

Outline of the lecture course

PROBABILITY THEORY 1

Summer semester 2024

Preliminary version: May 1, 2024

If you find **errors in the outline**, please send a short note by email to johannes@math.uni-heidelberg.de.

MΛTHEMΛTIKON, Im Neuenheimer Feld 205, 69120 Heidelberg phone: +49 6221 54.14.190 - fax: +49 6221 54.14.101 email: johannes@math.uni-heidelberg.de webpage: sip.math.uni-heidelberg.de

Table of contents

1	Measure and integration theory		1
	§01	Measure theory	1
	§02	Integration theory	8
	§03	Measures with density - Theorem of Radon-Nikodym	16
	§04	Measures on product spaces	19

Chapter 1

Measure and integration theory

§01 Measure theory

- §01.01 Notation. For $x, y \in \mathbb{R}$ we agree on the following notations $\lfloor x \rfloor := \max \{k \in \mathbb{Z} : k \in (-\infty, x]\}$ (integer part), $x \lor y = \max(x, y)$ (maximum), $x \land y = \min(x, y)$ (minimum), $x^+ = \max(x, 0)$ (positive part), $x^- = \max(-x, 0)$ (negative part) and $|x| = x^- + x^+$ (modulus).
 - (a) For $c \in \mathbb{R}$ and $\mathbb{A} \subseteq \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\} = [-\infty, \infty]$ we set $\mathbb{A}_{\geq c} := \mathbb{A} \cap [c, \infty]$, $\mathbb{A}_{\leq c} := \mathbb{A} \cap [-\infty, c]$, $\mathbb{A}_{>c} := \mathbb{A} \cap (c, \infty]$, $\mathbb{A}_{< c} := \mathbb{A} \cap [\infty, c)$, $\mathbb{A}_{\setminus c} := \mathbb{A} \setminus \{c\}$, and $\overline{\mathbb{A}} := \mathbb{A} \cup \{\pm \infty\}$.
 - (b) For $b \in \overline{\mathbb{R}}$ and $a \in \overline{\mathbb{R}}_{<b}$ we write $[\![a,b]\!] := [a,b] \cap \overline{\mathbb{Z}}, [\![a,b]\!] := [a,b) \cap \overline{\mathbb{Z}}, (\![a,b]\!] := (a,b] \cap \overline{\mathbb{Z}},$ and $(\![a,b]\!] := (a,b) \cap \overline{\mathbb{Z}}$. Moreover, let $[\![n]\!] := [\![1,n]\!]$ and $[\![n]\!] := [\![1,n]\!]$ for $n \in \mathbb{N} = \mathbb{Z}_{>0}$.
 - (c) $\Omega \neq \emptyset$ denotes a nonempty set, and 2^{Ω} the set of all subsets of Ω . A set is called *countable* if it is at most countable infinite, meaning either finite or countably infinite. The *cardinality* of a set A is denoted by |A|.

§01|01 Classes of sets

- §01.02 **Definition**. A class of sets $\mathscr{E} \subseteq 2^{\Omega}$ is called
 - \cap -closed (closed under intersections) or a π -system if $A \cap B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$,
 - σ - \cap -closed (closed under countable intersections) if $\cap_{n \in \mathbb{N}} A_n \in \mathscr{E}$ for any sequence $(A_n)_{n \in \mathbb{N}}$ of sets in \mathscr{E} ,
 - \cup -closed (closed under unions) if $A \cup B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$,
 - σ - \cup -*closed* (*closed under countable unions*) if $\cup_{n \in \mathbb{N}} A_n \in \mathscr{E}$ for any sequence $(A_n)_{n \in \mathbb{N}}$ of sets in \mathscr{E} ,

 \backslash -closed (closed under differences) if $A \setminus B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$, and

closed under complements if $A^{c} := \Omega \setminus A \in \mathscr{E}$ for any set $A \in \mathscr{E}$.

- §01.03 **Remark**.
 - (a) If $\mathscr{E} \subseteq 2^{\Omega}$ is closed under complements then de Morgan's rule (i.e. $(\cup A_i)^c = \cup A_i^c$) implies immediately the equivalences of \cup -closed and \cap -closed, as well as of σ - \cup -closed and σ - \cap -closed.
 - (b) Let $\mathscr{E} \subseteq 2^{\Omega}$ be \backslash -closed. Then \mathscr{E} is \cap -closed. If in addition \mathscr{E} is σ - \cup -closed, then \mathscr{E} is σ - \cap -closed. Any countable (respectively finite) union of sets in \mathscr{E} can be expressed as a countable (respectively finite) disjoint union of sets in \mathscr{E} .
- §01.04 **Definition**. A class of sets $\mathscr{E} \subseteq 2^{\Omega}$ is called
 - *semiring* if (i) $\emptyset \in \mathscr{E}$, (ii) for any two sets $A, B \in \mathscr{E}$ the difference set $A \setminus B$ is a finite union of mutually disjoints sets in \mathscr{E} , and (iii) \mathscr{E} is \cap -closed;
 - *ring*, if (R1) $\emptyset \in \mathscr{E}$, (R2) \mathscr{E} is \-closed, and (R3) \mathscr{E} is \cup -closed; σ -*ring*, if \mathscr{E} is a σ - \cup -closed ring;

1

- algebra, if (A1) $\Omega \in \mathscr{E}$, (A2) \mathscr{E} is \-closed, and (A3) \mathscr{E} is \cup -closed; σ -algebra, if \mathscr{E} is a σ - \cup -closed algebra;
- Dynkin-system or λ -system, if (D1) $\Omega \in \mathscr{E}$, (D2) \mathscr{E} is closed under complements, and (D3) $\biguplus_{n \in \mathbb{N}} A_n \in \mathscr{E}$ for any choice of countably many pairwise disjoint sets $(A_n)_{n \in \mathbb{N}}$ in \mathscr{E} .

§01.05 Remark.

- (a) Sometimes the disjoint union of sets is denoted by the symbol (+). Note that this is not a new operation but only stresses the fact that the sets involved are mutually disjoint.
- (b) For any Ω ≠ Ø the classes {Ø, Ω} and 2^Ω are trivial examples of algebras, σ-algebras and Dynkin systems. Trivial examples of semirings, rings and σ-rings are {Ø} and 2^Ω.
- (c) A (set-)ring *R* equipped with the symmetric difference Δ as addition and the intersection ∩ as multiplication forms an Abelian algebraic ring (*R*, Δ, ∩).
- (d) A class of sets $\mathscr{A} \subseteq 2^{\Omega}$ is an algebra if and only if $\Omega \in \mathscr{A}$, and \mathscr{A} is closed under complements and \cap -closed.
- (e) A class of sets $\mathscr{A} \subseteq 2^{\Omega}$ with $\Omega \in \mathscr{A}$, which is closed under complements and σ -U-closed is a σ -algebra.
- (f) Let D ⊆ 2^Ω be a Dynkin-system. The condition (D2), i.e. D is closed under complements, can be equivalently replaced by the apparently stronger condition (D2') B \ A ∈ D for any A, B ∈ D with A ⊆ B, since each Dynkin-system satisfies also (D2'). Indeed for A, B ∈ D with A ⊆ B the sets A and B^c are mutually disjoint and B \ A = (A [+] B^c)^c ∈ D.
- (g) Every σ -algebra also is a Dynkin-system. The converse does not apply because (D3) is required only for mutually disjoint sets. For example let $\Omega = \{1, 2, 3, 4\}$ and $\mathscr{D} = \{\emptyset, \{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}, \Omega\}$. Then \mathscr{D} is a Dynkin-system but is not an algebra.

§01.6 Illustration.

- (i) Every σ -algebra also is a Dynkin-system, an algebra and a σ -ring.
- (ii) Every σ -ring is a ring, and every ring is a semiring.
- (iii) Every algebra is a ring. An algebra on a finite set Ω is a σ -algebra.

Figure 01 [§01] Inclusions between classes of sets $\mathscr{E} \subseteq 2^{\Omega}$.

The Figure 01 [§01] was created based on Klenke (2008, Fig.1.1, p.7).

- §01.07 **Lemma**. A Dynkin-system $\mathscr{D} \subseteq 2^{\Omega}$ is \cap -closed if and only if it is a σ -algebra.
- §01.08 **Proof** of Lemma §01.07. In the lecture course EWS.
- §01.09 **Lemma**. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a class of sets. Then

$$\sigma(\mathscr{E}) := \bigcap \left\{ \mathscr{A} : \mathscr{A} \subseteq 2^{\Omega} \text{ is a } \sigma\text{-algebra and } \mathscr{E} \subseteq \mathscr{A} \right\} \qquad \text{and}$$
$$\delta(\mathscr{E}) := \bigcap \left\{ \mathscr{D} : \mathscr{D} \subseteq 2^{\Omega} \text{ is a Dynkin-system and } \mathscr{E} \subseteq \mathscr{D} \right\}$$

is the smallest σ -algebra, respectively, Dynkin-system on Ω containing \mathscr{E} . \mathscr{E} is called generator, and $\sigma(\mathscr{E})$ and $\delta(\mathscr{E})$ is called the σ -algebra and the Dynkin-system generated by \mathscr{E} , respectively.

- §01.10 **Proof** of Lemma §01.09. In the lecture course EWS.
- §01.11 π - λ -Theorem. Let $\mathscr{E} \subseteq 2^{\Omega}$ be \cap -closed. Then $\sigma(\mathscr{E}) = \delta(\mathscr{E})$ and also $\sigma(\mathscr{E}) \subseteq \mathscr{D}$ for any Dynkinsystem $\mathscr{D} \subseteq 2^{\Omega}$ with $\mathscr{E} \subseteq \mathscr{D}$.
- §01.12 **Proof** of Theorem §01.11. In the lecture course EWS.
- §01.13 **Definition**. Let $\mathscr{E} \subseteq 2^{\Omega}$ be an arbitrary class of subsets of Ω and $A \in 2^{\Omega} \setminus \{\emptyset\} =: 2^{\Omega}_{\setminus \emptyset}$ a nonempty set. The class $\mathscr{E}_A := \mathscr{E}|_A := \mathscr{E} \cap A := \{B \cap A : B \in \mathscr{E}\} \subseteq 2^{\Omega}$ of subsets of Ω is called *trace* of \mathscr{E} on A or *restriction* of \mathscr{E} to A.
- §01.14 **Remark**. If \mathscr{E} is a semiring, (σ) -ing or (σ) -algebra then \mathscr{E}_A is a class of sets of the same type as \mathscr{E} , however, on A instead of Ω . For a Dynkin-system this generally does not apply. Moreover, we have $\sigma(\mathscr{E})|_A = \sigma(\mathscr{E}|_A)$.

§01.15 Reminder.

- (a) Let S be a metric (or topological) space and \mathcal{O} the class of open subsets in S. The σ -algebra $\mathscr{B}_{s} := \sigma(\mathscr{O})$ that is generated by the open sets \mathcal{O} is called the *Borel* σ -algebra on S. The elements of \mathscr{B}_{s} are called *Borel sets* or *Borel measurable sets*.
- (c) For $a = (a_i)_{i \in [\![n]\!]}, b = (b_i)_{i \in [\![n]\!]} \in \overline{\mathbb{R}}^n$ we write a < b, if $a_i < b_i$ for all $i \in [\![n]\!]$. For a < b, define the open *rectangle* as the Cartesian product $(a, b) := X_{i \in [\![n]\!]}(a_i, b_i) := (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$. Analogously, we define $[\![a, b]\!], (a, b]$ and $[\![a, b]\!]$. Moreover, we set $(-\infty, b) := X_{i \in [\![n]\!]}(-\infty, b_i)$ and $(-\infty, b] := X_{i \in [\![n]\!]}(-\infty, b_i]$.
- (d) The Borel σ -algebra \mathscr{B}^n is generated by any of the classes of sets: (i) $\mathscr{E}_1 := \{A \subseteq \mathbb{R}^n : A \text{ is } closed\};$ (ii) $\mathscr{E}_2 := \{A \subseteq \mathbb{R}^n : A \text{ is } compact\};$ (iii) $\mathscr{E}_3 := \{(a, b) : a, b \in \mathbb{Q}^n, a < b\};$ (iv) $\mathscr{E}_4 := \{[a, b] : a, b \in \mathbb{Q}^n, a < b\};$ (v) $\mathscr{E}_5 := \{(a, b] : a, b \in \mathbb{Q}^n, a < b\};$ (vi) $\mathscr{E}_6 := \{[a, b] : a, b \in \mathbb{Q}^n, a < b\};$ (vii) $\mathscr{E}_7 := \{(-\infty, b] : b \in \mathbb{Q}^n\};$ (viii) $\mathscr{E}_8 := \{(-\infty, b) : b \in \mathbb{Q}^n\};$ (ix) $\mathscr{E}_9 := \{(a, \infty) : a \in \mathbb{Q}^n\}$ and (x) $\mathscr{E}_{10} := \{[a, \infty) : a \in \mathbb{Q}^n\}.$ (Exercise).
- (e) We denote by $\mathfrak{B} := \mathfrak{B}_{\mathbb{R}}$ the Borel σ -algebra over the extension $\mathbb{R} := [-\infty, \infty]$ of the real line by the points $\{\pm\infty\}$ where in \mathbb{R} the sets $\{-\infty\}$ and $\{\infty\}$ are closed, and \mathbb{R} is open. In particular, $\mathfrak{B} := \mathfrak{B}_{\mathbb{R}} = \overline{\mathfrak{B}} \cap \mathbb{R}$ is the Borel σ -algebra over \mathbb{R} . For $c \in \mathbb{R}$ and σ -algebra $\mathscr{A} \subseteq 2^{\mathbb{R}}$ we write $\mathscr{A}_{>c} := \mathscr{A} \cap \overline{\mathbb{R}}_{>c}, \mathscr{A}_{>c} := \mathscr{A} \cap \overline{\mathbb{R}}_{>c}$, and $\mathscr{A}_{<c} := \mathscr{A} \cap \overline{\mathbb{R}}_{<c}$

§01|02 Set functions

§01.16 **Definition**. Let $\mathscr{E} \subseteq 2^{\Omega}$ and let $\mu : \mathscr{E} \to \overline{\mathbb{R}}_{\geq 0} = [0, \infty]$ be a set function. We say that μ is *monotone* if $\mu(A) \leq \mu(B)$ for any two sets $A, B \in \mathscr{E}$ with $A \subseteq B$,

additive if $\mu(\biguplus_{j \in \llbracket n \rrbracket} A_j) = \sum_{j \in \llbracket n \rrbracket} \mu(A_j)$ for any choice of finitely many mutually disjoint sets $A_j \in \mathscr{E}, j \in \llbracket n \rrbracket$, with $\biguplus_{j \in \llbracket n \rrbracket} A_j \in \mathscr{E}$,

 $\sigma\text{-additive if } \mu(\biguplus_{j \in \mathbb{N}} A_j) = \sum_{j \in \mathbb{N}} \mu(A_j) \text{ for any choice of countably many mutually disjoint sets } A_j \in \mathscr{E}, j \in \mathbb{N}, \text{ with } \biguplus_{j \in \mathbb{N}} A_j \in \mathscr{E},$

subadditive if $\mu(A) \leq \sum_{i \in [\![n]\!]} \mu(A_j)$ for any choice of finitely many sets $A, A_j \in \mathscr{E}, j \in [\![n]\!]$, with $A \subseteq \bigcup_{j \in [\![n]\!]} A_j$,

- *σ-subadditive* if $\mu(A) \leq \sum_{j \in \mathbb{N}} \mu(A_j)$ for any choice of countably many sets $A, A_j \in \mathscr{E}, j \in \mathbb{N}$, with $A \subseteq \bigcup_{j \in \mathbb{N}} A_j$. □
- §01.17 **Definition**. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a semiring. A set function $\mu : \mathscr{E} \to \overline{\mathbb{R}}_{\geq 0}$ with $\mu(\emptyset) = 0$ is called a *content* if μ is additive,
 - premeasure if μ is σ -additive,

measure if μ is a premeasure and \mathscr{E} is a σ -algebra, and

probability measure if μ is a measure and $\mu(\Omega) = 1$.

We denote by $\mathfrak{M}(\mathscr{E})$ the set of all premeasures on (Ω, \mathscr{E}) . A content μ on \mathscr{E} is called

finite if $\mu(A) \in \mathbb{R}_{\geq 0}$ for every $A \in \mathscr{E}$ and

 σ -finite if there exists a sequence of sets $(\mathcal{E}_j)_{j\in\mathbb{N}}$ in \mathscr{E} such that $\Omega = \bigcup_{j\in\mathbb{N}} \mathcal{E}_j$ and $\mu(\mathcal{E}_j) \in \mathbb{R}_{\geq 0}$ for all $j \in \mathbb{N}$.

We denote by $\mathfrak{M}_{\mathfrak{f}}(\mathscr{E})$ and $\mathfrak{M}_{\sigma}(\mathscr{E})$ the set of all finite, respectively, σ -finite premeasures on (Ω, \mathscr{E}) . Moreover, for a σ -algebra $\mathscr{A} \subseteq 2^{\Omega}$ we denote by $\mathcal{W}(\mathscr{A})$ the set of all probability measures on (Ω, \mathscr{A}) .

§01.18 Example.

- (a) For $A \in 2^{\Omega}$ we denote by $\mathbb{1}_{A}$: $\Omega \to \{0,1\}$ with $\mathbb{1}_{A}^{-1}(\{1\}) = A$ and $\mathbb{1}_{A}^{-1}(\{0\}) = A^{c}$ the *indicator function* on A. For any σ -algebra $\mathscr{A} \subseteq 2^{\Omega}$ and $\omega \in \Omega$ the set function δ_{ω} : $\mathscr{A} \to \{0,1\}$ with $\delta_{\omega}(A) := \mathbb{1}_{A}(\omega)$ is a probability measure on \mathscr{A} . $\delta_{\omega} \in \mathcal{W}(\mathscr{A})$ is called the *Dirac measure* for the point ω .
- (b) Let $\Omega \neq \emptyset$ be countably infinite and let $\mathscr{E} := \{A \in 2^{\Omega} : (|A| \wedge |A^{c}|) \in \mathbb{Z}_{\geq 0}\}$. Then \mathscr{E} is an algebra. The set function $\nu : \mathscr{E} \to \{0, \infty\}$ is given by $\nu(A) = 0$ for $A \in \mathscr{E}$ with $|A| \in \mathbb{R}_{\geq 0}$ and $\nu(A) = \infty$ for $|A^{c}| \in \mathbb{R}_{\geq 0}$. Then ν is a content, but it is not a premeasure. Indeed, ν is not σ -additive, since $\nu(\Omega) = \infty$ and $\sum_{\omega \in \Omega} \nu(\{\omega\}) = 0$.
- (c) Let Ω ≠ Ø be countable and let p : Ω → R_{≥0}. Then μ : 2^Ω → R_{≥0} with A ↦ μ(A) := ∑_{ω∈Ω} p(ω)δ_ω(A) is a σ-finite measure on 2^Ω, i.e. μ ∈ M_σ(2^Ω). We call p the mass function of μ. The number p(ω) is called the mass of μ at point ω. Remember, if in addition p satisfies ∑_{ω∈Ω} p(ω) = 1 then μ ∈ W(2^Ω) is a discrete probability measure. If p(ω) = 1 for every ω ∈ Ω, then ζ_Ω := ∑_{ω∈Ω} δ_ω is called *counting measure* on Ω. Evidently, if Ω is finite, then so is μ ∈ M_f(2^Ω). If Ω ⊆ ℝ then for each ω ∈ Ω the dirac measure δ_ω ∈ W(ℬ), and hence μ, ζ_Ω ∈ M_σ(ℬ) are also called discrete measures on (ℝ, ℬ).

- (d) For arbitrary measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ the set function $\nu + \mu : \mathscr{A} \to \overline{\mathbb{R}}_{\geq 0}$ given by $(\nu + \mu)(A) = \nu(A) + \mu(A)$ for all $A \in \mathscr{A}$ is a measure.
- §01.19 **Lemma**. Let \mathscr{E} be a semiring and let μ be a content on \mathscr{E} . Then the following statements hold.
 - (i) If \mathscr{E} is a ring, then $\mu(A \cup B) = \mu(A) + \mu(B \setminus A)$ and $\mu(B) = \mu(A \cap B) + \mu(B \setminus A)$, hence $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$ for any two sets $A, B \in \mathscr{E}$.
 - (ii) μ is monotone. If \mathscr{E} is a ring, then $\mu(B) = \mu(A) + \mu(B \setminus A)$ for any two sets $A, B \in \mathscr{E}$ with $A \subseteq B$.
 - (iii) μ is subadditive. If μ is σ -additive, then μ is also σ -subadditive.
 - (iv) If \mathscr{E} is a ring, then $\sum_{j \in [\![n]\!]} \mu(A_j) = \mu(\biguplus_{j \in [\![n]\!]} A_j) \leq \mu(\biguplus_{j \in \mathbb{N}} A_j)$ for all $n \in \mathbb{N}$, and hence $\sum_{j \in \mathbb{N}} \mu(A_j) \leq \mu(\biguplus_{j \in \mathbb{N}} A_j)$, for any choice of countably many mutually disjoint sets $A_j \in \mathscr{E}$, $j \in \mathbb{N}$, with $\biguplus_{j \in \mathbb{N}} A_j \in \mathscr{E}$.
 - (v) If \mathscr{E} is a ring, then for any $n \in \mathbb{N}$ and $(A_i)_{i \in [\![n]\!]}$ in \mathscr{E} with $\mu(\bigcup_{i \in [\![n]\!]} A_i) \in \mathbb{R}_{\geq 0}$ the Inclusionexclusion formulas (Poincaré and Sylvester) hold:

$$\mu(\bigcup_{i\in \llbracket n\rrbracket}A_i) = \sum_{\mathcal{I}\in 2^{\llbracket n\rrbracket}_{\backslash \emptyset}} (-1)^{|\mathcal{I}|-1} \mu(\bigcap_{i\in \mathcal{I}}A_i) \quad and \quad \mu(\bigcap_{i\in \llbracket n\rrbracket}A_i) = \sum_{\mathcal{I}\in 2^{\llbracket n\rrbracket}_{\backslash \emptyset}} (-1)^{|\mathcal{I}|-1} \mu(\bigcup_{i\in \mathcal{I}}A_i).$$

§01.20 **Proof** of Lemma §01.19. (i), (ii) and (iv) are given in the lecture, (iii) and (v) are exercises.

- §01.21 Notation. We agree on the following conventions.
 - (a) A sequence (x_n)_{n∈ℕ} in R is called *increasing* (respectively *decreasing*), if x_n ≤ x_{n+1} (respectively x_{n+1} ≤ x_n) for all n ∈ ℕ. If an increasing (respectively decreasing) sequence (x_n)_{n∈ℕ} is convergent, say x = lim_{n→∞} x_n, then we write x_n ↑ x (respectively x_n ↓ x) for short.
 - (b) A sequence $(A_n)_{n \in \mathbb{N}}$ in 2^{Ω} is called *increasing* (respectively *decreasing*), if $A_n \subseteq A_{n+1}$ (respectively $A_{n+1} \subseteq A_n$) for all $n \in \mathbb{N}$. We call

$$A_{\star} := \liminf_{n \to \infty} A_n := \bigcup_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}_{\ge n}} A_m := \bigcup \left\{ \bigcap \left\{ A_m : m \in \mathbb{N}_{\ge n} \right\} : n \in \mathbb{N} \right\} \text{ and}$$
$$A^{\star} := \limsup_{n \to \infty} A_n := \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}_{\ge n}} A_m$$

limes inferior, respectively, *limes superior* of the sequence $(A_n)_{n \in \mathbb{N}}$. The sequence $(A_n)_{n \in \mathbb{N}}$ is called *convergent*, if $A_* = A^* =: A$. In this case we write $\lim_{n \to \infty} A_n = A$ for short.

An increasing (respectively decreasing) sequence $(A_n)_{n \in \mathbb{N}}$ in 2^{Ω} is convergent with $A := \lim_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} A_n$ (respectively $A := \lim_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} A_n$). In this case we write $A_n \uparrow A$ (respectively $A_n \downarrow A$).

(c) For functions f, g : Ω → ℝ we write f ≤ g if f(ω) ≤ g(ω) for any ω ∈ Ω. Analogously, we write f ≥ 0 and so on. A sequence (f_n)_{n∈ℕ} of functions on Ω is called (*pointwise*) *increasing*, or briefly *isotone* (respectively, (*pointwise*) *decreasing*, or briefly *antitone*) if f_n ≤ f_{n+1} (respectively, f_{n+1} ≤ f_n) for all n ∈ ℕ. We denote by

$$egin{aligned} f_\star &:= \liminf_{n o \infty} f_n := \supigg\{\infigg\{f_m \colon m \in \mathbb{N}_{\geqslant n}igg\} \colon n \in \mathbb{N}igg\} ext{ and } \ f^\star &:= \limsup_{n o \infty} f_n := \supigg\{\infigg\{f_m \colon m \in \mathbb{N}_{\geqslant n}igg\} \colon n \in \mathbb{N}igg\} \end{aligned}$$

the *limes inferior*, respectively, *limes superior*. The sequence $(f_n)_{n \in \mathbb{N}}$ is *convergent* if $f_* = f^* =: f$, that is, the pointwise limit exists everywhere. In this case we write $\lim_{n \to \infty} f_n = f$.

An isotone (respectively, antitone) sequence $(f_n)_{n \in \mathbb{N}}$ is convergent with $f := \lim_{n \to \infty} f_n = \sup_{n \in \mathbb{N}} f_n$ (respectively, $f := \lim_{n \to \infty} f_n = \inf_{n \in \mathbb{N}} f_n$). In this case we briefly write $f_n \uparrow f$ (respectively, $f_n \downarrow f$).

- §01.22 **Definition**. A content μ on a ring $\mathscr{R} \subseteq 2^{\Omega}$ is called
 - *lower semicontinuous* if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ for any $A \in \mathscr{R}$ and any sequence $(A_n)_{n\in\mathbb{N}}$ in \mathscr{R} with $A_n \uparrow A$.
 - upper semicontinuous if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ for any $A \in \mathscr{R}$ and any sequence $(A_n)_{n\in\mathbb{N}}$ in \mathscr{R} with $\mu(A_n) \in \mathbb{R}_{\geq 0}$ for some (and then eventually all) $n \in \mathbb{N}$ and $A_n \downarrow A$.
 - \emptyset -continuous if $\lim_{n\to\infty} \mu(A_n) = 0 = \mu(\emptyset)$ for any sequence $(A_n)_{n\in\mathbb{N}}$ in \mathscr{R} with $\mu(A_n) \in \mathbb{R}_{\geq 0}$ for some (and then eventually all) $n \in \mathbb{N}$ and $A_n \downarrow \emptyset$.
- §01.23 **Remark**. In the definition of upper semicontinuity, we needed the assumption $\mu(A_n) \in \mathbb{R}_{\geq 0}$ since otherwise we would not even have \emptyset -continuity for an example as simple as the counting measure $\zeta_{\mathbb{N}}$ on $(\mathbb{N}, 2^{\mathbb{N}})$. Indeed, $A_n := \mathbb{N}_{\geq n} \downarrow \emptyset$ but $\zeta_{\mathbb{N}}(A_n) = \infty$ for all $n \in \mathbb{N}$.
- §01.24 Lemma. Let μ be a content on the ring $\mathscr{R} \subseteq 2^{\Omega}$. Consider the following five properties. (p1) μ is σ -additive (and hence $\mu \in \mathfrak{M}(\mathscr{R})$ is a premeasure), (p2) μ is σ -subadditive, (p3) μ is lower semicontinuous, (p4) μ is \emptyset -continuous, (p5) μ is upper semicontinuous. Then the following implications hold: (p1) \Leftrightarrow (p2) \Leftrightarrow (p3) \Rightarrow (p4) \Leftrightarrow (p5). If μ is finite, then we also have (p4) \Rightarrow (p3).
- §01.25 **Proof** of Lemma §01.24. is given in the lecture.

§01.26 **Example** (§01.18 (b) *continued*). ν is a \emptyset -continuous content, but it is not a premeasure.

- §01.27 Definition.
 - (a) A pair (Ω, 𝒜) consisting of a nonempty set Ω and a σ-algebra 𝒜 ⊆ 2^Ω is called a *measur-able space*. The sets A ∈ 𝒜 are called *measurable sets*. If Ω is at most countably infinite and if 𝒜 = 2^Ω, then the measurable space (Ω, 2^Ω) is called *discrete*.
 - (b) A triple $(\Omega, \mathscr{A}, \mu)$ is called *measure space* if (Ω, \mathscr{A}) is a measurable space and $\mu \in \mathfrak{M}(\mathscr{A})$ is a measure on \mathscr{A} .
 - (c) If in addition $\mu(\Omega) = 1$, then $(\Omega, \mathscr{A}, \mu)$ is called a *probability space* and $\mu \in \mathcal{W}(\mathscr{A})$ a *probability measure*. In this case, the sets $A \in \mathscr{A}$ are called *events*.

§01|03 Measure extension

§01.28 Lemma (Uniqueness). Let (Ω, \mathscr{A}) be a measurable space, let $\mathscr{E} \subseteq \mathscr{A}$ be a \cap -closed generator of \mathscr{A} and let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ -finite measures on \mathscr{A} , which agree on \mathscr{E} , that is, $\mu(E) = \nu(E)$ for all $E \in \mathscr{E}$. Assume (uC) there exist sets $(\mathcal{E}_n)_{n \in \mathbb{N}}$ in \mathscr{E} with $\bigcup_{n \in \mathbb{N}} \mathcal{E}_n = \Omega$ and $\mu(\mathcal{E}_n) \in \mathbb{R}_{\geq 0}$ for all $n \in \mathbb{N}$. Then μ and ν agree also on \mathscr{A} .

If $\mu, \nu \in \mathcal{W}(\mathscr{A})$ are two probability measures on \mathscr{A} , then (uC) is not needed.

- §01.29 **Proof** of Lemma §01.28. is given in the lecture.
- §01.30 **Remark.** In other words under the assumptions of Lemma §01.28 a σ -finite measure $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is uniquely determined by its values $\mu(E)$, $E \in \mathscr{E}$. The uniqueness without (uC), the existence of the sequence $(\mathcal{E}_n)_{n \in \mathbb{N}}$, does generally not apply, even if $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ is a finite measure on \mathscr{A} . In this case the total mass $\mu(\Omega)$ is generally not uniquely determined. Let $\Omega = \{1, 2\}$

and $\mathscr{E} = \{\{1\}\}\)$. Then \mathscr{E} is a \cap -closed generator of 2^{Ω} . A probability measure $\mu \in \mathcal{W}(\mathscr{A})$ is uniquely determined by the value $\mu(\{1\})$. However, a finite measure is not determined by its value on $\{\{1\}\}\$, as $\mu \equiv 0$ and $\nu = \delta_2$ are different finite measures that agree on \mathscr{E} .

§01.31 **Definition**. A set function μ^* : $2^{\Omega} \to \overline{\mathbb{R}}_{\geq 0}$ is called an *outer measure* if (oM1) $\mu^*(\emptyset) = 0$, (oM2) μ^* is monotone, and (oM3) μ^* is σ -subadditive. A set $A \in 2^{\Omega}$ is called μ^* -measurable if

$$\mu^*(A \cap B) + \mu^*(A^c \cap B) = \mu^*(B) \quad \text{for any } B \in 2^{\Omega}.$$

We write $\sigma(\mu^*) := \{ A \in 2^{\Omega} : A \text{ is } \mu^* \text{-measurable} \}.$

- §01.32 **Remark.** Since $\mu^*(\emptyset) = 0$ we evidently have $\Omega \in \sigma(\mu^*)$. As μ^* is subadditive it follows that $A \in \sigma(\mu^*)$ if and only if $\mu^*(A \cap B) + \mu^*(A^c \cap B) \leq \mu^*(B)$ for any $B \in 2^{\Omega}$.
- §01.33 **Lemma**. Let $\mathscr{E} \subseteq 2^{\Omega}$ be an arbitrary class of sets with $\emptyset \in \mathscr{E}$ and let $\mu : \mathscr{E} \to \overline{\mathbb{R}}_{\geq 0}$ be a set function with $\mu(\emptyset) = 0$. For $A \in 2^{\Omega}$ define the set of countable coverings \mathscr{F} of A with sets $F \in \mathscr{E}$:

$$\mathcal{U}(A) = \left\{ \mathscr{F} \subseteq \mathscr{E} : \mathscr{F} \text{ is countable and } A \subseteq \bigcup_{F \in \mathscr{F}} F \right\}$$

Define

$$\mu^{\star}: 2^{\Omega} \to \overline{\mathbb{R}}_{\geqslant 0} \text{ with } A \mapsto \mu^{\star}(A) := \inf \big\{ \sum_{F \in \mathscr{F}} \mu(F) \colon \mathscr{F} \in \mathcal{U}(A) \big\},$$

where $\inf \emptyset = \infty$. Then μ^* is an outer measure. If in addition μ is σ -subadditive, then μ^* and μ agree on \mathscr{E} , i.e. $\mu^{\star}(E) = \mu(E)$ for all $E \in \mathscr{E}$.

- §01.34 **Proof** of Lemma §01.33. is given in the lecture.
- §01.35 **Lemma**. If μ^* is an outer measure, then $\sigma(\mu^*)$ is a σ -algebra and the restriction of μ^* on $\sigma(\mu^*)$ is a measure.
- §01.36 **Proof** of Lemma §01.35. is given in the lecture.
- §01.37 Extension theorem for measures. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a semiring and let $\mu : \mathscr{E} \to \overline{\mathbb{R}}_{\geq 0}$ be an additive, σ -subadditive and σ -finite set function with $\mu(\emptyset) = 0$. Then there is a unique σ -finite measure $\widetilde{\mu} : \sigma(\mathscr{E}) \to \overline{\mathbb{R}}_{\geq 0}$ such that $\widetilde{\mu}$ and μ agree on \mathscr{E} , i.e. $\widetilde{\mu}(E) = \mu(E)$ for all $E \in \mathscr{E}$.
- §01.38 **Proof** of Theorem §01.37. is given in the lecture.
- §01.39 Example.
 - (a) There exists a uniquely determined measure λ^n on $(\mathbb{R}^n, \mathscr{B}^n)$ with the property that $\lambda^n((a, b]) =$ $\prod_{i \in \llbracket n \rrbracket} (b_i - a_i)$ for all $a, b \in \mathbb{R}^n$ with a < b. λ^n is called *Lebesgue measure* on $(\mathbb{R}^n, \mathscr{B}^n)$ (see lecture Analysis 3).
 - (b) Let $\mathbb{F}\,:\,\mathbb{R}\,\to\,\mathbb{R}$ be monotone increasing and right continuous. There is a uniquely determined measure $\mu_{\mathbb{F}}$ on $(\mathbb{R}, \mathscr{B})$ with the property that $\mu_{\mathbb{F}}((a, b]) = \mathbb{F}(b) - \mathbb{F}(a)$ for all $a, b \in \mathbb{R}$ with a < b. $\mu_{\mathbb{F}}$ is called *Lebesgue-Stieltjes measure* on $(\mathbb{R}, \mathscr{B})$ (Exercise). If in addition $\lim_{x\to\infty} (\mathbb{F}(x) - \mathbb{F}(-x)) = 1$, then $\mu_{\mathbb{F}}$ is a probability measure.

§01.40 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space.

- (a) A set $N \in \mathscr{A}$ is called a μ -null set, or briefly null set, if $\mu(N) = 0$. By \mathcal{N}_{μ} we denote the class of all subsets of μ -null sets.
- (b) Let E(ω) be a property that a point ω ∈ Ω can have or not have. We say that E holds μ-almost everywhere (μ-a.e.) if there exists a μ-null set N ∈ N_μ such that E(ω) holds for every ω ∈ Ω \ N = N^c. If A ∈ A and if there exists a μ-null set N such that E(ω) holds for every ω ∈ A \ N, then we say that E holds μ-almost everywhere on A. If μ = ℙ ∈ W(A) is a probability measure then we say that E holds ℙ-almost surely (ℙ-a.s.) respectively ℙ-almost surely on A.
- (c) The measure space $(\Omega, \mathscr{A}, \mu)$ is called *complete*, if $\mathcal{N}_{\mu} \subseteq \mathscr{A}$.
- §01.41 **Remark.** Let $(\Omega, \mathscr{A}, \mu)$ be a σ -finite measure space. There exists a unique smallest σ -algebra $\mathscr{A}^* \supseteq \mathscr{A}$ and an extension μ^* of μ to \mathscr{A}^* such that $(\Omega, \mathscr{A}^*, \mu^*)$ is complete. $(\Omega, \mathscr{A}^*, \mu^*)$ is called the completion of $(\Omega, \mathscr{A}, \mu)$. With the notation of Theorem §01.37, this completion is $(\Omega, \sigma(\mu^*), \mu^*|_{\sigma(\mu^*)})$. Furthermore, $\sigma(\mu^*) = \sigma(\mathscr{A} \cup \mathcal{N}_{\mu}) = \{A \cup N : A \in \mathscr{A}, N \in \mathcal{N}_{\mu}\}$ and $\mu^*(A \cup N) = \mu(A)$ for any $A \in \mathscr{A}$ and $N \in \mathcal{N}_{\mu}$.
- §01.42 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and $B \in \mathscr{A}$. On the trace σ -algebra \mathscr{A}_{B} we define a measure by $\mu_{B}(A) := \mu(A)$ for $A \in \mathscr{A}$ with $A \subseteq B$. This measure is called the *restriction* of μ to B.
- §01.43 **Example**. The restriction $\lambda_{[0,1]}$ of the Lebesgue-Borel measure λ on $(\mathbb{R}, \mathscr{B})$ to [0,1] is a probability measure on $([0,1], \mathscr{B}_{[0,1]})$, i.e. $\lambda_{[0,1]} \in \mathcal{W}(\mathscr{B}_{[0,1]})$. More generally, for a Borel set $B \in \mathscr{B}$ we call the restriction λ_{B} the Lebesgue measure on B, i.e. $\lambda_{B} \in \mathfrak{M}_{\sigma}(\mathscr{B}_{B})$.

§02 Integration theory

§02|01 The integral

§02.01 **Reminder**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let (S, \mathscr{S}) be a measurable space.

(a) A function $f: \Omega \to S$ is called \mathscr{A} - \mathscr{S} -measurable (or, briefly, measurable) if

$$\sigma(f) := f^{-1}(\mathscr{S}) := \left\{ f^{-1}(S) \colon S \in \mathscr{S} \right\} \subseteq \mathscr{A}.$$

If f is measurable, we write $f : (\Omega, \mathscr{A}) \to (\mathfrak{S}, \mathscr{S})$. We denote by $\mathfrak{M}(\mathscr{A}, \mathscr{S})$ the set of all \mathscr{A} - \mathscr{S} -measurable functions. If $\mathscr{S} = \mathscr{B}_s$ is the Borel σ -algebra on \mathfrak{S} then we write $\mathfrak{M}_s(\mathscr{A}) := \mathfrak{M}(\mathscr{A}, \mathscr{B}_s)$ for short. If $\mu = \mathbb{P} \in \mathfrak{W}(\mathscr{A})$ is a probability measure then $f \in \mathfrak{M}(\mathscr{A}, \mathscr{S})$ is called $((\mathfrak{S}, \mathscr{S})$ -valued) *random variable*. The σ -algebra $\sigma(f)$ is called the σ -algebra on Ω that is *generated* by f. This is the smallest σ -algebra with respect to which f is measurable.

- (b) The identity map id_Ω : Ω → Ω is 𝔄-𝔄-measurable. If 𝔄 = 2^Ω or 𝒴 = {∅, 𝔅}, then any map f : Ω → 𝔅 belongs to 𝓜(𝔄,𝒴). The indicator function 1_A for A ∈ 2^Ω belongs to 𝓜(𝔄,2^{{0,1}</sup>) if and only if A ∈ 𝔄.
- (c) A measurable function $f:(\Omega,\mathscr{A})\to(\mathfrak{S},\mathscr{S})$ is called

 $\begin{array}{l} \textit{numerical} \ \ \text{if} \ (\mathbb{S},\mathscr{S}) = (\overline{\mathbb{R}},\overline{\mathscr{B}}), \ \text{briefly} \ f \in \overline{\mathcal{M}}(\mathscr{A}) := \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}) = \mathcal{M}(\mathscr{A},\overline{\mathscr{B}}), \\ \textit{positive numerical} \ \ \text{if} \ (\mathbb{S},\mathscr{S}) = (\overline{\mathbb{R}}_{\geqslant 0},\overline{\mathscr{B}}_{\geqslant 0}), \ \text{briefly} \ f \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A}) := \mathcal{M}_{\overline{\mathbb{R}}_{\geqslant 0}}(\mathscr{A}) = \mathcal{M}(\mathscr{A},\overline{\mathscr{B}}_{\geqslant 0}), \\ \textit{real} \ \ \text{if} \ (\mathbb{S},\mathscr{S}) = (\mathbb{R},\mathscr{B}), \ \text{briefly} \ f \in \mathcal{M}(\mathscr{A}) := \mathcal{M}_{\mathbb{R}}(\mathscr{A}) = \mathcal{M}(\mathscr{A},\mathscr{B}), \\ \textit{positive real} \ \ \text{if} \ (\mathbb{S},\mathscr{S}) = (\mathbb{R}_{\geqslant 0}, \mathscr{B}_{\geqslant 0}), \ \text{briefly} \ f \in \mathcal{M}_{\geqslant 0}(\mathscr{A}) := \mathcal{M}_{\mathbb{R}_{\geqslant 0}}(\mathscr{A}) = \mathcal{M}(\mathscr{A}, \mathscr{B}_{\geqslant 0}). \end{array}$

If the preimage (Ω, \mathscr{A}) is irrelevant we also write shortly $\overline{\mathbb{M}} := \overline{\mathbb{M}}(\mathscr{A}), \overline{\mathbb{M}}_{\geq 0} := \overline{\mathbb{M}}_{\geq 0}(\mathscr{A}),$ $\mathbb{M} := \mathbb{M}(\mathscr{A}), \text{ and } \mathbb{M}_{\geq 0} := \mathbb{M}_{\geq 0}(\mathscr{A}).$ If $(f_n)_{n \in \mathbb{N}}$ is a sequence in $\overline{\mathbb{M}}$, then $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $f_{\star} := \liminf_{n \to \infty} f_n$, and $f^{\star} := \limsup_{n \to \infty} f_n$ belong also to $\overline{\mathbb{M}}$ (see lecture EWS).

- (d) A real map $f \in \mathcal{M}(\mathscr{A})$ assuming only finitely many values is called *simple* or *elementary*. If $f \in \mathcal{M}(\mathscr{A})$ is simple then there is an $n \in \mathbb{N}$ and mutually disjoint measurable sets $(A_j)_{i \in \llbracket n \rrbracket}$ in \mathscr{A} as well as numbers $(a_j)_{i \in \llbracket n \rrbracket}$ in \mathbb{R} such that $f = \sum_{i \in \llbracket n \rrbracket} a_j \mathbb{1}_{A_j}$. We denote by $\mathcal{M}^{\text{sim}}(\mathscr{A})$ and $\mathcal{M}^{\text{sim}}_{\geq 0}(\mathscr{A})$ the set of all simple, respectively, positive simple functions on (Ω, \mathscr{A}) . If $f = \sum_{i \in \llbracket n \rrbracket} a_j \mathbb{1}_{A_j}$ and $f = \sum_{i \in \llbracket n \rrbracket} b_j \mathbb{1}_{B_j}$ are two representations of $f \in \mathcal{M}^{\text{sim}}_{\geq 0}(\mathscr{A})$, then $\sum_{i \in \llbracket n \rrbracket} a_j \mu(A_j) = \sum_{i \in \llbracket n \rrbracket} b_j \mu(B_j)$ (check it!).
- (e) Let $f \in \overline{\mathbb{M}}_{\geq 0}$ be positive numerical. Then there exists an isotone sequence of simple functions $(f_n)_{n \in \mathbb{N}}$ in $\mathbb{M}_{\geq 0}^{sim}$ such that $f_n \uparrow f$ (see lecture EWS).
- §02.02 **Theorem.** For each measure μ on a measurable space (Ω, \mathscr{A}) we call integral with respect to μ the uniquely determined functional $\mathbb{I}_{\mu} : \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \to \overline{\mathbb{R}}_{\geq 0}$ satisfying the following properties:
 - (I1) $\mathbb{I}_{\mu}(af + bg) = a\mathbb{I}_{\mu}(f) + b\mathbb{I}_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ and $a, b \in \mathbb{R}_{\geq 0}$, (linearity)
 - (I2) $\mathbb{I}_{\mu}(f_n) \uparrow \mathbb{I}_{\mu}(f)$ for all $(f_n)_{n \in \mathbb{N}} \uparrow f$ in $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$, (monotone convergence)

(I3)
$$\mathbb{I}_{\mu}(\mathbb{I}_{A}) = \mu(A) \text{ for all } A \in \mathscr{A}.$$
 (normed)

For each $f \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ we call $\int f \, d\mu := \mathbb{I}_{\mu}(f)$ the integral of f with respect to μ . For $A \in \mathscr{A}$ we write shortly $\int_{A} f \, d\mu := \int (f \mathbb{I}_{A}) \, d\mu$. f is called μ -integrable, if $\int f \, d\mu \in \mathbb{R}_{\geq 0}$.

- §02.03 **Proof** of Theorem §02.02. The theorem summarises the main result of this section; its proof takes place in several steps. We first show in Theorem §02.05 the uniqueness result and then explicitly state in Theorem §02.09 a functional $\mathbb{I}_{\mu} : \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \to \overline{\mathbb{R}}_{\geq 0}$ for which we verify the required conditions (I1)-(I3). In summary, we then show therewith in Theorem §02.09 the existence result.
- §02.04 Notation. For $f \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ and $A \in \mathscr{A}$ we write shortly $\mu(f) := \int f \, \mathrm{d}\mu = \int_{\Omega} f(\omega)\mu(\mathrm{d}\omega)$ as well as $\mu(f\mathbb{1}_A) = \int_A f \, \mathrm{d}\mu = \int_A f(\omega)\mu(\mathrm{d}\omega)$.
- §02.05 Uniqueness theorem. The integral is uniquely determined.

§02.06 **Proof** of Theorem §02.05. is given in the lecture.

Reminder §02.01 (e) allows the following definition to be made since the defined value $\mathbb{I}_{\mu}(f)$ does not depend on the chosen representation of f.

§02.07 **Lemma**. The map $\widetilde{\mathbb{I}}_{\mu} : \mathcal{M}_{\geq 0}^{\text{sim}}(\mathscr{A}) \to \overline{\mathbb{R}}_{\geq 0}$ given by

$$f = \sum_{i \in \llbracket n \rrbracket} a_j \mathbb{1}_{A_j} \mapsto \widetilde{\mathbb{I}}_{\mu}(f) := \sum_{i \in \llbracket n \rrbracket} a_j \mu(A_j).$$

is normed, positive, linear and monotone:

(i)
$$\tilde{\mathbb{I}}_{\mu}(\mathbb{I}_{A}) = \mu(A)$$
 for every $A \in \mathscr{A}$, (normed)

(ii)
$$\tilde{\mathbb{I}}_{\mu}(af+bg) = a\tilde{\mathbb{I}}_{\mu}(f) + b\tilde{\mathbb{I}}_{\mu}(g)$$
 for all $f, g \in \mathcal{M}_{\geq 0}^{sim}(\mathscr{A})$ and $a, b \in \mathbb{R}_{\geq 0}$, (linearity)

(iii)
$$\widetilde{\mathbb{I}}_{\mu}(f) \leq \widetilde{\mathbb{I}}_{\mu}(g)$$
 for all $f, g \in \mathcal{M}_{\geq 0}^{\text{sim}}(\mathscr{A})$ with $f \leq g$. (monotonicity).

§02.08 **Proof** of Lemma §02.07. Exercise.

§02.09 **Existence theorem**. The functional \mathbb{I}_{μ} : $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \to \overline{\mathbb{R}}_{\geq 0}$ with

 $f \mapsto \mathbb{I}_{\mu}(f) := \sup \left\{ \widetilde{\mathbb{I}}_{\mu}(g) \colon g \in \mathcal{M}_{\geq 0}^{\text{sim}}(\mathscr{A}), g \leqslant f \right\}$

is an integral with respect to μ , that is, it shares the properties (I1)-(I3) in Theorem §02.02:

- (i) $\mathbb{I}_{\mu}(\mathbb{I}_{A}) = \mu(A)$ for every $A \in \mathscr{A}$, (normed) (ii) $\mathbb{I}_{\mu}(f) \leq \mathbb{I}_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ with $f \leq g$, (monotonicity) (iii) $\mathbb{I}_{\mu}(f_{n}) \uparrow \mathbb{I}_{\mu}(f)$ for all $(f_{n})_{n \in \mathbb{N}} \uparrow f$ in $\overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$. (monotone convergence) (iv) $\mathbb{I}_{\mu}(af + bg) = a\mathbb{I}_{\mu}(f) + b\mathbb{I}_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ and $a, b \in \overline{\mathbb{R}}_{\geqslant 0}$ (linearity) (with convention $\infty \cdot 0 = 0$).
- §02.10 **Proof** of Theorem §02.09. is given in the lecture.
- §02.11 **Remark**. By Lemma §02.07 (iii) we have the identity $\mathbb{I}_{\mu}(f) = \widetilde{\mathbb{I}}_{\mu}(f)$ for any $f \in \mathcal{M}_{\geq 0}^{sim}(\mathscr{A})$. Hence \mathbb{I}_{μ} is an extension of the map $\widetilde{\mathbb{I}}_{\mu}$ from $\mathcal{M}_{\geq 0}^{sim}(\mathscr{A})$ to the set of positive numerical functions $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.
- §02.12 **Comment.** A measurable partition $\mathcal{P} := \{A_i : i \in \mathcal{I}\} \subseteq \mathscr{A}_{\emptyset} \text{ of } \Omega \text{ is finite, if } |\mathcal{I}| \in \mathbb{N}, \text{ and hence}$ $\emptyset \neq A \in \mathscr{A} \text{ for each } A \in \mathcal{P}. \text{ If we set } \mathscr{P} := \{\mathcal{P} \subseteq \mathscr{A}_{\emptyset} : \mathcal{P} \text{ finite, measurable partition of } \Omega\}, \text{ then the functional } \mathbb{I}_{\mu} : \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A}) \to \overline{\mathbb{R}}_{\geqslant 0} \text{ given by (with convention } \infty \cdot 0 = 0)}$

$$f \mapsto \mathbb{I}_{\mu}(f) := \sup \left\{ \sum_{A \in \mathcal{P}} \left(\inf_{\omega \in A} f(w) \right) \mu(A) : \mathcal{P} \in \mathscr{P} \right\}$$

shares also the properties (I1)-(I3) in Theorem 02.02, and hence it is an alternative but equivalent representation of the uniquely determined integral with respect to μ .

- §02.13 Notation. For arbitrary measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ we write $\nu \leq \mu$ if $\nu(A) \leq \mu(A)$ for all $A \in \mathscr{A}$. Evidently, $\nu \leq \mu$ and $\mu \leq \nu$ imply together $\mu = \nu$.
- §02.14 **Lemma** (*Properties*). Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space and let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.
 - (i) (Fatou's lemma) $\mu(\liminf_{n\to\infty} f_n) = \int \left(\liminf_{n\to\infty} f_n\right) d\mu \leq \liminf_{n\to\infty} \int f_n d\mu = \liminf_{n\to\infty} \mu(f_n) \text{ and }$ in particular $\mu\left(\liminf_{n\to\infty} A_n\right) \leq \liminf_{n\to\infty} \mu(A_n) \text{ for every sequence } (A_n)_{n\in\mathbb{N}} \text{ of sets in } \mathscr{A}.$ If $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ is finite, then also $\limsup_{n\to\infty} \mu(A_n) \leq \mu\left(\limsup_{n\to\infty} A_n\right).$
 - (ii) $\sum_{n\in\mathbb{N}} f_n \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ and $\mu(\sum_{n\in\mathbb{N}} f_n) = \int \left(\sum_{n\in\mathbb{N}} f_n\right) d\mu = \sum_{n\in\mathbb{N}} \int f_n d\mu = \sum_{n\in\mathbb{N}} \mu(f_n).$ Let in addition $f, g \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}).$
 - (iii) f = 0 μ -a.e. if and only if $\mu(f) = \int f d\mu = 0$. If $\mu(f) \in \mathbb{R}_{\geq 0}$ then $f \in \mathbb{R}_{\geq 0}$ μ -a.e. and the restriction of μ on $\{f \neq 0\}$ is a σ -finite measure.
 - (iv) The set function $f\mu : \mathscr{A} \to \overline{\mathbb{R}}_{\geq 0}$ with $A \mapsto f\mu(A) := \mu(\mathbb{1}_A f) = \int (\mathbb{1}_A f) d\mu$ is a measure on (Ω, \mathscr{A}) . For all $A \in \mathscr{A}$ with $\mu(A) = 0$ we have $f\mu(A) = 0$.
 - (v) If $f \leq g$ (respectively f = g) μ -a.e. then $f\mu \leq g\mu$ (respectively $f\mu = g\mu$). The converse holds, if (c1) f is μ -integrable, or (c2) $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$, or (c3) $g\mu \in \mathfrak{M}_{\sigma}(\mathscr{A}) \sigma$ -finite. In particular, $\mu(f) = \int f d\mu \leq \int g d\mu = \mu(g)$ (respectively, $\mu(f) = \mu(g)$).
 - (vi) $\mu \in \mathfrak{M}(\mathscr{A})$ is σ -finite if and only if there is $h \in \mathcal{M}_{(0,1]}(\mathscr{A})$ with $\mu(h) \in \mathbb{R}_{\geq 0}$ (μ -integrable). In particular, for each σ -finite $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ there exists $h \in \mathcal{M}(\mathscr{A})$ with $h \in \mathbb{R}_{>0}$ μ -a.e. such that $h\mu \in \mathfrak{M}_{f}(\mathscr{A})$ is finite and $h\mu$ shares the same null-sets as μ .

- (vii) $\sum_{n \in \mathbb{N}} \mu(\{f \ge n\}) \leq \mu(f) \leq \sum_{n \in \mathbb{N}_0} \mu(\{f > n\})$ and $\mu(f) = \int_0^\infty \mu(\{f \ge t\}) dt$ for every $f \in \mathcal{M}(\mathscr{A})$ with $f \in \mathbb{R}_{\ge 0}$ μ -a.e.
- §02.15 **Proof** of Lemma §02.14. is given in the lecture.
- §02.16 **Definition**. Let $\mu \in \mathfrak{M}(\mathscr{A})$ be a measure on (Ω, \mathscr{A}) and let $\mathfrak{f} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$. Define the measure $\nu \in \mathfrak{M}(\mathscr{A})$ by $\nu(A) := \mu(\mathbb{1}_A \mathfrak{f})$ for $A \in \mathscr{A}$. We say that $\mathfrak{f} \mu := \nu$ has the *density* $d\nu/d\mu := \mathfrak{f}$ with respect to μ , or briefly μ -*density*.
- §02.17 Lemma (*Properties*). Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $\nu := \mathfrak{f} \mu \in \mathfrak{M}(\mathscr{A})$ admit the density $d\nu/d\mu = \mathfrak{f} \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$.
 - (i) $\nu(g) = \int g \, d\nu = \int (g \mathbb{f}) \, d\mu = \mu(g \mathbb{f}) = \mathbb{f} \, \mu(g) \text{ for every } g \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}).$
 - (ii) $\rho = \mathfrak{q}\nu = \mathfrak{q}(\mathfrak{f}\mu) = (\mathfrak{q}\mathfrak{f})\mu$ for every $\rho := \mathfrak{q}\nu \in \mathfrak{M}(\mathscr{A})$ with $\mathfrak{q} \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$.
 - (iii) If $\nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ or $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite then the μ -density $d\nu/d\mu = \mathfrak{f}$ of ν is unique up to equality μ -almost everywhere.
 - (iv) If $\nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite, then $d\nu/d\mu = \mathfrak{f} \in \mathbb{R}_{\geq 0}$ μ -a.e.. The converse holds, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$.
- §02.18 **Proof** of Lemma §02.17. is given in the lecture.
- §02.19 Notation. If $f \in \overline{\mathcal{M}}(\mathscr{A})$ is numerical then $f^+ := f \vee 0, f^- := (-f)^+, |f| = f^+ + f^- \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ are positive numerical.
- §02.20 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $f \in \overline{\mathcal{M}}(\mathscr{A})$ be numerical.
 - (a) If f^+ or f^- is μ -integrable, that is, $\mu(f^+) \wedge \mu(f^-) \in \mathbb{R}_{\geq 0}$, then we define the *integral*

$$\mu(f) := \int f \,\mathrm{d}\mu := \int f^+ \,\mathrm{d}\mu - \int f^- \,\mathrm{d}\mu = \mu(f^+) - \mu(f^-)$$

of f with respect to μ where we use the usual conventions $\infty + x = \infty$ and $-\infty + x = -\infty$ for all $x \in \mathbb{R}$. In this case f is called μ -quasiintegrable. The integral of f is not defined, if $\mu(f^+) = \infty = \mu(f^-)$.

(b) If $\mu(|f|) \in \mathbb{R}_{\geq 0}$, that is, $\mu(f^+) \vee \mu(f^-) \in \mathbb{R}_{\geq 0}$, then f is called μ -integrable. The set of all μ -integrable numerical functions is denoted by

$$\mathcal{L}_{\mathbf{1}}:=\mathcal{L}_{\mathbf{1}}(\mu):=\mathcal{L}_{\mathbf{1}}(\Omega,\mathscr{A},\mu):=\Big\{f\in\overline{\mathcal{M}}(\mathscr{A})\colon\mu(|f|)\in\mathbb{R}_{\geqslant 0}\Big\}.$$

(c) For $p \in \mathbb{R}_{>0}$ define

$$\|f\|_{\mathcal{L}_p}:= \left(\mu(|f|^p)\right)^{1/p} \quad \text{and} \quad \|f\|_{\mathcal{L}_\infty}:= \inf\big\{x\in \mathbb{R}_{\geqslant 0}: \mu\big(\{|f|>x\}\big)=0\big\}.$$

For $p \in \overline{\mathbb{R}}_{>0}$ a function f is called \mathcal{L}_p -*integrable* if $||f||_{\mathcal{L}_p} \in \mathbb{R}_{>0}$. The vector space of all \mathcal{L}_p -integrable functions we denote by

$$\mathcal{L}_p := \mathcal{L}_p(\mu) := \mathcal{L}_p(\Omega, \mathscr{A}, \mu) := \left\{ f \in \overline{\mathfrak{M}}(\mathscr{A}) \colon \|f\|_{\mathcal{L}_p} \in \mathbb{R}_{\geq 0}
ight\}.$$

For $p \in \overline{\mathbb{R}}_{\geq 1}$, the map $\|\cdot\|_{\mathcal{L}_p}$ is a seminorm on $\mathcal{L}_p(\mu)$ (see Subsection §02l03 below), that is, for all $f, g \in \mathcal{L}_p(\mu)$ and $a \in \mathbb{R}$, (s1) $\|af\|_{\mathcal{L}_p} = |a| \|f\|_{\mathcal{L}_p}$, (s2) $\|f + g\|_{\mathcal{L}_p} \leq \|f\|_{\mathcal{L}_p} + \|g\|_{\mathcal{L}_p}$, (s3) $\|f\|_{\mathcal{L}_p} \in \mathbb{R}_{\geq 0}$ and $\|f\|_{\mathcal{L}_p} = 0$ if f = 0 μ -a.e.

(d) The map $\langle \cdot, \cdot \rangle_{\mathcal{L}_2} : \mathcal{L}_2(\mu) \times \mathcal{L}_2(\mu) \to \mathbb{R}$ with $(f, g) \mapsto \langle f, g \rangle_{\mathcal{L}_2} := \mu(fg)$ is a positive semidefinite symmetric bilinearform. \Box

§02.21 **Lemma** (*Properties*). Let $f, g \in \mathcal{L}_1(\Omega, \mathscr{A}, \mu)$.

- (i) If $a, b \in \mathbb{R}$, then $af + bg \in \mathcal{L}_1(\mu)$ and $\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$. (linearity) (ii) Let $h \in \overline{\mathcal{M}}(\mathscr{A})$. If $h = f \mu$ -a.e., then $h \in \mathcal{L}_1(\mu)$ and $\int h d\mu = \int f d\mu$.
- (ii) Let $h \in \mathcal{M}(\mathbb{A})$. If $h = \int \mu$ -a.e., then $h \in \mathcal{L}_1(\mu)$ and $\int h \, \mathrm{d}\mu = \int \int If |h| \leq |g| \mu$ -a.e. then $h \in \mathcal{L}_1(\mu)$.
- (iii) If $f \leq g \mu$ -a.e., then $\mu(f) \leq \mu(g)$. In particular, if $f \in \overline{\mathbb{R}}_{\geq 0} \mu$ -a.e., then $\mu(f) \in \mathbb{R}_{\geq 0}$.
- (iv) $|\mu(f)| \leq \mu(|f|)$.
- (v) $f = 0 \mu$ -a.e. if and only if $\mu(f \mathbb{1}_A) = 0$ for all $A \in \mathscr{A}$.
- (vi) If $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ is finite and $h \in \mathfrak{M}(\mathscr{A})$ is bounded, hence $\|h\|_{\infty} := \sup_{\omega \in \Omega} |h(\omega)| \in \mathbb{R}_{\geq 0}$, then $h \in \mathcal{L}_{\mathfrak{l}}(\mu)$.
- (vii) If $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ then $h \in \mathcal{L}_1(\mu + \nu)$ if and only if $h \in \mathcal{L}_1(\mu) \cap \mathcal{L}_1(\nu)$. In this case, $(\mu + \nu)(h) = \mu(h) + \nu(h)$.
- (viii) If $\nu = \mathfrak{f}\mu$ with $d\nu/d\mu = \mathfrak{f} \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$ then $g \in \overline{\mathfrak{M}}(\mathscr{A})$ is ν -(quasi)integrable if and only if $g\mathfrak{f} \in \overline{\mathfrak{M}}(\mathscr{A})$ is μ -(quasi)integrable. In this case $\nu(g) = \mu(g\mathfrak{f}) = \int (g\mathfrak{f}) d\mu = \int g d(\mathfrak{f}\mu) = \int g d\nu$.

§02.22 **Proof** of Lemma §02.21. is given in the lecture.

- §02.23 **Corollary** (*Properties*). Let $f, g \in \overline{\mathcal{M}}(\mathscr{A})$ and $\mu \in \mathfrak{M}(\mathscr{A})$.
 - (i) Let $p \in \mathbb{R}_{>0}$. $f \in \mathcal{L}_p(\mu)$ if and only if $|f|^p \in \mathcal{L}_1(\mu)$. Moreover, if $f \in \mathcal{L}_{\infty}(\mu)$ then $\mu(\{|f| > \|f\|_{\mathcal{L}_{\infty}}\}) = 0$.
 - (ii) Let $p \in \overline{\mathbb{R}}_{>0}$. $\|f\|_{\mathcal{L}_p} = 0$ if and only if f = 0 μ -a.e.. If $a \in \mathbb{R}$ then $\|af\|_{\mathcal{L}_p} = |a| \|f\|_{\mathcal{L}_p}$. If $f \in \mathcal{L}_p(\mu)$ and $f = g \ \mu$ -a.e., then $|f| \in \mathbb{R}_{>0} \ \mu$ -a.e. and $\|f\|_{\mathcal{L}_p} = \|g\|_{\mathcal{L}_p}$.

§02.24 **Proof** of Corollary §02.23. Exercise.

§02.25 Lemma (Image measure). Let (Ω, \mathscr{A}) and $(\mathfrak{X}, \mathscr{X})$ be measurable spaces, let $\mu \in \mathfrak{M}(\mathscr{A})$ be a measure and let $X \in \mathfrak{M}(\mathscr{A}, \mathscr{X})$ be measurable. Let $\mu^X := \mu \circ X^{-1} \in \mathfrak{M}(\mathscr{X})$ be the image measure on $(\mathfrak{X}, \mathscr{X})$ of μ under the map X. If $h \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{X})$ then $\mu(h(X)) = \mu^X(h)$. Consequently, $h \in \overline{\mathfrak{M}}(\mathscr{X})$ is μ^X -(quasi)integrable if and only if $h(X) \in \overline{\mathfrak{M}}(\mathscr{A})$ is μ -(quasi)integrable. In this case, $\mu(h(X)) = \mu^X(h)$.

$$(\Omega, \mathscr{A}) \xrightarrow{X} (\mathfrak{X}, \mathscr{X})$$

$$h(X) \in \overline{\mathfrak{M}}(\mathscr{A})$$

$$\mu \text{-(quasi)integrable}$$

$$(\overline{\mathbb{R}}, \overline{\mathscr{B}})$$

In particular, if X is a random variable on $(\Omega, \mathscr{A}, \mathbb{P})$, then

$$\int_{\mathfrak{X}} h(x) \mathbb{P}^{X}(\mathrm{d}x) = \int h \,\mathrm{d}\mathbb{P}^{X} = \mathbb{P}^{X}(h) = \mathbb{P}(h(X)) = \int h(X) \,\mathrm{d}\mathbb{P} = \int_{\Omega} h(X(\omega)) \mathbb{P}(\mathrm{d}\omega).$$

§02.26 Proof of Lemma §02.25. is given in the lecture.

§02|02 Convergence criteria

§02.27 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space. We say that a sequence $(f_n)_{n \in \mathbb{N}}$ in $\mathcal{M}(\mathscr{A})$ converges to $f \in \overline{\mathcal{M}}(\mathscr{A})$

(monotonicity) (positive) (triangle inequality)

- μ -almost everywhere (μ -a.e.), symbolically $f_n \xrightarrow{\mu\text{-a.e.}} f$, if $\limsup_{n\to\infty} |f_n f| = 0$ μ -a.e., that is, there exists a μ -null set $N \in \mathscr{A}$ such that $\lim_{n\to\infty} |f_n(\omega) f(\omega)| = 0$ for any $\omega \in N^c := \Omega \setminus N$.
- $\begin{array}{l} \mu\text{-almost complete} \ (\mu\text{-a.c.}), \ \text{symbolically} \ f_n \xrightarrow{\mu\text{-a.c.}} f, \ \text{if} \ \sum_{n \in \mathbb{N}} \mu\big(\{|f_n f| > \varepsilon\} \cap A\big) \in \mathbb{R}_{\geqslant 0} \\ \text{for every} \ A \in \mathscr{A} \ \text{with} \ \mu(A) \in \mathbb{R}_{\geqslant 0} \ \text{and for every} \ \varepsilon \in \mathbb{R}_{> 0}. \end{array}$
- *in* μ -*measure* (or, briefly, in measure), symbolically $f_n \xrightarrow{\mu} f$, if $\lim_{n \to \infty} \mu(\{|f_n f| > \varepsilon\} \cap A) = 0$ for every $A \in \mathscr{A}$ with $\mu(A) \in \mathbb{R}_{\geq 0}$ and for every $\varepsilon \in \mathbb{R}_{>0}$.
- in $\mathcal{L}_{p}(\mu)$ (or in *p*-th μ -mean) for $p \in \overline{\mathbb{R}}_{>0}$, symbolically $f_n \xrightarrow{\mathcal{L}_{p}(\mu)} f$, if $(f_n)_{n \in \mathbb{N}}$ and f in $\mathcal{L}_{p}(\mu)$ such that $\lim_{n \to \infty} ||f_n f||_{\mathcal{L}_{p}} = 0$.

If μ is a probability measure, then convergence in μ -measure is also called convergence *in probability*. Sometimes we write briefly $f_n \xrightarrow{\text{a.e.}} f$, $f_n \xrightarrow{\text{a.e.}} f$ or $f_n \xrightarrow{\mathcal{L}_p} f$ if the underlying measure emerges from the context.

§02.28 **Remark**. Convergence in $\mathcal{L}_{p}(\mu)$ and convergence μ -almost everywhere evidently determine the limit up to equality μ -almost everywhere. This also applies to convergence in μ -measure, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite. Indeed, if $f_n \xrightarrow{\mu} f$ and $f_n \xrightarrow{\mu} g$ then for every $\varepsilon \in \mathbb{R}_{>0}$ and $A \in \mathscr{A}$ with $\mu(A) \in \mathbb{R}_{\geq 0}$ (since $|f - g| \leq |f - f_n| + |g - f_n|$)

$$\mu(\{|f-g| > \varepsilon\} \cap A) \leqslant \mu(\{|f-f_n| > \varepsilon/2\} \cap A) + \mu(\{|g-f_n| > \varepsilon/2\} \cap A) \xrightarrow{n \to \infty} 0.$$

and hence $\mu(\{|f - g| > \varepsilon\} \cap A) = 0$. Therefore, we have $\mu(\{f \neq g\} \cap A) = 0$ making use of $\{f \neq g\} \cap A = \bigcup_{k \in \mathbb{N}} \{|f - g| > 1/k\} \cap A$. Selecting $A_n \uparrow \Omega$ with $\mu(A_n) \in \mathbb{R}_{\geq 0}$ (since $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$) implies $f = g \mu$ -a.e.. If $\mu \in \mathfrak{M}_{\mathsf{f}}(\mathscr{A})$ is finite, then $\lim_{n \to \infty} \mu(\{|f_n - f| > \varepsilon\}) = 0$ for every $\varepsilon \in \mathbb{R}_{>0}$ and $f_n \xrightarrow{\mu} f$ are equivalent. The last statement does not apply, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite. For instance, on $(\mathbb{N}, 2^{\mathbb{N}}, \zeta_{\mathbb{N}})$ (see Example §01.18 (c) for the counting measure $\zeta_{\mathbb{N}}$) for $A_n := \mathbb{N}_{\geq n}, n \in \mathbb{N}$, we have $\{\mathbbm{1}_{A_n} > \varepsilon\} = A_n$ for every $\varepsilon \in (0, 1)$ and $\{\mathbbm{1}_{A_n} > \varepsilon\} = \emptyset$ for every $\varepsilon \in \mathbb{R}_{\geq 1}$. Since $A_n \downarrow \emptyset$, and hence $\zeta_{\mathbb{N}}(A_n \cap A) \downarrow 0$ for each $A \in \mathscr{A}$ with $\zeta_{\mathbb{N}}(A) \in \mathbb{R}_{\geq 0}$ (upper semicontinuous), we evidently have $\mathbbm{1}_{A_n} \xrightarrow{\zeta_{\mathbb{N}}} 0$. On the other hand side, for each $\varepsilon \in (0, 1)$ we have $\zeta_{\mathbb{N}}(\{\mathbbm{1}_{A_n} > \varepsilon\}) = \zeta_{\mathbb{N}}(A_n) = \infty$ for all $n \in \mathbb{N}$.

- §02.29 **Lemma**. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space.
 - (i) (Monotone convergence) Let $f \in \overline{\mathcal{M}}(\mathscr{A})$ and let $f_n \in \mathcal{L}_1(\mu)$, $n \in \mathbb{N}$. Assume $f_n \uparrow f \mu$ -a.e. Then $\mu(f_n) \uparrow \mu(f)$ where both sides can equal $+\infty$.
 - (ii) (Dominated convergence) Let $(f_n)_{n \in \mathbb{N}}$ in $\overline{\mathcal{M}}(\mathscr{A})$ be μ -a.e. convergent. Assume $\sup_{n \in \mathbb{N}} |f_n| \leq g \mu$ -a.e. with $g \in \mathcal{L}_1(\mu)$. Then there exists $f \in \mathcal{M}(\mathscr{A})$ with $f_n \xrightarrow{\mu\text{-a.e.}} f$, $(f_n)_{n \in \mathbb{N}}$ and f belong to $\mathcal{L}_1(\mu)$ and $\lim_{n \to \infty} \mu((|f f_n|)) = 0$ as well as $\lim_{n \to \infty} \mu(f_n) = \mu(f)$. If $g \in \mathcal{L}_p(\mu)$ for $p \in \mathbb{R}_{\geq 1}$, then $(f_n)_{n \in \mathbb{N}}$ and f belong to $\mathcal{L}_p(\mu)$ and $\lim_{n \to \infty} \|f_n f\|_{\mathcal{L}_p} = 0$.
 - (iii) (Scheffé's theorem) Let $f, f_n \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}), n \in \mathbb{N}$, be μ -integrable. Assume $f_n \xrightarrow{\mu-\mathrm{a.e.}} f$ and $\mu(f_n) \xrightarrow{n \to \infty} \mu(f)$, then $f_n \xrightarrow{\mathcal{L}_1(\mu)} f$.
 - (iv) (*Theorem of Riesz*) Let $f, f_n \in \mathcal{L}_p(\mu), n \in \mathbb{N}$, with $p \in \mathbb{R}_{\geq 1}$ Assume $f_n \xrightarrow{\mu\text{-a.e.}} f. \mu(|f_n|^p) \xrightarrow{n \to \infty} \mu(|f|^p)$ if and only if $f_n \xrightarrow{\mathcal{L}_p(\mu)} f.$
 - (v) Let $f, f_n \in \mathcal{M}(\mathscr{A}), n \in \mathbb{N}$. Then the following implications hold:

$$f_n \xrightarrow{\mu\text{-a.e.}} f \Longrightarrow f_n \xrightarrow{\mu} f \longleftrightarrow f_n \xrightarrow{\mathcal{L}_p(\mu)} f.$$

If $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite, then we also have $f_n \xrightarrow{\mu-\mathrm{a.c.}} f \Longrightarrow f_n \xrightarrow{\mu-\mathrm{a.e.}} f$. Moreover, $f_n \xrightarrow{\mu} f$ if and only if for any subsequent of $(f_n)_{n \in \mathbb{N}}$ there exists a sub-subsequence that converges to $f \mu$ -almost everywhere.

§02.30 **Proof** of Lemma §02.29. is given in the lecture.

- §02.31 **Reminder**. A sequence $(f_n)_{n \in \mathbb{N}}$ in $\mathcal{L}_p(\mu)$ is called $(\mathcal{L}_p(\mu))$ -Cauchy sequence, if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $n_o \in \mathbb{N}$ such that $||f_n - f_m||_{\mathcal{L}_p(\mu)} \leq \varepsilon$ for all $m, n \in \mathbb{N}_{>n_o}$, symbolically $\lim_{n,m\to\infty} ||f_n - f_m||_{\mathcal{L}_p(\mu)} = 0$. Keep in mind that every $\mathcal{L}_p(\mu)$ convergent sequence by applying Minkowski's inequality (see Lemma §02.50 (iii)) is also a $\mathcal{L}_p(\mu)$ -Cauchy sequence.
- §02.32 **Lemma**. Let $p \in \overline{\mathbb{R}}_{\geq 1}$ and let $(f_n)_{n \in \mathbb{N}}$ be a $\mathcal{L}_p(\mu)$ -Cauchy sequence. Then there exists $f \in \mathcal{L}_p(\mu)$ such that $f_n \xrightarrow{\mathcal{L}_p(\mu)} f$ and there exists a subsequence of $(f_n)_{n \in \mathbb{N}}$ that converges μ -a.e. to f.
- §02.33 **Proof** of Lemma §02.32. is given in the lecture.
- §02.34 Corollary. Let $p \in \overline{\mathbb{R}}_{\geq 1}$ and let $(f_n)_{n \in \mathbb{N}}$ be a $\mathcal{L}_p(\mu)$ -Cauchy sequence that converges μ -a.e. to $f \in \mathcal{M}(\mathscr{A})$. Then f belongs to $\mathcal{L}_p(\mu)$ and $f_n \xrightarrow{\mathcal{L}_p(\mu)} f$.
- §02.35 **Proof** of Corollary §02.34. is given in the lecture.
- §02.36 **Preliminaries**. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space, let $p \in \mathbb{R}_{\geq 1}$ and let $f \in \overline{\mathcal{M}}(\mathscr{A})$. f is μ -integrable if and only if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $g \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ such that $\mu(|f|\mathbb{1}_{\{|f|\geq g\}}) \leq \varepsilon$ or in equal inf $\{\mu(|f|\mathbb{1}_{\{|f|\geq g\}}): g \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})\} = 0$. Assume $\mu(|f|) \in \mathbb{R}_{\geq 0}$. Setting $g := 2|f| \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ we evidently have $\{|f| \geq g\} = \{f = 0\} \cup \{|f| = \infty\}$ and hence applying Corollary §02.23 (ii) also $\mu(|f|\mathbb{1}_{\{|f|\geq g\}}) = 0$. We obtain the converse by exploiting $\mu(|f|) = \mu(|f|\mathbb{1}_{\{|f|\geq g\}}) + \mu(|f|\mathbb{1}_{\{|f|< g\}}) \leq \varepsilon + \mu(g) \in \mathbb{R}_{>0}$, which in turn implies $\mu(|f|) \in \mathbb{R}_{\geq 0}$.
- §02.37 **Definition**. A class of functions $\mathcal{F} \subseteq \mathcal{L}_1(\mu)$ is called *uniformly* μ *-integrable* if

$$\inf\Big\{\sup_{f\in\mathfrak{F}}\mu\big(|f|\mathbb{1}_{\{|f|\geq g\}}\big)\colon g\in\mathcal{L}_{\mathbf{1}}(\mu)\cap\overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})\Big\}=0.$$

If $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ is finite, then uniform μ -integrability is equivalent to the condition:

$$\inf\left\{\sup_{f\in\mathcal{F}}\mu\left(|f|\mathbb{1}_{\{|f|\geqslant a\}}\right):a\in\mathbb{R}_{\geqslant 0}\right\}=0.$$

§02.38 Remark.

- (a) Let \mathcal{F} be uniformly μ -integrable and let $\varepsilon \in \mathbb{R}_{>0}$. A function $g \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ is called ε -majorant if $\sup_{f \in \mathcal{F}} \mu(|f| \mathbb{1}_{\{|f| \geq g\}}) \leq \varepsilon$. Evidently, there exists a ε -majorant g for \mathcal{F} and every $h \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ with $h \geq g$ is also a ε -majorant for \mathcal{F} .
- (b) A family $(f_i)_{i \in \mathcal{I}}$ in $\overline{\mathcal{M}}(\mathscr{A})$ is called *uniformly* μ -*integrable* if the class $\{f_i : i \in \mathcal{I}\}$ is.
- (c) Let 𝔅_i, i ∈ [[n]], be finitly many uniformly μ-integrable classes in M(𝔄). Then their union 𝔅 := ∪_{i∈[[n]}𝔅_i is also uniformly μ-integrable. Indeed, for every ε ∈ ℝ_{>0} and ε-majorant g_i for 𝔅_i, i ∈ [[n]], the function g₁ ∨ · · · ∨ g_n is a ε-majorant for 𝔅.
- (d) Let $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$ and let $g \in \mathcal{L}_{p}(\mu) \cap \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ satisfy $|f| \leq g \mu$ -a.e. for all $f \in \mathcal{F}$. Then $\mathcal{F}^{p} := \{|f|^{p} \colon f \in \mathcal{F}\}$ is uniformly μ -integrable. For $\varepsilon \in \mathbb{R}_{>0}$ every ε -majorant h for $\{g^{p}\}$ is a ε -majorant for \mathcal{F}^{p} , since $\mu(|f|^{p}\mathbb{1}_{\{|f|^{p} > h\}}) \leq \mu(|g|^{p}\mathbb{1}_{\{|g|^{p} > h\}}) \leq \varepsilon$ for all $f \in \mathcal{F}$. \Box

§02.39 **Lemma**. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space.

- (i) If $\mathfrak{F} \subseteq \mathcal{L}_1(\mu)$ is a finite set then \mathfrak{F} is uniformly μ -integrable.
- (ii) If $\mathfrak{F}, \mathfrak{G} \subseteq \mathcal{L}_{\mathfrak{i}}(\mu)$ are uniformly μ -integrable, then $\{f + g: f \in \mathfrak{F}, g \in \mathfrak{G}\}, \{f g: f \in \mathfrak{F}, g \in \mathfrak{G}\}$ and $\{|f|: f \in \mathcal{F}\}$ are uniformly μ -integrable.
- (iii) If $\mathfrak{F} \subseteq \mathcal{L}_{\mathfrak{l}}(\mu)$ is uniformly μ -integrable, and if, for any $g \in \mathfrak{G} \subseteq \overline{\mathfrak{M}}(\mathscr{A})$, there exists an $f \in \mathfrak{F}$ with $|g| \leq |f|$, then $\mathcal{G} \subseteq \mathcal{L}_1(\mu)$ is also uniformly μ -integrable.
- (iv) Let $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ be finite, let $p \in \mathbb{R}_{>1}$ and let \mathfrak{F} be bounded in $\mathcal{L}_p(\mu)$, that is, $\sup \{ \|f\|_{\mathcal{L}} : f \in \mathcal{F} \} \in \mathbb{R}_{\geq 0}.$ Then \mathcal{F} is uniformly μ -integrable.
- §02.40 **Proof** of Lemma §02.39. We refer to the lecture EWS / Exercise.
- §02.41 **Theorem**. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space. $\mathfrak{F} \subseteq \overline{\mathfrak{M}}(\mathscr{A})$ is uniformly μ -integrable if and only if the following two conditions hold:
 - (gI1) \mathcal{F} is bounded in $\mathcal{L}_1(\mu)$, i.e. $\sup \{ \mu(|f|) : f \in \mathcal{F} \} \in \mathbb{R}_{\geq 0}$.
 - (gI2) For any $\varepsilon \in \mathbb{R}_{>0}$ there are $h \in \mathcal{L}_1(\mu) \cap \overline{\mathcal{M}}_{>0}(\mathscr{A})$ and $\delta \in \mathbb{R}_{>0}$ such that for all $A \in \mathscr{A}$ holds the implication: $\mu(h\mathbb{1}_A) \leq \delta \Rightarrow \sup_{f \in \mathcal{F}} \mu(|f|\mathbb{1}_A) \leq \varepsilon$.
- §02.42 **Proof** of Theorem §02.41. is given in the lecture.
- §02.43 **Theorem.** Let $(\Omega, \mathscr{A}, \mu)$ be a measure space, let $p \in \mathbb{R}_{\geq 1}$ and let $(f_n)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_p(\mu) \cap$ $\mathfrak{M}(\mathscr{A})$. Then (i) $(f_n)_{n\in\mathbb{N}}$ converges in $\mathcal{L}_p(\mu)$, is equivalent to (ii) $(|f_n|^p)_{n\in\mathbb{N}}$ is uniformly μ integrable and $(f_n)_{n \in \mathbb{N}}$ converges in μ -measure.
- 02.44 **Proof** of Theorem 02.43. (i) \Rightarrow (ii) in the lecture, for the converse we refer to Bauer (1992, Theorem 21.4, p.142)
- §02.45 **Remark**. The Theorem §02.43 guarantees the existence of a $\mathcal{L}_p(\mu)$ -integrable function under the possible limits in μ -measure of the sequence $(f_n)_{n \in \mathbb{N}}$.
- §02.46 Corollary. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ -finite, let $p \in \mathbb{R}_{\geq 1}$ and let $(f_n)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_{p}(\mu)$. Assume $f_n \xrightarrow{\mu} f \in \mathcal{M}(\mathscr{A}) \text{ and } (|f_n|^p)_{n \in \mathbb{N}} \text{ is uniformly } \mu \text{-integrable. Then } f \in \mathcal{L}_p(\mu) \text{ and } f_n \xrightarrow{\mathcal{L}_p(\mu)} f.$
- §02.47 **Proof** of **Corollary** §02.46. is given in the lecture.
- §02.48 Summary. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space, let $p \in \overline{\mathbb{R}}_{\geq 1}$, and let $(f_n)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_{p}(\mu)$. Then the following claims are equivalent:
 - (i) There is $f \in \mathcal{L}_p(\mu)$ such that $f_n \xrightarrow{\mathcal{L}_p(\mu)} f$.
 - (ii) $(f_n)_{n \in \mathbb{N}}$ is a $\mathcal{L}_p(\mu)$ -Cauchy sequence, i.e. $\lim_{n,m\to\infty} ||f_n f_m||_{\mathcal{L}_p} = 0.$

Assume in addition $p \in \mathbb{R}_{\geq 1}$ and $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite. Then (i) and (ii) are equivalent to

(iii) $(|f_n|^p)_{n \in \mathbb{N}}$ is uniformly μ -integrable, and there is $f \in \mathcal{M}(\mathscr{A})$ such that $f_n \xrightarrow{\mu} f$.

The limes in (i) and in (iii) coincide.

Figure 02 [§02] Implications of convergence criteria.

The Figure 02 [§02] was created based on Klenke (2020, Abb.6.1, p.159).

 $02|03 \mathcal{L}_p$ -Spaces

§02.49 **Reminder**. For $p \in \overline{\mathbb{R}}_{>0}$ and $f, g \in \overline{\mathcal{M}}(\mathscr{A})$ we have shown that $||f - g||_{\mathcal{L}_p(\mu)} = 0$ if and only if $f = g \mu$ -a.e.. In this case we now consider f and g as equivalent. More precisely, for each $f \in \overline{\mathcal{M}}(\mathscr{A})$ we introduce the μ -equivalence class $\{f\}_{\mu} := \{g \in \overline{\mathcal{M}}(\mathscr{A}): g = f \mu$ -a.e.} and hence $\{0\}_{\mu} = \{g \in \overline{\mathcal{M}}(\mathscr{A}): g = 0 \mu$ -a.e.}. For any $p \in \overline{\mathbb{R}}_{>1}, \{0\}_{\mu}$ is a subvector space of $\mathcal{L}_p(\mu)$. Thus formally we can build the factor space

$$\mathbb{L}_p := \mathbb{L}_p(\mu) := \mathbb{L}_p(\Omega, \mathscr{A}, \mu) := \left\{ \{f\}_\mu := f + \{0\}_\mu : f \in \mathcal{L}_p(\mu) \right\}.$$

For $\{f\}_{\mu} \in \mathbb{L}_{p}(\mu)$, define $\|\{f\}_{\mu}\|_{\mathbb{L}_{p}(\mu)} := \|f\|_{\mathcal{L}_{p}}$ for any $f \in \{f\}_{\mu}$. Also let $\mu(\{f\}_{\mu}) := \mu(f)$ if this expression is defined for f. Note that $\|\{f\}_{\mu}\|_{\mathbb{L}_{p}(\mu)}$ and $\mu(\{f\}_{\mu})$ do not depend on the choice of the representative $f \in \{f\}_{\mu}$. Similarly, for $\{f\}_{\mu}, \{g\}_{\mu} \in \mathbb{L}_{2}(\mu)$ define

$$\langle \{f\}_{\mu}, \{g\}_{\mu} \rangle_{\mathbb{L}_{2}(\mu)} := \langle f, g \rangle_{\mathcal{L}_{2}(\mu)} = \mu(fg)$$

with $f \in \{f\}_{\mu}$ and $g \in \{g\}_{\mu}$.

§02.50 **Lemma**. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space and $f, g \in \overline{\mathcal{M}}(\mathscr{A})$.

- (i) (Hölder's inequality) Let $s, r \in \overline{\mathbb{R}}_{\geq 1}$ with $\frac{1}{s} + \frac{1}{r} = 1$. Then $\mu(|fg|) \leq ||f||_{\mathcal{L}_p} ||g||_{\mathcal{L}_q}$. (Cauchy-Schwarz inequality) If $f, g \in \mathcal{L}_2$ then $|\langle f, g \rangle_{\mathcal{L}_2}| \leq ||f||_{\mathcal{L}_2} ||g||_{\mathcal{L}_2}$.
- (ii) If $\mu \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ is finite, $s \in \overline{\mathbb{R}}_{>0}$ and $r \in (0, s)$. Then $\mu(\Omega)^{1/s} \|f\|_{\mathcal{L}_{\mathfrak{r}}(\mu)} \leq \mu(\Omega)^{1/r} \|f\|_{\mathcal{L}_{\mathfrak{s}}(\mu)}$ and hence $\mathcal{L}_{\mathfrak{s}}(\mu) \subseteq \mathcal{L}_{\mathfrak{r}}(\mu)$.
- (iii) (*Minkowski's inequality*) For any $p \in \overline{\mathbb{R}}_{\geq 1}$, $||f + g||_{\mathcal{L}_n} \leq ||f||_{\mathcal{L}_n} + ||g||_{\mathcal{L}_n}$.
- (iv) (*Fischer-Riesz*) For any $p \in \overline{\mathbb{R}}_{\geq 1}$, $(\mathbb{L}_p(\mu), \|\cdot\|_{\mathbb{L}_p(\mu)})$ is a Banach space. $(\mathbb{L}_2(\mu), \langle \cdot, \cdot \rangle_{\mathbb{L}_2(\mu)})$ is a real Hilbert space.
- §02.51 Proof of Lemma §02.50. For (i) and (iii) we refer to the lecture EWS or Bauer (1992, Satz 14.1/14.2, p.85/86). (ii) is shown in the lecture and (iv) can be found, for example, in Klenke (2008, Theorem 7.18, p.151)
- §02.52 **Remark**. Let $(V, \langle \cdot, \cdot \rangle)$ be a Hilbert space. Then the *Riesz-Fréchet representation theorem* states, that a map $F : V \to \mathbb{R}$ is continuous and linear if and only if there is an $f \in V$ with $F(x) = \langle f, x \rangle$ for all $x \in V$. The uniquely determined element $f \in V$ is called *representative* of F. In the next section we will need the representation theorem for the space \mathcal{L}_2 , which unlike \mathbb{L}_2 is not a Hilbert space. The representation theorem still holds if V is a linear vector space and $\langle \cdot, \cdot \rangle$ is a complete positive semidefinite symmetric bilinear form (complete semi-inner product) (c.f. Klenke (2008) section 7.3).
- §02.53 **Lemma**. The map $F : \mathcal{L}_2(\mu) \to \mathbb{R}$ is continuous and linear if and only if there is an $f \in \mathcal{L}_2(\mu)$ with $F(g) = \mu(gf)$ for all $g \in \mathcal{L}_2(\mu)$.

§02.54 **Proof** of Lemma §02.53. we refer to Klenke (2008, Corollary 7.28, p.154)

§03 Measures with density - Theorem of Radon-Nikodym

§03.01 **Definition**. Let $\nu, \mu \in \mathfrak{M}(\mathscr{A})$ be arbitrary measures on (Ω, \mathscr{A}) .

- $\nu \ll \mu$: ν is called *absolutely continuous* with respect to μ , μ -continuous, or dominated by μ , if any μ -null set is also a ν -null set, that is, $\nu(A) = 0$ for all $A \in \mathscr{A}$ with $\mu(A) = 0$. The measures Maße μ and ν are called *equivalent* (symbolically $\mu \ll \nu$), if $\nu \ll \mu$ and $\mu \ll \nu$.
- $\mu \perp \nu$: μ is called *singular* to ν or ν -*singular*, if there exists a μ -null set $N \in \mathscr{A}$ such that $\nu(\Omega \setminus N) = 0$, or in equal $\nu = \mathbb{1}_N \nu$, that is, $\nu(A) = \nu(A \cap N)$ for all $A \in \mathscr{A}$.
- §03.02 **Remark**. Evidently, $\mu \perp \nu$ if and only if there are $\Omega_{\mu}, \Omega_{\nu} \in \mathscr{A}$ with $\Omega = \Omega_{\mu} \biguplus \Omega_{\nu}$ and $\mu(\Omega_{\nu}) = 0 = \nu(\Omega_{\mu})$, and hence if and only if $\nu \perp \mu$. Consequently measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ with $\mu \perp \nu$ are also called mutually singular. The condition $\nu = \mathbb{1}_{N}\nu$ means the support of the measure ν is contained in $N \in \mathscr{A}$. Note that $\nu \ll \mu$ and $\nu \perp \mu$ imply together $\nu(N) = 0$, and hence $\nu = 0$.
- §03.03 Lemma. Let $\nu, \mu \in \mathfrak{M}(\mathscr{A})$ be measures on (Ω, \mathscr{A}) . ν is called totally continuous with respect to μ if, for any $\varepsilon \in \mathbb{R}_{>0}$ there exists a $\delta \in \mathbb{R}_{>0}$ such that $\nu(A) \leq \varepsilon$ for all $A \in \mathscr{A}$ with $\mu(A) \leq \delta$. If ν is totally continuous with respect to μ , then $\nu \ll \mu$. If $\nu \in \mathfrak{M}_{e}(\mathscr{A})$ is finite, then the converse also holds.
- §03.04 **Proof** of Lemma §03.03. is given in the lecture.

Reminder. For measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ we write $\nu \leq \mu$ if $\nu(A) \leq \mu(A)$ for all $A \in \mathscr{A}$.

- §03.05 **Lemma**. Let $\nu, \mu \in \mathfrak{M}_{\mathfrak{l}}(\mathscr{A})$ be finite measures with $\nu \leq \mu$, then there exists $h \in \mathfrak{M}_{\mathfrak{[0,1]}}(\mathscr{A})$ such that $\nu = h\mu$.
- §03.06 **Proof** of Lemma §03.05. is given in the lecture.
- §03.07 **Theorem of Radon-Nikodym**. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be a σ -finite measure and let $\nu \in \mathfrak{M}(\mathscr{A})$ be a μ -continuous measure, i.e. $\nu \ll \mu$. Then ν has a density $\mathfrak{f} = d\nu/d\mu \in \overline{\mathfrak{M}}_{\geqslant 0}(\mathscr{A})$ with respect to μ , that is, $\nu = \mathfrak{f} \mu$.
- §03.08 **Proof** of Theorem §03.07. is given in the lecture.
- §03.09 **Remark**. Let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ -finite measures with $\nu \ll \mu$ and let $\mathfrak{f} = d\nu/d\mu \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$ be a μ -density of ν . Then Theorem §03.07 implies directly the usual *chain rules*:
 - (a) If $g \in \overline{\mathcal{M}}(\mathscr{A})$ is ν -quasiintegrable, then $\nu(g\mathbb{1}_A) = \mu(g\mathbb{1}_A)$ for all $A \in \mathscr{A}$.
 - (b) If $\rho \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is a σ -finite measure with $\rho \ll \nu \ll \mu$ then $\frac{d\rho}{d\mu} = \frac{d\rho}{d\nu} \frac{d\nu}{d\mu} \mu$ -a.e..

(c) If
$$h \in \mathcal{M}_{[0,1]}(\mathscr{A})$$
 with $h = \frac{\mathrm{d}\nu}{\mathrm{d}(\nu+\mu)} \mu$ -a.e. then $\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = \frac{h}{1-h} \mu$ -a.e.

§03.10 Example.

- (a) Continuous probability measures on $(\mathbb{R}^k, \mathscr{B}^k)$ as studied in the lecture EWS are probability measures dominated by the Lebesgue measure λ^k with corresponding (Radon-Nikodym-) density.
- (b) Discret probability measures on a countable set Ω introduced in the lecture EWS are probability measures dominated by the counting measure ζ_Ω and the mass function corresponds to the (Radon-Nikodym-) density. Similarly, if Ω ⊆ ℝ then the discrete measure μ ∈ M_σ(𝔅) with mass function p as in Example §01.18 (c) is absolutely continuous with respect to the counting measure ζ_Ω ∈ M_σ(𝔅) with (Radon-Nikodym-) density p. □
- §03.11 Lebesgue's decomposition theorem. Let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ -finite measures on (Ω, \mathscr{A}) . Then there exists a unique decomposition $\nu = \nu_a + \nu_s$ of ν into two measures $\nu_a, \nu_s \in \mathfrak{M}(\mathscr{A})$ such

that $\nu_a \ll \mu$ and $\nu_s \perp \mu$ is the μ -continuous, respectively the μ -singular part of ν . Moreover, $\nu_a, \nu_s \in \mathfrak{M}_{\sigma}(\mathscr{A})$ are σ -finite, and $\nu_a, \nu_s \in \mathfrak{M}_{\mathfrak{f}}(\mathscr{A})$ are finite if and only if $\nu \in \mathfrak{M}_{\mathfrak{e}}(\mathscr{A})$ is finite. ν_a has $a \mu$ -density $d\nu_a/d\mu \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$ with $d\nu_a/d\mu \in \mathbb{R}_{\geq 0} \mu$ -a.e.

- §03.12 **Proof** of Theorem §03.11. is given in the lecture.
- §03.13 **Remark**. If $f = d\nu_a/d\mu \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ is a μ -density of ν_a as in Theorem §03.11 then the positive real function $\tilde{f} := f \mathbb{1}_{\{f \in \mathbb{R}_{\geq 0}\}} \in \mathcal{M}_{\geq 0}(\mathscr{A})$ is also a μ -density of ν_a , since $f = \tilde{f} \mu$ -a.e. In other words $\tilde{f} \in \mathcal{M}_{\geq 0}(\mathscr{A})$ is also a version of the Radon-Nikodym density of ν_a with respect to μ . Consequently, without loss of generality we chose here and subsequently a positive real version of the Radon-Nikodym density. Furthermore, given $f = d\nu_a/d\mu \in \mathcal{M}_{\geq 0}(\mathscr{A})$ let us define a numerical function $L := f \mathbb{1}_{N^c} + \infty \mathbb{1}_N \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ with $\mu(N) = 0 = \nu_s(N^c)$ where $\{L = \infty\} = N$ and the Lebesgue decomposition writes $\nu = L\mu + \mathbb{1}_{\{L=\infty\}}\nu$, i.e. for all $A \in \mathscr{A}$ we have $\nu(A) = \mu(\mathbb{1}_A L) + \nu(A \cap \{L = \infty\})$.
- §03.14 **Definition**. Let $\nu, \mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ -finite measures on (Ω, \mathscr{A}) , where $\nu \ll \mu$ does not necessarily hold. Any positive numerical function $L \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A})$ satisfying

$$\mu(L = \infty) = 0 \text{ and } \nu = L\mu + \mathbb{1}_{\{L = \infty\}}\nu$$
(03.01)

is called *density ratio* of ν with respect to μ , or μ -density ratio of ν .

- §03.15 **Lemma**. Let $\nu, \mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ -finite measures. Then the μ -density ratio $L \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ of ν is unique up to $(\nu + \mu)$ -a.e. equivalence.
- §03.16 **Proof** of Lemma §03.15. is given in the lecture.

Alternative formulation of the theorem of Radon-Nikodym

- §03.17 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$ be a class of numerical functions. A function $g \in \overline{\mathcal{M}}(\mathscr{A})$ is called a μ -essential supremum over \mathcal{F} , symbolically $g = \mu$ -ess $\sup_{f \in \mathcal{F}} f$, if (a) $f \leq g \mu$ -a.e. for all $f \in \mathcal{F}$, and (b) if $h \in \overline{\mathcal{M}}(\mathscr{A})$ satisfies $f \leq h \mu$ -a.e. for all $f \in \mathcal{F}$ then $g \leq h \mu$ -a.e.
- §03.18 **Remark**. The μ -essential supremum can be seen as an extension of the usual concept of the supremum. If \mathcal{F} is countable and $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ -finite, then $g := \sup_{f \in \mathcal{F}} f$ satisfies the conditions §03.17 (a) and (b), and hence $\sup_{f \in \mathcal{F}} f = \mu$ -ess $\sup_{f \in \mathcal{F}} f \mu$ -a.e. In contrast, if for example $\mathcal{F} = \{\mathbb{1}_{\{x\}}, x \in B\}$ with uncountable $B \in \mathscr{B}$ such that $\lambda(B) \in \mathbb{R}_{>0}$, then the λ -essential supremum and the usual supremum differ. Precisely, $\sup_{f \in \mathcal{F}} f = \mathbb{1}_B \neq 0 = \lambda$ -ess $\sup_{f \in \mathcal{F}} f$.
- §03.19 **Lemma**. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ and $\mathfrak{F} \subseteq \overline{\mathfrak{M}}(\mathscr{A})$. Then:
 - (i) g := μ-ess sup_{f∈F} f exists and it is μ-a.e. uniquely determined, that is, if g ∈ M(𝔄) is a solution of Definition §03.17 (a) and (b) then also g̃ ∈ M(𝔄) with μ({g ≠ g̃}) = 0.
 - (ii) There exists a sequence $(f_n)_{n \in \mathbb{N}}$ in \mathcal{F} with $g = \sup_{n \in \mathbb{N}} f_n \mu$ -a.e.
 - (iii) If \mathfrak{F} is increasing filtered (for all $h, k \in \mathfrak{F}$ exists $f \in \mathfrak{F}$ with $f \ge h \lor k$), then there exists an isotone sequence $(f_n)_{n \in \mathbb{N}}$ in \mathfrak{F} with $f_n \uparrow g \mu$ -a.e..

§03.20 **Proof** of Lemma §03.19. We refer to Witting (1985, Satz 1.102, S.105).

§03.21 **Lemma**. Let $\mu, \nu \in \mathfrak{M}_{f}(\mathscr{A})$ be finite and mutually not singular measures on (Ω, \mathscr{A}) . Then there is $\Omega_{\circ} \in \mathscr{A}$ with $\mu(\Omega_{\circ}) \in \mathbb{R}_{>0}$ and $\varepsilon \in \mathbb{R}_{>0}$ with $\varepsilon \mathbb{1}_{\Omega_{\circ}} \mu \leq \mathbb{1}_{\Omega_{\circ}} \nu$.

- §03.22 Proof of Lemma §03.21. The claim is shown in Klenke (2020, Lemma 7.46, S.184) with help of the Hahn-decomposition for signed measures. An alternative proof of the claim is given in the proof of Bauer (1992, Satz 17.10, S.117) exploiting Bauer (1992, Lemma 17.9, S.114). □
- §03.23 **Lemma**. Let $\nu, \mu \in \mathfrak{M}_{f}(\mathscr{A})$ be finite with $\nu \leq \mu$. Set $\mathfrak{F} := \{f \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{A}) : f\mu \leq \nu\}$ and $g := \mu$ -ess $\sup_{f \in \mathfrak{F}} f$. Then $\nu = g\mu$, that is, g is a version of the μ -density of ν .
- §03.24 **Proof** of Lemma §03.23. is given in the lecture.

§04 Measures on product spaces

§04|01 Finite product measures

- §04.01 **Reminder**. Let \mathcal{I} be an arbitrary nonempty index set and let (S_i, \mathscr{S}_i) , $i \in \mathcal{I}$, be measurable spaces. The set $S_{\mathfrak{I}} := X_{i \in \mathcal{I}} S_i$ of all maps $(s_i)_{i \in \mathcal{I}} : \mathcal{I} \to \bigcup_{i \in \mathcal{I}} S_i$ such that $s_i \in S_i$ for all $i \in \mathcal{I}$ is called *product space* or *Cartesian product*. We identify the map $i \mapsto s_i$ and the family $(s_i)_{i \in \mathcal{I}}$. If $S_i = S$ for all $i \in \mathcal{I}$ then we write $S^{\mathcal{I}} := S_{\mathfrak{I}}$, and in case $n := |\mathcal{I}| \in \mathbb{N}$ also $S^n := S^{\mathcal{I}}$ for short. For every $\mathcal{J} \subseteq \mathcal{I}$ the map $\prod_{\mathcal{J}} : S_{\mathfrak{I}} \to S_{\mathcal{J}}$ with $(s_i)_{i \in \mathcal{I}} \mapsto (s_j)_{j \in \mathcal{J}}$ is called *canonical projection* and in particular for $j \in \mathcal{I}$ the map $\prod_{\mathcal{J}} := \prod_{(j)} : S_{\mathfrak{I}} \to S_j$ with $(s_i)_{i \in \mathcal{I}} \mapsto s_j$ is called *coordinate map* such that $X_{i \in \mathcal{I}} E_i = \bigcap_{i \in \mathcal{I}} \prod_i^{-1}(E_i)$ for all $E_i \subseteq S_i$ and $i \in \mathcal{I}$.
- 04.02 **Definition**. Let \mathcal{I} be an arbitrary nonempty index set.
 - (a) Let (Ω, \mathscr{A}) be a measurable space and for each $i \in \mathcal{I}$ let $\mathscr{A}_i \subseteq \mathscr{A}$ be a σ -algebra. The σ -algebra

$$\bigwedge_{i\in\mathcal{I}}\mathscr{A}_i:=\bigcap_{i\in\mathcal{I}}\mathscr{A}_i\quad\text{and}\quad\bigvee_{i\in\mathcal{I}}\mathscr{A}_i:=\sigma(\bigcup_{i\in\mathcal{I}}\mathscr{A}_i)$$

is respectively the *largest* σ -algebra on Ω , that belongs to all \mathscr{A}_i , $i \in \mathcal{I}$, and the *smallest* σ -algebra on Ω , that contains all \mathscr{A}_i , $i \in \mathcal{I}$.

(b) For each $i \in \mathcal{I}$ let (S_i, \mathscr{S}_i) be a measurable space. The *product-\sigma-algebra*

$$\mathscr{S}_{\mathcal{I}} := \bigotimes_{i \in \mathcal{I}} \mathscr{S}_i$$

is the smallest σ -algebra on the product space $S_{\tau} = X_{i \in \mathcal{I}} S_i$ such that for every $i \in \mathcal{I}$ the coordinate map $\prod_i : S_{\tau} \to S_i$ is measurable with respect to \mathscr{I}_{τ} - \mathscr{I}_i , i.e. $\prod_i \in \mathcal{M}(S_{\tau}, S_i)$; that is,

$$\mathscr{S}_{\mathcal{I}} = \bigotimes_{i \in \mathcal{I}} \mathscr{S}_i := \bigvee_{i \in \mathcal{I}} \sigma(\Pi_i) = \bigvee_{i \in \mathcal{I}} \Pi_i^{-1}(\mathscr{S}_i).$$

If $(\mathcal{S}_i, \mathscr{S}_i) = (\mathcal{S}, \mathscr{S})$ for all $i \in \mathcal{I}$, then we also write $\mathscr{S}^{\mathcal{I}} := \mathscr{S}_{\mathcal{I}}$, and $\mathscr{S}^n := \mathscr{S}^{\mathcal{I}}$ in case $n := |\mathcal{I}| \in \mathbb{N}$. The family $(\prod_i)_{i \in \mathcal{I}}$ is called the *canonical process* on $(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}})$.

Consider now the situation of finitely many measure spaces $(S_i, \mathscr{S}_i, \mu_i), i \in [n]$, where $n \in \mathbb{N}$.

§04.03 **Lemma**. For every $i \in [\![n]\!]$ let \mathscr{E}_i be a generator of the σ -algebra \mathscr{S}_i on \mathbb{S}_i and let $(\mathcal{E}_{ik})_{k \in \mathbb{N}}$ be a sequence in \mathscr{E}_i such that $\mathcal{E}_{ik} \uparrow \mathbb{S}_i$. Then the product- σ -algebra $\mathscr{S}_{[n]} = \bigotimes_{i \in [\![n]\!]} \mathscr{S}_i$ is generated by the class of sets $\{ X_{i \in [\![n]\!]} \ \mathcal{E}_i \in \mathscr{E}_i, i \in [\![n]\!] \}$.

§04.04 **Proof** of Lemma §04.03. is given in the lecture.

§04.05 **Remark**. Let $\mathscr{S}_1 = \{\emptyset, \mathbb{S}_1\}$ and $\mathscr{E}_1 = \{\emptyset\}$. Let $\mathscr{E}_2 = \mathscr{S}_2$ be a σ -algebra on \mathbb{S}_2 containing at least 4 elements. Then the class of sets $\{\emptyset \times E : E \in \mathscr{E}_2\}$ does not generate the product- σ -algebra $\mathscr{S}_1 \otimes \mathscr{S}_2$. Consequently, the restrictive assumption on the generator in Lemma §04.03 cannot simply be dispensed with. On the other hand side by applying Lemma §04.03 the product- σ -Algebra $\mathscr{S}_{[n]} = \bigotimes_{i \in [[n]]} \mathscr{S}_i$ is generated by the class of sets $\{\mathsf{X}_{i \in [[n]]} \ \mathscr{E}_i : \mathscr{E}_i \in \mathscr{S}_i, i \in [[n]]\}$

§04.06 **Definition**. A measure $\mu_{[n]} \in \mathfrak{M}(\mathscr{S}_{[n]})$ on $(\mathfrak{S}_{[n]}, \mathscr{S}_{[n]})$ is called *product measure* if

$$\mu_{\llbracket n \rrbracket} \left(\mathsf{X}_{i \in \llbracket n \rrbracket} \, \mathcal{E}_i \right) = \mu_{\llbracket n \rrbracket} \left(\bigcap_{i \in \llbracket n \rrbracket} \Pi_i^{-1}(\mathcal{E}_i) \right) = \prod_{i \in \llbracket n \rrbracket} \mu_i(\mathcal{E}_i) \quad \text{for} \quad \mathcal{E}_i \in \mathscr{S}_i, \ i \in \llbracket n \rrbracket.$$

In this case we write $\bigotimes_{i \in \llbracket n \rrbracket} \mu_i := \mu_{\llbracket n \rrbracket}$. If $\mu_i = \mu$ for all $i \in \llbracket n \rrbracket$, then we write $\mu^n := \mu_{\llbracket n \rrbracket}$.

§04.07 **Lemma** (Uniqueness of finite product measures). For every $i \in [\![n]\!]$ let \mathscr{E}_i be a \cap -closed generator of the σ -algebra \mathscr{S}_i on \mathbb{S}_i and let (uC) $(\mathcal{E}_{ik})_{k\in\mathbb{N}}$ be a sequence in \mathscr{E}_i such that $\mu_i(\mathcal{E}_{ik}) \in \mathbb{R}_{\geq 0}$ for every $k \in \mathbb{N}$ and $\mathcal{E}_{ik} \uparrow \mathbb{S}_i$. Then there is at most one measure $\mu_{[n]} \in \mathfrak{M}(\mathscr{S}_{[n]})$ on $(\mathbb{S}_{[n]}, \mathscr{S}_{[n]})$ with

$$\mu_{\llbracket n \rrbracket} \big(\mathsf{X}_{i \in \llbracket n \rrbracket} \, \mathcal{E}_i \big) = \prod_{i \in \llbracket n \rrbracket} \mu_i(\mathcal{E}_i) \quad \textit{for} \quad \mathcal{E}_i \in \mathscr{E}_i, \; i \in \llbracket n \rrbracket.$$

§04.08 **Proof** of Lemma §04.07. is given in the lecture.

- §04.09 **Remark**. Under the assumptions of Lemma §04.07 follows immediately that for every $i \in [n]$ the measure $\mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_i)$ is σ -finite.
- §04.10 Notation. For $i \in \llbracket 2 \rrbracket$ let (S_i, \mathscr{S}_i) be a measurable space. For all $\mathcal{E} \subseteq S_1 \times S_2$, $s_1 \in S_1$ and $s_2 \in S_2$ we write $\mathcal{E}_{s_1} := \{s_2 \in S_2 : (s_1, s_2) \in \mathcal{E}\}$ and $\mathcal{E}^{s_2} := \{s_1 \in S_1 : (s_1, s_2) \in \mathcal{E}\}$.
- §04.11 **Lemma**. For all $\mathcal{E} \in \mathscr{S}_1 \otimes \mathscr{S}_2$, $s_1 \in S_1$ and $s_2 \in S_2$ we have $\mathcal{E}_{s_1} \in \mathscr{S}_2$ und $\mathcal{E}^{s_2} \in \mathscr{S}_1$.
- §04.12 **Proof** of Lemma §04.11. is given in the lecture.
- §04.13 **Remark**. Due to Lemma §04.11 $\mu_2(\mathcal{E}_{s_1})$ and $\mu_1(\mathcal{E}^{s_2})$ are well-defined for all $\mathcal{E} \in \mathscr{S}_1 \otimes \mathscr{S}_2$, $s_1 \in S_1$ and $s_2 \in S_2$.
- §04.14 **Lemma**. For $i \in [\![2]\!]$ let $\mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_i)$ be a σ -finite measure on $(\mathfrak{S}_i, \mathscr{S}_i)$. Then, for all $\mathcal{E} \in \mathscr{S}_1 \otimes \mathscr{S}_2$, the map $\mu_2(\mathfrak{E}_i) : s_1 \mapsto \mu_2(\mathfrak{E}_{s_1})$ and $\mu_1(\mathfrak{E}^{\bullet}) : s_2 \mapsto \mu_1(\mathfrak{E}^{s_2})$ defined on \mathfrak{S}_1 respectively \mathfrak{S}_2 is positive numerical, that is, $\mu_2(\mathfrak{E}_i) \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{S}_1)$ and $\mu_1(\mathfrak{E}^{\bullet}) \in \overline{\mathfrak{M}}_{\geq 0}(\mathscr{S}_2)$.
- §04.15 **Proof** of Lemma §04.14. is given in the lecture.
- §04.16 **Theorem** (*Existence of a product measure*). For $i \in [\![2]\!]$ let $\mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_i)$ be a σ -finite measure on $(\mathbb{S}_i, \mathscr{S}_i)$. Then there exists a unique product measure $\mu_{[2]}$ on $(\mathbb{S}_{[2]}, \mathscr{S}_{[2]})$. Moreover, $\mu_{[2]} \in \mathfrak{M}_{\sigma}(\mathscr{S}_{[2]})$ is also σ -finite and $\mu_1(\mu_2(\mathcal{E}_{\cdot})) = \mu_{[2]}(\mathcal{E}) = \mu_2(\mu_1(\mathcal{E}^{\cdot}))$ for all $\mathcal{E} \in \mathscr{S}_{[2]}$.
- §04.17 **Proof** of Theorem §04.16. is given in the lecture.
- §04.18 **Remark**. The last statement can easily be extended to a finite product measure. It should be noted that the parentheses in the products can be arbitrarily rearranged. Formally we identify the product sets $S_{[n-1]} \times S_n$ und $S_{[n]}$ as usual with help of the bijection $((s_i)_{i \in [n-1]}, s_n) \mapsto (s_i)_{i \in [n]}$. The agreed equality of the sets implies then directly the equality of the corresponding products of σ -algebras $\mathscr{S}_{[n-1]} \otimes \mathscr{S}_n$ and $\mathscr{S}_{[n]}$ and the associative property $(\bigotimes_{i \in [m]} \mathscr{S}_i) \otimes (\bigotimes_{i \in [n-m]} \mathscr{S}_{m+i}) = \bigotimes_{i \in [n]} \mathscr{S}_i$ for $m \in [n-1]$.

- §04.19 **Corollary** (*Existence of product measures*). For $i \in [\![n]\!]$ let $\mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_i)$ be a σ -finite measure on $(\mathfrak{S}_i, \mathscr{S}_i)$. Then there exists a unique σ -finite product measure $\mu_{[n]} \in \mathfrak{M}_{\sigma}(\mathscr{S}_{[n]})$ on $(\mathfrak{S}_{[n]}, \mathscr{S}_{[n]})$.
- §04.20 **Proof** of Corollary §04.19. is given in the lecture.
- §04.21 **Remark**. For measures that are not necessarily σ -finite, it is still possible to prove the existence, but no longer the uniqueness, of a product measure.

§04|02 **Projective family**

- §04.22 **Reminder**. If (Ω_i, τ_i) , $i \in \mathcal{I}$, are topological spaces, then the product topology τ on $\Omega_{\mathfrak{I}}$ is the coarsest topology with respect to which all coordinate maps $\Pi_i : \Omega_{\mathfrak{I}} \to \Omega_i$ are continuous.
- §04.23 **Lemma**. Let \mathcal{I} be countable, for every $i \in \mathcal{I}$ let S_i be a separable, complete metric space (Polish) with Borel σ -algebra $\mathcal{B}_i := \mathcal{B}_{s_i}$ and let \mathcal{B}_{s_z} be the Borel σ -algebra with respect to the product topology on $S_{\mathcal{I}} = \mathbf{X}_{i \in \mathcal{I}} S_i$. Then $S_{\mathcal{I}}$ is Polish and $\mathcal{B}_{s_z} = \mathcal{B}_{\mathcal{I}} = \bigotimes_{i \in \mathcal{I}} \mathcal{B}_i$. In particular, $\mathcal{B}_{\mathbb{R}^n} = \mathcal{B}^n$ for $n \in \mathbb{N}$.
- §04.24 Proof of Lemma §04.23. We refer to Klenke (2008, Theorem 14.8, p.273) or Bauer (1992, Theorem 22.1, p.151).
- §04.25 **Definition**. Let \mathcal{I} be an arbitrary nonempty index set and for any $\mathcal{J} \subseteq \mathcal{I}$ let $\prod_{\mathcal{J}}$ be the canonical projection on $(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}})$. For any $\mathcal{E} \in \mathscr{S}_{\mathcal{J}}, \prod_{\mathcal{J}}^{-1}(\mathcal{E}) \in \mathscr{S}_{\mathcal{I}}$ is called a *cylinder set* with base \mathcal{J} . The set of such cylinder sets is denoted by $\mathcal{Z}_{\mathcal{J}} := \{\prod_{\mathcal{J}}^{-1}(\mathcal{E}): \mathcal{E} \in \mathscr{S}_{\mathcal{J}}\} \subseteq \mathscr{S}_{\mathcal{I}}$. In particular, if $\mathcal{E}_{\mathcal{J}} = X_{j \in \mathcal{J}} \mathcal{E}_{j} \in \mathscr{S}_{\mathcal{J}}$, then $\prod_{\mathcal{J}}^{-1}(\mathcal{E}) \in \mathscr{S}_{\mathcal{I}}$ is called a *rectangular cylinder* with base \mathcal{J} . The set of such rectangular cylinders will be denoted by $\mathcal{Z}_{\mathcal{J}}^{R} := \{\prod_{\mathcal{J}}^{-1}(\mathcal{E}_{\mathcal{J}}): \mathcal{E}_{\mathcal{J}} = X_{j \in \mathcal{J}} \mathcal{E}_{j} \in \mathscr{S}_{\mathcal{J}}\} \subseteq \mathscr{S}_{\mathcal{I}}$. For every $i \in \mathcal{I}$ let $\mathscr{E}_{i} \subseteq \mathscr{S}_{i}$. The set of rectangular cylinders for which in addition $\mathcal{E}_{j} \in \mathscr{E}_{j}$ for all $j \in \mathcal{J}$ holds will be denoted by $\mathcal{Z}_{\mathcal{J}}^{\mathscr{E},R} := \{\prod_{\mathcal{J}}^{-1}(\mathcal{E}_{\mathcal{J}}): \mathcal{E}_{\mathcal{J}} = X_{j \in \mathcal{J}} \mathcal{E}_{j}, \mathcal{E}_{j} \in \mathcal{J}\} \subseteq \mathscr{S}_{\mathcal{I}}$. Write $\mathcal{Z} := \bigcup \{\mathcal{Z}_{\mathcal{J}}: \mathcal{J} \subseteq \mathcal{I} \text{ finite}\}$ and similarly define $\mathcal{Z}^{\mathcal{R}}$ and $\mathcal{Z}^{\mathscr{R},R}$.
- §04.26 **Remark**. Every $\mathcal{Z}_{\mathcal{J}}$ is a σ -algebra, and \mathcal{Z} is a algebra where $\mathscr{S}_{\mathcal{I}} = \sigma(\mathcal{Z})$. Moreover, if every \mathscr{E}_i is \cap -closed, then $\mathcal{Z}^{\mathscr{E},\mathcal{R}}$ is also \cap -closed (Exercise).

§04.27 **Lemma**. For any $i \in \mathcal{I}$ let $\mathscr{E}_i \subseteq \mathscr{S}_i$ be a generator of \mathscr{S}_i .

- (i) $\mathscr{S}_{\mathcal{J}} = \sigma(\mathsf{X}_{j \in \mathcal{J}} \mathcal{E}_j : \mathcal{E}_j \in \mathcal{E}_j, j \in \mathcal{J})$ for every finite $\mathcal{J} \subseteq \mathcal{I}$.
- (ii) $\mathscr{S}_{\mathfrak{I}} = \sigma(\mathfrak{Z}^{R}) = \sigma(\mathfrak{Z}^{\mathscr{E},R}).$
- (iii) Let (A1) $\mu \in \mathfrak{M}_{\sigma}(\mathscr{S}_{\mathfrak{I}})$ be a σ -finite measure on $(\mathfrak{S}_{\mathfrak{I}}, \mathscr{S}_{\mathfrak{I}})$, assume (A2) every $\mathscr{E}_{\mathfrak{i}}$ is \cap -closed, and (A3) there is a sequence $(\mathcal{E}_n)_{n \in \mathbb{N}}$ in $\mathfrak{Z}^{\mathscr{E}, \mathbb{R}}$ with $\mathcal{E}_n \uparrow \mathfrak{S}_{\mathfrak{I}}$ and $\mu(\mathcal{E}_n) \in \mathbb{R}_{\geq 0}$ for all $n \in \mathbb{N}$. Then μ is uniquely determined by the values $\mu(A)$ for all $A \in \mathfrak{Z}^{\mathscr{E}, \mathbb{R}}$.
- §04.28 **Proof** of Lemma §04.27. Exercise.
- §04.29 **Comment**. The condition (A3) in Lemma §04.27 (iii) is fulfilled, if $\mu \in \mathfrak{M}_{e}(\mathscr{S}_{z})$ is finite and $\mathcal{S}_{i} \in \mathscr{E}_{i}$ for every $i \in \mathcal{I}$ (compare Lemma §01.28).
- §04.30 Notation. For $\mathcal{J} \subseteq \mathcal{K} \subseteq \mathcal{I}$ the map $\prod_{\mathcal{J}}^{\mathcal{K}} : S_{\mathcal{K}} \to S_{\mathcal{J}}$ with $(s_k)_{k \in \mathcal{K}} \mapsto (s_j)_{j \in \mathcal{J}}$ is called *canonical projection*, where evidently $\prod_{\mathcal{J}} = \prod_{\mathcal{J}}^{\mathcal{I}}$.
- §04.31 **Definition**. For every finite $\mathcal{J} \subseteq \mathcal{I}$ let $\mathbb{P}_{\mathcal{J}} \in \mathcal{W}(\mathscr{S}_{\mathcal{J}})$ be a probability measure on $(\mathcal{S}_{\mathcal{J}}, \mathscr{S}_{\mathcal{J}})$. The familiy $\{\mathbb{P}_{\mathcal{J}}: \mathcal{J} \subseteq \mathcal{I} \text{ finite}\}$ is called *projective* or *consistent* if $\mathbb{P}_{\mathcal{J}} = \mathbb{P}_{\kappa} \circ (\Pi_{\mathcal{J}}^{\kappa})^{-1}$ for all finite $\mathcal{J} \subseteq \mathcal{K} \subseteq \mathcal{I}$.

- §04.32 **Remark**. Let $\mathbb{P} \in \mathcal{W}(\mathscr{S}_{\mathcal{I}})$ be a probability measure on $(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}})$. Since $\Pi_{\mathcal{I}} = \Pi_{\mathcal{I}}^{\mathcal{K}} \circ \Pi_{\mathcal{K}}$, the family $\{\mathbb{P}_{\mathcal{I}} := \mathbb{P} \circ \Pi_{\mathcal{I}} : \mathcal{I} \subseteq \mathcal{I} \text{ finite}\}$ is consistent. Thus, consistency is a necessary condition for the existence of a measure \mathbb{P} on the product space with $\mathbb{P}_{\mathcal{I}} := \mathbb{P} \circ \Pi_{\mathcal{I}}$. If all the measurable spaces are Polish, spaces then this condition is also sufficient.
- §04.33 **Kolmogorov's extension theorem**. Let \mathcal{I} be an arbitrary nonempty index set and let S_i be a separable and complete metric space (Polish) with Borel σ algebra $\mathcal{B}_i := \mathcal{B}_{s_i}$ for all $i \in \mathcal{I}$. Let $\{\mathbb{P}_{\mathcal{I}}: \mathcal{J} \subseteq \mathcal{I} \text{ finite}\}$ be a consistent family of probability measures. Then there exists a unique probability measure $\mathbb{P} \in \mathcal{W}(\mathcal{B}_{\mathfrak{I}})$ on $(S_{\mathfrak{I}}, \mathcal{B}_{\mathfrak{I}})$ with $\mathbb{P}_{\mathcal{I}} = \mathbb{P} \circ \prod_{\mathcal{I}}^{-1}$ for all finite $\mathcal{J} \subseteq \mathcal{I}$. \mathbb{P} is called projective limit.
- §04.34 **Proof** of Theorem §04.33. We refer to Klenke (2008, Theorem 14.36, p. 287)
- §04.35 **Definition**. Let $\mathbb{P}_i \in \mathcal{W}(\mathscr{S}_i)$ be a probability measure on $(\mathcal{S}_i, \mathscr{S}_i)$ for all $i \in \mathcal{I}$. A probability measure $\mathbb{P}_{\mathcal{I}} \in \mathcal{W}(\mathscr{S}_{\mathcal{I}})$ on $(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}})$ is called *product measure* of the $\mathbb{P}_i, i \in \mathcal{I}$, if

$$\mathbb{P}_{\!\!\mathcal{I}}\!\left(\boldsymbol{X}_{j\in\mathcal{J}}\,\mathcal{E}_{i}\right) = \mathbb{P}_{\!\!\mathcal{I}}\!\left(\bigcap_{j\in\mathcal{J}}\Pi_{j}^{-1}(\mathcal{E}_{j})\right) = \prod_{j\in\mathcal{J}}\mathbb{P}_{\!\!j}(\mathcal{E}_{j}) \quad \text{for} \quad \mathcal{E}_{j}\in\mathscr{S}_{j}, \; j\in\mathcal{J}\subseteq\mathcal{I} \text{ finite.}$$

In this case we write $\bigotimes_{i \in \mathcal{I}} \mathbb{P}_i := \mathbb{P}_{\mathcal{I}}$. If $\mathbb{P}_i = \mathbb{P}$ for all $i \in \mathcal{I}$ then $\mathbb{P}^{\mathcal{I}} := \mathbb{P}_{\mathcal{I}}$ and $\mathbb{P}^n := \mathbb{P}_{\mathcal{I}}$ in case $n := |\mathcal{I}| \in \mathbb{N}$.

§04.36 **Remark**. Let \mathcal{I} be an arbitrary nonempty index set. For every $i \in \mathcal{I}$ let S_i be a separable and complete metric space (Polish) with Borel σ -algebra $\mathcal{B}_i := \mathcal{B}_{s_i}$ and $\mathbb{P}_i \in \mathcal{W}(\mathcal{B}_i)$ be a probability measure on (S_i, \mathcal{B}_i) . For every finite $\mathcal{J} \subseteq \mathcal{I}$ let $\mathbb{P}_{\mathcal{J}} := \bigotimes_{j \in \mathcal{J}} \mathbb{P}_j$ be the finite product measure of the \mathbb{P}_j , $j \in \mathcal{J}$. Evidently, the family $\{\mathbb{P}_{\mathcal{J}}: \mathcal{J} \subseteq \mathcal{I} \text{ finite}\}$ is *projective*. Making use of Theorem §04.33 there exists a unique product measure $\mathbb{P}_{\mathcal{I}} := \bigotimes_{i \in \mathcal{I}} \mathbb{P}_i \in \mathcal{W}(\mathcal{B}_i)$ on $(S_{\mathcal{I}}, \mathcal{B}_{\mathcal{I}})$. Considering the canonical process $(\Pi_i)_{i \in \mathcal{I}}$ under $\mathbb{P}_{\mathcal{I}}$, all coordinate maps Π_i are independent, i.e. $\coprod_{i \in \mathcal{I}} \Pi_i$.

§04|03 Integration with respect to product measures

- $\begin{array}{l} \$04.37 \text{ Notation. Let } h: \mathbb{S}_1 \times \mathbb{S}_2 \to \mathbb{S}_3 \text{ be a map. For all } s_1 \in \mathbb{S}_1 \text{ and } s_2 \in \mathbb{S}_2 \text{ we write } h_{s_1}: \mathbb{S}_2 \to \mathbb{S}_3 \text{ with } s_2 \mapsto h_{s_1}(s_2) := h(s_1, s_2) \text{ and } h^{s_2}: \mathbb{S}_1 \to \mathbb{S}_3 \text{ with } s_1 \mapsto h^{s_2}(s_1) := h(s_1, s_2). \end{array}$
- §04.38 **Lemma**. For $i \in [\![3]\!]$, let (S_i, \mathscr{S}_i) be a measurable space. For all $h \in \mathcal{M}(\mathscr{S}_1 \otimes \mathscr{S}_2, \mathscr{S}_3), s_1 \in S_1$ and $s_2 \in S_2$ we have $h_{s_1} \in \mathcal{M}(\mathscr{S}_2, \mathscr{S}_3)$ and $h^{s_2} \in \mathcal{M}(\mathscr{S}_1, \mathscr{S}_3)$.
- §04.39 **Proof** of Lemma §04.38. is given in the lecture.
- §04.40 **Theorem** (*Tonelli*). For $i \in [\![2]\!]$ let $\mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_i)$ be a σ -finite measure on $(\mathbb{S}_i, \mathscr{S}_i)$. Then, for every $h \in \overline{\mathfrak{M}}_{\geqslant 0}(\mathscr{S}_1 \otimes \mathscr{S}_2)$ the map $\mu_1(h^{\circ}) : s_2 \mapsto \mu_1(h^{s_2})$ and $\mu_2(h_{\bullet}) : s_1 \mapsto \mu_2(h_{s_1})$ defined on \mathbb{S}_1 and \mathbb{S}_2 , respectively, is positive numerical, that is, $\mu_1(h^{\circ}) \in \overline{\mathfrak{M}}_{\geqslant 0}(\mathscr{S}_2)$ and $\mu_2(h_{\bullet}) \in \overline{\mathfrak{M}}_{\geqslant 0}(\mathscr{S}_1)$. Moreover, it holds

$$\begin{aligned} (\mu_1 \otimes \mu_2)(h) &= \mu_2(\mu_1(h^{\bullet})) = \int \mu_1(h^{s_2})\mu_2(\mathrm{d}s_2) = \int \int h(s_1, s_2)\mu_1(\mathrm{d}s_1)\mu_2(\mathrm{d}s_2) \\ &= \int \mu_2(h_{s_1})\mu_1(\mathrm{d}s_1) = \mu_1(\mu_2(h_{\bullet})) \end{aligned}$$

04.41 **Proof** of Theorem 04.40. is given in the lecture.

- §04.42 **Definition**. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space, (S, \mathscr{S}) be a measurable space, and $N \in \mathscr{A}$ be an μ -null set. A function $h : N^c := \Omega \setminus N \to S$ is called μ -almost everywhere defined and \mathscr{A} - \mathscr{S} -measurable if $h^{-1}(\mathscr{S}) \subseteq \mathscr{A}$ holds.
- §04.43 **Remark**. If $h, g \in \overline{\mathcal{M}}(\mathscr{A})$ are μ -almost everywhere finite, then the function g h is μ -almost everywhere defined and $\mathscr{A} \cdot \overline{\mathscr{B}}$ -measurable. This holds in particular if g and h are μ -integrable. Now, if f is $\overline{\mathbb{R}}$ -valued, μ -almost everywhere defined with μ -null set N and $\mathscr{A} \cdot \overline{\mathscr{B}}$ -measurable, then we can define $\tilde{f}(\omega) := 0$ for $\omega \in N$ and otherwise $\tilde{f}(\omega) := f(\omega)$. Then $\tilde{f} \in \overline{\mathcal{M}}(\mathscr{A})$ is numerical. If \tilde{f} is furthermore μ -integrable, then we define for f the integral $\mu(f) = \int f \, d\mu := \mu(\tilde{f})$.
- §04.44 Corollary (Fubini's theorem). Let $(S_i, \mathscr{S}_i, \mu_i)$, $i \in [\![2]\!]$, be σ -finite measure spaces and $h \in \mathcal{L}_1(\mu_1 \otimes \mu_2)$. Then $\mu_2(h_{\bullet}) : s_1 \mapsto \mu_2(h_{\bullet_1})$ is μ_1 -almost everywhere defined and $\mathscr{S}_1 \cdot \overline{\mathscr{B}}$ -measurable, and $\mu_1(h) : s_2 \mapsto \mu_1(h^{\circ_2})$ is μ_2 -almost everywhere defined and $\mathscr{S}_2 \cdot \overline{\mathscr{B}}$ -measurable. It holds that

$$\mu_{_{2}}(\mu_{_{1}}(h^{{}^{\bullet}})) = \int \mu_{_{1}}(h^{_{s_{2}}})\mu_{_{2}}(\mathrm{d}s_{2}) = (\mu_{_{1}}\otimes\mu_{_{2}})(h) = \int \mu_{_{2}}(h_{_{s_{1}}})\mu_{_{1}}(\mathrm{d}s_{1}) = \mu_{_{1}}(\mu_{_{2}}(h_{_{\bullet}})).$$

§04.45 **Proof** of **Corollary** §04.44. is given in the lecture.

- §04.46 Remark. The last statements can be easily extended to finite product measures, as in Remark §04.18.
- §04.47 **Theorem.** For each $i \in [[n]]$, let $(\mathbb{S}_i, \mathscr{S}_i, \mu_i)$ be a σ -finite measure space, $\mathbb{f}_i \in \mathcal{M}_{\geq 0}(\mathscr{A}_i)$, and $\nu_i := \mathbb{f}_i \mu_i$. Then the product measure $\nu_{[n]} = \prod_{i \in [[n]]} \nu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_{[n]})$ is σ -finite and absolutely continuous with respect to the product measure $\mu_{[n]} = \prod_{i \in [[n]]} \mu_i \in \mathfrak{M}_{\sigma}(\mathscr{S}_{[n]})$ with product density $\prod_{i \in [[n]]} \mathbb{f}_i \in \mathcal{M}_{\geq 0}(\mathscr{A}_{[n]})$, meaning $\nu_{[n]} = \left(\prod_{i \in [[n]]} \mathbb{f}_i\right) \mu_{[n]}$.

§04.48 **Proof** of Theorem §04.47. is given in the lecture.

§04.49 **Reminder**. Now, let $\nu = \mathbb{P}_0$ and $\mu = \mathbb{P}_1$ be probability measures on $(\mathcal{S}, \mathscr{S})$, where it is not necessarily the case that $\mathbb{P}_0 \ll \mathbb{P}_1$. Then any positive, measurable function $L \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{S})$ with $\mathbb{P}_0 = L\mathbb{P}_1 + \mathbb{1}_{L=\infty}\mathbb{P}_0$ and $\mathbb{P}_1(L \in \mathbb{R}_{\geq 0}) = 1$ is is a \mathbb{P}_1 -density ratio of \mathbb{P}_0 (cf. Definition §03.14). Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{S})$ denote a σ -finite measure such that $\mathbb{P}_i \ll \mu$, $i \in [\![2]\!]$, (for example, the finite measure $\mu = \mathbb{P}_0 + \mathbb{P}_1$), and let $\mathbb{f}_i \in \mathfrak{M}_{\geq 0}(\mathscr{S})$ be a μ -density of \mathbb{P}_i , $i \in [\![2]\!]$. Then

$$\mathbf{L}_{\star} := \frac{\mathbf{f}_{\mathbf{0}}}{\mathbf{f}_{\mathbf{1}}} \mathbbm{1}_{\{\mathbf{f}_{\mathbf{1}} \in \mathbf{R}_{>\mathbf{0}}\}} + \infty \mathbbm{1}_{\{\mathbf{f}_{\mathbf{1}} = \mathbf{0}\} \cap \{\mathbf{f}_{\mathbf{0}} \in \mathbf{R}_{>\mathbf{0}}\}} \in \overline{\mathcal{M}}_{\geqslant \mathbf{0}}(\mathscr{S})$$

is a specific choice of the \mathbb{P}_1 -density ratio of \mathbb{P}_0 . We note that a \mathbb{P}_0 -density ratio of \mathbb{P}_1 is given by

$$\mathbf{L}_{\star}^{-1} = \frac{\mathbf{f}_{\mathbf{1}}}{\mathbf{f}_{\mathbf{0}}} \mathbb{1}_{\{\mathbf{f}_{\mathbf{0}} \in \mathbf{R}_{>0}\}} + \infty \mathbb{1}_{\{\mathbf{f}_{\mathbf{0}} = \mathbf{0}\} \cap \{\mathbf{f}_{\mathbf{1}} \in \mathbf{R}_{>0}\}} \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{S})$$

In the special case where $\mathbb{P}_0 \ll \mathbb{P}_1$, the \mathbb{P}_1 -density ratio of \mathbb{P}_0 is a \mathbb{P}_1 -density of \mathbb{P}_0 and is \mathbb{P}_1 -determined.

§04.50 **Lemma**. For each $i \in [\![n]\!]$, let $\mathbb{P}_{0|i}, \mathbb{P}_{1|i} \in \mathcal{W}(\mathscr{S}_i)$ be probability measures on $(\mathbb{S}_i, \mathscr{S}_i)$ with $\mathbb{P}_{1|i}$ density ratio L_i of $\mathbb{P}_{0|i}$. Then the product $L := \prod_{i \in [\![n]\!]} L_i$ is a density ratio of $\mathbb{P}_0 := \bigotimes_{i \in [\![n]\!]} \mathbb{P}_{0|i}$ with respect to $\mathbb{P}_1 := \bigotimes_{i \in [\![n]\!]} \mathbb{P}_{1|i}$.

§04.51 **Proof** of Lemma §04.50. is given in the lecture.

23

§04|04 Integration with respect to transition kernel

- §04.52 **Definition**. Let (Ω, \mathscr{A}) and $(\mathcal{S}, \mathscr{S})$ be two measurable spaces. A map $\kappa : \Omega \times \mathscr{S} \to \overline{\mathbb{R}}_{\geqslant 0}$ is called a $(\sigma$ -)finite *transition kernel* from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$ if it satisfies the following two conditions:
 - (tK1) For all $\omega \in \Omega$, $\kappa_{\omega} : \mathscr{S} \to \overline{\mathbb{R}}_{\geq 0}$ with $S \mapsto \kappa_{\omega}(S) := \kappa(\omega, S)$ is a (σ -)finite measure on $(\mathfrak{X}, \mathscr{X})$, i.e. $\kappa_{\omega} \in \mathfrak{M}_{e}(\mathscr{S})$ (respectively $\kappa_{\omega} \in \mathfrak{M}_{\sigma}(\mathscr{S})$.
 - (tK2) For all $S \in \mathscr{S}, \kappa^{S} : \Omega \to \overline{\mathbb{R}}_{\geq 0}$ with $\omega \mapsto \kappa^{S}(\omega) := \kappa(\omega, S)$ is positive, numerical and \mathscr{S} -measurable, i.e. $\kappa^{S} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{S})$.

If for every $\omega \in \Omega$, the measure in (tK1) is a probability measure, $\kappa_{\omega} \in \mathcal{W}(\mathscr{S})$, then κ is called a *Markov kernel*.

- §04.53 **Remark**. It suffices to require condition (tK2) only for sets from a \cap -closed generator \mathscr{E} of \mathscr{S} , which contains S or a sequence $(\mathcal{E}_n)_{n \in \mathbb{N}}$ of sets such that $\mathcal{E}_n \uparrow S$. Then $\mathscr{D} := \{S \in \mathscr{S} : \kappa^S \in \overline{\mathbb{M}}_{\geq 0}(\mathscr{A})\}$ is a Dynkin system (exercise) with $\mathscr{E} \subseteq \mathscr{D} \subseteq \mathscr{S}$, and from the π - λ -Theorem §01.11, it follows that $\mathscr{D} = \sigma(\mathscr{E}) = \mathscr{S}$.
- §04.54 **Lemma**. Let κ be a finite transition kernel from (Ω, \mathscr{A}) to $(\mathbb{S}, \mathscr{S})$, and let $h \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A} \otimes \mathscr{S})$ be positive numerical. Then the function $\kappa_{\bullet}(h_{\bullet}) : \Omega \to \overline{\mathbb{R}}_{\geq 0}$ defined by

$$\omega\mapsto\kappa_{\scriptscriptstyle\omega}(h_{\scriptscriptstyle\omega})=\int h_{\scriptscriptstyle\omega}\,\mathrm{d}\kappa_{\scriptscriptstyle\omega}$$

is well-defined and belongs to $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.

§04.55 **Proof** of Lemma §04.54. is given in the lecture.

§04.56 Notation. For $\mathbb{1}_A \in \mathcal{M}_{\geq 0}(\mathscr{A} \otimes \mathscr{S})$, that is, $A \in \mathscr{A} \otimes \mathscr{S}$, according to Lemma §04.54, the function $\kappa_{\bullet}(A_{\bullet}) = \kappa_{\bullet}((\mathbb{1}_A)_{\bullet}) : \Omega \to \overline{\mathbb{R}}_{\geq 0}$ defined by

$$\omega \mapsto \kappa_{\omega}(A_{\omega}) = \kappa_{\omega}((\mathbb{1}_{A})_{\omega}) = \int \mathbb{1}_{A}(\omega, s)\kappa_{\omega}(\mathrm{d}s)$$

is well-defined and belongs to $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.

§04.57 **Lemma**. Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space, (S, \mathscr{S}) be a measurable space, and κ be a finite transition kernel from (Ω, \mathscr{A}) to (S, \mathscr{S}) . Then there exists a uniquely determined σ -finite measure $\mu \odot \kappa \in \mathfrak{M}_{\sigma}(\mathscr{A} \otimes \mathscr{S})$ on the product space $(\Omega \times S, \mathscr{A} \otimes \mathscr{S})$ such that

$$(\mu \odot \kappa)(B) = \mu(\kappa_{\bullet}(B_{\bullet})) \text{ for } B \in \mathscr{A} \otimes \mathscr{S},$$

where for all $A \in \mathscr{A}$ and $S \in \mathscr{S}$, we have

$$(\boldsymbol{\mu} \odot \boldsymbol{\kappa})(A \times S) = \boldsymbol{\mu}(\mathbb{1}_A \boldsymbol{\kappa}^S) = \int_A \boldsymbol{\kappa}^S d\boldsymbol{\mu} = \int_A \boldsymbol{\kappa}(\omega, S) \boldsymbol{\mu}(d\omega).$$

If κ is a Markov kernel and μ is a probability measure, then $\mu \odot \kappa$ is a probability measure.

§04.58 **Proof** of Lemma §04.57. is given in the lecture.

§04.59 **Theorem** (*Tonelli/Fubini for transition kernel*). Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space, $(\mathfrak{S}, \mathscr{S})$ be a measurable space, and κ be a finite transition kernel from (Ω, \mathscr{A}) to $(\mathfrak{S}, \mathscr{S})$. If $h \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A} \otimes \mathscr{S})$

or $h \in \mathcal{L}_1(\mu \odot \kappa)$ then

$$(\mu \odot \kappa)(h) = \mu(\kappa_{\bullet}(h_{\bullet})) = \int \kappa_{\omega}(h_{\omega})\mu(\mathrm{d}\omega) = \int \left(\int h_{\omega} \,\mathrm{d}\kappa_{\omega}\right)\mu(\mathrm{d}\omega)$$
$$= \int \int h(\omega, s)\kappa(\omega, \mathrm{d}s)\mu(\mathrm{d}\omega).$$

§04.60 **Proof** of Theorem §04.59. is given in the lecture.

§04.61 Notation. Consider a probability space $(\Omega, \mathscr{A}, \mathbb{P})$, a measurable space (S, \mathscr{S}) , and a Markov kernel κ from (Ω, \mathscr{A}) to (S, \mathscr{S}) . Due to Lemma §04.57, $\mathbb{P} \odot \kappa \in \mathcal{W}(\mathscr{A} \otimes \mathscr{S})$ is a uniquely determined probability measure on $(\Omega \times S, \mathscr{A} \otimes \mathscr{S})$. Then we denote by

$$(\kappa \mathbb{P})(S) := \mathbb{P}(\kappa^{S}) = \int \kappa^{S} d\mathbb{P} = \int \kappa(\omega, S) \mathbb{P}(d\omega), \text{ for } S \in \mathscr{S}$$

the marginal distribution $\kappa \mathbb{P} \in \mathcal{W}(\mathscr{S})$ on $(\mathfrak{S}, \mathscr{S})$ induced by $\mathbb{P} \odot \kappa \in \mathcal{W}(\mathscr{A} \otimes \mathscr{S})$.

Bibliography

- Bauer, H. (1992). *Maß- und Integrationstheorie*. 2., überarbeitete Auflage: Berlin etc.: Walter de Gruyter.
- Klenke, A. (2008). Probability theory. A comprehensive course. London: Springer.
- (2020). *Wahrscheinlichkeitstheorie*. 4., überarbeitete und ergänzte Auflage: Springer Spektrum.
- Witting, H. (1985). *Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang*. German. Stuttgart: B. G. Teubner.