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Chapter 1

Introduction

SHORT SUMMARY

Statistical ill-posed inverse problems are becoming increasingly important in a diverse range
of disciplines, including geophysics, astronomy, medicine and economics. Roughly speaking,
in all of these applications the observable signal g = Tf is a transformation of the functional
parameter of interest f under a linear operator T . Statistical inference on f based on an esti-
mation of g which usually requires an inversion of T is thus called an inverse problem. The
lecture course focuses on statistical ill-posed inverse problems with noise in the operator where
neither the signal g nor the linear operator T are known in advance, although they can be es-
timated from the data. Our objective in this context is the construction of minimax-optimal
fully data-driven estimation procedures of the unknown function f . Special attention is given to
four models and their extensions, namely Gaussian inverse regression, density deconvolution,
functional linear regression and non-parametric instrumental regression, which lead naturally
to statistical ill-posed inverse problems with noise in the operator.

APPLICATIONS

Density deconvolution with unknown error distribution. The biologist who is interested in the
density fX of a gene-expression intensity X , can record in a cDNA microarray the expressed
gene intensityX only corrupted by the intensity of a background noise U , that is Y = X+U . If
the additive measurement error U is independent ofX then the density fY = fX?fU of Y equals
the convolution of fX and the error density fU . Consequently, recovering fX from the estimated
density fY = CfUfX of Y is an inverse problem where CfU is the convolution operator defined
by the error density fU . In this situation, the density fX of the random variable X has to be
estimated non-parametrically based on an iid. sample from a noisy observation Y ofX which is
called a density deconvolution problem. There is a vast literature on deconvolution with known
error density which leads to a statistical ill-posed inverse problem with known operator. On
the other hand, if the error density fU is estimated from an additional calibration sample of the
error U then the deconvolution problem corresponds to a statistical ill-posed inverse problem
with noise in the operator.

Functional linear regression. In climatology, prediction of level of ozone pollution based on
continuous measurements of pollutant indicators is often modelled by a functional linear model.
In this context a scalar response Y (i.e. the ozone concentration) is modelled in dependence of
a random function X (i.e. the daily concentration curve of a pollutant indicator). Typically
the dependence is assumed to be linear which finds its expression in a linear normal equation
cYX = ΓXXβ where cYX is the cross-correlation between Y and X , and ΓXX is the covariance
operator associated to the indicator X . Note that both the cross-correlation function cYX and
the covariance operator ΓXX need to be estimated in practice. Consequently, the non-parametric
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estimation of the functional slope parameter β based on an iid. sample from (Y,X) leads to a
statistical ill-posed inverse problem with noise in the operator.

Non-parametric instrumental regression. An econometrician who wants to analyse an eco-
nomic relation between a response Y and an endogenous vector X of explanatory variables,
might incorporate a vector of exogenous instruments Z. This situation is usually treated by
considering a conditional moment equation rY |Z = KX|Z ϕ where rY |Z = EY |Z is the condi-
tional expectation function of Y given Z and KX|Z is the conditional expectation operator of
X given Z. As these are unknown in practice, inference on ϕ based on an iid. sample from
(Y,X,Z) is a statistical ill-posed inverse problem with noise in the operator.

STATISTICAL ILL-POSED INVERSE PROBLEMS

We study non-parametric estimation of the functional parameter of interest f in an inverse
problem, that is, its reconstruction based on an estimation of a linear transformation g = Tf . It
is important to note that in all the applications discussed above both the signal g and the inherent
transformation T are unknown in practice, although they can be estimated from the data. The
estimated signal ĝε and operator T̂σ respectively given by

ĝε = Tf +
√
ε Ẇ and T̂σ = T +

√
σ Ḃ. (1.1)

are noisy versions of g and T contaminated by additive random errors Ẇ and Ḃ with respective
noise levels ε and σ. Consequently, a statistical inference on the functional parameter of interest
f has to take into account that a random noise is present in both the estimated signal Ẇ and the
estimated operator Ḃ.

Gaussian inverse regression with noise in the operator. A particularly interesting situation
is given by model (1.1) where the random error Ẇ and Ḃ are independent Gaussian white
noises. This model is particularly useful to characterise the influence of an a priori knowledge
of the operator T . To this end we will compare three cases: First, the operator T is fully known
in advance, i.e., the noise level σ is equal to zero. Second, it is partially known, that is, the
eigenfunctions of T are known in advance but the “observed” eigenvalues of T are contaminated
with an additive Gaussian error. Third, the operator T is unknown.

MINIMAX-OPTIMAL ESTIMATION

Typical questions in this context are the non-parametric estimation of the functional param-
eter f on an interval or in a given point, referred to as global or local estimation, respectively.
However, these are special cases in a general framework where the accuracy of an estimator f̂
of f given the estimations (1.1) is measured by a distance dist(f̂ , f). A suitable choice of the
distance covers than the global as well as the local estimation problem. Moreover, denoting by
Pε,σf,T |dist(f̂ , f)|2 (or Eε,σ

f,T |dist(f̂ , f)|2) its expectation w.r.t. the probability measure Pε,σf,T associated
with the observable quantities (1.1) we call the quantity Pε,σf,T |dist(f̂ , f)|2 risk of the estimator f̂
of f . It is well-known that in terms of its risk the attainable accuracy of an estimation procedure
is essentially determined by the conditions imposed on f and the operator T . Typically, these
conditions are expressed in the form f ∈ F and T ∈ T for suitable chosen classes F and
T . The class F reflects prior information on the solution f , e.g., its level of smoothness, and
the class T imposes among others conditions on the decay of the eigenvalues of the operator T .
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Chapter 1 Introduction

Consequently, let us introduce the associated family of probability measures Pε,σF,T . The accuracy
of f̂ is hence measured by its maximal risk over the classes F and T , that is,

Rd

[
f̂ |Pε,σF,T

]
:= sup

{
Pε,σf,T |dist(f̂ , f)|2,Pε,σf,T ∈ Pε,σF,T

}
.

Moreover, f̂ is called minimax-optimal up to a finite positive constant C if Rd

[
f̂ |Pε,σF,T

]
6

C inf f̃ Rd

[
f̃ |Pε,σF,T

]
where the infimum is taken over all possible estimators of f . Consequently,

minimax-optimality of an estimator f̂ based on observations (1.1) is usually shown by estab-
lishing both an upper and a lower bound. More precisely, we search a finite positive quantity
Rε,n

d depending only on the noise levels and the classes such that

Rd

[
f̂ |Pε,σF,T

]
6 C1Rε,σ

d and Rε,σ

d 6 C2 inf f̃ Rd

[
f̃ |Pε,σF,T

]
where C1, C2 are finite positive constants independent of the noise levels. Moreover, the quan-
tityRε,σ

d is called the minimax-optimal rate of convergence over the family PF,T := {Pε,σF,T , ε, σ ∈
(0, 1)} if it tends to zero as ε and σ tend to zero.

ADAPTIVE ESTIMATION

In many cases the proposed estimation procedures rely on the choice of at least one tuning pa-
rameter, which in turn, crucially influences the attainable accuracy of the constructed estimator.
In other words, these estimation procedures can attain the minimax rate Rε,n

d over the family
PF,T only if the inherent tuning parameters are chosen optimally. This optimal choice, how-
ever, follows often from a classical squared-bias-variance compromise and requires a a priori
knowledge about the classes F and T , which is usually inaccessible in practice. This motivates
its data-driven choice in the context of non-parametric statistics since its very beginning in the
fifties of the last century. A demanding challenge is then a fully data driven method to select
the tuning parameters in such a way that the resulting data-driven estimator of f still attains
the minimax-rate up to a constant over a variety of classes F and T . The fully data driven
estimation procedure is then called adaptive.
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Chapter 2

Theoretical basics and terminologies

2.1 Hilbert space

For a detailed and extensive survey on functional analysis we refer the reader, for example,
to Werner [2011] or the series of textbooks by Dunford and Schwartz [1988a,b,c].

§2.1.1 Definition. A normed vector space (H, ‖·‖H) over K ∈ {R,C} that is complete (in a
Cauchy-sense) is called a (real or complex) Hilbert space if there exists an inner product 〈·, ·〉H
on H×H with |〈h, h〉H|1/2 = ‖h‖H for all h ∈ H.

§2.1.2 Property. Let (H, ‖·‖1) and (H, ‖·‖2) be complete normed vector spaces. If there exists
a constantK > 0 such that ‖h‖1 6 K ‖h‖2 for any h ∈ H then, ‖·‖1 and ‖·‖2 are equivalent.

§2.1.3 Property.
(Cauchy-Schwarz inequality) |〈h1, h2〉H| 6 ‖h1‖H · ‖h2‖H for all h1, h2 ∈ H.

§2.1.4 Examples.
(i) For k ∈ N the Euclidean space Kk endowed with the Euclidean inner product 〈x, y〉 := ytx

and the induced Euclidean norm ‖x‖ = (xtx)1/2 for all x, y ∈ Kk is a Hilbert space. More
generally, given a strictly positive definite (k×k)-matrixW , Kk endowed with the weighted
inner product 〈x, y〉W := ytWx for all x, y ∈ Kk is also a Hilbert space.

(ii) Given J ⊆ Z, denote by KJ the vector space of all K-valued sequences over J where
we refer to any sequence (xj)j∈J ∈ KJ as a whole by omitting its index as for example
in «the sequence x» and arithmetic operations on sequences are defined element-wise, i.e.,
xy := (xjyj)j∈J . In the sequel, let ‖x‖`p := (

∑
j∈J |xj|p)1/p, for p ∈ [1,∞), and ‖x‖`∞ :=

supj∈J |xj|. Thereby, for p ∈ [1,∞], consider `p(J ) :=
{

(xj)j∈J ∈ KJ , ‖x‖`p <∞
}

, or

`p for short, endowed with the norm ‖·‖`p . In particular, `2(J ) is the usual Hilbert space of
square summable sequences overJ endowed with the inner product 〈x, y〉`2 :=

∑
j∈J xjyj

for all x, y ∈ `2(J ).

(iii) For a strictly positive sequence v consider the weighted norm ‖x‖2
v :=

∑
j∈J v2

j |xj|2. We
define `2

v(J ), or `2
v for short, as the completion of `2(J ) w.r.t. ‖·‖v which is a Hilbert space

endowed with the inner product 〈x, y〉v := 〈vx, vy〉`2 =
∑

j∈J v2
jxjyj for all x, y ∈ `v.

(iv) Let B be the Borel-σ-algebra on K. Given a measure space (Ω,A , µ) denote by KΩ the
vector space of all K-valued functions f : Ω → K. Recall that ‖f‖Lpµ = (µ|f |p)1/p =( ∫

Ω
|f(ω)|pµ(dω)

)1/p, for p ∈ [1,∞), and ‖f‖L∞µ := inf{c : µ(|f | > c) = 0}, where
for p ∈ [1,∞], we write Lp(Ω,A , µ) := {f ∈ KΩ,A -B-measurable , ‖f‖Lp < ∞},
Lpµ(Ω) or Lpµ for short, which is endowed with the norm ‖·‖Lpµ for short. In case µ is the
Lebesgue measure, then we may write Lp(Ω,A ), Lp(Ω), Lp and ‖·‖Lp for short. Moreover,
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Chapter 2 Theoretical basics and terminologies 2.1 Hilbert space

L2(Ω,A , µ), L2
µ(Ω) or L2

µ for short, is the usual Hilbert space of square µ-integrable, A -
B-measurable functions on Ω endowed with the inner product 〈f, g〉L2

µ
:= µ(fg) for all

f, g ∈ L2
µ.

(v) Let X be a random variable (r.v.) on a probability space (Ω,A ,P) taking its values in a
measurable space (X ,B). We denote by PX := P ◦X−1 the image probability measure of
P under X on (X ,B). For p ∈ [1,∞] we set LpX := Lp(X ,B,PX) where L2

X is a Hilbert
space endowed with 〈f, g〉L2

X
= PX(fg) for all f, g ∈ L2

X .

§2.1.5 Definition. A subset U of a Hilbert space (H, 〈·, ·〉H) is called orthogonal if

∀u1, u2 ∈ U , u1 6= u2 : 〈u1, u2〉H = 0

and orthonormal system (ONS) if in addition ‖u‖H = 1, ∀u ∈ U . We say U is an orthonormal
basis (ONB) if U ⊂ U ′ and U ′ is ONS, then U = U ′, i.e., if it is a complete ONS.

§2.1.6 Examples.
(i) Consider the real Hilbert space L2([0, 1]) w.r.t. the Lebesgue measure. The trigonometric

basis {ψj, j ∈ N} given for t ∈ [0, 1] by

ψ1(t) := 1, ψ2k(t) :=
√

2 cos(2πkt), ψ2k+1(t) :=
√

2 sin(2πkt), k = 1, 2, . . . ,

is orthonormal and complete, i.e. an ONB.

(ii) Consider the complex Hilbert space L2([0, 1)), then the exponential basis {ej, j ∈ Z} with

ej(t) := exp(−ι2πjt) for t ∈ [0, 1) and j ∈ Z,

is orthonormal and complete, i.e. an ONB.

§2.1.7 Properties.
(Pythagorean formula) If h1, . . . , hn ∈ H are orthogonal, then ‖

∑n
j=1 hj‖2

H =
∑n

j=1 ‖hj‖
2
H.

(Bessel’s inequality) If U ⊂ H is an ONS, then ‖h‖2
H >

∑
u∈U |〈h, u〉H|2 for all h ∈ H.

(Parseval’s formula) An ONS U ⊂ H is complete if and only if ‖h‖2
H =

∑
u∈U |〈h, u〉H|2 for

all h ∈ H.

§2.1.8 Definition. Let U be a subset of a Hilbert space (H, 〈·, ·〉H). Denote by U := lin(U) the
closure of the linear subspace spanned by the elements of U and its orthogonal complement in
(H, 〈·, ·〉H) by U⊥ :=

{
h ∈ H : 〈h, u〉H = 0,∀u ∈ lin(U)

}
where H = U⊕ U⊥.

§2.1.9 Remark. If U ⊂ H is an ONS, then there exists an ONS V ⊂ H such that H =
lin(U)⊕ lin(V) and for all h ∈ H it holds h =

∑
u∈U〈h, u〉Hu+

∑
v∈V〈h, v〉Hv (in a H-sense).

In particular, if U is an ONB then h =
∑

u∈U〈h, u〉Hu for all h ∈ H.

§2.1.10 Definition. Given J ⊂ Z, a sequence (uj)j∈J in H is said to be orthonormal and
complete (i.e. orthonormal basis) if the subset U = {uj, j ∈ J } is a complete ONS (i.e. ONB).
The Hilbert space H is called separable, if there exists a complete orthonormal sequence.

§2.1.11 Examples. The Hilbert space (Rk, 〈·, ·〉M), (`2
v, 〈·, ·〉`2v) and (L2

µ(Ω), 〈·, ·〉L2
µ
) with σ-

finite measure µ are separable. On the contrary, given λ ∈ R define the function fλ : R → C

6 Statistics of inverse problems



2.1 Hilbert space Chapter 2 Theoretical basics and terminologies

with fλ(x) := eιλx and setH = lin {fλ, λ ∈ R}. Observe that 〈f, g〉 = limt→∞
1
2t

∫ t
−t f(s)g(s)ds

defines an inner product on H. The completion of H w.r.t. the induced norm ‖f‖ = |〈f, f〉|1/2
is a Hilbert space which is not separable, since ‖fλ − fλ′‖ =

√
2 for all λ 6= λ′.

§2.1.12 Definition. Given J ⊆ Z we call a (possibly finite) sequence (Jm)m∈M,M ⊆ N, a
nested sieve in J , if (i) Jk ⊂ Jm, for any k 6 m, k,m ∈ M, (ii) |Jm| < ∞, m ∈ M, and
(iii) ∪m∈MJm = J . We write J c

m := J \Jm, m ∈ M. Denoting Ja, bK := [a, b] ∩ Z we use
typically the nested sieve (J1,mK)m∈N and (J−m,mK)m∈N in J = N and J = Z, respectively.
Analogously, given an ONS U = {uj, j ∈ J } and setting Um := lin {uj, j ∈ Jm}, m ∈ M,
for a nested sieve (Jm)m∈M in J we call the (possibly finite) sequence (Um)m∈M a nested
sieve in U := lin {uj, j ∈ J }. We write U⊥m := lin {uj, j ∈ J c

m} where U = Um ⊕ U⊥m. For
convenient notations we set further 1Jm := (1Jm(j))j∈J with 1Jm(j) = 1 if j ∈ Jm and
1Jm(j) = 0 otherwise, and analogously 1J cm := (1J cm(j))j∈J .

§2.1.13 Definition. We call an ONS U = {uj, j ∈ J } in L2
µ (respectively, in `2)

(i) regular w.r.t. a nested sieve (Jm)m∈M in J and a weight sequence v if there is a finite
constant τuv > 1 satisfying ‖

∑
j∈Jm v2

j |uj|2‖L∞µ 6 τ 2
uv

∑
j∈Jm v2

j for all m ∈M;

(ii) regular w.r.t. a weight sequence a if there exists a finite constant τua > 1 such that
‖
∑

j∈J a2
j |uj|2‖L∞µ 6 τ 2

ua.

§2.1.14 Remark. According to Lemma 6 of Birgé and Massart [1997] assuming in L2 a regular
ONS {uj, j ∈ N} w.r.t. the nested sieve (J1,mK)m∈N and v ≡ 1 is exactly equivalent to follow-
ing property: there exists a finite constant τu > 1 such that for any h belonging to the subspace
Um, spanned by the first m functions {uj}mj=1, holds ‖h‖L∞ 6 τu

√
m ‖h‖L2 . Typical example

are bounded basis, such as the trigonometric basis, or basis satisfying the assertion, that there ex-
ists a positive constantC∞ such that for any (c1, . . . , cm) ∈ Rm, ‖

∑m
j=1 cjuj‖L∞ 6 C∞

√
m|c|∞

where |c|∞ = max16j6m cj . Birgé and Massart [1997] have shown that the last property is sat-
isfied for piece-wise polynomials, splines and wavelets.

§2.1.15 Example (§2.1.6 (i) continued). Consider the trigonometric basis {ψj, j ∈ N} in the
real Hilbert space L2([0, 1]). Since supj∈N ‖ψj‖L∞ 6

√
2 setting τ 2

ψv := 2 the trigonometric
basis is regular w.r.t. any nested Sieve (Jm)m∈M and sequence v, i.e., §2.1.13 (i) holds with
‖
∑

j∈Jm v2
j |ψj|2‖L∞ 6 τ 2

ψv

∑
j∈Jm v2

j . In the particular case of the nested sieve (J1, 1 + 2mK)m∈N
and v ≡ 1, we have

∑1+2m
j=1 |ψj|2 = 1[0,1] +

∑m
j=1{2 sin2(2πj•) + 2 cos2(2πj•)} = 1 + 2m

and thus, the trigonometric basis is regular with τ 2
ψ := 1. Moreover, the trigonometric basis is

regular w.r.t. any square-summable weight sequence a, i.e., ‖a‖`2 <∞. Indeed, in this situation
we have ‖

∑
j∈N a

2
j |ψj|2‖`∞ 6 2 ‖a‖2

`2 and hence §2.1.13 holds with τ 2
ψa = 2 ‖a‖2

`2 .

2.1.1 Abstract smoothness condition

§2.1.16 Notations. Let U = {uj, j ∈ J } be an ONS with U = lin {uj, j ∈ J } ⊆ H. For
any h ∈ H consider its associated sequence of generalised Fourier coefficients [h] := ([h]j)j∈J
with generic elements [h]j = 〈h, uj〉H, j ∈ J . Given a strictly positive sequence of weights
v = (vj)j∈J for h, g ∈ H we define 〈h, g〉2v := 〈v[h], v[g]〉`2 =

∑
j∈J v2

j [h]j[g]j and ‖h‖2
v :=∑

j∈J v2
j |[h]j|2. Obviously, 〈·, ·〉v and ‖·‖v restricted on U defines on U a (weighted) inner

product and its induced (weighted) norm, respectively. We denote by Uv the completion of U

Statistics of inverse problems 7



Chapter 2 Theoretical basics and terminologies 2.2 Linear operator between Hilbert spaces

w.r.t. ‖·‖v. If (uj)j∈J is complete in H then let Hv be the completion of H w.r.t. ‖·‖v.

§2.1.17 Example (§2.1.15 continued). Consider the real Hilbert space L2([0, 1]) and the trigono-
metric basis {ψj, j ∈ N}. Define further a weighted norm ‖·‖v w.r.t. the trigonometric basis,
that is, ‖h‖v :=

∑
j∈N v

2
j |〈h, ψj〉L2|2. Denote by L2

v([0, 1]) or L2
v for short, the completion of

L2([0, 1]) w.r.t. ‖·‖v.
(P) If we set v1 = 1, v2k = v2k+1 = jp, p ∈ N, k ∈ N, then L2

v([0, 1]) is a subset of the
Sobolev space of p-times differentiable periodic functions. Moreover, up to a constant, for
any function h ∈ L2

v([0, 1]), the weighted norm ‖h‖2
v equals the L2-norm of its p-th weak

derivative h(p) (Tsybakov [2009]).

(E) If, on the contrary, vj = exp(−1 + j2p), p > 1/2, j ∈ N, then L2
v([0, 1]) is a class of

analytic functions (Kawata [1972]).
Note that, the trigonometric basis is regular w.r.t. the weight sequence 1/v = v−1 = (v−1

j ) as in
§2.1.13 (ii), i.e., ‖1/v‖`2 <∞, in case (P) whenever p > 1/2 and in case (E) if p > 0.

§2.1.18 Definition (Abstract smoothness condition). Given a strictly positive sequence of weights
a = (aj)j∈J and an ONS U = {uj, j ∈ J } in H consider the associated weighted norm ‖·‖1/a

and the completion U1/a of U. Let r > 0 be a constant. We assume in the following that the
function of interest f belongs to the ellipsoid Fra := {h ∈ U1/a : ‖h‖2

1/a 6 r2} and hence,
ΠU⊥f = 0.

§2.1.19 Lemma. Let Fra be a class of functions w.r.t. an ONS U = {uj, j ∈ J } in L2
µ (or

analogously in `2) as given in §2.1.18. If the ONS is regular w.r.t. the weight sequence a as in
§2.1.13 (ii) for some finite constant τua > 1, then for each f ∈ Fra holds ‖f‖L∞µ 6 τua ‖f‖1/a 6
rτua.

Proof of Lemma §2.1.19 is given in the lecture.

§2.1.20 Examples (§2.1.17 continued). Consider inL2
v([0, 1]) the trigonometric basis {ψj, j ∈ N}

and a weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E) with p > 0.
In both cases setting τ 2

ψv = 2 ‖1/v‖2
`2 < ∞ the trigonometric basis is regular w.r.t. the weight

sequence 1/v. Consequently, setting a = 1/v and Fra = {h ∈ L2
v([0, 1]) : ‖h‖2

v 6 r2}, from
Lemma §2.1.19 follows ‖f‖2

L∞ 6 2 ‖f‖2
v ‖1/v‖

2
`2 for all f ∈ Fra.

2.2 Linear operator between Hilbert spaces

§2.2.1 Definition. A map T : H→ G between Hilbert spaces H and G is called linear operator
if T (ah1 + bh2) = aTh1 + bTh2 for all h1, h2 ∈ H, a, b ∈ K. Its domain will be denoted by
D(T ), its range byR(T ) and its null space by N (T ).

§2.2.2 Property. Let T : H → G be a linear operator, then the following assertions are
equivalent: (i) T is continuous in zero. (ii) T is bounded, i.e., there is M > 0 such that
‖Th‖G 6M ‖h‖H for all h ∈ H. (iii) T is uniformly continuous.

§2.2.3 Definition. The class of all bounded linear operators T : H → G is denoted by
L (H,G), or L and in case of H = G, L (H) for short. For T ∈ L (H,G) define its (uniform)
norm as ‖T‖L := ‖T‖L (H,G) := sup{‖Th‖G : ‖h‖H 6 1, h ∈ H}.
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2.2 Linear operator between Hilbert spaces Chapter 2 Theoretical basics and terminologies

§2.2.4 Examples.
(i) Let M be a (m× k) matrix, then M ∈ L (Rk,Rm). We write ‖M‖s := ‖M‖L (Rk,Rm) for

short. (spectral norm)

(ii) For finite (i.e., |J | < ∞) sequences (h)j∈J in H and (g)j∈J in G the linear operator∑
j∈J hj⊗ gj defined by f 7→

[∑
j∈J hj⊗ gj

]
f :=

∑
j∈J 〈f, hj〉H gj belongs to L (H,G)

with ‖
∑

j∈J hj ⊗ gj‖L 6
∑

j∈J ‖hj‖H ‖gj‖G. Moreover, it has a finite range contained in
lin({gj, j ∈ J }).

(iii) Let U = {uj, j ∈ J } be an ONS in H and for any f ∈ H consider its sequence of gen-
eralised Fourier coefficients [f ] := ([f ]j)j∈J given by [f ]j := 〈f, uj〉H, j ∈ J . The
associated (generalised) Fourier series transform U defined by f 7→ Uf := [f ] belongs to
L (H, `2(J )) with ‖U‖L = 1.

(iv) For a sequence λ = (λj)j∈J consider the multiplication operator Mλ : KJ → KJ
given by x 7→ Mλx := (λjxj)j∈J . For any bounded sequence λ, i.e, ‖λ‖`∞ < ∞,
we have ‖Mλ‖L (`p) 6 ‖λ‖`∞ and hence, Mλ ∈ L (`p) for any p ∈ [1,∞]. Analo-
gously, given a function λ : Ω → K the multiplication operator Mλ : KΩ → KΩ

is defined as f 7→ Mλf := fλ where for any bounded (measurable) function λ, i.e,
‖λ‖L∞µ < ∞, holds ‖Mλ‖L (Lpµ) 6 ‖λ‖L∞µ < ∞ and, hence Mλ ∈ L (Lpµ). On the other
hand side, if λ is real-valued (measurable), µ-a.s. finite and non zero, then the subset
D(Mλ) :=

{
f ∈ L2

µ : λf ∈ L2
µ

}
is dense in L2

µ. In this situation the multiplication opera-
tor Mλ : L2

µ ⊃ D(Mλ)→ L2
µ is densely defined (and self-adjoint).

(v) Given a (generalised) Fourier series transform U ∈ L (H, `2) as in (iii) and a multiplication
operator Mλ ∈ L (`2) for some bounded sequence λ = (λj)j∈J as in (iv) the linear operator
∇λ : H → H given by N (U) = N (∇λ) and U∇λ = MλU , i.e. U∇λh = MλUh =
(λj[h]j)j∈J belongs to L (H) with ‖∇λ‖L 6 ‖λ‖`∞ < ∞. We call ∇λ diagonal w.r.t. U
(or U).

(vi) The integral operator Tk : L2
µ1

(Ω1)→ L2
µ2

(Ω2) with kernel k : Ω1 × Ω2 → K defined by

[Tkf ](ω2) :=

∫
Ω1

h(ω1)k(ω1, ω2)µ(dω1), ω2 ∈ Ω2, h ∈ L2
µ1

(Ω1),

belongs to L (L2
µ1

(Ω1), L2
µ2

(Ω2)) if ‖k‖2
L2 =

∫
Ω1

∫
Ω2
|k|2dµ1dµ2 <∞.

(vii) Let X ∈ L1(Ω,A ,P) and F ⊂ A be a sub-σ-algebra. There exists Y ∈ L1(Ω,F ,P)
such that E(X1F ) = E(Y 1F ) for all F ∈ F , moreover, Y is unique up to equality P-a.s..
Each version Y is called conditional expectation of X given F , symbolically, E[X|F ] :=
Y . For each p ∈ [1,∞] the linear map E[•|F ] : Lp(Ω,A ,P) → Lp(Ω,F ,P) ⊆
Lp(Ω,A ,P) given by X 7→ E[X|F ] is a contraction, that is ‖E[X|F ]‖Lp 6 ‖X‖Lp
and thus E[•|F ] belongs to L (Lp(Ω,A ,P)) with ‖E[•|F ]‖L = 1 (keep in mind that
E[1|F ] = 1). Given a r.v. Z on (Ω,A ,P) and the σ-algebra σ(Z) generated by Z we set
E[X|Z] := E[X|σ(Z)]. The conditional expectation operator of X given Z defined by
KX|Zh := E[h(X)|Z] for h ∈ L1

X is then an element of L (LpX , L
p
Z) with ‖KX|Z‖L = 1.

(viii) Let g ∈ L1(R) ∩ L2(R), then the convolution operator Cg : L2(R)→ L2(R) defined by

[Cgh](t) := [g ∗ h](t) :=

∫
R
g(t− s)h(s)ds, t ∈ R, h ∈ L2(R),

belongs to L (L2(R)) with ‖Cg‖L 6 ‖g‖L1 :=
∫
R |g(t)|dt.
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(ix) Let g ∈ L2([0, 1)), hence, g ∈ L1([0, 1)), and let b·c be the floor function, then the circular
convolution operator Cg : L2([0, 1))→ L2([0, 1)) defined by

[Cgh](t) := [g ~ h](t) :=

∫
[0,1)

g(t− s− bt− sc)h(s)ds, t ∈ [0, 1), h ∈ L([0, 1)),

belongs to L (L2([0, 1))) with ‖Cg‖L 6 ‖g‖L1 :=
∫ 1

0
|g(t)|dt.

§2.2.5 Definition. A (linear) map Φ : H ⊃ D(Φ) → K is called (linear) functional and given
an ONS {uj, j ∈ J } in H which belongs to D(Φ) we set [Φ] = ([Φ]

j
)j∈J with the slight abuse

of notations [Φ]
j

:= Φ(uj). In particular, if Φ ∈ L (H,K) then D(Φ) = H.

§2.2.6 Property. Let Φ ∈ L (H,K).

(Fréchet-Riesz representation) There exists a function φ ∈ H such that Φ(h) = 〈φ, h〉H for
all h ∈ H, and hence, given an ONS {uj, j ∈ J } in H we have [Φ]

j
= [φ]j for all j ∈ J .

§2.2.7 Example. Consider an ONB U = {uj, j ∈ J } in L2(Ω) (or analogously in `2(J )).
By evaluation at a point to ∈ Ω we mean the linear functional Φto mapping h ∈ L2(Ω) to
h(to) := Φto(h) =

∑
j∈J [h]juj(to). Obviously, a point evaluation of h at to is well-defined, if∑

j∈J |[h]juj(to)| <∞. Observe that the point evaluation at to is generally not bounded on the
subset {h ∈ L2(Ω) :

∑
j∈J |[h]juj(to)| <∞}.

§2.2.8 Definition (Regular linear functionals). Consider an ONS U = {uj, j ∈ J } in H which
belongs to the domain D(Φ) of a linear functional Φ. In order to guarantee that U1/a and
hence the class Fra of functions of interest as in §2.1.18 are contained in D(Φ) and that Φ(f) =∑

j∈J [Φ]
j
[f]j holds for all f ∈ Fra, it is sufficient that ‖[Φ]‖2

`2a
=
∑

j∈J |[Φ]
j
|2a2

j <∞. Indeed,
|Φ(f)|2 6 ‖f‖2

1/a ‖[Φ]‖2
`2a

for any f ∈ U1/a and hence Φ ∈ L (U1/a,K) with ‖Φ‖L 6 ‖[Φ]‖`2a .
We denote by La the set of all linear functionals with ‖[Φ]‖2

`2a
<∞.

§2.2.9 Remark. We may emphasise that we neither impose that the sequence [Φ] = ([Φ]
j
)j∈J

tends to zero nor that it is square summable. The assumption Φ ∈ La, however, enables us in
specific cases to deal with more demanding functionals, such as in Example §2.2.7 above the
evaluation at a given point.

§2.2.10 Example (§2.2.7 continued). Consider an ONB U = {uj, j ∈ J } in L2(Ω) and the
evaluation at a point to ∈ Ω given by Φto(h) =

∑
j∈J [h]juj(to). Let L2

1/a(Ω) be the completion
of L2(Ω) w.r.t. a weighted norm ‖·‖1/a derived from U and a strictly positive sequence a. Since
|Φto(h)|2 6 ‖h‖2

1/a

∑
j∈J a2

j |uj(to)|2 the point evaluation in to is bounded on L2
1/a(Ω) and,

thus, belongs to L (L2
1/a(Ω),K), if

∑
j∈J a2

j |uj(to)|2 < ∞. Consequently, if the ONS U is
regular w.r.t. the weight sequence a, i.e., §2.1.13 (ii) holds for some finite constant τua > 1,
then ‖Φto‖L (L2

1/a
(Ω),K) 6 τua uniformly for any to ∈ Ω. Revisiting the particular situation of

Example §2.1.17 and its continuation in §2.1.20, that is, L2
v([0, 1]) w.r.t. the trigonometric basis

{ψj, j ∈ N} and weight sequence v satisfying either §2.1.17 (P) with p > 1/2 or §2.1.17 (E)
with p > 0, recall that the trigonometric basis is regular w.r.t. a = 1/v and hence, the point
evaluation Φto belongs to L (L2

v([0, 1]),R), i.e., ‖Φto‖L 6
√

2 ‖1/v‖`2 for each to ∈ [0, 1].

§2.2.11 Definition. If T ∈ L (H,G), then there exists a uniquely determined adjoint operator
T ? ∈ L (G,H) satisfying 〈Th, g〉G = 〈h, T ?g〉H for all h ∈ H, g ∈ G.
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§2.2.12 Properties. Let S, T ∈ L (H1,H2) and R ∈ L (H2,H3). Then we have
(i) (S + T )? = S? + T ?, (RS)? = S?R?.

(ii) ‖S?‖L = ‖S‖L , ‖SS?‖L = ‖S?S‖L = ‖S‖2
L .

(iii) N (S) = R(S?)⊥, N (S?) = R(S)⊥, H1 = N (S) ⊕ R(S?) and H2 = N (S?) ⊕ R(S)
whereR(S) (respectively,R(S?)) denotes the closure of the range of S. In particular, S is
injective if and only ifR(S?) is dense in H.

(iv) N (S?S) = N (S) and N (SS?) = N (S?).

§2.2.13 Examples (§2.2.4 continued).
(i) The adjoint of a (k ×m) matrix M is its (m× k) transpose matrix M t.

(ii) The adjointU? ∈ L (`2(J ),H) of the (generalised) Fourier series transformU ∈ L (H, `2(J ))
satisfies x 7→ U?x :=

∑
j∈J xjuj for x ∈ `2(J ).

(iii) For finite J the adjoint operator in L (G,H) of
∑

j∈J hj ⊗ gj ∈ L (H,G) satisfies
[
∑

j∈J hj ⊗ gj]?g =
∑

j∈J 〈g, gj〉Ghj = [
∑

j∈J gj ⊗ hj]g.

(iv) Let Mλ ∈ L (L2
µ(Ω)) (or analogously Mλ ∈ L (`2)) be a multiplication operator, then its

adjoint operator M?
λ = Mλ? is a multiplication operator with λ?(t) = λ(t), t ∈ Ω.

(v) Let Tk ∈ L (L2
µ1

(Ω1), L2
µ2

(Ω2)) be an integral operator with kernel k, then its adjoint
T ?k = Tk? ∈ L (L2

µ2
(Ω2), L2

µ1
(Ω1)) is again an integral operator satisfying

[Tk?g](ω1) :=

∫
Ω2

g(ω2)k?(ω2, ω1)µ2(dω2), ω1 ∈ Ω1, g ∈ L2
µ2

(Ω2),

with kernel k?(ω2, ω1) := k(ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2.

(vi) Let KX|Z ∈ L (L2
X , L

2
Z) be the conditional expectation of X given Z, then its adjoint op-

erator K?
X|Z = KZ|X ∈ L (L2

Z , L
2
X) is the conditional expectation of Z given X satisfying

KZ|Xg = E[g(Z)|X] for all g ∈ L2
Z .

(vii) Let Cg ∈ L (L2(R)) be the convolution operator, then its adjoint operator C?
g = Cg? is a

convolution operator, i.e, Cg?h = g? ∗ h, with g?(t) = g(−t), t ∈ R.

§2.2.14 Definition.
(i) The identity in L (H) is denoted by IdH.

(ii) Let T ∈ L (H,G). Obviously, T : N (T )⊥ → R(T ) is bijective and continuous whereas its
inverse T−1 : R(T )→ N (T )⊥ is continuous (i.e. bounded) if and only if R(T ) is closed.
In particular, if T : H → G is bijective (invertible) then its inverse T−1 ∈ L (G,H)
satisfies IdG = TT−1 and IdH = T−1T .

(iii) U ∈ L (H,G) is called unitary, if U is invertible with UU? = IdG and U?U = IdH.

(iv) V ∈ L (H,G) is called partial isometry, if V : N (V )⊥ → R(V ) is unitary.

(v) T ∈ L (H) is called self-adjoint, if T = T ?, i.e., 〈Th, g〉H = 〈h, T ?g〉H for all h, g ∈ H.

(vi) T ∈ L (H) is called normal, if TT ? = T ?T , i.e., 〈Th, Tg〉H = 〈T ?h, T ?g〉H for all
h, g ∈ H.

(vii) A self-adjoint T ∈ L (H) is called non-negative or T > 0 for short, if 〈Th, h〉H > 0 for
all h ∈ H and strictly positive or T > 0 for short, if 〈Th, h〉H > 0 for all h ∈ H\{0}.
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(viii) Π ∈ L (H) is called projection if Π2 = Π. For Π 6= 0 are equivalent: (a) Π is an
orthogonal projection (H = R(Π)⊕N (Π)); (b) ‖Π‖L = 1; (c) Π is non-negative.

§2.2.15 Property. Let T ∈ L (H). If T is invertible, then it is T ?, where (T−1)? = (T ?)−1.
Moreover, if T is normal, then ‖T‖L = sup{|〈Th, h〉H| : ‖h‖H 6 1, h ∈ H}.

(Neumann series) If ‖T‖L < 1, then ‖(IdH−T )−1‖L 6 (1− ‖T‖L )−1.

§2.2.16 Examples (§2.2.4 continued).
(i) The (generalised) Fourier series transform U is a partial isometry with adjoint operator

U?x =
∑

j∈J xjuj for x ∈ `2(J ). Moreover, the orthogonal projection ΠU onto U satisfies
ΠUf = U?Uf =

∑
j∈J [f ]juj for all f ∈ H. If U = {uj, j ∈ J } is complete (i.e. ONB),

then U is invertible with UU? = Id`2 and U?U = IdH due to Parseval’s formula, and hence
U is unitary.

(ii) Let F ∈ L (L2(R)) denote the Fourier-Plancherel transform satisfying

[Fh](t) =

∫
R
h(x)e−ι2πxtdx, ∀h ∈ L1(R) ∩ L2(R).

Then F is unitary with [F?h](t) =
∫
h(x)eι2πxtdx for all h ∈ L1(R) ∩ L2(R). We note

further for all h ∈ L1 that ‖Fh‖L∞ 6 ‖h‖L1 , and thatFh is continuous and tends to zero in
infinity. Keeping in mind the convolution defined in Examples §2.2.4 (viii) the convolution
theorem states F (f ∗ g) = Ff ·Fg for any f, g ∈ L1(R).

(iii) A multiplication operator Mλ ∈ L (L2
µ) is normal. If λ is in addition real, it is self-adjoint

and if λ is non-negative, then it is non-negative.

(iv) A diagonal operator ∇λ ∈ L (H) w.r.t. a partial isometry U ∈ L (H, `2) satisfies ∇λ =
U?MλU and it shares the properties of the multiplication operator Mλ ∈ L (`2).

(v) A conditional expectation operator KZ|X ∈ L (L2
X , L

2
Z) is an orthogonal projection.

(vi) A convolution operator Cg ∈ L (L2(R)) is normal and if g is in addition a real and even
(g(−t) = g(t)) function, then it is self-adjoint.

(vii) A circular convolution operator Cg ∈ L (L2([0, 1))) is normal and if g is in addition a
real and even (g(t) = g(1− t)) function, then it is self-adjoint.

2.2.1 Compact, nuclear and Hilbert-Schmidt operator

§2.2.17 Definition. An operator K ∈ L (H,G) is called compact, if {Kh : ‖h‖H 6 1, h ∈ H}
is relatively compact in G. We denote by K (H,G) the subset of all compact operator in
L (H,G), and we write K (H) = K (H,H) for short.

§2.2.18 Properties. Let K ∈ L (H,G).

(Schauder’s theorem) K is compact, if and only if its adjoint K? ∈ L (G,H) is compact.

If there are Kj ∈ L (H,G) with finite dimensional range for each j ∈ N such that
limj→∞ ‖Kj −K‖L = 0, then K is compact. If in addition G is separable, then the
converse holds also true.

§2.2.19 Examples (§2.2.4 continued).
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(i) For finite J the operator
∑

j∈J hj ⊗ gj ∈ L (H,G) is compact.

(ii) A multiplication operator Mλ ∈ L (`2) is compact, if λ has either only a finite number of
entries not equal to zero or zero is the only accumulation point.

(iii) A diagonal operator ∇λ = U?MλU ∈ L (H) w.r.t. a partial isometry U ∈ L (H, `2) is
compact if the multiplication operator Mλ ∈ L (`2) is compact.

(iv) A convolution operator Cg ∈ L (L2(R)) is not compact.

(v) A circular convolution operator Cg ∈ L (L2([0, 1))) is compact.

§2.2.20 Remark. Every finite linear combination of compact operators is compact, and hence
K (H,G) is a vector space.

§2.2.21 Definition. An operator T ∈ L (H,G) is called nuclear, if there are sequences (hj)j∈N
in H and (gj)j∈N in G with

∑
j∈N ‖hj‖H ‖gj‖G <∞ such that limn→∞‖

∑n
j=1 hj⊗ gj−T‖L =

0, or T =
∑

j∈N hj ⊗ gj for short. We denote by N (H,G) the subset of all nuclear operator in
L (H,G), and we write N (H) := N (H,H). Furthermore, let (fj)j∈N be any ONB in H and
T ∈ N (H), then tr(T ) :=

∑
j∈N〈Tfj, fj〉H denotes the trace of T .

§2.2.22 Remark. We have N (H,G) ⊂ K (H,G) ⊂ L (H,G). The trace does not depend on
the choice of the ONB and is a continuous linear functional on N (H) with ‖tr‖L = 1.

§2.2.23 Properties. Let T ∈ L (H,G) and S ∈ L (G,H).
(i) T is nuclear, if and only if its adjoint T ? ∈ L (G,H) is nuclear.

(ii) If T is nuclear, then TS ∈ N (H), ST ∈ N (G) and tr(TS) = tr(ST ).

§2.2.24 Example. A multiplication operator Mλ ∈ L (`2) and, hence an associated diago-
nal operator U?MλU ∈ L (H), is nuclear, if λ is absolute summable, i.e., ‖λ‖`1 < ∞, and
tr(Mλ) = tr(∇λ) =

∑
j∈J λj .

§2.2.25 Definition. An operator T ∈ L (H,G) is called Hilbert-Schmidt, if there exists an
ONB (hj)j∈N in H such that ‖T‖2

H :=
∑

j∈N ‖Thj‖
2
G < ∞. The number ‖T‖H is called

Hilbert-Schmidt norm of T and satisfies ‖T‖L 6 ‖T‖H . We denote by H (H,G) the subset
of all Hilbert-Schmidt operator in L (H,G), and we write H (H) := H (H,H).

§2.2.26 Remark. We have N (H,G) ⊂ H (H,G) ⊂ K (H,G). The number ‖T‖H does
not depend on the choice of the ONB. The product TS of two Hilbert-Schmidt operator T
and S is nuclear. The space H (H,G) endowed with the inner product 〈T, S〉H := tr(S?T ),
S, T ∈H (H,G) is a Hilbert space and ‖·‖H the induced norm.

§2.2.27 Property. If T ∈ H(H,G) and S ∈ L (G) then tr(TST ?) 6 tr(TT ?) ‖S‖L .

§2.2.28 Examples.
(i) Let T ∈ L (L2

µ1
(Ω1), L2

µ2
(Ω2)). The operator T is Hilbert-Schmidt if and only if it

is an integral operator T = Tk with square integrable kernel k and it holds ‖T‖2
H =∫

Ω1

∫
Ω2
|k(ω1, ω2)|2µ1(dω1)µ2(dω2).

(ii) A multiplication operator Mλ ∈ L (`(J )) and, hence an associated diagonal operator
U?MλU ∈ L (H), is Hilbert-Schmidt, if λ = (λj)j∈J is square summable and ‖Mλ‖H =
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‖∇λ‖H = ‖λ‖`2 <∞.

(iii) Consider the conditional expectation operator KX|Z ∈ L (L2
X , L

2
Z) of X given Z. Let in

addition pX,Z , pX and pZ be, respectively, the joint and marginal densities of (X,Z), X
and Z w.r.t. a σ-finite measure. In this situation, the operator KX|Z is Hilbert Schmidt if
and only if E

[ |pXZ(X,Z)|2
|pX(X)pZ(Z)|2

]
<∞.

2.2.2 Spectral theory and functional calculus

§2.2.29 Definition. Consider T ∈ L (H). The set ρ(T ) = {λ ∈ K : (λ IdH−T )−1 ∈ L (H)}
and its complement σ(T ) = K\ρ(T ) is called resolvent set and spectrum of T , respectively.
The subset σp(T ) = {λ ∈ K : λ IdH−T is not injective} of σ(T ) is called point spectrum of T .
An element λ of σp(T ) and h ∈ H\{0} with Th = λh is called eigenvalue and eigenfunction
(eigenvector), respectively.

§2.2.30 Properties. Consider T ∈ K (H).
(i) If T is self-adjoint, then σ(T ) ⊂ R.

(ii) If H is infinite dimensional, then 0 ∈ σ(T ).

(iii) The (possibly empty) set σ(T )\{0} is at most countable.

(iv) Any λ ∈ σ(T )\{0} is an eigenvalue of T and its multiplicity is the (finite) dimension of the
associated eigenspace N (λ IdH−T ).

(v) In σ(T ) the only possible accumulation point is zero.

§2.2.31 Example. The spectrum of a multiplication operator Mλ ∈ K (`2) and its associated
diagonal operator ∇λ = U?MλU ∈ K (H) is given by σ(Mλ) = σ(∇λ) = {λj, j ∈ J } ⊂ K.

§2.2.32 Definition. Let T ∈ K (H) be normal (K = C) or self-adjoint (K = R). There exist
(i) a sequence λ = (λj)j∈J in K\{0} with ‖T‖L = supj∈J |λj| which has either a finite

number of entries or zero as accumulation point, and determines a multiplication operator
Mλ ∈ L (`2(J )),

(ii) an ONS {uj, j ∈ J } in H with U := lin {uj, j ∈ J } and associated generalised Fourier
series transform U ∈ L (H, `2(J )) as defined in §2.2.4,

such that H = N (T )⊕ U and T =
∑

j∈J λj uj ⊗ uj = U?MλU = ∇λ (see §2.2.4 (ii), (iv) and
(v)). For j ∈ J , λj and uj are, respectively, a non-zero eigenvalue and associated eigenvector
of T respectively. {(λj, uj), j ∈ J } is called an eigensystem of T .

§2.2.33 Properties. Let T ∈ K (H) be self-adjoint with eigensystem {(λj, uj), j ∈ J }, i.e.,
σ(T )\{0} = {λj, j ∈ J } ⊂ R denotes the (possibly empty) countable point spectrum of T .
The sequence λ = (λj)j∈J contains each eigenvalue of T repeated according to its multiplicity.
(i) If T is nuclear, then λ is absolute summable, i.e. ‖λ‖`1 <∞, and tr(T ) =

∑
j∈J λj .

(ii) If T is Hilbert-Schmidt, then λ is square summable and ‖T‖H = ‖λ‖`2 <∞.

§2.2.34 Definition (Class of operators with given eigenfunctions). Given an ONS {uj, j ∈ J } in
H let Eu(H) or Eu for short be the subset of K (H) containing all compact, normal (self-
adjoint), linear operators having for some J ′ ⊆ J , {uj, j ∈ J ′} as eigenfunctions, i.e., for
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each T ∈ Eu(H) there exist J ′ ⊆ J and a sequence (λj)j∈J ′ in K\{0} such that T admits
{(λj, uj), j ∈ J ′} as eigensystem, i.e., Eu(H) ⊂ {∇λ, λ ∈ KJ }.

§2.2.35 Example. Let Cg ∈ K (L2([0, 1))) be a circular convolution operator. Consider as
in §2.1.6 (ii) the exponential basis {ej}j∈Z in L2([0, 1)) and for f ∈ L2([0, 1)) the associ-
ated Fourier coefficients [f ]j = 〈f, ej〉L2 , j ∈ Z. Keep in mind that Cg is normal and for all
f ∈ L2([0, 1)) the convolution theorem states [g ~ f ]j = [g]j[f ]j for all j ∈ Z. Thereby,
{([g]j, ej), j ∈ Z} is an eigensystem of the circular convolution operator Cg. In other words,
for each g ∈ L([0, 1)) we have Cg ∈ Ee(L2([0, 1))).

§2.2.36 Property. Let T ∈ K (H) be strictly positive definite and let (λj)j∈N be a strictly
positive, monotonically non-increasing sequence containing each eigenvalue of T repeated ac-
cording to its multiplicity. For m ∈ N let Hm be the set of all m-dimensional subspaces Um in
H, and denote by U⊥m the orthogonal complement of Um in H. Furthermore, let BUm := {h ∈
Um : ‖h‖H = 1} and BU⊥m be the unit ball in Um and U⊥m, respectively.

(Courant’s max-min-principle) λm = max
Um∈Hm

min
h∈BUm

〈Th, h〉H,

(Courant’s min-max-principle) λm = min
Um−1∈Hm−1

max
h∈BU⊥m−1

〈Th, h〉H.

§2.2.37 Definition. Let T ∈ K (H,G). There exist
(i) a sequence s := (sj)j∈J in K\{0} with ‖T‖L = supj∈J |sj| which has either a finite

number of entries or zero as only accumulation point, and determines a multiplication
operator Ms ∈ L (`2(J )),

(ii) an (possibly finite) ONS {uj, j ∈ J } in H with U := lin {uj, j ∈ J } and associated gen-
eralised Fourier series transform U ∈ L (H, `2(J )) (a partial isometry),

(iii) an (possibly finite) ONS {vj, j ∈ J } in G with V := lin {vj, j ∈ J } and associated gen-
eralised Fourier series transform V ∈ L (G, `2(J )) (a partial isometry),

such that H = N (T )⊕U, G = N (T ?)⊕V and T = V?MsU =
∑

j∈J sj uj⊗vj . In particular,
{(|sj|2, uj), j ∈ J } and {(|sj|2, vj), j ∈ J } are an eigensystem of T ?T and TT ? respectively.
The numbers {sj, j ∈ J } and triplets {(sj, uj, vj), j ∈ J } are, respectively, called singular
values and singular system of T .

§2.2.38 Properties. Let T ∈ K (H,G) with singular system {(sj, uj, vj), j ∈ J } where the
(possibly empty) countable point spectrum of T ?T (respectively, TT ?) is given by σ(T ?T )\{0} =
{|sj|2, j ∈ J } ⊂ R. The sequence (|sj|2)j∈J contains each eigenvalue of T ?T repeated accord-
ing to its multiplicity.
(i) If T is nuclear, then s is absolute summable, i.e. ‖s‖`1 <∞.

(ii) If T is Hilbert-Schmidt, then s is square summable and ‖T‖H = ‖s‖`2 <∞.

§2.2.39 Definition (Class of operators with known eigenfunctions). Given an ONS {uj, j ∈ J }
and {vj, j ∈ J } in H and G, respectively, let Su,v(H,G) or Su,v for short, be the subset of
K (H,G) containing all compact, linear operators having for some J ′ ⊆ J , {uj, j ∈ J ′}
and {uj, j ∈ J ′} as eigenfunctions, i.e., for each T ∈ Su,v(H,G) there exist J ′ ⊆ J and a
sequence (sj)j∈J ′ in K\{0} such that T admits {(sj, uj, vj), j ∈ J ′} as singular system.
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§2.2.40 Property (Spectral theorem). If T ∈ L (H) is self-adjoint, then T is isometrically equiv-
alent to a multiplication operator, i.e., there exist
(i) a measurable space (Ω, µ) (σ-finite, if H is separable),

(ii) a bounded (measurable) and µ-a.s. non zero function λ : Ω→ R with associated multipli-
cation operator Mλ ∈ L (L2

µ(Ω)), and

(iii) a partial isometry U ∈ L (H, L2
µ(Ω)),

such that T = U?MλU .

§2.2.41 Example. Let g ∈ L1(R)∩L2(R) be a real and even function. Consider the associated
self-adjoint convolution operator Cg ∈ L (L2(R)). Recall that the convolution theorem states
F(g∗f) = Fg ·Ff for all f ∈ L2(R) whereF denotes the Fourier-Plancherel transform. Con-
sequently, the operatorCg is unitarily equivalent to the multiplication operator Mλ ∈ L (L2(R))
with λ = [Fg], that is Cg = F−1MλF .

§2.2.42 Property (Spectral theorem Halmos [1963])). Let T : H ⊃ D(T ) → H be a densely-
defined self-adjoint operator. There exist
(i) a measurable space (Ω, µ) (σ-finite, if H is separable),

(ii) an unitary operator U ∈ L (H, L2
µ(Ω)),

(iii) a (measurable) function λ : Ω→ R (µ-a.s. finite and non zero) and an associated multipli-
cation operator Mλ : L2

µ(Ω) ⊃ D(Mλ)→ L2
µ(Ω) withD(Mλ) =

{
f ∈ L2

µ(Ω) : λf ∈ L2
µ(Ω)

}
such that D(T ) = {h ∈ H : Uh ∈ D(Mλ)} and
(a) for all f ∈ D(Mλ) we have Mλf = λ · f = UTU?f ,

(b) for all h ∈ D(T ) it holds Th = U?MλUh,
i.e., T is unitarily equivalent to the multiplication operator Mλ.

§2.2.43 Example. Let T ∈ K (H) be an injective and self-adjoint operator with eigenvalue
decomposition T = U?MλU where U ∈ L (H, `2) is unitary, Mλ ∈ L (`2) is a multiplication
operator and λ a sequence in R\{0} of eigenvalues repeated according to their multiplicities. If
H is not finite dimensional then the range R(T ) of T is dense in H but not closed. Therefore,
there exists an inverse T−1 : R(T ) → H of T which is densely-defined and self-adjoint but
not continuous. In particular, we have D(T−1) = R(T ) = {h : λ−1Uh ∈ `2} (which is called
Picard’s condition). Consider the multiplication operator M1/λ : `2 ⊃ D(M1/λ) → ` with
D(M1/λ) = {x ∈ ` : x/λ ∈ `2}, then D(T−1) = {h ∈ H : Uh ∈ D(M1/λ)} and
(a) for all x ∈ D(M1/λ) we have M1/λx = x/λ = UT−1U?x,

(b) for all h ∈ D(T−1) it holds T−1h = U?M1/λUh,
i.e. T−1 is unitarily equivalent to the multiplication operator M1/λ. We shall emphasise that
h ∈ D(T−1) = R(T ) if and only if ‖[h]/λ‖2

`2 =
∑

j∈J |[h]j/λj|2 < ∞. On the other hand,
for any k ∈ N we have T k = T · · ·T = U?MλkU =

∑
j∈J λ

k
j uj ⊗ uj which motivates for a

function g : R→ R to define the operator

g(T )h := U?Mg(λ)Uh =
∑
j∈J

g(λj) uj ⊗ uj, for all h ∈ H with ‖g(λ)[h]‖`2 <∞.

If g is bounded then g(T ) ∈ L (H) and ‖g(T )‖L = sup{|g(λj)|, j ∈ J } 6 ‖g‖L∞ . In
particular, it allows to define T s for all s ∈ R.

16 Statistics of inverse problems



2.2 Linear operator between Hilbert spaces Chapter 2 Theoretical basics and terminologies

§2.2.44 Definition (Functional calculus). Let T ∈ L (H) be self-adjoint and hence isometrically
equivalent with multiplication by a bounded function λ in some L2

µ(Ω), that is, T = U?MλU .
Given a (measurable) function g : R→ R define the multiplication operator

Mg(λ) : L2
µ(Ω) ⊃ D(Mg(λ))→ L2

µ(Ω)

with D(Mg(λ)) =
{
f ∈ L2

µ(Ω) : g(λ)f ∈ L2
µ(Ω)

}
and an unitarily equivalent operator

g(T )h := U?Mg(λ)Uh, ∀h ∈ D(g(T )) := {h ∈ H : Uh ∈ D(Mg(λ))}

where g(T ) : L (H) ⊃ D(g(T ))→ L (H). Moreover, if g is bounded then g(T ) ∈ L (H) with
‖g(T )‖L = sup{|g(λ)|, λ ∈ σ(T )} 6 ‖g‖L∞ .

§2.2.45 Property. Let T ∈ L (H,G). ThenR(T ) = R((T ?T )1/2).

§2.2.46 Remark. Considering an ONB {uj, j ∈ N} in H, the associated generalised Fourier
series transform U ∈ L (H, `2) and for a sequence v the associated multiplication and diagonal
operator Mv : `2 ⊃ D(Mv)→ `2 and∇v = U?Mv U : H ⊃ D(∇v)→ H defined as in §2.2.4 (iv)
and (v), respectively. If v is strictly positive then applying the functional calculus we observe
that for any s ∈ R we have ∇s

v = U?Mvs U = ∇vs . Moreover, recall that Hvs denotes the
completion of H w.r.t.. the weighted norm ‖·‖vs given by ‖·‖2

vs =
∑

j∈N v
2s
j |〈·, uj〉H|2 where

obviously ‖h‖vs = ‖∇vsh‖H = ‖∇s
vh‖H for all h ∈ D(∇vs) = Hvs . Introduce further the

Hilbert space (Hvs , 〈·, ·〉vs) inner product 〈·, ·〉vs = 〈∇vs·,∇vs·〉H.

§2.2.47 Definition. For a monotonically increasing, unbounded sequence v with v1 > 0 and
any s ∈ R consider the inner product 〈·, ·〉vs = 〈∇vs·,∇vs·〉H and the norm ‖·‖vs = ‖∇s

v ·‖H. The
family {(Hvs , 〈·, ·〉vs), s ∈ R} of Hilbert space is called a Hilbert scale (see Krein and Petunin
[1966] for a rather complete theory).

§2.2.48 Properties. Let {(Hvs , 〈·, ·〉vs), s ∈ R} be a Hilbert scale as introduced in Definition
§2.2.47. Then the following assertions hold true:
(i) For any −∞ < s < t <∞ < the space Hvt is densely and continuously embedded in Hvs .

(ii) For s, t ∈ R holds∇t−s
v = ∇t

v∇−sv , and in particular,∇−1
vs = ∇v−s .

(iii) For s > 0 holds Hvs = D(∇vs) and Hv−s is the dual space of Hvs .

(iv) Considering −∞ < r < s < t < ∞ for any h ∈ Hvs the interpolation inequality
‖h‖vs 6 ‖h‖

(t−s)/(t−r)
vr ‖h‖(s−r)/(t−r)

vt holds true.

§2.2.49 Example. Let T ∈ K (H,G) be injective with singular system {(sj, uj, vj), j ∈ N} for
some ONB {uj ∈ N} in H and strictly positive, monotonically non-increasing sequence (sj)j∈N
containing each singular value of T repeated according to its multiplicity. Setting v = s−2 the
strictly positive definite operator T ?T admits the spectral representation T ?T = U?Mv−1U =
∇v−1 . Obviously, v is a monotonically increasing, unbounded sequence with v1 > 0. Consider-
ing the associated Hilbert scale {(Hvs , 〈·, ·〉vs), s ∈ R} it is then an immediate consequence that
Hvt = D((T ?T )t) is dense in Hvs = D((T ?T )s) for 0 6 s < t. We say, a function f satisfies a
source condition, if f ∈ D((T ?T )s) for some s > 0, i.e., f = (T ?T )sh for some h ∈ H.
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2.2.3 Abstract smoothing condition

§2.2.50 Definition (Link condition). Denote by T (H) or T for short, the set of all strictly positive
operator in K (H). Given an ONB {uj, j ∈ J } in H and a strictly positive sequence (tj)j∈J
consider the weighted norm ‖·‖2

t =
∑

j∈J t2j |〈·, uj〉H|2. For all d > 1 define the subset T du,t :=

T du,t(H) := {T ∈ T : d−1 ‖h‖t 6 ‖Th‖H 6 d ‖h‖t for all h ∈ H}. We say, T satisfies the link
condition T du,t, if T ∈ T du,t. Define further subsets of Eu = Eu(H) and Su,v = Su,v(H,G)

containing, respectively, any operator T such that (T ?T )1/2 satisfies the link condition T du,t, that
is, Edu,t =

{
T ∈ Eu : (T ?T )1/2 ∈ T du,t

}
and Sdu,v,t =

{
T ∈ Su,v : (T ?T )1/2 ∈ T du,t

}
, respectively.

§2.2.51 Remark. We shall emphasise that for T ∈ K (H,G) the condition (T ?T )1/2 ∈ T du,t
is equivalent to d−1 ‖h‖t 6 ‖Th‖H 6 d ‖h‖t for all h ∈ H. Observe further that T ∈ Su,v
admitting a singular system {(sj, uj, vj), j ∈ J ′} with J ′ ⊆ J satisfies the link condition
Sdu,v,t if and only if J ′ = J and d−1 6 |sj|/tj 6 d for all j ∈ J . Thereby, we have that
T ∈ Sdu,v,t(H,G) if and only if T ? ∈ Sdv,u,t(G,H). We shall emphasise, that there are operators
satisfying the link condition T du,t which do not belong to Eu (respectively, Su,v), i.e., are not equal
to ∇λ for some sequence λ (not diagonal w.r.t. U), that is admitting eigenfunctions which are
not contained in the ONS {uj, j ∈ J }. Let us briefly give a construction of those. We consider
a small perturbation of∇t, that is, T = ∇t +∇tA∇t where A ∈ L (H) is a non-negative definite
operator with spectral norm c := ‖∇tA‖L strictly smaller than one. Obviously, T is strictly
positive definite, and ‖Th‖H 6 ‖IdH +∇tA‖L ‖∇th‖H 6 (1 + c) ‖h‖t. On the other hand, we
have ‖(IdH +∇tA)−1‖L = 1

1−‖∇tA‖L
= 1

1−c by the Neumann series argument §2.2.15, which
in turn implies ‖h‖t = ‖∇th‖H = ‖(IdH +∇tA)−1‖L ‖Th‖H 6 1

1−c ‖Th‖H. Combining both
bounds the operator T satisfies the link condition Sdu,v,t for all d > max(1 + c, 1

1−c) and is
obviously not diagonal w.r.t. U .

§2.2.52 Property. Let T ∈ T du,t.

(Inequality of Heinz [1951]) For all |s| 6 1 holds 1
d|s|
‖h‖ts 6 ‖T sh‖H 6 d|s| ‖h‖ts .

§2.2.53 Example (Example §2.2.49 continued). Consider the Hilbert scale {(Hvs , 〈·, ·〉vs), s ∈ R}
associated with the source condition, i.e., Hvs = D((T ?T )s) and ‖·‖vs = ‖(T ?T )−s·‖H for s >
0. Suppose further that (T ?T )1/2 ∈ T du,t, i.e., T satisfies a link condition for some weighted norm
‖·‖t defined w.r.t. a certain ONB in H and a strictly positive sequence t. Note that in general
the two norms ‖·‖t and ‖·‖vs are defined w.r.t. to different orthonormal basis in H. However,
rewriting the inequality of Heinz §2.2.52 accordingly it holds 1

d|s|
‖·‖ts 6

∥∥(T ?T )s/2·
∥∥
H 6

d|s|‖·‖ts or equivalently 1
d|s|
‖·‖ts 6 ‖·‖v−s/2 6 d|s|‖·‖ts . In other words the two norms ‖·‖ts

and ‖·‖v−s/2 are equivalent for any |s| 6 1. Recall that v−1/2 = s equals the sequence of
singular values of T . We shall emphasise that the equivalence of ‖·‖ts and ‖·‖v−s/2 under a link
condition holds generally for all |s| 6 1 only. However, if the ONB used to construct the norm
‖·‖ts for the link condition coincides with the eigenfunctions of T ?T then the ‖·‖ts and ‖·‖v−s/2
are equivalent for all s ∈ R.

§2.2.54 Corollary. Let T ∈ T du,t and suppose that f ∈ Fra (see Definition §2.1.18) where the
two norms ‖·‖t and ‖·‖a−1 are construct w.r.t. the same ONB in H. Assume in addition that
there are constants a, p > 0 and a sequence v such that t = va and a = vp. If p 6 2a then
for any f ∈ Fa holds f = (T ?T )p/(2a)h with ‖h‖H 6 dp/a ‖h‖1/a, and conversely for any

18 Statistics of inverse problems



2.2 Linear operator between Hilbert spaces Chapter 2 Theoretical basics and terminologies

f = (T ?T )p/(2a)h with ‖h‖H <∞ we have f ∈ Fa with ‖h‖1/a 6 dp/a ‖h‖H.

Proof of Corollary §2.2.54 is given in the lecture.

§2.2.55 Lemma. Given an ONB {uj, j ∈ N} in H and a strictly positive non-increasing se-
quence (tj)j∈N consider the link condition T du,t. Let T ∈ T (H) admit {(λj, ψj), j ∈ N} as
eigensystem where the strictly positive, monotonically non-increasing sequence (λj)j∈N con-
tains each eigenvalue of T repeated according to its multiplicity and the associated eigenbasis
{ψj, j ∈ N} does eventually not correspond to the ONB {uj, j ∈ N}. If T ∈ T du,t, then we have
d−1 6 λj/tj 6 d for all j ∈ N.

Proof of Lemma §2.2.55 is given in the lecture.
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