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Chapter 1

Introduction

SHORT SUMMARY

Statistical ill-posed inverse problems are becoming increasingly important in a diverse range
of disciplines, including geophysics, astronomy, medicine and economics. Roughly speaking,
in all of these applications the observable signal g = Tf is a transformation of the functional
parameter of interest f under a linear operator T . Statistical inference on f based on an esti-
mation of g which usually requires an inversion of T is thus called an inverse problem. The
lecture course focuses on statistical ill-posed inverse problems with noise in the operator where
neither the signal g nor the linear operator T are known in advance, although they can be es-
timated from the data. Our objective in this context is the construction of minimax-optimal
fully data-driven estimation procedures of the unknown function f . Special attention is given to
four models and their extensions, namely Gaussian inverse regression, density deconvolution,
functional linear regression and non-parametric instrumental regression, which lead naturally
to statistical ill-posed inverse problems with noise in the operator.

APPLICATIONS

Density deconvolution with unknown error distribution. The biologist who is interested in
the density f of a gene-expression intensity X , can record in a cDNA microarray the expressed
gene intensity X only corrupted by the intensity of a background noise ε, that is Y = X + ε. If
the additive measurement error ε is independent of X then the density g = f ? φ of Y equals
the convolution of f and the error density φ. Consequently, recovering f from the estimated
density g = Cφf of Y is an inverse problem where Cφ is the convolution operator defined by
the error density φ. In this situation, the density f of the random variable X has to be estimated
non-parametrically based on an iid. sample from a noisy observation Y of X which is called
a density deconvolution problem. There is a vast literature on deconvolution with known error
density which leads to a statistical ill-posed inverse problem with known operator. On the other
hand, if the error density φ is estimated from an additional calibration sample of the error ε then
the deconvolution problem corresponds to a statistical ill-posed inverse problem with noise in
the operator.

Functional linear regression. In climatology, prediction of level of ozone pollution based on
continuous measurements of pollutant indicators is often modelled by a functional linear model.
In this context a scalar response Y (i.e. the ozone concentration) is modelled in dependence of
a random function X (i.e. the daily concentration curve of a pollutant indicator). Typically
the dependence is assumed to be linear which finds its expression in a linear normal equation
g = Γf where g is the cross-correlation between Y and X , and Γ is the covariance operator
associated to the indicatorX . Note that both the cross-correlation function g and the covariance
operator Γ need to be estimated in practice. Consequently, the non-parametric estimation of the
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functional slope parameter f based on an iid. sample from (Y,X) leads to a statistical ill-posed
inverse problem with noise in the operator.

Non-parametric instrumental regression. An econometrician who wants to analyse an eco-
nomic relation between a response Y and an endogenous vector X of explanatory variables,
might incorporate a vector of exogenous instruments Z. This situation is usually treated by
considering a conditional moment equation g = K f where g = EY |Z is the conditional ex-
pectation function of Y given Z and K is the conditional expectation operator of X given Z.
As these are unknown in practice, inference on f based on an iid. sample from (Y,X,Z) is a
statistical ill-posed inverse problem with noise in the operator.

STATISTICAL ILL-POSED INVERSE PROBLEMS

We study non-parametric estimation of the functional parameter of interest f in an inverse
problem, that is, its reconstruction based on an estimation of a linear transformation g = Tf . It
is important to note that in all the applications discussed above both the signal g and the inherent
transformation T are unknown in practice, although they can be estimated from the data. The
estimated signal ĝ and operator T̂ respectively given by

ĝ = Tf +
√
n Ẇ and T̂ = T +

√
mḂ. (1.1)

are noisy versions of g and T contaminated by additive random errors Ẇ and Ḃ with respective
noise levels n and m. Consequently, a statistical inference on the functional parameter of inter-
est f has to take into account that a random noise is present in both the estimated signal Ẇ and
the estimated operator Ḃ.

Gaussian inverse regression with noise in the operator. A particularly interesting situation
is given by model (1.1) where the random error Ẇ and Ḃ are independent Gaussian white
noises. This model is particularly useful to characterise the influence of an a priori knowledge
of the operator T . To this end we will compare three cases: First, the operator T is fully known
in advance, i.e., the noise level m is equal to zero. Second, it is partially known, that is, the
eigenfunctions of T are known in advance but the “observed” eigenvalues of T are contaminated
with an additive Gaussian error. Third, the operator T is unknown.

MINIMAX-OPTIMAL ESTIMATION

Typical questions in this context are the non-parametric estimation of the functional param-
eter f on an interval or in a given point, referred to as global or local estimation, respectively.
However, these are special cases in a general framework where the accuracy of an estimator
f̂ of f given the estimations (1.1) is measured by a distance dist(f̂ , f). A suitable choice of
the distance covers than the global as well as the local estimation problem. Moreover, denot-
ing by Pn,mf,T |dist(f̂ , f)|2 (or En,m

f,T |dist(f̂ , f)|2) its expectation w.r.t. the probability measure Pn,mf,T

associated with the observable quantities (1.1) we call the quantity Pn,mf,T |dist(f̂ , f)|2 risk of the
estimator f̂ of f . It is well-known that in terms of its risk the attainable accuracy of an esti-
mation procedure is essentially determined by the conditions imposed on f and the operator T .
Typically, these conditions are expressed in the form f ∈ F and T ∈ T for suitable chosen
classes F and T . The class F reflects prior information on the solution f , e.g., its level of
smoothness, and the class T imposes among others conditions on the decay of the eigenvalues
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Chapter 1 Introduction

of the operator T . Consequently, let us introduce the associated family of probability measures
Pn,mF,T . The accuracy of f̂ is hence measured by its maximal risk over the classes F and T , that
is,

Rd

[
f̂ |Pn,mF,T

]
:= sup

{
Pn,mf,T |dist(f̂ , f)|2,Pn,mf,T ∈ Pn,mF,T

}
.

Moreover, f̂ is called minimax-optimal up to a finite positive constant C if Rd

[
f̂ |Pn,mF,T

]
6

C inf f̃ Rd

[
f̃ |Pn,mF,T

]
where the infimum is taken over all possible estimators of f . Consequently,

minimax-optimality of an estimator f̂ based on observations (1.1) is usually shown by estab-
lishing both an upper and a lower bound. More precisely, we search a finite positive quantity
Rn,n

d depending only on the noise levels and the classes such that

Rd

[
f̂ |Pn,mF,T

]
6 C1Rn,m

d and Rn,m

d 6 C2 inf f̃ Rd

[
f̃ |Pn,mF,T

]
where C1, C2 are finite positive constants independent of the noise levels. Moreover, the quan-
tityRn,m

d is called the minimax-optimal rate of convergence over the family PF,T := {Pn,mF,T , n,m ∈
(0, 1)} if it tends to zero as n and m tend to zero.

ADAPTIVE ESTIMATION

In many cases the proposed estimation procedures rely on the choice of at least one tuning pa-
rameter, which in turn, crucially influences the attainable accuracy of the constructed estimator.
In other words, these estimation procedures can attain the minimax rate Rn,n

d over the family
PF,T only if the inherent tuning parameters are chosen optimally. This optimal choice, how-
ever, follows often from a classical squared-bias-variance compromise and requires a a priori
knowledge about the classes F and T , which is usually inaccessible in practice. This motivates
its data-driven choice in the context of non-parametric statistics since its very beginning in the
fifties of the last century. A demanding challenge is then a fully data driven method to select
the tuning parameters in such a way that the resulting data-driven estimator of f still attains
the minimax-rate up to a constant over a variety of classes F and T . The fully data driven
estimation procedure is then called adaptive.
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Chapter 2

Theoretical basics and terminologies

2.1 Hilbert space

For a detailed and extensive survey on functional analysis we refer the reader, for example,
to Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§2.1.1 Definition. A normed vector space (H, ‖·‖H) over K ∈ {R,C} that is complete (in a
Cauchy-sense) is called a (real or complex) Hilbert space if there exists an inner product 〈·, ·〉H
on H×H with |〈h, h〉H|1/2 = ‖h‖H for all h ∈ H.

§2.1.2 Property. Let (H, ‖·‖1) and (H, ‖·‖2) be complete normed vector spaces. If there exists
a constantK > 0 such that ‖h‖1 6 K ‖h‖2 for any h ∈ H then, ‖·‖1 and ‖·‖2 are equivalent.

§2.1.3 Property.
(Cauchy-Schwarz inequality) |〈h1, h2〉H| 6 ‖h1‖H · ‖h2‖H for all h1, h2 ∈ H.

§2.1.4 Examples.
(i) For k ∈ N the Euclidean space Kk endowed with the Euclidean inner product 〈x, y〉 := ytx

and the induced Euclidean norm ‖x‖ = (xtx)1/2 for all x, y ∈ Kk is a Hilbert space. More
generally, given a strictly positive definite (k×k)-matrixW , Kk endowed with the weighted
inner product 〈x, y〉W := ytWx for all x, y ∈ Kk is also a Hilbert space.

(ii) Given J ⊆ Z, denote by KJ the vector space of all K-valued sequences over J where
we refer to any sequence (xj)j∈J ∈ KJ as a whole by omitting its index as for example
in «the sequence x» and arithmetic operations on sequences are defined element-wise, i.e.,
xy := (xjyj)j∈J . In the sequel, let ‖x‖`p := (

∑
j∈J |xj|p)1/p, for p ∈ [1,∞), and ‖x‖`∞ :=

supj∈J |xj|. Thereby, for p ∈ [1,∞], consider `p(J ) :=
{

(xj)j∈J ∈ KJ , ‖x‖`p <∞
}

, or

`p for short, endowed with the norm ‖·‖`p . In particular, `2(J ) is the usual Hilbert space of
square summable sequences overJ endowed with the inner product 〈x, y〉`2 :=

∑
j∈J xjyj

for all x, y ∈ `2(J ).

(iii) For a strictly positive sequence v consider the weighted norm ‖x‖2
`2v

:=
∑

j∈J v2
j |xj|2. We

define `2
v(J ), or `2

v for short, as the completion of `2(J ) w.r.t. ‖·‖v which is a Hilbert space
endowed with the inner product 〈x, y〉`2v := 〈vx, vy〉`2 =

∑
j∈J v2

jxjyj for all x, y ∈ `v.

(iv) Let B be the Borel-σ-algebra on K. Given a measure space (Ω,A , µ) denote by KΩ the
vector space of all K-valued functions f : Ω → K. Recall that ‖f‖Lpµ = (µ|f |p)1/p =( ∫

Ω
|f(ω)|pµ(dω)

)1/p, for p ∈ [1,∞), and ‖f‖L∞µ := inf{c : µ(|f | > c) = 0}, where
for p ∈ [1,∞], we write Lp(Ω,A , µ) := {f ∈ KΩ,A -B-measurable , ‖f‖Lp < ∞},
Lpµ(Ω) or Lpµ for short, which is endowed with the norm ‖·‖Lpµ for short. In case µ is the
Lebesgue measure, then we may write Lp(Ω,A ), Lp(Ω), Lp and ‖·‖Lp for short. Moreover,
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Chapter 2 Theoretical basics and terminologies 2.1 Hilbert space

L2(Ω,A , µ), L2
µ(Ω) or L2

µ for short, is the usual Hilbert space of square µ-integrable, A -
B-measurable functions on Ω endowed with the inner product 〈f, g〉L2

µ
:= µ(fg) for all

f, g ∈ L2
µ.

(v) Let X be a random variable (r.v.) on a probability space (Ω,A ,P) taking its values in a
measurable space (X ,B). We denote by PX := P ◦X−1 the image probability measure of
P under X on (X ,B). For p ∈ [1,∞] we set LpX := Lp(X ,B,PX) where L2

X is a Hilbert
space endowed with 〈f, g〉L2

X
= PX(fg) for all f, g ∈ L2

X .

§2.1.5 Definition. A subset U of a Hilbert space (H, 〈·, ·〉H) is called orthogonal if

∀u1, u2 ∈ U , u1 6= u2 : 〈u1, u2〉H = 0

and orthonormal system (ONS) if in addition ‖u‖H = 1, ∀u ∈ U . We say U is an orthonormal
basis (ONB) if U ⊂ U ′ and U ′ is ONS, then U = U ′, i.e., if it is a complete ONS.

§2.1.6 Examples.
(i) Consider the real Hilbert space L2([0, 1]) w.r.t. the Lebesgue measure. The trigonometric

basis {ψj, j ∈ N} given for t ∈ [0, 1] by

ψ1(t) := 1, ψ2k(t) :=
√

2 cos(2πkt), ψ2k+1(t) :=
√

2 sin(2πkt), k = 1, 2, . . . ,

is orthonormal and complete, i.e. an ONB.

(ii) Consider the complex Hilbert space L2([0, 1)), then the exponential basis {ej, j ∈ Z} with

ej(t) := exp(−ι2πjt) for t ∈ [0, 1) and j ∈ Z,

is orthonormal and complete, i.e. an ONB.

§2.1.7 Properties.
(Pythagorean formula) If h1, . . . , hn ∈ H are orthogonal, then ‖

∑n
j=1 hj‖2

H =
∑n

j=1 ‖hj‖
2
H.

(Bessel’s inequality) If U ⊂ H is an ONS, then ‖h‖2
H >

∑
u∈U |〈h, u〉H|2 for all h ∈ H.

(Parseval’s formula) An ONS U ⊂ H is complete if and only if ‖h‖2
H =

∑
u∈U |〈h, u〉H|2 for

all h ∈ H.

§2.1.8 Definition. Let U be a subset of a Hilbert space (H, 〈·, ·〉H). Denote by U := lin(U) the
closure of the linear subspace spanned by the elements of U and its orthogonal complement in
(H, 〈·, ·〉H) by U⊥ :=

{
h ∈ H : 〈h, u〉H = 0,∀u ∈ lin(U)

}
where H = U⊕ U⊥.

§2.1.9 Remark. If U ⊂ H is an ONS, then there exists an ONS V ⊂ H such that H =
lin(U)⊕ lin(V) and for all h ∈ H it holds h =

∑
u∈U〈h, u〉Hu+

∑
v∈V〈h, v〉Hv (in a H-sense).

In particular, if U is an ONB then h =
∑

u∈U〈h, u〉Hu for all h ∈ H.

§2.1.10 Definition. Given J ⊂ Z, a sequence (uj)j∈J in H is said to be orthonormal and
complete (i.e. orthonormal basis) if the subset U = {uj, j ∈ J } is a complete ONS (i.e. ONB).
The Hilbert space H is called separable, if there exists a complete orthonormal sequence.

§2.1.11 Examples. The Hilbert space (Rk, 〈·, ·〉M), (`2
v, 〈·, ·〉`2v) and (L2

µ(Ω), 〈·, ·〉L2
µ
) with σ-

finite measure µ are separable. On the contrary, given λ ∈ R define the function fλ : R → C

6 Statistics of inverse problems



2.1 Hilbert space Chapter 2 Theoretical basics and terminologies

with fλ(x) := eιλx and setH = lin {fλ, λ ∈ R}. Observe that 〈f, g〉 = limt→∞
1
2t

∫ t
−t f(s)g(s)ds

defines an inner product on H. The completion of H w.r.t. the induced norm ‖f‖ = |〈f, f〉|1/2
is a Hilbert space which is not separable, since ‖fλ − fλ′‖ =

√
2 for all λ 6= λ′.

§2.1.12 Definition. Given J ⊆ Z we call a (possibly finite) sequence (Jm)m∈M,M ⊆ N, a
nested sieve in J , if (i) Jk ⊂ Jm, for any k ∈ J1,mK ∩ M and m ∈ M, (ii) |Jm| < ∞,
m ∈ M, and (iii) ∪m∈MJm = J . We write J c

m := J \Jm, m ∈ M. Denoting Ja, bK :=
[a, b] ∩ Z (analogously, Ka, bK :=]a, b] ∩ Z, Ja, bJ := [a, b[∩Z, etc.) we use typically the nested
sieve (J1,mK)m∈N and (J−m,mK)m∈N in J = N and J = Z, respectively. Analogously,
given an ONS U = {uj, j ∈ J } and setting Um := lin {uj, j ∈ Jm}, m ∈ M, for a nested
sieve (Jm)m∈M in J we call the (possibly finite) sequence (Um)m∈M a nested sieve in U :=
lin {uj, j ∈ J }. We write U⊥m := lin {uj, j ∈ J c

m} where U = Um ⊕ U⊥m. For convenient
notations we set further 1Jm := (1Jm(j))j∈J with 1Jm(j) = 1 if j ∈ Jm and 1Jm(j) = 0
otherwise, and analogously 1J cm := (1J cm(j))j∈J .

§2.1.13 Definition. We call an ONS U = {uj, j ∈ J } in L2
µ (respectively, in `2)

(i) regular w.r.t. a nested sieve (Jm)m∈M in J and a weight sequence v if there is a finite
constant τuv > 1 satisfying ‖

∑
j∈Jm v2

j |uj|2‖L∞µ 6 τ 2
uv

∑
j∈Jm v2

j for all m ∈M;

(ii) regular w.r.t. a weight sequence a if there exists a finite constant τua > 1 such that
‖
∑

j∈J a2
j |uj|2‖L∞µ 6 τ 2

ua.

§2.1.14 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L2 a regular
ONS {uj, j ∈ N} w.r.t. the nested sieve (J1,mK)m∈N and v ≡ 1 is exactly equivalent to follow-
ing property: there exists a finite constant τu > 1 such that for any h belonging to the subspace
Um, spanned by the first m functions {uj}mj=1, holds ‖h‖L∞ 6 τu

√
m ‖h‖L2 . Typical example

are bounded basis, such as the trigonometric basis, or basis satisfying the assertion, that there ex-
ists a positive constantC∞ such that for any (c1, . . . , cm) ∈ Rm, ‖

∑m
j=1 cjuj‖L∞ 6 C∞

√
m|c|∞

where |c|∞ = max16j6m cj . Birgé and Massart [1997] have shown that the last property is sat-
isfied for piece-wise polynomials, splines and wavelets.

§2.1.15 Example (§2.1.6 (i) continued). Consider the trigonometric basis {ψj, j ∈ N} in the
real Hilbert space L2([0, 1]). Since supj∈N ‖ψj‖L∞ 6

√
2 setting τ 2

ψv := 2 the trigonometric
basis is regular w.r.t. any nested Sieve (Jm)m∈M and sequence v, i.e., §2.1.13 (i) holds with
‖
∑

j∈Jm v2
j |ψj|2‖L∞ 6 τ 2

ψv

∑
j∈Jm v2

j . In the particular case of the nested sieve (J1, 1 + 2mK)m∈N
and v ≡ 1, we have

∑1+2m
j=1 |ψj|2 = 1[0,1] +

∑m
j=1{2 sin2(2πj•) + 2 cos2(2πj•)} = 1 + 2m

and thus, the trigonometric basis is regular with τ 2
ψ := 1. Moreover, the trigonometric basis is

regular w.r.t. any square-summable weight sequence a, i.e., ‖a‖`2 <∞. Indeed, in this situation
we have ‖

∑
j∈N a

2
j |ψj|2‖`∞ 6 2 ‖a‖2

`2 and hence §2.1.13 holds with τ 2
ψa = 2 ‖a‖2

`2 .

2.1.1 Abstract smoothness condition

§2.1.16 Notations. Let U = {uj, j ∈ J } be an ONS with U = lin {uj, j ∈ J } ⊆ H. For
any h ∈ H consider its associated sequence of generalised Fourier coefficients [h] := ([h]j)j∈J
with generic elements [h]j = 〈h, uj〉H, j ∈ J . Given a strictly positive sequence of weights
v = (vj)j∈J for h, g ∈ H we define 〈h, g〉2v := 〈v[h], v[g]〉`2 =

∑
j∈J v2

j [h]j[g]
j

and ‖h‖2
v :=

‖[h]‖2
`2v

=
∑

j∈J v2
j |[h]j|2. Obviously, 〈·, ·〉v and ‖·‖v restricted on U defines on U a (weighted)

Statistics of inverse problems 7



Chapter 2 Theoretical basics and terminologies 2.2 Linear operator between Hilbert spaces

inner product and its induced (weighted) norm, respectively. We denote by Uv the completion
of U w.r.t. ‖·‖v. If (uj)j∈J is complete in H then let Hv be the completion of H w.r.t. ‖·‖v.

§2.1.17 Example (§2.1.15 continued). Consider the real Hilbert space L2([0, 1]) and the trigono-
metric basis {ψj, j ∈ N}. Define further a weighted norm ‖·‖v w.r.t. the trigonometric basis,
that is, ‖h‖v :=

∑
j∈N v

2
j |〈h, ψj〉L2|2. Denote by L2

v([0, 1]) or L2
v for short, the completion of

L2([0, 1]) w.r.t. ‖·‖v.
(P) If we set v1 = 1, v2k = v2k+1 = jp, p ∈ N, k ∈ N, then L2

v([0, 1]) is a subset of the
Sobolev space of p-times differentiable periodic functions. Moreover, up to a constant, for
any function h ∈ L2

v([0, 1]), the weighted norm ‖h‖2
v equals the L2-norm of its p-th weak

derivative h(p) (Tsybakov [2009]).

(E) If, on the contrary, vj = exp(−1 + j2p), p > 1/2, j ∈ N, then L2
v([0, 1]) is a class of

analytic functions (Kawata [1972]).
Note that, the trigonometric basis is regular w.r.t. the weight sequence 1/v = v−1 = (v−1

j ) as in
§2.1.13 (ii), i.e., ‖1/v‖`2 <∞, in case (P) whenever p > 1/2 and in case (E) if p > 0.

§2.1.18 Definition (Abstract smoothness condition). Given a strictly positive sequence of weights
a = (aj)j∈J and an ONS U = {uj, j ∈ J } in H consider the associated weighted norm ‖·‖1/a

and the completion U1/a of U. Let r > 0 be a constant. We assume in the following that the
function of interest f belongs to the ellipsoid Frua := {h ∈ U1/a : ‖h‖2

1/a 6 r2} and hence,
ΠU⊥f = 0.

§2.1.19 Lemma. Let Frua be a class of functions w.r.t. an ONS U = {uj, j ∈ J } in L2
µ (or

analogously in `2) as given in §2.1.18. If the ONS is regular w.r.t. the weight sequence a as in
§2.1.13 (ii) for some finite constant τua > 1, then for each f ∈ Frua holds ‖f‖L∞µ 6 τua ‖f‖1/a 6
rτua.

Proof of Lemma §2.1.19 is given in the lecture.

§2.1.20 Example (§2.1.17 continued). Consider inL2
v([0, 1]) the trigonometric basis {ψj, j ∈ N}

and a weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E) with p > 0.
In both cases setting τ 2

ψv = 2 ‖1/v‖2
`2 < ∞ the trigonometric basis is regular w.r.t. the weight

sequence 1/v. Consequently, setting a = 1/v and Frψa = {h ∈ L2
v([0, 1]) : ‖h‖2

v 6 r2}, from
Lemma §2.1.19 follows ‖f‖2

L∞ 6 2 ‖f‖2
v ‖1/v‖

2
`2 for all f ∈ Frψa.

2.2 Linear operator between Hilbert spaces

§2.2.1 Definition. A map T : H→ G between Hilbert spaces H and G is called linear operator
if T (ah1 + bh2) = aTh1 + bTh2 for all h1, h2 ∈ H, a, b ∈ K. Its domain will be denoted by
D(T ), its range byR(T ) and its null space by N (T ).

§2.2.2 Property. Let T : H → G be a linear operator, then the following assertions are
equivalent: (i) T is continuous in zero. (ii) T is bounded, i.e., there is M > 0 such that
‖Th‖G 6M ‖h‖H for all h ∈ H. (iii) T is uniformly continuous.

§2.2.3 Definition. The class of all bounded linear operators T : H → G is denoted by
L (H,G), or L and in case of H = G, L (H) for short. For T ∈ L (H,G) define its (uniform)
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norm as ‖T‖L := ‖T‖L (H,G) := sup{‖Th‖G : ‖h‖H 6 1, h ∈ H}.

§2.2.4 Examples.
(i) Let M be a (m× k) matrix, then M ∈ L (Rk,Rm). We write ‖M‖s := ‖M‖L (Rk,Rm) for

short. (spectral norm)

(ii) For finite (i.e., |J | < ∞) sequences (h)j∈J in H and (g)j∈J in G the linear operator∑
j∈J hj⊗ gj defined by f 7→

[∑
j∈J hj⊗ gj

]
f :=

∑
j∈J 〈f, hj〉H gj belongs to L (H,G)

with ‖
∑

j∈J hj ⊗ gj‖L 6
∑

j∈J ‖hj‖H ‖gj‖G. Moreover, it has a finite range contained in
lin({gj, j ∈ J }).

(iii) Let U = {uj, j ∈ J } be an ONS in H and for any f ∈ H consider its sequence of gen-
eralised Fourier coefficients [f ] := ([f ]j)j∈J given by [f ]j := 〈f, uj〉H, j ∈ J . The
associated (generalised) Fourier series transform U defined by f 7→ Uf := [f ] belongs to
L (H, `2(J )) with ‖U‖L = 1.

(iv) For a sequence λ = (λj)j∈J consider the multiplication operator Mλ : KJ → KJ
given by x 7→ Mλx := (λjxj)j∈J . For any bounded sequence λ, i.e, ‖λ‖`∞ < ∞,
we have ‖Mλ‖L (`p) 6 ‖λ‖`∞ and hence, Mλ ∈ L (`p) for any p ∈ [1,∞]. Analo-
gously, given a function λ : Ω → K the multiplication operator Mλ : KΩ → KΩ

is defined as f 7→ Mλf := fλ where for any bounded (measurable) function λ, i.e,
‖λ‖L∞µ < ∞, holds ‖Mλ‖L (Lpµ) 6 ‖λ‖L∞µ < ∞ and, hence Mλ ∈ L (Lpµ). On the other
hand side, if λ is real-valued (measurable), µ-a.s. finite and non zero, then the subset
D(Mλ) :=

{
f ∈ L2

µ : λf ∈ L2
µ

}
is dense in L2

µ. In this situation the multiplication opera-
tor Mλ : L2

µ ⊃ D(Mλ)→ L2
µ is densely defined (and self-adjoint).

(v) Given a (generalised) Fourier series transform U ∈ L (H, `2) as in (iii) and a multiplication
operator Mλ ∈ L (`2) for some bounded sequence λ = (λj)j∈J as in (iv) the linear operator
∇λ : H → H given by N (U) = N (∇λ) and U∇λ = MλU , i.e. U∇λh = MλUh =
(λj[h]j)j∈J belongs to L (H) with ‖∇λ‖L 6 ‖λ‖`∞ < ∞. We call ∇λ diagonal w.r.t. U
(or U).

(vi) The integral operator Tk : L2
µ1

(Ω1)→ L2
µ2

(Ω2) with kernel k : Ω1 × Ω2 → K defined by

[Tkf ](ω2) :=

∫
Ω1

h(ω1)k(ω1, ω2)µ(dω1), ω2 ∈ Ω2, h ∈ L2
µ1

(Ω1),

belongs to L (L2
µ1

(Ω1), L2
µ2

(Ω2)) if ‖k‖2
L2 =

∫
Ω1

∫
Ω2
|k|2dµ1dµ2 <∞.

(vii) Let X ∈ L1(Ω,A ,P) and F ⊂ A be a sub-σ-algebra. There exists Y ∈ L1(Ω,F ,P)
such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover, Y is unique up to equality P-a.s..
Each version Y is called conditional expectation of X given F , symbolically, E[X|F ] :=
Y . For each p ∈ [1,∞] the linear map E[•|F ] : Lp(Ω,A ,P) → Lp(Ω,F ,P) ⊆
Lp(Ω,A ,P) given by X 7→ E[X|F ] is a contraction, that is ‖E[X|F ]‖Lp 6 ‖X‖Lp
and thus E[•|F ] belongs to L (Lp(Ω,A ,P)) with ‖E[•|F ]‖L = 1 (keep in mind that
E[1|F ] = 1). Given a r.v. Z on (Ω,A ,P) and the σ-algebra σ(Z) generated by Z we set
E[X|Z] := E[X|σ(Z)]. The conditional expectation operator of X given Z defined by
Kh := E[h(X)|Z] for h ∈ L1

X is then an element of L (LpX , L
p
Z) with ‖K‖L = 1.

(viii) Let φ ∈ L1(R) ∩ L2(R), then the convolution operator Cφ : L2(R)→ L2(R) defined by

[Cφh](t) := [h ∗ φ](t) :=

∫
R
h(s)φ(t− s)ds, t ∈ R, h ∈ L2(R),

Statistics of inverse problems 9



Chapter 2 Theoretical basics and terminologies 2.2 Linear operator between Hilbert spaces

belongs to L (L2(R)) with ‖Cφ‖L 6 ‖φ‖L1 :=
∫
R |φ(t)|dt.

(ix) Let φ ∈ L2([0, 1)), hence, φ ∈ L1([0, 1)), and let b·c be the floor function, then the circular
convolution operator Cφ : L2([0, 1))→ L2([0, 1)) defined by

[Cφh](t) := [h~ φ](t) :=

∫
[0,1)

h(s)φ(t− s− bt− sc)ds, t ∈ [0, 1), h ∈ L([0, 1)),

belongs to L (L2([0, 1))) with ‖Cφ‖L 6 ‖φ‖L1 :=
∫ 1

0
|φ(t)|dt.

§2.2.5 Definition. A (linear) map Φ : H ⊃ D(Φ) → K is called (linear) functional and given
an ONS {uj, j ∈ J } in H which belongs to D(Φ) we set [Φ] = ([Φ]j)j∈J with the slight abuse
of notations [Φ]j := Φ(uj). In particular, if Φ ∈ L (H,K) then D(Φ) = H.

§2.2.6 Property. Let Φ ∈ L (H,K).

(Fréchet-Riesz representation) There exists a function φ ∈ H such that Φ(h) = 〈φ, h〉H for
all h ∈ H, and hence, given an ONS {uj, j ∈ J } in H we have [Φ]j = [φ]j for all j ∈ J .

§2.2.7 Example. Consider an ONB U = {uj, j ∈ J } in L2(Ω) (or analogously in `2(J )).
By evaluation at a point to ∈ Ω we mean the linear functional Φto mapping h ∈ L2(Ω) to
h(to) := Φto(h) =

∑
j∈J [h]juj(to). Obviously, a point evaluation of h at to is well-defined, if∑

j∈J |[h]juj(to)| <∞. Observe that the point evaluation at to is generally not bounded on the
subset {h ∈ L2(Ω) :

∑
j∈J |[h]juj(to)| <∞}.

§2.2.8 Definition (Regular linear functionals). Consider an ONS U = {uj, j ∈ J } in H which
belongs to the domain D(Φ) of a linear functional Φ. In order to guarantee that U1/a and
hence the class Frua of functions of interest as in §2.1.18 are contained in D(Φ) and that Φ(f) =∑

j∈J [Φ]j[f ]j holds for all f ∈ Frua, it is sufficient that ‖[Φ]‖2
`2a

=
∑

j∈J |[Φ]j|2a2
j <∞. Indeed,

|Φ(f)|2 6 ‖f‖2
1/a ‖[Φ]‖2

`2a
for any f ∈ U1/a and hence Φ ∈ L (U1/a,K) with ‖Φ‖L 6 ‖[Φ]‖`2a .

We denote by La the set of all linear functionals with ‖[Φ]‖2
`2a
<∞.

§2.2.9 Remark. We may emphasise that we neither impose that the sequence [Φ] = ([Φ]j)j∈J
tends to zero nor that it is square summable. The assumption Φ ∈ La, however, enables us in
specific cases to deal with more demanding functionals, such as in Example §2.2.7 above the
evaluation at a given point.

§2.2.10 Example (§2.2.7 continued). Consider an ONB U = {uj, j ∈ J } in L2(Ω) and the
evaluation at a point to ∈ Ω given by Φto(h) =

∑
j∈J [h]juj(to). Let L2

1/a(Ω) be the completion
of L2(Ω) w.r.t. a weighted norm ‖·‖1/a derived from U and a strictly positive sequence a. Since
|Φto(h)|2 6 ‖h‖2

1/a

∑
j∈J a2

j |uj(to)|2 the point evaluation in to is bounded on L2
1/a(Ω) and,

thus, belongs to L (L2
1/a(Ω),K), if

∑
j∈J a2

j |uj(to)|2 < ∞. Consequently, if the ONS U is
regular w.r.t. the weight sequence a, i.e., §2.1.13 (ii) holds for some finite constant τua > 1,
then ‖Φto‖L (L2

1/a
(Ω),K) 6 τua uniformly for any to ∈ Ω. Revisiting the particular situation of

Example §2.1.17 and its continuation in §2.1.20, that is, L2
v([0, 1]) w.r.t. the trigonometric basis

{ψj, j ∈ N} and weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E)
with p > 0, recall that the trigonometric basis is regular w.r.t. a = 1/v and hence, the point
evaluation Φto belongs to L (L2

v([0, 1]),R), i.e., ‖Φto‖L 6
√

2 ‖1/v‖`2 for each to ∈ [0, 1].
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§2.2.11 Definition. If T ∈ L (H,G), then there exists a uniquely determined adjoint operator
T ? ∈ L (G,H) satisfying 〈Th, g〉G = 〈h, T ?g〉H for all h ∈ H, g ∈ G.

§2.2.12 Properties. Let S, T ∈ L (H1,H2) and R ∈ L (H2,H3). Then we have
(i) (S + T )? = S? + T ?, (RS)? = S?R?.

(ii) ‖S?‖L = ‖S‖L , ‖SS?‖L = ‖S?S‖L = ‖S‖2
L .

(iii) N (S) = R(S?)⊥, N (S?) = R(S)⊥, H1 = N (S) ⊕ R(S?) and H2 = N (S?) ⊕ R(S)
whereR(S) (respectively,R(S?)) denotes the closure of the range of S. In particular, S is
injective if and only ifR(S?) is dense in H.

(iv) N (S?S) = N (S) and N (SS?) = N (S?).

§2.2.13 Examples (§2.2.4 continued).
(i) The adjoint of a (k ×m) matrix M is its (m× k) transpose matrix M t.

(ii) The adjointU? ∈ L (`2(J ),H) of the (generalised) Fourier series transformU ∈ L (H, `2(J ))
satisfies x 7→ U?x :=

∑
j∈J xjuj for x ∈ `2(J ).

(iii) For finite J the adjoint operator in L (G,H) of
∑

j∈J hj ⊗ gj ∈ L (H,G) satisfies
[
∑

j∈J hj ⊗ gj]?g =
∑

j∈J 〈g, gj〉Ghj = [
∑

j∈J gj ⊗ hj]g.

(iv) Let Mλ ∈ L (L2
µ(Ω)) (or analogously Mλ ∈ L (`2)) be a multiplication operator, then its

adjoint operator M?
λ = Mλ? is a multiplication operator with λ?(t) = λ(t), t ∈ Ω.

(v) Let Tk ∈ L (L2
µ1

(Ω1), L2
µ2

(Ω2)) be an integral operator with kernel k, then its adjoint
T ?k = Tk? ∈ L (L2

µ2
(Ω2), L2

µ1
(Ω1)) is again an integral operator satisfying

[Tk?g](ω1) :=

∫
Ω2

g(ω2)k?(ω2, ω1)µ2(dω2), ω1 ∈ Ω1, g ∈ L2
µ2

(Ω2),

with kernel k?(ω2, ω1) := k(ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2.

(vi) LetK ∈ L (L2
X , L

2
Z) be the conditional expectation ofX given Z, then its adjoint operator

K? = K ∈ L (L2
Z , L

2
X) is the conditional expectation of Z given X satisfying Kg =

E[g(Z)|X] for all g ∈ L2
Z .

(vii) Let Cg ∈ L (L2(R)) be a convolution operator, then its adjoint operator C?
g = Cg? is a

convolution operator, i.e, Cg?h = g? ∗ h, with g?(t) = g(−t), t ∈ R.

§2.2.14 Definition.
(i) The identity in L (H) is denoted by IdH.

(ii) Let T ∈ L (H,G). Obviously, T : N (T )⊥ → R(T ) is bijective and continuous whereas its
inverse T−1 : R(T )→ N (T )⊥ is continuous (i.e. bounded) if and only if R(T ) is closed.
In particular, if T : H → G is bijective (invertible) then its inverse T−1 ∈ L (G,H)
satisfies IdG = TT−1 and IdH = T−1T .

(iii) U ∈ L (H,G) is called unitary, if U is invertible with UU? = IdG and U?U = IdH.

(iv) V ∈ L (H,G) is called partial isometry, if V : N (V )⊥ → R(V ) is unitary.

(v) T ∈ L (H) is called self-adjoint, if T = T ?, i.e., 〈Th, g〉H = 〈h, T ?g〉H for all h, g ∈ H.

(vi) T ∈ L (H) is called normal, if TT ? = T ?T , i.e., 〈Th, Tg〉H = 〈T ?h, T ?g〉H for all
h, g ∈ H.

Statistics of inverse problems 11
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(vii) A self-adjoint T ∈ L (H) is called positive semi-definite (non-negative definite) or T > 0
for short, if 〈Th, h〉H > 0 for all h ∈ H and strictly positive definite or T > 0 for short, if
〈Th, h〉H > 0 for all h ∈ H\{0}.

(viii) Π ∈ L (H) is called projection if Π2 = Π. For Π 6= 0 are equivalent: (a) Π is an
orthogonal projection (H = R(Π)⊕N (Π)); (b) ‖Π‖L = 1; (c) Π is non-negative.

§2.2.15 Property. Let T ∈ L (H). If T is invertible, then it is T ?, where (T−1)? = (T ?)−1.
Moreover, if T is normal, then ‖T‖L = sup{|〈Th, h〉H| : ‖h‖H 6 1, h ∈ H}.

(Neumann series) If ‖T‖L < 1, then ‖(IdH−T )−1‖L 6 (1− ‖T‖L )−1.

§2.2.16 Examples (§2.2.4 continued).
(i) The (generalised) Fourier series transform U is a partial isometry with adjoint operator

U?x =
∑

j∈J xjuj for x ∈ `2(J ). Moreover, the orthogonal projection ΠU onto U satisfies
ΠUf = U?Uf =

∑
j∈J [f ]juj for all f ∈ H. If U = {uj, j ∈ J } is complete (i.e. ONB),

then U is invertible with UU? = Id`2 and U?U = IdH due to Parseval’s formula, and hence
U is unitary.

(ii) Let F ∈ L (L2(R)) denote the Fourier-Plancherel transform satisfying

[Fh](t) =

∫
R
h(x)e−ι2πxtdx, ∀h ∈ L1(R) ∩ L2(R).

Then F is unitary with [F?h](t) =
∫
h(x)eι2πxtdx for all h ∈ L1(R) ∩ L2(R). We note

further for all h ∈ L1 that ‖Fh‖L∞ 6 ‖h‖L1 , and thatFh is continuous and tends to zero in
infinity. Keeping in mind the convolution defined in Examples §2.2.4 (viii) the convolution
theorem states F (f ∗ g) = Ff ·Fg for any f, g ∈ L1(R).

(iii) A multiplication operator Mλ ∈ L (L2
µ) is normal. If λ is in addition real, it is self-adjoint

and if λ is non-negative, then it is non-negative.

(iv) A diagonal operator ∇λ ∈ L (H) w.r.t. a partial isometry U ∈ L (H, `2) satisfies ∇λ =
U?MλU and it shares the properties of the multiplication operator Mλ ∈ L (`2).

(v) A conditional expectation operator K ∈ L (L2
X , L

2
Z) is an orthogonal projection.

(vi) A convolution operator Cg ∈ L (L2(R)) is normal and if g is in addition a real and even
(g(−t) = g(t)) function, then it is self-adjoint.

(vii) A circular convolution operator Cg ∈ L (L2([0, 1))) is normal and if g is in addition a
real and even (g(t) = g(1− t)) function, then it is self-adjoint.

2.2.1 Compact, nuclear and Hilbert-Schmidt operator

§2.2.17 Definition. An operator K ∈ L (H,G) is called compact, if {Kh : ‖h‖H 6 1, h ∈ H}
is relatively compact in G. We denote by K (H,G) the subset of all compact operator in
L (H,G), and we write K (H) = K (H,H) for short.

§2.2.18 Properties. Let K ∈ L (H,G).

(Schauder’s theorem) K is compact, if and only if its adjoint K? ∈ L (G,H) is compact.

If there are Kj ∈ L (H,G) with finite dimensional range for each j ∈ N such that
limj→∞ ‖Kj −K‖L = 0, then K is compact. If in addition G is separable, then the
converse holds also true.
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§2.2.19 Examples (§2.2.4 continued).
(i) For finite J the operator

∑
j∈J hj ⊗ gj ∈ L (H,G) is compact.

(ii) A multiplication operator Mλ ∈ L (`2) is compact, if λ has either only a finite number of
entries not equal to zero or zero is the only accumulation point.

(iii) A diagonal operator ∇λ = U?MλU ∈ L (H) w.r.t. a partial isometry U ∈ L (H, `2) is
compact if the multiplication operator Mλ ∈ L (`2) is compact.

(iv) A convolution operator Cg ∈ L (L2(R)) is not compact.

(v) A circular convolution operator Cg ∈ L (L2([0, 1))) is compact.

§2.2.20 Remark. Every finite linear combination of compact operators is compact, and hence
K (H,G) is a vector space.

§2.2.21 Definition. An operator T ∈ L (H,G) is called nuclear, if there are sequences (hj)j∈N
in H and (gj)j∈N in G with

∑
j∈N ‖hj‖H ‖gj‖G <∞ such that limn→∞‖

∑n
j=1 hj⊗ gj−T‖L =

0, or T =
∑

j∈N hj ⊗ gj for short. We denote by N (H,G) the subset of all nuclear operator in
L (H,G), and we write N (H) := N (H,H). Furthermore, let (fj)j∈N be any ONB in H and
T ∈ N (H), then tr(T ) :=

∑
j∈N〈Tfj, fj〉H denotes the trace of T .

§2.2.22 Remark. We have N (H,G) ⊂ K (H,G) ⊂ L (H,G). The trace does not depend on
the choice of the ONB and is a continuous linear functional on N (H) with ‖tr‖L = 1.

§2.2.23 Properties. Let T ∈ L (H,G) and S ∈ L (G,H).
(i) T is nuclear, if and only if its adjoint T ? ∈ L (G,H) is nuclear.

(ii) If T is nuclear, then TS ∈ N (H), ST ∈ N (G) and tr(TS) = tr(ST ).

§2.2.24 Example. A multiplication operator Mλ ∈ L (`2) and, hence an associated diago-
nal operator U?MλU ∈ L (H), is nuclear, if λ is absolute summable, i.e., ‖λ‖`1 < ∞, and
tr(Mλ) = tr(∇λ) =

∑
j∈J λj .

§2.2.25 Definition. An operator T ∈ L (H,G) is called Hilbert-Schmidt, if there exists an
ONB (hj)j∈N in H such that ‖T‖2

H :=
∑

j∈N ‖Thj‖
2
G < ∞. The number ‖T‖H is called

Hilbert-Schmidt norm of T and satisfies ‖T‖L 6 ‖T‖H . We denote by H (H,G) the subset
of all Hilbert-Schmidt operator in L (H,G), and we write H (H) := H (H,H).

§2.2.26 Remark. We have N (H,G) ⊂ H (H,G) ⊂ K (H,G). The number ‖T‖H does
not depend on the choice of the ONB. The product TS of two Hilbert-Schmidt operator T
and S is nuclear. The space H (H,G) endowed with the inner product 〈T, S〉H := tr(S?T ),
S, T ∈H (H,G) is a Hilbert space and ‖·‖H the induced norm.

§2.2.27 Property. If T ∈ H(H,G) and S ∈ L (G) then tr(TST ?) 6 tr(TT ?) ‖S‖L .

§2.2.28 Examples.
(i) Let T ∈ L (L2

µ1
(Ω1), L2

µ2
(Ω2)). The operator T is Hilbert-Schmidt if and only if it

is an integral operator T = Tk with square integrable kernel k and it holds ‖T‖2
H =∫

Ω1

∫
Ω2
|k(ω1, ω2)|2µ1(dω1)µ2(dω2).
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(ii) A multiplication operator Mλ ∈ L (`(J )) and, hence an associated diagonal operator
U?MλU ∈ L (H), is Hilbert-Schmidt, if λ = (λj)j∈J is square summable and ‖Mλ‖H =
‖∇λ‖H = ‖λ‖`2 <∞.

(iii) Consider the conditional expectation operator K ∈ L (L2
X , L

2
Z) of X given Z. Let in

addition pX,Z , pX and pZ be, respectively, the joint and marginal densities of (X,Z), X
and Z w.r.t. a σ-finite measure. In this situation, the operator K is Hilbert Schmidt if and
only if E

[ |pXZ(X,Z)|2
|pX(X)pZ(Z)|2

]
<∞.

2.2.2 Spectral theory and functional calculus

§2.2.29 Definition. Consider T ∈ L (H). The set ρ(T ) = {λ ∈ K : (λ IdH−T )−1 ∈ L (H)}
and its complement σ(T ) = K\ρ(T ) is called resolvent set and spectrum of T , respectively.
The subset σp(T ) = {λ ∈ K : λ IdH−T is not injective} of σ(T ) is called point spectrum of T .
An element λ of σp(T ) and h ∈ H\{0} with Th = λh is called eigenvalue and eigenfunction
(eigenvector), respectively.

§2.2.30 Properties. Consider T ∈ K (H).
(i) If T is self-adjoint, then σ(T ) ⊂ R.

(ii) If H is infinite dimensional, then 0 ∈ σ(T ).

(iii) The (possibly empty) set σ(T )\{0} is at most countable.

(iv) Any λ ∈ σ(T )\{0} is an eigenvalue of T and its multiplicity is the (finite) dimension of the
associated eigenspace N (λ IdH−T ).

(v) In σ(T ) the only possible accumulation point is zero.

§2.2.31 Example. The spectrum of a multiplication operator Mλ ∈ K (`2) and its associated
diagonal operator ∇λ = U?MλU ∈ K (H) is given by σ(Mλ) = σ(∇λ) = {λj, j ∈ J } ⊂ K.

§2.2.32 Definition. Let T ∈ K (H) be normal (K = C) or self-adjoint (K = R). There exist
(i) a sequence λ = (λj)j∈J in K\{0} with ‖T‖L = supj∈J |λj| which has either a finite

number of entries or zero as accumulation point, and determines a multiplication operator
Mλ ∈ L (`2(J )),

(ii) an ONS {uj, j ∈ J } in H with U := lin {uj, j ∈ J } and associated generalised Fourier
series transform U ∈ L (H, `2(J )) as defined in §2.2.4,

such that H = N (T )⊕ U and T =
∑

j∈J λj uj ⊗ uj = U?MλU = ∇λ (see §2.2.4 (ii), (iv) and
(v)). For j ∈ J , λj and uj are, respectively, a non-zero eigenvalue and associated eigenvector
of T respectively. {(λj, uj), j ∈ J } is called an eigensystem of T .

§2.2.33 Properties. Let T ∈ K (H) be self-adjoint with eigensystem {(λj, uj), j ∈ J }, i.e.,
σ(T )\{0} = {λj, j ∈ J } ⊂ R denotes the (possibly empty) countable point spectrum of T .
The sequence λ = (λj)j∈J contains each eigenvalue of T repeated according to its multiplicity.
(i) If T is nuclear, then λ is absolute summable, i.e. ‖λ‖`1 <∞, and tr(T ) =

∑
j∈J λj .

(ii) If T is Hilbert-Schmidt, then λ is square summable and ‖T‖H = ‖λ‖`2 <∞.
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§2.2.34 Definition (Class of operators with given eigenfunctions). Given an ONS {uj, j ∈ J } in H
let Eu(H) or Eu for short be the subset of K (H) containing all compact, normal (self-adjoint), lin-
ear operators having for some J ′ ⊆ J , {uj, j ∈ J ′} as eigenfunctions, i.e., for each T ∈ Eu(H)
there exist J ′ ⊆ J and a sequence (λj)j∈J ′ in K\{0} such that T admits {(λj, uj), j ∈ J ′} as
eigensystem, i.e., Eu(H) ⊂ {∇λ, λ ∈ KJ }.

§2.2.35 Example. Let Cg ∈ K (L2([0, 1))) be a circular convolution operator. Consider as
in §2.1.6 (ii) the exponential basis {ej}j∈Z in L2([0, 1)) and for f ∈ L2([0, 1)) the associ-
ated Fourier coefficients [f ]j = 〈f, ej〉L2 , j ∈ Z. Keep in mind that Cg is normal and for all
f ∈ L2([0, 1)) the convolution theorem states [g ~ f ]j = [g]j[f ]j for all j ∈ Z. Thereby,
{([g]j, ej), j ∈ Z} is an eigensystem of the circular convolution operator Cg. In other words,
for each g ∈ L([0, 1)) we have Cg ∈ Ee(L2([0, 1))).

§2.2.36 Property. Let T ∈ K (H) be strictly positive definite and let (λj)j∈N be a strictly
positive, monotonically non-increasing sequence containing each eigenvalue of T repeated ac-
cording to its multiplicity. For m ∈ N let Hm be the set of all m-dimensional subspaces Um in
H, and denote by U⊥m the orthogonal complement of Um in H. Furthermore, let BUm := {h ∈
Um : ‖h‖H = 1} and BU⊥m be the unit ball in Um and U⊥m, respectively.

(Courant’s max-min-principle) λm = max
Um∈Hm

min
h∈BUm

〈Th, h〉H,

(Courant’s min-max-principle) λm = min
Um−1∈Hm−1

max
h∈BU⊥m−1

〈Th, h〉H.

§2.2.37 Definition. Let T ∈ K (H,G). There exist
(i) a sequence s := (sj)j∈J in K\{0} with ‖T‖L = supj∈J |sj| which has either a finite

number of entries or zero as only accumulation point, and determines a multiplication
operator Ms ∈ L (`2(J )),

(ii) an (possibly finite) ONS {uj, j ∈ J } in H with U := lin {uj, j ∈ J } and associated gen-
eralised Fourier series transform U ∈ L (H, `2(J )) (a partial isometry),

(iii) an (possibly finite) ONS {vj, j ∈ J } in G with V := lin {vj, j ∈ J } and associated gen-
eralised Fourier series transform V ∈ L (G, `2(J )) (a partial isometry),

such that H = N (T )⊕U, G = N (T ?)⊕V and T = V?MsU =
∑

j∈J sj uj⊗vj . In particular,
{(|sj|2, uj), j ∈ J } and {(|sj|2, vj), j ∈ J } are an eigensystem of T ?T and TT ? respectively.
The numbers {sj, j ∈ J } and triplets {(sj, uj, vj), j ∈ J } are, respectively, called singular
values and singular system of T .

§2.2.38 Properties. Let T ∈ K (H,G) with singular system {(sj, uj, vj), j ∈ J } where the
(possibly empty) countable point spectrum of T ?T (respectively, TT ?) is given by σ(T ?T )\{0} =
{|sj|2, j ∈ J } ⊂ R. The sequence (|sj|2)j∈J contains each eigenvalue of T ?T repeated accord-
ing to its multiplicity.
(i) If T is nuclear, then s is absolute summable, i.e. ‖s‖`1 <∞.

(ii) If T is Hilbert-Schmidt, then s is square summable and ‖T‖H = ‖s‖`2 <∞.

§2.2.39 Definition (Class of operators with known eigenfunctions). Given an ONS {uj, j ∈ J }
and {vj, j ∈ J } in H and G, respectively, let Suv(H,G) or Suv for short, be the subset of
K (H,G) containing all compact, linear operators having for some J ′ ⊆ J , {uj, j ∈ J ′}
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and {uj, j ∈ J ′} as eigenfunctions, i.e., for each T ∈ Suv(H,G) there exist J ′ ⊆ J and a
sequence (sj)j∈J ′ in K\{0} such that T admits {(sj, uj, vj), j ∈ J ′} as singular system.

§2.2.40 Property (Spectral theorem). If T ∈ L (H) is self-adjoint, then T is isometrically equiv-
alent to a multiplication operator, i.e., there exist
(i) a measurable space (Ω, µ) (σ-finite, if H is separable),

(ii) a bounded (measurable) and µ-a.s. non zero function λ : Ω→ R with associated multipli-
cation operator Mλ ∈ L (L2

µ(Ω)), and

(iii) a partial isometry U ∈ L (H, L2
µ(Ω)),

such that T = U?MλU .

§2.2.41 Example. Let g ∈ L1(R)∩L2(R) be a real and even function. Consider the associated
self-adjoint convolution operator Cg ∈ L (L2(R)). Recall that the convolution theorem states
F(g∗f) = Fg ·Ff for all f ∈ L2(R) whereF denotes the Fourier-Plancherel transform. Con-
sequently, the operatorCg is unitarily equivalent to the multiplication operator Mλ ∈ L (L2(R))
with λ = [Fg], that is Cg = F−1MλF .

§2.2.42 Property (Spectral theorem Halmos [1963]). Let T : H ⊃ D(T ) → H be a densely-
defined self-adjoint operator. There exist
(i) a measurable space (Ω, µ) (σ-finite, if H is separable),

(ii) an unitary operator U ∈ L (H, L2
µ(Ω)),

(iii) a (measurable) function λ : Ω→ R (µ-a.s. finite and non zero) and an associated multipli-
cation operator Mλ : L2

µ(Ω) ⊃ D(Mλ)→ L2
µ(Ω) withD(Mλ) =

{
f ∈ L2

µ(Ω) : λf ∈ L2
µ(Ω)

}
such that D(T ) = {h ∈ H : Uh ∈ D(Mλ)} and
(a) for all f ∈ D(Mλ) we have Mλf = λ · f = UTU?f ,

(b) for all h ∈ D(T ) it holds Th = U?MλUh,
i.e., T is unitarily equivalent to the multiplication operator Mλ.

§2.2.43 Example. Let T ∈ K (H) be an injective and self-adjoint operator with eigenvalue
decomposition T = U?MλU where U ∈ L (H, `2) is unitary, Mλ ∈ L (`2) is a multiplication
operator and λ a sequence in R\{0} of eigenvalues repeated according to their multiplicities. If
H is not finite dimensional then the range R(T ) of T is dense in H but not closed. Therefore,
there exists an inverse T−1 : R(T ) → H of T which is densely-defined and self-adjoint but
not continuous. In particular, we have D(T−1) = R(T ) = {h : λ−1Uh ∈ `2} (which is called
Picard’s condition). Consider the multiplication operator M1/λ : `2 ⊃ D(M1/λ) → ` with
D(M1/λ) = {x ∈ ` : x/λ ∈ `2}, then D(T−1) = {h ∈ H : Uh ∈ D(M1/λ)} and
(a) for all x ∈ D(M1/λ) we have M1/λx = x/λ = UT−1U?x,

(b) for all h ∈ D(T−1) it holds T−1h = U?M1/λUh,
i.e. T−1 is unitarily equivalent to the multiplication operator M1/λ. We shall emphasise that
h ∈ D(T−1) = R(T ) if and only if ‖[h]/λ‖2

`2 =
∑

j∈J |[h]j/λj|2 < ∞. On the other hand,
for any k ∈ N we have T k = T · · ·T = U?MλkU =

∑
j∈J λ

k
j uj ⊗ uj which motivates for a

function g : R→ R to define the operator

g(T )h := U?Mg(λ)Uh =
∑
j∈J

g(λj) uj ⊗ uj, for all h ∈ H with ‖g(λ)[h]‖`2 <∞.
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If g is bounded then g(T ) ∈ L (H) and ‖g(T )‖L = sup{|g(λj)|, j ∈ J } 6 ‖g‖L∞ . In
particular, it allows to define T s for all s ∈ R.

§2.2.44 Definition (Functional calculus). Let T ∈ L (H) be self-adjoint and hence isometrically
equivalent with multiplication by a bounded function λ in some L2

µ(Ω), that is, T = U?MλU .
Given a (measurable) function g : R→ R define the multiplication operator

Mg(λ) : L2
µ(Ω) ⊃ D(Mg(λ))→ L2

µ(Ω)

with D(Mg(λ)) =
{
f ∈ L2

µ(Ω) : g(λ)f ∈ L2
µ(Ω)

}
and an unitarily equivalent operator

g(T )h := U?Mg(λ)Uh, ∀h ∈ D(g(T )) := {h ∈ H : Uh ∈ D(Mg(λ))}

where g(T ) : L (H) ⊃ D(g(T ))→ L (H). Moreover, if g is bounded then g(T ) ∈ L (H) with
‖g(T )‖L = sup{|g(λ)|, λ ∈ σ(T )} 6 ‖g‖L∞ .

§2.2.45 Property. Let T ∈ L (H,G). ThenR(T ) = R((T ?T )1/2).

§2.2.46 Remark. Considering an ONB {uj, j ∈ N} in H, the associated generalised Fourier
series transform U ∈ L (H, `2) and for a sequence v the associated multiplication and diagonal
operator Mv : `2 ⊃ D(Mv)→ `2 and∇v = U?Mv U : H ⊃ D(∇v)→ H defined as in §2.2.4 (iv)
and (v), respectively. If v is strictly positive then applying the functional calculus we observe
that for any s ∈ R we have ∇s

v = U?Mvs U = ∇vs . Moreover, recall that Hvs denotes the
completion of H w.r.t.. the weighted norm ‖·‖vs given by ‖·‖2

vs =
∑

j∈N v
2s
j |〈·, uj〉H|2 where

obviously ‖h‖vs = ‖∇vsh‖H = ‖∇s
vh‖H for all h ∈ D(∇vs) = Hvs . Introduce further the

Hilbert space (Hvs , 〈·, ·〉vs) inner product 〈·, ·〉vs = 〈∇vs·,∇vs·〉H.

§2.2.47 Definition. Let ∇v : H ⊃ D(∇v) → H be diagonal for an unitary operator U ∈
L (U, `2) and a monotonically increasing, unbounded sequence v with v1 > 0. For each s ∈ R
consider the inner product 〈·, ·〉vs = 〈∇vs·,∇vs ·〉H and the norm ‖·‖vs = ‖∇s

v ·‖H. The family
{(Uvs , 〈·, ·〉vs), s ∈ R} of Hilbert space is called a Hilbert scale (see Krein and Petunin [1966]
for a rather complete theory).

§2.2.48 Properties. Let {(Uvs , 〈·, ·〉vs), s ∈ R} be a Hilbert scale as introduced in Definition
§2.2.47. Then the following assertions hold true:
(i) For any −∞ < s < t <∞ < the space Uvt is densely and continuously embedded in Uvs .

(ii) For s, t ∈ R holds∇t−s
v = ∇t

v∇−sv , and in particular,∇−1
vs = ∇v−s .

(iii) For s > 0 holds Uvs = D(∇vs) and Uv−s is the dual space of Uvs .

(iv) Considering −∞ < r < s < t < ∞ for any h ∈ Uvs the interpolation inequality
‖h‖vs 6 ‖h‖

(t−s)/(t−r)
vr ‖h‖(s−r)/(t−r)

vt holds true.

§2.2.49 Example. Let T ∈ K (H,G) be injective with singular system {(sj, uj, vj), j ∈ N} for
some ONB {uj ∈ N} in H and strictly positive, monotonically non-increasing sequence (sj)j∈N
containing each singular value of T repeated according to its multiplicity. Setting v = s−2 the
strictly positive definite operator T ?T admits the spectral representation T ?T = U?Mv−1U =
∇v−1 . Obviously, v is a monotonically increasing, unbounded sequence with v1 > 0. Consider-
ing the associated Hilbert scale {(Hvs , 〈·, ·〉vs), s ∈ R} it is then an immediate consequence that
Hvt = D((T ?T )t) is dense in Hvs = D((T ?T )s) for 0 6 s < t. We say, a function f satisfies a
source condition, if f ∈ D((T ?T )s) for some s > 0, i.e., f = (T ?T )sh for some h ∈ H.
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2.2.3 Abstract smoothing condition

§2.2.50 Definition (Link condition). Denote by T (H) or T for short, the set of all strictly positive
definite operator in K (H). Given an ONB {uj, j ∈ J } in H and a strictly positive sequence
(tj)j∈J consider the weighted norm ‖·‖2

t =
∑

j∈J t2j |〈·, uj〉H|2. For all d > 1 define the subset
T d

ut := T d

ut (H) := {T ∈ T : d−1 ‖h‖t 6 ‖Th‖H 6 d ‖h‖t for all h ∈ H}. We say, T satisfies
the link condition T d

ut , if T ∈ T d

ut . Define further the subset Edut =
{
T ∈ Eu : (T ?T )1/2 ∈ T d

ut

}
and Sduvt =

{
T ∈ Suv : (T ?T )1/2 ∈ T d

ut

}
of Eu = Eu(H) and Suv = Suv(H,G) (see §2.2.34 and

§2.2.39), respectively, containing any diagonal operator T in Eu and Suv such that (T ?T )1/2

satisfies the link condition T d

ut .

§2.2.51 Remark. We shall emphasise that for T ∈ K (H,G) the condition (T ?T )1/2 ∈ T d

ut

is equivalent to d−1 ‖h‖t 6 ‖Th‖H 6 d ‖h‖t for all h ∈ H. Observe further that T ∈ Suv
admitting a singular system {(sj, uj, vj), j ∈ J ′} with J ′ ⊆ J satisfies the link condition
Sduvt if and only if J ′ = J and d−1 6 |sj|/tj 6 d for all j ∈ J . Thereby, we have that
T ∈ Sduvt(H,G) if and only if T ? ∈ Sdv, u, t(G,H). We shall emphasise, that there are operators
satisfying the link condition T d

ut which do not belong to Eu (respectively, Suv), i.e., are not equal
to ∇λ for some sequence λ (not diagonal w.r.t. U), that is admitting eigenfunctions which are
not contained in the ONS {uj, j ∈ J }. Let us briefly give a construction of those. We consider
a small perturbation of ∇t, that is, T = ∇t + ∇tA∇t where A ∈ L (H) is a non-negative
definite operator with spectral norm c := ‖∇tA‖L strictly smaller than one. Obviously, T is
strictly positive definite, and ‖Th‖H 6 ‖IdH +∇tA‖L ‖∇th‖H 6 (1 + c) ‖h‖t. On the other
hand, we have ‖(IdH +∇tA)−1‖L = 1

1−‖∇tA‖L
= 1

1−c by the Neumann series argument §2.2.15,
which in turn implies ‖h‖t = ‖∇th‖H = ‖(IdH +∇tA)−1‖L ‖Th‖H 6 1

1−c ‖Th‖H. Combining
both bounds the operator T satisfies the link condition T d

ut for all d > max(1 + c, 1
1−c) and is

obviously not diagonal w.r.t. U .

§2.2.52 Property. Let T ∈ T d

ut .

(Inequality of Heinz [1951]) For all |s| 6 1 holds 1
d|s|
‖h‖ts 6 ‖T sh‖H 6 d|s| ‖h‖ts .

§2.2.53 Example (Example §2.2.49 continued). Consider the Hilbert scale {(Hvs , 〈·, ·〉vs), s ∈ R}
associated with the source condition, i.e., Hvs = D((T ?T )s) and ‖·‖vs = ‖(T ?T )−s·‖H for s >
0. Suppose further that (T ?T )1/2 ∈ T d

ut , i.e., T satisfies a link condition for some weighted norm
‖·‖t defined w.r.t. an ONB U in H and a strictly positive sequence t. Note that in general the two
norms ‖·‖t and ‖·‖vs are defined w.r.t. to different orthonormal basis in H. However, rewriting
the inequality of Heinz §2.2.52 accordingly it holds 1

d|s|
‖·‖ts 6

∥∥(T ?T )s/2·
∥∥
H 6 d|s|‖·‖ts or

equivalently 1
d|s|
‖·‖ts 6 ‖·‖v−s/2 6 d|s|‖·‖ts . In other words the two norms ‖·‖ts and ‖·‖v−s/2

are equivalent for any |s| 6 1. Recall that v−1/2 = s equals the sequence of singular values of
T . We shall emphasise that the equivalence of ‖·‖ts and ‖·‖v−s/2 under a link condition holds
generally for all |s| 6 1 only. However, if the ONB used to construct the norm ‖·‖ts for the link
condition coincides with the eigenfunctions of T ?T then the ‖·‖ts and ‖·‖v−s/2 are equivalent
for all s ∈ R.

§2.2.54 Corollary. Let T ∈ T d

ut and suppose that f ∈ Frua (see Definition §2.1.18) where the
two norms ‖·‖t and ‖·‖1/a are constructed w.r.t. the same ONB in H. Assume in addition that
there are constants a, p > 0 and a sequence v such that t = va and a = vp. If p 6 2a then
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for any f ∈ Fua holds f = (T ?T )p/(2a)h with ‖h‖H 6 dp/a ‖h‖1/a, and conversely for any
f = (T ?T )p/(2a)h with ‖h‖H <∞ we have f ∈ Fua with ‖h‖1/a 6 dp/a ‖h‖H.

Proof of Corollary §2.2.54 is given in the lecture.

§2.2.55 Lemma. Given an ONB {uj, j ∈ N} in H and a strictly positive non-increasing se-
quence (tj)j∈N consider the link condition T d

ut . Let T ∈ T (H) admit {(λj, ψj), j ∈ N} as
eigensystem where the strictly positive, monotonically non-increasing sequence (λj)j∈N con-
tains each eigenvalue of T repeated according to its multiplicity and the associated eigenbasis
{ψj, j ∈ N} does eventually not correspond to the ONB {uj, j ∈ N}. If T ∈ T d

ut , then we have
d−1 6 λj/tj 6 d for all j ∈ N.

Proof of Lemma §2.2.55 is given in the lecture.
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Chapter 3

Regularisation of ill-posed inverse problems

3.1 Ill-posed inverse problems

Let T ∈ L (H,G) be a linear bounded operator between separable Hilbert spaces H and G.

§3.1.1 Definition. Given g ∈ G the reconstruction of a solution f ∈ H of the equation g = Tf
is called inverse problem.

§3.1.2 Definition (Hadamard [1932]). An inverse problem g = Tf is called well-posed if (i) a
solution f exists, (ii) the solution f is unique, and (iii) the solution depends continuously on g.
An inverse problem which is not well-posed is called ill-posed.

For a broader overview on inverse problems we refer the reader to the monograph by Kress
[1989] or Engl et al. [2000].

§3.1.3 Property (Existence and identification).
There exists an unique solution of the equation g = Tf if and only if

(existence) g belongs to the rangeR(T ) of T ,

(identification) The operator T is injective, i.e., its null space N (T ) = {0} is trivial.

§3.1.4 Remark. If there does not exist a solution typically one might consider a least-square
solution which exists if and only if g ∈ R(T ) ⊕N (T ?). A least-square solution with minimal
norm, if it exists, could be recovered, in case the solution is not unique. Nevertheless, the
main issue is often the stability of the inverse problem. More precisely, if the solution does
not depend continuously on g, i.e., the inverse T−1 of T is not continuous, a reconstruction
fn = T−1ĝ given a noisy version ĝ of g may be far from the solution f even if the noisy version
ĝ is closed to g.

§3.1.5 Property. Denote by ΠR(T ) the orthogonal projection onto the closure R(T ) of the
range of T . For each g ∈ G the following assertions are equivalent (i) f minimises h 7→
‖g − Th‖G (least square solution); (ii) ΠR(T )g = Tf ; (iii) T ?g = T ?Tf (normal equation).

§3.1.6 Remark. We note that g ∈ R(T ) ⊕ R(T )⊥ implies ΠR(T )g ∈ R(T ) and hence the
preimage T−1(ΠR(T )g) is not empty. More precisely, due to the last assertion T−1(ΠR(T )g) =
{f ∈ H : T ?g = T ?Tf} is the set of least square solutions associated to g.

In the sequel keep in mind that for each T ∈ L (H,G) its restriction T : N (T )⊥ → R(T ) is
bijective and thus has an inverse T−1 : R(T )→ N (T )⊥.

§3.1.7 Definition. For T ∈ L (H,G) the Moore-Penrose inverse (generalised or pseudo in-
verse) T+ is the unique linear extension of T−1 : R(T ) → N (T )⊥ to the domain D(T+) :=

R(T )⊕R(T )⊥ with N (T+) = R(T )⊥ satisfying T+g := T−1ΠR(T )g for any g ∈ D(T+).
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§3.1.8 Remark. We note that TT+T = T , T+TT+ = T+, T+T = ΠN (T )⊥ and TT+g =
ΠR(T )g for any g ∈ D(T+). If T is injective, and hence T ?T , then T ?T : H → R(T ?T ) is
invertible, which in turn, for any g ∈ R(T ) ⊕ R(T )⊥, implies that (T ?T )−1T ?g is the unique
solution of the normal equation, and thus T−1(ΠR(T )g) = {T+g} = {(T ?T )−1T ?g}. More
generally, we have T+ = (T ?T )+T ? and, if T is invertible then T+ = T−1.

§3.1.9 Property. For each g ∈ D(T+), T+g belongs to T−1(ΠR(T )g) and, hence is a least
square solution. Moreover, T+g is the unique least square solution with minimal ‖·‖H-norm,
that is, ‖T+g‖H = inf{‖h‖H : h ∈ T−1(ΠR(T )g)}.

§3.1.10 Property. If H and G are infinite dimensional and T ∈ K (H,G) is injective, then
inf{‖Th‖G : ‖h‖H = 1, h ∈ H} = 0, which in turn implies that T−1 : R(T ) → H and, hence
T+ is not continuous.

3.2 Spectral regularisation

In the sequel, given an infinite dimensional H let T ∈ L (H,G) and let T+ its Moore-Penrose
inverse as in Definition §3.1.7.

§3.2.1 Definition. A family {Rα ∈ L (G,H), α ∈ (0, 1)} of operators is called regularisation
of T+ if for any g ∈ D(T+) holds ‖Rαg − T+g‖H → 0 as α→ 0.

§3.2.2 Remark. Note that, if T+ is not bounded, then ‖Rα‖L → ∞ as α → 0. On the other
hand side, if (gn)n∈N is a sequence in G such that ‖gn − g‖G 6 n−1 for all n ∈ N, then there
exists a sequence (αn)n∈N in (0, 1) such that ‖Rαngn − T+g‖H → 0 as n→∞.

§3.2.3 Definition. The family {(T ?T+α IdH)−1T ? ∈ L (G,H), α ∈ (0, 1)} is called Tikhonov
regularisation of T+.

§3.2.4 Remark. Given T ∈ L (H,G) consider for each α ∈ (0, 1) the strictly positive definite
operator Tα := T ?T +α IdH ∈ L (H) where ‖Tαh‖H ‖h‖H > 〈Tαh, h〉H > α ‖h‖2

H > 0 for any
h ∈ H\{0} by applying the Cauchy-Schwarz inequality §2.1.3 and, hence

inf{‖Tαh‖H : ‖h‖H = 1, h ∈ H} > α > 0. (3.1)

Consequently, Tα is injective and moreover, its range is closed. Indeed, if a sequence (Tαhn)n∈N
converges to g ∈ G, then (hn)n∈N is a Cauchy sequence due to (3.1), and thus converges, say,
to h ∈ H. Since Tα is continuous, it follows Tαhn → Tαh and g = Tαh. Exploiting that Tα
is injective with closed range follows R(Tα) = N (Tα)⊥ = {0}⊥ = H which in turn implies
Tα is invertible, and due to the open mapping theorem T−1

α ∈ L (H) where ‖T−1
α ‖L 6 α−1

employing (3.1) together ‖T−1
α ‖L = sup{‖h‖H / ‖Tαh‖H : h ∈ H\{0}} since R(Tα) = H.

Consequently, the family {(T ?T + α IdH)−1T ? ∈ L (G,H), α ∈ (0, 1)} is well-defined.

§3.2.5 Lemma. For each h ∈ N (T )⊥ holds ‖α(T ?T + α IdH)−1h‖H → 0 as α→ 0.

Proof of Lemma §3.2.5 is given in the lecture.
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§3.2.6 Remark. Let g ∈ D(T+). Setting h = T+g and fα = (T ?T + α IdH)−1T ?g we have

(T ?T + α IdH)(h− fα) = T ?TT+g + αh− (T ?T + α IdH)(T ?T + α IdH)−1T ?g

= T ?g + αh − T ?g = αh.

Rewriting the last identity we obtain (T ?T + α IdH)−1T ?g − T+g = −α(T ?T + α IdH)−1h.
Consequently, from Lemma §3.2.5 follows ‖(T ?T + α IdH)−1T ?g − T+g‖H → 0 as α → 0
since h = T+g ∈ H. Thereby, the Tikhonov family as in §3.2.3 is indeed a regularisation in the
sense of Definition §3.2.1.

§3.2.7 Lemma. For each C ∈ L (H,G) the following statements are equivalent:
(i) f minimises the generalised Tikhonov functional h 7→ Fα(h) := 1

2
‖g − Th‖2

G + α
2
‖Ch‖2

G

(ii) f is solution of the normal equation: T ?g = (T ?T + αC?C)f .

Proof of Lemma §3.2.7 is given in the lecture.

§3.2.8 Remark. Observe that N (T ) ∩ N (C) = N (T ?T + αC?C) which in turn implies,
that the solution of the generalised Tikhonov functional, if it exists, is unique if and only if
N (T )∩N (C) = {0}. Keep in mind, that the existence of a solution is ensured, for example, if
(T ?T + αC?C) has a continuous inverse.

§3.2.9 Corollary. Given the Tikhonov regularisation {(T ?T + α IdH)−1T ?} as in §3.2.3 for
each g ∈ G, fα := (T ?T+α IdH)−1T ?g is the unique minimiser in H of the Tikhonov functional
h 7→ 1

2
‖g − Th‖2

G + α
2
‖h‖2

H.

§3.2.10 Definition. Given an operator C ∈ L (H,G) satisfying
(i) R(C) is closed and

(ii) there exists c > 0 such that for any h ∈ N (C) it holds ‖Th‖G > h ‖h‖H,
the family {(T ?T + αC?C)−1T ? ∈ L (G,H), α ∈ (0, 1)} is called generalised Tikhonov regu-
larisation of T+.

§3.2.11 Remark. Assumption (i) and (ii) ensure together that the generalised Tikhonov regu-
larisation is well-defined. More precisely, introduce inner products 〈h, h′〉∗ := 〈Th, Th′〉G +
〈Ch,Ch′〉G and 〈h, h′〉C := 〈h, h′〉H + 〈Ch,Ch′〉G on H with associated norms ‖·‖∗ and ‖·‖C .
Since H is complete w.r.t. both norms (due to (i) and (ii)), it follows from §2.1.2 that ‖·‖∗ and
‖·‖C are equivalent (keeping in mind that ‖h‖2

∗ 6 max(‖T‖2
L , 1) ‖h‖2

C). Consequently, there is
K > 0 such that ‖h‖∗ > K ‖h‖C and thus ‖Th‖2

G +‖Ch‖2
G > K2(‖h‖2

H +‖Ch‖2
G). Exploiting

the last inequality we obtain ‖T ?Th+ αC?Ch‖H > K2 min(1, α) ‖h‖H for any h ∈ H. In anal-
ogy to the arguments exploiting (3.1) in Remark §3.2.4, T ?T + αC?C is injective with closed
range and, thus it has a continuous inverse, i.e., (T ?T + αC?C)−1 ∈ L (H). Consequently,
the generalised Tikhonov regularisation {Rα := (T ?T + αC?C)−1T ? ∈ L (G,H), α ∈ (0, 1)}
is well-defined. Moreover, keeping in mind Lemma §3.2.7 fα := Rαg ∈ H is obviously a
solution of the normal equation, and thus the unique minimiser of the generalised Tikhonov
functional.

§3.2.12 Corollary. Consider the generalised Tikhonov regularisation as in §3.2.10. For each
g ∈ G, fα := (T ?T + αC?C)−1T ?g is the unique minimiser in H of the generalised Tikhonov
functional h 7→ 1

2
‖g − Th‖2

G + α
2
‖Ch‖2

G.
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§3.2.13 Remark. Introduce further the adjoint T ?∗ and C?
∗ of T and C, respectively, w.r.t. the

inner product 〈·, ·〉∗, i.e., 〈Th, g〉G = 〈h, T ?∗ g〉∗ and 〈Ch, g〉G = 〈h,C?
∗g〉∗ for all h ∈ H and

g ∈ G. In particular, for each g ∈ G and h ∈ H we have
(a) T ?∗ g = (T ?T + C?C)−1T ?g,

(b) C?
∗g = (T ?T + C?C)−1C?g and

(c) (T ?∗ T + C?
∗C)h = h (i.e., T ?∗ T + C?

∗C = IdH).
We note that N (T ?? ) = N (T ?) and R(T ?? ) = N (T )⊥∗ where N (T )⊥∗ denotes the orthogonal
complement of N (T ) in (H, 〈·, ·〉∗).

Consider the restriction of T as bijective map from N (T )⊥∗ to R(T ) and denote its inverse
by T−1

∗ : R(T ) → N (T )⊥∗ . Given the orthogonal projection ΠR(T ) onto R(T ) its associated
Moore-Penrose inverse T+

∗ (see §3.1.7) defined onD(T+
∗ ) = R(T )⊕R(T )⊥ = D(T+) is given

by T+
∗ := T−1

∗ ΠR(T ).

§3.2.14 Proposition. Consider the generalised Tikhonov regularisation {(T ?T+αC?C)−1T ?}
as in §3.2.10. Under the conditions (i) and (ii) of Definition §3.2.10 for g ∈ G and fα =
(T ?T + αC?C)−1T ?g the following statements are equivalent:
(I) g ∈ D(T+

∗ ) = R(T )⊕R(T )⊥ = D(T+);

(II) there is fo ∈ H such that ‖fα − fo‖∗ → 0 as α→ 0.
Moreover, under the equivalent conditions holds fo = T+

∗ g.

Proof of Proposition §3.2.14 is given in the lecture.

§3.2.15 Remark. Due to the last proposition the generalised Tikhonov family as in §3.2.10
is indeed a regularisation in the sense of Definition §3.2.1. Moreover, we shall emphasise
that ‖fα − fo‖∗ → 0 if and only if ‖Tfα − Tfo‖G → 0 and ‖Cfα − Cfo‖G → 0, which
in turn implies ‖fα − fo‖H → 0. Keep further in mind that T ?∗ g = T ?∗ Tf holds if and only if
T ?g = T ?Tf is true, since T ?T+C?C is continuously invertible. Thereby, for each g ∈ D(T+)
the set of least squares solution T−1(ΠR(T )g) satisfies T−1(ΠR(T )g) = {f ∈ H : T ?Tf =

T ?g} = {f ∈ H : T ?∗ Tf = T ?∗ g} = {fo} + N (T ) with fo = T+
∗ g. Each f ∈ T−1(ΠR(T )g)

can thus be written as f = fo + u for some u ∈ N (T ) with fo ∈ (N (T ))⊥∗ , and hence,
Tf = Tf∗ and ‖fo‖2

∗ 6 ‖fo‖
2
∗ + ‖u‖2

∗ = ‖f‖2
∗, which together implies ‖Cfo‖2

G + ‖Cf‖2
G for

any f ∈ T−1(ΠR(T )g). In other words, fo is the unique least squares solution with minimal
‖C•‖G-norm.

§3.2.16 Definition. Given a family {rα, α ∈ (0, 1)} of real-valued (piecewise) continuous func-
tions defined on [0, ‖T‖2

L ] the family {rα(T ?T )T ? ∈ L (G,H), α ∈ (0, 1)} of operators is
called spectral regularisation of T+ if
(i) for all λ ∈ (0, ‖T‖2

L ] holds |1− λrα(λ)| → 0 as α→ 0, and

(ii) there is K > 0 such that |λrα(λ)| 6 K for all λ ∈ [0, ‖T‖2
L ] and α ∈ (0, 1).

§3.2.17 Remark. Given T ∈ L (H,G) consider a spectral regularisation {Rα = rα(T ?T )T ?}
as in Definition §3.2.16. The operator T ?T ∈ L (H) is isometrically equivalent with mul-
tiplication in some L2

µ(Ω) by a strictly positive function λ bounded by ‖T‖2
L . Applying the

functional calculus we have ‖rα(T ?T )T ?‖L 6 sup{|rα(λ)
√
λ|, λ ∈ [0, ‖T‖2

L ]} < ∞ since
rα is piecewise continuous on the compact interval [0, ‖T‖2

L ]. Consequently, Rα ∈ L (G,H)
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for all α ∈ (0, 1), i.e., the family is well-defined. Moreover, ‖(rα(T ?T )T ?T − IdH)h‖2
H =

‖U?Mrα(λ)λ− 1Uh‖2
H = ‖(1− λrα(λ))Uh‖2

L2
µ

= µ(|1 − λrα(λ)|2|Uh|2) holds for h ∈ N (T )⊥.
From §3.2.16 (ii) follows |1− λrα(λ)| 6 1 + K for all α ∈ (0, 1). Since Uh ∈ L2

µ employing
the dominated convergence theorem from §3.2.16 (i) follows ‖(rα(T ?T )T ?T − IdH)h‖2

H → 0
as α → 0 for all h ∈ N (T )⊥. Since for all g ∈ D(T+) with h := T+g ∈ N (T )⊥ holds
Rαg − h = (rα(T ?T )T ?T − IdH)h we have ‖Rαg − T+g‖H → 0 as α → 0, and a continuous
spectral regularisation as in §3.2.16 is indeed a regularisation in the sense of Definition §3.2.1.
We shall emphasise that for any g 6∈ D(T+) it can be shown that ‖rα(T ?T )T ?g‖H → ∞ as
α→ 0.

§3.2.18 Proposition. Let {rα(T ?T )T ? ∈ L (G,H), α ∈ (0, 1)} be a continuous spectral reg-
ularisation of T+ defined in Definition §3.2.16. Assume that in addition to §3.2.16 (i) and (ii)
for any s ∈ [0, so] for some so > 0 there is a constant cs <∞ such that
(iii) for all λ ∈ [0, ‖T‖2

L ] and α ∈ (0, 1) holds λs|1− λrα(λ)| 6 csα
s.

Consider fα := rα(T ?T )T ?g and let g ∈ D(T+) and, thus f := T+g ∈ H.
(a) If there are s ∈ [0, so] and h ∈ H such that f ∈ R

(
(T ?T )s

)
(source condition as in

Example §2.2.49), then for all α ∈ (0, 1) holds ‖fα − f‖H 6 csα
s ‖h‖H.

(b) If T ∈ T d

ut (link condition as in Definition §2.1.18) and f ∈ Fua (abstract smoothness
condition as in Definition §2.1.18) where t = va and a = vp for some constants 0 < p 6 2a
and a sequence v, then ‖fα − f‖H 6 cs d

p/a r αp/(2a) for all α ∈ (0, 1).

Proof of Proposition §3.2.18 is given in the lecture.

§3.2.19 Examples. Let us discuss certain special continuous regularisation methods satisfying
in addition §3.2.18 (iii).
(i) Tikhonov regularisation as defined in §3.2.3 is given by rα(λ) = (λ + α)−1 and satisfies

§3.2.18 (iii) with so = 1 and cs = ss(1− s)1−s.

(ii) Spectral cut-off given by the piecewise continuous function rα(λ) = 1
λ
1{λ>α} is a contin-

uous regularisation methods satisfying §3.2.16 (i) and (ii) with K = 1. Moreover, §3.2.18
(iii) holds with so =∞ and cs = 1.

(iii) A special iterative regularisation method is the Landweber iteration. This method is based
on a transformation of the normal equation into an equivalent fixed point equation f =
f + ωT ?(g − Tf) with 0 < ω 6 ‖T‖−2

L . Then the corresponding fixed point operator
IdH−ωT ?T is nonexpansive and f may be approximated by fk determined by fn+1 =
fn + ωT ?(g − Tfn), n = J0, k − 1K, f0 = 0. Note, that without loss of generality, we can
assume ‖T‖L 6 1 and drop the parameter ω. By induction the iterate fk can be expressed
non-recursively through fk =

∑k−1
n=0(IdH−T ?T )jT ?g and thus rα(λ) =

∑k−1
n=0(1 − λ)j

where 1− λrα(λ) = (1− λ)k. Under the assumption ‖T‖L 6 1, the Landweber iteration
is thus a continuous regularisation methods with α = 1/k satisfying §3.2.16 (i) and (ii)
with K = 1. Moreover, §3.2.18 (iii) holds with so =∞ and cs = sse−s.

3.3 Regularisation by dimension reduction

Here and subsequently, we consider a class of functions Frua ⊂ U1/a as given in §2.1.18
w.r.t. an ONS U = {uj, j ∈ J } in H and a strictly positive sequence a = (aj)j∈J . We shall
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frequently exploit that {(Uas , 〈·, ·〉as), s ∈ R} eventually forms a Hilbert scale w.r.t. ∇a which
is diagonal w.r.t.. the generalised Fourier transform U associated to U . Moreover, we assume
a nested sieve (Jm)m∈M in J and its associated nested sieve (Um)m∈M in U (see §2.1.12).
For f ∈ U we introduce a theoretical approximation fm ∈ Um. On the one hand we consider
the orthogonal projection fm = ΠUmf =

∑
j∈J ([f ]j1Jm(j))uj = U?([f ]1Jm) of f onto Um

by using the sequence of indicators 1Jm := (1Jm(j))j∈J . On the other hand the construction
of fm is motivated by a linear Galerkin approach introduced below. We shall measure the
accuracy of the approximation fm of f by its distance dist(fm, f) where dist(·, ·) is a certain
semi metric. Note that in general dist(fm, f) is not monotone in m ∈ M and hence we define
biasm(f) := sup{dist(f, fk), k ∈M∩ Jm,∞J} as the approximation error. We are particularly
interested in the following two cases.

§3.3.1 Definition. Let fm ∈ Um be a theoretical approximation of f ∈ U1/a, and hence
ΠU⊥f = 0. Keep in mind that U⊥ and U⊥m denotes the orthogonal complement of U and
Um in H and U, respectively.
(global) Given the ONS U and a strictly positive sequence v consider the completion Uv of

U w.r.t. the weighted norm ‖·‖v. If U1/a ⊂ Uv, then dvist(h1, h2) := ‖h1 − h2‖v,
h1, h2 ∈ Uv defines a global distance on Uv. For f ∈ Frua and m ∈ M we denote
by biasvm(f) := ‖ΠUmf − f‖v =

∥∥ΠU⊥mf
∥∥
v

= sup{dvist(f, fk), k ∈ M∩ Jm,∞J} the
global approximation error.

(local) Let Φ be a linear functional and U1/a ⊂ D(Φ), then dΦ
ist(h1, h1) := |Φ(h1 − h2)|,

h1, h2 ∈ D(Φ), defines a local distance. For f ∈ Frua and m ∈ M we denote by
biasΦ

m(f) := sup{|Φ(ΠU⊥k
f)|, k ∈M∩Jm,∞J} = sup{dΦ

ist(f, fk), k ∈M∩Jm,∞J}
the local approximation error.

§3.3.2 Remark. We shall emphasise, if ‖av‖`∞ = sup{ajvj : j ∈ J } < ∞, then ‖h‖v 6
‖av‖`∞ ‖h‖1/a for all h ∈ U1/a, and hence U1/a ⊂ Uv. On the other hand side, if ‖[Φ]‖`2a <∞,
i.e., Φ ∈ La, then U1/a ⊂ D(Φ).

Keep in mind that in case of an orthogonal projection fm = ΠUmf , m ∈ M, we have
biasvm(f) = ‖ΠUmf − f‖v =

∥∥ΠU⊥mf
∥∥
v

and biasΦ
m(f) = sup{|Φ(ΠU⊥k

f)|, k ∈ M ∩ Jm,∞J}
where U⊥m denotes the orthogonal complement of Um in H.

§3.3.3 Lemma. Consider the orthogonal projection fm = ΠUmf ∈ Um as theoretical approx-
imation of f ∈ Frua. Given ‖av‖`∞ < ∞ for each m ∈ M let (av)(m) := ‖av1J cm‖`∞ =

sup{ajvj, j ∈ J c
m} 6 ‖av‖`∞ < ∞, then biasvm(f) 6 r (av)(m). On the other hand if Φ ∈ La

as in §2.2.8, then for each m ∈ M,
∑

j∈J cm
|[Φ]j|2a2

j = ‖[Φ]1J cm‖2
`2a

6 ‖[Φ]‖2
`2a
< ∞ and

(biasΦ
m(f))2 6 r2 ‖[Φ]1J cm‖2

`2a
.

Proof of Lemma §3.3.3 is given in the lecture.

§3.3.4 Definition (Linear Galerkin approach). Let T ∈ T (H), i.e., a compact and strictly positive
definite operator in L (H), and g ∈ H. An element fm ∈ Um satisfying

〈fm, T fm〉H − 2〈fm, g〉H 6 〈h, Th〉H − 2〈h, g〉H for all h ∈ Um

is called a Galerkin solution in Um of the equation g = Tf .

§3.3.5 Notations.
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(i) For f ∈ H considering the sequence of generalised Fourier coefficients [f ] as in §2.1.16
introduce its sub-vector [f ]m := ([f ]j)j∈Jm , where [ΠUmf ]m = [f ]m.

(ii) For T ∈ L (H) denote by [T ] the (infinite) matrix with generic entries [T ]k, j := 〈uk, Tuj〉H.
For m ∈ M, let [T ]m denote the (|Jm| × |Jm|)-sub-matrix of [T ] given by [T ]m :=
([T ]k, j)j,k∈Jm . Note that [T ?]m = [T ]tm. Clearly, if we restrict ΠUmTΠUm to an operator
from Um to itself, then it can be represented by the matrix [T ]m.

(iii) Given the identity Id ∈ L (H) the |Jm|-dimensional identity matrix is denoted by [Id]m.

(iv) Let ∇v = U?MvU : H ⊃ D(∇v) → H be diagonal w.r.t. an unitary U ∈ L (H, `(J ))
(e.g., §2.2.4 (iii)) and multiplication operator Mv : KJ → KJ . Denote by [∇v]m the |Jm|-
dimensional diagonal matrix with diagonal entries (vj)j∈Jm . Note that, [∇v]

s
m = [∇vs ]m,

s ∈ R.

(v) Keep in mind the Euclidean norm ‖·‖ of a vector and the weighted norm ‖·‖v w.r.t. an ONS
{uj, j ∈ J } in H. For all f ∈ Um we have ‖f‖2

v = [f ]tm[∇v2 ]m[f ]m = ‖[∇v]m[f ]m‖2.

(vi) Given a matrix M , let ‖M‖s := sup{‖Mx‖ : ‖x‖ 6 1} be its spectral norm then
‖ΠUmTΠUm‖L = ‖[T ]m‖s and hence ‖ΠUm∇s

v ΠUm‖L = max{vsj , j ∈ Jm}.

§3.3.6 Lemma. Let T ∈ T (H). (i) For all m ∈ N the matrix [T ]m is strictly positive definite.
(ii) The Galerkin solution fm ∈ Um is uniquely determined by [fm]m = [T ]−1

m [g]m and [fm]j =
0 for all j ∈ J c

m. (iii) The Galerkin solution fm minimises in Um the functional F (h) =∥∥T 1/2(h− f)
∥∥2

H.

Proof of Lemma §3.3.6 is given in the lecture.

§3.3.7 Remark. Consider the orthogonal projection ΠUmf and ΠU⊥mf of f onto the subspace
Um and U⊥m, respectively, then the approximation error ‖ΠUmf − f‖H =

∥∥ΠU⊥mf
∥∥
H converges

to zero as m → ∞ by Lebesgue’s dominated convergence theorem. On the other hand, the
Galerkin solution fm ∈ Um satisfies [ΠUmf − fm]m = −[T ]−1

m [TΠU⊥mf ]m and, hence does
generally not correspond to the orthogonal projection ΠUmf . Moreover, the approximation
error sup{‖fm − f‖H : m ∈ Jn,∞J ∩M} does generally not converge to zero as n → ∞.
However, if C := {

∥∥[T ]−1
m [TΠU⊥mf ]m

∥∥ : ‖f‖H = 1, f ∈ H,m ∈ M} <∞, then ‖fm − f‖H 6
(1 + C)

∥∥ΠU⊥mf
∥∥
H which in turn implies limn→∞ sup{‖fm − f‖H : m ∈ Jn,∞J ∩M} = 0.

Here and subsequently, we will restrict ourselves to classes F and T of solutions and operators
respectively which ensure the convergence. Obviously, this is a minimal regularity condition
for us if we aim to estimate the Galerkin solution.

§3.3.8 Lemma. Given an ONB {uj, j ∈ J } in H, a nested sieve (Jm)m∈M in J and a strictly
positive sequence t consider the link condition T ∈ T d

ut as in §2.2.50. Let t be monotonically
non-increasing, that is, min{tj, j ∈ Jm} > sup{tj, j ∈ J c

m} =: t(m) for all m ∈ M, then
for all 0 6 s 6 1 we have (i) sup

{
ts(m)

∥∥[T ]−sm
∥∥
s

: m ∈M
}

6 {d(d + 2)}s 6 {3d2}s,
(ii) sup{

∥∥[T ]−sm [∇t]
s
m

∥∥
s

: m ∈M} 6 {d(d + 2)}s 6 {3d2}s and (iii) sup{
∥∥[T ]sm[∇t]

−s
m

∥∥
s

:
m ∈M} 6 ds.

Proof of Lemma §3.3.8 is given in the lecture.

§3.3.9 Lemma (Bias of the Galerkin solution). Given a strictly positive, monotonically non-in-
creasing sequence t consider T ∈ T d

ut as in Lemma §3.3.8. Let in addition f ∈ Frua with strictly
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positive, monotonically non-increasing sequence a, i.e., min{aj, j ∈ Jm} > sup{aj, j ∈
J c
m} =: a(m) for all m ∈M. If fm denotes a Galerkin solution of g = Tf then for each strictly

positive sequence v such that av is monotonically non-increasing, that is, min{ajvj, j ∈ Jm} >
sup{ajvj, j ∈ J c

m} =: (av)(m) for all m ∈M, we obtain for any m ∈M and 0 6 s 6 1,

‖f − fm‖v 6 4d3 (va)(m) max
(
1, (t/v)(m) max{vj/tj, j ∈ Jm}

) ∥∥ΠU⊥mf
∥∥

1/a
,

‖fm‖1/a 6 3d3 ‖f‖1/a , and ‖T s(f − fm)‖H 6 4d3+s(ats)(m)

∥∥ΠU⊥mf
∥∥

1/a
. (3.2)

Furthermore, for any Φ ∈ L1/a we have

|Φ(fm − f)|2 6 (4d3)2
∥∥ΠU⊥mf

∥∥2

1/a
max

{ ∑
j∈J cm

|[Φ]j|2a2
j , (t

sa)2
(m)

∑
j∈J cm

|[Φ]j|2t−2s
j

}
. (3.3)

Proof of Lemma §3.3.9 is given in the lecture.

§3.3.10 Notations. Let {uj, j ∈ J }, and {vj, j ∈ J } be an ONS in H and G, respectively, and
let (Jm)m∈M be a nested sieve in J .
(i) For T ∈ L (H,G) denote by [T ] the (infinite) matrix with generic entries [T ]k, j := 〈vk, Tuj〉G.

For m ∈ M, let [T ]m := ([T ]k, j)k,j∈Jm denote the (|Jm| × |Jm|)-sub-matrix of [T ]. Note
that [T ?]m = [T ]tm.

(ii) Let Um := lin {uj, j ∈ Jm} and Vm := lin {vj, j ∈ Jm} denote the linear subspaces of
H and G spanned by the functions {uj}j∈Jm and {vj}j∈Jm , respectively. Clearly, if we
restrict ΠVmTΠUm to an operator from Um to Vm, then it can be represented by the matrix
[T ]m.

§3.3.11 Definition (Generalised linear Galerkin approach). Given an ONS {uj, j ∈ J } in H, an
ONS {vj, j ∈ J } in G, and a nested sieve (Jm)m∈M in J consider T ∈ K (H,G) and g ∈ G.
Any element fm ∈ Um satisfying [T ]m[fm]m = [g]m is called a generalised Galerkin solution in
Um of the equation g = Tf .

§3.3.12 Remark. Throughout this note [T ]m is assumed to be non-singular for eachm ∈M, so
that [T ]−1

m always exists. We shall emphasise that it is a non-trivial problem to determine when
such an assumption holds (cf. Efromovich and Koltchinskii [2001] and references therein).
However, if [T ]m is non-singular, then the generalised Galerkin solution in Um of the equation
g = Tf is unique and given by [fm]m = [T ]−1

m [g]m.

§3.3.13 Definition (Generalised link condition). Given an ONB {uj, j ∈ J } in H and a strictly
positive sequence (tj)j∈J consider the weighted norm ‖·‖t = ‖∇t·‖H in H. For all d > 1

define the subset Kdu,t(H,G) :=
{
T ∈ K (H,G) : (T ?T )1/2 ∈ T d

ut (H)
}
. Given in addition an

ONS {vj, j ∈ J } in G and a nested Sieve (Jm)m∈M in J for D > d we define KdDuvt (H,G) :={
T ∈ Kdu,t(H,G) :

∥∥[∇t]m[T ]−1
m

∥∥ 6 D for all m ∈M
}

orKdDuvt for short. We say T ∈ K (H,G)

satisfies the generalised link condition KdDuvt , if T ∈ KdDuvt .

§3.3.14 Remark. We shall emphasise that KdDuvt contains the subset Sduvt of all diagonal operator
Suv satisfying the link conditionKdu,t (see §2.2.50), i.e., Sduvt = Suv∩Kdu,t ⊂ KdDuvt (H,G). Keeping
in mind Remark §2.2.51 an operator T ∈ Suv admitting singular values (sj)j∈J satisfies the link
condition Sduvt if and only if d−1 6 |sj|/tj 6 d for all j ∈ J . Thereby, for any m ∈M we have
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∥∥[∇t]m[T ]−1
m

∥∥ = sup{tj/|sj|, j ∈ Jm} 6 d 6 D and hence Sduvt(H,G) ⊂ KdDuvt (H,G). More-
over, there are operators inKdu,t(H,G) which do not belong to Sduvt, i.e., they are not not diagonal
w.r.t. U and V (see Remark §2.2.51). Furthermore, for each pre-specified ONB (uj)j∈J in H and
T ∈ Kdu,t(H,G) we can theoretically construct an ONS (vj)j∈J such that

∥∥[∇t]m[T ]−1
m

∥∥ 6 D

holds for all m ∈ M and sufficiently large constant D. To be more precise, if T ∈ Kdu,t(H,G),
which involves only the ONB (uj)j∈J , then the fundamental inequality of Heinz [1951] as
given in §2.2.52 implies

∥∥(T ?T )−1/2uj
∥∥
H 6 dt−1

j < ∞ for each j ∈ J . Thereby, the func-
tion (T ?T )−1/2uj is an element of H and, hence vj := T (T ?T )−1/2uj , j ∈ J belongs to G.
Then it is easily checked that (vj)j∈J is an ONB of the closure of the range of T which may
be completed to an ONB of G. Keeping in mind that 〈Tuj, vl〉G = 〈(T ?T )1/2uj, ul〉H for all
j, l ∈ J it is obvious, that [T ]m is symmetric and moreover, strictly positive definite. Since
(T ?T )1/2 ∈ T d

ut (H) from Lemma §3.3.8 (i) it follows
∥∥[∇t]m[T ]−1

m

∥∥
s

=
∥∥[T ]−1

m [∇t]m
∥∥
s
6 3d2

for each m ∈M, which implies T ∈ KdDuvt (H,G) for all D > 3d2.

§3.3.15 Lemma (Bias of the generalised Galerkin solution). Given an ONB {uj, j ∈ J } in H, an
ONS {vj, j ∈ J } in G, a nested sieve (Jm)m∈M in J , and a strictly positive, monotonically
non-increasing sequence t consider T ∈ KdDuvt as in §3.3.13. Let in addition f ∈ Frua with strictly
positive, monotonically non-increasing sequence a, i.e., min{aj, j ∈ Jm} > sup{aj, j ∈
J c
m} =: a(m) for all m ∈ M. If fm denotes a generalised Galerkin solution of g = Tf

then for each strictly positive sequence v such that av is monotonically non-increasing, that
is, min{ajvj, j ∈ Jm} > sup{ajvj, j ∈ J c

m} =: (av)(m) for all m ∈ M, we obtain for any
m ∈M and 0 6 s 6 1,

‖f − fm‖v 6 2Dd (va)(m) max
(
1, (t/v)(m) max{vj/tj, j ∈ Jm}

) ∥∥ΠU⊥mf
∥∥

1/a
,

‖fm‖1/a 6 Dd ‖f‖1/a , and
∥∥(T ?T )s/2(f − fm)

∥∥
H 6 2Dd1+s(ats)(m)

∥∥ΠU⊥mf
∥∥

1/a
.

(3.4)

Furthermore, for any Φ ∈ L1/a we have

|Φ(fm − f)|2 6 (2dD)2
∥∥ΠU⊥mf

∥∥2

1/a
max

{ ∑
j∈J cm

|[Φ]j|2a2
j , (t

sa)2
(m)

∑
j∈J cm

|[Φ]j|2t−2s
j

}
.(3.5)

Proof of Lemma §3.3.15 is given in the lecture.
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Chapter 4

Statistical inverse problem

Throughout this note we consider the reconstruction of a functional parameter of interest f
satsifying an equation g = Tf based on noisy versions of g and T . In the sequel we formalise
the meaning of a noisy version. First we consider the direct problem, that is, T = IdH. Secondly,
we assume the operator T is known in advance. In the last subsection the operator T is unknown
and we introduce its noisy version.

4.1 Stochastic process on Hilbert spaces

In the sequel, (Ω,A ,P) is a probability space, where Ω will be interpreted as the set of
elementary random events, A is a σ-algebra of subsets of Ω and P is a probability measure over
A . Here and subsequently, (H, 〈·, ·〉H) and U denotes a separable Hilbert space and a subset of
H, respectively. Considering the product spaces KH = h∈H K and KU = u∈U K the mapping
ΠU : KH → KU given by y = (yh, h ∈ H) 7→ (yu, u ∈ U) =: ΠUy is called canonical projection
and for each h ∈ H in particular Πh : KH → K given by y = (yh′ , h

′ ∈ H) 7→ yh =: Πhy is
called coordinate map. Moreover, B denotes the Borel-σ-algebra on K and KH is equipped with
the product Borel-σ-algebra B⊗H :=

⊗
h∈H B. Recall that B⊗H equals the smallest σ-algebra

such that all coordinate maps Πh, h ∈ H are measurable. i.e., B⊗H = σ(Πh, h ∈ H).

§4.1.1 Definition (Stochastic process on H). Let {Yh, h ∈ H} be a family of K-valued r.v.’s on a
common probability space (Ω,A ,P), that is, Yh : Ω → K is a A -B-measurable mapping for
each h ∈ H. Consider the KH-valued r.v. Y := (Yh, h ∈ H) where Y : Ω→ KH is a A -B⊗H-
measurable mapping given by ω 7→ (Yh(ω), h ∈ H) =: Y (ω). Y is called a stochastic process
on H. Its distribution PY := P ◦ Y −1 is the image probability measure of P under the map Y .
Further, denote by PΠUY the distribution of the stochastic process ΠUY = (Yu, u ∈ U) on U .
The family

{
PΠUY ,U ⊂ H finite

}
is called family of the finite-dimensional distributions of Y

or PY . In particular, PYh := PΠhY denotes the distribution of Yh = ΠhY . We write E(Yh) and
Var(Yh) := E((Yh − E(Yh))(Yh − E(Yh))), if it is exists, for the expectation and the variance
of Yh w.r.t. PYh , respectively. If Yh has mean zero and variance then write Yh ∼ L(0, 1) for
short. Furthermore, let Cov(Yh, Yh′) := E((Yh − E(Yh))(Yh′ − E(Yh′))), if it is exists, for the
covariance of Yh and Yh′ w.r.t. PΠ{h,h′}Y .

§4.1.2 Definition. Let Y := (Yh, h ∈ H) be a stochastic process on H. If E|Yh| <∞ for each
h ∈ H then the functional µ : H → K with h 7→ E(Yh) =: µ(h) is called mean function of Y .
If the mean function µ is in addition linear and bounded, that is, µ ∈ L (H,K), then due to the
Fréchet-Riesz representation theorem §2.2.6 there exists µY ∈ H such that µ(h) = 〈µY , h〉H for
all h ∈ H. The element E(Y ) := µY is called mean or expectation of Y or PY . If E|Yh|2 <∞
for each h ∈ H then the mapping cov : H×H→ K with (h, h′) 7→ Cov(Yh, Yh′) =: cov(h, h′)
is called covariance function of Y . If the covariance function cov is in addition a bounded
bilinear form, then there is ΓY ∈ L (H) such that cov(h, h′) = 〈ΓY h, h′〉H = 〈h,ΓY h′〉H for
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all h, h′ ∈ H. The operator ΓY is called covariance operator of Y or PY . If Y admits a mean
function µ and a covariance function cov then we write shortly Y ∼ L(µ, cov). Analogously,
Y ∼ L(µY ,Γ) if there is an expectation µY ∈ H and a covariance operator ΓY ∈ L (H).

§4.1.3 Property. A covariance operator ΓY ∈ L (H) associated with a stochastic process Y
on H is self-adjoint and non-negative definite.

§4.1.4 Example (Non-parametric density estimation). Let X be a r.v. taking its values in the
interval [0, 1] with distribution P, c.d.f. F and admitting a Lebesgue-density p = dP/dλ.
Given h ∈ L1

X as introduced in §2.1.4 (v) denote by Ep (h(X)) = Ph = λ(hp) the expectation
of h(X) w.r.t. P. For convenience we suppose that the density p is square integrable, i.e.,
p belongs to the real Hilbert space L2 := L2([0, 1]) equipped with its usual inner product
〈·, ·〉L2 (compare §2.1.4 (iv)). Thereby, for any h ∈ L2 we have 〈p , h〉L2 = λ(ph) = Ph =
Ep (h(X)). Assuming an i.i.d. sample Xi ∼ p , i ∈ J1, nK we denote by P⊗n its joint product
probability measure. Let Y = (Yh, h ∈ L2) be the stochastic process on L2 defined for each
h ∈ L2 by Yh := Pnh := 1

n

∑n
i=1 h(Xi). Obviously, the mean function µ of Y satisfies

µ(h) = E(Yh) = P⊗n(Pnh) = Ph = 〈p , h〉L2 and hence, Yh = 〈p , h〉L2 + 1√
n
Ẇh with Ẇh :=

n1/2(Pnh − Ph). Moreover, the stochastic process Ẇ := (Ẇh, h ∈ L2) of error terms admits
a covariance function given for all h, h′ ∈ L2 by Cov(Ẇh, Ẇh′) = P(hh′)− PhPh′ = P((h−
Ph)(h′−Ph′)) = Cov(h(X), h(X ′)). Observe that PhPh′ = 〈Mph,1[0,1]〉L2〈1[0,1],Mph

′〉L2 =
〈Π{1[0,1]}Mph,Mph

′〉L2 and P(hh′)−PhPh′ = 〈Γph, h′〉L2 with Γp = Mp −MpΠ{1[0,1]}Mp , and
thus, Ẇ ∼ L(0,Γp ) and consequently, Y = p + 1

n
Ẇ ∼ L(p , 1

n
Γp ).

§4.1.5 Example (Non-parametric regression). Let (X,Z) obey a non-parametric regression model
Ef (X|Z) = f(Z) satisfying the Assumptions: (i) the regressor Z is uniformly distributed
on the interval [0, 1], i.e., Z ∼ U[0, 1]; (ii) the centred error term ε := X − f(Z), i.e.,
Ef (ε) = 0, has a finite second moment σ2

ε := Ef (ε2) < ∞; (iii) ε and Z are indepen-
dent; (iv) the regression function f is square integrable, i.e., f ∈ L2 := L2([0, 1]). Given
h ∈ L2 denote by Ef (Xh(Z)) = Pf [Id⊗h] with [Id⊗h](X,Z) := Xh(Z) the expectation of
Xh(Z) = {f(Z) + ε}h(Z) w.r.t. the joint distribution Pf of (X,Z), where Ef [εh(Z)] = 0 and
hence, Ef [Xh(Z)] = Ef [f(Z)h(Z)] = λ(fh) = 〈f, h〉L2 . Assuming an i.i.d. sample (Xi, Zi),
i ∈ J1, nK, from Pf we denote by P⊗nf its joint product probability measure. Let Y = (Yh)h∈L2 be
the stochastic process on L2 given for each h ∈ L2 by Yh := Pn[Id⊗h] := n−1

∑n
i=1Xih(Zi).

Obviously, the mean function µ of Y satisfies µ(h) = E(Yh) = Ef [Xh(Z)] = 〈f, h〉L2 and
hence, Yh = 〈f, h〉L2+ 1√

n
Ẇh where Ẇh := n1/2(Pn[Id⊗h]−Pf [Id⊗h]) is centred. The stochas-

tic process Ẇ := (Ẇh, h ∈ L2) of error terms admits a covariance function given for h, h′ ∈ L2

by Cov(Ẇh, Ẇh′) = Pf ([Id⊗h][Id⊗h′]) − Pf [Id⊗h]Pf [Id⊗h′] = Cov(Xh(Z), Xh′(Z)) =

σ2
ε〈h, h′〉L2 +〈Mfh,Mfh

′〉L2−〈Π{1[0,1]}Mfh,Mfh
′〉L2 = σ2

ε〈h, h′〉L2 +〈MfΠ
⊥
{1[0,1]}Mfh, h

′〉L2 =

〈Γfh, h′〉L2 with Γf = σ2
ε IdL2 +MfΠ

⊥
{1[0,1]}Mf , and hence, Ẇ ∼ L(0,Γf ) and consequently,

Y = f + 1
n
Ẇ ∼ L(f, 1

n
Γf ).

§4.1.6 Definition (White noise process on H). Let Y := (Yh, h ∈ H) be a stochastic process on
H. If {Yu, u ∈ U} for an ONS U in H is a family of K-valued, independent and identically
L(0, 1)-distributed r.v.’s, i.e., PΠUY = ⊗u∈UPYu = ⊗u∈UL(0, 1) =: L⊗U(0, 1), then we write
shortly ΠUY ∼ L⊗U(0, 1) and call ΠUY a white noise process on U . If ΠUY for any ONS U is
a white noise process on U then we call Y a white noise process on H.
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§4.1.7 Remark. Considering in example §4.1.4 or §4.1.5 the centred stochastic process Ẇ :=
(Ẇh, h ∈ L2) of error terms we note that generally there does not exists an ONB U in L2 such
that ΠUẆ is a white noise process on U .

§4.1.8 Property. Let Y := (Yh, h ∈ H) be a stochastic process on H admitting an expectation
µY ∈ H and a covariance operator Γ ∈ L (H), i.e., Y ∼ L(µY ,Γ). If there exists an ONB
U in H such that ΠUY is a white noise process on U , i.e., ΠUY ∼ L⊗U(0, 1). Then we have
µY = 0 ∈ H and Γ = IdH since µY =

∑
u∈U〈µY , u〉Hu =

∑
u∈U E(Yu)u = 0 and 〈Γ·, ·〉H =∑

u,u′∈U〈u, ·〉H〈Γu, u′〉H〈u′, ·〉H =
∑

u,u′∈U〈u, ·〉H〈u, u′〉H〈u′, ·〉H = 〈·, ·〉H. Consequently, for
each ONB V in H the r.v.’s {Yv, v ∈ V} are pairwise uncorrelated.

§4.1.9 Definition (Gaussian process on H). A stochastic process Y = (Yh, h ∈ H) on H with
mean function µ and covariance function cov is called a Gaussian process on H, if the family
of finite-dimensional distributions

{
PΠUY ,U ⊂ H finite

}
of Y consists of normal distributions,

that is, ΠUY = (Yu)u∈U is normally distributed with mean vector (µ(u))u∈U and covariance
matrix (cov(u, u′))u,u′∈U . We write shortly Y ∼ N(µ, cov) or Y ∼ N(µY ,Γ), if in addition
there exist an expectation µY ∈ H and a covariance operator Γ ∈ L (H) associated with Y .
The Gaussian process Y ∼ N(0, 〈·, ·〉H), or equivalently Y ∼ N(0, IdH), with mean 0 ∈ H and
covariance operator IdH is called iso-Gaussian process or Gaussian white noise process on H.

§4.1.10 Property. Let Y := (Yh, h ∈ H) be a Gaussian process on H admitting an expectation
µY ∈ H and a covariance operator Γ∈ L (H), i.e., Y ∼ N(µY ,Γ). If there exists an ONB U in
H such that ΠUY is a Gaussian white noise process on U , i.e., ΠUY ∼ N⊗U(0, 1), then due to
§4.1.8 we have Y ∼ N(0, IdH) and for each ONS V in H the standard normally distributed r.v.’s
{Yv, v ∈ V} are pairwise uncorrelated, and hence, independent, i.e., ΠVY ∼ N⊗V(0, 1).

§4.1.11 Definition (Random function in H). Let (H, 〈·, ·〉H) be an Hilbert space equipped with its
Borel-σ-algebra BH, which is induced by its topology. An A -BH-measurable map Y : Ω→ H
is called an H-valued r.v. or a random function in H.

§4.1.12 Lemma. Let U = {uj, j ∈ N} be an ONS in H. There does not exist a random function
Y in H such that ΠUY is a Gaussian white noise process on U .

Proof of Lemma §4.1.12 is given in the lecture.

§4.1.13 Properties. Let Y be a random function in H.
(i) For each h ∈ H, the map 〈·, h〉H : H → K is continuous and hence, 〈Y, h〉H a K-valued

r.v.. Thereby, 〈Y, •〉H := {〈Y, h〉H, h ∈ H} is a stochastic process on H. If 〈Y, •〉H admits a
mean function µ and a covariance function cov, then it is, respectively, linear, i.e., µ(ah+
h′) = E(〈Y, ah+h′〉H) = aµ(h)+µ(h′), and bilinear. If in addition µ and cov are bounded,
then there exists an expectation E(Y ) ∈ H and a covariance operator Γ∈ L (H) such that
E(〈Y, h〉H) = 〈E(Y ), h〉H and Cov(〈Y, h〉H, 〈Y, h′〉H) = 〈Γh, h′〉H for all h, h′ ∈ H.

(ii) If E(‖Y ‖H) < ∞, then E|〈Y, h〉H| 6 ‖h‖H E(‖Y ‖H) for each h ∈ H due to the Cauchy-
Schwarz-inequality §2.1.3, which in turn implies, that 〈Y, •〉H admits a bounded linear
mean function µ and hence, there exists an expectation E(Y ) ∈ H.

(iii) If E(‖Y ‖2
H) < ∞, then Var(〈Y, h〉H) 6 E|〈Y, h〉H|2 6 ‖h‖2

H E(‖Y ‖2
H) which in turn im-

plies |Cov(〈Y, h〉H, 〈Y, h′〉H)| 6 [Var(〈Y, h〉H)Var(〈Y, h′〉H)]1/2 6 ‖h‖H ‖h′‖H E(‖Y ‖2
H).

Statistics of inverse problems 33



Chapter 4 Statistical inverse problem 4.2 Statistical direct problem

Thereby, 〈Y, •〉H admits a bounded, bilinear covariance function cov and hence, there ex-
ists a covariance operator Γ ∈ L (H). Moreover, Γ ∈ N (H) since for any ONB U
in H we have

∑
u∈U〈Γu, u〉H =

∑
u∈U Var(〈Y, u〉H) = E

∑
u∈U |〈Y − E(Y ), u〉H|2 =

E ‖Y − E(Y )‖2
H.

§4.1.14 Notation. Let Y be a random function in H. If the associated stochastic process 〈Y, •〉H
admits an expectation µY ∈ H and a covariance operator Γ ∈ L (H), then we write Y ∼
L(µY ,Γ) with a slight abuse of notations.

§4.1.15 Example. LetX be a random function in a real Hilbert space (H, 〈·, ·〉H) having a finite
second moment, i.e., E ‖X‖2

H < ∞. We say that X is centred if for all h ∈ H the real valued
random variable 〈X, h〉H has mean zero. Moreover, the linear operator Γ : H → H defined by
〈Γh1, h2〉H := E[〈h1, X〉H〈X, h2〉H] for all h1, h2 ∈ H belongs to N (H) and satisfies tr(Γ) =
E ‖X‖2

H. Obviously, if the random function X is centred then X ∼ L(0,Γ), i.e., Γ is the
covariance operator associated with X . In this situation the eigenvectors {uj, j ∈ J } of T
associated with the strictly positive eigenvalues {λj, j ∈ J } form an ONB in H, and hence the
corresponding generalised Fourier series transform Uf = [f ] is unitary. Furthermore, given the
ONB of eigenfunctions the (infinite) matrix representation [Γ] = [∇λ] is diagonal, i.e., for all
m ∈M, [Γ]m = [∇λ]m is a |Jm|-dimensional diagonal matrix with entries (λj)j∈Jm .

§4.1.16 Notation. Let Y =
(
Y(h,g), h ∈ H, g ∈ G

)
be a stochastic process on H × G,

that is, a family
{
Y(h,g), h ∈ H, g ∈ G

}
of K-valued r.v.’s on a common probability space

(Ω,A ,P). We call Y centred if E(Y(h,g)) = 0 for all h ∈ H and g ∈ G. Moreover, if
Y admits a covariance function, i.e., cov((h1, g1), (h2, g2)) = Cov(Y(h1,g1), Y(h2,g2)), for all
h1, h2 ∈ H and g1, g2 ∈ G, then we write Y ∼ L(0, cov), for short. Furthermore, if Π(U×V)Y =(
Y(h,g), h ∈ U , g ∈ V

)
for an ONS U and V in H and G, respectively, consists of K-valued,

independent and identically L(0, 1)-distributed r.v.’s, i.e., PΠ(U×V)Y = ⊗u∈U ⊗v∈V PY(u,v) =
⊗u∈U ⊗v∈V L(0, 1) =: L⊗(U×V)(0, 1), then we write shortly Π(U×V)Y ∼ L⊗(U×V)(0, 1) and
call Π(U×V)Y a white noise process on U × V . If Π(U×V)Y for any ONS U in H and V
in G is a white noise process on U × V then we call Y a white noise process on H × G.
Note that for a white noise process Y ∼ L(0, cov) on H × G holds cov((h1, g1), (h2, g2)) =∑

j∈J
∑

k∈K〈h1, uj〉H〈uj, h2〉H〈g1, vk〉G〈vk, g2〉G = 〈h1, h2〉H〈g1, g2〉G for any h1, h2 ∈ H and
g1, g2 ∈ G and we write Y ∼ L(0, 〈·, ·〉H〈·, ·〉G). A centred stochastic process Y ∼ L(0, cov) on
H×G is called a Gaussian process on H×G, if the family of finite-dimensional distributions{
PΠ(U×V)Y ,U ⊂ H,V ⊂ G finite

}
of Y consists of normal distributions, that is, Π(U×V)Y =(

Y(u,v), u ∈ U , v ∈ V
)

is normally distributed with mean vector zero and covariance ma-
trix (cov((u, v), (u′, v′)))u,u′∈U ,v,v′∈V . We write shortly Y ∼ N(0, cov). If in addition cov =
〈·, ·〉H〈·, ·〉G, then Y is a white noise process and we call Y ∼ N(0, 〈·, ·〉H〈·, ·〉G) a Gaussian
white noise process on H×G.

4.2 Statistical direct problem

Given a pre-specified ONS U = {uj, j ∈ J } in H we base our estimation procedure on
the expansion of the function of interest f ∈ U = lin(U). The choice of an adequate ONS
is determined by the presumed information on the function of interest f formalised by the
abstract smoothness conditions given in §2.1.18. However, the statistical selection of a basis
from a family of bases (c.f. Birgé and Massart [1997]) is complicated, and its discussion is far
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beyond the scope of this lecture.

§4.2.1 Definition (Sequence space model (SSM)). Let Ẇ = (Ẇh, h ∈ H) be a centred stochastic
process on H, and let n ∈ N be a sample size. The stochastic process f̂ = f + 1√

n
Ẇ on

H is called a noisy version of f ∈ H and we denote by Pnf its distribution. If Ẇ admits a
covariance operator (possibly depending on f ), say Γf , then we eventually write f̂ ∼ L(f, 1

n
Γf),

or f̂ ∼ Lnf for short. Given the pre-specified ONS U = {uj, j ∈ J } in H considering the family
of K-valued r.v.’s

{
[Ẇ ]j := Ẇuj , j ∈ J

}
the observable quantities take the form

[f̂]j = 〈f, uj〉H + 1√
n
Ẇuj = [f ]j + 1√

n
[Ẇ ]j, j ∈ J . (4.1)

We denote by Pn[f ] , or L([f ], 1
n
[Γf ]), the distribution of the observable stochastic process [f̂] =

([f̂]j)j∈J on U which obviously is determined by the distribution Pnf , or L(f, 1
n
Γf), of f̂. The

reconstruction of the sequence [f ] = ([f ]j)j∈J and whence the function f = U?[f ] ∈ U from
the noisy version [f̂] ∼ Pn[f ] is called a (direct) sequence space model (SSM).

§4.2.2 Example (Gaussian sequence space model (GSSM)). Given a Gaussian white noise process
Ẇ = (Ẇh, h ∈ H) ∼ N(0, IdH) on H as defined in §4.1.9 consider a noisy version f̂ = f +

1√
n
Ẇ ∼ N(f, 1

n
IdH) = Nn

f of a function f ∈ H. Given a pre-specified ONS U = {uj, j ∈ J }
in H the observable quantities take the form [f̂]j = [f ]j + 1√

n
[Ẇ ]j, j ∈ J , where the error terms

[Ẇ ]j, j ∈ J , are independent and N(0, 1)-distributed, i.e., [Ẇ ] = ([Ẇ ]j)j∈J ∼ N⊗J (0, 1) =

N(0, IdJ ), and thus, [f̂] = ([f̂]j)j∈J is a sequence of independent Gaussian random variables
having mean [f ]j and variance n−1, i.e., [f̂] ∼ N([f ], 1

n
IdJ ) = Nn

[f ]. The reconstruction of the
sequence [f ] and whence the function f = U?[f ] ∈ U from a noisy version [f̂] ∼ Nn

[f ] is called
a Gaussian (direct) sequence space model (GSSM).

§4.2.3 Example (Non-parametric density estimation §4.1.4 continued). For n ∈ N consider an i.i.d.
sample Xi ∼ P, i ∈ J1, nK, where P admits a Lebesgue-density p ∈ L2 = L2([0, 1]) and P⊗n
denotes the associated joint product distribution. Consider the centred stochastic process Ẇ =
(Ẇh, h ∈ L2) ∼ L(0,Γp ) of error terms with Γp = Mp −MpΠ{1[0,1]}Mp as introduced in §4.1.4.
The non-parametric estimation of a density p ∈ L2 from an i.i.d. sample of size n may thus be
based on the noisy version p̂ = p + 1√

n
Ẇ ∼ L(p , 1

n
Γp ) of the density of interest p . In other

words, given a pre-specified ONS {uj, j ∈ J } the observable quantity [p̂ ] = ([p̂ ]j)j∈J ∼ Pn[p ]

takes for each j ∈ J with [Ẇ ]j := Ẇuj the form [p̂ ]j = [p ]j + 1√
n
[Ẇ ]j = Pnuj . Consequently,

non-parametric estimation of a density can be covered by a sequence space model, where the
error process Ẇ , however, is generally not a white noise process. For convenient notations let
{1[0,1]} ∪ {uj, j ∈ N} be an ONB of L2 for some ONS U = {uj, j ∈ N}. Keeping in mind
that p is a density, it admits an expansion p = 1[0,1] + U?[p ] = 1[0,1] +

∑
j∈N[p ]juj where

[p ] = Up = ([p ]j)j∈N with [p ]j = Ep (uj(X)) for j ∈ N is a sequence of unknown coefficients,
and hence, f := ΠUp = U?[p ] is the function of interest. Given the pre-specified ONS U the
observable quantity [p̂ ] = ([p̂ ]j)j∈N ∼ Pn[p ] takes for each j ∈ N the form [p̂ ]j = Pnuj . Note
that the distribution Pn[p ] of the observable quantity [p̂ ] is determined by the distribution P⊗n of
the sample X1, . . . , Xn.

§4.2.4 Example (Non-parametric regression §4.1.5 continued). Consider (X,Z) ∼ Pf obeying
Ef (X|Z) = f(Z) and Z ∼ U[0, 1] with f ∈ L2 = L2([0, 1]). Given an i.i.d.. sample (Xi, Zi) ∼
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Pf , i ∈ J1, nK, their joint distribution is denoted by P⊗nf . Consider the centred stochastic process
Ẇ = (Ẇh, h ∈ L2) ∼ L(0,Γf ) of error terms as introduced in §4.1.5. The non-parametric
estimation of a regression function f ∈ L2 from an i.i.d. sample of size n may thus be based
on the noisy version f̂ = f + 1√

n
Ẇ ∼ L(f, 1

n
Γf ) of the regression function f . In other words,

given a pre-specified ONS U = {uj, j ∈ J } the observable quantity [f̂ ] = ([f̂ ]j)j∈J ∼ Pn[f ]

takes for each j ∈ J the form [f̂ ]j = Pn[Id⊗uj]. Consequently, non-parametric regression can
also be covered by a sequence space model, where the error process Ẇ , however, is generally
not a white noise process.

4.3 Statistical inverse problem: known operator

Consider the reconstruction of a solution f ∈ H of an equation g = Tf where the linear
operator T ∈ L (H,G) is known in advance. For ease of presentation we restrict ourselves
to two cases only. First, we suppose T ∈ T (H) ⊂ L (H), i.e., T is compact and strictly
positive definite, which is a rather mild assumption keeping in mind that f is a solution of
the normal equation T ?g = T ?Tf and that T ?T is strictly positive definite and compact if
T is injective and compact. Secondly, we assume T ∈ Suv(H,G) ⊂ L (H,G) admitting a
singular system {(sj, uj, vj), j ∈ J } with eigenfunctions given by an ONS U = {uj, j ∈ J }
and V = {vj, j ∈ J } in H and G, respectively. In both cases the same pre-specified ONS
U = {uj, j ∈ J } in H is used to formalise the smoothing properties of the known operator
T and the presumed information on the function of interest f given by an abstract smoothness
condition, f ∈ Frua as in Definition §2.1.18. In the first case the smoothing properties of the
known operator T are characterised by a link condition, T ∈ T d

ut , as in Definition §2.2.50.
We shall stress, that in this case T is generally not diagonal w.r.t. U , in other words, T does
generally not belong to Eu (see Definition §2.2.34). In the second case the choice of the ONS U
and V is determined by the spectral decomposition of T ∈ Sduvt, as in Definition §2.2.50.

§4.3.1 Definition. Given T ∈ T (H) consider the reconstruction of a solution f ∈ H from
g = Tf ∈ H. Let Ẇ = (Ẇh, h ∈ H) be a centred stochastic process on H, and let n ∈ N
be a sample size. The stochastic process ĝ = Tf + 1√

n
Ẇ on H is called a noisy version of

g = Tf ∈ H and we denote by PnTf its distribution. Keeping in mind that T is known in advance
we may suppress the dependence of PnTf on T and write Pnf , for short. If Ẇ admits a covariance
operator (possibly depending on g = Tf ), say ΓTf , then we eventually write ĝ ∼ L(Tf, 1

n
Γf),

or ĝ ∼ LnTf for short. The reconstruction of f ∈ H from a noisy version ĝ ∼ PnTf is called a
statistical inverse problem. Given the pre-specified ONS U = {uj, j ∈ J } in H considering
the family of K-valued random variables

{
[Ẇ ]j := Ẇuj , j ∈ J

}
the observable quantities take

the form

[ĝ]j = 〈Tf, uj〉H + 1√
n
Ẇuj = [Tf ]j + 1√

n
[Ẇ ]j. j ∈ J . (4.2)

We denote by Pn[g] , or L([g], 1
n
[Γg]), the distribution of the observable stochastic process [ĝ] =

([ĝ]j)j∈J on U which obviously is determined by the distribution PnTf , or L(Tf, 1
n
ΓTf), of ĝ.

§4.3.2 Example (Non-parametric inverse regression). Given T ∈ T (L2([0, 1])) let the depen-
dence of a real r.v. X on the variation of an explanatory random variable Z be characterised
by X = [Tf ](Z) + ε, where f is an unknown function of interest and ε is an error term. The
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reconstruction of f from a sample of (X,Z) is called non-parametric inverse regression. For
convenience, we assume that (i) the regressor Z is uniformly distributed on the interval [0, 1],
i.e., Z ∼ U[0, 1]; (ii) the centred error term ε := X − [Tf ](Z), i.e., ETf (ε) = 0, has a finite
second moment σ2

ε := ETf (ε2) < ∞; (iii) ε and Z are independent; (iv) the inverse regres-
sion function f is square integrable, i.e., f ∈ L2 := L2([0, 1]), and hence g := Tf ∈ L2.
Given h ∈ L2 denote by Eg(Xh(Z)) = PTf [Id⊗h] with [Id⊗h](X,Z) := Xh(Z) the ex-
pectation of Xh(Z) = {[Tf ](Z) + ε}h(Z) w.r.t. the joint distribution PTf of (X,Z), where
Eg[εh(Z)] = 0 and hence, Eg[Xh(Z)] = Eg[g(Z)h(Z)] = λ(gh) = 〈g, h〉L2 = 〈Tf, h〉L2 .
Assuming an i.i.d. sample (Xi, Zi), i ∈ J1, nK, from PTf we denote by P⊗nTf its joint product
probability measure. Consider as noisy version of g = Tf the stochastic process ĝ on L2 given
for each h ∈ L2 by ĝh := PnTf [Id⊗h] := n−1

∑n
i=1Xih(Zi). Obviously, the mean function µ

of ĝ satisfies µ(h) = E(ĝh) = Eg[Xh(Z)] = 〈Tf, h〉L2 and hence, ĝh = 〈Tf, h〉L2 + 1√
n
Ẇh

where Ẇh := n1/2(PnTf [Id⊗h] − PTf [Id⊗h]) is centred. Keeping in mind Example §4.1.5 the
stochastic process Ẇ := (Ẇh, h ∈ L2) of error terms admits a covariance function given
for h, h′ ∈ L2 by Cov(Ẇh, Ẇh′) = 〈ΓTfh, h′〉L2 with ΓTf = σ2

ε IdL2 +MTfΠ
⊥
{1[0,1]}MTf , i.e.,

Ẇ ∼ L(0,ΓTf) and consequently, ĝ = Tf + 1
n
Ẇ ∼ L(Tf, 1

n
ΓTf) = LnTf . Note that the er-

ror terms {Ẇh, h ∈ L2} are centred, and generally not identically distributed. In other words,
the reconstruction of f leads to a statistical inverse problem, where the error process Ẇ is
generally not a white noise process. Given a pre-specified ONB U in L2 and the R-valued ran-
dom variables [Ẇ ]j := Ẇuj , j ∈ J , the observable quantities take for each j ∈ J the form
[ĝ]j = 〈Tf, uj〉L2 + 1√

n
Ẇuj = [Tf ]j + 1√

n
[Ẇ ]j = PnTf [Id⊗uj] and we denote by L([Tf ], 1

n
[ΓTf ])

the joint distribution of the observable quantity [ĝ] which is obviously determined by the distri-
bution P⊗nTf of the i.i.d. sample (Xi, Zi), i ∈ J1, nK.

§4.3.3 Example (Gaussian non-parametric inverse regression). Consider a Gaussian white noise
process Ẇ = (Ẇh, h ∈ H) ∼ N(0, IdH) on H as defined in §4.1.9. Given T ∈ T (H) the
reconstruction of a function f ∈ H based on a noisy version ĝ = Tf+ 1√

n
Ẇ ∼ N(Tf, 1

n
IdH) =

Nn
Tf is called Gaussian non-parametric inverse regression. Considering the projection onto

an ONB U = {uj, j ∈ J } of H the observable quantities take consequently the form [ĝ]j =
[Tf ]j + 1√

n
[Ẇ ]j, j ∈ J , where the error terms [Ẇ ]j, j ∈ J , are independent and N(0, 1)-

distributed, i.e., [Ẇ ] = ([Ẇ ]j)j∈J ∼ N⊗J (0, 1) = N(0, IdJ ), and thus, [ĝ] = ([ĝ]j)j∈J is a
sequence of independent Gaussian random variables having mean [Tf ]j and variance n−1, i.e.,
[ĝ] ∼ Nn

[Tf ] = N([Tf ], 1
n

IdJ ).

§4.3.4 Definition. Given T ∈ Suv(H,G) admitting a singular system {(sj, uj, vj), j ∈ J } con-
sider the reconstruction of f ∈ H from a noisy version ĝ = Tf + 1√

n
Ẇ ∼ PnTf , which is a

statistical inverse problem as in Definition §4.3.1. A projection onto the ONS of eigenfunc-
tions U = {uj, j ∈ J } and V = {vj, j ∈ J } allows to write [g]j = [Tf ]j = 〈Tf, vj〉G =
sj〈f, uj〉H = sj[f ]j for all j ∈ J . Considering the family of K-valued random variables{

[Ẇ ]j := Ẇvj , j ∈ J
}

the observable quantities take the form

[ĝ]j = sj[f ]j + 1√
n
[Ẇ ]j, j ∈ J . (4.3)

We denote by Pns[f ] , or L(s[f ], 1
n
[Γf ]), the distribution of the observable stochastic process [ĝ] =

([ĝ]j)j∈J on V = lin(V) which obviously is determined by the distribution PnTf , or L(Tf, 1
n
ΓTf),

of ĝ. The reconstruction of the sequence [f ] = ([f ]j)j∈J and whence the function f = U?[f ] ∈
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U = lin(U) from a noisy version [ĝ] ∼ Pns[f ] is called an indirect sequence space model (iSSM).
Recall that it is called a (direct) sequence space model (see §4.2.1), if the sequence of singular
values s is equal to one, i.e., sj = 1, for all j ∈ J . In particular, if T ∈ Suv(H,G) then the
sequence s has zero as an accumulation point and hence, the indirect sequence space model is
ill-posed.

§4.3.5 Example (Gaussian indirect sequence space model (GiSSM)). Given a Gaussian white noise
process Ẇ = (Ẇg, g ∈ G) ∼ N(0, IdG) on G as defined in §4.1.9 consider a noisy version
ĝ = Tf + 1√

n
Ẇ ∼ N(Tf, 1

n
IdG) = Nn

Tf of g = Tf ∈ G. Given T ∈ Suv(H,G) the
reconstruction of the sequence [f ] = ([f ]j)j∈J and whence the function f = U?[f ] ∈ U from
observable quantities (4.3), where the error terms

{
[Ẇ ]j, j ∈ J

}
are independent and N(0, 1)-

distributed, i.e., [Ẇ ] = ([Ẇ ]j)j∈J ∼ N⊗J (0, 1), is called a Gaussian indirect sequence space
model (GiSSM). Recall that it is called a Gaussian (direct) sequence space model (GSSM) (see
Example §4.2.2), if the sequence of singular values s is equal to one, i.e., sj = 1, for all j ∈ J .

§4.3.6 Example (Circular deconvolution with known error density). Let X be a circular random
variable whose density p we are interested in, and ε an independent additive circular error with
known density φ. Denote by Y = X+ε the contaminated observation ofX and by g its density.
We will identify the circle with the unit interval [0, 1), for notational convenience. Thus, X and
ε take their values in [0, 1). Let b·c be the floor function. Taking into account the circular nature
of the data, the model can be written as Y = X + ε − bX + εc or equivalently Y = X + ε
mod [0, 1). Then, we have g = p ~ φ where ~ denotes circular convolution as in Examples
§2.2.4 (ix) and, hence g = Cφp where the convolution operator Cφ ∈ Ee(L2([0, 1))) is compact
(see §2.2.35). If the error density φ and thus the operator Cφ are known in advance then the
reconstruction of the density p given a sample from g is called circular deconvolution with
known error density. Consider the exponential basis {ej}j∈Z in L2([0, 1)) introduced in §2.1.6
(ii) and let [h]j = 〈h, ej〉L2 , j ∈ Z, denote the Fourier coefficients of h ∈ L2([0, 1)). Applying
the convolution theorem (see §2.2.35) we have [g]j = [φ]j[p]j with [g]j = Egej(−Y ), [φ]j =
Eφej(−ε) and [p]j = Epej(−X) for all j ∈ Z. Assuming an iid. sample Yi ∼ g, i = 1, . . . , n,
as in Example §4.2.3 consider a noisy version ĝ = g + 1√

n
Ẇ ∼ L(g, 1

n
Γg) of the density g with

Γg = Mg −MgΠ{1[0,1]}Mg as introduced in §4.1.4 where ĝh = Png h = 1
n

∑n
i=1 h(Yi) for any h ∈

L2. Given an arbitrary ONS {uj, j ∈ J } the observable quantity [ĝ] = ([ĝ]j)j∈J ∼ Pn[g] takes for
each j ∈ J with [Ẇ ]j := Ẇuj the form [ĝ]j = [g]j + 1√

n
[Ẇ ]j = Png uj . Consequently, given the

pre-specified exponential ONB {ej, j ∈ Z} and the noisy version ĝ of g = Cφp the observable
quantities are of the form [ĝ]j = [φ]j[p]j+

1√
n
[Ẇ ]j for all j ∈ Z, and thus, the reconstruction of p

is an ill-posed indirect sequence space model where the error process Ẇ , however, is generally
not a white noise process. For convenient notatations let Zo := Z\{0} and U = {ej, j ∈ Zo}
where {e0 = 1[0,1]} ∪ {ej, j ∈ Zo} is the exponential ONB in L2. Keeping in mind, that p
is a density, it admits an expansion p = 1[0,1] + U?[p] = 1[0,1] +

∑
j∈Zo [p]jej where [p] =

Up = ([p]j)j∈Zo with [p]j = Epej(−X) for j ∈ Zo is a sequence of unknown coefficients,
and hence, f := ΠUp = U?[p] is the function of interest. Given the pre-specified ONS U the
observable quantity [ĝ] = ([ĝ]j)j∈Zo ∼ Pn[g] takes for each j ∈ Zo the form [ĝ]j = Png ej . Note
that the distribution Pn[g] of the observable quantity [ĝ] is determined by the distribution P⊗ng of
the sample Y1, . . . , Yn. However, if the error density φ is known in advance, then Pn[g] and P⊗ng

are uniquely determined by p.
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4.4 Statistical inverse problems: partially known operator

Consider the reconstruction of a solution f ∈ H of an equation g = Tf where the linear
operator T belongs to Suv(H,G) ⊂ L (H,G) for some pre-specified ONS of eigenfunctions
U = {uj, j ∈ J } and V = {vj, j ∈ J } in H and G, respectively. In other words the operator T
admitts a singular system {(sj, uj, vj), j ∈ J }where the eigenfunctions are known in advanced.
However, there is only a noisy version ŝ = (ŝj)j∈J of the sequence of the singular values s
available, and hence, the operator T is called partially known. In this situation the same pre-
specified ONS U = {uj, j ∈ J } in H is again used to formalise the smoothing properties of
the known operator T by a link condition, T ∈ Sduvt, as in Definition §2.2.50, and the presumed
information on the function of interest f given by an abstract smoothness condition, f ∈ Frua as
in Definition §2.1.18.

§4.4.1 Definition. Assume a statistical inverse problem ĝ = Tf + 1√
n
Ẇ for some centred

stochastic process Ẇ = (Ẇh, h ∈ H) on H, and sample size n ∈ N, i.e., ĝ ∼ PnTf or ĝ ∼
L(Tf, 1

n
ΓTf) if Ẇ admits a covariance operator ΓTf . Suppose further that T ∈ Suv(H,G) ⊂

L (H,G) for some pre-specified ONS of eigenfunctions U = {uj, j ∈ J } and V = {vj, j ∈ J }
in H and G, respectively. Given a centred stochastic process [Ḃ] = ([Ḃ]j)j∈J on `2(J ) and a
sample size m ∈ N for T ∈ Suv(H,G) admitting a sequence of singular values s the stochastic
process ŝ = (ŝj)j∈J = s+ 1√

m
[Ḃ] ∼ Pms is called a noisy version of s. If [Ḃ] admits a covariance

function (possibly depending on s), say covs, then we eventually write ŝ ∼ L(s, 1
n

covs), or
ŝ ∼ Lns for short. The reconstruction of a solution f ∈ H from g = Tf ∈ G given a noisy
version ĝ ∼ PnTf and ŝ ∼ Pms of g and of the singular values s of T ∈ Suv(H,G), respectively, is
called statistical inverse problem with partially known operator. Projecting the inverse problem
onto the pre-specified ONS U and V and hence obtaining K-valued random variables

{
[Ẇ ]k :=

Ẇvk , k ∈ K
}

the observable quantities take the form

[ĝ]j = sj[f ]j + 1√
n
[Ẇ ]j and ŝj = sj + 1√

m
[Ḃ]j, j ∈ J . (4.4)

We denote by Pns[f ] , or L(s[f ], 1
n
[ΓTf ]), the distribution of the observable stochastic process [ĝ] =

([ĝ]j)j∈J on V which obviously is determined by the distribution PnTf . The reconstruction of the
sequence [f ] = ([f ]j)j∈J and whence the function f = U?[f ] ∈ U = lin(U) from the noisy
versions [ĝ] ∼ Pns[f ] and ŝ ∼ Pms is called an indirect sequence space model with noise in the
operator.

§4.4.2 Example. Consider as in §4.1.9 Gaussian white noise processes Ẇ = (Ẇg, g ∈ G) ∼
N(0, 〈·, ·〉G) and [Ḃ] = ([Ḃ]j, j ∈ J ) ∼ N⊗J (0, 1) on G and `2, respectively. Given T ∈
Suv(H) the reconstruction of a function f = U?[f ] ∈ U = lin(U) based on observable quantities
[ĝ] = s[f ] + 1√

n
[Ẇ ] ∼ N(s[f ], 1

n
IdJ ) = Nn

s[f ] and ŝ = s + 1√
m

[Ẇ ] ∼ N(s, 1
m

IdJ ) = Nm
s is

called Gaussian indirect sequence space model with noise in the operator.

§4.4.3 Example (Circular deconvolution with unknown error density). Consider a circular decon-
volution problem §4.3.6 where neither the density g = Cφp = φ ~ p of the contaminated
observations, nor the error density φ is known in advance. The reconstruction of the density
p based on two independent samples of independent and identically distributed random vari-
ables Yi ∼ g, i ∈ J1, nK, and εi ∼ φ, i ∈ J1,mK, of size n ∈ N and m ∈ N, respectively, is
called a circular deconvolution problem with unknown error density. Consider a noisy version
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ĝ ∼ L(g, 1
n
Γg) of g = Cφp as defined in §4.3.6, where ĝh = Png h = 1

n

∑n
i=1 h(Yi) for any

h ∈ L2. In addition, given the i.i.d. sample εi ∼ φ, i ∈ J1,mK, introduce as in Example §4.2.3
a noisy version φ̂ = φ + 1√

m
Ḃ ∼ L(φ, 1

m
Γφ) of the density φ with Γφ = Mφ −MφΠ{1[0,1]}Mφ

as introduced in §4.1.4 where φ̂h = Pmφ h = 1
m

∑m
i=1 h(εi) for any h ∈ L2. Keeping Example

§2.2.35 in mind the convolution operator Cφ belongs to Ee(L2([0, 1))) w.r.t. the exponential
basis {ej, j ∈ Z} in L2([0, 1)) introduced in §2.1.6 (ii). In other words, any convolution op-
erator Cφ has an eigen system {([φ]j, ej), j ∈ Z} and for j ∈ Z we denote by [φ̂]j := Pmφ ej ,
the noisy version of [φ]j = Eφej(−ε) associated with φ̂. Consequently, given the pre-specified
exponential ONB {ej, j ∈ Z} and the noisy version ĝ and φ̂ of g = Cφp and φ, respectively,
the observable quantities are of the form [ĝ]j = [φ]j[p]j + 1√

n
[Ẇ ]j and [φ̂]j = [φ]j + 1√

m
[Ḃ]j

for all j ∈ Z, and thus, the reconstruction of p is an ill-posed indirect sequence space model
with partially known operator, where the error processes Ẇ and Ḃ, however, are generally
not white noise processes. For convenient notatations let Zo := Z\{0} and U = {ej, j ∈ Zo}
where {e0 = 1[0,1)} ∪ {ej, j ∈ Zo} is the exponential ONB in L2. Keeping in mind, that p
and φ are densities, they admit an expansion p = 1[0,1) + U?[p] = 1[0,1) +

∑
j∈Zo [p]jej and

φ = 1[0,1) + U?[φ] where [p] = Up = ([p]j)j∈Zo with [p]j = Epej(−X) for j ∈ Zo is a
sequence of unknown coefficients, and hence, f := ΠUp = U?[p] = U?([g]/[φ]) is the func-
tion of interest. Given the pre-specified ONS U the observable quantity [ĝ] = ([ĝ]j)j∈Zo ∼ Pn[g]
and [φ̂] = ([φ̂]j)j∈Zo ∼ Pm[φ] , respectively, takes for each j ∈ Zo the form [ĝ]j = Png ej and
[φ̂]j = Pmφ ej . Note that the distribution Pn[g] and Pm[φ] of the observable quantity [ĝ] and [φ̂]
is determined, respectively, by the distribution P⊗ng and P⊗mφ of the sample Y1, . . . , Yn and
ε1, . . . , εm.

4.5 Statistical inverse problems: unknown operator

Given a linear operator T belonging to L (H,G) consider the reconstruction of a solution
f ∈ H of an equation g = Tf based on a noisy version ĝ and T̂ of g and T , repsectively, which
we formalise next. In this situation the same pre-specified ONS U = {uj, j ∈ J } in H is again
used to characterise the smoothing properties of the unknown operator T by a link condition,
T ∈ T d

ut as in Definition §2.2.50, or its generalisation, T ∈ KdDuvt , as in Definition §3.3.13,
and the presumed information on the function of interest f given by an abstract smoothness
condition, f ∈ Frua as in Definition §2.1.18.

§4.5.1 Definition. Given a centred stochastic process Ḃ =
(
Ḃ(h,g), h ∈ H, g ∈ G

)
on H × G

and a sample size m ∈ N the stochastic process on H × G for h ∈ H and g ∈ G satis-
fying T̂(h,g) = 〈g, Th〉G + 1√

m
Ḃ(h,g), or T̂ = T + 1√

m
Ḃ for short, is called a noisy ver-

sion of T ∈ L (H,G). We denote its distribution by PmT . If Ḃ admits a covariance func-
tion (possibly depending on T ), say covT , then we eventually write T̂ ∼ L(T, 1

n
covT ), or

T̂ ∼ LnT for short. The reconstruction of a solution f ∈ H from g = Tf ∈ G given a
noisy version ĝ = g + 1√

n
Ẇ ∼ PnTf of g and a noisy version T̂ = T + 1√

m
Ḃ ∼ PnT of

T is called statistical inverse problem with unknown operator. Given a pre-specified ONS
U = {uj, j ∈ J } in H and V = {vk, k ∈ K} in G considering the families of K-valued ran-
dom variables

{
[Ẇ ]k := Ẇvk , k ∈ K

}
and

{
[Ḃ]k, j := Ḃ(uj ,vk), k ∈ K, j ∈ J

}
the observable
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quantities take the form

[ĝ]k = 〈Tf, vk〉H + 1√
n
Ẇvk = [Tf ]k + 1√

n
[Ẇ ]k and

[T̂]k, j = 〈vk, Tuj〉G + 1√
m
Ḃ(uj ,vk) = [T ]k, j + 1√

m
[Ḃ]k, j, j ∈ J , k ∈ K. (4.5)

We denote by Pn[Tf ] , or L([Tf ], 1
n
[ΓTf ]), and Pm[T ] , or L([T ], 1

m
[covT ]), the distribution of the ob-

servable stochastic process [ĝ] = ([ĝ]k)k∈K on V and [T̂] = ([T̂]k, j)j∈J ,k∈K on U × V which
obviously is determined by the distribution PnTf and PmT of ĝ and T̂, respectively.

§4.5.2 Example. Let T ∈ T (H) and {uj, j ∈ N} be an ONB in H not necessarily correspond-
ing to the eigenfunctions of T . The reconstruction of a function f ∈ H based on noisy ver-
sions ĝ = Tf + 1√

n
Ẇ and T̂ = T + 1√

m
Ḃ of g = Tf ∈ H and T , respectively, where

Ẇ ∼ N(0, 〈·, ·〉H) and Ḃ ∼ N(0, 〈·, ·〉H〈·, ·〉G) are Gaussian white noise processes on H and
H × H, is called Gaussian non-parametric inverse regression with unknown operator. Pro-
jecting onto {uj, j ∈ J } the observable quantities take the form [ĝ]j = [g]j + 1√

n
[Ẇ ]j and

[T̂]j, k = [T ]j, k + 1√
m

[Ḃ]j, k, for j, k ∈ J , where the error terms
{

[Ẇ ]j, [Ḃ]j, k, j, k ∈ N
}

are
independent and N(0, 1)-distributed.

§4.5.3 Example (Non-parametric functional linear regression). LetX be a random function taking
its values in a separable Hilbert space (H, 〈·, ·〉H). For convenient notations we assume that
X ∼ L(0,Γ) with tr(Γ) = E ‖X‖2

H < ∞ (see Example §4.1.15). The linear relationship
between a real random variable Y and the variation of X is expressed by the equation Y =
〈f,X〉H + ε, with an unknown slope function f ∈ H and a real-valued and centred error term ε.
The reconstruction of the slope parameter f given a sample of (Y,X) is called non-parametric
functional linear regression. We suppose that the regressor X is uncorrelated to the random
error ε in the sense that E(ε〈X, h〉H) = 0 for all h ∈ H. Multiplying both sides in the model
equation byX and taking the expectation leads for any h ∈ H to the normal equation 〈g, h〉H :=
E(Y 〈X, h〉H) = E(〈f,X〉H〈X, h〉H) = 〈Γf, h〉H, or g = E(Y X) = E(〈f,X〉HX) = E(X ⊗
X)f = Γf , for short, where the cross-correlation function g belongs to H. Let us denote by
Pf,Γ the distribution of (Y,X). Assuming an iid. sample {(Yi, Xi), i = 1, . . . , n} of (Y,X), it
is natural to consider the estimators ĝ := 1

n

∑n
i=1 YiXi and Γ̂ := 1

n

∑n
i=1Xi ⊗ Xi of g and

Γ respectively. Note that ĝ = g + 1√
n
Ẇ with Ẇ = 1√

n

∑n
i=1(YiXi − g) and Γ̂ = Γ + 1√

n
Ḃ

with Ḃ = 1√
n

∑n
i=1(Xi ⊗ Xi − Γ) is a noisy version of g and Γ, where Ẇ and Ḃ are centred

but generally not white noise processes. We denote by LnΓf and LnΓ the distribution of ĝ and Γ̂,
respectively. Given the noisy versions ĝ of g = Γf and Γ̂ of Γ the reconstruction of f is hence
a statistical inverse problem with unknown operator where the observable quantities given an
ONB {uj, j ∈ J } in H take the form [ĝ]k = [Γf ]k + 1√

n
[Ẇ ]k and [Γ̂]k, j = [Γ]k, j + 1√

n
[Ḃ]k, j

with [Ẇ ]k := 1√
n

∑n
i=1 {Yi[Xi]k − [Γf ]k} and [Ḃ]k, j := 1√

n

∑n
i=1 {[Xi]j[Xi]k − [Γ]k, j} for all

j, k ∈ J .

§4.5.4 Example. A structural function f characterises the dependency of a real response Y on
the variation of an Rp-valued endogenous explanatory random variable X by Y = f(X) + U
where E[U |X] 6= 0 for some error term U . In other words, the structural function equals not the
conditional mean function of Y given X . In non-parametric instrumental regression, however,
a sample from (Y,X,Z) is available, where Z is an additional Rq-valued random vector of
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exogenous instruments such that E[U |Z] = 0. It is convenient to rewrite the model equations
in terms of an operator between Hilbert spaces. Therefore, let us first recall the Hilbert spaces
(L2

X , 〈·, ·〉L2
X

) and (L2
Z , 〈·, ·〉L2

Z
) defined in §2.1.4 (v). Taking the conditional expectation w.r.t.

the instrument Z on both sides in the model equation yields g := E[Y |Z] = E[f(X)|Z] =:
Kf where the regression function g belongs to L2

Z and K is the conditional expectation of
X given Z assumed to be an element of K (L2

X , L
2
Z) (compare §2.2.4 (vii)). Keep in mind

that for u ∈ L2
X and v ∈ L2

Z we have 〈g, v〉L2
Z

= E(Y v(Z)) = PKf [Id⊗v] and 〈v,Ku〉L2
Z

=
E(u(X)v(Z)) = PK [u ⊗ v] where [u ⊗ v](X,Z) := u(X)v(Z). Assuming an iid. sample
{(Yi, Xi, Zi), i = 1, . . . , n} of (Y,X,Z), it is natural to consider a noisy version ĝ and K̂ of g
and K, respectively, for u ∈ L2

X and v ∈ L2
Z given by ĝv = PnKf [Id⊗v] := n−1

∑n
i=1 Yiv(Zi) =

〈Kf, v〉L2
Z

+ 1√
n
Ẇv and (K̂)u,v = PnK [u⊗ v] := n−1

∑n
i=1 u(Xi)v(Zi) = 〈v,Ku〉L2

Z
+ 1√

n
Ḃu,v

where Ẇv := n1/2(PnKf [Id⊗v]−PKf [Id⊗v]) and Ḃu,v := n1/2(PnK [u⊗v]−PK [u⊗v]) are centred.
Note that Ẇ and Ḃ are centred but generally not white noise processes. Given the noisy versions
ĝ of g = Kf and K̂ of K only the reconstruction of f is a statistical inverse problem with
unknown operator where the observable quantities given an ONB U = {uj, j ∈ N} in L2

X and
V = {vj, j ∈ N} in L2

Z take the form [ĝ]j = [Kf ]j + 1√
n
[Ẇ ]j and [K̂]j, k = [K]j, k + 1√

n
[Ḃ]j, k

with [Ẇ ]j = Ẇvj and [Ḃ]j, k = Ḃuk,vj for all j, k ∈ N.
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