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Chapter 1

Measure and integration theory

§01 Measure theory

§01.01 Notation. For x, y ∈ R we agree on the following notations bxc := max
{
k ∈ Z: k ∈ (−∞, x]

}
(integer part), x ∨ y = max(x, y) (maximum), x ∧ y = min(x, y) (minimum), x+ = max(x, 0)
(positive part), x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).
(a) For c ∈ R and A ⊆ R := R ∪ {±∞} = [−∞,∞] we set A>c := A ∩ [c,∞], A6c :=

A∩ [−∞, c],A>c := A∩ (c,∞],A<c := A∩ [∞, c),A\c := A \{c}, andA := A∪{±∞}.
(b) For b ∈ R and a ∈ R<b we write Ja, bK := [a, b]∩Z, Ja, bM := [a, b)∩Z, La, bK := (a, b]∩Z,

and La, bM := (a, b) ∩ Z. Moreover, let JnK := J1, nK and JnM := J1, nM for n ∈ N = Z>0.

(c) Ω 6= ∅ denotes a nonempty set, and 2Ω the set of all subsets of Ω. A set is called countable
if it is at most countable infinite, meaning either finite or countably infinite. The cardinality
of a set A is denoted by |A|. �

§01|01 Classes of sets

§01.02 Definition. A class of sets E ⊆ 2Ω is called

∩-closed (closed under intersections) or a π-system if A ∩B ∈ E whenever A,B ∈ E ,

σ-∩-closed (closed under countable intersections) if∩n∈NAn ∈ E for any sequence (An)n∈N
of sets in E ,

∪-closed (closed under unions) if A ∪B ∈ E whenever A,B ∈ E ,

σ-∪-closed (closed under countable unions) if ∪n∈NAn ∈ E for any sequence (An)n∈N of
sets in E ,

\-closed (closed under differences) if A \B ∈ E whenever A,B ∈ E , and

closed under complements if Ac := Ω \ A ∈ E for any set A ∈ E . �

§01.03 Remark.
(a) If E ⊆ 2Ω is closed under complements then de Morgan’s rule (i.e. (∪Ai)c = ∪Ac

i ) implies
immediately the equivalences of ∪-closed and ∩-closed, as well as of σ-∪-closed and σ-∩-
closed.

(b) Let E ⊆ 2Ω be \-closed. Then E is ∩-closed. If in addition E is σ-∪-closed, then E is
σ-∩-closed. Any countable (respectively finite) union of sets in E can be expressed as a
countable (respectively finite) disjoint union of sets in E . �

§01.04 Definition. A class of sets E ⊆ 2Ω is called

semiring if (i) ∅ ∈ E , (ii) for any two sets A,B ∈ E the difference set A\B is a finite union
of mutually disjoints sets in E , and (iii) E is ∩-closed;

ring, if (R1) ∅ ∈ E , (R2) E is \-closed, and (R3) E is ∪-closed;
σ-ring, if E is a σ-∪-closed ring;
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Chapter 1 Measure and integration theory §01 Measure theory

algebra, if (A1) Ω ∈ E , (A2) E is \-closed, and (A3) E is ∪-closed;
σ-algebra, if E is a σ-∪-closed algebra;

Dynkin-system or λ-system, if (D1) Ω ∈ E , (D2) E is closed under complements, and
(D3)

⊎
n∈NAn ∈ E for any choice of countably many pairwise disjoint sets (An)n∈N

in E . �

§01.05 Remark.

(a) Sometimes the disjoint union of sets is denoted by the symbol
⊎

. Note that this is not
a new operation but only stresses the fact that the sets involved are mutually disjoint.

(b) For any Ω 6= ∅ the classes {∅,Ω} and 2Ω are trivial examples of algebras, σ-algebras
and Dynkin systems. Trivial examples of semirings, rings and σ-rings are {∅} and 2Ω.

(c) A (set-)ring R equipped with the symmetric difference ∆ as addition and the intersec-
tion ∩ as multiplication forms an Abelian algebraic ring (R ,∆,∩).

(d) A class of sets A ⊆ 2Ω is an algebra if and only if Ω ∈ A , and A is closed under
complements and ∩-closed.

(e) A class of sets A ⊆ 2Ω with Ω ∈ A , which is closed under complements and σ-∪-
closed is a σ-algebra.

(f) Let D ⊆ 2Ω be a Dynkin-system. The condition (D2), i.e. D is closed under com-
plements, can be equivalently replaced by the apparently stronger condition (D2’)
B \ A ∈ D for any A,B ∈ D with A ⊆ B, since each Dynkin-system satisfies also
(D2’). Indeed for A,B ∈ D with A ⊆ B the sets A and Bc are mutually disjoint and
B \ A = (A

⊎
Bc)c ∈ D .

(g) Every σ-algebra also is a Dynkin-system. The converse does not apply because (D3)
is required only for mutually disjoint sets. For example let Ω = {1, 2, 3, 4} and D =
{∅, {1, 2}, {1, 4}, {2, 3}, {3, 4},Ω}. Then D is a Dynkin-system but is not an algebra.

�

§01.6 Illustration.
(i) Every σ-algebra also is a Dynkin-system, an algebra and a σ-ring.

(ii) Every σ-ring is a ring, and every ring is a semiring.

(iii) Every algebra is a ring. An algebra on a finite set Ω is a σ-algebra.

Figure 01 [§01] Inclusions between classes of sets E ⊆ 2Ω.

σ-algebra

algebra σ-ring Dynkin-system

ring

semiring

σ-∪-closed
Ω ∈ E

∩-closed

Ω ∈ E σ-∪-closed

∪-closed

The Figure 01 [§01] was created based on Klenke (2008, Fig.1.1, p.7). �
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§01 Measure theory Chapter 1 Measure and integration theory

§01.07 Lemma. A Dynkin-system D ⊆ 2Ω is ∩-closed if and only if it is a σ-algebra.

§01.08 Proof of Lemma §01.07. In the lecture course EWS. �

§01.09 Lemma. Let E ⊆ 2Ω be a class of sets. Then

σ(E ) :=
⋂{

A : A ⊆ 2Ω is a σ-algebra and E ⊆ A
}

and

δ(E ) :=
⋂{

D : D ⊆ 2Ω is a Dynkin-system and E ⊆ D
}

is the smallest σ-algebra, respectively, Dynkin-system on Ω containing E . E is called generator,
and σ(E ) and δ(E ) is called the σ-algebra and the Dynkin-system generated by E , respectively.

§01.10 Proof of Lemma §01.09. In the lecture course EWS. �

§01.11 π-λ-Theorem. Let E ⊆ 2Ω be ∩-closed. Then σ(E ) = δ(E ) and also σ(E ) ⊆ D for any Dynkin-
system D ⊆ 2Ω with E ⊆ D .

§01.12 Proof of Theorem §01.11. In the lecture course EWS. �

§01.13 Definition. Let E ⊆ 2Ω be an arbitrary class of subsets of Ω andA ∈ 2Ω\{∅} =: 2Ω
\∅ a nonempty

set. The class EA := E
∣∣
A

:= E ∩ A :=
{
B ∩ A: B ∈ E

}
⊆ 2Ω of subsets of Ω is called trace of

E on A or restriction of E to A. �

§01.14 Remark. If E is a semiring, (σ-)ring or (σ-)algebra then EA is a class of sets of the same type as
E , however, on A instead of Ω. For a Dynkin-system this generally does not apply. Moreover,
we have σ(E )

∣∣
A

= σ(E
∣∣
A

). �

§01.15 Reminder.

(a) Let S be a metric (or topological) space and O the class of open subsets in S. The σ-
algebra BS := σ(O) that is generated by the open sets O is called the Borel σ-algebra
on S. The elements of BS are called Borel sets or Borel measurable sets.

(b) In many cases, we are interested in the Borel σ-algebra B
n

:= B
R

n over Rn, where Rn

is equipped with the Euclidean distance d(x, y) = ‖x − y‖ =
√∑

i∈JnK(xi − yi)2 for

x = (xi)i∈JnK, y = (yi)i∈JnK ∈ R
n.

(c) For a = (ai)i∈JnK, b = (bi)i∈JnK ∈ R
n

we write a < b, if ai < bi for all i ∈ JnK. For
a < b, define the open rectangle as the Cartesian product (a, b) := i∈JnK(ai, bi) :=
(a1, b1) × (a2, b2) × · · · × (an, bn). Analogously, we define [a, b], (a, b] and [a, b).
Moreover, we set (−∞, b) := i∈JnK(−∞, bi) and (−∞, b] := i∈JnK(−∞, bi].

(d) The Borel σ-algebra B
n is generated by any of the classes of sets:

(i) E1 :=
{
A ⊆ Rn

: A is closed
}

; (ii) E2 :=
{
A ⊆ Rn

: A is compact
}

;
(iii) E3 :=

{
(a, b): a, b ∈ Qn, a < b

}
; (iv) E4 :=

{
[a, b]: a, b ∈ Qn, a < b

}
;

(v) E5 :=
{

(a, b]: a, b ∈ Qn, a < b
}

; (vi) E6 :=
{

[a, b): a, b ∈ Qn, a < b
}

;
(vii) E7 :=

{
(−∞, b]: b ∈ Qn

}
; (viii) E8 :=

{
(−∞, b): b ∈ Qn

}
;

(ix) E9 :=
{

(a,∞): a ∈ Qn
}

and (x) E10 :=
{

[a,∞): a ∈ Qn
}

. (Exercise).

(e) We denote by B := B
R

the Borel σ-algebra over the extension R := [−∞,∞] of the
real line by the points {±∞} where in R the sets {−∞} and {∞} are closed, and R is
open. In particular, B := BR = B ∩R is the Borel σ-algebra over R. For c ∈ R and

σ-algebra A ⊆ 2R we write A>c := A ∩ R>c, A>c := A ∩ R>c, A6c := A ∩ R6c, and
A<c := A ∩R<c �
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Chapter 1 Measure and integration theory §01 Measure theory

§01|02 Set functions

§01.16 Definition. Let E ⊆ 2Ω and let µ : E → R>0 = [0,∞] be a set function. We say that µ is

monotone if µ(A) 6 µ(B) for any two sets A,B ∈ E with A ⊆ B,

additive if µ(
⊎
j∈JnKAj) =

∑
j∈JnK µ(Aj) for any choice of finitely many mutually disjoint sets

Aj ∈ E , j ∈ JnK, with
⊎

j∈JnK
Aj ∈ E ,

σ-additive if µ(
⊎
j∈NAj) =

∑
j∈N µ(Aj) for any choice of countably many mutually disjoint sets

Aj ∈ E , j ∈ N, with
⊎
j∈N

Aj ∈ E ,

subadditive if µ(A) 6
∑

i∈JnK µ(Aj) for any choice of finitely many sets A,Aj ∈ E , j ∈ JnK,
with A ⊆

⋃
j∈JnK

Aj ,

σ-subadditive if µ(A) 6
∑

j∈N µ(Aj) for any choice of countably many sets A,Aj ∈ E , j ∈ N,
with A ⊆

⋃
j∈N

Aj . �

§01.17 Definition. Let E ⊆ 2Ω be a semiring. A set function µ : E → R>0 with µ(∅) = 0 is called a

content if µ is additive,

premeasure if µ is σ-additive,

measure if µ is a premeasure and E is a σ-algebra, and

probability measure if µ is a measure and µ(Ω) = 1.

We denote by M(E ) the set of all premeasures on (Ω,E ). A content µ on E is called

finite if µ(A) ∈ R>0 for every A ∈ E and

σ-finite if there exists a sequence of sets (Ej)j∈N in E such that Ω =
⋃
j∈N Ej and µ(Ej) ∈ R>0

for all j ∈ N.

We denote by Mf(E ) and Mσ(E ) the set of all finite, respectively, σ-finite premeasures on (Ω,E ).
Moreover, for a σ-algebra A ⊆ 2Ω we denote by W(A ) the set of all probability measures on
(Ω,A ).

§01.18 Example.
(a) For A ∈ 2Ω we denote by 1A : Ω →

{
0, 1
}

with 1−1
A ({1}) = A and 1−1

A ({0}) = Ac

the indicator function on A. For any σ-algebra A ⊆ 2Ω and ω ∈ Ω the set function δω
: A → {0, 1} with δω(A) := 1A(ω) is a probability measure on A . δω ∈W(A ) is called the
Dirac measure for the point ω.

(b) Let Ω 6= ∅ be countably infinite and let E :=
{
A ∈ 2Ω: (|A| ∧ |Ac|) ∈ Z>0

}
. Then E is an

algebra. The set function ν : E → {0,∞} is given by ν (A) = 0 for A ∈ E with |A| ∈ R>0

and ν (A) = ∞ for |Ac| ∈ R>0. Then ν is a content, but it is not a premeasure. Indeed, ν is
not σ-additive, since ν (Ω) =∞ and

∑
ω∈Ω ν (

{
ω
}

) = 0.

(c) Let Ω 6= ∅ be countable and let p : Ω → R>0. Then µ : 2Ω → R>0 with A 7→ µ(A) :=∑
ω∈Ω p(ω)δω(A) is a σ-finite measure on 2Ω, i.e. µ ∈Mσ(2

Ω). We call p the mass function of
µ. The number p(ω) is called the mass of µ at point ω. Remember, if in addition p satisfies∑

ω∈Ω p(ω) = 1 then µ ∈ W(2Ω) is a discrete probability measure. If p(ω) = 1 for every
ω ∈ Ω, then ζ

Ω
:=
∑

ω∈Ω δω is called counting measure on Ω. Evidently, if Ω is finite, then
so is µ ∈ Mf(2

Ω). If Ω ⊆ R then for each ω ∈ Ω the dirac measure δω ∈ W(B), and hence
µ, ζ

Ω
∈Mσ(B) are also called discrete measures on (R,B).

4 Probability theory 1



§01 Measure theory Chapter 1 Measure and integration theory

(d) For arbitrary measures µ, ν ∈ M(A ) the set function ν + µ : A → R>0 given by (ν +
µ)(A) = ν (A) + µ(A) for all A ∈ A is a measure. �

§01.19 Lemma. Let E be a semiring and let µ be a content on E . Then the following statements hold.
(i) If E is a ring, then µ(A ∪B) = µ(A) + µ(B \ A) and µ(B) = µ(A ∩B) + µ(B \ A), hence

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B) for any two sets A,B ∈ E .

(ii) µ is monotone. If E is a ring, then µ(B) = µ(A) + µ(B \ A) for any two sets A,B ∈ E with
A ⊆ B.

(iii) µ is subadditive. If µ is σ-additive, then µ is also σ-subadditive.

(iv) If E is a ring, then
∑

j∈JnK µ(Aj) = µ(
⊎
j∈JnKAj) 6 µ(

⊎
j∈NAj) for all n ∈ N, and hence∑

j∈N µ(Aj) 6 µ(
⊎
j∈NAj), for any choice of countably many mutually disjoint sets Aj ∈ E ,

j ∈ N, with
⊎
j∈N

Aj ∈ E .

(v) If E is a ring, then for any n ∈ N and (Ai)i∈JnK in E with µ(
⋃
i∈JnKAi) ∈ R>0 the Inclusion-

exclusion formulas (Poincaré and Sylvester) hold:

µ(
⋃
i∈JnK

Ai) =
∑
I∈2

JnK
\∅

(−1)|I|−1µ(
⋂
i∈I

Ai) and µ(
⋂
i∈JnK

Ai) =
∑
I∈2

JnK
\∅

(−1)|I|−1µ(
⋃
i∈I

Ai).

§01.20 Proof of Lemma §01.19. (i), (ii) and (iv) are given in the lecture, (iii) and (v) are exercises. �

§01.21 Notation. We agree on the following conventions.
(a) A sequence (xn)n∈N in R is called increasing (respectively decreasing), if xn 6 xn+1 (re-

spectively xn+1 6 xn) for all n ∈ N. If an increasing (respectively decreasing) sequence
(xn)n∈N is convergent, say x = limn→∞ xn, then we write xn ↑ x (respectively xn ↓ x) for
short.

(b) A sequence (An)n∈N in 2Ω is called increasing (respectively decreasing), if An ⊆ An+1

(respectively An+1 ⊆ An) for all n ∈ N. We call

A? := lim inf
n→∞

An :=
⋃
n∈N

⋂
m∈N>n

Am :=
⋃{⋂{

Am: m ∈ N>n

}
: n ∈ N

}
and

A? := lim sup
n→∞

An :=
⋂
n∈N

⋃
m∈N>n

Am

limes inferior, respectively, limes superior of the sequence (An)n∈N. The sequence (An)n∈N
is called convergent, if A? = A? =: A. In this case we write limn→∞An = A for short.

An increasing (respectively decreasing) sequence (An)n∈N in 2Ω is convergent with A :=
limn→∞An =

⋃
n∈NAn (respectively A := limn→∞An =

⋂
n∈NAn). In this case we write

An ↑ A (respectively An ↓ A).

(c) For functions f, g : Ω → R we write f 6 g if f(ω) 6 g(ω) for any ω ∈ Ω. Analogously,
we write f > 0 and so on. A sequence (fn)n∈N of functions on Ω is called (pointwise)
increasing, or briefly isotone (respectively, (pointwise) decreasing, or briefly antitone) if
fn 6 fn+1 (respectively, fn+1 6 fn) for all n ∈ N. We denote by

f
?

:= lim inf
n→∞

fn := sup
{

inf
{
fm: m ∈ N>n

}
: n ∈ N

}
and

f? := lim sup
n→∞

fn := sup
{

inf
{
fm: m ∈ N>n

}
: n ∈ N

}
Probability theory 1 5
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the limes inferior, respectively, limes superior. The sequence (fn)n∈N is convergent if f
?

=
f? =: f , that is, the pointwise limit exists everywhere. In this case we write lim

n→∞
fn = f .

An isotone (respectively, antitone) sequence (fn)n∈N is convergent with f := limn→∞ fn =
supn∈N fn (respectively, f := limn→∞ fn = infn∈N fn). In this case we briefly write fn ↑ f
(respectively, fn ↓ f ). �.

§01.22 Definition. A content µ on a ring R ⊆ 2Ω is called

lower semicontinuous if limn→∞ µ(An) = µ(A) for any A ∈ R and any sequence (An)n∈N in
R with An ↑ A.

upper semicontinuous if limn→∞ µ(An) = µ(A) for any A ∈ R and any sequence (An)n∈N in
R with µ(An) ∈ R>0 for some (and then eventually all) n ∈ N and An ↓ A.

∅-continuous if limn→∞ µ(An) = 0 = µ(∅) for any sequence (An)n∈N in R with µ(An) ∈ R>0

for some (and then eventually all) n ∈ N and An ↓ ∅.

§01.23 Remark. In the definition of upper semicontinuity, we needed the assumption µ(An) ∈ R>0

since otherwise we would not even have ∅-continuity for an example as simple as the counting
measure ζ

N
on (N, 2N). Indeed, An := N>n ↓ ∅ but ζ

N
(An) =∞ for all n ∈ N. �

§01.24 Lemma. Let µ be a content on the ring R ⊆ 2Ω. Consider the following five properties. (p1) µ
is σ-additive (and hence µ ∈ M(R) is a premeasure), (p2) µ is σ-subadditive, (p3) µ is lower
semicontinuous, (p4) µ is ∅-continuous, (p5) µ is upper semicontinuous. Then the following
implications hold: (p1)⇔(p2)⇔(p3)⇒(p4)⇔(p5). If µ is finite, then we also have (p4)⇒(p3).

§01.25 Proof of Lemma §01.24. is given in the lecture. �

§01.26 Example (§01.18 (b) continued). ν is a ∅-continuous content, but it is not a premeasure. �

§01.27 Definition.
(a) A pair (Ω,A ) consisting of a nonempty set Ω and a σ-algebra A ⊆ 2Ω is called a measur-

able space. The sets A ∈ A are called measurable sets. If Ω is at most countably infinite
and if A = 2Ω, then the measurable space (Ω, 2Ω) is called discrete.

(b) A triple (Ω,A , µ) is called measure space if (Ω,A ) is a measurable space and µ ∈M(A )

is a measure on A .

(c) If in addition µ(Ω) = 1, then (Ω,A , µ) is called a probability space and µ ∈ W(A ) a
probability measure. In this case, the sets A ∈ A are called events. �

§01|03 Measure extension

§01.28 Lemma (Uniqueness). Let (Ω,A ) be a measurable space, let E ⊆ A be a∩-closed generator of
A and let µ, ν ∈Mσ(A ) be two σ-finite measures on A , which agree on E , that is, µ(E) = ν (E)

for all E ∈ E . Assume (uC) there exist sets (En)n∈N in E with
⋃
n∈N En = Ω and µ(En) ∈ R>0

for all n ∈ N. Then µ and ν agree also on A .
If µ, ν ∈W(A ) are two probability measures on A , then (uC) is not needed.

§01.29 Proof of Lemma §01.28. is given in the lecture. �

§01.30 Remark. In other words under the assumptions of Lemma §01.28 a σ-finite measure µ ∈
Mσ(A ) is uniquely determined by its values µ(E), E ∈ E . The uniqueness without (uC), the
existence of the sequence (En)n∈N, does generally not apply, even if µ ∈Mf(A ) is a finite mea-
sure on A . In this case the total mass µ(Ω) is generally not uniquely determined. Let Ω = {1, 2}

6 Probability theory 1
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and E =
{
{1}
}

. Then E is a ∩-closed generator of 2Ω. A probability measure µ ∈ W(A ) is
uniquely determined by the value µ({1}). However, a finite measure is not determined by its
value on

{
{1}
}

, as µ ≡ 0 and ν = δ2 are different finite measures that agree on E . �

§01.31 Definition. A set function µ? : 2Ω → R>0 is called an outer measure if (oM1) µ?(∅) = 0,
(oM2) µ? is monotone, and (oM3) µ? is σ-subadditive. A set A ∈ 2Ω is called µ?-measurable if

µ?(A ∩B) + µ?(Ac ∩B) = µ?(B) for any B ∈ 2Ω.

We write σ(µ?) :=
{
A ∈ 2Ω: A is µ?-measurable

}
. �

§01.32 Remark. Since µ?(∅) = 0 we evidently have Ω ∈ σ(µ?). As µ? is subadditive it follows that
A ∈ σ(µ?) if and only if µ?(A ∩B) + µ?(Ac ∩B) 6 µ?(B) for any B ∈ 2Ω. �

§01.33 Lemma. Let E ⊆ 2Ω be an arbitrary class of sets with ∅ ∈ E and let µ : E → R>0 be a set
function with µ(∅) = 0. For A ∈ 2Ω define the set of countable coverings F of A with sets
F ∈ E :

U(A) =
{
F ⊆ E : F is countable and A ⊆

⋃
F∈F F

}
Define

µ? : 2Ω → R>0 with A 7→ µ?(A) := inf
{ ∑
F∈F

µ(F ): F ∈ U(A)
}
,

where inf ∅ = ∞. Then µ? is an outer measure. If in addition µ is σ-subadditive, then µ? and µ
agree on E , i.e. µ?(E) = µ(E) for all E ∈ E .

§01.34 Proof of Lemma §01.33. is given in the lecture. �

§01.35 Lemma. If µ? is an outer measure, then σ(µ?) is a σ-algebra and the restriction of µ? on σ(µ?) is
a measure.

§01.36 Proof of Lemma §01.35. is given in the lecture. �

§01.37 Extension theorem for measures. Let E ⊆ 2Ω be a semiring and let µ : E → R>0 be an
additive, σ-subadditive and σ-finite set function with µ(∅) = 0.
Then there is a unique σ-finite measure µ̃ : σ(E ) → R>0 such that µ̃ and µ agree on E , i.e.
µ̃(E) = µ(E) for all E ∈ E .

§01.38 Proof of Theorem §01.37. is given in the lecture. �

§01.39 Example.
(a) There exists a uniquely determined measure λn on (R

n
,B

n
) with the property that λn((a, b]) =∏

i∈JnK(bi − ai) for all a, b ∈ Rn with a < b. λ
n is called Lebesgue measure on (R

n
,B

n
)

(see lecture Analysis 3).

(b) Let F : R → R be monotone increasing and right continuous. There is a uniquely de-
termined measure µ

F
on (R,B) with the property that µ

F
((a, b]) = F(b) − F(a) for all

a, b ∈ R with a < b. µ
F

is called Lebesgue-Stieltjes measure on (R,B) (Exercise). If in
addition limx→∞(F(x)− F(−x)) = 1, then µ

F
is a probability measure. �

§01.40 Definition. Let (Ω,A , µ) be a measure space.

Probability theory 1 7
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(a) A set N ∈ A is called a µ-null set, or briefly null set, if µ(N) = 0. By Nµ we denote the
class of all subsets of µ-null sets.

(b) Let E(ω) be a property that a point ω ∈ Ω can have or not have. We say that E holds
µ-almost everywhere (µ-a.e.) if there exists a µ-null set N ∈ Nµ such that E(ω) holds for
every ω ∈ Ω\N = N c. IfA ∈ A and if there exists a µ-null setN such thatE(ω) holds for
every ω ∈ A \N , then we say that E holds µ-almost everywhere on A. If µ = P ∈ W(A )

is a probability measure then we say that E holds P-almost surely (P-a.s.) respectively
P-almost surely on A.

(c) The measure space (Ω,A , µ) is called complete, if Nµ ⊆ A . �

§01.41 Remark. Let (Ω,A , µ) be a σ-finite measure space. There exists a unique smallest σ-algebra
A

? ⊇ A and an extension µ? of µ to A
? such that (Ω,A

?
, µ?) is complete. (Ω,A

?
, µ?) is

called the completion of (Ω,A , µ). With the notation of Theorem §01.37, this completion is
(Ω, σ(µ?), µ?

∣∣
σ(µ?)

). Furthermore, σ(µ?) = σ(A ∪Nµ) =
{
A ∪N : A ∈ A , N ∈ Nµ

}
and µ?(A ∪N) =

µ(A) for any A ∈ A and N ∈ Nµ. �

§01.42 Definition. Let (Ω,A , µ) be a measure space andB ∈ A . On the trace σ-algebra AB we define
a measure by µ

B
(A) := µ(A) for A ∈ A with A ⊆ B. This measure is called the restriction of

µ to B. �

§01.43 Example. The restriction λ
[0,1]

of the Lebesgue-Borel measure λ on (R,B) to [0, 1] is a proba-
bility measure on ([0, 1],B[0,1]), i.e. λ

[0,1]
∈ W(B[0,1]). More generally, for a Borel set B ∈ B we

call the restriction λ
B

the Lebesgue measure on B, i.e. λ
B
∈Mσ(BB). �

§02 Integration theory

§02|01 The integral

§02.01 Reminder. Let (Ω,A , µ) be a measure space and let (S,S ) be a measurable space.
(a) A function f : Ω → S is called A -S -measurable (or, briefly, measurable) if

σ(f) := f−1(S ) :=
{
f−1(S): S ∈ S

}
⊆ A .

If f is measurable, we write f : (Ω,A ) → (S,S ). We denote by M(A ,S ) the set of
all A -S -measurable functions. If S = BS is the Borel σ-algebra on S then we write
MS

(A ) := M(A ,BS) for short. If µ = P ∈W(A ) is a probability measure then f ∈M(A ,S )

is called ((S,S )-valued) random variable. The σ-algebra σ(f) is called the σ-algebra on Ω
that is generated by f . This is the smallest σ-algebra with respect to which f is measurable.

(b) The identity map idΩ : Ω → Ω is A -A -measurable. If A = 2Ω or S = {∅, S}, then
any map f : Ω → S belongs to M(A ,S ). The indicator function 1A for A ∈ 2Ω belongs to
M(A , 2{0,1}) if and only if A ∈ A .

(c) A measurable function f : (Ω,A )→ (S,S ) is called

numerical if (S,S ) = (R,B), briefly f ∈M(A ) := M
R

(A ) = M(A ,B),

positive numerical if (S,S ) = (R>0,B>0), briefly f ∈M>0
(A ) := M

R>0

(A ) = M(A ,B>0),

real if (S,S ) = (R,B), briefly f ∈M(A ) := MR
(A ) = M(A ,B),

positive real if (S,S ) = (R>0,B>0), briefly f ∈M>0
(A ) := MR>0

(A ) = M(A ,B>0).

8 Probability theory 1
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If the preimage (Ω,A ) is irrelevant we also write shortly M := M(A ), M>0 := M>0
(A ),

M := M(A ), and M>0 := M>0
(A ). If (fn)n∈N is a sequence in M, then supn∈N fn, infn∈N fn,

f
?

:= lim inf
n→∞

fn, and f? := lim sup
n→∞

fn belong also to M (see lecture EWS).

(d) A real map f ∈ M(A ) assuming only finitely many values is called simple or elemen-
tary. If f ∈ M(A ) is simple then there is an n ∈ N and mutually disjoint measurable sets
(Aj)i∈JnK in A as well as numbers (aj)i∈JnK in R such that f =

∑
i∈JnK aj1Aj

. We denote by
M

sim

(A ) and M
sim

>0
(A ) the set of all simple, respectively, positive simple functions on (Ω,A ).

If f =
∑

i∈JnK aj1Aj
and f =

∑
i∈JmK bj1Bj

are two representations of f ∈ M
sim

>0
(A ), then∑

i∈JnK ajµ(Aj) =
∑

i∈JmK bjµ(Bj) (check it!).

(e) Let f ∈ M>0 be positive numerical. Then there exists an isotone sequence of simple func-
tions (fn)n∈N in M

sim

>0 such that fn ↑ f (see lecture EWS). �

§02.02 Theorem. For each measure µ on a measurable space (Ω,A ) we call integral with respect to
µ the uniquely determined functional Iµ : M>0

(A )→ R>0 satisfying the following properties:
(I1) Iµ(af + bg) = aIµ(f) + bIµ(g) for all f, g ∈M>0

(A ) and a, b ∈ R>0, (linearity)

(I2) Iµ(fn) ↑ Iµ(f) for all (fn)n∈N ↑ f in M>0
(A ), (monotone convergence)

(I3) Iµ(1A) = µ(A) for all A ∈ A . (normed)

For each f ∈ M>0
(A ) we call

∫
f dµ := Iµ(f) the integral of f with respect to µ. For A ∈ A

we write shortly
∫
A
f dµ :=

∫
(f1A) dµ. f is called µ-integrable, if

∫
f dµ ∈ R>0. �

§02.03 Proof of Theorem §02.02. The theorem summarises the main result of this section; its proof
takes place in several steps. We first show in Theorem §02.05 the uniqueness result and then
explicitly state in Theorem §02.09 a functional Iµ : M>0

(A ) → R>0 for which we verify the re-
quired conditions (I1)-(I3). In summary, we then show therewith in Theorem §02.09 the existence
result. �

§02.04 Notation. For f ∈ M>0
(A ) and A ∈ A we write shortly µ(f) :=

∫
f dµ =

∫
Ω
f(ω)µ(dω) as

well as µ(f1A) =
∫
A
f dµ =

∫
A
f(ω)µ(dω). �

§02.05 Uniqueness theorem. The integral is uniquely determined.

§02.06 Proof of Theorem §02.05. is given in the lecture. �

Reminder §02.01 (e) allows the following definition to be made since the defined value Ĩµ(f)
does not depend on the chosen representation of f .

§02.07 Lemma. The map Ĩµ : M
sim

>0
(A )→ R>0 given by

f =
∑
i∈JnK

aj1Aj
7→ Ĩµ(f) :=

∑
i∈JnK

ajµ(Aj).

is normed, positive, linear and monotone:
(i) Ĩµ(1A) = µ(A) for every A ∈ A , (normed)

(ii) Ĩµ(af + bg) = ãIµ(f) + b̃Iµ(g) for all f, g ∈M
sim

>0
(A ) and a, b ∈ R>0, (linearity)

(iii) Ĩµ(f) 6 Ĩµ(g) for all f, g ∈M
sim

>0
(A ) with f 6 g. (monotonicity).

§02.08 Proof of Lemma §02.07. Exercise. �
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§02.09 Existence theorem. The functional Iµ : M>0
(A )→ R>0 with

f 7→ Iµ(f) := sup
{̃
Iµ(g): g ∈M

sim

>0
(A ), g 6 f

}
is an integral with respect to µ, that is, it shares the properties (I1)-(I3) in Theorem §02.02:
(i) Iµ(1A) = µ(A) for every A ∈ A , (normed)

(ii) Iµ(f) 6 Iµ(g) for all f, g ∈M>0
(A ) with f 6 g, (monotonicity)

(iii) Iµ(fn) ↑ Iµ(f) for all (fn)n∈N ↑ f in M>0
(A ). (monotone convergence)

(iv) Iµ(af + bg) = aIµ(f) + bIµ(g) for all f, g ∈M>0
(A ) and a, b ∈ R>0 (linearity)

(with convention∞ · 0 = 0).

§02.10 Proof of Theorem §02.09. is given in the lecture. �

§02.11 Remark. By Lemma §02.07 (iii) we have the identity Iµ(f) = Ĩµ(f) for any f ∈M
sim

>0
(A ). Hence

Iµ is an extension of the map Ĩµ from M
sim

>0
(A ) to the set of positive numerical functions M>0

(A ). �

§02.12 Comment. A measurable partition P :=
{
Ai: i ∈ I

}
⊆ A\∅ of Ω is finite, if |I| ∈ N, and hence

∅ 6= A ∈ A for each A ∈ P. If we set P :=
{
P ⊆ A\∅: P finite, measurable partition of Ω

}
, then the

functional Iµ : M>0
(A )→ R>0 given by (with convention∞ · 0 = 0)

f 7→ Iµ(f) := sup
{∑
A∈P

(
inf
ω∈A

f(w)
)
µ(A): P ∈P

}
shares also the properties (I1)-(I3) in Theorem §02.02, and hence it is an alternative but equivalent
representation of the uniquely determined integral with respect to µ. �

§02.13 Notation. For arbitrary measures µ, ν ∈M(A ) we write ν 6 µ if ν (A) 6 µ(A) for all A ∈ A .
Evidently, ν 6 µ and µ 6 ν imply together µ = ν . �

§02.14 Lemma (Properties). Let (Ω,A , µ) be an arbitrary measure space and let (fn)n∈N be a se-
quence in M>0

(A ).
(i) (Fatou’s lemma) µ(lim inf

n→∞
fn) =

∫ (
lim inf
n→∞

fn
)

dµ 6 lim inf
n→∞

∫
fn dµ = lim inf

n→∞
µ(fn) and

in particular µ
(

lim inf
n→∞

An
)
6 lim inf

n→∞
µ(An) for every sequence (An)n∈N of sets in A . If

µ ∈Mf(A ) is finite, then also lim sup
n→∞

µ(An) 6 µ
(

lim sup
n→∞

An
)
.

(ii)
∑

n∈N fn ∈M>0
(A ) and µ(

∑
n∈N fn) =

∫ (∑
n∈N fn

)
dµ =

∑
n∈N

∫
fn dµ =

∑
n∈N µ(fn).

Let in addition f, g ∈M>0
(A ).

(iii) f = 0 µ-a.e. if and only if µ(f) =
∫
f dµ = 0. If µ(f) ∈ R>0 then f ∈ R>0 µ-a.e. and the

restriction of µ on
{
f 6= 0

}
is a σ-finite measure.

(iv) The set function fµ : A → R>0 with A 7→ fµ(A) := µ(1Af) =
∫

(1Af) dµ is a measure on
(Ω,A ). For all A ∈ A with µ(A) = 0 we have fµ(A) = 0.

(v) If f 6 g (respectively f = g) µ-a.e. then fµ 6 gµ (respectively fµ = gµ). The converse
holds, if (c1) f is µ-integrable, or (c2) µ ∈Mσ(A ), or (c3) gµ ∈Mσ(A ) σ-finite.
In particular, µ(f) =

∫
f dµ 6

∫
g dµ = µ(g) (respectively, µ(f) = µ(g)).

(vi) µ ∈M(A ) is σ-finite if and only if there is h ∈ M(0,1]
(A ) with µ(h) ∈ R>0 (µ-integrable). In

particular, for each σ-finite µ ∈Mσ(A ) there exists h ∈M(A ) with h ∈ R>0 µ-a.e. such that
hµ ∈Mf(A ) is finite and hµ shares the same null-sets as µ.

10 Probability theory 1
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(vii)
∑

n∈N µ
({
f > n

})
6 µ(f) 6

∑
n∈N0

µ
({
f > n

})
and µ(f) =

∫∞
0
µ
({
f > t

})
dt for

every f ∈M(A ) with f ∈ R>0 µ-a.e.

§02.15 Proof of Lemma §02.14. is given in the lecture. �

§02.16 Definition. Let µ ∈ M(A ) be a measure on (Ω,A ) and let f ∈ M>0
(A ). Define the measure

ν ∈M(A ) by ν(A) := µ(1Af ) for A ∈ A . We say that fµ := ν has the density dν/dµ := f

with respect to µ, or briefly µ-density. �

§02.17 Lemma (Properties). Let (Ω,A , µ) be a measure space and let ν := fµ ∈ M(A ) admit the
density dν/dµ = f ∈M>0

(A ).
(i) ν (g) =

∫
g dν =

∫
(gf ) dµ = µ(gf ) = fµ(g) for every g ∈M>0

(A ).

(ii) ρ = qν = q(fµ) = (qf )µ for every ρ := qν ∈M(A ) with q ∈M>0
(A ).

(iii) If ν ∈Mσ(A ) or µ ∈Mσ(A ) is σ-finite then the µ-density dν/dµ = f of ν is unique up to
equality µ-almost everywhere.

(iv) If ν ∈Mσ(A ) is σ-finite, then dν/dµ = f ∈ R>0 µ-a.e.. The converse holds, if µ ∈Mσ(A ).

§02.18 Proof of Lemma §02.17. is given in the lecture. �

§02.19 Notation. If f ∈M(A ) is numerical then f+ := f ∨ 0, f− := (−f)+, |f | = f+ + f− ∈M>0
(A )

are positive numerical. �

§02.20 Definition. Let (Ω,A , µ) be a measure space and let f ∈M(A ) be numerical.
(a) If f+ or f− is µ-integrable, that is, µ(f+) ∧ µ(f−) ∈ R>0, then we define the integral

µ(f) :=
∫
f dµ :=

∫
f+ dµ −

∫
f− dµ = µ(f+)− µ(f−)

of f with respect to µ where we use the usual conventions∞+x =∞ and−∞+x = −∞
for all x ∈ R. In this case f is called µ-quasiintegrable. The integral of f is not defined, if
µ(f+) =∞ = µ(f−).

(b) If µ(|f |) ∈ R>0, that is, µ(f+) ∨ µ(f−) ∈ R>0, then f is called µ-integrable. The set of all
µ-integrable numerical functions is denoted by

L1 := L1(µ) := L1(Ω,A , µ) :=
{
f ∈M(A ): µ(|f |) ∈ R>0

}
.

(c) For p ∈ R>0 define

‖f‖
Lp

:=
(
µ(|f |p)

)1/p and ‖f‖
L∞

:= inf
{
x ∈ R>0: µ

(
{|f | > x}

)
= 0
}
.

For p ∈ R>0 a function f is called Lp-integrable if ‖f‖
Lp
∈ R>0. The vector space of all

Lp-integrable functions we denote by

Lp := Lp(µ) := Lp(Ω,A , µ) :=
{
f ∈M(A ): ‖f‖

Lp
∈ R>0

}
.

For p ∈ R>1, the map ‖·‖
Lp

is a seminorm on Lp(µ) (see Subsection §02|03 below), that is,
for all f, g ∈ Lp(µ) and a ∈ R, (s1) ‖af‖

Lp
= |a|‖f‖

Lp
, (s2) ‖f + g‖

Lp
6 ‖f‖

Lp
+ ‖g‖

Lp
,

(s3) ‖f‖
Lp
∈ R>0 and ‖f‖

Lp
= 0 if f = 0 µ-a.e.

(d) The map 〈·, ·〉
L2

: L2(µ)×L2(µ)→ Rwith (f, g) 7→ 〈f, g〉
L2

:= µ(fg) is a positive semidefinite
symmetric bilinearform. �

Probability theory 1 11



Chapter 1 Measure and integration theory §02 Integration theory

§02.21 Lemma (Properties). Let f, g ∈ L1(Ω,A , µ).
(i) If a, b ∈ R, then af + bg ∈ L1(µ) and

∫
(af + bg) dµ = a

∫
f dµ + b

∫
g dµ. (linearity)

(ii) Let h ∈M(A ). If h = f µ-a.e., then h ∈ L1(µ) and
∫
h dµ =

∫
f dµ.

If |h| 6 |g| µ-a.e. then h ∈ L1(µ).

(iii) If f 6 g µ-a.e., then µ(f) 6 µ(g). (monotonicity)
In particular, if f ∈ R>0 µ-a.e., then µ(f) ∈ R>0. (positive)

(iv) |µ(f)| 6 µ(|f |). (triangle inequality)

(v) f = 0 µ-a.e. if and only if µ(f1A) = 0 for all A ∈ A .

(vi) If µ ∈ Mf(A ) is finite and h ∈ M(A ) is bounded, hence ‖h‖∞ := supω∈Ω |h(ω)| ∈ R>0,
then h ∈ L1(µ).

(vii) If µ, ν ∈M(A ) then h ∈ L1(µ + ν) if and only if h ∈ L1(µ)∩L1(ν). In this case, (µ+ν)(h) =
µ(h) + ν (h).

(viii) If ν = fµ with dν/dµ = f ∈ M>0
(A ) then g ∈ M(A ) is ν -(quasi)integrable if and only if

gf ∈ M(A ) is µ-(quasi)integrable. In this case ν (g) = µ(gf ) =
∫

(gf ) dµ =
∫
g d(fµ) =∫

g dν .

§02.22 Proof of Lemma §02.21. is given in the lecture. �

§02.23 Corollary (Properties). Let f, g ∈M(A ) and µ ∈M(A ).
(i) Let p ∈ R>0. f ∈ Lp(µ) if and only if |f |p ∈ L1(µ). Moreover, if f ∈ L∞(µ) then µ

(
{|f | >

‖f‖
L∞
}
)

= 0.

(ii) Let p ∈ R>0. ‖f‖Lp
= 0 if and only if f = 0 µ-a.e.. If a ∈ R then ‖af‖

Lp
= |a|‖f‖

Lp
. If

f ∈ Lp(µ) and f = g µ-a.e., then |f | ∈ R>0 µ-a.e. and ‖f‖
Lp

= ‖g‖
Lp

.

§02.24 Proof of Corollary §02.23. Exercise. �

§02.25 Lemma (Image measure). Let (Ω,A ) and (X,X ) be measurable spaces, let µ ∈ M(A ) be a
measure and let X ∈ M(A ,X ) be measurable. Let µX := µ ◦ X−1 ∈ M(X ) be the image
measure on (X,X ) of µ under the map X . If h ∈M>0

(X ) then µ(h(X)) = µX(h). Consequently,
h ∈ M(X ) is µX-(quasi)integrable if and only if h(X) ∈ M(A ) is µ-(quasi)integrable. In this
case, µ(h(X)) = µX(h).

(Ω,A ) (X,X )

(R,B)

X

h ∈M(X )

µX-(quasi)integrable
h(X) ∈M(A )

µ-(quasi)integrable

In particular, if X is a random variable on (Ω,A ,P), then∫
X

h(x)P
X

(dx) =

∫
h dP

X
= P

X
(h) = P(h(X)) =

∫
h(X) dP =

∫
Ω

h(X(ω))P(dω).

§02.26 Proof of Lemma §02.25. is given in the lecture. �

§02|02 Convergence criteria

§02.27 Definition. Let (Ω,A , µ) be a measure space. We say that a sequence (fn)n∈N in M(A ) con-
verges to f ∈M(A )
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µ-almost everywhere (µ-a.e.), symbolically fn
µ-a.e.−−−→ f , if lim supn→∞|fn − f | = 0 µ-a.e.,

that is, there exists a µ-null set N ∈ A such that limn→∞|fn(ω) − f(ω)| = 0 for any
ω ∈ N c := Ω \N .

µ-almost complete (µ-a.c.), symbolically fn
µ-a.c.−−−→ f , if

∑
n∈N µ

(
{|fn − f | > ε} ∩ A

)
∈ R>0

for every A ∈ A with µ(A) ∈ R>0 and for every ε ∈ R>0.

in µ-measure (or, briefly, in measure), symbolically fn
µ−→ f , if limn→∞ µ

(
{|fn−f | > ε}∩A

)
=

0 for every A ∈ A with µ(A) ∈ R>0 and for every ε ∈ R>0.

in Lp(µ) (or in p-th µ-mean) for p ∈ R>0, symbolically fn
Lp(µ)

−−→ f , if (fn)n∈N and f in Lp(µ) such
that limn→∞‖fn − f‖Lp

= 0.

If µ is a probability measure, then convergence in µ-measure is also called convergence in prob-

ability. Sometimes we write briefly fn
a.e.−→ f , fn

a.c.−→ f or fn
Lp−→ f if the underlying measure

emerges from the context. �

§02.28 Remark. Convergence in Lp(µ) and convergence µ-almost everywhere evidently determine the
limit up to equality µ-almost everywhere. This also applies to convergence in µ-measure, if
µ ∈Mσ(A ) is σ-finite. Indeed, if fn

µ−→ f and fn
µ−→ g then for every ε ∈ R>0 and A ∈ A with

µ(A) ∈ R>0 (since |f − g| 6 |f − fn|+ |g − fn|)

µ({|f − g| > ε} ∩ A) 6 µ({|f − fn| > ε/2} ∩ A) + µ({|g − fn| > ε/2} ∩ A)
n→∞−−−→ 0.

and hence µ({|f − g| > ε} ∩ A) = 0. Therefore, we have µ({f 6= g} ∩ A) = 0 making use
of {f 6= g} ∩ A =

⋃
k∈N{|f − g| > 1/k} ∩ A. Selecting An ↑ Ω with µ(An) ∈ R>0 (since

µ ∈Mσ(A )) implies f = g µ-a.e.. If µ ∈Mf(A ) is finite, then limn→∞ µ({|fn − f | > ε}) = 0

for every ε ∈ R>0 and fn
µ−→ f are equivalent. The last statement does not apply, if µ ∈ Mσ(A )

is σ-finite. For instance, on (N, 2N, ζ
N
) (see Example §01.18 (c) for the counting measure ζ

N
)

for An := N>n, n ∈ N, we have {1An
> ε} = An for every ε ∈ (0, 1) and {1An

> ε} = ∅ for
every ε ∈ R>1. Since An ↓ ∅, and hence ζ

N
(An ∩ A) ↓ 0 for each A ∈ A with ζ

N
(A) ∈ R>0 (upper

semicontinuous), we evidently have 1An

ζ
N−→ 0. On the other hand side, for each ε ∈ (0, 1) we

have ζ
N

({1An
> ε}) = ζ

N
(An) =∞ for all n ∈ N. �

§02.29 Lemma. Let (Ω,A , µ) be an arbitrary measure space.
(i) (Monotone convergence) Let f ∈ M(A ) and let fn ∈ L1(µ), n ∈ N. Assume fn ↑ f µ-a.e.

Then µ(fn) ↑ µ(f) where both sides can equal +∞.

(ii) (Dominated convergence) Let (fn)n∈N in M(A ) be µ-a.e. convergent. Assume supn∈N |fn| 6
g µ-a.e. with g ∈ L1(µ). Then there exists f ∈M(A ) with fn

µ-a.e.−−−→ f , (fn)n∈N and f belong
to L1(µ) and limn→∞ µ((|f − fn|)) = 0 as well as limn→∞ µ(fn) = µ(f). If g ∈ Lp(µ) for
p ∈ R>1, then (fn)n∈N and f belong to Lp(µ) and limn→∞‖fn − f‖Lp

= 0.

(iii) (Scheffé’s theorem) Let f, fn ∈ M>0
(A ), n ∈ N, be µ-integrable. Assume fn

µ-a.e.−−−→ f and

µ(fn)
n→∞−−−→ µ(f), then fn

L1
(µ)

−−→ f .

(iv) (Theorem of Riesz) Let f, fn ∈ Lp(µ), n ∈ N, with p ∈ R>1 Assume fn
µ-a.e.−−−→ f . µ(|fn|p)

n→∞−−−→
µ(|f |p) if and only if fn

Lp(µ)

−−→ f .

(v) Let f, fn ∈M(A ), n ∈ N. Then the following implications hold:

fn
µ-a.e.−−−→ f =⇒ fn

µ−→ f ⇐= fn
Lp(µ)

−−→ f.
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If µ ∈Mσ(A ) is σ-finite, then we also have fn
µ-a.c.−−−→ f =⇒fn

µ-a.e.−−−→ f . Moreover, fn
µ−→ f if

and only if for any subsequent of (fn)n∈N there exists a sub-subsequence that converges to
f µ-almost everywhere.

§02.30 Proof of Lemma §02.29. is given in the lecture. �

§02.31 Reminder. A sequence (fn)n∈N in Lp(µ) is called (Lp(µ)-)Cauchy sequence, if for every ε ∈ R>0

there exists n◦ ∈ N such that ‖fn − fm‖Lp(µ) 6 ε for all m,n ∈ N>n◦, symbolically
limn,m→∞‖fn − fm‖Lp(µ) = 0. Keep in mind that every Lp(µ) convergent sequence by apply-
ing Minkowski’s inequality (see Lemma §02.50 (iii)) is also a Lp(µ)-Cauchy sequence. �

§02.32 Lemma. Let p ∈ R>1 and let (fn)n∈N be a Lp(µ)-Cauchy sequence. Then there exists f ∈ Lp(µ)

such that fn
Lp(µ)

−−→ f and there exists a subsequence of (fn)n∈N that converges µ-a.e. to f .

§02.33 Proof of Lemma §02.32. is given in the lecture. �

§02.34 Corollary. Let p ∈ R>1 and let (fn)n∈N be a Lp(µ)-Cauchy sequence that converges µ-a.e. to

f ∈M(A ). Then f belongs to Lp(µ) and fn
Lp(µ)

−−→ f .

§02.35 Proof of Corollary §02.34. is given in the lecture. �

§02.36 Preliminaries. Let (Ω,A , µ) be an arbitrary measure space, let p ∈ R>1 and let f ∈ M(A ).
f is µ-integrable if and only if for every ε ∈ R>0 there exists g ∈ L1(µ) ∩ M>0

(A ) such that
µ(|f |1{|f |>g}) 6 ε or in equal inf

{
µ(|f |1{|f |>g}): g ∈ L1(µ) ∩M>0

(A )

}
= 0. Assume µ(|f |) ∈ R>0.

Setting g := 2|f | ∈ L1(µ) ∩M>0
(A ) we evidently have {|f | > g} = {f = 0} ∪ {|f | = ∞}

and hence applying Corollary §02.23 (ii) also µ(|f |1{|f |>g}) = 0. We obtain the converse by
exploiting µ(|f |) = µ(|f |1{|f |>g}) + µ(|f |1{|f |<g}) 6 ε + µ(g) ∈ R>0, which in turn implies
µ(|f |) ∈ R>0. �

§02.37 Definition. A class of functions F ⊆ L1(µ) is called uniformly µ-integrable if

inf
{

sup
f∈F

µ
(
|f |1{|f |>g}

)
: g ∈ L1(µ) ∩M>0

(A )

}
= 0.

If µ ∈Mf(A ) is finite, then uniform µ-integrability is equivalent to the condition:

inf
{

sup
f∈F

µ
(
|f |1{|f |>a}

)
: a ∈ R>0

}
= 0. �

§02.38 Remark.
(a) Let F be uniformly µ-integrable and let ε ∈ R>0. A function g ∈ L1(µ) ∩M>0

(A ) is called
ε-majorant if supf∈F µ

(
|f |1{|f |>g}

)
6 ε. Evidently, there exists a ε-majorant g for F and

every h ∈ L1(µ) ∩M>0
(A ) with h > g is also a ε-majorant for F.

(b) A family (fi)i∈I in M(A ) is called uniformly µ-integrable if the class
{
fi : i ∈ I

}
is.

(c) Let Fi, i ∈ JnK, be finitly many uniformly µ-integrable classes in M(A ). Then their union
F := ∪i∈JnKFi is also uniformly µ-integrable. Indeed, for every ε ∈ R>0 and ε-majorant gi
for Fi, i ∈ JnK, the function g1 ∨ · · · ∨ gn is a ε-majorant for F.

(d) Let F ⊆ M(A ) and let g ∈ Lp(µ) ∩ M>0
(A ) satisfy |f | 6 g µ-a.e. for all f ∈ F. Then

Fp :=
{
|f |p: f ∈ F

}
is uniformly µ-integrable. For ε ∈ R>0 every ε-majorant h for {gp} is a

ε-majorant for Fp, since µ
(
|f |p1{|f |p>h}

)
6 µ

(
|g|p1{|g|p>h}

)
6 ε for all f ∈ F. �

§02.39 Lemma. Let (Ω,A , µ) be an arbitrary measure space.
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(i) If F ⊆ L1(µ) is a finite set then F is uniformly µ-integrable.

(ii) If F,G ⊆ L1(µ) are uniformly µ-integrable, then
{
f + g: f ∈ F, g ∈ G

}
,
{
f − g: f ∈ F, g ∈ G

}
and

{
|f |: f ∈ F

}
are uniformly µ-integrable.

(iii) If F ⊆ L1(µ) is uniformly µ-integrable, and if, for any g ∈ G ⊆M(A ), there exists an f ∈ F

with |g| 6 |f |, then G ⊆ L1(µ) is also uniformly µ-integrable.

(iv) Let µ ∈Mf(A ) be finite, let p ∈ R>1 and let F be bounded in Lp(µ), that is,
sup

{
‖f‖

Lp
: f ∈ F

}
∈ R>0. Then F is uniformly µ-integrable.

§02.40 Proof of Lemma §02.39. We refer to the lecture EWS / Exercise. �

§02.41 Theorem. Let (Ω,A , µ) be an arbitrary measure space. F ⊆ M(A ) is uniformly µ-integrable
if and only if the following two conditions hold:
(gI1) F is bounded in L1(µ), i.e. sup

{
µ(|f |): f ∈ F

}
∈ R>0.

(gI2) For any ε ∈ R>0 there are h ∈ L1(µ) ∩M>0
(A ) and δ ∈ R>0 such that for all A ∈ A holds

the implication: µ(h1A) 6 δ ⇒ supf∈F µ(|f |1A) 6 ε.

§02.42 Proof of Theorem §02.41. is given in the lecture. �

§02.43 Theorem. Let (Ω,A , µ) be a measure space, let p ∈ R>1 and let (fn)n∈N belong to Lp(µ) ∩
M(A ). Then (i) (fn)n∈N converges in Lp(µ), is equivalent to (ii) (|fn|p)n∈N is uniformly µ-
integrable and (fn)n∈N converges in µ-measure.

§02.44 Proof of Theorem §02.43. (i)⇒(ii) in the lecture, for the converse we refer to Bauer (1992,
Theorem 21.4, p.142) �

§02.45 Remark. The Theorem §02.43 guarantees the existence of a Lp(µ)-integrable function under the
possible limits in µ-measure of the sequence (fn)n∈N. �

§02.46 Corollary. Let µ ∈ Mσ(A ) be σ-finite, let p ∈ R>1 and let (fn)n∈N belong to Lp(µ). Assume

fn
µ−→ f ∈M(A ) and (|fn|p)n∈N is uniformly µ-integrable. Then f ∈ Lp(µ) and fn

Lp(µ)

−−→ f .

§02.47 Proof of Corollary §02.46. is given in the lecture. �

§02.48 Summary. Let (Ω,A , µ) be an arbitrary measure space, let p ∈ R>1, and let (fn)n∈N belong
to Lp(µ). Then the following claims are equivalent:

(i) There is f ∈ Lp(µ) such that fn
Lp(µ)

−−→ f .

(ii) (fn)n∈N is a Lp(µ)-Cauchy sequence, i.e. limn,m→∞‖fn − fm‖Lp
= 0.

Assume in addition p ∈ R>1 and µ ∈Mσ(A ) is σ-finite. Then (i) and (ii) are equivalent to

(iii) (|fn|p)n∈N is uniformly µ-integrable, and there is f ∈M(A ) such that fn
µ−→ f .

The limes in (i) and in (iii) coincide.

Figure 02 [§02] Implications of convergence criteria.

fn
µ-a.c.−−−→ f fn

µ-a.e.−−−→ f fn
L1

(µ)

−−→ f

fn
µ−→ f

subsequence uniformly µ-integrable

uniformly µ-integrable

subsequence
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The Figure 02 [§02] was created based on Klenke (2020, Abb.6.1, p.159). �

§02|03 Lp-Spaces

§02.49 Reminder. For p ∈ R>0 and f, g ∈ M(A ) we have shown that ‖f − g‖
Lp(µ) = 0 if and only

if f = g µ-a.e.. In this case we now consider f and g as equivalent. More precisely, for each
f ∈ M(A ) we introduce the µ-equivalence class {f}

µ
:=
{
g ∈M(A ): g = f µ-a.e.

}
and hence

{0}
µ

=
{
g ∈M(A ): g = 0 µ-a.e.

}
. For any p ∈ R>1, {0}µ is a subvector space of Lp(µ). Thus

formally we can build the factor space

Lp := Lp
(µ) := Lp

(Ω,A , µ) :=
{
{f}

µ
:= f + {0}

µ
: f ∈ Lp(µ)

}
.

For {f}
µ
∈ Lp

(µ), define ‖{f}
µ
‖
Lp(µ) := ‖f‖

Lp
for any f ∈ {f}

µ
. Also let µ({f}

µ
) := µ(f) if this

expression is defined for f . Note that ‖{f}
µ
‖
Lp(µ) and µ({f}

µ
) do not depend on the choice of the

representative f ∈ {f}
µ
. Similarly, for {f}

µ
, {g}

µ
∈ L2

(µ) define

〈{f}
µ
, {g}

µ
〉
L2

(µ)
:= 〈f, g〉

L2
(µ)

= µ(fg)

with f ∈ {f}
µ

and g ∈ {g}
µ
. �

§02.50 Lemma. Let (Ω,A , µ) be an arbitrary measure space and f, g ∈M(A ).
(i) (Hölder’s inequality) Let s, r ∈ R>1 with 1

s
+ 1

r
= 1. Then µ(|fg|) 6 ‖f‖

Lp
‖g‖

Lq
.

(Cauchy-Schwarz inequality) If f, g ∈ L2 then |〈f, g〉
L2

| 6 ‖f‖
L2
‖g‖

L2
.

(ii) If µ ∈ Mf(A ) is finite, s ∈ R>0 and r ∈ (0, s). Then µ(Ω)1/s‖f‖
Lr(µ) 6 µ(Ω)1/r‖f‖

Ls(µ) and
hence Ls(µ) ⊆ Lr(µ).

(iii) (Minkowski’s inequality) For any p ∈ R>1, ‖f + g‖
Lp
6 ‖f‖

Lp
+ ‖g‖

Lp
.

(iv) (Fischer-Riesz) For any p ∈ R>1, (Lp
(µ), ‖·‖

Lp(µ)) is a Banach space. (L2
(µ), 〈·, ·〉

L2
(µ)

) is a
real Hilbert space.

§02.51 Proof of Lemma §02.50. For (i) and (iii) we refer to the lecture EWS or Bauer (1992, Satz
14.1/14.2, p.85/86). (ii) is shown in the lecture and (iv) can be found, for example, in Klenke
(2008, Theorem 7.18, p.151) �

§02.52 Remark. Let (V, 〈·, ·〉) be a Hilbert space. Then the Riesz-Fréchet representation theorem
states, that a map F : V → R is continuous and linear if and only if there is an f ∈ V with
F (x) = 〈f, x〉 for all x ∈ V . The uniquely determined element f ∈ V is called representative
of F . In the next section we will need the representation theorem for the space L2, which unlike
L2 is not a Hilbert space. The representation theorem still holds if V is a linear vector space and
〈·, ·〉 is a complete positive semidefinite symmetric bilinear form (complete semi-inner product)
(c.f. Klenke (2008) section 7.3). �

§02.53 Lemma. The map F : L2(µ) → R is continuous and linear if and only if there is an f ∈ L2(µ)

with F (g) = µ(gf) for all g ∈ L2(µ).

§02.54 Proof of Lemma §02.53. we refer to Klenke (2008, Corollary 7.28, p.154) �

§03 Measures with density - Theorem of Radon-Nikodym

§03.01 Definition. Let ν, µ ∈M(A ) be arbitrary measures on (Ω,A ).
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ν � µ : ν is called absolutely continuous with respect to µ, µ-continuous, or dominated by µ,
if any µ-null set is also a ν -null set, that is, ν(A) = 0 for all A ∈ A with µ(A) = 0. The
measures Maße µ and ν are called equivalent (symbolically µ �� ν ), if ν � µ and µ � ν .

µ ⊥ ν : µ is called singular to ν or ν -singular, if there exists a µ-null set N ∈ A such that
ν (Ω \N) = 0, or in equal ν = 1Nν , that is, ν(A) = ν(A ∩N) for all A ∈ A . �

§03.02 Remark. Evidently, µ ⊥ ν if and only if there are Ωµ,Ων ∈ A with Ω = Ωµ

⊎
Ων and µ(Ων) =

0 = ν (Ωµ), and hence if and only if ν ⊥ µ. Consequently measures µ, ν ∈ M(A ) with µ ⊥ ν
are also called mutually singular. The condition ν = 1Nν means the support of the meassure
ν is contained in N ∈ A . Note that ν � µ and ν ⊥ µ imply together ν (N) = 0, and hence
ν = 0. �

§03.03 Lemma. Let ν, µ ∈M(A ) be measures on (Ω,A ). ν is called totally continuous with respect
to µ if, for any ε ∈ R>0 there exists a δ ∈ R>0 such that ν (A) 6 ε for all A ∈ A with µ(A) 6 δ.
If ν is totally continuous with respect to µ, then ν � µ. If ν ∈Me(A ) is finite, then the converse
also holds.

§03.04 Proof of Lemma §03.03. is given in the lecture. �

Reminder. For measures µ, ν ∈M(A ) we write ν 6 µ if ν (A) 6 µ(A) for all A ∈ A . �

§03.05 Lemma. Let ν, µ ∈ Mf(A ) be finite measures with ν 6 µ, then there exists h ∈ M[0,1]
(A ) such

that ν = hµ.

§03.06 Proof of Lemma §03.05. is given in the lecture. �

§03.07 Theorem of Radon-Nikodym. Let µ ∈ Mσ(A ) be a σ-finite measure and let ν ∈ M(A ) be a
µ-continuous measure, i.e. ν � µ. Then ν has a density f = dν/dµ ∈M>0

(A ) with respect to µ,
that is, ν = fµ.

§03.08 Proof of Theorem §03.07. is given in the lecture. �

§03.09 Remark. Let µ, ν ∈Mσ(A ) be σ-finite measures with ν � µ and let f = dν/dµ ∈M>0
(A ) be a

µ-density of ν . Then Theorem §03.07 implies directly the usual chain rules:
(a) If g ∈M(A ) is ν -quasiintegrable, then ν (g1A) = µ(gf1A) for all A ∈ A .

(b) If ρ ∈Mσ(A ) is a σ-finite measure with ρ � ν � µ then dρ
dµ

= dρ
dν

dν
dµ
µ-a.e..

(c) If h ∈M[0,1]
(A ) with h = dν

d(ν+µ)
µ-a.e. then dν

dµ
= h

1−h µ-a.e.. �

§03.10 Example.
(a) Continuous probability measures on (R

k
,B

k
) as studied in the lecture EWS are probability

measures dominated by the Lebesgue measure λk with corresponding (Radon-Nikodym-)
density.

(b) Discret probability measures on a countable set Ω introduced in the lecture EWS are proba-
bility measures dominated by the counting measure ζ

Ω
and the mass function corresponds to

the (Radon-Nikodym-) density. Similarly, if Ω ⊆ R then the discrete measure µ ∈ Mσ(B)

with mass function p as in Example §01.18 (c) is absolutely continuous with respect to the
counting measure ζ

Ω
∈Mσ(B) with (Radon-Nikodym-) density p. �

§03.11 Lebesgue’s decomposition theorem. Let µ, ν ∈Mσ(A ) be σ-finite measures on (Ω,A ). Then
there exists a unique decomposition ν = νa + νs of ν into two measures νa, νs ∈ M(A ) such
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that νa � µ and νs ⊥ µ is the µ-continuous, respectively the µ-singular part of ν . Moreover,
νa, νs ∈Mσ(A ) are σ-finite, and νa, νs ∈Mf(A ) are finite if and only if ν ∈Me(A ) is finite. νa has
a µ-density dνa/dµ ∈M>0

(A ) with dνa/dµ ∈ R>0 µ-a.e.

§03.12 Proof of Theorem §03.11. is given in the lecture. �

§03.13 Remark. If f = dνa/dµ ∈ M>0
(A ) is a µ-density of νa as in Theorem §03.11 then the positive

real function f̃ := f1{f∈R>0} ∈ M>0
(A ) is also a µ-density of νa, since f = f̃ µ-a.e. In other

words f̃ ∈ M>0
(A ) is also a version of the Radon-Nikodym density of νa with respect to µ.

Consequently, without loss of generality we chose here and subsequently a positive real version
of the Radon-Nikodym density. Furthermore, given f = dνa/dµ ∈ M>0

(A ) let us define a
numerical function L := f1Nc +∞1N ∈M>0

(A ) with µ(N) = 0 = νs(N c) where
{

L =∞
}

= N
and the Lebesgue decomposition writes ν = Lµ + 1{L=∞}ν , i.e. for all A ∈ A we have
ν(A) = µ(1AL) + ν(A ∩

{
L =∞

}
). �

§03.14 Definition. Let ν, µ ∈ Mσ(A ) be two σ-finite measures on (Ω,A ), where ν � µ does not nec-
essarily hold. Any positive numerical function L ∈M>0

(A ) satisfying

µ(L =∞) = 0 and ν = Lµ + 1{L=∞}ν (03.01)

is called density ratio of ν with respect to µ, or µ-density ratio of ν . �

§03.15 Lemma. Let ν, µ ∈Mσ(A ) be two σ-finite measures. Then the µ-density ratio L ∈M>0
(A ) of ν

is unique up to (ν + µ)-a.e. equivalence.

§03.16 Proof of Lemma §03.15. is given in the lecture. �

Alternative formulation of the theorem of Radon-Nikodym

§03.17 Definition. Let (Ω,A , µ) be a measure space and let F ⊆ M(A ) be a class of numerical
functions. A function g ∈ M(A ) is called a µ-essential supremum over F, symbolically g =
µ-ess supf∈F f , if (a) f 6 g µ-a.e. for all f ∈ F, and (b) if h ∈ M(A ) satisfies f 6 h µ-a.e.
for all f ∈ F then g 6 h µ-a.e. �

§03.18 Remark. The µ-essential supremum can be seen as an extension of the usual concept of the
supremum. If F is countable and µ ∈ Mσ(A ) is σ-finite, then g := supf∈F f satisfies the
conditions §03.17 (a) and (b), and hence supf∈F f = µ-ess supf∈F f µ-a.e. In contrast, if for
example F = {1{x}, x ∈ B} with uncountable B ∈ B such that λ(B) ∈ R>0, then the λ-essential
supremum and the usual supremum differ. Precisely, supf∈F f = 1B 6= 0 = λ-ess supf∈F f . �

§03.19 Lemma. Let µ ∈Mσ(A ) and F ⊆M(A ). Then:
(i) g := µ-ess supf∈F f exists and it is µ-a.e. uniquely determined, that is, if g ∈ M(A ) is a

solution of Definition §03.17 (a) and (b) then also g̃ ∈M(A ) with µ({g 6= g̃}) = 0.

(ii) There exists a sequence (fn)n∈N in F with g = supn∈N fn µ-a.e.

(iii) If F is increasing filtered (for all h, k ∈ F exists f ∈ F with f > h ∨ k), then there exists
an isotone sequence (fn)n∈N in F with fn ↑ g µ-a.e..

§03.20 Proof of Lemma §03.19. We refer to Witting (1985, Satz 1.102, S.105). �

§03.21 Lemma. Let µ, ν ∈Mf(A ) be finite and mutually not singular measures on (Ω,A ). Then there
is Ω◦ ∈ A with µ(Ω◦) ∈ R>0 and ε ∈ R>0 with ε1Ω◦µ 6 1Ω◦ν .
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§03.22 Proof of Lemma §03.21. The claim is shown in Klenke (2020, Lemma 7.46, S.184) with help
of the Hahn-decomposition for signed measures. An alternative proof of the claim is given in
the proof of Bauer (1992, Satz 17.10, S.117) exploiting Bauer (1992, Lemma 17.9, S.114). �

§03.23 Lemma. Let ν, µ ∈ Mf(A ) be finite with ν 6 µ. Set F := {f ∈ M>0
(A ) : fµ 6 ν} and

g := µ-ess supf∈F f . Then ν = gµ, that is, g is a version of the µ-density of ν .

§03.24 Proof of Lemma §03.23. is given in the lecture. �

§04 Measures on product spaces

§04|01 Finite product measures

§04.01 Reminder. Let I be an arbitrary nonempty index set and let (Si,Si ), i ∈ I, be measurable
spaces. The set SI := i∈I Si of all maps (si)i∈I : I → ∪i∈ISi such that si ∈ Si for all i ∈ I is
called product space or Cartesian product. We identify the map i 7→ si and the family (si)i∈I .
If Si = S for all i ∈ I then we write S

I
:= SI, and in case n := |I| ∈ N also S

n
:= S

I for short.
For every J ⊆ I the map ΠJ : SI → SJ with (si)i∈I 7→ (sj)j∈J is called canonical projection
and in particular for j ∈ I the map Πj

:= Π{j} : SI → Sj with (si)i∈I 7→ sj is called coordinate
map such that i∈I Ei =

⋂
i∈I Π−1

i
(Ei) for all Ei ⊆ Si and i ∈ I. �

§04.02 Definition. Let I be an arbitrary nonempty index set.
(a) Let (Ω,A ) be a measurable space and for each i ∈ I let Ai ⊆ A be a σ-algebra. The

σ-algebra∧
i∈I

Ai :=
⋂
i∈I

Ai and
∨
i∈I

Ai := σ(
⋃
i∈I

Ai )

is respectively the largest σ-algebra on Ω, that belongs to all Ai , i ∈ I, and the smallest
σ-algebra on Ω, that contains all Ai , i ∈ I.

(b) For each i ∈ I let (Si,Si ) be a measurable space. The product-σ-algebra

SI :=
⊗
i∈I

Si

is the smallest σ-algebra on the product space SI = i∈I Si such that for every i ∈ I the
coordinate map Πi

: SI → Si is measurable with respect to SI-Si , i.e. Πi
∈M(SI, Si); that is,

SI =
⊗
i∈I

Si :=
∨
i∈I

σ(Πi
) =

∨
i∈I

Π
−1
i

(Si ).

If (Si,Si ) = (S,S ) for all i ∈ I, then we also write S I := SI , and S n := S I in case
n := |I| ∈ N. The family (Πi

)i∈I is called the canonical process on (SI,SI). �

Consider now the situation of finitely many measure spaces (Si,Si , µi), i ∈ JnK, where n ∈ N.

§04.03 Lemma. For every i ∈ JnK let Ei be a generator of the σ-algebra Si on Si and let (Eik)k∈N be a
sequence in Ei such that Eik ↑ Si. Then the product-σ-algebra SJnK =

⊗
i∈JnK Si is generated by

the class of sets
{

i∈JnK Ei: Ei ∈ Ei , i ∈ JnK
}

.

§04.04 Proof of Lemma §04.03. is given in the lecture. �
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§04.05 Remark. Let S1 = {∅, S1} and E1 =
{
∅
}

. Let E2 = S2 be a σ-algebra on S2 containing at
least 4 elements. Then the class of sets

{
∅ × E: E ∈ E2

}
does not generate the product-σ-algebra

S1 ⊗ S2 . Consequently, the restrictive assumption on the generator in Lemma §04.03 cannot
simply be dispensed with. On the other hand side by applying Lemma §04.03 the product-σ-
Algebra SJnK =

⊗
i∈JnK Si is generated by the class of sets

{
i∈JnK Ei: Ei ∈ Si , i ∈ JnK

}
�

§04.06 Definition. A measure µJnK ∈M(SJnK) on (SJnK,SJnK) is called product measure if

µJnK

(
i∈JnK Ei

)
= µJnK

( ⋂
i∈JnK

Π
−1
i

(Ei)
)

=
∏
i∈JnK

µ
i
(Ei) for Ei ∈ Si , i ∈ JnK.

In this case we write
⊗

i∈JnK µi := µJnK. If µ
i
= µ for all i ∈ JnK, then we write µn := µJnK. �

§04.07 Lemma (Uniqueness of finite product measures). For every i ∈ JnK let Ei be a ∩-closed generator
of the σ-algebra Si on Si and let (uC) (Eik)k∈N be a sequence in Ei such that µ

i
(Eik) ∈ R>0 for

every k ∈ N and Eik ↑ Si.Then there is at most one measure µJnK ∈M(SJnK) on (SJnK,SJnK) with

µJnK

(
i∈JnK Ei

)
=
∏
i∈JnK

µ
i
(Ei) for Ei ∈ Ei , i ∈ JnK.

§04.08 Proof of Lemma §04.07. is given in the lecture. �

§04.09 Remark. Under the assumptions of Lemma §04.07 follows immediately that for every i ∈ JnK
the measure µ

i
∈Mσ(Si ) is σ-finite. �

§04.10 Notation. For i ∈ J2K let (Si,Si ) be a measurable space. For all E ⊆ S1 × S2, s1 ∈ S1 and
s2 ∈ S2 we write Es1 :=

{
s2 ∈ S2: (s1, s2) ∈ E

}
and E

s2
:=
{
s1 ∈ S1: (s1, s2) ∈ E

}
. �

§04.11 Lemma. For all E ∈ S1 ⊗S2 , s1 ∈ S1 and s2 ∈ S2 we have Es1 ∈ S2 und E
s2 ∈ S1 .

§04.12 Proof of Lemma §04.11. is given in the lecture. �

§04.13 Remark. Due to Lemma §04.11 µ
2
(Es1) and µ

1
(E

s2
) are well-defined for all E ∈ S1 ⊗S2 , s1 ∈ S1

and s2 ∈ S2. �

§04.14 Lemma. For i ∈ J2K let µ
i
∈Mσ(Si ) be a σ-finite measure on (Si,Si ). Then, for all E ∈ S1⊗S2 ,

the map µ
2
(E•) : s1 7→ µ

2
(Es1) and µ

1
(E

•
) : s2 7→ µ

1
(E

s2
) defined on S1 respectively S2 is positive

numerical, that is, µ
2
(E•) ∈M>0

(S1 ) and µ
1
(E

•
) ∈M>0

(S2 ).

§04.15 Proof of Lemma §04.14. is given in the lecture. �

§04.16 Theorem (Existence of a product measure). For i ∈ J2K let µ
i
∈ Mσ(Si ) be a σ-finite measure on

(Si,Si ). Then there exists a unique product measure µJ2K on (SJ2K,SJ2K). Moreover, µJ2K ∈Mσ(SJ2K)

is also σ-finite and µ
1

(
µ

2
(E•)
)

= µJ2K(E) = µ
2

(
µ

1
(E

•
)
)

for all E ∈ SJ2K.

§04.17 Proof of Theorem §04.16. is given in the lecture. �

§04.18 Remark. The last statement can easily be extended to a finite product measure. It should be
noted that the parentheses in the products can be arbitrarily rearranged. Formally we identify the
product sets SJn−1K × Sn und SJnK as usual with help of the bijection ((si)i∈Jn−1K, sn) 7→ (si)i∈JnK.
The agreed equality of the sets implies then directly the equality of the corresponding products
of σ-algebras SJn−1K⊗Sn and SJnK and the associative property (

⊗
i∈JmK Si )⊗(

⊗
i∈Jn−mK Sm+i) =⊗

i∈JnK Si for m ∈ Jn− 1K. �
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§04.19 Corollary (Existence of product measures). For i ∈ JnK let µ
i
∈ Mσ(Si ) be a σ-finite measure on

(Si,Si ). Then there exists a unique σ-finite product measure µJnK ∈Mσ(SJnK) on (SJnK,SJnK).

§04.20 Proof of Corollary §04.19. is given in the lecture. �

§04.21 Remark. For measures that are not necessarily σ-finite, it is still possible to prove the existence,
but no longer the uniqueness, of a product measure. �

§04|02 Projective family

§04.22 Reminder. If (Ωi, τi), i ∈ I, are topological spaces, then the product topology τ on ΩI is the
coarsest topology with respect to which all coordinate maps Πi

: ΩI → Ωi are continuous. �

§04.23 Lemma. Let I be countable, for every i ∈ I let Si be a separable, complete metric space
(Polish) with Borel σ-algebra Bi := BSi

and let BSI
be the Borel σ-algebra with respect to the

product topology on SI = i∈I Si. Then SI is Polish and BSI
= BI =

⊗
i∈IBi. In particular,

BRn = B
n for n ∈ N.

§04.24 Proof of Lemma §04.23. We refer to Klenke (2008, Theorem 14.8, p.273) or Bauer (1992,
Theorem 22.1, p.151). �

§04.25 Definition. Let I be an arbitrary nonempty index set and for any J ⊆ I let ΠJ be the canonical
projection on (SI,SI). For any E ∈ SJ , Π−1

J (E) ∈ SI is called a cylinder set with base J .
The set of such cylinder sets is denoted by ZJ :=

{
Π−1
J (E): E ∈ SJ

}
⊆ SI . In particular, if

EJ = j∈J Ej ∈ SJ , then Π−1
J (E) ∈ SI is called a rectangular cylinder with base J . The set of

such rectangular cylinders will be denoted by Z
R

J :=
{

Π−1
J (EJ ): EJ = j∈J Ej ∈ SJ

}
⊆ SI . For

every i ∈ I let Ei ⊆ Si . The set of rectangular cylinders for which in addition Ej ∈ Ej for all
j ∈ J holds will be denoted by Z

E ,R

J :=
{

Π−1
J (EJ ): EJ = j∈J Ej,Ej ∈ Ej , j ∈ J

}
⊆ SI . Write

Z :=
⋃{

ZJ : J ⊆ I finite
}

and similarly define Z
R and Z

E ,R. �

§04.26 Remark. Every ZJ is a σ-algebra, and Z is a algebra where SI = σ(Z). Moreover, if every Ei is
∩-closed, then Z

E ,R is also ∩-closed (Exercise). �

§04.27 Lemma. For any i ∈ I let Ei ⊆ Si be a generator of Si .
(i) SJ = σ( j∈J Ej : Ej ∈ Ej , j ∈ J ) for every finite J ⊆ I.

(ii) SI = σ(Z
R
) = σ(Z

E ,R
).

(iii) Let (A1) µ ∈ Mσ(SI) be a σ-finite measure on (SI,SI), assume (A2) every Ei is ∩-closed,
and (A3) there is a sequence (En)n∈N in Z

E ,R with En ↑ SI and µ(En) ∈ R>0 for all n ∈ N.
Then µ is uniquely determined by the values µ(A) for all A ∈ Z

E ,R.

§04.28 Proof of Lemma §04.27. Exercise. �

§04.29 Comment. The condition (A3) in Lemma §04.27 (iii) is fulfilled, if µ ∈ Me(SI) is finite and
Si ∈ Ei for every i ∈ I (compare Lemma §01.28). �

§04.30 Notation. For J ⊆ K ⊆ I the map ΠKJ : SK → SJ with (sk)k∈K 7→ (sj)j∈J is called canonical
projection, where evidently ΠJ = ΠIJ . �

§04.31 Definition. For every finite J ⊆ I let PJ ∈ W(SJ ) be a probability measure on (SJ ,SJ ). The
familiy

{
PJ : J ⊆ I finite

}
is called projective or consistent if PJ = PK ◦ (ΠKJ )−1 for all finite

J ⊆ K ⊆ I. �
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§04.32 Remark. Let P ∈ W(SJ ) be a probability measure on (SJ ,SJ ). Since ΠJ = ΠKJ ◦ ΠK, the
family

{
PJ := P ◦ ΠJ : J ⊆ I finite

}
is consistent. Thus, consistency is a necessary condition for

the existence of a measure P on the product space with PJ := P ◦ ΠJ . If all the measurable
spaces are Polish, spaces then this condition is also sufficient. �

§04.33 Kolmogorov’s extension theorem. Let I be an arbitrary nonempty index set and let Si be a
separable and complete metric space (Polish) with Borel σ algebra Bi := BSi

for all i ∈ I.
Let
{
PJ : J ⊆ I finite

}
be a consistent family of probability measures. Then there exists a unique

probability measure P ∈W(BI) on (SI,BI) with PJ = P ◦ Π−1
J for all finite J ⊆ I. P is called

projective limit.

§04.34 Proof of Theorem §04.33. We refer to Klenke (2008, Theorem 14.36, p. 287) �

§04.35 Definition. Let Pi ∈ W(Si ) be a probability measure on (Si,Si ) for all i ∈ I. A probability
measure PI ∈W(SI) on (SI,SI) is called product measure of the Pi , i ∈ I, if

PI
(

j∈J Ei

)
= PI

( ⋂
j∈J

Π
−1
j

(Ej)
)

=
∏
j∈J

Pj (Ej) for Ej ∈ Sj , j ∈ J ⊆ I finite.

In this case we write
⊗

i∈I Pi := PI . If Pi = P for all i ∈ I then PI := PI and Pn := PI in case
n := |I| ∈ N. �

§04.36 Remark. Let I be an arbitrary nonempty index set. For every i ∈ I let Si be a separable and
complete metric space (Polish) with Borel σ-algebra Bi := BSi

and Pi ∈ W(Bi) be a proba-
bility measure on (Si,Bi). For every finite J ⊆ I let PJ :=

⊗
j∈J Pj be the finite product

measure of the Pj , j ∈ J . Evidently, the family
{
PJ : J ⊆ I finite

}
is projective. Making use of

Theorem §04.33 there exists a unique product measure PI :=
⊗

i∈I Pi ∈ W(BI) on (SI,BI).
Considering the canonical process (Πi

)i∈I under PI , all coordinate maps Πi
are independent, i.e.

⊥⊥i∈IΠi
. �

§04|03 Integration with respect to product measures

§04.37 Notation. Let h : S1× S2 → S3 be a map. For all s1 ∈ S1 and s2 ∈ S2 we write hs1 : S2 → S3 with
s2 7→ hs1(s2) := h(s1, s2) and hs2 : S1 → S3 with s1 7→ hs2(s1) := h(s1, s2). �

§04.38 Lemma. For i ∈ J3K, let (Si,Si ) be a measurable space. For all h ∈ M(S1 ⊗S2 ,S3 ), s1 ∈ S1 and
s2 ∈ S2 we have hs1 ∈M(S2 ,S3 ) and hs2 ∈M(S1 ,S3 ).

§04.39 Proof of Lemma §04.38. is given in the lecture. �

§04.40 Theorem (Tonelli). For i ∈ J2K let µ
i
∈Mσ(Si ) be a σ-finite measure on (Si,Si ). Then, for every

h ∈ M>0
(S1 ⊗S2 ) the map µ

1
(h•) : s2 7→ µ

1
(hs2) and µ

2
(h•) : s1 7→ µ

2
(hs1) defined on S1 and S2,

respectively, is positive numerical, that is, µ
1
(h•) ∈ M>0

(S2 ) and µ
2
(h•) ∈ M>0

(S1 ). Moreover, it
holds

(µ
1
⊗ µ

2
)(h) = µ

2
(µ

1
(h
•
)) =

∫
µ

1
(h

s2)µ
2
(ds2) =

∫ ∫
h(s1, s2)µ

1
(ds1)µ

2
(ds2)

=

∫
µ

2
(hs1)µ1

(ds1) = µ
1
(µ

2
(h•))

§04.41 Proof of Theorem §04.40. is given in the lecture. �
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§04.42 Definition. Let (Ω,A , µ) be a measure space, (S,S ) be a measurable space, and N ∈ A be
an µ-null set. A function h : N c := Ω \ N → S is called µ-almost everywhere defined and
A -S -measurable if h−1(S ) ⊆ A holds.

§04.43 Remark. If h, g ∈ M(A ) are µ-almost everywhere finite, then the function g − h is µ-almost
everywhere defined and A -B-measurable. This holds in particular if g and h are µ-integrable.
Now, if f is R-valued, µ-almost everywhere defined with µ-null set N and A -B-measurable,
then we can define f̃(ω) := 0 for ω ∈ N and otherwise f̃(ω) := f(ω). Then f̃ ∈ M(A ) is
numerical. If f̃ is furthermore µ-integrable, then we define for f the integral µ(f) =

∫
f dµ :=

µ(f̃). �

§04.44 Corollary (Fubini’s theorem). Let (Si,Si , µi), i ∈ J2K, be σ-finite measure spaces and h ∈
L1(µ1

⊗ µ
2
). Then µ

2
(h•) : s1 7→ µ

2
(hs1) is µ

1
-almost everywhere defined and S1 -B-measurable,

and µ
1
(h•) : s2 7→ µ

1
(hs2) is µ

2
-almost everywhere defined and S2 -B-measurable. It holds that

µ
2
(µ

1
(h
•
)) =

∫
µ

1
(h

s2)µ
2
(ds2) = (µ

1
⊗ µ

2
)(h) =

∫
µ

2
(hs1)µ1

(ds1) = µ
1
(µ

2
(h•)).

§04.45 Proof of Corollary §04.44. is given in the lecture. �

§04.46 Remark. The last statements can be easily extended to finite product measures, as in Re-
mark §04.18. �

§04.47 Theorem. For each i ∈ JnK, let (Si,Si , µi) be a σ-finite measure space, f
i
∈ M>0

(Ai ), and
νi := f

i
µ
i
. Then the product measure νJnK =

∏
i∈JnK νi ∈ Mσ(SJnK) is σ-finite and absolutely

continuous with respect to the product measure µJnK =
∏

i∈JnK µi ∈Mσ(SJnK) with product density∏
i∈JnK fi ∈M>0

(AJnK), meaning νJnK =
(∏

i∈JnK fi

)
µJnK.

§04.48 Proof of Theorem §04.47. is given in the lecture. �

§04.49 Reminder. Now, let ν = P0 and µ = P1 be probability measures on (S,S ), where it is not
necessarily the case that P0

� P1 . Then any positive, measurable function L ∈ M>0
(S ) with

P0 = LP1 + 1L=∞P0 and P1 (L ∈ R>0) = 1 is is a P1 -density ratio of P0 (cf. Definition §03.14). Let
µ ∈Mσ(S ) denote a σ-finite measure such that Pi � µ, i ∈ J2K, (for example, the finite measure
µ = P0 + P1 ), and let f

i
∈M>0

(S ) be a µ-density of Pi , i ∈ J2K. Then

L? :=
f
0

f
1

1{f1∈R>0} +∞1{f1=0}∩{f0∈R>0} ∈M>0
(S )

is a specific choice of the P1 -density ratio of P0 . We note that a P0 -density ratio of P1 is given by

L−1
? =

f
1

f
0

1{f0∈R>0} +∞1{f0=0}∩{f1∈R>0} ∈M>0
(S )

In the special case where P0
� P1 , the P1 -density ratio of P0 is a P1 -density of P0 and is P1 -

determined. �

§04.50 Lemma. For each i ∈ JnK, let P0|i,P1|i ∈ W(Si ) be probability measures on (Si,Si ) with P1|i-
density ratio Li of P0|i. Then the product L :=

∏
i∈JnK Li is a density ratio of P0 :=

⊗
i∈JnKP0|i with

respect to P1 :=
⊗

i∈JnKP1|i.

§04.51 Proof of Lemma §04.50. is given in the lecture. �
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§04|04 Integration with respect to transition kernel

§04.52 Definition. Let (Ω,A ) and (S,S ) be two measurable spaces. A map κ : Ω × S → R>0

is called a (σ-)finite transition kernel from (Ω,A ) to (S,S ) if it satisfies the following two
conditions:
(tK1) For all ω ∈ Ω, κω : S → R>0 with S 7→ κω(S) := κ(ω, S) is a (σ-)finite measure on

(X,X ), i.e. κω ∈Me(S ) (respectively κω ∈Mσ(S ).

(tK2) For all S ∈ S , κS : Ω → R>0 with ω 7→ κS(ω) := κ(ω, S) is positive, numerical and
S -measurable, i.e. κS ∈M>0

(S ).
If for every ω ∈ Ω, the measure in (tK1) is a probability measure, κω ∈W(S ), then κ is called a
Markov kernel. �

§04.53 Remark. It suffices to require condition (tK2) only for sets from a ∩-closed generator E of S ,
which contains S or a sequence (En)n∈N of sets such that En ↑ S. Then D :=

{
S ∈ S : κS ∈M>0

(A )

}
is a Dynkin system (exercise) with E ⊆ D ⊆ S , and from the π-λ-Theorem §01.11, it follows
that D = σ(E ) = S . �

§04.54 Lemma. Let κ be a finite transition kernel from (Ω,A ) to (S,S ), and let h ∈ M>0
(A ⊗S ) be

positive numerical. Then the function κ•(h•) : Ω → R>0 defined by

ω 7→ κω(hω) =

∫
hω dκω

is well-defined and belongs to M>0
(A ).

§04.55 Proof of Lemma §04.54. is given in the lecture. �

§04.56 Notation. For 1A ∈M>0
(A ⊗S ), that is, A ∈ A ⊗S , according to Lemma §04.54, the function

κ•
(
A•
)

= κ•
(
(1A)•

)
: Ω → R>0 defined by

ω 7→ κω(Aω) = κω
(
(1A)ω

)
=

∫
1A(ω, s)κω(ds)

is well-defined and belongs to M>0
(A ). �

§04.57 Lemma. Let (Ω,A , µ) be a finite measure space, (S,S ) be a measurable space, and κ be a
finite transition kernel from (Ω,A ) to (S,S ). Then there exists a uniquely determined σ-finite
measure µ � κ ∈Mσ(A ⊗S ) on the product space (Ω × S,A ⊗S ) such that

(µ � κ)(B) = µ(κ•
(
B•
)
) for B ∈ A ⊗S ,

where for all A ∈ A and S ∈ S , we have

(µ � κ)(A× S) = µ
(
1Aκ

S
)

=

∫
A

κS dµ =

∫
A

κ(ω, S)µ(dω).

If κ is a Markov kernel and µ is a probability measure, then µ � κ is a probability measure.

§04.58 Proof of Lemma §04.57. is given in the lecture. �

§04.59 Theorem (Tonelli/Fubini for transition kernel). Let (Ω,A , µ) be a finite measure space, (S,S ) be
a measurable space, and κ be a finite transition kernel from (Ω,A ) to (S,S ). If h ∈M>0

(A ⊗S )
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or h ∈ L1(µ � κ) then

(µ � κ)(h) = µ(κ•(h•)) =

∫
κω(hω)µ(dω) =

∫ ( ∫
hω dκω

)
µ(dω)

=

∫ ∫
h(ω, s)κ(ω, ds)µ(dω).

§04.60 Proof of Theorem §04.59. is given in the lecture. �

§04.61 Notation. Consider a probability space (Ω,A ,P), a measurable space (S,S ), and a Markov
kernel κ from (Ω,A ) to (S,S ). Due to Lemma §04.57, P � κ ∈ W(A ⊗S ) is a uniquely
determined probability measure on (Ω × S,A ⊗S ). Then we denote by

(κP)(S) := P
(
κS
)

=

∫
κS dP =

∫
κ(ω, S)P(dω), for S ∈ S

the marginal distribution κP ∈W(S ) on (S,S ) induced by P � κ ∈W(A ⊗S ). �
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