Univ. Heidelberg
Statistics Group   Institute for Mathematics   Faculty of Mathematics and Computer Science   University Heidelberg
Ruprecht-Karls-Universität Heidelberg Institute for Mathematics Statistics of inverse problems Research Group
german english french



Publications
Cooperations
Research projects
Events
Teaching
Completed theses
People
Contact


Last edited on
Oct 17, 2024 by JJ
.
Thesis:
Inauguraldissertation zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg
urn:nbn:de:bsz:16-heidok-338162

Author:
Marilena Müller (Heidelberg University)

Title:
Nonparametric estimation of locally stationary Hawkes processes

Supervisor and examiner:
Enno Mammen (Heidelberg University)

Second examiner:
Jan JOHANNES

Abstract:
We consider multivariate Hawkes processes with baseline conditional intensities and reproduction functions that depend on time. In this case, the model is characterized via the conditional intensity function which we want to estimate. Thus, a class of locally stationary processes is defined. The discussed estimation procedure of the vector of time-dependent baseline intensities and vector of reproduction functions is grounded on a localized criterion. Theory on stationary Hawkes processes is extended to develop asymptotic theory for the estimator in the locally stationary model. Simulation studies round off the considerations. Furthermore, we consider the option for local alignment of locally stationary Hawkes processes. The previous work enables the possibility to formulate testing results. We observe two Hawkes processes and test whether they are realizations of the same underlying immigration and reproduction functions at a fixed point in time. From an alternative point of view, but identically contentwise, one could compare the behaviour of one Hawkes process at two distinct time points. This enables reasearch sorrounding seasonality.