given by z — Mz := ()\;z;);es. For any bounded sequence A, i.e, [|All,.c < 00,
we have [[Mx[| ) < [[All~ and hence, Mx € Z(¢*) for any p € [1,00]. Analo-
gously, given a function A\ : Q — K the multiplication operator Mx : K® — K%
is defined as f — M.f := f\ where for any bounded (measurable) function A, i.e,
H)‘HLZ" < 00, holds ||M>\H$(Lz) < H/\||Lzo < oo and, hence Mx € Z(LF). On the other
hand side, if A is real-valued (measurable), p-a.s. finite and non zero, then the subset
D(M) := {f € L2 : \f € L’} is dense in L2. In this situation the multiplication opera-
tor Mx : Li D D(My) — Li is densely defined (and self-adjoint).

(v) Given a (generalised) Fourier series transform U € Z(H, ¢?) as in (iii) and a multiplication
operator Mx € .Z(¢?) for some bounded sequence A = (\;) ;e as in (iv) the linear operator
Vi : H — H given by N (U) = N(Va) and UVA = MU, ie. UVah = MaUh =
(Aj[h];)jes belongs to Z(H) with ||Va]| , < [|A]l;ee < 00. We call Vi diagonal wrt. U
(or ).

(vi) The integral operator Ty, : L2, () — L7, () with kernel & : € x Qy — K defined by

Tefl(wn) = /Q h(wr k(s wa)(dwn), ws € Q. b€ L2, (),

belongs to £ (L2 (1), L2 (Q)) if || k|7 = Jo, Jo, [k[?dpdps < oo

(vii) Let X € L'(Q, &/,P) and .# C < be a sub-c-algebra. There exists Y € L'(Q, . #,P)
such that E(X1r) = E(Y1p) for all F' € %, moreover, Y is unique up to equality P-a.s..
Each version Y is called conditional expectation of X given .%, symbolically, E[ X |.%]| :=
Y. For each p € [1,00] the linear map E[e|.7] : LP(Q, o/, P) — LP(Q,.7,P) C
LP(Q), o7 | IP) given by X +— E[X|.Z#] is a contraction, that is [|E[X|Z]|,, < || X|,»
and thus E[e|.#] belongs to .Z(LP(Q2, o/, P)) with ||E[e|.#]||, = 1 (keep in mind that
E[1|.Z#] = 1). Given ar.v. Z on (£, </, P) and the o-algebra o(Z) generated by Z we set
E[X|Z] := E[X|o(Z)]. The conditional expectation operator of X given Z defined by
Kh :=E[h(X)|Z] for h € L is then an element of .Z (L%, L") with || K|, = 1.
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(viii) Letq € L*(R) N L?(R), then the convolution operator C,, : L*(R) — L*(R) defined by
[C,h(t) == [hxq(t) = / h(s)q(t — s)ds, t € R, h € L*(R),
R

belongs to . (L*(R)) with ||C, ||, < |lall. == fR oy (2)]dt.

(ix) Letq € L*([0,1)), hence, g € L*([0, 1)), and let | -] be the floor function, then the circular
convolution operator C, : L*([0,1)) — L?([0, 1)) defined by

[CLR)(E) == [h® o) (t) ::/ h(s)a(t — s — |t — s])ds, t €[0,1), h € L([0,1)),

[0,1)
belongs to Z(L*([0, 1)) with [|C, |l < llatllx == i la(t)ldt. =

§2.2.5 Definition. A (linear) map ® : H D D(®) — K is called (linear) functional and given
an ONS {u;, j € J} in H which belongs to D(P) we set [®] = ([®],) e with the slight abuse
of notations [®]; := ®(u;). In particular, if & € Z(H, K) then D(P) = H. O

§2.2.6 Property. Let ® € Z(H, K).

(Fréchet-Riesz representation) There exists a function ¢ € H such that ®(h) = (¢, h)n for
all h € H, and hence, given an ONS {u;,j € J} in Hwe have [®|;, = [¢], forall j € J. ©

§2.2.7 Example. Consider an ONB U = {u;,j € J} in L*(2) (or analogously in ¢*(7)).
By evaluation at a point t, € ) we mean the linear functional ®;, mapping h € L*() to
h(to) = ®4,(h) = >_;c7[h];u;(t,). Obviously, a point evaluation of h at ¢, is well-defined, if
> icr l[hlu;(t,)| < oo. Observe that the point evaluation at ¢, is generally not bounded on the
subset {h € L*(Q) : 3. 7 |[h];u;(to)] < 00} O

§2.2.8 Definition (Regular linear functionals). Consider an ONS U = {u;,j € J} in H which
belongs to the domain D(®) of a linear functional ®. In order to guarantee that U, ;; and hence
the class F!; of functions of interest as in §2.1.18 are contained in D(®P) and that (f) =

.7 [@],[f]; holds for all f € Fyj, it s sufficient that ||[® ]”?? = IF[@]l|7 = e /(P2 < oo.
Indeed, |®(f)|? < ”f”l/u [|[® ]He? for any f € U, ; and hence ® € £ (U, 5, K) with ||®]|, <
Il[@]l 2 We denote by L; the set of all linear functionals with ||[®] ||Z2 < 00. O

§2.2.9 Remark. We may emphasise that we neither impose that the sequence [®] = ([®];) e
tends to zero nor that it is square summable. The assumption & € L,, however, enables us in
specific cases to deal with more demanding functionals, such as in Example §2.2.7 above the
evaluation at a given point. O

§2.2.10 Example (§2.2.7 continued). Consider an ONB U = {u;,j € J} in L*(Q) and the
evaluation at a point t, € § given by ®;,(h) = . ;[h];u;(t,). Let Lf/f(Q) be the comple-
tion of L*(Q) w.r.t. a weighted norm ||-||;/; derived from ¢ and a strictly positive sequence
f. Since |®y, (h)]* < Hh”f/f e F3lu;(t,)[? the point evaluation in ¢, is bounded on L3 ()
and, thus, belongs to £ (L7 (), K), if 3, ; §7|u;(t,)|* < oo. Consequently, if the ONS ¢
is regular w.r.t. the weight sequence §, i.e., $2.1.13 (ii) holds for some finite constant 7,; > 1,

then || Dy, || & (12 L)) < 7,; uniformly for any ¢, € ). Revisiting the particular situation of
/5
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Example §2.1.17 and its continuation in §2.1.21, that is, L2([0, 1]) w.r.t. the trigonometric basis
{¢;,j € N} and weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E)
with p > 0, recall that the trigonometric basis is regular w.r.t. f = 1/v and hence, the point
evaluation @, belongs to £ (L2([0,1]),R), i.e., || s, | » < V2]|1/v]|,» foreacht, € [0,1]. ©

§2.2.11 Definition. If 7" € Z(H, G), then there exists a uniquely determined adjoint operator
T* € Z(G,H) satistying (Th, g)g = (h,T*g)g forall h € H, g € G. m

§2.2.12 Properties. Let S, T € £ (H,,H,) and R € £ (H,, Hj). Then we have
(i) (S+T)* = S* + T* (RS)* = S*R*.

(i) 15"l = 1151l &> 195* ]2 = 115*S]l. = IISII%-

(i) M(S) = R(S*)E, N(S*) = R(S)E, Hy = N(S) @ R(S*) and Hy = N(S*) & R(S)
where R(S) (respectively, R(S*)) denotes the closure of the range of S. In particular, S is
injective if and only if R(S*) is dense in H.

(iv) N(S*S) = N(S) and N'(SS*) = N(S*). m

§2.2.13 Examples (§2.2.4 continued).
(i) The adjoint of a (k x m) matrix M is its (m x k) transpose matrix M®.

(ii) The adjoint U* € .Z((*(J), H) of the (generalised) Fourier series transform U € £ (H, (*(J))
satisfies v+ U*x := > ° ., wju; forx € 2(J).

(iii) For finite J the adjoint operator in £ (G,H) of >, ,h; ® g; € Z(H,G) satisfies
2 ieq hi ® 959 = 225509, 9)ehy = 257 95 @ Dilg-
(iv) Let Mx € Z(L2(€2)) (or analogously Mx € Z(¢?)) be a multiplication operator, then its

adjoint operator M = M.+ is a multiplication operator with \*(t) = A(¢), t € €.

(v) Let Ty € Z(L7 (1), L2,(9)) be an integral operator with kernel k, then its adjoint
Ty =Ty € ZL(L, (), L7 (€4)) is again an integral operator satisfying

Tyeg) (1) = / 9wk (s, Jaaldon), wn € D, g € L2,(),

Qo

with kernel £*(ws, wy) 1= k(wi,ws), wy € Oy, wy € Q.

(vi) Let K € £ (L%, L%) be the conditional expectation of X given Z, then its adjoint operator
K* = K € Z(L%, L%) is the conditional expectation of Z given X satisfying Kg =
El[g(Z)|X] forall g € L%,.

(vii) Let C, € Z(L*(R)) be a convolution operator, then its adjoint operator C* = C,x

v 1s a

convolution operator, i.e, C,-h = ¢g* * h, with g*(t) = g(—t),t € R. O

§2.2.14 Definition.

(i) The identity in £ (H) is denoted by Idp.

(ii) LetT € Z(H,G). Obviously, T : N(T)*+ — R(T) is bijective and continuous whereas its
inverse T~! : R(T) — N(T)* is continuous (i.e. bounded) if and only if R(T') is closed.
In particular, if 7 : H — G is bijective (invertible) then its inverse T~ € £(G,H)
satisfies [dg = 77 ' and Idy = T~'T.
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(i) U € Z(H,G) is called unitary, if U is invertible with UU* = Idg and U*U = Idy.

(iv) V € Z(H,G) is called partial isometry, it V : N/(V )+ — R(V) is unitary.

(v) T € Z(H) is called self-adjoint, if T = T*, i.e., (Th, g)u = (h, T*g)y for all h, g € H.

(vi) T € Z(H) is called normal, it TT* = T*T, i.e., (Th,Tg)yw = (T*h,T*g)g for all
h,g € H.

(vii) A self-adjoint T' € Z(H) is called positive semi-definite (non-negative definite) or T' > 0
for short, if (Th, h)g > 0 for all h € H and strictly positive definite or T' > 0 for short, if
(Th,h)g > 0 for all h € H\{0}.

(viii) IT € Z(H) is called projection if 11> = II. For Il # 0 are equivalent: (a) II is an
orthogonal projection (H = R(II) & A/(II)); (b) ||II]| , = 1; (c) II is non-negative. O

§2.2.15 Property. Let T € Z(H). If T is invertible, then it is T*, where (T1)* = (T*)~L.
Moreover, if T is normal, then ||T|| , = sup{|(Th, h)u| : [|h|y < 1,h € H}.

Ty <1, then [|(Idy —=T) 7! & < (L= [|T]| )" 0

(Neumann series) If

§2.2.16 Examples (§2.2.4 continued).

(i) The (generalised) Fourier series transform U is a partial isometry with adjoint operator
Ure =37, 7 xju; for x € £2(J). Moreover, the orthogonal projection ITy; onto U satisfies
lyf=UUf =73 cs0flu;forall f € H. IfU = {u;,j € J} is complete (i.e. ONB),
then U is invertible with UU* = Id,2 and U*U = Idy due to Parseval’s formula, and hence
U is unitary.

(ii) Let F € Z(L*(R)) denote the Fourier-Plancherel transform satisfying
FR](t) = / h(z)e 2t dz, Wh e L'(R) N IA(R).
R

Then F is unitary with [F*h](t) = [ h(x)e*™*dz for all h € L'(R) N L*(R). We note
further for all h € L' that || Fh||; < ||h]|,:, and that Fh is continuous and tends to zero in
infinity. Keeping in mind the convolution defined in Examples §2.2.4 (viii) the convolution
theorem states .7 (f x g) = .Z f - Fgforany f,g € L'(R).

(iii) A multiplication operator Mx € £ (Li) is normal. If X is in addition real, it is self-adjoint
and if \ is non-negative, then it is non-negative.

(iv) A diagonal operator Va € Z(H) w.r.t. a partial isometry U € Z(H, ¢?) satisfies V» =
U*MaU and it shares the properties of the multiplication operator Mx € Z((?).

(v) A conditional expectation operator K € £ (L%, L%) is an orthogonal projection.

(vi) A convolution operator C, € £ (L*(R)) is normal and if g is in addition a real and even
(9(—t) = g(t)) function, then it is self-adjoint.

(vil) A circular convolution operator C, € £(L*([0,1))) is normal and if ¢ is in addition a
real and even (g(t) = g(1 — t)) function, then it is self-adjoint. O

2.2.1 Compact, nuclear and Hilbert-Schmidt operator

§2.2.17 Definition. An operator K € .Z(H, G) is called compact, if { Kh : ||h||y; < 1,h € H}
is relatively compact in G. We denote by # (H, G) the subset of all compact operator in
Z(H,G), and we write ¢ (H) = ¢ (H, H) for short. O
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§2.2.18 Properties. Let K € Z(H, G).
(Schauder’s theorem) K is compact, if and only if its adjoint K* € £ (G, H) is compact.

If there are K; € Z(H,G) with finite dimensional range for each j € N such that
limj | K; — K|, = 0, then K is compact. If in addition G is separable, then the
converse holds also true. O

§2.2.19 Examples (§2.2.4 continued).
(i) For finite J the operator >, ; h; ® g; € Z(H, G) is compact.

(ii) A multiplication operator Mx € Z((?) is compact, if A has either only a finite number of
entries not equal to zero or zero is the only accumulation point.

(iii) A diagonal operator Vi = U*NM\U € £ (H) w.rt. a partial isometry U € Z(H, (?) is
compact if the multiplication operator Mx € £ (¢?) is compact.

(iv) A convolution operator C, € £ (L*(R)) is not compact.

(v) A circular convolution operator C, € £ (L*([0,1))) is compact. m

§2.2.20 Remark. Every finite linear combination of compact operators is compact, and hence
2 (H, G) is a vector space. m

§2.2.21 Definition. An operator T’ € .Z(H, G) is called nuclear, if there are sequences (h;) jen
in H and (g;)jen in G with >~ (|l [|95]l g < oo such that lim,, o [|3>°7_ hj®@g; =T 2 =
0,0orT =3 iy hj ® g; for short. We denote by .4 (H, G) the subset of all nuclear operator in
Z(H,G), and we write .4 (H) := .4 (H, H). Furthermore, let (f;);cy be any ONB in H and
T € A (H), then tr(T) := > . (T f, f;)m denotes the trace of T. O

§2.2.22 Remark. We have 4 (H, G) C ' (H,G) C .Z(H, G). The trace does not depend on
the choice of the ONB and is a continuous linear functional on .4 (H) with |[tr| , = 1. O

§2.2.23 Properties. LetT € Z(H,G) and S € Z (G, H).

(1) T is nuclear, if and only if its adjoint T* € £ (G, H) is nuclear.

(i) If T is nuclear, then TS € A (H), ST € A (G) and tr(T'S) = tr(ST). O
§2.2.24 Example. A multiplication operator Mx € £(¢*) and, hence an associated diago-

nal operator U"NLU € Z(H), is nuclear, if X is absolute summable, i.e., [|A||,, < oo, and
tr(My) = tr(Va) = Zjej Aj. O

§2.2.25 Definition. An operator 7' € Z(H, G) is called Hilbert-Schmidt, if there exists an
ONB (h;)jen in H such that |T||%, := 3. ||Thyll, < oo. The number |T]|,, is called
Hilbert-Schmidt norm of 7" and satisfies ||7'|| , < ||| ,,. We denote by 5 (H, G) the subset
of all Hilbert-Schmidt operator in £ (H, G), and we write .7 (H) := s (H, H). O

§2.2.26 Remark. We have 4 (H,G) Cc s (H,G) C 2 (H,G). The number ||T|| ,, does
not depend on the choice of the ONB. The product 7S of two Hilbert-Schmidt operator T’
and S is nuclear. The space ¢ (H, G) endowed with the inner product (T, S) ,» := tr(S*T),
S,T € 7 (H,G) is a Hilbert space and ||-|| ,» the induced norm. m

§2.2.27 Property. If T' € H(H, G) and S € L(G) then tr(T'ST*) < tr(TT*) ||5] - O
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§2.2.28 Examples.

(i) Let T € Z(L2 (1), L,(9)). The operator T' is Hilbert-Schmidt if and only if it
is an integral operator T = Ty with square integrable kernel k and it holds ||T]|°, =
Jo, Jo, 1F(wi, wa) [P (dwr ) pa (dws).

(i) A multiplication operator Mx € £(¢(J)) and, hence an associated diagonal operator
UM\U € Z(H), is Hilbert-Schmidt, if A = (\;);c7 is square summable and ||Mx||,, =
VAl = l[Alle < o0

(iii) Consider the conditional expectation operator K € £ (L%,L%) of X given Z. Let in
addition px z, px and pz be, respectively, the joint and marginal densities of (X, Z), X
and Z w.r.t. a o-finite measure. In this situation, the operator K is Hilbert Schmidt if and

: lpx z(X,2)|?
0nly if E [‘pi)((xz)w} < oQ. O

2.2.2 Spectral theory and functional calculus

§2.2.29 Definition. Consider ' € .Z(H). The set p(T) = {A € K: (A\Ildg —T7)! € Z(H)}
and its complement o(T') = K\p(T) is called resolvent set and spectrum of T, respectively.
The subset 0,,(17") = {\ € K: AIdy —7T is not injective} of o(T’) is called point spectrum of T
An element A of 0,(7') and h € H\{0} with Th = Ah is called eigenvalue and eigenfunction
(eigenvector), respectively. m

§2.2.30 Properties. ConsiderT € ¢ (H).
(1) If T is self-adjoint, then o(T) C R.
(i) If H is infinite dimensional, then 0 € o(T).
(i) The (possibly empty) set o(T)\{0} is at most countable.
(iv) Any A € o(T)\{0} is an eigenvalue of T and its multiplicity is the (finite) dimension of the
associated eigenspace N'(\1dy —T).

(v) In o(T) the only possible accumulation point is zero. m

§2.2.31 Example. The spectrum of a multiplication operator Mx € J# (¢*) and its associated
diagonal operator Vx = U*M\U € J# (H) is given by o(Mx) = o(Va) = {)\;,j € T} C K.
O

§2.2.32 Definition. Let 7" € ¢ (H) be normal (K = C) or self-adjoint (K = R). There exist

(i) a sequence A = (\;)jes in K\{0} with || T||, = sup;c|\;| which has either a finite
number of entries or zero as accumulation point, and determines a multiplication operator
M. € 2(E(T)),

(ii) an ONS {u;,j € J} in H with U := lin {u;, j € J} and associated generalised Fourier
series transform U € £ (H, ¢*(J)) as defined in §2.2.4,

suchthat H = N(T)®Uand T = Zjej Aju; @ uj = UNMNU = Vi (see §2.2.4 (ii), (iv) and

(v)). For j € J, \; and u; are, respectively, a non-zero eigenvalue and associated eigenvector

of T respectively. {(\;,u;),j € J} is called an eigensystem of T'. O

§2.2.33 Properties. Let T' € J# (H) be self-adjoint with eigensystem {(\;,u;),j € J}, i.e.,
o(T)\{0} = {);,7 € T} C R denotes the (possibly empty) countable point spectrum of T.
The sequence \ = (\;) e contains each eigenvalue of T repeated according to its multiplicity.
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(i) If T is nuclear, then \ is absolute summable, i.e. ||A[|, < oo, and tr(T) =3, ; A;.
(i1) If T is Hilbert-Schmidt, then X is square summable and ||T| ,, = || A||,2 < oo. O

§2.2.34 Definition (Class of operators with given eigenfunctions). Given an ONS {u;,j € J}inH
let & (H) or &, for short be the subset of % (H) containing all compact, normal (self-adjoint), lin-
ear operators having for some 7' C 7, {u;,j € J'} as eigenfunctions, i.e., for each T € & (H)
there exist 7' C J and a sequence (\;) ez in K\{0} such that 7" admits {(\;, u;),j € J'} as
eigensystem, i.e., & (H) C {Vh, A € K7}, O

§2.2.35 Example. Let C, € ¢ (L*([0,1))) be a circular convolution operator. Consider as
in §2.1.6 (i) the exponential basis {e;},., in L*([0,1)) and for f € L?*([0,1)) the associ-
ated Fourier coefficients [f], = (f,e;)12, j € Z. Keep in mind that C, is normal and for all
f € L?([0,1)) the convolution theorem states [g ® f], = [g],[f], for all ; € Z. Thereby,
{(lg];€;), 7 € Z} is an eigensystem of the circular convolution operator C,. In other words,
for each g € L([0,1)) we have C, € &(L*([0,1))). O

§2.2.36 Property. Let T' € J¢ (H) be strictly positive definite and let ()\;),en be a strictly
positive, monotonically non-increasing sequence containing each eigenvalue of 'T' repeated ac-
cording to its multiplicity. For m € N let H,,, be the set of all m-dimensional subspaces U,, in
H, and denote by U: the orthogonal complement of U,,, in H. Furthermore, let By, = {h €
Uy, : ||hlly = 1} and By be the unit ball in U, and U,,, respectively.

(Courant’s max-min-principle) Ay, = max min (Th, h)y,
Un€ Hom h€By,,
(Courant’s min-max-principle) A\, = min max (Th, h)g. O
Un—1€Hm-1 hEBUJ_
m—1

§2.2.37 Definition. Let 7" € J# (H, G). There exist
(i) a sequence 5 := (5;);c7 in K\{0} with [|T|, = sup,c;|s;| which has either a finite

number of entries or zero as only accumulation point, and determines a multiplication
operator Ms € Z((*(7)),

(i) an (possibly finite) ONS {u;,j € J} in H with U := lin {u;,j € J} and associated gen-
eralised Fourier series transform U € .Z(H., (*(J)) (a partial isometry),

(iii) an (possibly finite) ONS {v;,7 € J} in G with V := lin {v;, j € J} and associated gen-
eralised Fourier series transform V € Z(G, (*(J)) (a partial isometry),

suchthat H = M(T) & U, G = N(T")®Vand T'= V*M:Ud =3, ;5; u; ®@v;. In particular,

{(|s;1*,u;),7 € T} and {(|s;]*,v;),j € T} are an eigensystem of T*T and TT* respectively.

The numbers {s;,j € J} and triplets {(s;,u;,v;),j € J} are, respectively, called singular

values and singular system of T O

§2.2.38 Properties. Let T € J (H,G) with singular system {(s;,u;,v;),j € J} where the
(possibly empty) countable point spectrum of T*T (respectively, TT*) is given by o (T*T)\{0} =
{ls;1?,7 € T} C R. The sequence (|s;|?)jc.7 contains each eigenvalue of T*T repeated accord-
ing to its multiplicity.

(i) If T is nuclear, then s is absolute summable, i.e. ||s||,, < oc.

(i1) If T is Hilbert-Schmidt, then s is square summable and ||T')| ,, = ||s]|,» < oc. m
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§2.2.39 Definition (Class of operators with known eigenfunctions). Given an ONS {u;,j € J}
and {v;,j € J} in H and G, respectively, let Sw(H, G) or Sw for short, be the subset of
2 (H, G) containing all compact, linear operators having for some J' C J, {u;,j € J'}
and {u;,j € J'} as eigenfunctions, i.e., for each " € Sw(H, G) there exist 7' C J and a
sequence (s;),ecs in K\{0} such that 7" admits {(s;, u;,v;),j € J'} as singular system. O

§2.2.40 Property (Spectral theorem). If T' € £ (H) is self-adjoint, then T is isometrically equiv-
alent to a multiplication operator, i.e., there exist

(i) a measurable space (2, 1) (o-finite, if H is separable),
(i1) a bounded (measurable) and ji-a.s. non zero function \ : 2 — R with associated multipli-
cation operator My € Z(L>(Q2)), and
(i) a partial isometry U € £ (H, L7,(2)),
such that'T' = U*MyU. O

§2.2.41 Example. Let g € L'(R)N L?*(R) be a real and even function. Consider the associated
self-adjoint convolution operator C,, € £ (L*(R)). Recall that the convolution theorem states
F(g*f)= Fg-Ffforall f € L?(R) where F denotes the Fourier-Plancherel transform. Con-
sequently, the operator C, is unitarily equivalent to the multiplication operator Mx € Z(L*(R))
with A = [Fyg], thatis C;, = F M\ F. O

§2.2.42 Property (Spectral theorem Halmos [1963]). Let T : H D D(T) — H be a densely-
defined self-adjoint operator. There exist

(1) a measurable space (), ) (o-finite, if H is separable),
(ii) an unitary operatorU € £ (H, L (),
(i11) a (measurable) function \ : () — R (u-a.s. finite and non zero) and an associated multipli-
cation operator M : L%(€2) D D(Mx) — L2(Q) withD(Mx) = {f € L2(Q) : Af € L2(Q)}
such that D(T) = {h € H: Uh € D(M,)} and
(a) forall f € D(Mx) we have NI\ f = X - f =UTU* f,
(b) forall h € D(T) it holds Th = U*N\U,
i.e., T is unitarily equivalent to the multiplication operator M. O

§2.2.43 Example. Let 7' € . (H) be an injective and self-adjoint operator with eigenvalue
decomposition T' = U*MU where U € £ (H, %) is unitary, Mx € £ (¢?) is a multiplication
operator and A a sequence in R\{0} of eigenvalues repeated according to their multiplicities. If
H is not finite dimensional then the range R (7') of T is dense in H but not closed. Therefore,
there exists an inverse 7! : R(T) — H of T which is densely-defined and self-adjoint but
not continuous. In particular, we have D(T1) = R(T) = {h : \"'Uh € (*} (which is called
Picard’s condition). Consider the multiplication operator Mi/x : (2 D D(Myx) — ¢ with
DMip)={xel:x/)e€?}, then D(T')={heH:Uh € DMy} and

(a) forall x € D(Mi/s) we have Mijnz = 2/ = UT U x,

(b) forall h € D(T~ ') itholds T—'h = U*MisUh,

i.e. T~ is unitarily equivalent to the multiplication operator Mi,x». We shall emphasise that
h € D(T~') = R(T) if and only if ||[h]/\]|7. = > e [h];/A;1? < co. On the other hand,
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forany k € Nwehave T =TT = UMl = dej ; uj ® u; which motivates for a
function g : R — R to define the operator

g(T)h ==UMUh = " g(\;) u; @ uj, forall h € Hwith [|g(\)[A]] . < oo.

jeT
If ¢ is bounded then ¢(7') € Z(H) and ||g(T)|l, = sup{lg(N).j € T} < ||g|l;0- In
particular, it allows to define 7* for all s € R. O

§2.2.44 Definition (Functional calculus). Let T € £ (H) be self-adjoint and hence isometrically
equivalent with multiplication by a bounded function A in some Li(Q), that is, " = U*M\U.
Given a (measurable) function g : R — R define the multiplication operator

Mo : LZ(Q) D 'D(MQ(A)) — LZ(Q)
with D(Myn) = {f € L2(Q) : g(A)f € L2(€) } and an unitarily equivalent operator
g(T)h == U MyyUh, VYh e D(g(T)):={hecH:Uh e DMw)}

where ¢(7) : Z(H) D D(g(T')) — Z(H). Moreover, if g is bounded then ¢(7") € .Z(H) with
l9(T)l & = sup{lg(M)], A € o(T)} < gl - -

§2.2.45 Property. LetT € Z(H,G). Then R(T) = R((T*T)/?).

§2.2.46 Remark. Considering an ONB {u;, j € N} in H, the associated generalised Fourier
series transform U € . (H, %) and for a sequence b the associated multiplication and diagonal
operator Ms : /2 D D(Ms) — ¢ and Vo = U*Me U : H D D(Ve) — H defined as in §2.2.4 (iv)
and (v), respectively. If v is strictly positive then applying the functional calculus we observe
that for any s € R we have V] = U*Mes U = Vis. Moreover, recall that H,s denotes the
completion of H w.r.t.. the weighted norm |-, given by [|-[5. = 7. 03°[{-, u;)m|* where
v = [Voshllyg = [|VPh]|y for all b € D(V,:) = Hys. Introduce further the
Hilbert space (Hys, (-, -)ys ) inner product (-, -)ps = (Vys+, Vis ) m. O

§2.2.47 Definition. Let Vo : H D D(W) — H be diagonal for an unitary operator U €
Z(U, ¢?) and a monotonically increasing, unbounded sequence v with v; > 0. For each s € R
consider the inner product (-, -)ys = (Ves-, Vo) and the norm ||-[|,s = [|V’-||. The family
{(Uys, (-, ")os), s € R} of Hilbert space is called a Hilbert scale (see Krein and Petunin [1966]
for a rather complete theory). O

§2.2.48 Properties. Let {(Uys, (-, )ps), s € R} be a Hilbert scale as introduced in Definition
§2.2.47. Then the following assertions hold true:

(1) Forany —oo < s <t < oo < the space Uy is densely and continuously embedded in U,s.
(ii) For s,t € R holds V™% = VIV, and in particular, V;* = V,-s.
(i) For s = 0 holds Uys = D(Ves ) and U,-s is the dual space of Uys.

(iv) Considering -0 < r < s <t < oo for any h € U,ys the interpolation inequality
”hH (e)/e=r) HhH ) holds true. .

§2.2.49 Example. LetT € J# (H, G) be injective with singular system {(s;, u;, v;), j € N} for
some ONB {u; € N} in H and strictly positive, monotonically non-increasing sequence (s; ) en
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containing each singular value of 7" repeated according to its multiplicity. Setting v = s~2 the
strictly positive definite operator 77" admits the spectral representation 71" = U*M,-U =
V,-1. Obviously, v is a monotonically increasing, unbounded sequence with v; > 0. Consider-
ing the associated Hilbert scale { (H,s, (-, -)ys), s € R} it is then an immediate consequence that
H,: = D((T*T)") is dense in Hys = D((T*T)*) for 0 < s < t. We say, a function [ satisfies a
source condition, if f € D((T*T)*) for some s > 0, i.e., f = (T*T)*h for some h € H. O

2.2.3 Abstract smoothing condition

§2.2.50 Definition (Link condition). Denote by T (H) or 7 for short, the set of all strictly positive
definite operator in % (H). Given an ONB {u;,j € J} in H and a strictly positive sequence

(t;)jes consider the weighted norm ||-||7 = > jes El(-,u;)ul*. Forall d > 1 define the subset

T! = T (H) = {T €T :d"||hl|, <||Thlly < d|h||, forall h € H}. We say, T satisfies

ut

the link condition T, if T € T . Define further the subset £/ = {T'€ & : (T*T)"/? € T}
and S& = {T € S : (T*T)? € T} of & = &(H) and Swv = Su(H, G) (see §2.2.34 and
§2.2.39), respectively, containing any diagonal operator 7" in & and S.. such that (7*T)'/2
satisfies the link condition 7;? O

§2.2.51 Remark. We shall emphasise that for T € # (H, G) the condition (T*T)Y2 e T
is equivalent to d~! ||h||, < || Thlly < d|h||, forall h € H. Observe further that T € Su
admitting a singular system {(s;,u;,v;),7 € J'} with J' C J satisfies the link condition
S, if and only if J' = J and d™' < |s;|/t; < d for all j € J. Thereby, we have that
T € 8&,(H,G) if and only if T* € S2, (G, H). We shall emphasise, that there are operators
satisfying the link condition 7: which do not belong to &, (respectively, Suv), i.e., are not equal
to V) for some sequence A\ (not diagonal w.r.t. If), that is admitting eigenfunctions which are
not contained in the ONS {u;, 7 € J}. Let us briefly give a construction of those. We consider
a small perturbation of Vi, that is, T = V, + VAV, where A € Z(H) is a non-negative
definite operator with spectral norm ¢ := ||V, A||, strictly smaller than one. Obviously, T is
strictly positive definite, and ||Th|y; < ||IdH +VtA||j Vil < (1 + ¢)||h][,. On the other
hand, we have ||(Idy +V;A4) ||, = W 17— by the Neumann series argument §2.2.15,

which in turn implies ||h||, = || Vih||y = ||(Idm +V{ )74 TRl < = || Th|lg. Combining

both bounds the operator 7" satisfies the link condition 7:1 for all d > maX(l +c, —) and is
obviously not diagonal w.r.t. /. O

§2.2.52 Property. LetT € 7:1
(Inequality of Heinz [1951]) For all |s| < 1 holds 4

< TRl < d*][Al.. O

§2.2.53 Example (Example §2.2.49 continued). Consider the Hilbert scale {(Hys, (-, *)os), s € R}
associated with the source condition, i.e., Hys = D((7*7')*) and ||-||os = ||(T*T")"*-|| for s >
0. Suppose further that (7*T)'/? € ’7:1, i.e., T" satisfies a link condition for some weighted norm
|||l defined w.r.t. an ONB ¢/ in H and a strictly positive sequence t. Note that in general the two
norms ||-||¢ and ||-||y= are defined w.r.t. to different orthonormal basis in H. However, rewriting
the inequality of Heinz §2.2.52 accordmgly it holds — < H(T*T)S/2~||IHI < d¥l||-||e or
i < lpmsrze < ¢s. In other words the two norms ||-||¢s and ||-||,-s/2
are equivalent for any |s| < 1. Recall that v~'/? = s equals the sequence of singular values of
T. We shall emphasise that the equivalence of ||-||¢s and ||-||,-/> under a link condition holds

equivalently L
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generally for all |s| < 1 only. However, if the ONB used to construct the norm ||-||s for the link
condition coincides with the eigenfunctions of 7*7 then the ||-||= and ||-||,~s/» are equivalent
forall s € R. O

§2.2.54 Corollary. LetT' € 7:1 and suppose that [ € F[; (see Definition §2.1.15) where the
two norms ||-||y and ||-|| 5 are constructed w.r.t. the same ONB in H. Assume in addition that
there are constants a,p > 0 and a sequence v such that t = v* and f = oP. If p < a then

for any f € Fu holds f = (T*T)"/®h with ||h]ly < d@/*||fl, ), and conversely for any
f = (T*T)" D h with |h||y < 0o we have f € Fu; with 1Al < dP/ || |-

§2.2.55 Proof of Corollary §2.2.54. Setting s = p/(2a) the identity ||-||i; = ||-|lj-200r» =
|| |lo-2sa = ||-||¢~2s holds true. Exploiting the inequality of Heinz [1951] and |2s| < 1 it follows
d*||-li; = (T*T)~*|| and, conversely ||-||/; < d** ||(T*T) ||y, wich in turn implies the

assertion and completes the proof. O

§2.2.56 Lemma. Given an ONB {u;,j € N} in H and a strictly positive non-increasing se-
quence (t;);cn consider the link condition T,. Let T € T(H) admit {(\;,1;),j € N} as
eigensystem where the strictly positive, monotonically non-increasing sequence (\;) en con-
tains each eigenvalue of T repeated according to its multiplicity and the associated eigenbasis
{;,j € N} does eventually not correspond to the ONB {u;,j € N}. If T' € T, then we have

d~' < N/t < dforall j € N

§2.2.57 Proof of Lemma §2.2.56. The proof is based on Courant’s principles §2.2.36. Keep in
mind that U,,, = lin {u, ..., u,, } denotes the subspace spanned by the basis functions {u; };n:l
Since t = (t),e is strictly positive and non-increasing, it is easily verified, that

: 2 2
tn = min |hllae and g = hfélﬁ}i 172 , 2.1)

m

where we used that

t, = min{itja? : zm:ai = 1} and t,,,; = maX{thcﬁ : Zai = 1}.
j=1

j=1 j>m j>m
Since T is positive definite we have (T'h, h)y = HT 1 2h||;I and due to the inequalities of Heinz
given in §2.2.52 (with s = 1/2) it follows
AR5 < (Th,h)yg < d||h|5., ¥ heH (2.2)

By employing successively Courant’s max-min-principle §2.2.36, (2.2) and (2.1) we obtain for
allm =1,2,... the lower bound

. -1 . 2 -1
A = min (Th,h)g > d hrerIlBl& |hl[ae =d t,

€By,,

and by applying Courant’s min-max-principle §2.2.36, (2.2) and (2.1) we have for all m =
0,1, ... the upper bound

Amt1 S hfélB?ﬁ (Th,h)m < dhfgﬁ; 1B]l52 = d it

The assertion follows by a combination of the lower and upper bound, which completes the
proof. O
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Chapter 3

Regularisation of ill-posed inverse problems

3.1 lll-posed inverse problems
Let T € Z(H, G) be a linear bounded operator between separable Hilbert spaces H and G.

§3.1.1 Definition. Given g € G the reconstruction of a solution f € H of the equation g = T'f
is called inverse problem. O

§3.1.2 Definition (Hadamard [1932]). An inverse problem g = T'f is called well-posed if (i) a
solution f exists, (ii) the solution f is unique, and (iii) the solution depends continuously on g.
An inverse problem which is not well-posed is called ill-posed. O

For a broader overview on inverse problems we refer the reader to the monograph by Kress
[1989] or Engl et al. [2000].

§3.1.3 Property (Existence and identification).
There exists an unique solution of the equation g = T'f if and only if

(existence) g belongs to the range R(T) of T,
(identification) The operator T is injective, i.e., its null space N'(T') = {0} is trivial. O

§3.1.4 Remark. If there does not exist a solution typically one might consider a least-square
solution which exists if and only if g € R(T) & N(T™). A least-square solution with minimal
norm, if it exists, could be recovered, in case the solution is not unique. Nevertheless, the
main issue is often the stability of the inverse problem. More precisely, if the solution does
not depend continuously on g, i.e., the inverse 7! of 71" is not continuous, a reconstruction
fn = T~'q given a noisy version g of g may be far from the solution f even if the noisy version
g is closed to g. O

§3.1.5 Property. Denote by llz ) the orthogonal projection onto the closure R(T) of the
range of T. For each g € G the following assertions are equivalent (1) f minimises h
lg — Thl (least square solution); (i) Tz pyg = T f; (iii) T*g = T*T f (normal equation). ©

§3.1.6 Remark. We note that g € R(T) @ R(T)" implies Iz ;g € R(T) and hence the
preimage T*I(Hﬁm g) is not empty. More precisely, due to the last assertion Tfl(Hﬁ(T) g) =
{f e H:T*g =T*Tf} is the set of least square solutions associated to g. O

In the sequel keep in mind that for each T' € .Z(H, G) its restriction T : A/(T)*+ — R(T) is
bijective and thus has an inverse 771 : R(T') — N (T)*.

§3.1.7 Definition. For 7" € Z(H, G) the Moore-Penrose inverse (generalised or pseudo in-
verse) T is the unique linear extension of 77! : R(T) — AN(T)* to the domain D(T) :=
R(T) ® R(T)* with N(TT) = R(T)™ satistying T*g := T~z g forany g € D(T). ©
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§3.1.8 Remark. We note that TT*T = T, T*TT* = T, TTT = Il\yryr and TT g =
Iz )9 for any g € D(T"). If T is injective, and hence T*T', then T*T : H — R(T™*T) is
invertible, which in turn, for any g € R(T) @ R(T)*, implies that (T*T)*T*g is the unique
solution of the normal equation, and thus 7' (Tlz 1 9) = {T*g} = {(T*T)"T*g}. I T is
invertible then 7 = T O

§3.1.9 Property. For each g € D(T*), T*g belongs to T~*(Il,q) and, hence is a least
perty R(T)

square solution. Moreover, T g is the unique least square solution with minimal ||-||g-norm,
that is, ||T* gl = inf{[|2|ly : h € T~ (Tzer)9)}- O

§3.1.10 Property. If H and G are infinite dimensional and T € % (H,G) is injective, then
inf{||Thllg : ||hllg = 1,h € H} = 0, which in turn implies that T~ : R(T) — H and, hence
T is not continuous. O

3.2 Spectral regularisation

In the sequel, given an infinite dimensional Hlet 7' € Z(H, G) and let T its Moore-Penrose
inverse as in Definition §3.1.7.

§3.2.1 Definition. A family {R, € .-Z(G,H),« € (0,1)} of operators is called regularisation
of Tt if for any g € D(T") holds |Rag — T gl — 0 as a — 0. O

§3.2.2 Remark. Note that, if 7'* is not bounded, then ||R,||, — 0o as & — 0. On the other
hand side, if (g, )nen is a sequence in G such that ||g, — g||o < n~' forall n € N, then there
exists a sequence (v, )nen in (0, 1) such that | Ry, g, — T gl — 0as n — oc. O

§3.2.3 Definition. The family {(T*T+a/Idg)~'T* € Z(G,H),a € (0,1)} is called Tikhonov
regularisation of T™. O

§3.2.4 Remark. Given T € Z(H, G) consider for each v € (0, 1) the strictly positive definite
operator T, := T*T +a Idy € Z(H) where || Tuhl|y |hlly = (Tuh, h)u = o ||h||% > 0 for any
h € H\{0} by applying the Cauchy-Schwarz inequality §2.1.3 and, hence

inf{||Tahlly : |hlly =1, h € H} > a > 0. 3.1)

Consequently, 7y, is injective and moreover, its range is closed. Indeed, if a sequence (7, )nen
converges to g € G, then (h,),ey is a Cauchy sequence due to (3.1), and thus converges, say,
to h € H. Since T, is continuous, it follows T,,h,, — T,h and g = T,h. Exploiting that 7,
is injective with closed range follows R(7,,) = N(T,)* = {0}* = H which in turn implies
T, is invertible, and due to the open mapping theorem 7, ' € .Z(H) where [T, < a™*
employing (3.1) together || 7,'||, = sup{||hlly / |Tuhlly : b € H\{0}} since R(T,) = H.
Consequently, the family {(T*T + o Idg)'T* € £ (G, H),a € (0,1)} is well-defined. O

§3.2.5 Lemma. For each h € N'(T)* holds ||a(T*T + o Idy)~'hly; — 0 as o — 0. O

§3.2.6 Proof of Lemma §3.2.5. Given 7' € .Z(H, G) consider the operator 7*T € Z(H)
which is positive definite and hence isometrically equivalent with multiplication by a bounded
strictly positive function A in some LZ(Q), that is, 71" = U*M.U. Recall that Idy —U*U =
Iy and, hence for o € (0, 1) applying the functional calculus we have 7*7T + aldy =
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U*Ma+aU + ol r). Consequently, the operator a(T*T + o ldy) ™' € Z(H) (compare also
Remark §3.2.4 above) is equivalently given by U*Ma/(+a)U + Iy Thereby, for any h €
N(T)* it holds

T T + a1dsg) [y, = [UMajreor UBIlG = [| 585U, /Q%u(dw)

Observe that, for p-almost all w € Q it holds a|A\(w) + /™' < 1 and a|A\(w) + a|™' — 0 as
a — 0, which together with Uh € L2 () by employing the dominated convergence theorem

implies u(“ﬁfﬁf) — 0as o — 0, and hence, for all b € A/(T)*, la(T*T + aIdg)*h|; —

0 as o — 0, which completes the proof. m|

§3.2.7 Remark. Let g € D(T™). Setting h = T+g and f, = (T*T + aIdg) 'T*g we have

(T*T + aldy)(h — fo) = T*TT g+ ah — (T*T + a1dw)(T*T + o 1dg) 'T*g
=T"g+ ah —T*g = ah.

Rewriting the last identity we obtain (T*T + o Idg)~'T*g — TTg = —a(T*T + aldg) 'h.
Consequently, from Lemma §3.2.5 follows ||(T*T + aIdy) 'T*g — Ttg|ly — 0 as a — 0
since h = T'"g € H. Thereby, the Tikhonov family as in §3.2.3 is indeed a regularisation in the
sense of Definition §3.2.1. 0

§3.2.8 Lemma. For each C € £ (H, G) the following statements are equivalent:
(i) f minimises the generalised Tikhonov functional h — F,(h) =1 |lg — Thl|Z + 5 |Chl|Z,
(i) f is solution of the normal equation: T*g = (T*T + aC*C) f.

§3.2.9 Proof of Lemma §3.2.8. We restrict ourselves to the case K = R only. Suppose (i) and
let f,h € H. For each t € R define ¢(t) = F,(f + th). It is evident that ¢ is a polynomial
of degree two, and hence, (i) implies that ¢ attains its minimum at zero, and thus, ¢'(0) = 0,
where

(1) = Lllg — T(f + th) )% + 2(IC(f + th)])%
=5(llg - Tf“@ + 1 HThHG —2t{g = Tf,Th)c)
+ 2(||CF% + £ ||Ch||% + 2t(Cf, Ch)e)

and hence, 0 = ¢/(0) = — (g — T'f,Th)g + «(C f, Ch)g, which in turn implies (C'f, Ch)y =
L{g — T'f, Th)y and equivalently (C*C'f, h)u = (a~'T*(g — T'f), h)u. Since the last identity
holds for any h € H, we obtain C*C'f = a~'T*(g — T f). Rewriting the last identity we have
shown (i1). On the other hand, consider (i1). Let x € H arbitrary and set h = = — f. Obviously,
givent — ¢(t) = F,(f +th) as above we have ¢(0) = F,,(f) and ¢(1) = F,(z). Note further
that ¢ is convex with ¢/(0) = (T*(g — T'f) + aC*C'f, h)y and thus ¢'(0) = 0 employing (ii).
Thereby, ¢ attains its minimum at zero, and thus ¢(0) < ¢(1) or equivalently, F,(f) < F,(x).
Since x € H is arbitrary, we obtain (i), which completes the proof. O

§3.2.10 Remark. Observe that N (7)) N N (C) = N(T*T + aC*C) which in turn implies,
that the solution of the generalised Tikhonov functional, if it exists, is unique if and only if
N(T)NN(C) = {0}. Keep in mind, that the existence of a solution is ensured, for example, if
(T*T + aC*C') has a continuous inverse. O
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§3.2.11 Corollary. Given the Tikhonov regularisation {(T*T + o I1dg) " 'T*} as in §3.2.3 for

each g € G, f, .= (T*T+aldy) 'T*g is the unique minimiser in H of the Tikhonov functional
2 an2

he 5 llg = Thilg + 5 A/l O

§3.2.12 Definition. Given an operator C' € .Z(H, G) satisfying
(i) R(C) is closed and

(ii) there exists ¢ > 0 such that for any h € N'(C) itholds ||T'h||s = c||h||y.

the family {(T*T + aC*C)~'T* € Z(G,H),« € (0,1)} is called generalised Tikhonov regu-
larisation of T. O

§3.2.13 Remark. Assumption (i) and (ii) ensure together that the generalised Tikhonov regu-
larisation is well-defined. More precisely, introduce inner products (h, h'), := (Th,Th')¢ +
(Ch,Ch)g and (h,h')c := (h,h)m + (Ch, Ch')¢ on H with associated norms ||-||, and ||-||¢.
Since H is complete w.r.t. both norms (due to (i) and (i1)), it follows from §2.1.2 that ||-||. and
||| are equivalent (keeping in mind that || h||? < max(||T|% , 1) ||h/|%,). Consequently, there is
K > Osuchthat ||h||, > K ||h|| and thus | Th||% +||Chl|a = K2(||hll5+]|Ch|Z). Exploiting
the last inequality we obtain | 7*Th + aC*Ch|ly > K*min(1, «) ||k for any h € H. In anal-
ogy to the arguments exploiting (3.1) in Remark §3.2.4, T*T" 4+ aC*C' is injective with closed
range and, thus it has a continuous inverse, i.e., (T*T + aC*C)~! € Z(H). Consequently,
the generalised Tikhonov regularisation { R, := (T*T + aC*C)™'T* € Z(G,H),a € (0,1)}

is well-defined. Moreover, keeping in mind Lemma §3.2.8 f, := R,g € H is obviously a
solution of the normal equation, and thus the unique minimiser of the generalised Tikhonov
functional. O

§3.2.14 Corollary. Consider the generalised Tikhonov regularisation as in §3.2.12. For each
g €G, fo = (T"T + aC*C)~'T*g is the unique minimiser in H of the generalised Tikhonov
functional h — L||g — Th|Z + £ ||Chl|Z. O

§3.2.15 Remark. Introduce further the adjoint 7* and C of T" and C, respectively, w.r.t. the
inner product (-, -), introduced in Remark §3.2.13, i.e., (Th,g)c = (h,T7g). and (Ch, g)g =
(h,Ctg), forall h € Hand g € G. In particular, for each ¢ € G and h € H we have

(2) Trg = (T*T + C*C)~'T*g,

(b) C*g = (T*T + C*C)~'C*g and

(©) (T*T + C*C)h = h (i.e., T*T + C*C = 1dw).

We note that A/ (T%) = N(T*) and R(T}) = N(T)** where N/(T)** denotes the orthogonal
complement of A/(7') in (H, (-, -).). O

Consider the restriction of 7" as bijective map from A/(T)** to R(T') and denote its inverse
by 7! : R(T) — N(T)**. Given the orthogonal projection %7 onto R(T) its associated
Moore-Penrose inverse 7" (see $3.1.7) defined on D(T.F) = R(T)®R(T)* = D(T™) is given
by T, == T, T .

§3.2.16 Proposition. Consider the generalised Tikhonov regularisation {(T*T +aC*C)~'T*}
as in §3.2.12. Under the conditions (i) and (ii) of Definition §3.2.12 for g € G and f, =
(T*T + aC*C)~'T*g the following statements are equivalent:

(1) g€ D(T}) =R(T) ® R(T)*" =D(T);
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(I1) thereis f, € H such that || fo — f,||, = 0as o — 0.

Moreover, under the equivalent conditions holds f, = T, g.

§3.2.17 Proof of Proposition §3.2.16. Suppose (II) holds true. Exploiting the definition of
||-l+ given in Remark §3.2.13 it follows ||T'f, — T'f,||c — 0 and ||Cf, — Cf,|lc — 0 as
a — 0. Since ||-||. and ||-||c are equivalent (see Remark §3.2.13), we have || f, — fo||é =
| fo = follz + |C fo — Cfoll% — 0 which in turn implies || f, — follz — 0. Employing the
continuity of 7 and C'7 we further obtain

T2 (Tfa =Tf)ll, »0  and 1C3(Cfa—Cfo)ll, — 0. (3.2)

Keeping in mind the identities (a) and (b) in Remark §3.2.15 by applying the operator (771" +
C*C)~! on both sides of T*g = (T*T + aC*C) f,, we obtain the identity

Trg = (T*T + C*C) 'T*g = (T*T + C*C) 'T*T fo + o(T*T + C*C) ' C*C f,
=TT fo +aCiCf,. (3.3)

Combining the last identity and (3.2) by taking the limit o — 0 it follows T*g = T*T'f,, or
equivalently

(T*T + C*C)~'T*g = (T*T + C*C)'T*T¥, (3.4)

which holds if and only if T*g = T*T f, since (T*T + C*C)~! € £Z(H). In other words f, is a
solution of the normal equation, which by Property §3.1.5 (i) and (i), respectively, is equivalent
to both that f, is a least squares solution and that ¢ € D(T™") showing (I). Assume now (I).
Keeping in mind the identity (3.3), from (c) in Remark §3.2.15, i.e., CyC = Idyg —TT, follows
(1 = )T!Tfo + afy = Trg, and hence, (T7T + 12 1du) fo = =Trg for all a € (0,1).
Since (1 — &)~! > 0 the operator T;T + % Idy admits a continuous inverse, and hence
fo = 7= (T}T + 12 1dg) 'T}g. Consequently, since (1 —a)™' — 0Oand g € D(T) =
D(T), ie., T, g € H, it follows from Lemma §3.2.5 || (77T + 2 Idy) "' 179 — Tng* —0

as a — 0, and consequently, || fo — 7. g||, — 0, which shows (I) and completes the proof. ©

§3.2.18 Remark. Due to the last proposition the generalised Tikhonov family as in §3.2.12
is indeed a regularisation in the sense of Definition §3.2.1. Moreover, we shall emphasise
that || f, — fol|, — 0 if and only if | T'f, — Tfollc — 0 and ||Cf, — Cfollc — 0, which
in turn implies || fo — fo||y — 0. Keep further in mind that 777g = 7T f holds if and only if
T*g = T*Tf is true, since T*T + C*C'is continuously invertible. Thereby, for each g € D(T™)
the set of least squares solution T~ (Il 1 g) satisfies T (Ilzyg) = {f € H: T*"Tf =
T*g} ={f el :TTf =Trq} ={f.} + N(T) with f, = T."g. Each f € T‘l(Hﬁ(T)g)
can thus be written as f = f, + u for some u € N(T) with f, € (NM(T))**, and hence,
Tf =Tf. and || foll; < I foll + llull = |[£]l}, which together implies [|Cf,||& + [|C f||z for
any f € T_1<Hﬁ(T) g). In other words, f, is the unique least squares solution with minimal
||C'e|| 5-norm. O

§3.2.19 Definition. Given a family {r,, a € (0, 1)} of real-valued (piecewise) continuous func-
tions defined on [0, ||T||%,] the family {r,(T*T)T* € .Z(G,H),a € (0,1)} of operators is
called spectral regularisation of T if

(i) forall A € (0, ]|T|%] holds |1 — Aro(\)| — 0 as & — 0, and
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(i) there is K > 0 such that |Aro(\)| < K forall A € [0, [|T%] and a € (0, 1). O

§3.2.20 Remark. Given T' € Z(H, G) consider a spectral regularisation { R, = r,(T*T)T*}
as in Definition §3.2.19. The operator 7*T € .Z(H) is isometrically equivalent with mul-
tiplication in some L7 (€2) by a strictly positive function A bounded by ||T||iﬂ Applying the

functional calculus we have ||ro(T*T)T*||, < sup{|ra(M\)VA|,X € [0,]|T|%]} < oo since
7, is piecewise continuous on the compact interval [0, ||T||%,]. Consequently, R, € .Z(G,H)
for all & € (0,1), i.e., the family is well-defined. Moreover, ||(ro(T*T)T*T — Idg)hl||? =
|U*Mraorr U = [|(1 — Ma()\))UhHig = ()1 = Aro (M) |UR|?) holds for h € N (T)*.
From §3.2.19 (ii) follows |1 — A\ro(A)] < 1+ K forall a € (0,1). Since Uh € L7 employing
the dominated convergence theorem from §3.2.19 (i) follows || (7o (T*T)T*T — Idg)hl|7, — 0
as a — 0 forall h € N(T)*. Since forall g € D(T") with h := Ttg € N(T)* holds
Rog —h = (ro(T*T)T*T — Idg)h we have ||R,g — T"g||y — 0 as & — 0, and a continuous
spectral regularisation as in §3.2.19 is indeed a regularisation in the sense of Definition §3.2.1.
We shall emphasise that for any g ¢ D(7"") it can be shown that ||r,(7T*1T)T*g||y — oo as
a— 0. O

Given a continuous spectral regularisation {r.(7T*T)T* € Z(G,H),«a € (0,1)} of T as
in Definition §3.2.19 we shall measure in the sequel the accuracy of the approximation f, :=
ro(T*T)T*g of f := Ttg € H for g € D(T™"), by its distance ?,(f., f) where 0, (-,-) is a
certain semi metric. Note that in general 9, (f,, f) is not monotone in o € (0, 1) and hence
we define bias,(f) := sup{0,(f, f3), 8 € (0, ]} as the approximation error. For convenient
notation we eventually use the notation f, = f and write, for example, {f,,a € [0,1)} =

{fYU{fa,a € (0,1)}, shortly. We are particularly interested in the following two cases.

§3.2.21 Definition. Let f, := r,(T*T)T*g be a theoretical approximation of f = T"g € H
for g € D(T) and a given continuous spectral regularisation {r,(T*T)T* € Z(G,H),« €

(0,1)} of T as in Definition §3.2.19.
(global) Given the ONS U/ and a strictly positive sequence v consider the completion U, of
U w.rt. the weighted norm |[|-||,. If {fs,a € [0,1)} C U,, then d} (hy, hs) :=

|h1 — hall,, h1,he € U, defines a global distance. For ac € (0,1) we denote by
bias;,(f) = sup{||f — fsll,, B8 € (0, al} the global approximation error.

(local) Let ® be a linear functional and { f,, @ € [0,1)} C D(®), then 02 (hy, hy) := |®(hy —
hy)|, by, hy € D(®), defines a local distance. For a € (0, 1) we denote by bias® (f) :=

sup{|®(f — f3)|, 5 € (0, a]} the local approximation error. O

§3.2.22 Proposition. Let {r,(T*T)T* € £ (G,H),a € (0,1)} be a continuous spectral regu-
larisation of T defined in Definition §3.2.19. Assume in addition to §3.2.19 (i) and (ii) that

(iti) forany s € [0, s,] for some s, > 1 there is a constant c; < oo such that for all o € (0, 1)
holds sup { X*|1 — Ara(N)|, A € [0, | T %]} < cse,

Consider f, == ro(T*T)T*g and let f :==T*g € H.
(a) If there are s € [0,s,) and h € H such that f € R ((T*T)S) (source condition as in
Example §2.2.49), then (global) for all o € (0, 1) holds

[ foe = fllzr < es0” [Pl - (3.5)
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(b)) If T' € 7;d (link condition as in Definition §2.2.50) and f € F.; (abstract smoothness
condition as in Definition $2.1.15) where t = v® and | = v? for some sequence v and
constants 0 < p < a, then for all « € (0,1) and

(global) for any q € |—p, a] holds

| fa — anq < Clgtp)/ d(erlq\)/a r a(erq)/(?a); (3.6)
(local) for any ® € L,-q for some q € [—p, a] holds
B(fa = ) < Clprayaa A7 7 [8]/0]0 a0 )

§3.2.23 Proof of Proposition §3.2.22. Keeping in mind the identity established in Remark
§3.2.20,1e., fo — [ = (ro(T*T)T*T — Idy) f, from f = (T*T)*h follows

[foo = Flle = [(ra(T"T)T"T — 1dg) (T"T) |
< (o (T"D)TT = 1du)(TT)°[| & |12l
<sup{A°[L = Ara(W)|, A € [0, 1T 1%} 1Al

by applying the functional calculus. The claim (3.5) follows now directly from (iii). Consider
(b). Keeping in mind that 0 < p/a < 1 and, hence 0 < |¢|/a < 1, it holds [|*|lps = [|*|lasa <
dll/e || (T*T)%/2).|| , by exploiting Property §2.2.52 and f = (T*T)?/**h for some h € H
with |||l < dP/%r due to Corollary §2.2.54. Consequently,

| fa = Fllge < dlV/e || (T*T)0C (g (T*T)YT*T — 1) (T*T)P/ ||, aP/r
< rdl 1P/ agup AP/ 11— xr (V)] A € [0, HTH;}W

thereby noting that (p + ¢)/(2a) € [0, 1] C [0, s,] the assumption (iii) implies the claim (3.6).
On the other hand side, by applying the Cauchy-Schwarz inequality (§2.1.3) and (3.6) follows
B(fo = D < 1= Fllao 1191/ < cprgysizny APV 5 al=0/Co) (@] /0], which
shows (3.7) and completes the proof. O

§3.2.24 Remark. Let us briefly comment on the conditions stated in Proposition §3.2.22 (b).
Note that, in both, the global and local case, under the condition ¢ > —p the introduced global
and local distance is well-defined on Fuy, that is, {fo,« € [0,1)} C Uy and {f,, @ € [0,1)} C
D(®) for all f € F.;. Moreover, the additional condition ¢ < a together with p < a allows us
to apply the inequality of Heinz (§2.2.52) and, hence we can dismiss those upper bounds, if 7’
and Vo commute. However, if 7" and V> do not commute, then the smallest upper bound of the
approximation bias in both cases is up to a constant a'/2 since 0 < (p + ¢)/(2a) < 1/2. O

§3.2.25 Examples. Let us discuss certain special continuous regularisation methods satisfying
in addition §3.2.22 (iii).
(i) Tikhonov regularisation as defined in §3.2.3 is given by r,(\) = (X + «)~! and satisfies
§3.2.22 (iii) with s, = 1 and ¢, = s°(1 — s)'7=.
(i1) Spectral cut-off given by the piecewise continuous function r,(\) = %]1{ A>a} 18 @ contin-
uous regularisation methods satisfying §3.2.19 (i) and (i1) with K = 1. Moreover, §3.2.22
(111) holds with s, = oo and ¢, = 1.

(ii1) A special iterative regularisation method is the Landweber iteration. This method is based
on a transformation of the normal equation into an equivalent fixed point equation f =

Statistics of inverse problems 27



Chapter 3 Regularisation of ill-posed inverse problems 3.3 Regularisation by dimension reduction

f+wl*(g — Tf) with 0 < w < ||T||,7. Then the corresponding fixed point operator
Idy —wT™T is nonexpansive and f may be approximated by f; determined by f,,; =
fo+wT*(g—Tf,),n=1[0,k—1], fo = 0. Note, that without loss of generality, we can
assume ||7’|| , < 1 and drop the parameter w. By induction the iterate fj can be expressed
non-recursively through f, = S2F"! (Idg —T*T)/T*g and thus ro(\) = S2F_ (1 — A
where 1 — Ar,(A) = (1 — A)*. Under the assumption ||T’|| , < 1, the Landweber iteration
is thus a continuous regularisation methods with o = 1/k satisfying §3.2.19 (i) and (ii)
with K = 1. Moreover, §3.2.22 (iii) holds with s, = co and ¢, = s®e™*. O

3.3 Regularisation by dimension reduction

Here and subsequently, we consider a class of functions F;; C Uy as given in §2.1.18
w.rt. an ONS U = {u;,j € J} in H and a strictly positive sequence f = (f;);cs. We shall
frequently exploit that {(Ujs, (-, -);:), s € R} eventually forms a Hilbert scale w.r.t. V; which
is diagonal w.r.t.. the generalised Fourier transform U associated to /. Moreover, we assume
a nested sieve (J;)mem in J and its associated nested sieve (U, )mer in U (see §2.1.12).
For f € U we introduce a theoretical approximation f,,, € U,,. On the one hand we consider
the orthogonal projection f,, = Iy, f = >_.c;([fl;17,.(j)u; = U*([f|1z,) of f onto Uy,
by using the sequence of indicators 1, := (1, (j));es. On the other hand the construction
of f,, is motivated by a linear Galerkin approach introduced below. We shall measure the
accuracy of the approximation f,, of f by its distance 0 (f,,, f) where d_(-,-) is a certain
semi metric. Note that in general ?_( f,,,, f) is not monotone in m € M and hence we define
bias,,(f) := sup{d,(f, fr),k € M N [m,oo[} as the approximation error. We are particularly
interested in the following two cases.

§3.3.1 Definition. Let f,, € U,, be a theoretical approximation of f € U, ;, and hence Iy, f =
0. Keep in mind that Ut and U:: denotes the orthogonal complement of U and U, in H and U,

respectively.
(global) Given the ONS U and a strictly positive sequence v consider the completion U,
of U w.r.t. the weighted norm ||-||,. If Uy; C U,, then 0 (hy, ko) = ||h1 — hal|,,

hi, hy € U, defines a global distance on U, j;. For f € [F; and m € M we denote by
bias;, (f) := sup{||f — fill, .k € M N [m,oco[} the global approximation error.

(local) Let ® be a linear functional and U3 C D(®), then 0% (hy, h1) = |®(hy — ho)

ist

hi,he € D(®), defines a local distance. For f € F); and m € M we denote by
bias? (f) := sup{|®(f — fi)|, k € M N [m, o[} the local approximation error. o

B

§3.3.2 Remark. We shall emphasise, if ||fo]|,.. = sup{f;v,; : j € J} < oo, then ||A||, <
[[foll |l for all & € Uy, and hence Uyj; C Uy,. On the other hand side, if [|[[®]f[|,. =
||[(I>]||£$ < 00,ie., ® € L, then U, 3 C D(P).

a

Keep in mind that in case of an orthogonal projection f,, = Ily, f, m € M, we have
bias?, (f) = |, f — fll, = |[TTos £|], and bias®, () = sup{|® (T, )|,k € M N [m, o[}
where U denotes the orthogonal complement of U, in U.

§3.3.3 Lemma. Consider the orthogonal projection f,, = lly, f € U, as theoretical ap-
proximation of f € Fl;. Given ||fv||,. < 0o for each m € M let (§0)(m) = |[folge ||on
sup{f;v;,7 € J5} < |[foll, < 00, then bias, (f) < r (fo)m). On the other hand if & € L;
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as in §2.2.8, then for each m € M, Y
(biash (/)2 < 12| [@]1.5

[@,1%F; = lI[®]1ag

2
jes, & < 1]l < oo and

§3.3.4 Proof of Lemma §3.3.3. By applying Parseval’s formula §2.1.7 we have [[IIy. f|lz =
||[f]lljm 2 = > jege v2|[f];]? < (fn)'(Qm) Hf||f/f, which in turn .implies‘ for all f € 7, the first
assertion. On the other hand, employing the Cauchy-Schwarz inequality $2.1.3 it follows that
|(I>(1'[[U}H”)|2 = | Zjej,g[q)]j 1?7 < ||f||f/f ||f[<D]ILjI§||?2 for all £ € M is non-increasing given
a nested sieve (Jx)rer, Which for all f € FJ; implies the second claim, and completes the
proof. O

§3.3.5 Definition (Linear Galerkin approach). LetT € T (H), i.e., a compact and strictly positive
definite operator in .Z(H), and g € H. An element f,, € U,, satisfying

<fm7 Tfm>H — 2<fm7 g>H < <h, Th)H — 2<h, g)H fOI' all h & Um

is called a Galerkin solution in U,,, of the equation g = T'f. m|

§3.3.6 Notations.

(i) For f € H considering the sequence of generalised Fourier coefficients [f] as in §2.1.16
introduce its sub-vector [f],, := ([f];);jez.. Where [y, fl.. = [f]m-

(i) For T € .Z(H) denote by [T] the (infinite) matrix with generic entries [T, ; := (ug, Tu;j)m.
For m € M, let [T], denote the (|7, X |Jn|)-sub-matrix of [T] given by [T],, =
([Tx.;)j ke, Note that [T*],, = [T} . Clearly, if we restrict T, := Iy, , TIly,, to an oper-
ator from U, to itself, then it can be represented by the matrix [T7],,. If [T],, is non-singular,
then the Moore-Penrose inverse 7, € Z(H), i.e., 7,7 T, = T, T T T.) = T},
T, = T,T} = Iy, resticted to an operator from U,, to itself can be represented by
the matrix [T7].*.

(iii) Given the identity Id € .Z(H) the |7,,|-dimensional identity matrix is denoted by [Id],,.

(iv) Let Vo = U*MoU : H D D(V) — H be diagonal w.r.t. an unitary U € Z(H, ((J))
(e.g., $2.2.4 (iii)) and multiplication operator My : K7 — K. Denote by [V;],, the | J;.|-

dimensional diagonal matrix with diagonal entries (v;);cz,. Note that, [V,]* = [V,:],,
s € R.

(v) Keep in mind the Euclidean norm ||-|| of a vector and the weighted norm ||-||, w.r.t. an
ONS {u;,j € J}inH. Forall f € Uy, we have || f[l; = []L,[Vee)ul/]n = [[V]ul/]ull* =
0[] 1.

(vi) Given a matrix M, let ||[M||, := sup{||Mz|| : ||z|| < 1} be its spectral norm then
[Ty, Ty, | » = [|[T].|l, and hence ||y, Vi'lly,, || o = max{v$,j € T} O

§3.3.7 Lemma. Let T' € T (H). (i) For all m € N the matrix [T),, is strictly positive definite.

(i) The Galerkin solution f,,, € Uy, is uniquely determined by [ fu),, = [T],'[9.. and [f]; =0

forall j € J¢, ie., fm = T, g. (iii) The Galerkin solution f,, minimises in U,, the functional
2

F(h) = [|T2(h = f)|

§3.3.8 Proof of Lemma §3.3.7. The claim (i) is an immediate consequence of the elemen-
tary identity ([, [T],.[h].) = (h, Th)g for all h € U,,, since T is strictly positive definite.
The Galerkin solution f,, is a minimum in U,, of the functional F'(h) = (h, Th)y — 2(h, g)n
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and hence, equivalently [f,,],, is a minimum in KMl of 2 — ||[T1Y/2z — [T] /2 [g]mHZ, since
F(h) = ([hlu: [T]uPlw) — 2P, [9]..) and (z, [T1,, > - 2< 9].) = ([T];/%, [T,/ )~
2T,/ 7[T]1/2[ ] Hgln) ([T ]1/2[ ]ml[g]ma[T]l/Z w) = T2 = (7], gl || -
\|[T]/2[T H = ||[T1/?x — [T],,"*[g || |17 1/2 H for anyxEK‘Jm‘.Thereby,
[ fm]m satlsﬁes the normal equatlon that is, [T]2/2(T ]1/ 2[ fm] = [T]}/2[T)."/*[g],. or equiva-

lently [f], = [T,"[9].., which shows the claim (ii). Finally, the claim (iii) follows from the

identityF(h):2<h,Th>H 2(h, gyu = (TY?h, TY2R)g—2(TY2h, T2 f (T2 f, T2 f)yy =
17720 = )l — |

2 .
g+ Which completes the proof. O

§3.3.9 Remark. Consider for f € U the orthogonal projection Ily,, f and ITy . f of f onto the
subspace U,, and Uj., respectively, then the approximation error ||IIy,, f — f|lg = ||HU#L f ||]HI
converges to zero as m — oo by Lebesgue’s dominated convergence theorem. On the other
hand, the Galerkin solution f,, € Uy, satisfies [Iy,, f — fm]w = —[T],,' [Ty f]. and, hence
does generally not correspond to the orthogonal projection IIy, f. Moreover, the approxi-
mation error sup{||fm — fllg : m € [[n oo N M} does generally not converge to zero as
n — oo. However, if C' := sup{||[T],'[THys fln|| : Iflg = 1.f € Hym € M} < o,
then ||f, — fllg < (1 +C) ”HU#LJC”H Wthh in turn implies lim,, . sup{||fm — fllg : m €
[n, oo N M} = 0. Here and subsequently, we will restrict ourselves to classes F and 7 of so-
lutions and operators respectively which ensure the convergence. Obviously, this is a minimal
regularity condition for us if we aim to estimate the Galerkin solution. O

§3.3.10 Lemma. Given an ONB {u;,j € J} inH, a nested sieve (J,,)mer in J and a strictly
positive sequence t consider the link condition T' € 7;? as in §2.2.50. Let t be monotonically
non-increasing, that is, min{t;, j € Jn} = sup{t;,j € J.} = ||tl ¢ ; t(m) for allm €
M, then forall 0 < s < 1 we have (i) sup {t‘(sm) H[T];SHS :m € M} < {d(d+2)}* < {3d*}",
(i) sup{||[T]°* V]|, : m e M} < {d(d + 2)}* < {3d*}* and (iii) sup{||[T),[Vi],*
m e M} < dv.

s

§3.3.11 Proof of Lemma §3.3.10. We start our proof with the observation that for g € U,, the
second inequality in §2.2.52 with s = —1 implies ™" [T g||; < [lg/l-» = [[[V], 9] <
oo, and hence f := T~'g € H. Consider the Galerkin solution f,, € U,, of g = T'f asin §3.3.5
given by [f,n],., = [T].}[9]... By using successively the first inequality in §2.2.52, the Galerkin
condition given in §3.3.7 (iii) and the second inequality in §2.2.52, we obtain

1f = Fmllye < A2 | TY2(F = f)|lge < A2 | TV2(f = Tho, )| < ATy £ 4 (38)

Since t is strictly positive it follows ||H]UJ_ f|| s S H\/_ 1y
f = T~'g and the second inequality in §2.2.52 we have HHUL fH\[ d ||\f]13c
dvtom) |l9l-1- Applying successively (3.8) and the last estimate we obtain

s Ifllz and, hence by using

eoo HgHt 1=

1 = T fll i < IF = Fonll ot Mg £]] g < (1) [Ty £ e < d(1d) Vi gl
(3.9)

which together with [|h]|;; < max{t; "%, j € 7.} | b 4 for all h € U, leads to

\/{7"/
1 = T f e < s gz M = T fll i < d(+d) iz ezg 19l < d(1+d) [lgll

30 Statistics of inverse problems



3.3 Regularisation by dimension reduction Chapter 3 Regularisation of ill-posed inverse problems

where we used that min{t;, j € J,,} > t(,). From the last estimate and d~' ||IIy,, f|; <
A |77 glls < llgll-r = [[[Vi]," [9) || follows for each g € U,

[T, ghal| = N Fomlle < {1 fim = T, fllg + [T, fllg} < d2+d) |[[Vi], gl
which in turn in analogy to the second inequality in §2.2.52 for all 0 < s < 1 implies
7] (91| < {d(2+ )} || [Vi]2° (9]

Consequently, by using ||[V]..*|| = (min{t;,j € J.})~* < t.n and by replacing [g]., by
V]2 [9] ., respectively, we obtain the claim (i) and (ii). By using the second inequality in
§2.2.52 together with ||IIy,, || , = 1 we have

11T ]wlg)ell = M0, Tyl < [Tl < dllglly = dl[Mulglull, Vg € U,

, Vg eUp. (3.10)

which in turn in analogy to the second inequality in §2.2.52 for all 0 < s < 1 implies

(702, (9] || < @° || (V]2 1g]

, Vg €Uy, (3.11)
Consequently, replacing [g],, by [Vi].,*[g].. implies the claim (iii), which completes the proof. O

§3.3.12 Lemma (Bias of the Galerkin solution). Given a strictly positive, monotonically non-in-
creasing sequence t considerT' € 7: as in Lemma §3.3.10. Let in addition f € F]; with strictly
positive, monotonically non-increasing sequence f, i.e., min{f;,j € J,} > Hf]l 7¢ 1l
fm) for all m € M. If f,, denotes a Galerkin solution of g = T f then for each strictly
positive sequence v such that fv is monotonically non-increasing, that is, min{f;v;,7 € Jn} >
Hfb]ljn% oo = (J0)(m) for all m € M, we obtain for any m € M and 0 < s < 1,

1 = Foly < 40° (0)my mae (1, (6/0) gy [0/417, [l ) [Ty £
Wllys <3¢ 1Ly and  IT°(F = Fudlli < 447556 [T £ - (3:12)

Furthermore, for any ® € L, /; we have
|D(fm — )| < 4d? [Ty [, max { [|[@]fLag || o, (€F)om) N[@1/ €L, N2 ). (Bi13)
§3.3.13 Proof of Lemma §3.3.12. We start our proof with the decomposition

I1f = Fnllo = [[Tog f]], + Mo, f = Finlly (3.14)

where HHU#LfH an]ljc

oo || M, le/f (0F) () || T, f||1/f while we show below

Mo, f = flly < 3 [10/tLg, [l (t/0)(m) (0F) ) [Tz £ - (3.15)

Consequently, by combination of these two bounds follows the first bound in (3.12). Moreover,
from [ fmlly 5 < Tw,,. f = fnllyy5 + Mo, £l 5 and (3.15) with o = 1/§ we obtain || fin |, 5 <

3d3| mln{f] S TIm ™ 1 ft HHUlle/f + ||HIUmf||1/f < 3d? max(1 ’mm{gtt%) ”f“l/f
which implies the second bound in (3.12) keeping in mind that t and  are monotonically non-
increasing, that is, min{f;t;,j € J,} > min{f;,j € T} min{t;,j € Tn} = fum)tm) =
(ft)(m). By using the second inequality in §2.2.52, i.e., || T°(f — fu)llg < d°||f — fmlls to-
gether with the first bound in (3.12) setting v = t° and that t is monotonically non-increasing

Statistics of inverse problems 31



Chapter 3 Regularisation of ill-posed inverse problems 3.3 Regularisation by dimension reduction

and hence tb;f max{tj_l, Jj € Jn} < 1 we obtain the last bound in (3.12). It remains to show

(3.15). Keeping in mind that [Ily,, f — fin]. = —[T], [Ty f],, it follows

-1
m

o, f = flly = [Vl [T, f = finlmll = [Vl [V (V[ 71 [T T, £ |
< VL [SAL M TSR L [T, N [T T, £
< o/t g, [l 3d° || Ty f|| 5 < [l0/t1g,, [ 3d ||y f], - (3.16)

Consequently, (3.15) follows using ||H{UTJﬁfH£ < (F8) (m) ||H{UTJﬁf||1/f < (/0) (m) (0F) () ||H[UTJ;Lf||1/f.
Proof of (3.13). By applying the Cauchy-Schwarz inequality §2.1.3 we have on the one
hand [®(TIy. f)| < HH]UJ"}le/f | [@]FL7e » and by using (3.15) with b = t° together with

max{tj-_l, J € Tm}(#7%)(m) < 1it follows on the other hand

|(I)(HUmf_fm>| < ||HTUmf - fm

[@)/60, ]l < 35y [ £, 19)/627,

tS

Combining both estimates we have

[@(f = fu)l < [@(Tyy )] + [@(Ty,, f = fn)
S Mo £l 5 4d” mex{[| (@171,

2 (EF)m) [[@]/€ 17, [}

which implies (3.13) and completes the proof. O

§3.3.14 Notations. Let {u;,j7 € J}, and {v;,j € J} be an ONS in H and G, respectively, and
let (Jom)mem be a nested sieve in J.
(i) ForT € Z(H, G) denote by [1'] the (infinite) matrix with generic entries [T, ; := (vi, T'uj)G.
Form € M, let [T, :== ([T]x.;)k.je,. denote the (|7,,| X | T |)-sub-matrix of [1]. Note
that [77*],, = [T]L.

m

(i) Let Uy, :=lin{u;,j € Jn} and V,, :=lin {v;,j € J;,} denote the linear subspaces of H
and G spanned by the functions {u;},_, and{v;},_, . respectively. Clearly, if we restrict
IIy, TTly,, to an operator from U,, to V,,, then it can be represented by the matrix [7],,. If
[T'],, is non-singular, then the Moore-Penrose inverse 7, € £ (G, H),i.e., T,, T T, = Trns
T 1,75 =TF TrT, =y, and T,, T, = Ty, , resticted to an operator from V,, to
U,, can be represented by the matrix [T] . O

§3.3.15 Definition (Generalised linear Galerkin approach). Given an ONS {u;,j € J} in H, an
ONS {v;,7 € J} in G, and a nested sieve (J,,)merm in J consider T' € # (H,G) and g € G.
Any element f,,, € U, satisfying T, f,, = Iy, g, .., [T],.[fm]m = [9]..» is called a generalised
Galerkin solution in U, of the equation g = T'f. m

§3.3.16 Remark. Throughout this note [T],, is assumed to be non-singular for each m € M, so
that [T] ! always exists. We shall emphasise that it is a non-trivial problem to determine when
such aniassumption holds (cf. Efromovich and Koltchinskii [2001] and references therein).
However, if [T],, is non-singular, then the generalised Galerkin solution f,, = T,Fg € U,, of
the equation g = T'f is unique and given by [f.].. = [T]- 9] - O

§3.3.17 Definition (Generalised link condition). Given an ONB {Uj, j € J}in H and a strictly
positive sequence (t;);c7 consider the weighted norm ||-||; = ||Vi+||y in H. For all d > 1
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define the subset ’Cg,t(ﬂ G) = {T € H(H,G): (T"T)"? ¢ 7:1( )} Given in addition an
ONS {Upj € j} in G and a nested Sieve (., )me in J for D > d we define K9P (H, G) :=

uvt

{T € KL (H,G) : ||[Viu[T),Y|| < D forallm e M}ork deorshort Wesay T € % (H,G)

uvt

satisfies the generalzsed lmk condition K if T € K42, 0

uvt ? uvt

§3.3.18 Remark. We shall emphasise that K*” contains the subset S, (see §2.2.50) of all
diagonal operator S.. satisfying the link condition lCut e, 84 =8N lef KA (H, G).
Keeping in mind Remark §2.2.51 an operator 7' € Su» admitting singular values (sj )je satisfies
the link condition 8%, if and only if ™' < |s;|/t; < dforall j € J. Thereby, for any

m € Mwehave ||[Vi].[T]}|| = I1t/Is]17, I~ < d < D and hence S%.(H, G) C K (H, G).

uvt

Moreover, there are operators in ICu’ (H, G) which do not belong to S ie., they are not
not diagonal w.r.t. &/ and V (see Remark §2.2.51). Furthermore, for each pre-specified ONB
(uj)je J in Hand T € K (H,G) we can theoretically construct an ONS (v;);es such that
H (Vi [T]! || D holds for all m € M and sufficiently large constant ). To be more precise,
it T 6 ICZ’ (H, G), which involves only the ONB (u;);c 7, then the fundamental inequality
of Heinz [1951] as given in §2.2.52 implies ||(T*7T)~"/?u,]|, < dt;* < oo for each j € J.
Thereby, the function (7*T')~'/?v; is an element of H and, hence v; := T(T*T)"Y?u;, j € J
belongs to G. Then it is easily checked that (v;);c 7 is an ONB of the closure of the range of T’
which may be completed to an ONB of G. Keeping in mind that (Tw;, v))¢ = ((T*T)"?u;j, w;)m
for all j,l € J it is obvious, that [77],, is symmetric and moreover, strictly positive definite.
Since (T*T)"/? € T, (H) from Lemma §3.3.10 (i) it follows ||[Vi],. T, = T2 Vi, <
3d? for each m € M, which implies T’ € K42 (H, G) for all D > 3d2 O

uvt

§3.3.19 Lemma (Bias of the generalised Galerkin solution). Given an ONB {u;,j € J} in H, an
ONS {v;,j € J} in G, a nested sieve (Jn)mem in J, and a strictly positive, monotonically
non-increasing sequence t consider T € K2 as in §3.3.17. Let in addition f € FZ; with strictly
positive, monotonically non-increasing sequence f, i.e., min{f;, j € J,} > Hﬂl e || goe =1 Fm)
for allm € M. If f,, denotes a generalised Galerkin solution of g = T f then for each strictly
positive sequence v such that fv is monotonically non-increasing, that is, min{f;v;,7 € J,} >

anﬂjﬁl oo = (J0)(m) for all m € M, we obtain for any m € M and 0 < s < 1,

IU—mm<ﬂM®mmmm(ﬂm)ImﬂwmdeinlmwNM’
<

Hfm”l/f Dd ”f“l/fv and H T* (f o fm H]HI < 2Ddl+s(fts)(m) ||HU£-nf||1/f'
(3.17)

Furthermore, for any ® € L, we have
[@(fr — F)P < (2dD)? [Ty £}, max { S~ [[@LPF, (893 D [OLP4>}.(3.18)
JETS, JETS,

§3.3.20 Proof of Lemma §3.3.19. We start our proof with the decomposition displayed in (3.14)
where ||y, f|, < (o) [Ty f]], 5 and

1MLy, ~ full, < Ddmax{o; /4, 5 € T} (4/0) oy (0F) ooy [T S, (3.19)

by employing the generalised link condition T’ € K42 together with the bound given in (3.16).

Following line by line the proof of (3.12) and (3.13) using (3.19) rather than (3.15) we obtain
(3.17) and (3.18), respectively, which completes the proof. O
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Chapter 4

Statistical inverse problem

Throughout this manuscript we consider the reconstruction of a func-
tional parameter of interest f satsifying an equation g = T’ f based on a
noisy version of g and eventually a noisy version of T. In the sequel we
formalise the meaning of «a noisy version» by introducing first stochastic
processes on Hilbert spaces. Given a noisy version of g we present then
the direct problem, that is, T' = 1dy and the inverse problem where the
operator T' is known in advance. In order to dismiss the knowledge of T
we consider first an operator T admitting a spectral decomposition with
known eigenfunctions where a noisy version of its eigenvalues is avail-
able only which we call a partial knowledge of the operator T'. In the last
subsection the operator T is fully unknown and we introduce its noisy
version.

4.1 Stochastic process on Hilbert spaces

In the sequel, (€2, <7, IP) is a probability space, where €2 will be interpreted as the set of
elementary random events, .7 is a o-algebra of subsets of {2 and PP is a probability measure over
</ . Here and subsequently, (H, (-, -)y) and U denotes a separable Hilbert space and a subset of
HI, respectively. Considering the product spaces K& = X, .y K and K¥ = X, o, K the mapping
I, : K¥ — KY givenby y = (yn, h € H) — (y,,u € U) =: I,y is called canonical projection
and for each h € H in particular 1T, : K¥ — K given by y = (yp, h' € H) — yp, =: [y is
called coordinate map. Moreover, % denotes the Borel-c-algebra on K and K™ is equipped with
the product Borel-c-algebra %" := ), iy . Recall that " equals the smallest o-algebra
such that all coordinate maps I, h € H are measurable. i.e., Z°" = o(II;,, h € H).

§4.1.1 Definition (Stochastic process on H). Let {Y},, h € H} be a family of K-valued r.v.’s on a
common probability space (2, o, P), that is, Y}, : Q — K is a .&/-Z-measurable mapping for
each h € H. Consider the K®-valued r.v. Y := (Y}, h € H) where Y : Q — K" is a .o7-#B%H-
measurable mapping given by w +— (Y (w),h € H) =: Y (w). Y is called a stochastic process
on H. Its distribution P¥ := P o Y ~! is the image probability measure of P under the map Y.
Further, denote by P'Y the distribution of the stochastic process II,;Y = (Y,,u € U) on U.
The family {]P’H“Y, UcCH ﬁnite} is called family of the finite-dimensional distributions of Y
or PY. In particular, P¥» := P"»Y denotes the distribution of Y, = I1,Y. We write E(Y},) and
Var(Yy) == E((Y4—E(Y3)) (Y, — E(Y2))), if it is exists, for the expectation and the variance of
Y, w.r.t. P2, respectively. If Y, has mean 1 € K and variance o2 then write Y, ~ £(yu, 0?) for
short. Furthermore, let Cov (Y}, Yy ) := E((Y, — E(Y2))(Yi — E(Yy))) denote the covariance
of Y}, and YV}, w.r.t. PRensY if it is exists. m

§4.1.2 Definition. Let Y := (Y}, h € H) be a stochastic process on H. If E|Y}| < oo for each

QL
W
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h € H then the functional x : H — K with h — E(Y},) =: u(h) is called mean function of Y.
If the mean function p is in addition linear and bounded, that is, i € Z(H, K), then due to the
Fréchet-Riesz representation theorem §2.2.6 there exists py € H such that p(h) = (uy, h)g for
all h € H. The element E(Y) := puy is called mean or expectation of Y or PY. If E|Y},|*> < oo
for each h € H then the mapping cov : H x H — K with (h, h’) — Cov (Y}, Yy ) =: cov(h, h')
is called covariance function of Y. If the covariance function cov is in addition a bounded
bilinear form, then there is Iy € Z(H) such that cov(h, ') = (Ivh, W)y = (h, Iy h')g for
all h, h' € H. The operator I} is called covariance operator of Y or PY. If Y admits a mean
function  and a covariance function cov then we write shortly Y ~ £(u, cov). Analogously,
Y ~ £(uy,T) if there is an expectation py € H and a covariance operator Iy € £ (H). O

§4.1.3 Property. A covariance operator Iy € £ (H) associated with a stochastic process Y
on H is self-adjoint and non-negative definite. O

§4.1.4 Example (Non-parametric density estimation). Let X be a r.v. taking its values in the
interval [0, 1] with distribution P, c.d.f. F and admitting a Lebesgue-density p = dP/dA\.
Given h € LY as introduced in §2.1.4 (v) denote by E,, (h(X)) = Ph = A\(hp) the expectation
of h(X) w.rt. P. For convenience we suppose that the density p is square integrable, i.e.,
p belongs to the real Hilbert space L? := L*([0,1]) equipped with its usual inner product
(-,-)12 (compare §2.1.4 (iv)). Thereby, for any h € L? we have (p,h);2 = A(ph) = Ph =
E, (h(X)). Assuming an i.i.d. sample X; ~ p, i € [1,n] we denote by P®" its joint product
probability measure. Let Y = (Y}, h € L?) be the stochastic process on L? defined for each
h e L?byY, := Bh := 13" h(X,). Obviously, the mean function y of Y satisfies
p(h) = By (Ys) = PE (B h) = Ph = (p, h) ;2 and hence, Yy = (p, h) 2 + J= W), with W}, :=
n'/2(By h — Ph). Moreover, the stochastic process W := (W), h € L?) of error terms admits
a covariance function given for all h, i’ € L? by Cov(Wy,, Wy) = P(hk') — PhPH = P((h —
Ph)(h' —Ph')) = Cov(h(X),h(X')). Observe that PhIPA" = (Ms h, 1jo17) 2 (Ljo1], Mo A') 12 =
<H{1[0’1]}M1p h, Mb h/>L2 and P(hh/) — PhPH = <F]p h, h/>L2 with [y = Me — Mb H{H[OJ]}MP ,
and thus, W ~ £(0,T5) and consequently, Y = p + 11/ ~ £(p, 113). O

§4.1.5 Example (Non-parametric regression). Let (X, Z) obey a non-parametric regression model
E;(X|Z) = f(Z) satisfying the Assumptions: (i) the regressor Z is uniformly distributed

on the interval [0, 1], i.e., Z ~ 0, 1]; (i) the centred error term ¢ = X — f(Z), i.e.,
E;(¢) = 0, has a finite second moment o2 := E;(¢?) < oo; (iii) £ and Z are indepen-
dent; (iv) the regression function f is square integrable, i.e., f € L* := L?([0,1]). Given

h € L? denote by E;(Xh(Z)) = P [Id®h] with [[d®h|(X, Z) := Xh(Z) the expectation of
XWZ) ={f(Z) + e}h(Z) w.rt. the joint distribution F; of (X, Z), where E;[¢h(Z)] = 0 and
hence, E¢[Xh(Z)] = Ef[f(Z)h(Z)] = A(fh) = (f, h)L2. Assuming an i.i.d. sample (X;, Z;),
i € [1,n], from P, we denote by P*" its joint product probability measure. Let Y = (V},),cz2 be
the stochastic process on L? given for each h € L? by Y}, := P/ [ld®h] := n~1 Y7 | X;h(Z;).
Obviously, the mean function y of Y satisfies pu(h) = E(Y),) = Ef[Xh(Z)] = (f, h)r2 and
hence, Y}, = (f,h)r2+ \%Wh where W), := n'/?(P} [Idwh] — P, [Id®h]) is centred. The stochas-

tic process W = (Wh, h € L?) of error terms admits a covariance function given for h, i/ €
L? by Cov(Wy, Wy) = B ([ldoh|[ldoh’]) — P [IdeA]PB [Idoh/] = Cov(Xh(Z), Xh (Z)) =

0'3 <h, h,>L2+<Mf h,, My h,>L2—<H{]1[0’1]}Mf h, My h/>L2 = 0’? <h, h,>L2+<Mf H{Lﬂ[o,u}Mf h, h/>L2 —

(Trh, W)z with Ty = 021dpe +MfH{L]1[O 1]}Mf, and hence, W ~ £(0,I) and consequently,

36 Statistics of inverse problems



4.1 Stochastic process on Hilbert spaces Chapter 4 Statistical inverse problem

Y =f+ W~ £g(f 1) =

§4.1.6 Definition (White noise process on H). Let Y := (Y}, h € H) be a stochastic process on
H. If {Y,,u € U} for an ONS U in H is a family of K-valued, independent and identically
£(0,1)-distributed r.v.’s, i.e., PV = @,,PY = ®,,£(0,1) =: £54(0, 1), then we write
shortly II;Y ~ £24(0,1) and call II,;Y" a white noise process on U. If IT;;Y for any ONS U is
a white noise process on U then we call Y a white noise process on H. O

§4.1.7 Remark. Considering in example §4.1.4 or §4.1.5 the centred stochastic process W=
(Wh,h € L?) of error terms we note that generally there does not exists an ONB ¢/ in L? such

that 1[I,V is a white noise process on U. O

§4.1.8 Property. LetY := (Y}, h € H) be a stochastic process on H admitting an expectation
py € H and a covariance operator I' € £(H), i.e, Y ~ L£(uy,D). If there exists an ONB
U in H such that 11,;Y is a white noise process on U, i.e., II,;Y ~ £54(0,1). Then we have
py =0 € Hand T = Idy since py = Y, (v, wau = Yo, EYy)u = 0 and (I, )y =
> wwren (W Yalu, Wy, Jm = D20, et Julu, u)m(, Ju = (-, )u. Consequently, for
each ONBV in H the rv.’s {Y,,v € V} are pairwise uncorrelated. O

§4.1.9 Definition (Gaussian process on H). A stochastic process Y = (Y}, h € H) on H with
mean function p and covariance function cov is called a Gaussian process on H, if the family
of finite-dimensional distributions {IP’H“ YUCH ﬁnite} of Y consists of normal distributions,
that is, 1T;;Y = (Y, )uey is normally distributed with mean vector (p(u)),ey and covariance
matrix (cov(u,u’))y wey. We write shortly Y ~ 9(p, cov) or Y ~ 9(py, ), if in addition
there exist an expectation py € H and a covariance operator I' € Z(H) associated with Y.
The Gaussian process Y ~ 9(0, (-, -)u), or equivalently Y ~ 9(0, Idy), with mean 0 € H and
covariance operator Idy is called iso-Gaussian process or Gaussian white noise process on H.

O

§4.1.10 Property. LetY := (Y, h € H) be a Gaussian process on H admitting an expectation
py € Hand a covariance operator I € £ (H), i.e., Y ~ N(uy, ). If there exists an ONB U in
H such that 11,,Y is a Gaussian white noise process on U, i.e., I11,;Y ~ ‘ﬁ®“(0, 1), then due to
§4.1.8 we have Y ~ N(0, Idy) and for each ONS'V in H the standard normally distributed r.v.’s
{Y,,v € V} are pairwise uncorrelated, and hence, independent, i.e., I1,)Y ~ NV (0, 1). O

§4.1.11 Definition (Random function in H). Let (H, (-, -)x) be an Hilbert space equipped with its
Borel-o-algebra Ay, which is induced by its topology. An &7-%y-measurable map Y : (2 — H
is called an H-valued r.v. or a random function in H. O

§4.1.12 Lemma. LetU = {u;,j € N} be an ONS in H. There does not exist a random function
Y in H such that 11,,Y is a Gaussian white noise process on U.

§4.1.13 Proof of Lemma §4.1.12. For j € Nand r > 0 define A} := {h € H : [(h, uj)u| <1},
and A%, = N{Aj,j € N}. Obviously, it holds H = lim,_,. A7, and hence, 1 = P¥(H) =
lim, o, PY (A7) for each random function Y in H. Assume that there is a Gaussian white
noise process II;;Y, then for each n € N it holds PV (AL ) < PY(N{A},j € [1,n]}) =
[PYer (A7)|" = |P(|Z| < r)|" where Z ~ DM(0,1). Thereby, as n — oo we get PY (A7) = 0
for all » > 0 and hence it follows the contradiction P¥ (H) = 0, which completes the proof. o
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§4.1.14 Properties. Let Y be a random function in H.

(i) For each h € H, the map (-, h)y : H — K is continuous and hence, (Y, h)y a K-valued
rv.. Thereby, (Y, @)y := {(Y, h)u, h € H} is a stochastic process on H. If (Y, @) admits a
mean function |1 and a covariance function cov, then it is, respectively, linear, i.e., p/(ah +
h') =E(Y, ah+h)u) = au(h)+u(h'), and bilinear. If in addition p and cov are bounded,
then there exists an expectation E(Y) € H and a covariance operator I € £ (H) such that
E(Y, h)ym) = (E(Y), h)ym and Cov({Y, h)m, (Y, h')u) = (Th, h')u for all h, b/ € H.

(i) IFE(|Ylg) < oo, then E|(Y, h)yu| < ||hllgE(||Y ||g) for each h € H due to the Cauchy-
Schwarz-inequality §2.1.3, which in turn implies, that (Y, e)y admits a bounded linear
mean function 1 and hence, there exists an expectation E(Y') € H.

(i) FE(|Y|2) < oo, then Var((Y, h)z) < E|(Y, h)u|? < ||h||ZE(||Y||Z) which in turn im-
plies | Cov((Y, hym, (Y, W')w)| < [Var((Y, hym) Var((Y, ')e)]2 < |[Allg [P [l= E(IY [I7).
Thereby, (Y, @)y admits a bounded, bilinear covariance function cov and hence, there ex-
ists a covariance operator I' € £(H). Moreover, I' € A (H) since for any ONB U
in H we have ) ., (Pu,uym = >, o, Var((Y,u)m) = E>° o, (Y — E(Y),u)u|* =
EY —E(Y)llg D

§4.1.15 Notation. Let Y be a random function in H. If the associated stochastic process (Y, )y
admits an expectation p € H and a covariance operator I' € .Z(H), then we write Y ~ £(u, )
with a slight abuse of notations. m

§4.1.16 Example. Let X be a random function in a real Hilbert space (I, (-, -)g) having a finite
second moment, i.e., E | X |2 < oo. We say that X is centred if for all h € H the real valued
random variable (X, h)y has mean zero. Moreover, the linear operator I" : H — H defined by
(Thy, ho)g == E[(h1, X)u(X, ho)u| for all hy, hy € H belongs to .4 (H) and satisfies tr(I") =
E || X||?. Obviously, if the random function X is centred then X ~ £(0,T), i.e., ' is the
covariance operator associated with X. In this situation the eigenvectors {u;,j € J} of I
associated with the strictly positive eigenvalues {);, 7 € J} form an ONS in H, and hence the
corresponding generalised Fourier series transform I/ f = [f] is a partial isometry. Furthermore,
given the ONS of eigenfunctions the (infinite) matrix representation [['] = [V,] is diagonal, i.e.,
for all m € M, [['],, = [Vi].. is a | J,,|-dimensional diagonal matrix with entries ()\;);e7,,. O

§4.1.17 Notation. Let Y = (Y(h,g),h € H,g € G) be a stochastic process on H x G,
that is, a family {Y(hy), h € H,g € G} of K-valued r.v.’s on a common probability space
(2,27, P). We call Y centred if E(Y;,4) = 0 forall h € Hand g € G. Moreover, if
Y admits a covariance function, i.e., cov((h1, g1), (ha, g2)) = Cov(Yn, g1): Y(hsgs)), for all
hi,he € Hand gy, go € G, then we write Y ~ £(0, cov), for short. Furthermore, if ITy;x1)Y =
(Y(hy), hel,ge V) for an ONS ¢/ and V in H and G, respectively, consists of K-valued,
independent and identically £(0, 1)-distributed r.v.’s, i.e., Pl = @, ®,cp PV =
Queu Buey £(0,1) = £2LV)(0,1), then we write shortly )Y ~ £2@)(0,1) and
call IIy1x1)Y a white noise process on U x V. If Ilyxy)Y for any ONS ¢/ in H and V
in G is a white noise process on U x V then we call Y a white noise process on H x G.
Note that for a white noise process Y ~ £(0,cov) on H x G holds cov((hi, g1), (he,g2)) =
> icq 2onex (s wi)uluy, hayu(gr, vi)e vk, 92)c = (b1, ha)u(g1, g2)c for any hy, hy € H and
g1, 92 € G and we write Y ~ £(0, (-, )m (-, -)g). A centred stochastic process Y ~ £(0, cov) on
H x G is called a Gaussian process on H x G, if the family of finite-dimensional distributions
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{IP’H(”XWY,L{ CH,YcG ﬁnite} of Y consists of normal distributions, that is, IIzx)Y =
(Y(u’v),u e Uv € V) is normally distributed with mean vector zero and covariance ma-
trix (cov((u,v), (v, v")))uwervey. We write shortly Y ~ 91(0, cov). If in addition cov =
(-, m(-, )c, then Y is a white noise process and we call Y ~ (0, (-, )u(-,)c) a Gaussian
white noise process on H x G. O

4.2 Statistical direct problem

Given a pre-specified ONS U/ = {u;,j € J} in H we base our estimation procedure on
the expansion of the function of interest f € U = lin(). The choice of an adequate ONS
is determined by the presumed information on the function of interest f formalised by the
abstract smoothness conditions given in §2.1.18. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far
beyond the scope of this lecture.

$4.2.1 Definition (Sequence space model (SSM)). Let W = (Wh, h € H) be a centred stochastic
process on M, and let n € N be a sample size. The stochastic process f = f+ fW on

H is called a noisy version of f € H and we denote by P/ its distribution. If W admits a
covariance operator (possibly depending on f), say I, then we eventually write fw £(f, %Ff),
or ]?N £} for short. Given the pre-specified ONS U = {u;, j € J} in H considering the family
of K-valued r.v.’s {[W]J = Wuj JeJ } the observable quantities take the form

Ay = (Fougs + =W, = [f), + =0V], jed. (4.1)

-~

We denote by B7:, or £([f], £[I}]), the distribution of the observable sequence [ f] ([f];)jes

= (l
of K-valued r.v.’s which obviously is determined by the distribution F;*, or £( f ,=17), of f The
reconstruction of the sequence [f] = ([f];);es and whence the function f = U *[ | € U from

the noisy version [f] ~ R, is called a (direct) sequence space model (SSM). O

§4.2.2 Example (Gaussian sequence space model (GSSM)). Given a Gaussian white noise process
W= _ (Wh, h € H) ~ 9%(0,1dg) on H as defined in §4.1.9 consider a noisy version F=f+
\%W ~ N(f, + Idg) = N} of a function f € H. Given a pre-specified ONS U = {u;,j € J}
in H the observable quantities take the form [f], = [f], + \/%7 [W],,j € J, where the error terms
[W1,,j € J, are independent and (0, 1)-distributed, i.e., [W] = ([W],);es ~ NET(0,1) =
2M(0,1d), and thus, [f] = ([f],) jeg is a sequence of independent Gaussian random variables
having mean [f]; and variance n™ %, i.e., [fA] ~ N([f], 2 Idy) = N},. The reconstruction of the

sequence | f] and whence the function f = U*[f] € U from a noisy version [f] ~ N7}, is called
a Gaussian (direct) sequence space model (GSSM). O

§4.2.3 Example (Non-parametric density estimation §4.1.4 continued). Forn € N consider ani.i.d.
sample X; ~ P, i € [1,n], where P admits a Lebesgue-density p € L? = L?([0, 1]) and P*"
denotes the associated joint product distribution. Consider the centred stochastic process W =
(Wi, h € L?) ~ £(0,T) of error terms with b = My — Mo Iy, 3 Me as introduced in §4.1.4.
The non-parametric estimation of a density p € L? from an i.i.d. sample of size n may thus be
based on the noisy version p = p + \FW £(p, 2 I+ ) of the density of interest p. In other

Statistics of inverse problems 39



Chapter 4 Statistical inverse problem 4.3 SIP: known operator

words, given a pre-specified ONS {Uj,] € J} the observable quantity [p] = ([P],)jes ~ BY
takes for each j € J with [I/], : W the form [p]; = [p];, + \%[W] = Py u;. Consequently,

non-parametric estimation of a dens1ty can be covered by a sequence space model, where the
error process W, however, is generally not a white noise process. For convenient notations let
{T10,} U {u;,j € N} be an ONB of L? for some ONS & = {u;,j € N}. Keeping in mind
that p is a density, it admits an expansion p = Lo + U*[p] = L1y + > ;cn[p]u; where
p] = Up = ([p];)jen With [p]; = Ep, (u;(X)) for j € Nis a sequence of unknown coefficients.
Consequently, f := Ilyp = U*[p] is the function of interest. Given the pre- specified ONS U

the observable quantity [p] = ([D],)jen ~ P, takes for each j € N the form [p];, = P'u;. Note
that the distribution B?, of the observable quantity [p] is determined by the distribution P®" of
the sample X1, ..., X,,. O

§4.2.4 Example (Non-parametric regression §4.1.5 continued). Consider (X, Z) ~ P obeying
E(X|2) = f(Z) and Z ~ 4]0, 1] with f € L* = ([0, 1]). Given an i.i.d.. sample (X;, Z;) ~
P¢, 1 € 1, n], their joint distribution is denoted by ]P’®”. Consider the centred stochastic process
W = (Wy,h € L?) ~ £(0,I}) of error terms as introduced in §4.1.5. The non-parametric
estimation of a regression function f € L? from an i.i.d. sample of size n may thus be based
on the noisy version f = f + \/LEW ~ £(f, %Ff) of the regression function f. In other words,
given a pre-specified ONS U/ = {u;,j € J} the observable quantity [f] = ([ﬂj) jeg ~ BY
takes for each j € J the form [f], = P} [Id®wu,]. Consequently, non-parametric regression can

also be covered by a sequence space model, where the error process 1/, however, is generally
not a white noise process. O

4.3 Statistical inverse problem: known operator

Consider the reconstruction of a solution f € H of an equation g = T'f where the linear
operator 7' € Z(H, G) is known in advance. For ease of presentation we restrict ourselves
to two cases only. First, we suppose 7' € T(H) C Z(H), i.e., T is compact and strictly
positive definite, which is a rather mild assumption keeping in mind that f is a solution of
the normal equation 7*g = T*T'f and that T*T is strictly positive definite and compact if
T is injective and compact. Secondly, we assume 7" € Sw(H,G) C Z(H,G) admitting a
singular system {(s;, u;,v;),j € J} with eigenfunctions given by an ONS U = {u;,j € J}
and V = {v;,j € J} in H and G, respectively. In both cases the same pre-specified ONS
U = {uj,j € T} in H is used to formalise the smoothing properties of the known operator
T and the presumed information on the function of interest f given by an abstract smoothness
condition, f € F[; as in Definition §2.1.18. In the first case the smoothing properties of the
known operator I' are characterised by a link condition, T € ’Tf, as in Definition §2.2.50.
We shall stress, that in this case 7' is generally not diagonal w.r.t. U, in other words, 1" does
generally not belong to & (see Definition §2.2.34). In the second case the choice of the ONS U/
and V is determined by the spectral decomposition of T' € S%,, as in Definition §2.2.50.

§4.3.1 Definition. Given 7" € 7 (H) consider the reconstruction of a solution f € H from
g=Tf c H. Let W = (Wh, h € H) be a centred stochastic process on H, and let n € N
be a sample size. The stochastic process g = T'f + —W on H is called a noisy version of
g =T f € H and we denote by P} its distribution. Keeplng in mind that 7" is known in advance
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we may suppress the dependence of P, on 7" and write ", for short. If W admits a covariance
operator (possibly depending on g = T'f), say I'rs, then we eventually write § ~ £(T'f, LIxy),
or g ~ £}, for short. The reconstruction of f € H from a noisy version g ~ P is called a
statistical inverse problem. Given the pre-specified ONS U/ = {u;,j € J} in H considering
the family of K-valued random variables {[W], := W,,., j € J} the observable quantities take
the form

G, = (Tf,u)u+ W, = [Tf], + =W, jeJ. 4.2)

We denote by Bt or £([g], =[I}]), the distribution of the observable sequence [g] = ([g],);cs of
K-valued r.v.’s which obviously is determined by the distribution B, or £(T'f, %FT 7),of g. O

§4.3.2 Example (Non-parametric inverse regression). Given T € T (L?([0,1])) let the depen-
dence of a real r.v. X on the variation of an explanatory random variable Z be characterised
by X = [T'f|(Z) + ¢, where f is an unknown function of interest and ¢ is an error term. The
reconstruction of f from a sample of (X, 7) is called non-parametric inverse regression. For
convenience, we assume that (i) the regressor Z is uniformly distributed on the interval [0, 1],
ie., Z ~ U0, 1]; (ii) the centred error term ¢ := X — [T'f|(Z), i.e., Epf(e) = 0, has a finite
second moment ag = Ep f(52) < 00; (i11) € and Z are independent; (iv) the inverse regression
function f is square integrable, i.e., f € L? := L?([0,1]), and hence g := T f € L?. Given
h € L? denote by E,(Xh(Z)) = B[ldoh] with [Id®h|(X, Z) := Xh(Z) the expectation of
Xh(Z) = {9(Z) + e}h(Z) w.rt. the joint distribution B, of (X, Z), where E,[ch(Z)] = 0
and hence, E,[Xh(Z)] = E,;lg(Z2)h(2)] = Agh) = (9,h)r2 = (T'f, h)r2. Assuming an
i.i.d. sample (X;, Z;), i € [1,n], from B, we denote by *" its joint product probability mea-
sure. Consider as noisy version of ¢ = T'f the stochastic process g on L? given for each
h € L? by gn := B'[ldeh] := n~t 3" | X;h(Z;). Obviously, the mean function u of §
satisfies pu(h) = Ey(gn) = E,[Xh(Z)] = (I'f,h)r2 and hence, g, = (I'f,h)r2 + \%Wh
where W), := n'/2(B; [ldoh] — B[Idwh]) is centred. Keeping in mind Example §4.1.5 the
stochastic process W = (_Wh, h € L?) of error terms admits a covariance function given for

hW € L* by Cov(Wi, Wi) = (Lh,W)p2 with Tr = o?Idpe +MITfy M, de., T~

£(0,T%) and consequently, § = T'f + 2W ~ £(T'f,1Tv,) = £7,. Note that the error terms
{Wh, h € L*} are centred, and generally not identically distributed. In other words, the re-
construction of f leads to a statistical inverse problem, where the error process W is gener-
ally not a white noise process. Given a pre-specified ONB ¢/ in L? and the R-valued ran-
dom variables [W]J = Wuj, j € J, the observable quantities take for each j € J the form
G, = (Tfowg)ie + =W, = [Tf], + 5[], = By [1dou,) and we denote by £([g], 2[L,))
the joint distribution of the observable quantity [g] which is obviously determined by the distri-
bution B*" of the i.i.d. sample (X;, Z;), i € [1,n]. O

§4.3.3 Example (Gaussian non-parametric inverse regression). Consider a Gaussian white noise
process W = (Wh,h € H) ~ 91(0,1dg) on H as defined in §4.1.9. Given T' € T (H) the
reconstruction of a function f € H based on a noisy version g = T'f + \/LEW ~N(Tf, L 1dy) =
M7, is called Gaussian non-parametric inverse regression. Considering the projection onto
an ONB U = {u;,j € J} of H the observable quantities take consequently the form [g], =
Tf]; + \/LE[W]], j € J, where the error terms [WW],,j € J, are independent and (0, 1)-

distributed, i.e., [W] = ([W],)jes ~ MNM®7(0,1) = N(0,1dy), and thus, [g] = ([7],);c7 is a
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sequence of independent Gaussian random variables having mean [T f], and variance n™ 1, i.e.,

9] ~ My = N(Tf],  1ds). 0

§4.3.4 Definition. GivenT" € S.(H, G) admitting a smgular system {(sj,u;,v;),7 € T} con-
sider the reconstruction of f € H from a noisy version g = g + fW ~ B of g =T f, which
is a statistical inverse problem as in Definition §4.3.1. A projection onto the ONS of eigen-
functions U = {u;,j € J}and V = {v;,j € J} allows to write [g], = [T'f], = (T'f,vj)c =
s;(f,uj)m = s;[f]; for all j € J. Considering the family of K-valued random variables
{[W], :== W,,,j € J} the observable quantities take the form

9 =5l + =W, jed. (4.3)

We denote by BT, or £(s[f], £[I}-/]), the distribution of the observable sequence [g] = ([g];) es
of K-valued r.v.’s which obviously is determined by the distribution 2", or £(g, %Fg), of g. The
reconstruction of the sequence [f] = ([f];);jes and whence the function f = U*[f] € U =
lin(U) from a noisy version [g] ~ PP, is called an indirect sequence space model (iSSM).
Recall that it is called a (direct) sequence space model (see §4.2.1), if the sequence of singular
values s is equal to one, i.e., 5; = 1, forall j € J. In particular, if 7" € Suw (H, G) then the
sequence s has zero as an accumulation point and hence, the indirect sequence space model is
ill-posed. O

§4.3.5 Example (Gaussian indirect sequence space model (GiSSM)). Given a Gaussian white noise
process W = (Wg, g € G) ~ 9(0,1dg) on G as defined in §4.1.9 consider a noisy version
=Tf+ \/_EW ~ NTfL1dg) = N of g = Tf € G. Given T € Suw(H,G) the
reconstruction of the sequence [f] = ([f];)jes and whence the function f = U*[f] € U from

observable quantities (4.3), where the error terms {[W] JeJ } are independent and 91(0, 1)-
distributed, i.e., [W] = ([W],)jes ~ N®7(0, 1), is called a Gaussian indirect sequence space
model (GiSSM). Recall that it is called a Gaussian (direct) sequence space model (GSSM) (see
Example §4.2.2), if the sequence of singular values s is equal to one, i.e., s; = 1, forall j € J.
O

§4.3.6 Example (Circular deconvolution with known error density). Let X be a circular random
variable whose density p we are interested in, and ¢ an independent additive circular error with
known density ¢. Denote by Y = X +¢ the contaminated observation of X and by g its density.
We will identify the circle with the unit interval [0, 1), for notational convenience. Thus, X and
¢ take their values in [0, 1). Let |- | be the floor function. Taking into account the circular nature
of the data, the model can be written as Y = X 4+ ¢ — | X + ¢ or equivalently Y = X + ¢
mod [0, 1). Then, we have g = p ® g where ® denotes circular convolution as in Examples
§2.2.4 (ix) and, hence g = C,p where the convolution operator C, € &(L*([0,1))) is compact
(see §2.2.35). If the error density ¢ and thus the operator C; are known in advance then the
reconstruction of the density p given a sample from g is called circular deconvolution with
known error density. Consider the exponential basis {e;} ., in L*([0, 1)) introduced in §2.1.6
(ii) and let [h]; = (h, €;) 12, j € Z, denote the Fourier coefficients of h € L*([0,1)). Applying
the convolution theorem (see §2.2.35) we have [g];, = [q];[p], with [g];, = E,e;(=Y), [a], =
Eqe;j(—¢) and [p]; = Epe;(—X) for all j € Z. Assuming an iid. sampleY- ~gi=1,...,n,
as in Example §4.2.3 consider a noisy version g = g + IW £(g Fg) of the density g w1th

I, = My — Molljy,,,3Ms as introduced in §4.1.4 where gj, = Ph=1%", h(Y;) for any
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h € L?. Given an arbitrary ONS {Ug,] € J} the observable quantity [g] = ([g],)jes ~ B
takes for each j € J with [W], := W the form [g];, = [g]; + \/LE[W] = P,'w;. Consequently,

given the pre-specified exponential ONB {ej,7 € Z} and the noisy version g of g = C,p the

observable quantities are of the form [g], = [q),[p];, + \/LE[W]J for all j € Z, and thus, the

reconstruction of p is an ill-posed indirect sequence space model where the error process W,
however, is generally not a white noise process. For convenient notatations let Z, := Z\{0} and
U = {ej,j € Lo} where {eg = 111} U {ej,j € Z,} is the exponential ONB in L?. Keeping
in mind, that p is a density, it admits an expansion p = 1y 1) + U*[p] = Ljo1) + >y, [Pli€;
where [p] = Up = ([p);)jez, With [p]; = Epe;(—X) for j € Z, is a sequence of unknown
coefficients. Consequently, f := Ilyp = U*[p] is the function of interest. Given the pre-
specified ONS U/ the observable quantity [g] = ([g],);ez, ~ B takes for each j € Z, the form
[9]; = Py'e;. Note that the distribution P of the observable quantity [g] is determined by the
distribution B®" of the sample Y7, . . ., Yn However, if the error density ¢ is known in advance,
then P and B*™ are uniquely determined by p. O

4.4 Statistical inverse problem: partially known operator

Consider the reconstruction of a solution f € H of an equation g = T'f where the linear
operator 7" belongs to S (H, G) C Z(H, G) for some pre-specified ONS of eigenfunctions
U={u;,j € J}andV = {v;,j € J} in H and G, respectively. In other words the operator 7’
admitts a singular system {(s;, u;,v;), j € J } where the eigenfunctions are known in advanced.
However, there is only a noisy version § = (5;);c7 of the sequence of the singular values s
available, and hence, the operator 7' is called partially known. In this situation the same pre-
specified ONS U = {u;,j € J} in H is again used to formalise the smoothing properties of
the known operator 7" by a link condition, T' € S4.. as in Definition §2.2.50, and the presumed
information on the function of interest f given by an abstract smoothness condition, f € [;; as
in Definition §2.1.18.

§4.4.1 Definition. Assume a statistical inverse problem g = T'f + \/LEW for some centred
stochastic process W = (Wh, h € H) on H, and sample size n € N, ie., g ~ B or g ~
L(Tf, +Trs) if W admits a covariance operator I'r;. Suppose further that T € Su(H, G) C
Z(H, G) for some pre-specified ONS of eigenfunctions i/ = {u;,j € J}andV = {v;,j € J}
in H and G, respectively. Given a centred sequence [B] = ([B],);cs of K-valued r.v.’s and a
sample size k € N for " € Sw(H, G) admitting a sequence of singular values s the sequence
5= (5;)jeg =5+ \/LE [B] ~ B is called a noisy version of s. If [ 3] admits a covariance function
(possibly depending on s), say covs, then we eventually write § ~ £(s, 1 covs), or s ~ £7' for
short. The reconstruction of a solution f € H from g = T'f € G given a noisy version g ~ BF,
and s ~ ¥ of g and of the singular values s of T' € S.. (H, G), respectively, is called statistical
inverse problem with partially known operator. Projecting the inverse problem onto the pre-
specified ONS ¢/ and V and hence obtaining K-valued random variables { [W] = va, ke IC}
the observable quantities take the form

G, = 5[/, + JzW], and §;=s;+ Z[B],, jeJ. (4.4)

We denote by B, ‘> o £(s[f], 2[Ir,]), the distribution of the observable sequence [g] = ([q];)jes
of K-valued r.v.’s which obviously is determined by the distribution ;. The reconstruction of
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the sequence [f] = ([f],)jes and whence the function f = U*[f] € U = lin(U) from the
noisy versions [g] ~ P, and s ~ B" is called an indirect sequence space model with noisy
operator. O

§4.4.2 Example. Consider as in §4.1.9 Gaussian white noise processes W = (Wg, g€ G)~
N0, (-,-)g) and [B] = ([B];,j € J) ~ N®7(0,1) on G and (>, respectively. Given T €
S.v(H) the reconstruction of a function f = U*[f] € U = lin(U/) based on observable quanti-
ties [g] = s[f] + \%[W] ~N(s[f], 2 Ids) = N, and s = 5 + W[W] ~N(s, £ 1ds) = NF is
called Gaussian indirect sequence space model with noise in the operator. O

§4.4.3 Example (Circular deconvolution with unknown error density). Consider a circular decon-
volution problem §4.3.6 where neither the density ¢ = C,p = g ® p of the contaminated
observations, nor the error density ¢ is known in advance. The reconstruction of the density
p based on two independent samples of independent and identically distributed random vari-
ables Y; ~ g,i € [1,n],and g; ~ q, i € [1,k], of size n € N and k € N, respectively, is
called a circular deconvolution problem with unknown error density. Consider a noisy version
g ~ £(g,2Iy) of g = C,p as defined in §4.3.6, where g, = B'h = 137" | h(Y;) for any
h € L In addltlon given the i.i.d. sample ¢; ~ q, i € [[1, k], 1ntr0duce as in Example §4.2.3
a noisy version g = @ + fB £(q, 1Tu) of the density ¢ with T = Ma — Mallgy, ;3 Ma

as introduced in §4.1.4 where @, = Pih = P’ ZZ 1 (51) for any h € L?. Keeping Example
§2.2.35 in mind the convolution operator C, belongs to &(L*([0,1))) w.r.t. the exponential
basis {e;,j € Z} in L*([0,1)) introduced in §2.1.6 (ii). In other words, any convolution op-
erator C, has an eigen system {([q];,¢;),j € Z} and for j € Z we denote by [q]; := Pie;,
the noisy version of [q], = Eqe;(—¢) associated with §. Consequently, given the pre-specified
exponential ONB {e;, j € Z} and the noisy version g and @ of g = C,p and q, respectively,

(o1

the observable quantities are of the form [g], = [q];[p], + \}[W] and [q];, = [q];, + \/LE[B]J-
for all j € Z, and thus, the reconstruction of p is an ill-posed indirect sequence space model
with partially known operator, where the error processes W and B, however, are generally
not white noise processes. For convenient notatations let Z, := Z\{0} and U = {e;,j € Z,}
where {ey = 11 } U {e;,j € Z,} is the exponential ONB in L?. Keeping in mind, that p
and q are densities, they admit an expansion p = Ly 1) + U*[p] = 1) + >,z [Pl;e; and
q = Lpg + Utlg] where [p] = Up = ([p;)jez, with [p], = Epe;(—X) for j € Z, is a
sequence of unknown coefficients, and hence, f := Ilyp = U*[p] = U*([g]/[q]) is the func-
tion of interest. Given the pre-specified ONS U/ the observable quantity [g] = ([g],) ez, ~

and [@] = ([d],)jez, ~ PF, respectively, takes for each j € Z, the form [g], = B'e; and

[@); = P.'€;. Note that the d1str1but1on P and ¥ of the observable quantity [g] and [q] is deter-
mined, respectively, by the distribution B*" and P®* of the sample Y1, ..., Y, andey, ..., c¢. O

4.5 Statistical inverse problem: unknown operator

Given a linear operator 7" belonging to .Z(H, G) consider the reconstruction of a solution
f € H of an equation g = T'f based on a noisy version g and T of g and T, repsectively, which
we formalise next. In this situation the same pre-specified ONS U = {u;,j € J} in H is again
used to characterise the smoothing properties of the unknown operator 7" by a link condition,
T € 7: as in Definition §2.2.50, or its generalisation, T &€ ICu(ff , as in Definition §3.3.17,

and the presumed information on the function of interest f given by an abstract smoothness
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condition, f € [F]; as in Definition §2.1.18.

§4.5.1 Definition. Given a centred stochastic process B = (B ng),h € H,g € G) onH x G
and a sample size m € N the stochastic process on H x G for h € Hand g € G sat-
isfying T(h’g) = (g9, Th)g + fB(h g)» OF T =T+ fB for short, is called a noisy ver-
sion of T € Z(H,G). We denote its distribution by B, If B admits a covariance func-
tion (possibly depending on 7T'), say covy, then we eventually write T ~ £(T, + covT) or
T ~ £ for short. The reconstruction of a solution f € H from g=Tf € (G given a
noisy version § = ¢ + TW ~ B of g and a noisy version T =T+ TB ~ B of
T is called statistical inverse problem with unknown operator. Given a pre-specified ONS

= {uj,j € J}i 1n Hand V = {v, k € K} i 1n G considering the families of K-valued ran-
dom variables {[W], := W, ke K} and {[B], ; = Bu )k € K,j € J} the observable
quantities take the form

(T)..; = (os, Tj)e + Jz Bluywy = [Ty + (B, j€T k€K o (45)

We denote by BZ,, or £([T'f], 2[I,]), and BY,, or £([T], +[covr]), the distribution of the ob-
servable sequence [g] = ([g]k)kGIC and the (infinite dimensional) matrix [7] = ([ﬂk,j>jej kek

of K-valued r.v.’s which obviously is determined by the distribution B and B} of § and T,
respectively. O

§4.5.2 Example. Let T' € 7 (H) and {u;, j € N} be an ONB in H not necessarily correspond-
ing to the eigenfunctions of 7". The reconstruction of a function f € H based on noisy versions
g = Tf—i—\/LEW and T = T+\/LEB of g =Tf € Hand T, respectively, where W ~ (0, (-, -}g)
and B ~ N(0, (-, )u(-, -)¢) are Gaussian white noise processes on IH and H x H, is called Gaus-
sian non-parametric inverse regression with unknown operator. Projecting onto {uj,j € T}
the observable quantities take the form [g] lg]; + W[W] and [T),, = [T],. + W[B]M,

for j,k € J, where the error terms { I, Bl d, k € N} are independent and 91(0, 1)-
distributed. O

§4.5.3 Example (Non-parametric functional linear regression). Let X be a random function taking
its values in a separable Hilbert space (H, (-, -)n). For convenient notations we assume that
X ~ £(0,T) with tr(T') = E || X||Z < oo (see Example §4.1.16). The linear relationship
between a real random variable Y and the variation of X is expressed by the equation Y =
(f, X)m + ¢, with an unknown slope function f € H and a real-valued and centred error term €.
The reconstruction of the slope parameter f given a sample of (Y, X) is called non-parametric
Jfunctional linear regression. We suppose that the regressor X is uncorrelated to the random
error ¢ in the sense that E(e(X, h)y) = 0 for all ~ € H. Multiplying both sides in the model
equation by X and taking the expectation leads for any ~ € H to the normal equation (g, h)g :=
E(Y (X, hu) = E((f, X)u(X, hjn) = (I'f, h)u, or g = E(YX) = E((f, X)uX) = E(X ®
X)f = I'f, for short, where the cross-correlation function g belongs to H. Let us denote by
Fr the distribution of (Y, X). Assuming an iid. sample {(Y;, X;),i =1,...,n} of (¥, X), it
is natural to consider the estimators g L Zl 1 YX and T = 1 =y X ® X; of g and
I" respectively. Note that g = g + W with T = f Yo 1(YX g)andT =T + fB
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with B = \/iﬁ S (X; ® X; — T') is a noisy version of g and T, where T/ and B are centred
but generally not white noise processes. We denote by £7'; and £ the distribution of g and T,

respectively. Given the noisy versions g of g = I" f and T of I the reconstruction of f is hence
a statistical inverse problem with unknown operator where the observable quantities given an
ONB {u;,j € J} in H take the form [g], = [I'f], + =[W]. and [I], ; = [T}, + J=[Bl;

with [W], = \/Lﬁ >y {YilXili — [T /1) and [Bl, ; = \/Lﬁ > i {IX] Xl — [Ty, } for all
J5ked. O

§4.5.4 Example. A structural function f characterises the dependency of a real response Y on
the variation of an RP-valued endogenous explanatory random variable X by Y = f(X) + ¢
where E[e|X] # 0 for some error term . In other words, the structural function equals not the
conditional mean function of Y given X. In non-parametric instrumental regression, however,
a sample from (Y, X, Z) is available, where Z is an additional R?-valued random vector of
exogenous instruments such that Ele|Z] = 0. It is convenient to rewrite the model equations
in terms of an operator between Hilbert spaces. Therefore, let us first recall the Hilbert spaces
(L%, (-, -)z2) and (L%, (-, )12 ) defined in §2.1.4 (v). Taking the conditional expectation w.r.t.
the instrument Z on both sides in the model equation yields g := E[Y'|Z] = E[f(X)|Z] =:
K f where the regression function g belongs to L% and K is the conditional expectation of
X given Z assumed to be an element of .7 (L%, L%) (compare §2.2.4 (vii)). Keep in mind
that for u € L% and v € L7 we have (g,v);z = E(Yv(Z)) = B[ldov] and (v, Ku)pz =
E(u(X)v(Z)) = Bi[u ® v] where [u ® v](X,Z) := u(X)v(Z). Assuming an iid. sample
{(Y;, X4, Z;),i=1,...,n} of (Y, X, Z), it is natural to consider a noisy version g and K of g
and K|, respectively, for u € L% and v € L% given by g, = P [Idev] :== n~1 3" Yiu(Z;) =
(Kf,0)13 + 2=Wy and (K)y, = Bi[u® 0] =07 S0, u(Xi)o(Z) = (v, Ku)z + J=Buy
where W, := n'/?(P) [Idow] — B[Idewv]) and By, := n'/?(Pi[u ® v] — Bc[u ® v]) are centred.
Note that W and B are centred but generally not white noise processes. Given the noisy versions
gof g = Kf and K of K only the reconstruction of f is a statistical inverse problem with
unknown operator where the observable quantities given an ONB U = {u;,j € N} in L% and

V = {v;,j € N} in L take the form [g], = [Kf]; + \/LE[W]J and [K],, = [K],. + \/LE[B]M

with [IW], = ij and [B], , = By, v, forall j, k € N. O
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Chapter 5

Regularised estimation

5.1 Statistical direct problem

Consider the reconstruction of a function f € U from a noisy version fw [P as in a sequence
space model (SSM) given in §4.2.1.

5.1.1 Orthogonal series estimator

We estimate the function of interest f € H using a regularisation by dimension reduction.
To be more precise, let i = (u;);c7 be an ONS in H and for a nested sieve (7, )menm in
J let (U,,)mem be its associated nested sieve in U. For f = U*[f] € U we consider its
orthogonal projection f,, = Iy, f = U*([f]1, ) onto U, by using the sequence of indicators

1, :=(1g,(j))jes (see section 3.3).

§5.1.1 Definition. Given the orthogonal projection f,, = U*([f]1,) of f = U*[f] onto U,,
the estimator f,, = U*([f]17,) is called orthogonal series estimator (OSE) of f based on an
observable quantity |f]. O

Denote by E’ the expectation w.r.t. the distribution I}* of the noisy version f We shall mea-

sure the accuracy of the OSE f,, = U*([f]1, ) of f by its mean squared distance E} 10, (fous )]
where 0 (+,-) is a certain semi metric specified in Definition §3.3.1. Moreover, we call the
quantity B0, (fim, f)[> = BP0, (fm, f)| risk of the estimator f,, = U*([f]17,). In case of

v

a global distance d},(h1, ha) := ||h1 — ha||,, h1, ha € H, for some weighted norm || ||, we call
global H,-risk the associated global risk E?||f,, — f|ls. On the other hand side, in case of a
local distance 0% (hy, hy) := |®(hy — hg)|, hy, hy € D(®), for some linear functional ® we call

st

local ®-risk the associated local risk E}|®(f — f)*.

§5.1.2 Definition. Given a family of OSE’s {fm, m € M} of a function of interest f we call

arate (R3(f))nen, i.e., Ry = o(1), a dimension parameter (m,,),cy and an OSE (fmn)neN,
respectively, oracle rate, oracle dimension and oracle optimal (up to a constant C' > 1), if

CTRy(f) < inf B}, (fu I S EFRL(Fu NI < CRE(S)

for all n € N. Consequently, up to the constant C? the estimator (fmn )nen attains the lower risk
bound within the family of OSE’s, that is, E}[0,,( fm,,, f)|* < C*infep B}, (fm, f)I?. O

§5.1.3 Remark. Consider a family of OSE’s {fm, m € ./\/l} of a function of interest f. Assume
that the risk of the OSE f,,, can be decomposed as follows

0 (Frs )2 = ER0(Frns fin) [P+ [0 (s )P (5.1)
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where E} 0. (fous fm)|2 = 0(1) as n — oo for each m € M, and 0. (frs ) = 0o(1) as
m — oco. Setting Ry (m, f) := max ([0, (fum, f)[*, E}0,(frm: fm)[?) it follows that,

Ry (m, ) < ERo(Fs PP < 2R3 (m, ). (5.2)

Let us select m,, := arg min{Rjy(m, f),m € M} and set Ry (f) := Ry(mn,, f). We shall
emphasise that R3(f) = min{R3(m, f),m € M} = o(1) as n — oo. Observe that for all
§ > 0 there exists ms € M and n; € N such that for all n > ns holds [0, (f;, f)|* < 0 and

E% bisl(fmé, f)? < 6, and whence Rz (f) < Ri(ms, f) < 6. However, using the dimension m,,
it follows immediately

R3(f) < inf BF0(fun, N)I* S EF0,(Fon )

< 2R3(f) < 2 inf Ej

0. (Frs NP (53)

Consequently, the rate (Rg (f))nen, the dimension parameter (11, )nex and the OSE ([, Jnens
respectively, is an oracle rate, an oracle dimension and oracle optimal (up to the constant 2).
However, the dimension parameter m,, and thus the estimator f,, depends on the unknown

function f. O

Considering a sequence space model as in Definition §4.2.1 keep in mind that £([f], £[I}])
denotes the distribution of the observable sequence [ﬂ = ([f]g) jeg of K-valued r.v.’s which
obviously is determined by the distribution £( f, %Ff) of f Here and subsequently, we denote
by v? := (v?)jes and ([I}],.)mem, respectively, the sequence of variances and covariance
matrices associated with [f] ~ L([f], 2], ie., v2 == ], = (u,Tiu)m, j € J, and
[l = (g Bunw)jueg,. m € M. D

§5.1.4 Proposition. Consider an ONS U = (u;) ey in H and a nested sieve (Jn)mem in J.
Given for each n € N a noisy version f ~ £(f, %D) of f = U*[f] € Uasin §4.2.1 let the
associated family of OSE’s be { ., = U*([f]1z,.),m € M}.

(global Hi,-risk) Let f € U,, ie.,

o[f]||7. < co. Denote for allm € M andn € N

Ry (m, £) 1= max (|lo[f]1z5 %, Llow 1.7, [1%).
My o= arg min{RM(m, f),m € M}, and RI(f) := RN, f). (5.4)
Then, RY(f) < infenm EF|fn — fI12 < B\ fm, — fI2 < 2R3(f) forall n € N,

i.e., the rate (R} (f))nen, the dimension parameter (m,,)nen and the OSE ( f,, )nen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local d-risk) Let ||[[®][f]l|, < oo, and hence f € D(®), where ®(f) = > .. ;[®];[f];-
Denote for allm € M andn € N

R (m, f) = max ({1, [Nl 3 NPl 1, )
My o= arg min{RE(m, f),m € M}, and RL(f) := Ra(in, f). (5.5)
Then, Ry (f) < infmep EHO(fon — I < E}O(fr, — f) < 2R3(f) forall n €N,

i.e., the rate (7%2,( f))nen, the dimension parameter (my,)nen and the OSE ( fz, )nen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.
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§5.1.5 Proof of Proposition §5.1.4. For each m € M consider the OSE f,, = U*([f]12,)
based on [f] ~ £([f], 2[I}]), where [fin]w = [fln ~ £([flw: +[I}].). Consequently, we have

m) n
PP | fn = [l = 2307, 03B

[f]] - [f]]|2 = %Zjejm U?[Ff]m‘ = % ||Uwfﬂjm||?2' Moreover,
() = Eyeg BLTL ~ @), 2 [l ). i BP0(F0) = D(,) and nE? | (F, —
fm) 2 = [@]L[T}] [P, = || [CIJ]mH[zl}]m. We exploit these properties in the following proofs.

(global H,-risk) From the Pythagorean formula §2.1.7 we obtain for all m € M andn € N

Ef |l frn = flls = Bl fon — o, flls + 1wz fll; = 7 llov L, 12 + [lo[f] 17

Note that J¢ | () since (J;,)men is a nested sieve (see Definition §2.1.12), which in
turn implies ||o[f]1ze [|2 = o(1) as m — oo using that v[f] is square summable. On
the other hand, ||vv,1, ||,z is monotonically increasing and trivially for each m € M,
Loy 14, |I7 = o(1) as n — co. The assertion follows now along the lines of Remark
§5.1.3.

(local ®-risk) For allm € M and n € N holds

2
e

EXO(Fo) — O(f) = EO(Fr — fr)? + |0(fn) — D)2
= [@Ll,, + 1By NP = L I[BLIE ), + (B L, M) el

Note that ¢ | () since (T )men is a nested sieve (see Definition §2.1.12), which in
turn implies [([®]L g, [f1)e2| = | 3¢ 7e [PLIf],] = o(1) using that [[[@][f][| < 0. On
the other hand, ||[®],,|] Ir; ], is monotonically increasing and trivially for each m € M,

| [(I)]mH[QFf]m = o(1) as n — oo. The assertion follows now along the lines of Remark

§5.1.3, which completes the proof. O

§5.1.6 Corollary. Let the assumptions of Proposition §5.1.4 be satisfied.
(global H,-risk) Let f € U,, ie.,

o[f]||7. < co. Denote for allm € M andn € N

Ri(m, f) = max (Io[f]17; %, Lo, [1%).
my, = arg min{Ry(m, f),m € M}, and Ry(f) =Ry (mn, f). (5.6)

If the variances satisfy C~' < WfQj < Cforall j € J and for some constant C' > 1, then,
C'RY(f) < infrema B\ frn— FIIF < ES|| fn, — fIls < 2CRY(f) foralln €N, ie., the

rate (R} (f))nen, the dimension parameter (my,)nen and the OSE ( fy,,, )nen is an oracle
rate, an oracle dimension and oracle optimal (up to the constant 2C), respectively.

(local d-risk) Let ||[®][f][[, < oo, and hence f € D(®), where ®(f) = > .. ;[®];[f];-
Denote for allm € M andn € N

Rig(m, f) = max (|([®]Lgg, [/el® 5 I[@]1a, ).
m, = arg min{Rg(m, f),m € M}, and Rg(f):=Rg(mn, f). (5.7

)

If the covariance matrices satisfy sup{max(||[I}],.| ) [Ff];le), m € M} < C for
some constant C' > 1, then, C7'RE(f) < inf,enm E}‘|®(fm—f)|2 < E?!@(fmn—fﬂz <
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2CRE(f) for all n € N, i.e., the rate (RL(f))nen, the dimension parameter (i, )nen
and the OSE ( fz, )nen is an oracle rate, an oracle dimension and oracle optimal (up to
the constant 2C), respectively.

§5.1.7 Proof of Corollary §5.1.6. In case of a global H,-risk if the sequence of variances w}? =
(W;j) jen satisfies C1 < waj < C'for all j € J and for some constant C' > 1, i.e., the sequence
v? is uniformly bounded from below by C'~! and above by C, respectively, then it follows
that C ol s, |2 < [ow 1y, |7 < C|oly,|I%. The claim follows then from Proposition
§5.1.4. On the other hand side, in case of a local ®-risk if the sequence ([I}],,)men satisfies
sup{max(H[Ff]mHS, [Ff];HS),m € M} < C for some constant C' > 1, i.e., the smallest
and the largest eigenvalue of [I};],, is uniformly bounded from below by C'~! and above by C,
respectively, then it follows immeditately that C~1 ||[®]1 H?z < [(I)]mH[zFf]m < C|[®)1 7, Hi,

and the claim follows again from Proposition §5.1.4, which completes the proof. O

For each n € N suppose that the distribution P of the noisy version ]?belongs to a family of
probability measures B" for some given class [F of functions. Here and subsequently, we assume
that the function of interest f is identifiable, i.e., f; # f» implies /! # . However, in general
it does not hold that f, = f, implies P}} = F}. Assume furthermore, that given an observable
quantity with distribution P/* € B there is an estimator of f available that takes its values in H,
but it does not necessarily belong to IF. We shall measure the accuracy of any estimator fof f
by its maximal risk over the family B", that is,

P [f | B"] == sup{E}o, (f, f)|% B € B}

Considering a global H,-risk and a local O-risk set R, [ﬂ B := sup{E}‘Hf— flIZ Br e}
and Ry [f | "] = sup{E?@(f) — ®(f)|?, B* € B}, respectively.

§5.1.8 Remark. An advantage of taking a maximal risk instead of a risk is that the former does
not depend on the unknown function f. Imagine we would have taken a constant estimator, say
f = h, of f. This would be the perfect estimator if by chance f = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. O

Given a strictly positive sequence f consider a function of interest f in the class of solutions
FI; asin §2.1.18. Let the distribution P"* = £(f, -T7) of its noisy version f belong to a family of

probability measures F’#f. We derive for the OSE {fm =U *([f]IL Tm), M € J\/l} of f below an
upper bound of its maximal H,-risk, R, [fm | E{T‘J , and a maximal ®-risk, Re [fm | ]P]’F?f] . Keep
Remark §3.3.2 in mind, i.e., if ||of||,.c < oo and ||[®]f|,2 < oo then F}; C U, and F}; C D(P),
respectively.

§5.1.9 Proposition. Let the assumptions of Proposition §5.1.4 be satisfied.

(global H,-risk) Given ||fo|,. < oo for each m € M define (§0) () = [|fol e || < 0.
Denote for allm € M andn € N

Ris(m §) = max ((fo)%,, Lo, %),
my, = arg min{R; (m,f),m € M}, and Ry(f) =Ry (my,f). (5.8)
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If uniformly for all £(f, %I}) € sz there is a constant C' > 1 such that the associated
< C, then, R, [fmn |E}u’,?f} < (r* + C)RM({) for all n € N.
(local ©-risk) Given ||f[®]|| . < oo for each m € M define f,y := ||f1ze
forallm € Mandn €N,
Rip(m, 1) = masx ([HB]1L g [, max(F,, )]l @11, 1% )
my = arg min{Rg(m,§),m € M}, and RE(f) = Rg(m,,f). (5.9)
If uniformly for all £(f, %F 1) € B there is a constant C' > 1 such that the associated

7
uf

. . 2
variances satisfy ||Wf H .

100 < 00. Denote

covariance matrices satisfy sup{||[[}],|| . ,m € M} < C, then, Re [fmn ]]R}Zf] < (r?+
C)RE(f) foralln € N.

§5.1.10 Proof of Proposition §5.1.9. We exploit again the properties given in Proof §5.1.5.
In addition we use that for each f € Fj; holds the upper bounds bias,,(f) < 7 (fv),) and
biasg, (f) < 7 ||f[®]1 e ||, due to Lemma §3.3.3.

(global H,-risk) Applying the Pythagorean formula §2.1.7 for all m € M and n € N holds
sup{E} || fm — fIl5. £(f, 7 11) € B} < ¥ (fo){) + C oLy, [
= (r* + O)Ry(m. f),
which in turn implies (5.8) replacing m by m,,.
(local ®-risk) For allm € M and n € N holds
sup{E}|®(fn) — @()I*, £(f, 3 Tr) € B } < * [[f[@]1g 22 + C; [I[@]1s,
< (r* + C)R(m, )

which in turn implies (5.9) replacing m by m,, and completes the proof. O

2
02

§5.1.11 Ilustration. Considering the real Hilbert space L*([0,1]), the trigonometric basis
{1;,7 € N} as in Example §2.1.17 and the nested sieve ([1,m])nen as in Definition §2.1.12
we illustrate the last assertion for typical choices of the sequences f, v and [®]. Keeping in mind
Example §2.1.17 let f; = 777, j € N, for some p > 0. Here and subsequently, we write for
two strictly positive sequences (2, )nen, (Yn)nen that 2, < y,, if x/y = (2, /Yn)nen is bounded
away from zero and infinity.

(global Lj-risk) Letv; = j%, j € N, for s € R, then (i) for s > —1/2, |01 g7 < m**,
(i) for s = —=1/2, [[oL [y g2 < (logm), and (iii) for s < —1/2, [[olp 7 < 1. Ifp >
s then |[|fv][,.c < 0o and (fb)?m) = m~2P=%) m € N. Consequently, (i) for s > —1/2,
m,, < n'/@rr) and R2(§) < n=20=5)/Cr+D) (i) for s = —1/2, (logm,,)(m,)?*! < n,
m, < (logn)~V/@npt/Cr+D) "and R2(f) < (logn)n~!, (iii) for s < —1/2, m, =<
n'/2P=3) and R2(f) < n~'.

(local ®-risk) Let [®], = j%, j € N, for s € R, then (i) for s > —1/2, [|[®]L[1 iy |7 < m** !,
(i) for s = —1/2, ||[@]L[1,mp |2 =< (logm), and (iii) for s < —1/2, ||[ @]yl < 1. I
p > s+ 1/2 then [[f[®]||,» < oo and ||f[®]1 [y mpe||7: = m~?T25+1 Consequently, (i) for
s > —1/2,m, =< n'/P) and Ry (f) =< n~P=s=1/2/P (i) for s = —1/2, m,, < n'/(P),
and Ry (f) =< (logn)n™", (iil) for s < —1/2, m,, < n*/®?) and Ry ,(§) < n~". 0
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5.1.2 Gaussian sequence space model (Example §4.2.2 continued)

§5.1.12 Corollary. Under the assumption of Proposition §5.1.4 consider for each n € N a
Gaussian noisy version f ~ N(f, % Idy).

(global H,-risk) Let ||o[f]|% < oo, ie, f € H,. Forallm € M and n € N con-
sider R (m, f), my,, and RY(f) as in (5.6). Then, R}(f) < infenm E?Hfm —flls <
E?Hfmn 1 HES 2RQ(f)forAall n €N, i.e., the rate (R} (f))nen, the dimension param-

eter (my,)nen and the OSE ( fy,, )nen is an oracle rate, an oracle dimension and oracle
optimal (up to the constant 2), respectively.

(local D-risk) Let ||[[][f]l|, < oo, and hence f € D(®), where ®(f) = > .. ;[P];[f];-
For allm € M and n € N consider R (m, f), mn, and RE(f) as in (5.7). Then,
Ri(f) < e B} (for — I < E}@(fu, = /) <2RE(S) forall n € N, ie.,
the rate (R§(f))nen, the dimension parameter (my,),en and the OSE (fmn)neN is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

§5.1.13 Proof of Corollary §5.1.12. The results follow from Proposition §5.1.4 using the iden-
tities v;; = 1 = [Id]; ,, j € J, and [I}],, = [Id],., m € M. O

§5.1.14 Corollary. Under the assumption of Proposition §5.1.9 consider for each n € N a
Gaussian noisy version f ~ N(f, +1dy) € N = {N(f, L1dy), f € F;}.

(global H-risk) Let ||fo]/ge < co. Forallm € M and n € N consider R} (m, ), m,, and
R2(f) as in (5.8). Then, Ry [ fm, | %J < (r* + 1) R(f) for all n € N.

(local O-risk) Let ||f[®@]]|,. < oo. Forallm € M and n € N consider Rg(m, ), m,, and
Ra(f) asin (5.9). Then, Re [f/\mn \fﬁﬁf] < (r* + 1) RE(f) foralln € N.

§5.1.15 Proof of Corollary §5.1.14. The results follow from Proposition §5.1.9 using the iden-
tities v;; = 1 = [Id]; ,, j € J, and [I}],, = [Id],., m € M. O

5.1.3 Non-parametric density estimation (Example §4.2.3 continued)

Consider an ONB {11} U U in L?[0, 1] withif = {u;, j € N} and a nested sieve (T, )mem
in N. Keep in mind that p = 11 + U*[p] where [p] = Up with [p], = Ej(u;(X))
for j € N is a sequence of unknown coefficients. For each n € N let p ~ £(p, %Ep)
with Ir = Mp — Mp H{ﬂ[oyl]}M]p a noisy version of p as in §4.1.4 based on an i.i.d. sam-
ple X; ~ p, ¢ € [1,n]. Given the pre-specified ONS U the observable quantity [p] =
(IB],)jen ~ £([p], (I} ]) takes for each j € N the form [p], = P,u;. Note that the distribution
£([p], 2[I}]) of the observable quantity [p] is determined by the distribution P*" of the sample
Xi,...,X,. Here and subsequently, we denote by v := (v?)jen and ([I ], )mem, respec-
tively, the sequence of variances and covariance matrices associated with [p] ~ £([p], 2[I1.]),
e, v2 =[], = P(u; — Pu;)* = Vary (u;(X)),j € J, and [ ],, = (P(u; — Pu;)(u; —
Pw))jieg, = (Covp (u;(X), w(X)))jiez,, m € M.

§5.1.16 Corollary. Given for each n € N a noisy version p ~ £(p, +Iv) as in §4.1.4 based
onani.id. sample X; ~p, i € [1,n], let {p,, = L1+ U*([D]Ls, ), m € M} be a family of
OSE’s of p = Loy + U*[p] € L2([0. 1))
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(global L;-risk) Let ||o[p]||2 < oo, i.e., U*[p] € L2. Forallm € M and n € N consider
Ri(m,p) = max (|[o[p|lse %, 2w, 1z,[%), M, and R2(p) as in (5.4). Then,
Ry(p) < infmerd BRI, — plI; < BB, —pll; < 2Ry (p) foralln € N ice, the

rate (Ry (D ))nen, the dimension parameter (my,)nen and the OSE (D, )nen is an oracle
rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

(local d-risk) Let ||[®][p]||n < oo, whenEeIp € D(®) with ®(p) = (1 1) +>_ e 7 [P]; [P
Forallm € Mandn € N consider Ry (m, p) := max (|([®]17e, [p])e|*, ||[(I>]m||[2Fp]m
My, and ﬁg(p) asin (5.5). Then, ﬁg(p) < infrepm EZ"O(D,, —p)* < EZ"[O(D,, —
p)? < Zﬁg(p)for alln € N, ie., the rate (ﬁg(p))neN, the dimension parameter

(M )nen and the OSE (D, )nen is an oracle rate, an oracle dimension and oracle opti-
mal (up to the constant 2), respectively.

§5.1.17 Proof of Corollary §5.1.16. The results follow immediately from Proposition §5.1.4
replacing f by p. m

§5.1.18 Proposition. Under the assumptions of Corollary §5.1.16 let in addition 0 < 1p0_1 <
P < p, < 00 A-a.s. for some finite constant p, > 1.

(global L;-risk) Let ||v[p]||2. < oo, ie, Up] € LZ. Form € M and n € N let
Ry(m,p) := max (||U[]p]ll‘77% % %HDIijHzQ), then the associated rate (R} (D))nen,
the dimension parameter (my,)nen as in (5.6) and the OSE (D, )nen is also, respec-
tively, an oracle rate, an oracle dimension and oracle optimal (up to the constant 2p,).

(local -risk) Let [|[®][p][|, < oo, whence p € D(®) with®(p) = P(L1))+D_ e 7 [P); [P,

Form € Mandn € Nlet Rii(m,p) := max (|([®]1ze, [p])e|*, [@]14, |7 ), then
the associated rate (R%(D))nen, the dimension parameter (my,)nen as in (5.7) and the
OSE (D,,, )nen is also, respectively, an oracle rate, an oracle dimension and oracle opti-
mal (up to the constant 2p, ).

§5.1.19 Proof of Proposition §5.1.18. In case of a global LZ-risk for each j € N we have
v, = (uj, Bug)re = Plu; — Puy)® > piAuy — Puy)® = priAwy)? + oyt (Puy)? > pyt

since Mu;Puj) = AMuj)Pu; = 0 using A(u;) = (uj, Lpaj)r2 = 0. On the other hand side,
V2 = (uj, Ihuj) e = Pu; — Puy)? < P(u;)® < pyA(y;)® = p, for all j € N. Combining
both bounds it follows p, ! < v, < p, for all j € N, which in turn using Corollary §5.1.6
with C' = p, implies the first claim. In case of a local ®-risk for each h € U,, we have

B D Julbl = (B Toh) 2 = B(h— BR)® > pyIA(h — PR)? = pIA(R)? + p; ' (BR)? >
D, 'A(h)? = p, '[h]L,[h],, since A(RPh) = 37 [h];A(u;)Ph = O using A(u;) = (uj, Ljo 1)z = 0
for all j € N. Consequently, the smallest eigenvalue of [ ], is bounded from below by ]po_l.
On the other hand side, [h] [[}],[h], = P(h — Ph)?> < P(h)?* < p,A(h)? = p,[h]E [h], and
hence the largest eigenvalue of [I.],, is bounded from above by p,. Combining both bound it
follows sup{max(||[I |.|I, , ||[I> ];1”5), m € M} < p,, which in turn using again Corollary

§5.1.6 with C' = p, implies the second claim and completes the proof. O

Our aim is the reconstruction of the density p = Ljp,1) + f assuming that f = IIyp belongs
to an ellipsoid IF]; derived from the ONS U = {u;, j € N} and some weight sequence (f;);en.
Denoting by D the set of all densities on [0,1] let D}, := {p € D : f = Illyp € F},
and the family of probability measures associated with observations X1, ..., X, is given by
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IP]?)‘?;" = {P®", p € D}. Let the ONS U be in addition regular w.r.t. the weigth sequence

fasin §2.1.13 (i), ie., [|32,on filuj*[lz~ < 75 for some 7,; > 1. Keep in mind that for

each f € I holds || f[| o < 7|l fll,; < 77y due to Lemma §2.1.19 which in turn implies
I

p <1+r7; = p, < oo A-as. uniformly for all p € D;.

§5.1.20 Proposition. Let the assumptions of Corollary §5.1.16 be satisﬁed Suppose that the
ONS U is regular w.r.t. the weigth sequence fasin §2.1.13 (ii), and hence p < 1+7r7,; =: p, <
00 A-a.s. uniformly for all p € Dj;.

(global L;-risk) Given ||fo]],.c < 0o forallm € M andn € N consider R*(m, f), m,, and
RU(f) as in (5.8). Then, R, [P ]PH’)@”} (r? + 1+ r7,;) RMf) forall n € N.

mn ’

(local D-risk) Given ||f[®]||,2 < oo for allm € M and n € N consider Ry (m, f), m,, and
R4(f) as in (5.9). Then, Re [P I%@"] (r? + 1+ r7,;) R4 (f) forall n € N.

mn ‘

§5.1.21 Proof of Proposition §5.1.26. We exploit the properties derived in the Proposition
§5.1.18 withp < 1+ r7,; =: p, < 00 A-a.s. which holds uniformly for all p € IDj;. Thereby,
uniformly for all £(p, t1), p € D holds ||v?|[,., < p, and sup{[|[:]..[,,m € M} < p,.
The assertion is now an immediate consequence of Proposition §5.1.9, which completes the
proof. O

5.1.4 Non-parametric regression (Example §4.2.4 continued)

Consider an ONB {u;,j € N} in L?[0,1] and a nested sieve (7,,)menm in N. Keep in mind
that f = U*[f] where [f] = U f with [f], = E¢([Id®u;,]) for j € N is a sequence of unknown
coefficients. For each n € N let f ~ £(f, iTy) with Iy = o21d;2 —|—MfH{L1[O My a noisy
version of p as in §4.1.5 based on an i.i.d. sample (X;,7;) ~ B, i € [1, n]]’satisfying the
assumptions (i)—(iv) given in Example §4.1.5. Given the pre-specified ONB U the observable
quantity [f] = ([f], )jen ~ £([f], £[[}]) takes for each j € N the form [/, = P o ([Id®u;]).

Note that the distribution £([f], £[I;]) of the observable quantity | f] is determined by the dis-

tribution P¥" of the sample (X, Z1),...,(X,, Z,). Here and subsequently, we denote by
2

V7 = (v2)jen and ([T} ],)mems respectively, the sequence of variances and covariance ma-
trices associated with [p] ~ £([p], £[I1]), i.e., v = [[}],, = Pr([ldou,;] — Pyldouy,])? =
Vary(Xu,(2)), j € J, and ], = (B;([dow]ldsul) — By ildeu; By ldou]))jues, =

(Covi(Xuj(Z), Xw(Z)))jies,.. m € M.

§5.1.22 Corollary. Given for each n € N a noisy version fw £(f, %Ff) as in §4.1.5 based on
an i.i.d. sample (X;, Z;) ~ B, i € [1,n], obeying the assumptions (1)—(iv) given in Example
§4.1.5 let {fm =U*([f]1z,),m € M} be a family of OSE’s of f = U*[f] € L*([0,1]).
(global L;-risk) Let ||o[f]||7. < oo, i.e, f € L. Forallm € M and n € N consider
RE(m, f) = max ([[o[f]1 |2 ||nwf11jm||£2) T, and RE(f) as in (5.4). Then,
Ry(f) < infuem BFIIF, = FIR < EF"If, — fI} < 2R(S) forall n € N, i,

the rate (ﬁg(f))neN, the dimension parameter (My,)nen and the OSE (f Jnen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectlvely

(local D-risk) Let ||[@][f][[, < oo, whence f € D(®) and ®(f) = >_;[®][f];. For all
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m € M and n € N consider R%(m, f) := max ([([@1L e, [[])ex|?, 2 ||[<I>]m||[2Ff]m ), M,

and Ry (f) asin (5.5). Then, Riy(f) < infruep EZ"®(F, — f)I? SEZD(f. — )2 <
2RE(f) foralln € N, ie., the rate (R2(f))nen, the dimension parameter (i, )ney and

the OSE ( fﬁm)neN is an oracle rate, an oracle dimension and oracle optimal (up to the
constant 2), respectively.

§5.1.23 Proof of Corollary §5.1.22. The results follow immediately from Proposition §5.1.4.
m

§5.1.24 Proposition. Under the assumptions of Corollary §5.1.22 let in addition Hf||ioo < 00
and o2 > 0.

(global L:-risk) Choosing R(m, f) as in (5.6), then the associated rate (Ry(f))nen, di-
mension parameter (my,)nen and OSE ( f Inen is also, respectlvely, an oracle rate, an
oracle dimension and oracle optimal (up to the constant 2max(c=2, 02 + || f||3))-

(local d-risk) Choosing R (m, f) as in (5.7), then the associated rate (R (f))nen, dimen-
sion parameter (M, )neny and OSE (f,. )nen is also, respectively, an oracle rate, an ora-
cle dimension and oracle optimal (up to the constant 2max(o=2, 02 + || f|| 7o ))-

§5.1.25 Proof of Proposition §5.1.24. In case of a global L:-risk for each j 6 N using that 5 is
centred and independent of Z ~ ([0, 1]) it follows v;; = (u],l“fuj> L2 >o2and v, = 02 +
(ML My < 02 + M2 < 02 + | £ flug % = 02 + || .. Combining
both bounds it follows o2 < wf] < (02 + ||fl3) for all j € N, which in turn using Corollary
§5.1.6 with C' = max(c-2,02 + || f||3.) implies the first claim. In case of a local ®-risk for
each h € U,, we have [h]’ [I}],[h], = (h,Trh)2 = o2 ||hl3s + (h, MfH{]l[ WMrh)re >
o2[h]t [h],.. Consequently, the smallest eigenvalue of [[}],, is bounded from below by o2. On
the other hand side, [h]%,[T;], (A, < o A% + [M/h|% < (o + | £12) B2 < (o2 +
|| £13 ) [h]%,[1].. and hence the largest eigenvalue of I, is bounded from above by o2+ H f Hioo
Combining both bounds it follows sup{max( H I H || Y] 1H ,m E M} < max(o-2, 02+

| £1l3), which in turn using Corollary §5.1.6 with C' = max(c-2,02 + || f||3.) implies the
second claim and completes the proof. O

Our aim is the reconstruction of the regression function f assuming that it belongs to an
ellipsoid E; derived from an ONB {u;, j € N} of L? and some weight sequence (f;);en. Keep in
mind that given a regression function f, [P, denotes the joint distribution of (X, U) satisfying the
assumptions (i)—(iv) given in Example §4.1.5. Note that due to (ii) the error term e = X — f(U)
has mean zero and variance 02 < oo, i.e., ¢ ~ £(0,02), however, its distribution is not further
specified. We denote by IP’T .2 the family of probability measures P, of (X, U) satisfying the
assumptions (i)—(iv) with e = X — f(U) ~ £(0,02) and f € FE;. Moreover, let IP’®" be

Uy
the family of probability measures associated with an i.i.d. sample (X;, U;), i € [1, n]] of
(X, U). In addition let the ONB U be regular w.r.t. the weigth sequence f as in §2.1.13 (ii),
ie., |12 en f3lujl? [l < 75 for some 7,; > 1. Keep in mind that for each f € F; holds then
[fll oo < 7s [ f1l1 5 < 77y due to Lemma §2.1.19
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§5.1.26 Proposition. Let the assumptions of Corollary §5.1.22 be satisfied. Suppose that the
ONB U is regular w.r.t. the weigth sequence § as in §2.1.13 (ii).

(global L;-risk) Given ||fol],e < oofor allm € M and n € N consider R;}(m, f), m,, and
Ry () as in (5.8). Then, fﬁn[ |E@?"z] < (r? + 02 + 2 72) RY(f) for alln € N.

(local d-risk) Given ||f[®]||,2 < oo for allm € M and n € N consider R (m, f), m,, and
Ra(f) asin (5.9). Then, Ry [fm | F?nz] < (r? + 02 +1272) Re(f) for all n € N.

§5.1.27 Proof of Proposition §5.1.26. We exploit the properties derived in Proof §5.1.25 with
o2 + || f|3 < 02+ 1?72 = C' < oo which holds uniformly for all B*" € I@?"Q Thereby,

uniformly for all distributions £( f, Ff) associated with a noisy version f derived from P*" €
IE;‘?ZQ holds HWfZH o S C and sup{”[ H m € M} < C. The assertion is now an immediate
uf’" €

consequence of Proposition §5.1.9, which completes the proof. O

5.2 Statistical inverse problem: known operator

Consider the reconstruction of a solution f € H of an equation g = 7T'f where the lin-
ear operator I’ € Z(H,G) is known in advance. As in section 4.3 we restrict ourselves
to two cases only. First, we assume 7" € Suw(H,G) C Z(H,G) admitting a singular sys-
tem {(s;,u;,v;),j € J} with eigenfunctions given by an ONS U = {u;,j € J} and V =
{v;,7€ J} in H and G, respectively. Secondly, we suppose ' € T(H) C Z(H), ie
T 1s compact and strictly positive definite. In both cases the same pre-specified ONS U =
{u;,j € J} in H is used to formalise the smoothing properties of the known operator 7" and
the presumed information on the function of interest f.

5.2.1 Orthogonal series estimator

Given T' € S (H, G) admitting a singular system {(s;, u;,v;), j € J} with strictly positive
sequence of singular values s of 7" in H consider the reconstruction of f € U from a noisy
versiong = T'f + \/LEW ~ B of g = T'f. Note that the restriction of 7" onto U is injective and
hence, the solution f of g = T'f is unique, if it exists, which is assumed in the sequel. Given
g we consider the observable quantity [g] ~ P}, satisfying an indirect sequence space model
(ISSM) given in §4.3.4. We estimate the function of interest f € U applying a regularisation by
dimension reduction using a nested sieve (7, )menm in J and associated nested sieve (U, ) me
in U. Keeping in mind that [¢] = s[f] and hence, f = U*[f] = U*([g]/s) € U, we consider its
orthogonal projection f,, = Iy, f = U*([f]14,.) = U*(14,[g]/s) onto U,, by using the se-
quence of indicators 17, := (1, (j)),jes (see section 3.3). The observable quantity [g] ~ B,
allows us to construct an orthogonal series estimator f,, := U *(14,[9]/s) € Uy, of f, where
the distribution By, or £(s[f], Z[I}7,]), of the observable sequence [g] = ([g];)jcs of K-valued
r.v.’s is determined by the distribution B, or £(T'f, %FT 1), of g. Here and subsequently, we de-
note by v := (v?);jen and ([I}],.)me s, respectively, the sequence of variances and covariance
matrices associated with [g] ~ £(s[f], 2[I}]), i.e., v2 := [Try];;, = (u;, Trrug)m, j € J, and
). = ((uy, Trrw)m) jies,.. m € M. "Denote by E 7 the expectatlon w.r.t. the distribution

B of the noisy version §. We measure the accuracy of the OSE f,, = U*(1 7.19]/s)) of f by
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Dm(fm, f)|* where d_(-,-) is a certain semi metric specified in

its mean squared distance E7.
Definition §3.3.1.

§5.2.1 Proposition. Given T € Sw(H, G) admitting a singular system {(s;,u;,v;),7 € J}
with strictly positive sequence s consider the ONS U = (u;)jcs in H and a nested sieve
(Tm)mem in J. Given for each n € N a noisy version g ~ £(T'f, %FTf) of g =U*(s[f]) €U
as in §4.3.1 let {fm = U*(1y,[9]/s), m € M} be the associated family of OSE'’s.

(global H,-risk) Let f € U,, ie.,

o[f]||7. < co. Denote for allm € M andn € N

Rag(m, ) = max ([[0[f]175 1%, £11(0/2)5, 17, 1% ).
My o= arg min{R%(m, f),m € M}, and RE(f) :== R (T, ). (5.10)

Then, Ry(f) < infrem Effllfo = I3 < Efgllfa, = fIR < 2R5(f) forall n € N,
i.e., the rate (R™(f))nen, the dimension parameter (i, )ner and the OSE ([, )nen is an

oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.
(local ©-risk) Let ||[®][f]||,, < oo. Denote for allm € M andn € N

Ngs(ma f) ‘= max (’<[(I)]]ljﬁu [f]>52|27 % H[vlﬁ]m[q)]mH?rq}m)?
My = arg min{R2 (m, f),m € M}, and R2,(f) =R (fn, f). (5.11)

Then, R3[®s](f) < infnept B g|@(fn — £)? < B |®(fr, — [P < 2R3 (f) for
alln € N, i.e., the rate (chs(f))neN’ the dimension parameter (M, )nen and the OSE
(fmn)neN is an oracle rate, an oracle dimension and oracle optimal (up to the constant
2), respectively.

§5.2.2 Proof of Proposition §5.2.1. For each m € M consider the OSE f,, = U*(1, [§]/s)
based on [g] ~ £(s[f], ;[Lr/]). where [funl, = [fl ~ £([fln, 7 [V]o ' [Tr/]u[Ve]."). Conse-

m

quently, we have B[ fuo — full} = & e, 0B IL); — [FLP = 3 X5cs, (0 /53) [ Tf]J ;=

L[(v/5)%, 17, |72 Moreover, ®(fin) = S, [OLLL, ~ S((fin), 2 [|[V. Ll \

B () = (fin) and nBE |(fro— frn)* = [@14[Vi]5 L] [Ve]5 [@L = [Vl
We exploit these properties in the following proofs.

II[F I

(global H,-risk) From the Pythagorean formula §2.1.7 we obtain for all m € M andn € N

Etfllfm = fI5 = 2 ll(0/s)v, 1z,

Note that ¢ | () since (T, )men is a nested sieve (see Definition §2.1.12), which in
turn implies |[o[f]1 ¢ [[,2 = o(1) as m — oo using that v|f] is square summable. On the
other hand, ||(v/s)v,1 7, ||,z is monotonically increasing and trivially for each m € M,
L|(v/s)y, 17,17 = o(1) as n — oo. The assertion follows now along the lines of
Remark §5.1.3.

(local d-risk) For all m € M and n € N holds
Er ¢ @(f, )— ( )|2—E?f|@(fm—fm)\2+!q’( )— o(f )\2
= Vi Lul @l Ry NP = 2 |[% (0L R [l

2
e

&+ o[ f]1zg
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Note that 7¢ | 0 since (J,n)men 18 a nested sieve (see Definition §2.1.12), which in turn

implies [([®]L7g, [f))e| = [ 32;ez [PLLf];]| = o(1) using that [[[®][f][|+ < oo. On the
other hand, [|[V, . ],.[®]..]| [z}, is monotonically increasing and trivially for each m € M,

eI\ /E]E[Q)]EH[?Q = o(1) as n — oo. The assertion follows now along the lines of

Remark §5.1.3, which completes the proof. O

§5.2.3 Corollary. Let the assumptions of Proposition §5.2.1 be satisfied.
(global H,-risk) Let f € U,, ie.,

o[f]||% < co. Denote for allm € M andn € N

Ry (m, f) = max (o[ 75 . H(0/9)17, %),
my = arg min{RY, (m. f).m € M}, and Ry (f) = Ris(m ). (5,12

If the variances satisfy C~1 < wg% < Cforall j € J and for some constant C > 1, then,
CTIRL(S) < infent B Fr — FI2 < Byl Fr, — FI2 < 20RG() for all m € N,
i.e., the rate (R.(f))nen, the dimension parameter (my,)nen and the OSE ( fy,, Jnen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2C), respectively.

(local -risk) Let ||[®][f]|l, < oo. Denote for allm € M andn € N

e (. f) := max ([([ @)Lz, [/1)eel’, 5 1([@]/5) L, 12 )
my, := arg min{Rg, (m, f),m € M}, and Ry ,(f):= Ros(mn, f). (5.13)

If the covariance matrices satisfy sup{max(||[T;].|l,, ||[Fg];1||s),m c M} < C for
some constant C' > 1, then, C™'RE () < inf,,enm E%f\d)(fm - NI < E’%f@(fmn —
HI? < 20R2,(f) for all n € N, ie., the rate (R}, (f))nen the dimension parame-

ter (My)nen and the OSE (fi, )nen is an oracle rate, an oracle dimension and oracle
optimal (up to the constant 2C'), respectively.

§5.2.4 Proof of Corollary §5.2.3. The proof follows line by line the Proof §5.1.7, and we omit
the details. O

For each n € N suppose that the noisy version g of g = T'f € T(F) := {Tf, f € F}
for some given class [F of functions has a distribution P, belonging to a family of probability
measures [Pz . Here and subsequently, we assume that the function of interest f is identifiable,
ie., fi # f, implies B}, # Br},. However, in general it does not hold that f; = f, implies
Py, = B, . Assume furthermore, that given an observable quantity with distribution Y, € B,
there is an estimator of f available that takes its values in H, but it does not necessarily belong
to IF. We shall measure the accuracy of any estimator f of f by its maximal risk over the family
Bt , that is,

Ry [ﬂpﬁm} = SUP{E?H%(fa DI, B € Pl }.

Considering again a global H,-risk and a local O-risk set Ry [f | Bhey] = sup{E’:;fo —

FIR, B € By} and Re [ By ] = sup{Eq|@(f) — (f)P°, B € B}, respectively.
Given a strictly positive sequence f consider a function of interest f in the class of solutions [F};
asin §2.1.18. Let the distribution B, = £(T'f, L1Tr;) of a noisy version g of g = T'f belong to a
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family of probability measures Fy(, . We derive for the OSE {fm =U*(17,[9]/s),m € M}
of f below an upper bound of its maximal H,-risk, R, [fm | IP’T%JJ, and a maximal ®-risk,
Ro [fm | ]P)T’%Wfﬂ. Keep Remark §3.3.2 in mind, i.e., if ||of|,c < oo and |[[®]f||,. < oo then
F7; € U, and FJ; C D(P), respectively.

§5.2.5 Proposition. Let the assumptions of Proposition §5.2.1 be satisfied.

(global H,-risk) Given ||fo,c < 00 and (§0)un) = |[folge
Denote for allm € M andn € N

o < 00 for each m € M.

Ri(m, 1) = max ((fo)7,). 411(0/5) L, |2 ).
my = arg min{Ry,(m,f),m € M}, and R(f) := Ry (mn,f). (5.14)

If uniformly for all £(T'f, %FTf) € ]P}Tﬁwf) there is a constant C' > 1 such that the asso-
ciated variances satisfy ||[v?||ee < C, then, R, [fmn |IP>TT§Frf)} < (r* + C)RIL(f) for all
n € N

(local b-risk) Given [[f[®]]|,. < oo and (§8)m) = ||fslge
Denote for allm € M andn € N,

o < 00 for each m € M.

Riga(m, §) 1= max ([[{@]175 %, max((fs)F,, DI([@)/2) 17,3 );
my, = arg min{Rg,(m,f),m € M}, and R (f) = Rgs(mn,f). (5.15)
If uniformly for all £(T f, %FTf) € ]ijl(wf) there is a constant C' > 1 such that the associ-
ated covariance matrices satisfy sup{||[I;]..||, ,m € M} < C, then, Ry []/”\mn \Pﬁ%)] <
(r? 4+ C) R4, (f) for alln € N.

§5.2.6 Proof of Proposition §5.2.5. We exploit again the properties given in Proof §5.2.2.
In addition we use that for each f € F!; holds the upper bounds bias,,(f) < 7 (fv),) and
biasg (f) < 7 ||f[®]1 7 ||, due to Lemma §3.3.3.

(global H,-risk) Applying the Pythagorean formula §2.1.7 for all m € M and n € N holds

SUp{ES ;| fon — FII2, E(T'f, £Trs) € Bty )} <12 (F0)2,) + CE[I(0/8) 17, |12
= (1" + C)Ry.(m, ),
which in turn implies (5.14) replacing m by m,,.
(local ®-risk) For allm € M and n € N holds
Sup{Ef|®(fn) — B(f)I?, £(Tf, LTrs) € Bl )}
< 2 i@ |2 + O 1([@)/5) L, Ml < (7 + C) Ry (m. )

which in turn implies (5.15) replacing m by m,, and completes the proof. O
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§5.2.7 Mustration (Illustration §5.1.11 continued). Given the real Hilbert space L? := L?([0, 1])
let T € Si(L? G) admit a singular system {(s;, v, v;),j € N} with eigenfunctions given by
the trigonometric basis i = {1, j € N} and V = {v;,j € N} in L? and G, respectively. Given
the nested sieve ([[1,m])men in N as in Definition §2.1.12 we illustrate the last assertion using
the typical choices of the sequences f, v and [®] introduced in Illustration §5.1.11. (M) s; = 57,
j € N, for some a > 0 (mildly ill-possed), and (S) 5; = exp(1 — j2%), j € N, for some a > 0
(severly ill-possed).

(global L;-risk) Letv; = j% j € N, for s € R.

(M) We have (i) for a +s > —1/2, [|[(0/8) Ll =< m** 2t (i) for a + s
—1/2, ||(v/8)1p1,mpll7. =< (logm), and (iii) for a + s < —1/2, ||(0/8)L[1m || =
If p > s then ||fo]|,.c < co and (fu)?m) = m~2?=%) m € N. Consequently, (i) m,, <
nl/(2p+2a+1) and Rﬁg(f) -~ n72(pfs)/(2p+2a+1)’ (i) (logm ) )2p+2a+1 = n, hence
my, =< (logn)~V/@p+2at)pl/Cp+2a+1) and R2 (§) < (logn)n~t, (iii) m,, =< n'/(2p=2s)
and R7.(f) < n~L.

(S) We have ||(b/8) 11, mp]|% < m*+2a=D+ exp(m?®) with (2a — 1) := max(2a — 1,0)
by applying Laplace’s method (see, e.g., chap. 3.7 in Olver [1974]). If p > s then
[foll, < ooand (fo)? ) =m P~ m e N. Consequently, maP Tt exp(m2e) <
n, hence m,, < (logn — Mlog(log n)) Y29 and RE(f) < (logn)~P=9)/a,

(local ®-risk) Let[ , =4%j€eNfors e R If p> s+ 1/2 then [[f[®]||,. < oo and
Iifo )

(M) We have (i) fora+s > —1/2, [|([®]/8) 11 myl7. = m?* T2+ (i) fora + s = —1/2,
|([®]/8)LpmllZz =< (logm), and (iii) for a + s < —1/2, ||([®]/s)LpmllZe < 1.
Consequently, (i) m, =< nY/@*2) and RE () x n~Cr2-D/Cp+20)
(i) (logmy,)(my)?*2¢ < n, hence m,, < (logn)~V/@P+2a)pl/2r+20) and R2 (f) <
(logn)n=1, (iii) m,, < n'/@P=25=1) and R2_(§) < n~1.

(S) From ||([®]/8) 1 mpl|% = m?**T(Re=D+ exp(m?®) by applying Laplace’s method fol-

2p+(2a—1)4—1

|

lows my, exp(m?2*) < n, hence m,, < (logn— 2p+(2a De=116g(log n))l/(Qa)
and Ri,(f) = (log n)~(2r~2+-1/(20) )

5.2.1.1 Gaussian indirect sequence space model (Example §4.3.5 continued)

§5.2.8 Corollary. Under the assumption of Proposition §5.2.1 consider for each n € N a
Gaussian noisy version g ~ N(T f, + Idy).

(global Hy-risk) Let |[o[f]||Z2 < oo, ie, f € H, Forallm € M and n € N consider

Ry.(m, f), my, and Ry,(f) as in (5.12). Then, Ry.(f) < infem E%Hfm — fII? <

Bt || frnn — flIs < 2Ry (f) for all n € N, i.e., the rate (Ry,(f))nen, the dimension

parameter (M, )nen and the OSE (fo, )nen is an oracle rate, an oracle dimension and
oracle optimal (up to the constant 2), respectively.

(local O-risk) Let ||[®][f]llp < oo, and hence f € D(®), where ®(f) = >, ;[®];[f];-
Forallm € M andn € N consider Ry, (m, [), mn, and Re,(f) as in (5.13). Then,
Ria(f) < mfmest Ef|(frn = )2 < B @(fon, — I < 2R3, (f) forall n € N,
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i.e., the rate (R}, (f))nen, the dimension parameter (m.,),en and the OSE ( f,, )nen is an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2), respectively.

§5.2.9 Proof of Corollary §5.2.8. The results follow from Proposition §5.2.1 using the identities
v, =1=[Id];;,j € J,and [I}],, = [Id],,, m € M. -

§5.2.10 Corollary. Under the assumption of Proposition §5.2. 5 consider for eachn € N a
Gaussian noisy version g ~ N(T f, L 1dy) € M) = = {N(Tf,+1dy), f € Fi;}.

(global H,-risk) Let ||fo|l¢ge < co. Forallm € M and n € N consider R},(m,f), m,, and
RL(f) as in (5.14). Then, Ry | fm, |‘ﬁ?<%)} < (r*+ 1) R(f) foralln € N.

(local ©-risk) Let ||[f[®]||,. < oo. Forallm € M and n € N consider R (m,f), my, and
Ris(f) asin (5.15). Then, Re [fmn I‘ﬁ?%)} < (r*+1)RL(f) foralln € N.

§5.2.11 Proof of Corollary §5.2.10. The results follow from Proposition §5.2.5 using the iden-
tities v;; = 1 = [Id}, ;, j € J, and [[}],, = [Id],., m € M. O

5.2.1.2 Circular deconvolution with known error density (Example §4.3.6
continued)

Consider the exponential ONB {11} U U in the complex-valued Hilbert space L?([0,1))
withid = {e;,j € Z,}, Z, = Z\{0} and a nested sieve (J;,,)mem in Z,. Keep in mind that for

any density q € L? holds ¢ = 1jo1) + U*[q] where [g] = Uq with [q]; = Pye; = (q, e;) 2
for j € Z, is a sequence of unknown coefficients. Given an i.i.d. sample Y;, i € [1,n],
with common marginal density ¢ = p ® q = C,p (see Example §2.2.35) we consider a

noisy version g ~ £(C,p, 1I;) of the density g = C,p with I, = M, — Mol ,,3Ms where
gh=Ph=1 =3 h(Y;) for any h € L? (see Example §4.3.6). Given the pre- spemﬁed ONS
U=/{ej,j€ Vi o} applying the convolution theorem (see §2.2.35) we have [g], = [q];[p]; with
lg]; = Eye;(—=Y), [a]; = Eqe;(—¢) and [p ] = Epe;(—X)forall j € Z,. Therefore, the observ-
able quantity [g] = ([q],)jez, ~ £([d)[p], 2[I3]) takes for each j € Z, the form [g], = P,'e; =
137" 1 ej(—=Y;). Note that the distribution 2([ Ja, +[I}]) of the observable quantity [g] is deter-
mmed by the distribution B*" of the sample Y}, . ..,Y,,. Here and subsequently, we denote by
2

v? = (v2)jen and ([I}],.)mem, respectively, the sequence of variances and covariance matri-

ces associated with [g] ~ £([q][p], 2[I]), ie., v? := [I],; = Ble; — Be;|* = Vary(e;(-Y)),

Vg

J € Zo,and [Iy],, = (B (¢; — &) (a1 — B er))jieg,, = (Covy(e;(=Y), e(=Y)))jieg,,. m € M.

§5.2.12 Corollary. Given for eachn € N a noisy version § ~ £(Cyp, 211) as in §4.3.6 based

onani.id. sampleY; ~ g =p®q, i € [1,n], let {@m = L1+ U*(1yg,[9]/[d]),m € ./\/l}
be the associated family of OSE’s of p = 1j91) + U*[p] = Lo,y + U*([g]/[a]) € L*([0,1)).

(global L}-risk) Let ||o[p]||% < oo, i.e., U*[p] € Uy. Forallm € M and n € N consider

Ry (m,p) = max ([0[p]L 2 L0/ )51, ). ins and Ry (D) as in (510,

Then, Ru[ (P) < infrem BGMID, — Pl < EFID,, — Pl < 2Rgy(p) for all

n € N, ie., the rate (R;L[q] (P))nen, the dimension parameter (My)nen and the OSE

(D, )nen is an oracle rate, an oracle dimension and oracle optimal (up to the constant
2), respectively.
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(local -risk) Let ||[®][p]|[, < oo, whencep € D(®) with ®(p) = ®(Lj1)+)_ ;7 [P [P
Forallm € M, n € Nlet Ry, (m, p) := max ([([®]1, [p)e 2 [[[®]./[alullf ), ),
Mo, andRq)[q]( Yasin(5.11). Then, Rq)[q]( ) < infrepm EZ"@(D, —p)|* <EZ™P(D,, —
p)? < 2Ry (p) for alln € N, i.e., the rate (Ry ) ())nen, the dimension parameter

(M )nen and the OSE (D, )nen is an oracle rate, an oracle dimension and oracle opti-
mal (up to the constant 2), respectively.

§5.2.13 Proof of Corollary §5.2.12. The results follow immediately from Proposition §5.2.1
replacing f by p. O
§5.2.14 Proposition. Under the assumptions of Corollary §5.2.12 let in addition 0 < g *

g < g, < 00 A-a.s. for some finite constant g, > 1.

(global Li-risk) Let |lo[pl||% < oo, i.e., U*[p] € Lj. Form € Mandn € Nlet R} (m,p) :=
max (||o[p]1ze |2, £[/(v/[a]) 17, |2 ), then the associated rate (Riie)(P))nen, the di-
mension parameter (My, )nen as in (5.12) and the OSE (D,, )nen is also, respectively, an
oracle rate, an oracle dimension and oracle optimal (up to the constant 2g,).

(local d-risk) Let ||[®][p]|[, < oo, whencep € D(®) with ®(p) = P(Lp1))+>_;c /[Pl [P];-
Form € Mandn € Nlet Ry, (m. p) := max (|((®]1g, [p))el, ; 1(@]/[0])1s, 7).
then the associated rate (R, (P))nen, the dimension parameter (my)nen as in (5.13)

and the OSE (D,, )nen is also, respectively, an oracle rate, an oracle dimension and
oracle optimal (up to the constant 2g,).

§5.2.15 Proof of Proposition §5.2.14. Following line by line the Proof §5. 1.19 replacing p by

g we obtain g, ' < v?2 < g, forall j € Z, and sup{max(||[[}]..]|,, H 1H3),m e M} < go.
The claims of the assertron follow now immediately from Corollary §5.2.3 with C' = g,, which
completes the proof. O

Our aim is the reconstruction of the density p = 1o + f assuming that f = IIyp belongs
to an ellipsoid F; derived from the ONS U = {e;, j € Z,} and some weight sequence (fj) €T
Denoting by D the set of all densities on [0,1] let D}; := {p € D : f = Ilyp € F;} and
C,(D5) ={9g=Cp=aq®peD: f=Iyp € F,;}. The family of probability measures
associated with observations Y7, ..., Y, is given by ]P’Cq(% {B*" g € C,(D5)}. Let the ONS

U be in addition regular w.r.t. the weigth sequence § asin §2.1.13 (i1), i.e.,

jez, Fileil e =
Y en 3 = Hf||z2 < 72 for some 7; > 1. Keep in mind that for each g € C,(ID};) holds
g =1lp+ f with f = Tlyg = U*([q][p]) where f = U*[p] € F7,. Taking into account that
]l < 1 it follows that ||fH1/f = [/l < [lpl/illz = If]l,)5> and hence f € D,

too. Consequently, we have ||f]| e < Ty Il i < r7; due to Lemma §2.1.19 which in turn
implies g = C,p < 1 + r7; =: g, < 00 A-a.s. uniformly for all g € C,(ID};).

q

§5.2.16 Proposition. Let the assumptions of Corollary §5.2.12 be satisfied. Suppose that
Ifll < oo, ie., the ONS U is regular w.rt. the weigth sequence § as in §2.1.13 (ii) with
Tt = ||fll;2, and hence g = Cyp < 14 r||f|l2 =: go < 00 A-a.s. uniformly for all g = C,p €
Oq(]D)Jf)'

(global Li-risk) Given ||fol|,e < oo forallm € Mandn € N consider Ry ;(m, f), m,, and
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Ry (F) as in (5.14) with s = [q]. Then, R, B, |IP’C§%&>] <+ 14+7|fll) R ot (F)
foralln € N.

(local D-risk) Given [[f[®][| 2 < oo forallm € M andn € N consider Ry, (m, ), my, and
Ry (F) as in (5.15) with s = [q]. Then, Ro D, |IP’C§$T | <@E?*+1+47|fl2) R e ()
foralln € N.

§5.2.17 Proof of Proposition §5.2.16. We exploit the properties derived in the Proposition
§5.2.14 with g < 1+ 7||f|l,2 =t 9o < o0 A-a.s. which holds uniformly for all g € C,(Df;).

Thereby, uniformly for all £(g, 2T1), g € C,(ID};) holds szﬂzw P, and sup{||[Ly ]|/, ,m €
M} < g,. The assertion is now an immediate consequence of Proposition §5.2.5, which com-
pletes the proof. O

5.2.2 Spectral regularisation estimator

Given 7" € Z(H,G) we consider the reconstruction of a solution f € H from a noisy
versiong = T'f + \/iﬁW ~ &(Tf,Trs) of g = T f. In the sequel we assume that there exists
an unique least squares solution f of the equation g = T'f, i.e., T' is injective and g € D(T") =
R(T)DR(T)* (c.f. §3.1.5). However, we suppose further here and sub-sequentially that based
on the noisy version g ~ £(T'f, %FT s) there is an estimator g of g available that takes its values
in G.

§5.2.18 Definition. Given T' € .Z(H, G), an estimator g of g = T'f € D(T™") taking its values
in G and a continuous spectral regularisation {r,(T*T)T* € £ (G,H),«a € (0,1)} of T" as in
Definition §3.2.19 the estimator ﬁ = ro(T*T)T*g is called spectral regularisation estimator
(SRE) of f. O

Denote by E7., the expectation w.r.t. the distribution Fr’; of the noisy version gofg="TF.
Given a continuous spectral regularisation {r,(T*T)T* € Z(G,H),a € (0,1)} of " as in

Definition §3.2.19 we shall measure in the sequel the accuracy of a SRE f,, := ra(T*T)T *g of

f:=T%g € Hforg € D(T"), by its mean squared distance E” flbm(fa, HIE =B, (far F)2
where 0, (-, ) is a certain semi metric specified in Definition §3.3.1.

§5.2.19 Lemma. Let {r (T*T)T* € £ (G,H),a € (0,1)} be a continuous spectral regulari-
sation of T defined in Definition §3.2.19. Assume in addition to §3.2.19 (i) and (ii) that

(ii’) for any s € [0,1] there is a constant Cs < oo such that for all o € (0,1) holds
sup {[\ro (N[, A € [0, | T)1%]} < Csa L.

Given an H-valued estimator g of g consider fa = ro(T*T)T*g and let f := T*g € H. If
E7f[lg — gllz., < oo then global for all o € (0,1) holds

Esll fo — flf < 2(CF + Dmax (a7 By 15— glle, I fa = Iz ) (5.16)

and, hence E%foan — fl4 = o(1) for any sequence (ap)nen such that o, = o(1) and
0 B 17 - g% = o(1) asn - .
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§5.2.20 Proof of Lemma §5.2.19. We start the proof with the elementary decomposition

E2 || fo = fIE < 2001 fa = fall + 1 fa — flI}
< 2A{ra(TT)T% Erp 17 — glle + [1fa — fIIE}

which together with [ro(T*T)T* |, < sup{]\/2ra(M], A € [0, |TI%} < Cijz0-2 due to
(ii”) implies (5.16). The second claim follows from (5.16) and || f.,, — f||% = o(1) as a,, = o(1)
for n — oo (c.f. Remark §3.2.20), which completes the proof. O

In the sequel we restrict ourselves to the case 7' € T (H) C Z(H), i.e., T' is compact and
strictly positive definite. Note that 7" is injective and hence, the solution f of ¢ = T'f is unique,
if it exists, which is assumed. Moreover, given a pre-specified ONB U/ = {u;, j € J} in H and
anoisy versiong = T'f + \/LEW ~ £(g, %FT 1) of g = T'f we consider the observable quantity
[9] ~ £(lg], £[Trs]) with [g] = [T'f], where the distribution £([g], £[I},]) of the observable
sequence [g] = ([g];)jes of K-valued r.v.’s is determined by the distribution £(g, 2Irs) of g.
We consider an OSE of the function ¢ using a nested sieve (7, )mem in J and associated
nested sieve (U, )menq in H. The observable quantity [g] ~ £([g], £[T}]) allows us to construct
an orthogonal series estimator g,,, := U*(1 7, [g]) € Uy, of g, := Iy, g = U*(1 7, [g]) € Up.
Given strictly positive sequences f and t consider a function of interest f in the class of solutions
IF;; as in Definition §2.1.18 and an operator 7' € T, satisfying a link condition as in Definition
§2.2.50. Let the distribution B, = £(T'f,~Tr;) of the noisy version g of g = T'f belong
to a family of probability measures IP’TQ%). Keeping in mind Proposition §5.1.9 we derive for

the OSE {g,,,m € M} of g below an upper bound of its maximal H-risk, R [Gy, | IP’TrtFrf)} =
SUp{E7 (|G — gl : B € Brter ) }-

§5.2.21 Corollary. Let T' € T, (link condition as in Definition $2.2.50) and f € F}; (ab-
stract smoothness condition as in Definition §2.1.18) for strictly positive sequences | and t.
Given a noise version ¢ = T f + \/LHW ~ £(g, %FTf) of g = Tf consider a family of OSE’s
{Gm = U*(14,19]) € Uy,,m € M}. For each m € M define (f)(m) = |[tflge || < 00,
then ||gm — glly = HHU#LTfHH < dr(f)gmy forallm e M, f € Fj;and T € T, Denote
further for allm € M andn € N

R (. 4) 1= max ()], 21Tl
my = arg min{R"(m, tf),m € M}, and R"(tf):=R"(mn,tf). (5.17)
If uniformly for any £(T'f, %FTf) € Pﬁwf) there is a constant ||I+||, > 1 such that the as-
.||, then, %[ﬁm |IP’T7§FJf)} < (d2r? +

sociated covariance operator satisfies ||I'rs| , <
L+ ) R™(m, tf) for allm € M and n € N.

§5.2.22 Proof of Corollary §5.2.21. The proof follows along the lines of the Proof §5.1.10 of
a global H,-risk. Therefore, observe that the associated sequence of variances wf = (wfj) jeg
with v2 := [L];; = (uj,Tryuydu, j € J, satisfies ||v?||,. < [[Trs|l, < I+l uniformly

over Pl . Moreover, for each h € H, and hence Vih € H, holds d~Mhllg = d7H|Vih|ls <

|TVih|ly < d||[Vihlle = d||h]ly which in turn implies d~"||h|[1/@) < ||(MT*TVF)"2h)||, <
d||h||1 /¢ due to §2.2.52. Consequently, for each f € F[;, i.e., f = Vih with ||h||; < 7, holds

gl = 1T F Ly = 1TV hlL ) < N (GTTVE) 2T NG|y = dl|h]ly < dr(5.18)
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and hence ||g,,, — 9|y < d7 (ft)(m) due to Lemma §3.3.3. Applying the Pythagorean formula
§2.1.7 for all m € M and n € N holds

sup{Ez ;|G — gllfs, £(g, 1 Tv) € Brier,) } < d°r* (FO, 2 7| Tml,
which in turn implies the assertion by using R"(m, tf) as defined in (5.17). O

Keeping in mind the last assertion, given the family of OSE’s {g,,, := U*(1z,[g]), m € M}
we shall study in the sequel the accuracy of the family of SRE’s { Fom 1= To(T*T)T* G, m €
M,a € (0,1)}. Assuming T € 7;? (link condition as in Definition §2.2.50) and f € F
(abstract smoothness condition as in Definition §2.1.18) for strictly positive sequences § and t
let the distribution B, = £(T'f, 1I‘Tf) of a noisy version g of ¢ = T'f belong to a family of
probability measures IP’T’}%). We derive for the SRE fam below an upper bound of its global and

local risk.

§5.2.23 Proposition. Let in addition to the assumptions of Lemma §5.2.19 and Corollary
§5.2.21 also Proposition §3.2.22 (iii) be satisfied. Given the OSE’s {g,, := U*(1z,[g]), m € M}
based on a noise versiong =T f + \FW £(g,* ~Irs) of g =T f asin §5.2.2] consider the

family of SRE {fam = 1o (T*T)T* G m € M,a € (0,1)Yof f :=Ttg e H. If T € T (link
condition as in Definition $§2.2.50) and f € F.; (abstract smoothness condition as in Definition
§2.1.18) where t = v* and | = v? for some sequence v and constants 0 < p < a, then for all
€(0,1), me M, n € Nand
(global Hyq-risk) for any q € |—p, a| holds

Efgl| fam = flloe < K max (@@, a@ ()2, v |Tal); (5.19)
(local d-risk) for any ® € Ly-q for some q € [—p, a] holds

B g @ fam—F)I” < I[®]/077 K max (a0, ol ()7, vn]);(5.20)

where K := 2[0(2q+a 2a) v C%q+p)/2a]{(d2(|q|+a)/a + d2(|q‘+p)/a)r + dPlal/e T+ ”z}

§5.2.24 Proof of Proposition §5.2.23. Consider the global case. Keeping in mind that 0 <

p/a < 1 and, hence 0 < |g|/a < 1, it holds |||loa = ||[[sare < d‘qV“H(T*T)q/(za)-H]HI by
exploiting Property §2.2.52. Consequently,
E gl fom = Flize < VBT TV C (form — £ (5.21)

Exploiting that fun, = 7o(T*T)T* G and fo = 1o (T*T)T*g = 1o(T*T)T*Tf we obtain the
elementary decomposition

AWV | fam — flloa < 20(T*T)Y COro(TT) T B 4 |G — 9l
+2|/(T )Y (ro(T*T)T*T — 1dia) f |, (5.22)
where we bound the two right hand side (r.h.s.) terms separately. Consider the second r.h.s.

term in (5.22). For each f € FI; we have f = (T*T)P/9 for some h € H with || Ay < dP/r
due to Corollary §2.2.54 and hence

[(T*T)9/ @9 (ro (T*T)T*T — 1dg) f||H d%/ep2p(atp)/a (5.23)

C (g+p)/2a
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by exploiting the assumption §3.2.22 (ii1) (c.f. Proof §3.2.23). Considering the first r.h.s. term
in (5.22) employing the assumption §5.2.19 (ii") with s = (¢ + a)/(2a) € [0, 1] it follows

[(T*T)Y o (T*T)T*|| 2 < sup{ | Crg (A)], X € [0, | TI%}
< Clgay/aa @) (5.24)
Combining (5.23) and (5.24) with (5.22) we obtain

E%foa_ngq < 2d2|q\/a0(2q+a)/(2a)@( —a)/a Eangm—gHH-i-QdQ lal+p)/a, % )/2,17“204(‘1“’)/“.

Which together with E%. |G, — gl < (*r* 4 ||Ts )R”(m, tf) due to Corollary §5.2.21 and
— 2{(d2wHla/a 4 2 a-qu /7)r2 4 || d24l/a} [ ARV C%p+q)/(2a)] implies (5.19).
Cons1der the local case where @ € L,-4, 1.e., ||[P]v~]|,» < 00, and thus ¢, := U*([®]/v9) € H.

We observe that for any h € H we have h, = 7,(T*T)T*h € Hyq, i.e., forall o € (0,1),

1Ballye = Vot bl < d9V/* |(T*T)Y D g |y < dV | (T*T)Y Oy o (T*T)T*| 2 |l
< dY*Clgray)2a) Y ||h|ly < 00, (5.25)

and hence Vieh, € H. Thereby, setting f,,, = ro(T*T)T*g,, we have (D(]/“; — fam) =
<¢Q7 Voi (fo = fam))u = <TTQ(T*T)qu¢q,/g\m — gm)u = (M, Tro(T"T) Vi P \/LEW>H ~
L£(0, 2 |[Tro(T*T) Veu qﬁq]m”?rg}m)’ consequently,

Efy|®(fo = NI = 3 IT76(TT) Ve Syl + 19 fom = ) (5.26)

where we bound the two r.h.s. terms separately. Consider the first r.h.s. term in (5.26). Employ-
ing the Property §2.2.15 (keep in mind, that I's is a covariance operator) and taking into account
the assumptions of Corollary §5.2.21 we have uniformely for £(g, %Fg) € IP)T’}FTf) and m € M

1]l = sup{ (TR, iyml - (1Al < 1,h € Un}
< sup{[(loh, Wul = [[kllg < 1,h € H} = || 4 <

Moreover, (5.25) implies |17 (T*T)Vea|| , = ||Voaro(T*T)T|| o < d|q|/“C(qm)/(ga)a(q*“)/@a)
and combining the last two estimates we bound the first r.h.s. term in (5.26) by

T ra( T T byl < 2 NE L T (T T) Vil 1)1
ST €2 ) o [@)/072 @ (5.27)

The second r.h.s. term in (5.26) we bound using the elementary decomposition

1D(fam — F)I? < 2{@(fam — fa)I> + [2(fa — [)I?} (5.28)
where the second r.h.s. term for all f € I}, is bounded by

(D (fo = )| < Cpray/aay A7V [ @] /0] o lPHO/E (5.29)
due to Proposition §3.2.22 (3.7), while for the first r.h.s. term in (5.28) holds

9 fam = fo)| = (TraTT) V64,9 — 9l < I Tra(TT) Vit | 64l g — 9l
< A gy ) 191/07] @0 () (530
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since ||gm — gllyy < dr(tf)m) forallm € M, f € F, and T € T, due to Corollary §5.2.21.
Combining (5.29) and (5.30) with (5.28) we obtain

2 a a a
1B (fam — £)I? < 2[|[@] /097 (aPPHD/e 4 g2etlalley 12 (CR o V Goray2a)]

X max(a(p+Q)/a, a(q*a)/a(tf)%m)).

Combinging the last estimate and (5.27) with (5.26) it follows

Erg|@(fo = NP < 1[@]/0)7 10| &9 CF 1y oy n ™!
+2| [q)]/anEZ (d2(p+\q|)/a + d2(a+|q|)/a) r2 [C(2q+a)/(2a) vV C%p—i—q)/(Qa)]
X max(o (pta)/a (q—a)/a(t]c)?m))
< N[@] /0|l 2{(@PFHD/ 4 @D LT | a9V [CF )2y V C<p+q>/<2a>]
X maX( (pta)fa gla=a)/afy =1/ (¢ )(m)])

which together with K = 2{(q?PHlal/e 4 gatla/a),2 T ||, d?lal/a} [Cl o)/ 20) Y Cora)/(20)
implies (5.20) and completes the proof. O

Keeping Proposition §5.2.23 in mind we derive next for the SRE f/;nmn =T, (T*T)T* Gy,
with optimally chosen regularisation parameter «, and dimension parameter m,, an upper bound
of its maximal Hys-risk, Res Foonm | Prer,) | == sup{E7,|| Fanmn — f1I2 : B € LASS },and a

maximal ®-risk, Re [fanmn |]ij‘(%)] = sup{E%}. f|<I>(fanmn — PR € PT%;f)}-

§5.2.25 Corollary. Let the assumptions of Proposition §5.2.23 be satisfied. Consider the
SRE fo,m, = Ta,(T*T)T* G, of [ := Ttg € H with regularisation parameter o, =
(R™(t))¥/(@*+P), dimension parameter m,, and R™(tf) specified below.
(global Hy.-risk) Let m,, and R"™(tf) as in (5.17), then for any q € [—p, a] holds

Roa [ Fanm | Fer | < K(RM()) P/ foralln € N; (5.31)

(local ©-risk) Let m, := arg min{[(tf)7,, vV n~'],m € M} and R"(t]) := [(t)){,,., V'],
then for any ® € L,-q for some q € [—p, a] holds
R [faumn | By ] < [@1/0%[7 K (R ()P ) foralin € N; (5.32)
where K := 2[0(q+a)/(2a) v c%q+p)/2a]{(d2(|q|+“)/“ + @¥lal+p)/ayy2 4 @2ld/e | Y.

Proof of Corollary §5.2.25. The assertion is an immediaty consequence of Proposition §5.2.23
and we omit the details. O

§5.2.26 Remark. We shall emphasise that first the dimension parameter m,, is selected op-
timally and secondly the regularisation parameter «,, is chosen accordingly. Note that in the
local case the dimension parameter m,, might be set to infinity. To be precise, setting ¢, =

T'ran (T*T)qu U*([(D]/t)q) c H with a, = n—a/(a+l7) let@(ﬂ = §¢q ~ S(@(fan), %<Fg(}5q, qu)H)’
then Ro [f | Brier )] < (@] J0t||7, K n~@+0/(a+p) for all n € N. 0

§5.2.27 Ilustration (Illustration §5.2.7 continued). Given the real Hilbert space L? := L?([0,1])
consider the trigonometric basis U = {¢;, j € N} in L? as in Examples §2.1.6 (i) and the nested
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sieve ([1,m])men in N as in Definition §2.1.12. We illustrate the last assertions, where t = v
and f = v® for some constants 0 < p < a, using typical choices of the sequence v = (v,);en,

, (M)v; = j7°, j € N, for some s > 0 (mildly ill-possed), and (S) v; = exp(l — j°),
J E N for some s > 0 (severly ill-possed). Note that in case (M) we have f = (j~P) en and
t = (j7°*) en. Consequently, the class F; contains ps-times differentiable periodic functions

as in Example §2.1.17 (P) and each operator in 7'd admits eigenvalues decaying as (j~°%);en,
i.e. (mildly ill-possed). On the other hand side in case (S) we have f = (exp(p(1 — j°)))jen
and t = (exp(a(l — j*)))jen. Therefore, the class F]; contains only analytic functions for

s > 1 as in Example §2.1.17 (E) and each operator in 7;1 admits eigenvalues decaying as
(exp(a(l — j%)))jen, i.e. (severly ill-possed).
(global L7,-risk) Letq € [—p,al.
(M) We have (ft)f,,) = m ="+ and R™(m, tf) = [m~>@**2*) v n~'m], m € N. Conse-
quently, m, = nl/(2p5+2a5+1)’ Rn(tﬂ — n—Z(ps—l—as)/(st—i—Qas-l—l)’ a, = n—2a5/(2ps+2a5+1)

and Rye [fanmn ’ ]P;TEF%)} = n—2(ps+qs)/(2ps+2as+1)

(S) We have (ft)7,,) < exp(—2(a+ p)m®) and R"(m, tf) = [exp(—2(a+p)m*) Vn~'m],

m € N. Consequently, m,, < (logn—1log(logn)) e ,RY(t) < n~t(logn)'?, o, =
n—/ (p+a) (log n)a/(szras and Ryq [fa " ‘me } = n—(+9)/(p +“)(log n)(p+tI)/(ps+aS)
(local d-risk) Let ® € L, for g € [—p, al.

(M) We have (ft)7,,, = m~>@t) and R"(m, tf) = [m~>****) v n~'],m € N. Conse-
quently, m,, < n'/@rs+2a9) R ({§) < n=l q, < n~% P+t and Re [fanmn |Pzzl(wf)] =
n—(P+a)/(pta)

(S) We have (ft)7,,) < exp(—2(a + p)m®) and R"(m, tf) < [exp(—2(a + p)m®) V n~ '],
m € N. Consequently, m,, < (2( o log n)Ys, R*(tf) < n, o, < n~¥/P+) and
Ro []?anmn | Pﬁw )] ~ p—(p+a)/(p+a) 0

We shall emphasise that in both the mildly and the severely ill-possed case the attainable

rate of the maximal ®-risk, Re | Fonrmn |IP’T(Wf ], is of order O(n~PT2/(*+)) However, in

the mildly and the severely ill-possed case the rate is attained over a class of differentiable
and analytic solutions, respectively. O

5.2.2.1 Gaussian non-parametric inverse regression (Example §4.3.3 continued)

Consider a Gaussian noisy version g ~ (7' f, + Idg) = M, of g = T'f. Let us denote by
mm the family of Gaussian distributions 91}, with f € FJ;.

§5.2.28 Corollary. Let the assumptions of Lemma §5.2.19 and Proposition §3.2.22 (iii) be
satisfied. Suppose that'l' € Td (link condition as in Definition §2.2.50) and f € F.; (abstract
smoothness condition as in Definition §2.1.18) where t = v* and f = v? for some sequence
v and constants 0 < p < a. Consider the SRE fo, m, = Ta,(T*T)T*U*(1y, [9]) of f =
T+g € H with regularisation parameter o, = (R"(t]))*“*P), dimension parameter m,, and
R™ () as specified below.
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(global Hy.-risk) Let m,, and R"™(tf) as in (5.17), then for any q € [—p, a] holds

Roa [fanmn | ‘ﬁ?(%)] < K(R"(tf))(p+Q)/(“+p) foralln € N;

(local ©-risk) Let my, := arg min{[(t})7,, V n~'],m € M} and R"(f) := [(t))F,,., V n"'],
then for any ® € L,-q for some q € [—p, a] holds

R [ faumn | Wiy )] < N[@/0%I7 K (R ()P foralin € N;

where K := 2[0(24+a)/(2a) v C%qup)/Qa]{(dZ(qua)/a + d2(|q‘+p)/a)7"2 + d2|q‘/a}-

Proof of Corollary §5.2.28. Noting that for any 2(7'f, % Idg) in ‘R?(Wf) the associated covari-

ance operator I'r; = Idy satisfies ||Idg||, = 1 =: ||I+||,, and hence, the assumptions of
Corollary §5.2.21 are satisfied. The assertion is thus an immediaty consequence of Corollary
§5.2.25 and we omit the details. O

5.2.2.2 Non-parametric inverse regression (Example §4.3.2 continued)

Consider the reconstruction of an unknown function f € L? := L?([0,1]) from a sample
of (X, Z) satisfying X = ¢g(Z) + ¢, where ¢ = T'f, T € T(L*([0,1])) and ¢ is an error
term. . denotes the joint distribution of (X, 7) satisfying the assumptions (i)—(iv) given
in Example §4.3.2. Note that due to (ii) the error term ¢ = X — g(Z) has mean zero and
variance 02 < 00, i.e., & ~ £(0, 02), however, its distribution is not further specified. Assuming
the regression function f belongs to an ellipsoid F; derived from a pre-specified ONB U/ =
{u;,7 € N} and some weight sequence (f;);en, and hence, ¢ = T'f € T'(E}), we denote by
]PT(]F:;),J the family of probability measures F, . of (X, Z) satisfying the assumptions (i)—(iv) with
X —g(Z) ~ £(0,0%). Moreover, let IP’T%Z%)J be the family of probability measures associated
with an i.i.d. sample (X;, Z;), i € [1,n], of (X, Z). As noisy version of g = T'f consider the
stochastic process g on L? given for each h € L? by g, := P} [ldoh] := n~t Y7 | X;h(Z;) ~
£(g,100) = £, with To = 02 Id;2 —|—MgH{ﬁl[0 1]}Mg. Obviously, £7, is determined by the
distribution B%" of the sample (X;, Z;), i € [1,n].

§5.2.29 Corollary. Let the assumptions of Lemma §5.2.19 and Proposition §3.2.22 (iii) be
satisfied. Suppose thatT' € 7:! (link condition as in Definition §2.2.50) and f € F.; (abstract
smoothness condition as in Definition §2.1.18) where t = v* and | = vP for some sequence
v and constants 0 < p < a. In addition let the ONB U is regular w.r.t. the weigth sequence
tf as in §2.1.13 (ii). Consider the SRE f, . = rq, (I"T)T*U*(1y4, [g]) of f :=T" g € H
with regularisation parameter o, = (R"(t§))*/(@*?), dimension parameter m,, and R"(f) as
specified below.
(global Hyq-risk) Let m,, and R™(f) as in (5.17), then for any q € [—p, a] holds

Rot [ o | B ] < K (RO P foralln € N;
(local ©-risk) Let my, := arg min{[(t})7,, V n~'],m € M} and R"(]) := [(t))F,,., V n~'],
then for any ® € L,-q for some q € [—p, a] holds

R oo | B o] < N@1/0%7 K (RM(E) P/ foralin € N;
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V 2 [{(2a?ld+a)/a  g2(d+p)/ayp2 o q2ld/ag2Y

o 2
where K :=2[C' (0+p)/2a

(¢+a)/(2a)
§5.2.30 Proof of Corollary §5.2.29. Keeping in mind Proof §5.1.25 for each h € L? with
Al 2 < 1 we have (Tvoh, h)2 < 0% + ||g||7, which in turn implies by Property §2.2.15
that || Ty ||, < 0% + ||g||3~. Since the ONB U is regular w.r.t. the weigth sequence tf, i.e.,
12 en G2 u Pl < 773, for some 7.4, > 1, we have ||g]l o < 7ugllglly 5 due to Lemma
§2.1.19 where for each g = T'f with f € F, and T € T due to (5.18) holds [l < dr
Consequently, uniformly for each £(g, +Iv.) associated with a distribution B%" € IP’T%% .o Of

the sampleb for some 7' € T, the covariance operator satisfies || Ty || , < 0 4 d?r2 =: ||I3]|
and hence, the assumptions of Corollary §5.2.21 are satisfied. Thereby, the assertion is an
immediaty consequence of Corollary §5.2.25 and we omit the details. m

5.2.3 Galerkin estimator

Given T' € T (H) we consider the reconstruction of a solution f € H from a noisy version
g ~ B of g = Tf based on a linear Galerkin approach. Given a pre-specified ONB U =
{uj,7 € J} in H, a nested sieve (J,,)mem in J and its associated nested sieve (Uy,)mers in
H (see §2.1.12) we consider here and sub-sequentially a Galerkin solution f,, in U, of the
equation g = T'f as in Definition §3.3.5. Keeping Lemma §3.3.7 §(ii) in mind and exploiting
that [T],, is non-singular for all m € M we have T,, f,, = Iy, g or equivalently f,, = T.'g
where T/t € T (H) is the Moore-Penrose inverse of T,, = Iy, Ty, € T (H) (see Notations
§3.3.6 (i1)). Note that T},, and T} restricted to an operator from U,, to itself can be represented
by the matrix [T, and [T]!, respectively. Thereby, f,, € U, is uniquely determined by

Fnl = 7] 0] .

§5.2.31 Definition. Given 7' € T (H) and a noisy version g ~ B" of g = T'f the estimator
fm =T gm = T,FU*(17,[9]) is called (linear) Galerkin estimator (GE) of f. O

m

Denote by E} the expectation w.r.t. the distribution " of the noisy version g of g = T'f.
Given a Galerkin solution f,, = T,F'g, m € M as in Definition §3.3.5 we shall measure in the
sequel the accuracy of a GE fm =T gmof f:=T%g € Hforg € D(TT), by its mean squared
distance [} Om(fm, I =Br Dist(fm, f)I? where 0,_(-,-) is a certain semi metric specified in
Definition §3.3.1. Keep in mind that f,, € Uy, and thus || f,u||, = ||[Ve]w[T], [9].]| < oo, ice.,
fm € Uy, and f,, € D(®) with ®(f,,,) = [P]L[T] [9].-

§5.2.32 Lemma. LetT € T (H) and f,, = T} g, m € M, be a Galerkin solution of g = T f as
in Definition §3.3.5. Given a noisy version § ~ £(g, +1,) of g consider the family of Galerkin
estimators {fm :=T1U*(17,[9)) € Uy, m € M}.

(global Hy-risk) Let f € Uy, ie., |[v[f]]|7 < oo.

By | fm = £} = 5 (Ll T1 (7T (Vo) + Lo = 155 (5.33)
(local d-risk) Let ||[[®][f]]|,» < oo, and hence f € D(®), where ®(f) = >_,c 7[®l;[f];-

Ep|®(f — f)* = L1 [T], [L]ulT], (@ + |B(fn — /). (5.34)
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§5.2.33 Proof of Lemma §5.2.32. For each m € M consider the Galerkin solution f,, =
T*g = T.FU*([g]1 7, ) and the GE Fm = T U*([9]17,) based on [g] ~ £([g], £[[,]), where

ol = [T154 01 ~ ([ finls HT)Z D], [T)5"). Therefore,

Ve fonl = (LT G ~ £ fonlas 3 [ L[]

E

We exploit these properties in the following proofs.

(global H,-risk) For all m € M and n € N holds
Egll fr — FII5 =BGl fn = fnlls + 1 fn = FI
where E”Hfm fmll2 = 2 tr (Vo] [T, T [T], [Ve]m ), which shows (5.33).

m

(local ®-risk) For allm € M and n € N holds
E"’(I)(fm - f)‘ = E?M)(fm - fm)’2 + ‘(I)<fm - f)’Q

where 7| O ( T T2 = L[] [T 5] [T, [®],., which shows (5.34) and completes
the proof O

Keeping in mind the last assertion, we shall study in the sequel the accuracy of the family
of SRE’s {fm = T+U*(1jm[ ]) € U,,m € M} assuming T € T (link condition as in
Definition §2.2.50) and f € F]; (abstract smoothness condition as in Definition §2.1.18) for
strictly positive sequences f and t. We are going to exploit Lemma §3.3.12 which allows to
bound the regularisation errors || f,, — f||2 and |®( f,,, — f)|*. In order to simplify the presentation
we will assume in addition to the assumptions of Lemma §3.3.12, that t/b is monotonically non-
increasing, that is, min{t;/v;,j € Jn} > ||t/v1z oo = (t/0)(m) for all m € M, and hence

max (L, (t/0)m) [[0/t17,. [l ) = 1.

§5.2.34 Proposition. Given strictly positive, monotonically non-increasing sequences t and {
consider'l’ € Td and f € F;. Given a noisy version g ~ £(g, iI}]) of g consider the family of

Galerkin estimators {fm =T U*(1z,[9]) € Uy, m € M}.
(global H,-risk) For each strictly positive sequence v such that fo and t/v is monotonically
non-increasing denote for allm € M and n € N

Rig(m, 1) = max ((Fo)3,, 211(0/01, 1% ).
my, = arg min{Ry,(m,f),m € M}, and Ry (f) = Ry (mn,f). (5.35)
Then holds
Efy | frn = I3 < (90" [Toll» + 16d°°} Ri(m. ). (5.36)
(local d-risk) Given ||f[®]|,2 < o0 and (§t)m) := ||[ftlge || < 00 for each m € M. Denote
forallm € Mandn € N,
fulm. ) = e (1L 1 mase((FO. 1) ()10, 2):
my, = arg min{Rg(m,f),m € M}, and R (f) := Rg(mn,f). (5.37)
Then holds
By [®(f = £)I” < 90" [T + 16d°°} Rig (. §). (5.38)
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§5.2.35 Proof of Proposition §5.2.34. Consider the global case. The proof is based on the
decomposition (5.33) where we bound each r.h.s. term separately Due to Lemma §3.3.12
(3.12) the second rh.s. term is bounded by 16d° (vf)?, [|Tlys, £} < i < 16d°7% (vf)?,,) for all

f € F7, using that t/v is non-increasing and, hence max( (t/0)(m) [l0/t1 7, || ) < 1. On the
other hand side, exploiting successively Property §2.2.27 and Lemma §3.3.10 (i1) with s = 1
we have

6 (V][ V5 [V T2 D] 7]5 [V [V [V )
)

<t (Vordw[Vendw) [Vl TI0 I, NG Lull, < Nl0/tLa,, 17 94* 5|

ﬂ

which in turn allows to bound the first rh.s. term in (5.33) by 194* |11 ||, |v/tl, ||7. Em-
ploying the derived upper bounds for the two r.h.s. terms in (5.33) we obtain

Eyllfon — flls < 594" Il ll0/t17,, 172 + 16d°r% (0F)E,,)

which in turn implies (5.36) exploiting R, (m, f) defined in (5.35).

Consider the local case. The proof is based on the decomposition (5.34) where we bound
each r.h.s. term separately. Due to Lemma §3.3.12 (3.13) with s = 1 the second r.h.s. term
is bounded by 16d%r* max { ||[®]f1 122 () @ |/t 4, ||%} for all f € FZ,. On the other

hand side, exploiting successively Property §2.2.27 and Lemma §3.3.10 (i) with s = 1 we have

n [@];[Vt] V[T ];1[Fg]m[T]Z[Vt]m[VeLl[q)]m
< VM@l TV alT1 S L, < 9]/ €L, 17 9 T

which in turn allows to bound the first r.h.s. term in (5.34) by %Qd4 Tl [|[®]/¢1 4, 7. Em-
ploying the derived upper bounds for the two r.h.s. terms in (5.33) we obtain

Eg|@(fm—f)I < 394" [Tl ll[@ ]/tﬂym\|zz+16d6r2max{ll [l
< (9" ||| & + 16d°*) max { ||[®]FL e

s () 1[9]/41 7,12}
s max(L, ()7 [[®]/t1, 7}

which in turn implies (5.38) exploiting R%,(m, f) defined in (5.37) and completes the proof. ©

Assuming 1" € 7;:1 let the distribution B, = £(g, %Fg) of a noisy version g of ¢ = T f belong
to a family of probability measures Pﬁwf). Keeping Proposition §5.2.34 in mind we derive next

for the GE f,,, = T} U*(1g,, [9]) € U, with optimally chosen dimension parameter m,, an
upper bound of its maximal H,-risk, R, | fo., |]P’71"§Fr | == sup{EZ ;|| frm, — fIIF : B € IP’T’}FTf)},

and maximal ®-risk, Re [ [, | Brtey )] = sup{Ef[( P = PP B € By ).

§5.2.36 Corollary. Let the assumptions of Proposition §5.2.34 be satisfied. Suppose in addition
that uniformly for any £(g,<T},) € Pﬁwf) with T € T there is a constant ||T- o = 1 such

that the associated covariance operator satisfies ||I,]| , < ||I.|| 4. Consider the GE P =
T.r U*(1g,,19]) of f :=T*g € H with dimension parameter m,, specified below.
(global H,-risk) given m,, and R} (f) as in (5.35) holds

Ro [ finn | Tery] < KR(f) foralln € N; (5.39)
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(local ©-risk) given m,, and R (f) as in (5.37) holds
R [fon,, | Plley )] < K Riyy(§) foralln € N (5.40)

where K = 9d*

¥+ 16d572.

Proof of Corollary §5.2.36. The assertion is an immediaty consequence of Proposition §5.2.34
and we omit the details. O

§5.2.37 Mlustration (Illustration §5.2.7 continued). Consider the real Hilbert space L? := L*([0, 1])
and the trigonometric basis U = {1;, j € N}. Given the nested sieve ([1,m])mnen in N as in
Definition §2.1.12 we illustrate the last assertion using typical choices of the sequences §, v
and [®] introduced in Illustration §5.1.11 and (M) t; = 7%, j € N, for some a > 0 (mildly
ill-possed), and (S) t; = exp(1 — j**), j € N, for some a > 0 (severly ill-possed).
global Lg—risk) Letv; = j°, 7 € N, for some s < p, i.e., fv is non-increasing, and (fn)%m) =
m~2=%) m e N.
(M) Let s > —a, i.e., t/v is non-increasing, then ||(v/t)1p )| < m
quently, my = nl/(2p+2a+1) and Rg{(f) - n72(pfs)/(2p+2a+1)_
(S) We have ||(0/4) L1 mpl|% =< m2+ =D+ exp(m?®) with (2a — 1) := max(2a — 1,0)
by applying Laplace’s method (see, e.g., chap. 3.7 in Olver [1974]). Consequently,
2p+(2a—1) 1 - _ 2p+(2a—1)4 1/(2a)
ma *exp(m2*) =< n, hence m,, < (logn — === log(logn)) , and
R () < (logn)~ ).
(local ®-risk) Let [®], = j° j € N, for some s < p — 1/2 then [|f[®]||. < oo and
IF[P)L e[ = m 2=+,

(M) We have (i) fora + s > ([®]/O) L1y |2 = mP*H24L (i) fora + s = —1/2,
1([®]/ Ly |l% = (logm), and (D) for a + s < —1/2, | ([®)/)Lpmll% = 1.
Consequently, (i) m, x nY/®+20 and R (f) x n @2s-D/@p+20)
(i) (logmy,)(m,)?*2¢ < n, hence m,, < (logn)~1/(@r+2a)nl/2p+20) and R2 () <
(logn)n=1, (iii) m,, < n'/@P=25=1 and R2 (f) < n~".

(S) From |([®]/) L ml|% =< m*+2a=D+ exp(m??®) by applying Laplace’s method fol-

lows m 2P H(a=D+= "exp(m2®) < n, hence m,, =< (logn— —2p+(2‘12 D=1 10g(log n)) 1/(2a)

and R, (f) < (logn)~ (2p— 25 1)/(2a) .

2a+2s+1 Conse-

5.2.3.1 Gaussian non-parametric inverse regression (section 5.2.2.1 continued)

Consider a Gaussian noisy version g ~ (T’ f Idy) = M}, of g = T'f. Let us denote by
‘ﬂﬁ(wf) the family of Gaussian distributions 17, w1th f el

§5.2.38 Corollary. Let the assumptions of Proposition §5.2.34 be satisfied. Consider the GE
fmn =T} U (1g,, 9]) of f := T*g € H with dimension parameter m,, specified below.

(global H,-risk) given m,, and R} (f) as in (5.35) holds

R, []/C\mn |m(1§:f)] < KRZt(f) foralln € N;
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(local O-risk) given m,, and R (f) as in (5.37) holds
Ro [fmn |‘ﬁ}‘(%)} < K Rg(f) forallm € N

where K := 9d* + 16d5r2.
Proof of Corollary §5.2.38. Noting that for any D(7'f, % Idg) in ‘ﬁ}q’(wf) the associated covari-

ance operator I'r; = Idy satisfies |Idg|, = 1 =: ||I+||,, and hence, the assumptions of
Corollary §5.2.36 are satisfied. The assertion is thus an immediaty consequence of Corollary
§5.2.36 and we omit the details. |

5.2.3.2 Non-parametric inverse regression (section 5.2.2.2 continued)

Consider the family of probability measures IP’TGW} .- satisfying the assumptions (i)—(iv) with
X — g(Z) ~ £(0,0?) given in section 5.2.2.2 and let IP’T%’%)J be the family of probability

measures associated with an i.i.d. n-sample. As noisy version of g = T'f consider again the
stochastic process § on L? given for each h € L? by G, = P [Id®h] ~ £(g,1I,,) with

Fg’U = 0‘2 IdL2 +M9H€_]1[071]}Mg.

§5.2.39 Corollary. Let the assumptions of Proposition §5.2.34 be satisfied. In addition let the
ONB U is regular w.r.t. the weigth sequence tf as in §2.1.13 (ii). Consider the GE f,, =
T.r U*(1g,,19]) of f :=T*g € H with dimension parameter m,, specified below.

(global H,-risk) given m,, and R} (f) as in (5.35) holds

Ry [fmn |IP§%%)VU} < KRy (f) foralln € N; (5.41)
(local O-risk) given m,, and R (f) as in (5.37) holds
Re [ fonn B, < K Ra(f) foralin €N (5.42)
where K := 9d'o? 4 25d°r2.

§5.2.40 Proof of Corollary §5.2.39. Keeping in mind Proof §5.2.30 uniformly for each £(g, %Eo’)
associated with a distribution B%" € IP’T%%)J of the sample for some 1" € 7: the covariance op-
erator satisfies ||Iv.- || , < 0®+d*? =: ||I+|| ., and hence, the assumptions of Corollary §5.2.36

are satisfied. Thereby, the assertion is an immediaty consequence of Corollary §5.2.36 and we
omit the details. O

5.3 Statistical inverse problem: partially known operator

Consider the reconstruction of a solution f € H of an equation g = T'f where the linear
operator I' € .Z(H, G) is partially known in advance, i.e., T belongs to Su. (H, G) C Z(H, G)
for some pre-specified ONS of eigenfunctions U = {u;,j € J} and V = {v;,j € J} in Hand
G, respectively. In other words the operator 7" admitts a singular system {(s;,u;,v;),7 € J}
where the eigenfunctions are known in advanced. In this situation the same pre-specified ONS
U = {u;,j € J}inHis again used to formalise the smoothing properties of the known operator
T by a link condition, T € 82, as in Definition §2.2.50, and the presumed information on the
function of interest f given by an abstract smoothness condition, f € [F; as in Definition
§2.1.18.
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5.3.1 Orthogonal series estimator

Given T' € Sw(H,G) admitting a singular system {(s;,u;,v;),j € J} with strictly pos-
itive sequence of singular values s of 7' = V*M,U consider the reconstruction of f € U
from a noisy version § ~ £(g,2I,) = B" of ¢ = Tf = V*(s[f]) and a noisy version
§ = (8;)jes ~ £(s,£[I}]) = B* of 5. Here and subsequently, we assume that § and & are
independent. Therefore, let P®F — P @ P* denote the joint product distribution of g and 5.
Note that the restriction of 7" onto U is injective and hence, the solution f of g = T'f is unique,
if it exists, which is assumed in the sequel. Given g we consider the observable quantities
[g] ~ B\, of [g] = Vg and & satisfying an indirect sequence space model with noisy operator
given in §4.4.1. We estimate the function of interest f € U applying a regularisation by dimen-
sion reduction using a nested sieve (7, )mer in J and associated nested sieve (U, )mers in U.
Keeping in mind that [g] = s[f] and hence, f = U*[f] U*(s'[g]) € U, we consider its or-
thogonal projection Iy, f = U*([f]17,) = U*(s~*[g]1, ) onto U,, by using the sequence of
indicators 17, := (1, (j));es (see section 3.3). Keep in mind that the sequences s and [g] are
unknown. Given the observable quantity 5 ~ B* of 5, where the noise level & is known in ad-
vance, introduce the sequence 1(z2>1 /4 := (1 (#2>1 /k})jes of indicators and the Moore-Penrose

inverse 8 :=5 'l zoq ) = (/5\;1]1{’5‘?21/k})j€j of the sequence §1 525153

§5.3.1 Definition. { F i =U*(3"G114,), m € M} are called orthogonal series estimators
(OSE) of f = U*(s'[g]) based on observable quantities [g] ~ P}, and s ~ B, O

Denote by EF the expectation w.r.t. the joint distribution B* of the noisy version 5. Here
and subsequently, we denote by w2 = (v?) jeg the sequence of variances associated with 5=

s+ (B ~ £(s, L[L]). i w2 = EA[BJ2 = [L, . j € J. and hence [v2] . = [[EX[B]?] .

§5.3.2 Lemma. Suppose that’s = s + \/LE[B] ~ £(s,[LL]). For Ky = (||[v?]|, V 1) holds
@) ||Ek(5§+)2||goo 4K,; (i) B*(s; < 1/k) < 4K (1Vks?)™!, forall j € J, and if in addition
|EF[B]*|| < K, then (iii) Ef(s; —5;)*(5")? < 4K(1V ks?) ™!

§5.3.3 Proof of Lemma §5.3.2. From wﬁj = /{:]Ef(sj —5;)% for each j € J follows (i), indeed,

E;(55/55) Ligzo1/my < 2Eg{(55-55)" /8 Ligzoaymy T Liszorymy b < 2(33+1) < 4([|v

Consider (ii). Trivially, for any j € J we have B*(s7 < 1/k) < 1. If 1 < 4K,/(ks?), then
obviously B*(57 < 1/k) < min(1,4K,/(ks?)). Otherwise, we have 1/k < 53/(4[() < s7 /4
and hence using Tchebychev’s inequaltiy,

V).

B < 1/k) < (I8, > Is;1/2) < 5, °4BA (s,-5,)° < 4K,/ (ks?) = min(1, 4,/ (ks?))
where we have used that kEF(s; —5;)? < K. Combining both cases we obtain (ii). Consider
(iii). Keep in mind that EZ{(s; —5;)?/8 1 g221/8y < v < K, while using k2Ey{(s; —3;)! =
E[B]* < K, we obtain

5)° (5~ %)) s -5,
(T R 7 {1 P ()
{s2>1/k} {52>1/k} 2
5] ‘5] 5] 5]
< 2k]E§’5j2_5j|4 n 2E§’5j2— 55 < 4%.
7 S5 ksj
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Combining both bounds implies (ii1), which completes the proof. O

Denote by ]E”‘X”g the expectation w.r.t. the joint distribution P"®* of the noisy versions § and
5. Keep in mlnd that § and § are independent, and thus, B"** = P" @ P*. We shall measure the
accuracy of the OSE f,, = U*(5+[¢]1,) of f by its mean squared distance Epo* 0. (Fous )2
where 0, (-, -) is a certain semi metric specified in Definition §3.3.1. Let us 1ntr0duce in addition
v = (v2)jes and ([Ii],)menm, respectively, be the sequence of variances and covariance

g
matrices associated with § ~ £(g, LI,) where }W2HZOO < |Gl -

§5.3.4 Lemma. Consider T € Sw(H,G) for some ONS U = (u;)jcs in H and a nested
sieve (Jm)mem in J. Given for each noise level n € N and k € N independent noisy ver-
sions § ~ £(g9,21y) and § = s + %[ ] ~ £(s,1[.]) of g = Tf and s as in §4.4.1 let

{ fm =U*(s*[g]17,), m e /\/l} be the associated family of OSE’s. Suppose in addition that
there is Ky > (1V |EE[B]?||s V || EX[B]*| 4 ).

(global Hy,-risk) Let f € U,, i.e., ||o[f]||% < oo. Forallm € M and n consider Rl (m, f) :=
max <||U[f]:ﬂ.jﬁl||?2, %H(U/ﬁ)ﬂij?Q), as in (5.12), then for all n, k € N holds

ESH|| fr — fI2 < (1+ 4K, |5 ]| ) RE (m, f)
+ 8K|I0[f]/(1 V |s|VE) |2 (5.43)

(local -risk) Let ||[®][f]]|,, < oo, and hence f € D(P), where O(f) = ([P], [f]) . For all
m e M and n consider Ry, (m, f) := max (|[([®]1 7, [f])e]?, £ 1([®]/5) 1, || ),
as in (5.13), then for all n, k € N holds

ngk@(fm) () < (B+4K L]l )R (m, f)
+ 24K [/ (L V Is[VE) I (5.44)

§5.3.5 Proof of Lemma §5.3.4. Keeping in mind the independence of § ~ £g, + - [,)and s ~
s, 1 [L3]) for each j € J we have EfS*([g];, — [9],)*(5%); = Egs;*([g], — [g],)"Es(s5%); =
L(v, /)7 EE(s57)? < L(v,/8)34K, < 4K, ||I| 4 /(ns?) due to Lemma §5.3.2 (i) while from
(iii) follows Ef (s; — ;)%(5")7 < 4K (1V ks?)™". Keeping in mind the last estimate, for each
j.l € T itholds [EX((s; — 5,)(s7), (st — 8)(s7)0)| < AK(1V [s;[VE) (1 V |sulv/R)

due to Lemma §5.3.2 (ii) also EX (1{32>1/k}1{g2>1/k}) < AK,(1V |5;VE) " 1V |5 VE) !
exploit these properties in the followmg proofs

(global H,-risk) For allm € M, n € N and k holds

I[‘3’"‘®’“\|fm flls =Er%*lo(s ' [g] — /1) Vzs1/m Lo 122
+ ELo[f](Ls1mls, — 1o)5 (5:45)

where we consider each r.h.s. term seperately. Considering the first r.h.s. term we have

E<tlloGg] = [fDLEsymLa.l = Egd lo(([] - 9]) + (s —9) (/)5 s, 12
= Egd Io([3] — [9])s" L, |l + Elo[f](s — 8)s7 Lo, |l
< 0’Eg™ (9] = [9)*G)* 1, lle + 0°[fPES (s = 3)°(57) 1y, [l

<AKG Bl 2ll(0/8) 1y, lI7 + 4Klo[f1/(L V [s|VE)IIE - (5.46)

76 Statistics of inverse problems



5.3 SIP: partially known operator Chapter 5 Regularised estimation

where we used the independence of § and 5. Considering the second r.h.s. term in (5.45)
from Lemma §5.3.2 (ii), i.e., Efﬂ{g§<1/k} =PF(s; < 1/k) < 4K,(1V ks?)™", follows

Ecllolf](Lgz1/m s, — Dl = ol 7 + 110 [fPEs L caymy [l
< Io[f1Lg 7 + 4K N0l f1/ (L V Is|VE)II (5:47)

Replacing in (5.45) the upper bounds (5.46) and (5.47) implies the claim (5.43).
(local P-risk) For all m € M and n € N holds

Ep|1®(fm) — () = Ep2* (@11, 5f (5] — [9])7
+Eg[2(U*(sfl9)1s,)) — (NI (5.48)

where we consider each r.h.s. term seperately. Considering the first r.h.s. term we have

Ep*([@]1y,,. 5 (6] — )% = LENLI(@ls7 1, (12157 15,))e
< LT B @057 L < IS 1(1®1/5) L, I3 1B (S )2 e
<KL G L I(@)/5) g, [ (5.49)

where we used the independence of g and 5. Considering the second r.h.s. term in (5.45)
from ss; = 1 z2>1/y and the preliminary estimates follows

E|2(U* (s} [9]17.) — ®(N)I” = E{[@][f]1g,,, 550 )2 — (D], [fD)ee]?
< BE (@[, (s—5)s) ) e[ +3ES{[@1[f11 7., Lgecrymp ) +3{[ @)Lz, [F]ea?
< 24E|[@][1/(LV [sIVE)IE + 31{[@] 15, [FDel®. (5.50)

Replacing in (5.48) the upper bounds (5.49) and (5.50) implies the claim (5.44), which
completes the proof. O

For each n € N and k € N suppose that the joint distribution B"** of the noisy versions §
of g = Tf = V*(s[f]) and 5 of 5 belongs to a family of probability measures B"S* for certain
given classes [, and S.. of functions f and operators 7' = V*M.,U, respectively. We shall
measure the accuracy of any estimator fof f by its maximal risk over the family IEI%Z(@E , that is,

M [fIBISE ] = sup{ErS*[o, (. )7, Bk € Brgk

Considering a global H,-risk and a local O-risk set R, [ | Pnsw} = Sup{]E”®k Hf fl?, Bk ¢

RSk } and Mo [f | BIEF ] = = sup{EIS*|®( f H—o(f)2, B®* e B*S* Y, respectively. Keeping
in mind the last assertion, we shall study in the sequel the accuracy of the family of OSE’s
assuming T° € 82, (link condition as in Definition §2.2.50) and f € F!, (abstract smoothness
condition as in Definition §2.1.18) for strictly positive sequences § and t. We are going to exploit

Lemma §3.3.3 which allows to bound for the projection f,,, = U*(1, [f]) the regularisation
errors || fr, — f|? and |®(f,, — f)]*.

§5.3.6 Proposition. Let the assumptions of Lemma §5.3.4 be satisfied and uniformly for all
L(g, 1T,)®L(s, 1 13) € PI%5 there is a constant Ky = (1V||L || o V|| EF[B]?]| oo V |EE [B]* g0 ).

Er st
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(global IH,-risk) Given [|fo],.. < o0 for each m € M define (§0) ) = [|folge || < o0.

Forallm € M and n consider R, (m, ) := max ((fb)?m), L[(v/t) 1z, |I%), asin (5.35),
then for all n,k € N and m € M holds

Ry [fon | IP;:‘%;’; 1 <0 HARIP)RG (m, §) + 8K d[|[0°F /(1V k) [li=.5 (5.51)

(local d-risk) Given ||f[®]|. < 0o and (§t)(m) := ||ftlge ||~ < 00 for eachm € M. For all
m € Mandn consider R (m, §) := max (||f[®]1zg |7, max((f)?,,), ) ([2]/t) 1, [I%).
as in (5.37), then for all n, k € N and m € M holds

R [ [ | P2EE } < (3r2+4K2d*)RE (m, §) + 24K, ||[@]f /(1 VeVE) ||%.(5.52)

E sd,

§5.3.7 Proof of Proposition §5.3.6. We exploit again the bounds derived in Proof §5.3.5. In
addition we use that for each f € [F[; holds the upper bounds ||v[f]1sc |2 < 7 (fv)(n) and
([ @)1z, [f) 2] < r]|f[®]1se |2 due to Lemma §3.3.3. Moreover, since 7' = V*M.U € T,

and hence d~! < s;/t; < dforall j € J, we have ||(v/s)1, |z < d||(v/t)17, ]|l and
I([®]/s)1z,|l,2 < d[([P]/t) Ly, ],2. We exploit these properties in the following proofs.

(global Hl,-risk) Consider the decomposition (5.45) and the upper bounds (5.46) and (5.47)
replacing the preliminary estimates and the assumed uniform upper bound K, we obtain

By fm = flls < 4K2EI(0/9La, 17 + 1 (F0) + 8Kl f1/(1V [s|VE) |2

which together with [[o[f]/(1 V |s|VEk)||% < d*r?||v?2/(1 V k)]s~ and exploiting
Ry (m,§) defined in (5.35) implies the claim (5.51).

(local ®-risk) Consider the decomposition (5.48) and the upper bounds (5.49) and (5.50)
replacing the preliminary estimates and the assumed uniform upper bound K, we obtain

ESH@(fn) — () < AR |I([@]/0) 15, 17 + 32 [F@] L, |7
+ 24K [@][f]/(1 V [s|VE)II7

which together with ||[®][£]/(1 V |s|v/E)||Z < d2r||[@]f/(1 vV +Vk)||% and exploiting
R (m,f) defined in (5.37) implies the claim (5.52) and completes the proof. O

§5.3.8 Remark. We shall emphasise that the upper bound of the maximal H,-risk and the ®-
risk given in the last assertion is constituted of two terms, where the first depends only on the
sample size n of ¢ and the second depends only on the sample size k& of 5. Moreover, the
dimension parameter m enters only in the first term, which in turn implies, that its optimal
choice depends only on the noise level n. O

§5.3.9 Corollary. Let the assumptions of Proposition §5.3.6 be satisfied. Consider the OSE
fmn = U*(51[g]1y,, ) of f == T"g € H with dimension parameter m,, specified below. For
alln e Nand k € N

(global H,-risk) given m,, and R} (f) as in (5.35) holds

Ro [ fonn |IP;2®;’; <€ max (Ry(§), [0°/(1V €k) | ); (5.53)
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(local ©-risk) given m,, and R (f) as in (5.37) holds
Re [fmm"@’f 1 <€ max (Ry,(), I[OFF/(1 v €k)|2) (5.54)

BT Sd
where C' := 3r? + 4K2d* + 24K, d*r?.

Proof of Corollary §5.3.9. The assertion is an immediaty consequence of Proposition §5.3.6
and we omit the details. O

§5.3.10 Mlustration (Illustration §5.2.37 continued). Consider the real Hilbert space L?([0,1])
and the trigonometric basis i/ = {v;,j € N}. Given the nested sieve ([1,m])men in N as
in Definition §2.1.12 we illustrate the last assertion using typical choices of the sequences
fi =77 0=7[® =j°and M) t; = j7%or (S)t; = exp(l — j**), j € N, intro-
duced in [llustration §5.1.11 and Illustration §5.2.37, respectively. Keep in mind that in Illus-
tration §5.2.37 we have derived the order of R[,(f) and R%,(f), and hence it remains to consider
[0%f2/(1 V k)|l and [[[2]*f/(1V £k)]|¢r.

(global L2-risk)

(M) For —a < s < p we have RY(f) < n~2(P=)/Ca+2p+1) and ||0252 /(1 V k)|~ <
f~lp=s)nal/asince the minimum in sup{j 2"~ min(1, j*/k)} is equal to one for
j > kY% and j72(P=*) is non-increasing.

(S) For s < p we have R%,(f) < (logn)~(P~*)/% and ||02f2/(1 V £2k)|| ¢ < (log k)~ (P=9)/a,

since the minimum in sup{; 2% min(1, exp(52*)/k)} is equal to one for j > (log k)1/(2a)

and j 2P~ is non-increasing.
(local ®-risk)
(M) For —a < s < p we have R, (f) < n~(p=2s=1/(r+2a) and ||[®)%§2/(1 V 2k)||n <
L—llp—s=1/2)Ad]/a_

(S) For s < p we have RE,(f) =< (logn)~r=25=1/Ca) and ||[®])%§2/(1 V £k)||n =<
(logk) (p—s— 1/2)/a O

5.3.2 Gaussian indirect sequence space model with noisy operator (Example
§4.4.2 continued)

§5.3.11 Corollary. Under the assumption of Lemma §5.3.4 consider for each n,k € N inde-

pendent Gaussian noisy versions § ~ N(g, = 1dy) of g = T'f = V*(s[f]) and § ~ N(s, +[Id])

of s. Denote by W"F,  the family of joint distributions of § and’s assuming T = V*M,U € S%,

]F'" Sd

and f € F',. Consider the OSE [, = U*(8*[§ 117,..) of f = U*(s~'[g]) with dimension pa-
rameter m,, specified below. Foralln € Nand k € N
(global H,-risk) given m,, and R} (f) as in (5.35) holds

Ro [ Frnn B ] < € max (R, [0/ (1V €h) e~ ); (5.55)
(local d-risk) given my, and R (f) as in (5.37) holds
R [fmm”@'f 1 <€ max (Ry, (), I[OFF/(1 v €k)|1) (5.56)

Fr.Sd

where C' = 3r% 4 64d? + 96d°r>.
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§5.3.12 Proof of Corpllary §5.3.1 l.. The results follow from Corollary §5.3.9 using that 4 >
(1V 1dy]l o V [EE[BP [l V EE[B]H]ee0). =

5.3.3 Circular deconvolution with unknown error density (Example §4.4.3
continued)

Consider the exponential ONB {11} U U in the complex-valued Hilbert space L?([0,1))
withid = {e;,j € Z,}, Z, := Z\{0} and a nested sieve (J;,,)menm in Z,. Keep in mind that for
any density g € L? holds q = 1jo 1) + U*[q] where [¢] = Uq with [q]; = Pye; = (g, e;) 12
for j € Z, is a sequence of unknown coefficients. Given an i.i.d. sample Y;, i € [1,n],
with common marginal density ¢ = p ® q = C,p (see Example §2.2.35) we consider the
noisy version g ~ £(C,p, 1I;) of the density g = C,p with I, = M, — Mo Il1 3 Ms where

Gh=P'h= DI h(Y;) for any h € L? (see Example §4.3.6). Given the pre-specified ONS
U = {ej,j € Z,} applying the convolution theorem (see §2.2.35) we have [g], = [g];[D],
with [g], = Egze;(—Y), [g], = Eqe;(—¢) and [p], = Epe;(—X) for all j € Z,. There-
fore, the observable quantity [g] = ([q];)jez, ~ £([a][p], 2[I[}]) takes for each j € Z, the
form [g], = P/e; = 13" e;(—Y;). Note that the distribution £([p][a], 1[I}]) of the ob-
servable quantity [g] is determined by the distribution B®™ of the sample Y7, ...,Y,. Here
and subsequently, we dissmiss the assumption of an in advanced known error density ¢. In-
stead we suppose an additional i.i.d. sample ¢4, ..., admitting ¢ as common marginal den-
sity which is independent of the sample Y7,...,Y,,. Given the additional sample we consider
the observable quantity [q] = ([dl,)jez, ~ £([a], +[I.]) taking for each j € Z, the form

@, = Pig; = 130 ej(—¢;). Note that the distribution £([q], 1[I.]) = P% of the observ-
able quantity [qj] is determined by the distribution B®* of the sample ¢;, i € [1,k]. Given
the observable quantity [qj] ~ B of [g], where trivially the sample size & is known in ad-
vance, introduce the sequence Lygp2>1/x) = (Lyjg)2>1/k})jes of indicators. Define in addi-
tion the Moore-Penrose inverse [g] " := [@] ' L{jg2>1/xy of the sequence [@] 1 2=1/k- We
consider the family of OSE’s {p,, := U*([q]"[g]1,), m € M} based on the observable quan-
tities [g] ~ P? and [§] ~ PBY. Let us denote by B%" = B*" @ B®* the joint distribution
of the observations Y7,...,Y,, and €1,...,c,. Our aim is the reconstruction of the density
P = L, + f assuming that f = Ilyp belongs to an ellipsoid F;; derived from the ONS
U = {e;,j € Z,} and some weight sequence (f;),cz,. Denoting by D the set of all densities on
(0,1] let D7 := {p € D : f = Hyp € F,;}. Moreover, keeping in mind that C, € &£ (L?) (see
Example §2.2.35) we assume that C, € €%, i.e., d™' < |[a);|/t; < d, forall j € Z,, and define

Dl = {q € D: C, € £Y}. The associated family of joint probability measures B'* of the
pooled sample is denoted by P"?% = {B*" @ B®* ¢ = C,p,q € DI, p € I} }.

d
Detﬂ)cf

§5.3.13 Proposition. Given for each n € N and k € N a noisy version g ~ £(C,p, %E)
with o = P, and [§] ~ £([q], 1 [Iy]) with [@]. = Pie, based on independent i.i.d. sam-
plesY, ~ g =p®dq, i € [I,n] and e; ~ q, i € [1,k], respectively, let {]13m = L +
U([@]"[9]11,),m € M} be the associated family of OSE’s of p = Lo + U*([a] ' [g]).

®k . .. . . . . ..
P;:%D!f the family of joint distributions of the observations for some strictly positive

sequence t and § with ||f|| . < oc.

Denote by

(global H,-risk) Given |||, < oo and Ry(m,f) := max ((fo)? ) L(0/917,112%). as in

(m
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5.3 SIP: partially known operator Chapter 5 Regularised estimation

(5.35), for all n, k € N and m € M holds

Ro [D, IP’"®’“} < Cmax (R (m,f), [[0*F /(1 V £k)][¢=).; (5.57)

D4 ior

(local O-risk) Given ||f[®]]|,. < oo and

Ri(m,§) = max (|[f[®]1 7 |17, max((F)F,), DI([®]/0)17,11%), as in (5.37), for all
n,k € Nand m € M holds

Ro [D,. yﬂmk] < C'max (R (m, f), [|[@]f/(1 v VE)||%), (5.58)

pdpr
where C := 3r? +4c¢*(1+7||f|| ,2)?d* + 24c(1+ 1 ||f|| o) d*r? for some numerical constant ¢ > 1.

§5.3.14 Proof of Proposition §5.3.13. Recall that the ONS U/ is regular w.r.t. any square
summable weigth sequence § as in §2.1.13 (i) with 7; = |||z, i.e, 1D ;7. HEIR I
den 5= |If||7 = 72. Keeping section 5.2.1.2 in mind uniformely for all g € D and p € DY
we have then g = C,p < 1+ 7||f|l. =t go < 00 A-a.s. which in turn implies ||I}]|, < g,

uniformely over Pg’;‘i@f. On the other hand side conisdering [qj] = [q] + \/LE[B] ~ £([q), [Ty ])
A

with [B], = VE(Pie; — Pyg,), j € Z, we have |[EF[B]?||se = sup{k Var(Bie;),j € Z}
and applying Theorem 2.10 in Petrov [1995] there is a universal numerical constant ¢ > 1 such

that ||]E®k[ J*|le== < c. Therefore, setting K, := ¢(1 4 7 ||f||,2) we have Ko > (1 V ||I]|, V
|IE¥[B]2||g V ||EF[B]*||). The assertion is now an immediate consequence of Proposition
§5.3.6, which completes the proof. O
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