Outline of the lecture course

PROBABILITY THEORY 1

Summer semester 2024

Preliminary version: May 1, 2024

If you find errors in the outline, please send a short note by email to johannes@math.uni-heidelberg.de.

Table of contents

1 Measure and integration theory 1
§01 Measure theory 1
§02 Integration theory 8
§03 Measures with density - Theorem of Radon-Nikodym 16
§04 Measures on product spaces 19

Chapter 1

Measure and integration theory

§01 Measure theory

§01.01 Notation. For $x, y \in \mathbb{R}$ we agree on the following notations $\lfloor x\rfloor:=\max \{k \in \mathbb{Z}: k \in(-\infty, x]\}$ (integer part), $x \vee y=\max (x, y)$ (maximum), $x \wedge y=\min (x, y)$ (minimum), $x^{+}=\max (x, 0)$ (positive part), $x^{-}=\max (-x, 0)$ (negative part) and $|x|=x^{-}+x^{+}$(modulus).
(a) For $c \in \mathbb{R}$ and $\mathbb{A} \subseteq \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}=[-\infty, \infty]$ we set $\mathbb{A}_{\geqslant c}:=\mathbb{A} \cap[c, \infty], \mathbb{A}_{\leqslant c}:=$ $\mathbb{A} \cap[-\infty, c], \mathbb{A}_{>c}:=\mathbb{A} \cap(c, \infty], \mathbb{A}_{<c}:=\mathbb{A} \cap[\infty, c), \mathbb{A}_{\backslash c}:=\mathbb{A} \backslash\{c\}$, and $\overline{\mathbb{A}}:=\mathbb{A} \cup\{ \pm \infty\}$.
(b) For $b \in \overline{\mathbb{R}}$ and $a \in \overline{\mathbb{R}}_{<b}$ we write $\left.\llbracket a, b \rrbracket:=[a, b] \cap \overline{\mathbb{Z}}, \llbracket a, b\right):=[a, b) \cap \overline{\mathbb{Z}},(a, b \rrbracket:=(a, b] \cap \overline{\mathbb{Z}}$, and $(a, b):=(a, b) \cap \overline{\mathbb{Z}}$. Moreover, let $\llbracket n \rrbracket:=\llbracket 1, n \rrbracket$ and $\llbracket n):=\llbracket 1, n)$ for $n \in \mathbb{N}=\mathbb{Z}_{>_{0}}$.
(c) $\Omega \neq \emptyset$ denotes a nonempty set, and 2^{Ω} the set of all subsets of Ω. A set is called countable if it is at most countable infinite, meaning either finite or countably infinite. The cardinality of a set A is denoted by $|A|$.

§01|01 Classes of sets

$\S 01.02$ Definition. A class of sets $\mathscr{E} \subseteq 2^{\Omega}$ is called
\cap-closed (closed under intersections) or a π-system if $A \cap B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$, σ - \cap-closed (closed under countable intersections) if $\cap_{n \in \mathbb{N}} A_{n} \in \mathscr{E}$ for any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets in \mathscr{E},
\cup-closed (closed under unions) if $A \cup B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$,
σ - \cup-closed (closed under countable unions) if $\cup_{n \in \mathbb{N}} A_{n} \in \mathscr{E}$ for any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets in \mathscr{E},
\backslash-closed (closed under differences) if $A \backslash B \in \mathscr{E}$ whenever $A, B \in \mathscr{E}$, and closed under complements if $A^{\mathrm{c}}:=\Omega \backslash A \in \mathscr{E}$ for any set $A \in \mathscr{E}$.
§01.03 Remark.
(a) If $\mathscr{E} \subseteq 2^{\Omega}$ is closed under complements then de Morgan's rule (i.e. $\left(\cup A_{i}\right)^{\mathrm{c}}=\cup A_{i}^{\mathrm{c}}$) implies immediately the equivalences of \cup-closed and \cap-closed, as well as of σ - \cup-closed and σ - \cap closed.
(b) Let $\mathscr{E} \subseteq 2^{\Omega}$ be \backslash-closed. Then \mathscr{E} is \cap-closed. If in addition \mathscr{E} is σ - \cup-closed, then \mathscr{E} is σ - \cap-closed. Any countable (respectively finite) union of sets in \mathscr{E} can be expressed as a countable (respectively finite) disjoint union of sets in \mathscr{E}.
§01.04 Definition. A class of sets $\mathscr{E} \subseteq 2^{\Omega}$ is called
semiring if (i) $\emptyset \in \mathscr{E}$, (ii) for any two sets $A, B \in \mathscr{E}$ the difference set $A \backslash B$ is a finite union of mutually disjoints sets in \mathscr{E}, and (iii) \mathscr{E} is \cap-closed;
ring, if (R1) $\emptyset \in \mathscr{E},(\mathrm{R} 2) \mathscr{E}$ is \backslash-closed, and (R3) \mathscr{E} is \cup-closed; σ-ring, if \mathscr{E} is a σ - \cup-closed ring;
algebra, if (A1) $\Omega \in \mathscr{E}$, (A2) \mathscr{E} is \backslash-closed, and (A3) \mathscr{E} is \cup-closed; σ-algebra, if \mathscr{E} is a σ - \cup-closed algebra;

Dynkin-system or λ-system, if (D1) $\Omega \in \mathscr{E}$, (D2) \mathscr{E} is closed under complements, and (D3) $\biguplus_{n \in \mathbb{N}} A_{n} \in \mathscr{E}$ for any choice of countably many pairwise disjoint sets $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{E}.
§01.05 Remark.
(a) Sometimes the disjoint union of sets is denoted by the symbol \biguplus. Note that this is not a new operation but only stresses the fact that the sets involved are mutually disjoint.
(b) For any $\Omega \neq \emptyset$ the classes $\{\emptyset, \Omega\}$ and 2^{Ω} are trivial examples of algebras, σ-algebras and Dynkin systems. Trivial examples of semirings, rings and σ-rings are $\{\emptyset\}$ and 2^{Ω}.
(c) A (set-)ring \mathscr{R} equipped with the symmetric difference Δ as addition and the intersection \cap as multiplication forms an Abelian algebraic ring ($\mathscr{R}, \Delta, \cap)$.
(d) A class of sets $\mathscr{A} \subseteq 2^{\Omega}$ is an algebra if and only if $\Omega \in \mathscr{A}$, and \mathscr{A} is closed under complements and \cap-closed.
(e) A class of sets $\mathscr{A} \subseteq 2^{\Omega}$ with $\Omega \in \mathscr{A}$, which is closed under complements and σ - \cup closed is a σ-algebra.
(f) Let $\mathscr{D} \subseteq 2^{\Omega}$ be a Dynkin-system. The condition (D2), i.e. \mathscr{D} is closed under complements, can be equivalently replaced by the apparently stronger condition (D2') $B \backslash A \in \mathscr{D}$ for any $A, B \in \mathscr{D}$ with $A \subseteq B$, since each Dynkin-system satisfies also (D2'). Indeed for $A, B \in \mathscr{D}$ with $A \subseteq B$ the sets A and B^{c} are mutually disjoint and $B \backslash A=\left(A \biguplus B^{\mathrm{c}}\right)^{\mathrm{c}} \in \mathscr{D}$.
(g) Every σ-algebra also is a Dynkin-system. The converse does not apply because (D3) is required only for mutually disjoint sets. For example let $\Omega=\{1,2,3,4\}$ and $\mathscr{D}=$ $\{\emptyset,\{1,2\},\{1,4\},\{2,3\},\{3,4\}, \Omega\}$. Then \mathscr{D} is a Dynkin-system but is not an algebra.
§01.6 Illustration.
(i) Every σ-algebra also is a Dynkin-system, an algebra and a σ-ring.
(ii) Every σ-ring is a ring, and every ring is a semiring.
(iii) Every algebra is a ring. An algebra on a finite set Ω is a σ-algebra.

Figure 01 [$\S 01]$ Inclusions between classes of sets $\mathscr{E} \subseteq 2^{\Omega}$.

semiring
The Figure 01 [§01] was created based on Klenke (2008, Fig.1.1, p.7).
$\S 01.07$ Lemma. A Dynkin-system $\mathscr{D} \subseteq 2^{\Omega}$ is \cap-closed if and only if it is a σ-algebra.
$\S 01.08$ Proof of Lemma §01.07. In the lecture course EWS.
§01.09 Lemma. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a class of sets. Then

$$
\begin{aligned}
\sigma(\mathscr{E}) & :=\bigcap\left\{\mathscr{A}: \mathscr{A} \subseteq 2^{\Omega} \text { is a } \sigma \text {-algebra and } \mathscr{E} \subseteq \mathscr{A}\right\} \quad \text { and } \\
\delta(\mathscr{E}) & :=\bigcap\left\{\mathscr{D}: \mathscr{D} \subseteq 2^{\Omega} \text { is a Dynkin-system and } \mathscr{E} \subseteq \mathscr{D}\right\}
\end{aligned}
$$

is the smallest σ-algebra, respectively, Dynkin-system on Ω containing $\mathscr{E} . \mathscr{E}$ is called generator, and $\sigma(\mathscr{E})$ and $\delta(\mathscr{E})$ is called the σ-algebra and the Dynkin-system generated by \mathscr{E}, respectively.
§01.10 Proof of Lemma §01.09. In the lecture course EWS.
§01.11 π - λ-Theorem. Let $\mathscr{E} \subseteq 2^{\Omega}$ be \cap-closed. Then $\sigma(\mathscr{E})=\delta(\mathscr{E})$ and also $\sigma(\mathscr{E}) \subseteq \mathscr{D}$ for any Dynkinsystem $\mathscr{D} \subseteq 2^{\Omega}$ with $\mathscr{E} \subseteq \mathscr{D}$.
§01.12 Proof of Theorem §01.11. In the lecture course EWS.
$\S 01.13$ Definition. Let $\mathscr{E} \subseteq 2^{\Omega}$ be an arbitrary class of subsets of Ω and $A \in 2^{\Omega} \backslash\{\emptyset\}=: 2_{\ 0}^{\Omega}$ a nonempty set. The class $\mathscr{E}_{A}:=\left.\mathscr{E}\right|_{A}:=\mathscr{E} \cap A:=\{B \cap A: B \in \mathscr{E}\} \subseteq 2^{\Omega}$ of subsets of Ω is called trace of \mathscr{E} on A or restriction of \mathscr{E} to A.
§01.14 Remark. If \mathscr{E} is a semiring, $(\sigma-)$ ring or (σ-)algebra then \mathscr{E}_{A} is a class of sets of the same type as \mathscr{E}, however, on A instead of Ω. For a Dynkin-system this generally does not apply. Moreover, we have $\left.\sigma(\mathscr{E})\right|_{A}=\sigma\left(\left.\mathscr{E}\right|_{A}\right)$.
§01.15 Reminder.
(a) Let \mathcal{S} be a metric (or topological) space and \mathscr{O} the class of open subsets in \mathcal{S}. The σ algebra $\mathscr{B}_{\mathrm{s}}:=\sigma(\mathscr{O})$ that is generated by the open sets \mathscr{O} is called the Borel σ-algebra on \mathcal{S}. The elements of \mathscr{B}_{δ} are called Borel sets or Borel measurable sets.
(b) In many cases, we are interested in the Borel σ-algebra $\mathscr{B}^{n}:=\mathscr{B}_{\mathbb{R}^{n}}$ over \mathbb{R}^{n}, where \mathbb{R}^{n} is equipped with the Euclidean distance $d(x, y)=\|x-y\|=\sqrt{\sum_{i \in \llbracket n \rrbracket}\left(x_{i}-y_{i}\right)^{2}}$ for $x=\left(x_{i}\right)_{i \in \llbracket n \rrbracket}, y=\left(y_{i}\right)_{i \in \llbracket n \rrbracket} \in \mathbb{R}^{n}$.
(c) For $a=\left(a_{i}\right)_{i \in \llbracket n \rrbracket}, b=\left(b_{i}\right)_{i \in \llbracket n \rrbracket} \in \overline{\mathbb{R}}^{n}$ we write $a<b$, if $a_{i}<b_{i}$ for all $i \in \llbracket n \rrbracket$. For $a<b$, define the open rectangle as the Cartesian product $(a, b):=\mathbf{X}_{i \in \llbracket n \rrbracket}\left(a_{i}, b_{i}\right):=$ $\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$. Analogously, we define $[a, b],(a, b]$ and $[a, b)$. Moreover, we set $(-\infty, b):=$ Х $_{i \in \llbracket n \rrbracket}\left(-\infty, b_{i}\right)$ and $(-\infty, b]:=\mathrm{X}_{i \in \llbracket n \rrbracket}\left(-\infty, b_{i}\right]$.
(d) The Borel σ-algebra \mathscr{B}^{n} is generated by any of the classes of sets:
(i) $\mathscr{E}_{1}:=\left\{A \subseteq \mathbb{R}^{n}: A\right.$ is closed $\}$; (ii) $\mathscr{E}_{2}:=\left\{A \subseteq \mathbb{R}^{n}: A\right.$ is compact $\}$;
(iii) $\mathscr{E}_{3}:=\left\{(a, b): a, b \in \mathbb{Q}^{n}, a<b\right\} ;$ (iv) $\mathscr{E}_{4}:=\left\{[a, b]: a, b \in \mathbb{Q}^{n}, a<b\right\}$;
(v) $\mathscr{E}_{5}:=\left\{(a, b]: a, b \in \mathbb{Q}^{n}, a<b\right\} ;$ (vi) $\mathscr{E}_{6}:=\left\{[a, b): a, b \in \mathbb{Q}^{n}, a<b\right\}$;
(vii) $\mathscr{E}_{7}:=\left\{(-\infty, b]: b \in \mathbb{Q}^{n}\right\} ;$ (viii) $\mathscr{E}_{8}:=\left\{(-\infty, b): b \in \mathbb{Q}^{n}\right\}$;
(ix) $\mathscr{E}_{9}:=\left\{(a, \infty): a \in \mathbb{Q}^{n}\right\}$ and (x) $\mathscr{E}_{10}:=\left\{[a, \infty): a \in \mathbb{Q}^{n}\right\}$. (Exercise).
(e) We denote by $\overline{\mathscr{B}}:=\mathscr{B}_{\overline{\mathbb{R}}}$ the Borel σ-algebra over the extension $\overline{\mathbb{R}}:=[-\infty, \infty]$ of the real line by the points $\{ \pm \infty\}$ where in $\overline{\mathbb{R}}$ the sets $\{-\infty\}$ and $\{\infty\}$ are closed, and \mathbb{R} is open. In particular, $\mathscr{B}:=\mathscr{B}_{\mathbb{R}}=\overline{\mathscr{B}} \cap \mathbb{R}$ is the Borel σ-algebra over \mathbb{R}. For $c \in \mathbb{R}$ and σ-algebra $\mathscr{A} \subseteq 2^{\overline{\mathbb{R}}}$ we write $\mathscr{A}_{s c}:=\mathscr{A} \cap \overline{\mathbb{R}}_{\geqslant c}, \mathscr{A}_{>c}:=\mathscr{A} \cap \overline{\mathbb{R}}_{>c}, \mathscr{A}_{s c}:=\mathscr{A} \cap \overline{\mathrm{R}}_{s c}$, and $\mathscr{A}_{<c}:=\mathscr{A} \cap \overline{\mathbb{R}}_{<c}$

§01|02 Set functions

$\S 01.16$ Definition. Let $\mathscr{E} \subseteq 2^{\Omega}$ and let $\mu: \mathscr{E} \rightarrow \overline{\mathbb{R}}_{\geq 0}=[0, \infty]$ be a set function. We say that μ is monotone if $\mu(A) \leqslant \mu(B)$ for any two sets $A, B \in \mathscr{E}$ with $A \subseteq B$,
additive if $\mu\left(\biguplus_{j \in[n] \rrbracket} A_{j}\right)=\sum_{j \in \llbracket n]} \mu\left(A_{j}\right)$ for any choice of finitely many mutually disjoint sets $A_{j} \in \mathscr{E}, j \in \llbracket n \rrbracket$, with $\biguplus_{j \in \llbracket n \rrbracket}^{\biguplus} A_{j} \in \mathscr{E}$,
σ-additive if $\mu\left(\biguplus_{j \in \mathbb{N}} A_{j}\right)=\sum_{j \in \mathbb{N}} \mu\left(A_{j}\right)$ for any choice of countably many mutually disjoint sets $A_{j} \in \mathscr{E}, j \in \mathbb{N}$, with $\biguplus_{j \in \mathbb{N}} A_{j} \in \mathscr{E}$,
subadditive if $\mu(A) \leqslant \sum_{i \in \llbracket n \rrbracket} \mu\left(A_{j}\right)$ for any choice of finitely many sets $A, A_{j} \in \mathscr{E}, j \in \llbracket n \rrbracket$, with $A \subseteq \bigcup_{j \in \llbracket n \rrbracket} A_{j}$,
σ-subadditive if $\mu(A) \leqslant \sum_{j \in \mathbb{N}} \mu\left(A_{j}\right)$ for any choice of countably many sets $A, A_{j} \in \mathscr{E}, j \in \mathbb{N}$, with $A \subseteq \bigcup_{j \in \mathbb{N}} A_{j}$.
$\S 01.17$ Definition. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a semiring. A set function $\mu: \mathscr{E} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ with $\mu(\emptyset)=0$ is called a content if μ is additive,
premeasure if μ is σ-additive,
measure if μ is a premeasure and \mathscr{E} is a σ-algebra, and
probability measure if μ is a measure and $\mu(\Omega)=1$.
We denote by $\mathfrak{M}(\mathscr{E})$ the set of all premeasures on (Ω, \mathscr{E}). A content μ on \mathscr{E} is called finite if $\mu(A) \in \mathbb{R}_{\geqslant 0}$ for every $A \in \mathscr{E}$ and
σ-finite if there exists a sequence of sets $\left(\mathcal{E}_{j}\right)_{j \in \mathbb{N}}$ in \mathscr{E} such that $\Omega=\bigcup_{j \in \mathbb{N}} \mathcal{E}_{j}$ and $\mu\left(\mathcal{E}_{j}\right) \in \mathbb{R}_{\geqslant 0}$ for all $j \in \mathbb{N}$.
We denote by $\mathfrak{M}_{f}(\mathscr{E})$ and $\mathfrak{M}_{\sigma}(\mathscr{E})$ the set of all finite, respectively, σ-finite premeasures on (Ω, \mathscr{E}). Moreover, for a σ-algebra $\mathscr{A} \subseteq 2^{\Omega}$ we denote by $\mathcal{W}(\mathscr{A})$ the set of all probability measures on (Ω, \mathscr{A}).
§01.18 Example.
(a) For $A \in 2^{\Omega}$ we denote by $\mathbb{1}_{A}: \Omega \rightarrow\{0,1\}$ with $\mathbb{1}_{A}^{-1}(\{1\})=A$ and $\mathbb{1}_{A}^{-1}(\{0\})=A^{\text {c }}$ the indicator function on A. For any σ-algebra $\mathscr{A} \subseteq 2^{\Omega}$ and $\omega \in \Omega$ the set function δ_{ω} $: \mathscr{A} \rightarrow\{0,1\}$ with $\delta_{\omega}(A):=\mathbb{1}_{A}(\omega)$ is a probability measure on $\mathscr{A} \cdot \delta_{\omega} \in \mathcal{W}(\mathscr{A})$ is called the Dirac measure for the point ω.
(b) Let $\Omega \neq \emptyset$ be countably infinite and let $\mathscr{E}:=\left\{A \in 2^{\Omega}:\left(|A| \wedge\left|A^{c}\right|\right) \in \mathbb{Z}_{>0}\right\}$. Then \mathscr{E} is an algebra. The set function $\nu: \mathscr{E} \rightarrow\{0, \infty\}$ is given by $\nu(A)=0$ for $A \in \mathscr{E}$ with $|A| \in \mathbb{R}_{\geqslant 0}$ and $\nu(A)=\infty$ for $\left|A^{c}\right| \in \mathbb{R}_{\geqslant 0}$. Then ν is a content, but it is not a premeasure. Indeed, ν is not σ-additive, since $\nu(\Omega)=\infty$ and $\sum_{\omega \in \Omega} \nu(\{\omega\})=0$.
(c) Let $\Omega \neq \emptyset$ be countable and let $p: \Omega \rightarrow \mathbb{R}_{\geqslant 0}$. Then $\mu: 2^{\Omega} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ with $A \mapsto \mu(A):=$ $\sum_{\omega \in \Omega} \mathbb{P}(\omega) \delta_{\omega}(A)$ is a σ-finite measure on 2^{Ω}, i.e. $\mu \in \mathfrak{M}_{\sigma}\left(2^{\Omega}\right)$. We call p the mass function of μ. The number $\mathfrak{p}(\omega)$ is called the mass of μ at point ω. Remember, if in addition \mathfrak{p} satisfies $\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$ then $\mu \in \mathcal{W}\left(2^{\Omega}\right)$ is a discrete probability measure. If $\mathfrak{p}(\omega)=1$ for every $\omega \in \Omega$, then $\zeta_{\Omega}:=\sum_{\omega \in \Omega} \delta_{\omega}$ is called counting measure on Ω. Evidently, if Ω is finite, then so is $\mu \in \mathfrak{M}_{\mathrm{f}}\left(2^{\Omega}\right)$. If $\Omega \subseteq \mathbb{R}$ then for each $\omega \in \Omega$ the dirac measure $\delta_{\omega} \in \mathcal{W}(\mathscr{B})$, and hence $\mu, \zeta_{\Omega} \in \mathfrak{M}_{\sigma}(\mathscr{B})$ are also called discrete measures on $(\mathbb{R}, \mathscr{B})$.
(d) For arbitrary measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ the set function $\nu+\mu: \mathscr{A} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ given by $(\nu+$ $\mu)(A)=\nu(A)+\mu(A)$ for all $A \in \mathscr{A}$ is a measure.
§01.19 Lemma. Let \mathscr{E} be a semiring and let μ be a content on \mathscr{E}. Then the following statements hold.
(i) If \mathscr{E} is a ring, then $\mu(A \cup B)=\mu(A)+\mu(B \backslash A)$ and $\mu(B)=\mu(A \cap B)+\mu(B \backslash A)$, hence $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$ for any two sets $A, B \in \mathscr{E}$.
(ii) μ is monotone. If \mathscr{E} is a ring, then $\mu(B)=\mu(A)+\mu(B \backslash A)$ for any two sets $A, B \in \mathscr{E}$ with $A \subseteq B$.
(iii) μ is subadditive. If μ is σ-additive, then μ is also σ-subadditive.
(iv) If \mathscr{E} is a ring, then $\sum_{j \in \llbracket n]} \mu\left(A_{j}\right)=\mu\left(\uplus_{j \in[n]]} A_{j}\right) \leqslant \mu\left(\uplus_{j \in \mathbb{N}} A_{j}\right)$ for all $n \in \mathbb{N}$, and hence $\sum_{j \in \mathbb{N}} \mu\left(A_{j}\right) \leqslant \mu\left(\uplus_{j \in \mathbb{N}} A_{j}\right)$, for any choice of countably many mutually disjoint sets $A_{j} \in \mathscr{E}$, $j \in \mathbb{N}$, with $\biguplus_{j \in \mathbb{N}} A_{j} \in \mathscr{E}$.
(v) If \mathscr{E} is a ring, then for any $n \in \mathbb{N}$ and $\left(A_{i}\right)_{i \in \llbracket n \rrbracket}$ in \mathscr{E} with $\mu\left(\bigcup_{i \in[n]} A_{i}\right) \in \mathbb{R}_{\geqslant 0}$ the Inclusionexclusion formulas (Poincaré and Sylvester) hold:

$$
\mu\left(\bigcup_{i \in[n]} A_{i}\right)=\sum_{\mathcal{I} \in 2_{[0}^{[n]}}(-1)^{|\mathcal{I}|-1} \mu\left(\bigcap_{i \in \mathcal{I}} A_{i}\right) \quad \text { and } \quad \mu\left(\bigcap_{i \in[n n]} A_{i}\right)=\sum_{\mathcal{I} \in 2_{10}^{[n]}}(-1)^{|\mathcal{I}|-1} \mu\left(\bigcup_{i \in \mathcal{I}} A_{i}\right) \text {. }
$$

§01.20 Proof of Lemma §01.19. (i), (ii) and (iv) are given in the lecture, (iii) and (v) are exercises.
§01.21 Notation. We agree on the following conventions.
(a) A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\overline{\mathbb{R}}$ is called increasing (respectively decreasing), if $x_{n} \leqslant x_{n+1}$ (respectively $x_{n+1} \leqslant x_{n}$) for all $n \in \mathbb{N}$. If an increasing (respectively decreasing) sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent, say $x=\lim _{n \rightarrow \infty} x_{n}$, then we write $x_{n} \uparrow x$ (respectively $x_{n} \downarrow x$) for short.
(b) A sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in 2^{Ω} is called increasing (respectively decreasing), if $A_{n} \subseteq A_{n+1}$ (respectively $A_{n+1} \subseteq A_{n}$) for all $n \in \mathbb{N}$. We call

$$
\begin{array}{r}
A_{\star}:=\liminf _{n \rightarrow \infty} A_{n}:=\bigcup_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}_{\geqslant n}} A_{m}:=\bigcup\left\{\bigcap\left\{A_{m}: m \in \mathbb{N}_{\geqslant n}\right\}: n \in \mathbb{N}\right\} \text { and } \\
A^{\star}:=\limsup _{n \rightarrow \infty} A_{n}:=\bigcap \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}_{\geqslant n}} A_{m}
\end{array}
$$

limes inferior, respectively, limes superior of the sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$. The sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ is called convergent, if $A_{\star}=A^{\star}=: A$. In this case we write $\lim _{n \rightarrow \infty} A_{n}=A$ for short.
An increasing (respectively decreasing) sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in 2^{Ω} is convergent with $A:=$ $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n \in \mathbb{N}} A_{n}$ (respectively $A:=\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n \in \mathbb{N}} A_{n}$). In this case we write $A_{n} \uparrow A$ (respectively $A_{n} \downarrow A$).
(c) For functions $f, g: \Omega \rightarrow \overline{\mathbb{R}}$ we write $f \leqslant g$ if $f(\omega) \leqslant g(\omega)$ for any $\omega \in \Omega$. Analogously, we write $f \geqslant 0$ and so on. A sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions on Ω is called (pointwise) increasing, or briefly isotone (respectively, (pointwise) decreasing, or briefly antitone) if $f_{n} \leqslant f_{n+1}$ (respectively, $f_{n+1} \leqslant f_{n}$) for all $n \in \mathbb{N}$. We denote by

$$
\begin{aligned}
& f_{\star}:=\liminf _{n \rightarrow \infty} f_{n}:=\sup \{\inf \{ \left.\left.f_{m}: m \in \mathbb{N}_{\geqslant n}\right\}: n \in \mathbb{N}\right\} \text { and } \\
& \qquad f^{\star}:=\limsup _{n \rightarrow \infty} f_{n}:=\sup \left\{\inf \left\{f_{m}: m \in \mathbb{N}_{\geqslant n}\right\}: n \in \mathbb{N}\right\}
\end{aligned}
$$

the limes inferior, respectively, limes superior. The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is convergent if $f_{\star}=$ $f^{\star}=: f$, that is, the pointwise limit exists everywhere. In this case we write $\lim _{n \rightarrow \infty} f_{n}=f$.
An isotone (respectively, antitone) sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is convergent with $f:=\lim _{n \rightarrow \infty} f_{n}=$ $\sup _{n \in \mathbb{N}} f_{n}$ (respectively, $f:=\lim _{n \rightarrow \infty} f_{n}=\inf _{n \in \mathbb{N}} f_{n}$). In this case we briefly write $f_{n} \uparrow f$ (respectively, $f_{n} \downarrow f$).
§01.22 Definition. A content μ on a ring $\mathscr{R} \subseteq 2^{\Omega}$ is called
lower semicontinuous if $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$ for any $A \in \mathscr{R}$ and any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{R} with $A_{n} \uparrow A$.
upper semicontinuous if $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$ for any $A \in \mathscr{R}$ and any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{R} with $\mu\left(A_{n}\right) \in \mathbb{R}_{\geqslant 0}$ for some (and then eventually all) $n \in \mathbb{N}$ and $A_{n} \downarrow A$.
\emptyset-continuous if $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0=\mu(\emptyset)$ for any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{R} with $\mu\left(A_{n}\right) \in \mathbb{R}_{\geqslant 0}$ for some (and then eventually all) $n \in \mathbb{N}$ and $A_{n} \downarrow \emptyset$.
$\$ 01.23$ Remark. In the definition of upper semicontinuity, we needed the assumption $\mu\left(A_{n}\right) \in \mathbb{R}_{\geqslant 0}$ since otherwise we would not even have \emptyset-continuity for an example as simple as the counting measure $\zeta_{\mathbb{N}}$ on $\left(\mathbb{N}, 2^{\mathbb{N}}\right)$. Indeed, $A_{n}:=\mathbb{N}_{\geqslant n} \downarrow \emptyset$ but $\zeta_{\mathbb{N}}\left(A_{n}\right)=\infty$ for all $n \in \mathbb{N}$.
§01.24 Lemma. Let μ be a content on the ring $\mathscr{R} \subseteq 2^{\Omega}$. Consider the following five properties. (p1) μ is σ-additive (and hence $\mu \in \mathfrak{M}(\mathscr{R})$ is a premeasure), (p2) μ is σ-subadditive, (p 3) μ is lower semicontinuous, (p4) μ is \emptyset-continuous, (p 5) μ is upper semicontinuous. Then the following implications hold: $(\mathrm{p} 1) \Leftrightarrow(\mathrm{p} 2) \Leftrightarrow(\mathrm{p} 3) \Rightarrow(\mathrm{p} 4) \Leftrightarrow(\mathrm{p} 5)$. If μ is finite, then we also have $(\mathrm{p} 4) \Rightarrow(\mathrm{p} 3)$.
§01.25 Proof of Lemma §01.24. is given in the lecture.
$\S 01.26$ Example ($\$ 01.18$ (b) continued). ν is a \emptyset-continuous content, but it is not a premeasure.
§01.27 Definition.
(a) A pair (Ω, \mathscr{A}) consisting of a nonempty set Ω and a σ-algebra $\mathscr{A} \subseteq 2^{\Omega}$ is called a measurable space. The sets $A \in \mathscr{A}$ are called measurable sets. If Ω is at most countably infinite and if $\mathscr{A}=2^{\Omega}$, then the measurable space $\left(\Omega, 2^{\Omega}\right)$ is called discrete.
(b) A triple $(\Omega, \mathscr{A}, \mu)$ is called measure space if (Ω, \mathscr{A}) is a measurable space and $\mu \in \mathfrak{M}(\mathscr{A})$ is a measure on \mathscr{A}.
(c) If in addition $\mu(\Omega)=1$, then $(\Omega, \mathscr{A}, \mu)$ is called a probability space and $\mu \in \mathcal{W}(\mathscr{A})$ a probability measure. In this case, the sets $A \in \mathscr{A}$ are called events.

§01|03 Measure extension

§01.28 Lemma (Uniqueness). Let (Ω, \mathscr{A}) be a measurable space, let $\mathscr{E} \subseteq \mathscr{A}$ be a \cap-closed generator of \mathscr{A} and let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ-finite measures on \mathscr{A}, which agree on \mathscr{E}, that is, $\mu(E)=\nu(E)$ for all $E \in \mathscr{E}$. Assume (uC) there exist sets $\left(\mathcal{E}_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{E} with $\bigcup_{n \in \mathbb{N}} \mathcal{E}_{n}=\Omega$ and $\mu\left(\mathcal{E}_{n}\right) \in \mathbb{R}_{\geqslant 0}$ for all $n \in \mathbb{N}$. Then μ and ν agree also on \mathscr{A}.
If $\mu, \nu \in \mathcal{W}(\mathscr{A})$ are two probability measures on \mathscr{A}, then (uC) is not needed.
§01.29 Proof of Lemma §01.28. is given in the lecture.
§01.30 Remark. In other words under the assumptions of Lemma $\S 01.28$ a σ-finite measure $\mu \in$ $\mathfrak{M}_{\sigma}(\mathscr{A})$ is uniquely determined by its values $\mu(E), E \in \mathscr{E}$. The uniqueness without (uC), the existence of the sequence $\left(\mathcal{E}_{n}\right)_{n \in \mathbb{N}}$, does generally not apply, even if $\mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ is a finite measure on \mathscr{A}. In this case the total mass $\mu(\Omega)$ is generally not uniquely determined. Let $\Omega=\{1,2\}$
and $\mathscr{E}=\{\{1\}\}$. Then \mathscr{E} is a \cap-closed generator of 2^{Ω}. A probability measure $\mu \in \mathcal{W}(\mathscr{A})$ is uniquely determined by the value $\mu(\{1\})$. However, a finite measure is not determined by its value on $\{\{1\}\}$, as $\mu \equiv 0$ and $\nu=\delta_{2}$ are different finite measures that agree on \mathscr{E}.
§01.31 Definition. A set function $\mu^{\star}: 2^{\Omega} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ is called an outer measure if $(\mathrm{oM} 1) \mu^{\star}(\emptyset)=0$, (oM2) μ^{\star} is monotone, and (oM3) μ^{\star} is σ-subadditive. A set $A \in 2^{\Omega}$ is called μ^{\star}-measurable if

$$
\mu^{\star}(A \cap B)+\mu^{\star}\left(A^{\mathrm{c}} \cap B\right)=\mu^{\star}(B) \quad \text { for any } B \in 2^{\Omega} .
$$

We write $\sigma\left(\mu^{*}\right):=\left\{A \in 2^{\Omega}: A\right.$ is μ^{\star}-measurable $\}$.
§01.32 Remark. Since $\mu^{\star}(\emptyset)=0$ we evidently have $\Omega \in \sigma\left(\mu^{*}\right)$. As μ^{\star} is subadditive it follows that $A \in \sigma\left(\mu^{\star}\right)$ if and only if $\mu^{\star}(A \cap B)+\mu^{\star}\left(A^{\mathrm{c}} \cap B\right) \leqslant \mu^{\star}(B)$ for any $B \in 2^{\Omega}$.
$\S 01.33$ Lemma. Let $\mathscr{E} \subseteq 2^{\Omega}$ be an arbitrary class of sets with $\emptyset \in \mathscr{E}$ and let $\mu: \mathscr{E} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ be a set function with $\mu(\emptyset)=0$. For $A \in 2^{\Omega}$ define the set of countable coverings \mathscr{F} of A with sets $F \in \mathscr{E}$:

$$
\mathcal{U}(A)=\left\{\mathscr{F} \subseteq \mathscr{E}: \mathscr{F} \text { is countable and } A \subseteq \bigcup_{F \in \mathscr{F}} F\right\}
$$

Define

$$
\mu^{\star}: 2^{\Omega} \rightarrow \overline{\mathbb{R}}_{\geqslant 0} \text { with } A \mapsto \mu^{*}(A):=\inf \left\{\sum_{F \in \mathscr{F}} \mu(F): \mathscr{F} \in \mathcal{U}(A)\right\},
$$

where $\inf \emptyset=\infty$. Then μ^{\star} is an outer measure. If in addition μ is σ-subadditive, then μ^{\star} and μ agree on \mathscr{E}, i.e. $\mu^{*}(E)=\mu(E)$ for all $E \in \mathscr{E}$.
§01.34 Proof of Lemma §01.33. is given in the lecture.
§01.35 Lemma. If μ^{\star} is an outer measure, then $\sigma\left(\mu^{*}\right)$ is a σ-algebra and the restriction of μ^{\star} on $\sigma\left(\mu^{*}\right)$ is a measure.
§01.36 Proof of Lemma §01.35. is given in the lecture.
$\S 01.37$ Extension theorem for measures. Let $\mathscr{E} \subseteq 2^{\Omega}$ be a semiring and let $\mu: \mathscr{E} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ be an additive, σ-subadditive and σ-finite set function with $\mu(\emptyset)=0$.
Then there is a unique σ-finite measure $\widetilde{\mu}: \sigma(\mathscr{E}) \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ such that $\widetilde{\mu}$ and μ agree on \mathscr{E}, i.e. $\widetilde{\mu}(E)=\mu(E)$ for all $E \in \mathscr{E}$.
§01.38 Proof of Theorem §01.37. is given in the lecture.
§01.39 Example.
(a) There exists a uniquely determined measure λ^{n} on $\left(\mathbb{R}^{n}, \mathscr{B}^{n}\right)$ with the property that $\lambda^{n}((a, b])=$ $\prod_{i \in \llbracket n \rrbracket}\left(b_{i}-a_{i}\right)$ for all $a, b \in \mathbb{R}^{n}$ with $a<b . \lambda^{n}$ is called Lebesgue measure on $\left(\mathbb{R}^{n}, \mathscr{B}^{n}\right)$ (see lecture Analysis 3).
(b) Let $\mathbb{F}: \mathbb{R} \rightarrow \mathbb{R}$ be monotone increasing and right continuous. There is a uniquely determined measure μ_{F} on $(\mathbb{R}, \mathscr{B})$ with the property that $\mu_{\mathrm{F}}((a, b])=\mathbb{F}(b)-\mathbb{F}(a)$ for all $a, b \in \mathbb{R}$ with $a<b . \quad \mu_{\mathrm{F}}$ is called Lebesgue-Stieltjes measure on (\mathbb{R}, \mathscr{B}) (Exercise). If in addition $\lim _{x \rightarrow \infty}(\mathbb{F}(x)-\mathbb{F}(-x))=1$, then μ_{F} is a probability measure.
$\$ 01.40$ Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space.
(a) A set $N \in \mathscr{A}$ is called a μ-null set, or briefly null set, if $\mu(N)=0$. By \mathcal{N}_{μ} we denote the class of all subsets of μ-null sets.
(b) Let $E(\omega)$ be a property that a point $\omega \in \Omega$ can have or not have. We say that E holds μ-almost everywhere (μ-a.e.) if there exists a μ-null set $N \in \mathcal{N}_{\mu}$ such that $E(\omega)$ holds for every $\omega \in \Omega \backslash N=N^{\mathrm{c}}$. If $A \in \mathscr{A}$ and if there exists a μ-null set N such that $E(\omega)$ holds for every $\omega \in A \backslash N$, then we say that E holds μ-almost everywhere on A. If $\mu=\mathbb{P} \in \mathcal{W}(\mathscr{A})$ is a probability measure then we say that E holds \mathbb{P}-almost surely (\mathbb{P}-a.s.) respectively P-almost surely on A.
(c) The measure space $(\Omega, \mathscr{A}, \mu)$ is called complete, if $\mathcal{N}_{\mu} \subseteq \mathscr{A}$.
$\S 01.41$ Remark. Let $(\Omega, \mathscr{A}, \mu)$ be a σ-finite measure space. There exists a unique smallest σ-algebra $\mathscr{A}^{\star} \supseteq \mathscr{A}$ and an extension μ^{\star} of μ to \mathscr{A}^{\star} such that $\left(\Omega, \mathscr{A}^{\star}, \mu^{\star}\right)$ is complete. $\left(\Omega, \mathscr{A}^{\star}, \mu^{\star}\right)$ is called the completion of $(\Omega, \mathscr{A}, \mu)$. With the notation of Theorem $\S 01.37$, this completion is $\left(\Omega, \sigma\left(\mu^{*}\right),\left.\mu^{*}\right|_{\sigma\left(\mu^{*}\right)}\right)$. Furthermore, $\sigma\left(\mu^{*}\right)=\sigma\left(\mathscr{A} \cup \mathcal{N}_{\mu}\right)=\left\{A \cup N: A \in \mathscr{A}, N \in \mathcal{N}_{\mu}\right\}$ and $\mu^{*}(A \cup N)=$ $\mu(A)$ for any $A \in \mathscr{A}$ and $N \in \mathcal{N}_{\mu}$.
$\S 01.42$ Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and $B \in \mathscr{A}$. On the trace σ-algebra \mathscr{A}_{B} we define a measure by $\mu_{B}(A):=\mu(A)$ for $A \in \mathscr{A}$ with $A \subseteq B$. This measure is called the restriction of μ to B.
$\S 01.43$ Example. The restriction $\lambda_{0,1]}$ of the Lebesgue-Borel measure λ on $(\mathbb{R}, \mathscr{B})$ to $[0,1]$ is a probability measure on $\left([0,1], \mathscr{B}_{[0,1]}\right)$, i.e. $\lambda_{0,1]} \in \mathcal{W}\left(\mathscr{B}_{[0,1]}\right)$. More generally, for a Borel set $B \in \mathscr{B}$ we call the restriction λ_{B} the Lebesgue measure on B, i.e. $\lambda_{B} \in \mathfrak{M}_{\sigma}\left(\mathscr{B}_{B}\right)$.

§02 Integration theory

§02|01 The integral

$\S 02.01$ Reminder. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $(\mathcal{S}, \mathscr{S})$ be a measurable space.
(a) A function $f: \Omega \rightarrow \mathcal{S}$ is called \mathscr{A} - \mathscr{S}-measurable (or, briefly, measurable) if

$$
\sigma(f):=f^{-1}(\mathscr{S}):=\left\{f^{-1}(S): S \in \mathscr{S}\right\} \subseteq \mathscr{A} .
$$

If f is measurable, we write $f:(\Omega, \mathscr{A}) \rightarrow(\mathcal{S}, \mathscr{S})$. We denote by $\mathcal{M}(\mathscr{A}, \mathscr{\mathscr { S }})$ the set of all $\mathscr{A}-\mathscr{S}$-measurable functions. If $\mathscr{S}=\mathscr{B}_{s}$ is the Borel σ-algebra on \mathcal{S} then we write $\mathcal{M}_{s}(\mathscr{A}):=\mathcal{M}\left(\mathscr{A}, \mathscr{B}_{s}\right)$ for short. If $\mu=\mathbb{P} \in \mathcal{W}(\mathscr{A})$ is a probability measure then $f \in \mathcal{M}(\mathscr{A}, \mathscr{S})$ is called $((\mathcal{S}, \mathscr{S})$-valued) random variable. The σ-algebra $\sigma(f)$ is called the σ-algebra on Ω that is generated by f. This is the smallest σ-algebra with respect to which f is measurable.
(b) The identity map $\operatorname{id}_{\Omega}: \Omega \rightarrow \Omega$ is \mathscr{A} - \mathscr{A}-measurable. If $\mathscr{A}=2^{\Omega}$ or $\mathscr{S}=\{\emptyset, \mathcal{S}\}$, then any map $f: \Omega \rightarrow \mathcal{S}$ belongs to $\mathcal{M}(\mathscr{A}, \mathscr{S})$. The indicator function $\mathbb{1}_{A}$ for $A \in 2^{\Omega}$ belongs to $\mathcal{M}\left(\mathscr{A}, 2^{\{0,1\}}\right)$ if and only if $A \in \mathscr{A}$.
(c) A measurable function $f:(\Omega, \mathscr{A}) \rightarrow(\mathcal{S}, \mathscr{S})$ is called
numerical if $(\mathcal{S}, \mathscr{S})=(\overline{\mathrm{R}}, \overline{\mathscr{B}})$, briefly $f \in \overline{\mathcal{M}}(\mathscr{A}):=\mathcal{M}_{\overline{\mathrm{R}}}(\mathscr{A})=\mathcal{M}(\mathscr{A}, \overline{\mathscr{B}})$,
positive numerical if $(\mathcal{S}, \mathscr{S})=\left(\overline{\mathbb{R}}_{z_{0}}, \overline{\mathscr{B}}_{30}\right)$, briefly $f \in \overline{\mathcal{M}}_{刃_{0}(\mathscr{A})}:=\mathcal{M}_{\overline{\mathbb{R}}_{00}}(\mathscr{A})=\mathcal{M}\left(\mathscr{A}, \mathscr{S}_{50}\right)$, real if $(\mathcal{S}, \mathscr{S})=(\mathbb{R}, \mathscr{B})$, briefly $f \in \mathcal{N}(\mathscr{A}):=\mathcal{M}_{\mathbb{R}}(\mathscr{A})=\mathcal{M}(\mathscr{A}, \mathscr{B})$, positive real if $(\mathcal{S}, \mathscr{S})=\left(\mathbb{R}_{\geq 0}, \mathscr{B}_{\geq 0}\right)$, briefly $f \in \mathcal{M}_{\geqslant 0}(\mathscr{A}):=\mathcal{M}_{\mathbb{R}_{20}}(\mathscr{A})=\mathcal{M}\left(\mathscr{A}, \mathscr{B}_{30}\right)$.

If the preimage (Ω, \mathscr{A}) is irrelevant we also write shortly $\overline{\mathcal{M}}:=\overline{\mathcal{M}}(\mathscr{A}), \overline{\mathcal{M}}_{\geq 0}:=\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$, $\mathcal{M}:=\mathcal{M}(\mathscr{A})$, and $\mathcal{M}_{\geq 0}:=\mathcal{M}_{\geqslant 0}(\mathscr{A})$. If $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\overline{\mathcal{M}}$, then $\sup _{n \in \mathbb{N}} f_{n}, \inf _{n \in \mathbb{N}} f_{n}$, $f_{\star}:=\liminf _{n \rightarrow \infty} f_{n}$, and $f^{\star}:=\limsup _{n \rightarrow \infty} f_{n}$ belong also to $\overline{\mathcal{M}}$ (see lecture EWS).
(d) A real map $f \in \mathcal{M}(\mathscr{A})$ assuming only finitely many values is called simple or elementary. If $f \in \mathcal{M}(\mathscr{A})$ is simple then there is an $n \in \mathbb{N}$ and mutually disjoint measurable sets $\left(A_{j}\right)_{i \in \llbracket n \rrbracket}$ in \mathscr{A} as well as numbers $\left(a_{j}\right)_{i \in \llbracket n \rrbracket}$ in \mathbb{R} such that $f=\sum_{i \in \llbracket n \rrbracket} a_{j} \mathbb{1}_{A_{j}}$. We denote by $\mathcal{N}^{\operatorname{tim}(\mathscr{A})}$ and $\mathcal{M}_{\Rightarrow 0}^{\tan (\mathscr{A})}$ the set of all simple, respectively, positive simple functions on (Ω, \mathscr{A}). If $f=\sum_{i \in \llbracket n \rrbracket} a_{j} \mathbb{1}_{A_{j}}$ and $f=\sum_{i \in \llbracket m \rrbracket} b_{j} \mathbb{1}_{B_{j}}$ are two representations of $f \in \mathcal{M}_{\geq 0}^{\text {ism }}(\mathscr{A})$, then $\sum_{i \in \llbracket n \rrbracket} a_{j} \mu\left(A_{j}\right)=\sum_{i \in \llbracket m \rrbracket} b_{j} \mu\left(B_{j}\right)$ (check it!).
(e) Let $f \in \overline{\mathcal{M}}_{\geq 0}$ be positive numerical. Then there exists an isotone sequence of simple functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{M}_{>0}^{\text {sim }}$ such that $f_{n} \uparrow f$ (see lecture EWS).
§02.02 Theorem. For each measure μ on a measurable space (Ω, \mathscr{A}) we call integral with respect to μ the uniquely determined functional $\mathbb{\square}_{\mu}: \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ satisfying the following properties:
(I1) $\square_{\mu}(a f+b g)=a \rrbracket_{\mu}(f)+b \rrbracket_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ and $a, b \in \mathbb{R}_{\geqslant 0}$, (linearity)
(I2) $\mathbb{\square}_{\mu}\left(f_{n}\right) \uparrow \mathbb{\square}_{\mu}(f)$ for all $\left(f_{n}\right)_{n \in \mathbb{N}} \uparrow f$ in $\overline{\mathcal{M}}_{\geq 0}(\&), \quad$ (monotone convergence)
(I3) $\mathbb{\square}_{\mu}\left(\mathbb{1}_{A}\right)=\mu(A)$ for all $A \in \mathscr{A}$.
(normed)
For each $f \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ we call $\int f \mathrm{~d} \mu:=\overline{0}_{\mu}(f)$ the integral of f with respect to μ. For $A \in \mathscr{A}$ we write shortly $\int_{A} f \mathrm{~d} \mu:=\int\left(f \mathbb{1}_{A}\right) \mathrm{d} \mu$. f is called μ-integrable, if $\int f \mathrm{~d} \mu \in \mathbb{R}_{>0}$.
§02.03 Proof of Theorem $\S 02.02$. The theorem summarises the main result of this section; its proof takes place in several steps. We first show in Theorem $\S 02.05$ the uniqueness result and then explicitly state in Theorem $\S 02.09$ a functional $\mathbb{\square}_{\mu}: \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ for which we verify the required conditions (I1)-(I3). In summary, we then show therewith in Theorem $\$ 02.09$ the existence result.
§02.04 Notation. For $f \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ and $A \in \mathscr{A}$ we write shortly $\mu(f):=\int f \mathrm{~d} \mu=\int_{\Omega} f(\omega) \mu(\mathrm{d} \omega)$ as well as $\mu\left(f 1_{A}\right)=\int_{A} f \mathrm{~d} \mu=\int_{A} f(\omega) \mu(\mathrm{d} \omega)$.
§02.05 Uniqueness theorem. The integral is uniquely determined.
§02.06 Proof of Theorem §02.05. is given in the lecture.
Reminder §02.01 (e) allows the following definition to be made since the defined value $\widetilde{\widetilde{~}}_{\mu}(f)$ does not depend on the chosen representation of f.
$\$ 02.07$ Lemma. The map $\widetilde{\mathbb{D}}_{\mu}: \mathcal{M}_{\geqslant 0}^{\text {imp }}(\mathscr{A}) \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ given by

$$
f=\sum_{i \in \llbracket n \rrbracket} a_{j} \mathbb{1}_{A_{j}} \mapsto \widetilde{\mathbb{D}}_{\mu}(f):=\sum_{i \in \llbracket n \rrbracket} a_{j} \mu\left(A_{j}\right) .
$$

is normed, positive, linear and monotone:
(i) $\widetilde{\mathbb{D}}_{\mu}\left(\mathbb{1}_{A}\right)=\mu(A)$ for every $A \in \mathscr{A}$,
(ii) $\widetilde{\Pi}_{\mu}(a f+b g)=a \widetilde{\rrbracket}_{\mu}(f)+b \widetilde{\rrbracket}_{\mu}(g)$ for all $f, g \in \mathcal{M}_{\geqslant 0}^{\text {sim }}(\mathscr{A})$ and $a, b \in \mathbb{R}_{\geqslant 0}$, (linearity)
(iii) $\widetilde{\mathbb{D}}_{\mu}(f) \leqslant \widetilde{\mathbb{D}}_{\mu}(g)$ for all $f, g \in \mathcal{M}_{\Rightarrow 0}^{\text {sim }}(\mathscr{A})$ with $f \leqslant g$. (monotonicity).
§02.08 Proof of Lemma §02.07. Exercise.
§02.09 Existence theorem. The functional $\mathbb{\square}_{\mu}: \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}) \rightarrow \overline{\mathbb{R}}_{\geq 0}$ with

$$
f \mapsto \mathbb{\square}_{\mu}(f):=\sup \left\{\widetilde{\mathbb{D}}_{\mu}(g): g \in \mathcal{M}_{\geq 0}^{\sin (\mathscr{A})}, g \leqslant f\right\}
$$

is an integral with respect to μ, that is, it shares the properties (I1)-(I3) in Theorem $\$ 02.02$:
(i) $\mathbb{D}_{\mu}\left(\mathbb{1}_{A}\right)=\mu(A)$ for every $A \in \mathscr{A}$,
(normed)
(ii) $\square_{\mu}(f) \leqslant \square_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{刃 0}(\mathscr{A})$ with $f \leqslant g$,
(monotonicity)
(iii) $\square_{\mu}\left(f_{n}\right) \uparrow \square_{\mu}(f)$ for all $\left(f_{n}\right)_{n \in \mathbb{N}} \uparrow f$ in $\overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$. (monotone convergence)
(iv) $\square_{\mu}(a f+b g)=a \rrbracket_{\mu}(f)+b \rrbracket_{\mu}(g)$ for all $f, g \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ and $a, b \in \overline{\mathbb{R}}_{\geqslant 0}$ (linearity) (with convention $\infty \cdot 0=0$).
§02.10 Proof of Theorem §02.09. is given in the lecture.
$\S 02.11$ Remark. By Lemma $\S 02.07$ (iii) we have the identity $\mathbb{\square}_{\mu}(f)=\widetilde{\square}_{\mu}(f)$ for any $f \in \mathcal{M}_{\geqslant 0}^{\text {sim }}(\mathscr{A})$. Hence $\mathbb{\square}_{\mu}$ is an extension of the map $\widetilde{\mathbb{D}}_{\mu}$ from $\mathcal{M}_{=0}^{\text {sin }}(\mathscr{A})$ to the set of positive numerical functions $\overline{\mathcal{M}}_{\equiv 0}(\mathscr{A})$. $\quad \square$
§02.12 Comment. A measurable partition $\mathcal{P}:=\left\{A_{i}: i \in \mathcal{I}\right\} \subseteq \mathscr{A}_{0}$ of Ω is finite, if $|\mathcal{I}| \in \mathbb{N}$, and hence $\emptyset \neq A \in \mathscr{A}$ for each $A \in \mathcal{P}$. If we set $\mathscr{P}:=\left\{\mathcal{P} \subseteq \mathscr{A}_{0}: \mathcal{P}\right.$ finite, measurable partition of $\left.\Omega\right\}$, then the functional $\mathbb{\square}_{\mu}: \mathcal{M}_{\geqslant 0}(\mathscr{A}) \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ given by (with convention $\infty \cdot 0=0$)

$$
f \mapsto \mathbb{\mathbb { R }}_{\mu}(f):=\sup \left\{\sum_{A \in \mathcal{P}}\left(\inf _{\omega \in A} f(w)\right) \mu(A): \mathcal{P} \in \mathscr{P}\right\}
$$

shares also the properties (I1)-(I3) in Theorem §02.02, and hence it is an alternative but equivalent representation of the uniquely determined integral with respect to μ.
§02.13 Notation. For arbitrary measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ we write $\nu \leqslant \mu$ if $\nu(A) \leqslant \mu(A)$ for all $A \in \mathscr{A}$. Evidently, $\nu \leqslant \mu$ and $\mu \leqslant \nu$ imply together $\mu=\nu$.
§02.14 Lemma (Properties). Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.
(i) (Fatou's lemma) $\mu\left(\liminf _{n \rightarrow \infty} f_{n}\right)=\int\left(\liminf _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu \leqslant \liminf _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \mu=\liminf _{n \rightarrow \infty} \mu\left(f_{n}\right)$ and in particular $\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leqslant \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$ for every sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets in \mathscr{A}. If $\mu \in \mathfrak{M}_{f}(\mathscr{A})$ is finite, then also $\limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \leqslant \mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)$.
(ii) $\sum_{n \in \mathbb{N}} f_{n} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ and $\mu\left(\sum_{n \in \mathbb{N}} f_{n}\right)=\int\left(\sum_{n \in \mathbb{N}} f_{n}\right) \mathrm{d} \mu=\sum_{n \in \mathbb{N}} \int f_{n} \mathrm{~d} \mu=\sum_{n \in \mathbb{N}} \mu\left(f_{n}\right)$.

Let in addition $f, g \in \overline{\mathcal{M}}_{\geq 0}(. \mathscr{A})$.
(iii) $f=0 \mu$-a.e. if and only if $\mu(f)=\int f \mathrm{~d} \mu=0$. If $\mu(f) \in \mathbb{R}_{\geqslant 0}$ then $f \in \mathbb{R}_{\geqslant 0} \mu$-a.e. and the restriction of μ on $\{f \neq 0\}$ is a σ-finite measure.
(iv) The set function $f \mu: \mathscr{A} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ with $A \mapsto f \mu(A):=\mu\left(\mathbb{1}_{A} f\right)=\int\left(\mathbb{1}_{A} f\right) \mathrm{d} \mu$ is a measure on (Ω, \mathscr{A}). For all $A \in \mathscr{A}$ with $\mu(A)=0$ we have $f \mu(A)=0$.
(v) If $f \leqslant g$ (respectively $f=g$) μ-a.e. then $f \mu \leqslant g \mu$ (respectively $f \mu=g \mu$). The converse holds, if (c1) f is μ-integrable, or (c2) $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$, or (c3) $g \mu \in \mathfrak{M}_{\sigma}(\mathscr{A}) \sigma$-finite.
In particular, $\mu(f)=\int f \mathrm{~d} \mu \leqslant \int g \mathrm{~d} \mu=\mu(g)$ (respectively, $\mu(f)=\mu(g)$).
(vi) $\mu \in \mathfrak{M}(\mathscr{A})$ is σ-finite if and only if there is $h \in \mathcal{M}_{(0,1]}(\mathscr{A})$ with $\mu(h) \in \mathbb{R}_{\geqslant 0}$ (μ-integrable). In particular, for each σ-finite $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ there exists $h \in \mathcal{M}(\mathscr{A})$ with $h \in \mathbb{R}_{>0} \mu$-a.e. such that $h \mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ is finite and $h \mu$ shares the same null-sets as μ.
(vii) $\sum_{n \in \mathbb{N}} \mu(\{f \geqslant n\}) \leqslant \mu(f) \leqslant \sum_{n \in \mathbb{N}_{0}} \mu(\{f>n\})$ and $\mu(f)=\int_{0}^{\infty} \mu(\{f \geqslant t\}) \mathrm{d} t$ for every $f \in \mathcal{M}(\mathscr{A})$ with $f \in \mathbb{R}_{\geqslant 0} \mu$-a.e.
§02.15 Proof of Lemma §02.14. is given in the lecture.
§02.16 Definition. Let $\mu \in \mathfrak{M}(\mathscr{A})$ be a measure on (Ω, \mathscr{A}) and let $\mathbb{f} \in \overline{\mathcal{M}}_{刃 0}(\mathscr{A})$. Define the measure $\nu \in \mathfrak{M}(\mathscr{A})$ by $\nu(A):=\mu\left(\mathbb{1}_{A} \mathbb{f}\right)$ for $A \in \mathscr{A}$. We say that $\mathbb{f} \mu:=\nu$ has the density $\mathrm{d} \nu / \mathrm{d} \mu:=\mathbb{f}$ with respect to μ, or briefly μ-density.
$\S 02.17$ Lemma (Properties). Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $\nu:=\mathbb{f} \mu \in \mathfrak{M}(\mathscr{A})$ admit the density $\mathrm{d} \nu / \mathrm{d} \mu=\mathbb{f} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$.
(i) $\nu(g)=\int g \mathrm{~d} \nu=\int(g \mathbb{f}) \mathrm{d} \mu=\mu(g \mathfrak{f})=\mathbb{f} \mu(g)$ for every $g \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$.
(ii) $\rho=\mathbb{q} \nu=\mathbb{q}(\mathbb{f} \mu)=(\mathbb{q f}) \mu$ for every $\rho:=\mathbb{q} \nu \in \mathfrak{M}(\mathscr{A})$ with $\mathbb{q} \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$.
(iii) If $\nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ or $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite then the μ-density $\mathrm{d} \nu / \mathrm{d} \mu=\mathbb{f}$ of ν is unique up to equality μ-almost everywhere.
(iv) If $\nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite, then $\mathrm{d} \nu / \mathrm{d} \mu=\mathbb{f} \in \mathbb{R}_{\geqslant 0} \mu$-a.e.. The converse holds, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$.
§02.18 Proof of Lemma §02.17. is given in the lecture.
§02.19 Notation. If $f \in \overline{\mathcal{M}}(\mathscr{A})$ is numerical then $f^{+}:=f \vee 0, f^{-}:=(-f)^{+},|f|=f^{+}+f^{-} \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ are positive numerical.
§02.20 Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $f \in \overline{\mathcal{M}}(\mathscr{A})$ be numerical.
(a) If f^{+}or f^{-}is μ-integrable, that is, $\mu\left(f^{+}\right) \wedge \mu\left(f^{-}\right) \in \mathbb{R}_{\geqslant 0}$, then we define the integral

$$
\mu(f):=\int f \mathrm{~d} \mu:=\int f^{+} \mathrm{d} \mu-\int f^{-} \mathrm{d} \mu=\mu\left(f^{+}\right)-\mu\left(f^{-}\right)
$$

of f with respect to μ where we use the usual conventions $\infty+x=\infty$ and $-\infty+x=-\infty$ for all $x \in \mathbb{R}$. In this case f is called μ-quasiintegrable. The integral of f is not defined, if $\mu\left(f^{+}\right)=\infty=\mu\left(f^{-}\right)$.
(b) If $\mu(|f|) \in \mathbb{R}_{\geq 0}$, that is, $\mu\left(f^{+}\right) \vee \mu\left(f^{-}\right) \in \mathbb{R}_{\geq 0}$, then f is called μ-integrable. The set of all μ-integrable numerical functions is denoted by

$$
\mathcal{L}_{1}:=\mathcal{L}_{1}(\mu):=\mathcal{L}_{1}(\Omega, \mathscr{A}, \mu):=\left\{f \in \overline{\mathcal{M}}(\mathscr{A}): \mu(|f|) \in \mathbb{R}_{\geqslant 0}\right\} .
$$

(c) For $p \in \mathbb{R}_{>0}$ define

$$
\|f\|_{\mathcal{L}_{p}}:=\left(\mu\left(|f|^{p}\right)\right)^{1 / p} \quad \text { and } \quad\|f\|_{\mathcal{L}_{\infty}}:=\inf \left\{x \in \mathbb{R}_{\geqslant 0}: \mu(\{|f|>x\})=0\right\}
$$

For $p \in \overline{\mathbb{R}}_{>0}$ a function f is called \mathcal{L}_{p}-integrable if $\|f\|_{\mathcal{L}_{p}} \in \mathbb{R}_{>0}$. The vector space of all \mathcal{L}_{p}-integrable functions we denote by

$$
\mathcal{L}_{p}:=\mathcal{L}_{p}(\mu):=\mathcal{L}_{p}(\Omega, \mathscr{A}, \mu):=\left\{f \in \overline{\mathcal{M}}(\mathscr{A}):\|f\|_{\mathcal{L}_{p}} \in \mathbb{R}_{\geqslant 0}\right\} .
$$

For $p \in \overline{\mathbb{R}}_{\gg 1}$, the map $\|\cdot\|_{\mathcal{L}_{p}}$ is a seminorm on $\mathcal{L}_{p}(\mu)$ (see Subsection $\S 02103$ below), that is, for all $f, g \in \mathcal{L}_{p}(\mu)$ and $a \in \mathbb{R}$, (s1) $\|a f\|_{\mathcal{L}_{p}}=|a|\|f\|_{\mathcal{L}_{p}}$, (s2) $\|f+g\|_{\mathcal{L}_{p}} \leqslant\|f\|_{\mathcal{L}_{p}}+\|g\|_{\mathcal{L}_{p}}$, (s3) $\|f\|_{\mathcal{L}_{p}} \in \mathbb{R}_{\geqslant 0}$ and $\|f\|_{\mathcal{L}_{p}}=0$ if $f=0 \mu$-a.e.
(d) The map $\langle\cdot, \cdot\rangle_{\mathcal{L}_{2}}: \mathcal{L}_{2}(\mu) \times \mathcal{L}_{2}(\mu) \rightarrow \mathbb{R}$ with $(f, g) \mapsto\langle f, g\rangle_{\mathcal{L}_{2}}:=\mu(f g)$ is a positive semidefinite symmetric bilinearform.
§02.21 Lemma (Properties). Let $f, g \in \mathcal{L}_{1}(\Omega, \mathscr{A}, \mu)$.
(i) If $a, b \in \mathbb{R}$, then $a f+b g \in \mathcal{L}_{1}(\mu)$ and $\int(a f+b g) \mathrm{d} \mu=a \int f \mathrm{~d} \mu+b \int g \mathrm{~d} \mu$. (linearity)
(ii) Let $h \in \overline{\mathcal{M}}(\mathscr{A})$. If $h=f \mu$-a.e., then $h \in \mathcal{L}_{1}(\mu)$ and $\int h \mathrm{~d} \mu=\int f \mathrm{~d} \mu$. If $|h| \leqslant|g| \mu$-a.e. then $h \in \mathcal{L}_{1}(\mu)$.
(iii) If $f \leqslant g \mu$-a.e., then $\mu(f) \leqslant \mu(g)$.

In particular, if $f \in \overline{\mathbb{R}}_{\geqslant 0} \mu$-a.e., then $\mu(f) \in \mathbb{R}_{\geqslant 0}$.
(iv) $|\mu(f)| \leqslant \mu(|f|)$.
(triangle inequality)
(v) $f=0 \mu$-a.e. if and only if $\mu\left(f \mathbb{1}_{A}\right)=0$ for all $A \in \mathscr{A}$.
(vi) If $\mu \in \mathfrak{M}_{f}(\mathscr{A})$ is finite and $h \in \mathcal{M}(\mathscr{A})$ is bounded, hence $\|h\|_{\infty}:=\sup _{\omega \in \Omega}|h(\omega)| \in \mathbb{R}_{\gg 0}$, then $h \in \mathcal{L}_{1}(\mu)$.
(vii) If $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ then $h \in \mathcal{L}_{1}(\mu+\nu)$ if and only if $h \in \mathcal{L}_{1}(\mu) \cap \mathcal{L}_{1}(\nu)$. In this case, $(\mu+\nu)(h)=$ $\mu(h)+\nu(h)$.
(viii) If $\nu=\mathbb{f} \mu$ with $\mathrm{d} \nu / \mathrm{d} \mu=\mathbb{f} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ then $g \in \overline{\mathcal{M}}(\mathscr{A})$ is ν-(quasi)integrable if and only if $g \mathbb{f} \in \overline{\mathcal{M}}(\mathscr{A})$ is μ-(quasi)integrable. In this case $\nu(g)=\mu(g \mathbb{f})=\int(g \mathbb{f}) \mathrm{d} \mu=\int g \mathrm{~d}(\mathbb{f} \mu)=$ $\int g \mathrm{~d} \nu$.
§02.22 Proof of Lemma $\$ 02.21$. is given in the lecture.
§02.23 Corollary (Properties). Let $f, g \in \overline{\mathcal{M}}(\mathscr{A})$ and $\mu \in \mathfrak{M}(\mathscr{A})$.
(i) Let $p \in \mathbb{R}_{>0} . f \in \mathcal{L}_{p}(\mu)$ if and only if $|f|^{p} \in \mathcal{L}_{1}(\mu)$. Moreover, if $f \in \mathcal{L}_{\infty}(\mu)$ then $\mu(\{|f|>$ $\left.\left.\|f\|_{\mathcal{L}_{\infty}}\right\}\right)=0$.
(ii) Let $p \in \overline{\mathbb{R}}_{>0} .\|f\|_{\mathcal{L}_{p}}=0$ if and only if $f=0 \mu$-a.e.. If $a \in \mathbb{R}$ then $\|a f\|_{\mathcal{L}_{p}}=|a|\|f\|_{\mathcal{L}_{p}}$. If $f \in \mathcal{L}_{p}(\mu)$ and $f=g \mu$-a.e., then $|f| \in \mathbb{R}_{\geqslant 0} \mu$-a.e. and $\|f\|_{\mathcal{L}_{p}}=\|g\|_{\mathcal{L}_{p}}$.
$\S 02.24$ Proof of Corollary $\S 02.23$. Exercise.
§02.25 Lemma (Image measure). Let (Ω, \mathscr{A}) and $(\mathcal{X}, \mathscr{X})$ be measurable spaces, let $\mu \in \mathfrak{M}(\mathscr{A})$ be a measure and let $X \in \mathcal{M}(\mathscr{A}, \mathscr{X})$ be measurable. Let $\mu^{X}:=\mu \circ X^{-1} \in \mathfrak{M}(\mathscr{X})$ be the image measure on (X, \mathscr{X}) of μ under the map X. If $h \in \overline{\mathcal{M}}_{20}(\mathscr{X})$ then $\mu(h(X))=\mu^{X}(h)$. Consequently, $h \in \overline{\mathcal{M}}(\mathscr{X})$ is μ^{X}-(quasi)integrable if and only if $h(X) \in \overline{\mathcal{M}}(\mathscr{A})$ is μ-(quasi)integrable. In this case, $\mu(h(X))=\mu^{X}(h)$.

$$
(\overline{\mathbb{R}}, \overline{\mathscr{B}})
$$

In particular, if X is a random variable on $(\Omega, \mathscr{A}, \mathbb{P})$, then

$$
\int_{x} h(x) \mathbb{P}^{X}(\mathrm{~d} x)=\int h \mathrm{~d}^{X}=\mathbb{P}^{X}(h)=\mathbb{P}(h(X))=\int h(X) \mathrm{d} \mathbb{P}=\int_{\Omega} h(X(\omega)) \mathbb{P}(\mathrm{d} \omega) .
$$

§02.26 Proof of Lemma §02.25. is given in the lecture.

§02|02 Convergence criteria

$\S 02.27$ Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space. We say that a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{M}(\mathscr{A})$ converges to $f \in \overline{\mathcal{M}}(\mathscr{A})$
μ-almost everywhere (μ-a.e.), symbolically $f_{n} \xrightarrow{\mu \text {-a.e. }} f$, if $\lim \sup _{n \rightarrow \infty}\left|f_{n}-f\right|=0 \mu$-a.e., that is, there exists a μ-null set $N \in \mathscr{A}$ such that $\lim _{n \rightarrow \infty}\left|f_{n}(\omega)-f(\omega)\right|=0$ for any $\omega \in N^{\mathrm{c}}:=\Omega \backslash N$.
μ-almost complete (μ-a.c.), symbolically $f_{n} \xrightarrow{\mu \text {-a.c. }} f$, if $\sum_{n \in \mathbb{N}} \mu\left(\left\{\left|f_{n}-f\right|>\varepsilon\right\} \cap A\right) \in \mathbb{R}_{\geqslant 0}$ for every $A \in \mathscr{A}$ with $\mu(A) \in \mathbb{R}_{>0}$ and for every $\varepsilon \in \mathbb{R}_{>0}$.
in μ-measure (or, briefly, in measure), symbolically $f_{n} \xrightarrow{\mu} f$, if $\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}-f\right|>\varepsilon\right\} \cap A\right)=$ 0 for every $A \in \mathscr{A}$ with $\mu(A) \in \mathbb{R}_{\geqslant 0}$ and for every $\varepsilon \in \mathbb{R}_{>0}$.
in $\mathcal{L}_{p}(\mu)$ (or in p-th μ-mean) for $p \in \overline{\mathbb{R}}_{>0}$, symbolically $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$, if $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f in $\mathcal{L}_{p}(\mu)$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\mathcal{L}_{p}}=0$.
If μ is a probability measure, then convergence in μ-measure is also called convergence in probability. Sometimes we write briefly $f_{n} \xrightarrow{\text { a.e. }} f, f_{n} \xrightarrow{\text { a.c. }} f$ or $f_{n} \xrightarrow{\mathcal{L}_{p}} f$ if the underlying measure emerges from the context.
§02.28 Remark. Convergence in $\mathcal{L}_{p}(\mu)$ and convergence μ-almost everywhere evidently determine the limit up to equality μ-almost everywhere. This also applies to convergence in μ-measure, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite. Indeed, if $f_{n} \xrightarrow{\mu} f$ and $f_{n} \xrightarrow{\mu} g$ then for every $\varepsilon \in \mathbb{R}_{>0}$ and $A \in \mathscr{A}$ with $\mu(A) \in \mathbb{R}_{\geqslant 0}$ (since $|f-g| \leqslant\left|f-f_{n}\right|+\left|g-f_{n}\right|$)

$$
\mu(\{|f-g|>\varepsilon\} \cap A) \leqslant \mu\left(\left\{\left|f-f_{n}\right|>\varepsilon / 2\right\} \cap A\right)+\mu\left(\left\{\left|g-f_{n}\right|>\varepsilon / 2\right\} \cap A\right) \xrightarrow{n \rightarrow \infty} 0 .
$$

and hence $\mu(\{|f-g|>\varepsilon\} \cap A)=0$. Therefore, we have $\mu(\{f \neq g\} \cap A)=0$ making use of $\{f \neq g\} \cap A=\bigcup_{k \in \mathbb{N}}\{|f-g|>1 / k\} \cap A$. Selecting $A_{n} \uparrow \Omega$ with $\mu\left(A_{n}\right) \in \mathbb{R}_{\geqslant 0}$ (since $\left.\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})\right)$ implies $f=g \mu$-a.e.. If $\mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ is finite, then $\lim _{n \rightarrow \infty} \mu\left(\left\{\left|f_{n}-f\right|>\varepsilon\right\}\right)=0$ for every $\varepsilon \in \mathbb{R}_{>0}$ and $f_{n} \xrightarrow{\mu} f$ are equivalent. The last statement does not apply, if $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite. For instance, on $\left(\mathbb{N}, 2^{\mathbb{N}}, \zeta_{\mathbb{N}}\right)$ (see Example $\S 01.18$ (c) for the counting measure $\zeta_{\mathbb{N}}$) for $A_{n}:=\mathbb{N}_{\geq_{n}}, n \in \mathbb{N}$, we have $\left\{\mathbb{1}_{A_{n}}>\varepsilon\right\}=A_{n}$ for every $\varepsilon \in(0,1)$ and $\left\{\mathbb{1}_{A_{n}}>\varepsilon\right\}=\emptyset$ for every $\varepsilon \in \mathbb{R}_{\geqslant 1}$. Since $A_{n} \downarrow \emptyset$, and hence $\zeta_{\mathbb{N}}\left(A_{n} \cap A\right) \downarrow 0$ for each $A \in \mathscr{A}$ with $\zeta_{\mathbb{N}}(A) \in \mathbb{R}_{\geqslant 0}$ (upper semicontinuous), we evidently have $\mathbb{1}_{A_{n}} \xrightarrow{\zeta_{\mathbb{M}}} 0$. On the other hand side, for each $\varepsilon \in(0,1)$ we have $\zeta_{\mathbb{N}}\left(\left\{1_{A_{n}}>\varepsilon\right\}\right)=\zeta_{\mathbb{N}}\left(A_{n}\right)=\infty$ for all $n \in \mathbb{N}$.
$\$ 02.29$ Lemma. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space.
(i) (Monotone convergence) Let $f \in \overline{\mathcal{M}}(\mathscr{A})$ and let $f_{n} \in \mathcal{L}_{1}(\mu)$, $n \in \mathbb{N}$. Assume $f_{n} \uparrow f \mu$-a.e. Then $\mu\left(f_{n}\right) \uparrow \mu(f)$ where both sides can equal $+\infty$.
(ii) (Dominated convergence) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\overline{\mathcal{M}}(\mathscr{A})$ be μ-a.e. convergent. Assume $\sup _{n \in \mathbb{N}}\left|f_{n}\right| \leqslant$ $g \mu$-a.e. with $g \in \mathcal{L}_{1}(\mu)$. Then there exists $f \in \mathcal{M}(\mathscr{A})$ with $f_{n} \xrightarrow{\mu \text {-a.e. }} f,\left(f_{n}\right)_{n \in \mathbb{N}}$ and f belong to $\mathcal{L}_{1}(\mu)$ and $\lim _{n \rightarrow \infty} \mu\left(\left(\left|f-f_{n}\right|\right)\right)=0$ as well as $\lim _{n \rightarrow \infty} \mu\left(f_{n}\right)=\mu(f)$. If $g \in \mathcal{L}_{p}(\mu)$ for $p \in \mathbb{R}_{\geqslant 1}$, then $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f belong to $\mathcal{L}_{p}(\mu)$ and $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\mathcal{L}_{p}}=0$.
(iii) (Scheffé's theorem) Let $f, f_{n} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A}), n \in \mathbb{N}$, be μ-integrable. Assume $f_{n} \xrightarrow{\mu \text {-a.e. }} f$ and $\mu\left(f_{n}\right) \xrightarrow{n \rightarrow \infty} \mu(f)$, then $f_{n} \xrightarrow{\mathcal{L}_{1}(\mu)} f$.
(iv) (Theorem of Riesz) Let $f, f_{n} \in \mathcal{L}_{p}(\mu), n \in \mathbb{N}$, with $p \in \mathbb{R}_{\geqslant 1}$ Assume $f_{n} \xrightarrow{\mu \text {-a.e. }} f . \mu\left(\left|f_{n}\right|^{p}\right) \xrightarrow{n \rightarrow \infty}$ $\mu\left(|f|^{p}\right)$ if and only if $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$.
(v) Let $f, f_{n} \in \mathcal{M}(\mathscr{A}), n \in \mathbb{N}$. Then the following implications hold:

$$
f_{n} \xrightarrow{\mu \text {-a.e. }} f \Longrightarrow f_{n} \xrightarrow{\mu} f \Longleftarrow f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f .
$$

If $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite, then we also have $f_{n} \xrightarrow{\mu \text {-a.c. }} f \Longrightarrow f_{n} \xrightarrow{\mu \text {-a.e. }} f$. Moreover, $f_{n} \xrightarrow{\mu} f$ if and only if for any subsequent of $\left(f_{n}\right)_{n \in \mathbb{N}}$ there exists a sub-subsequence that converges to $f \mu$-almost everywhere.
§02.30 Proof of Lemma §02.29. is given in the lecture.
§02.31 Reminder. A sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{L}_{p}(\mu)$ is called $\left(\mathcal{L}_{p}(\mu)-\right)$ Cauchy sequence, if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $n_{\circ} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{\mathcal{L}_{p}(\mu)} \leqslant \varepsilon$ for all $m, n \in \mathbb{N}_{\geqslant_{n_{0}}}$, symbolically $\lim _{n, m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{\mathcal{L}_{p}(\mu)}=0$. Keep in mind that every $\mathcal{L}_{p}(\mu)$ convergent sequence by applying Minkowski’s inequality (see Lemma $\$ 02.50$ (iii)) is also a $\mathcal{L}_{p}(\mu)$-Cauchy sequence.
$\$ 02.32$ Lemma. Let $p \in \overline{\mathbb{R}}_{\geqslant 1}$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a $\mathcal{L}_{p}(\mu)$-Cauchy sequence. Then there exists $f \in \mathcal{L}_{p}(\mu)$ such that $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$ and there exists a subsequence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ that converges μ-a.e. to f.
$\S 02.33$ Proof of Lemma $\S 02.32$. is given in the lecture.
§02.34 Corollary. Let $p \in \overline{\mathbb{R}}_{\geqslant 1}$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a $\mathcal{L}_{p}(\mu)$-Cauchy sequence that converges μ-a.e. to $f \in \mathcal{M}(\mathscr{A})$. Then f belongs to $\mathcal{L}_{p}(\mu)$ and $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$.
§02.35 Proof of Corollary §02.34. is given in the lecture.
§02.36 Preliminaries. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space, let $p \in \mathbb{R}_{\geqslant 1}$ and let $f \in \overline{\mathcal{M}}(\mathscr{A})$. f is μ-integrable if and only if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists $g \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{{ }_{00}}(\mathscr{A})$ such that $\mu\left(|f| \mathbb{1}_{\{|f| \geqslant g\}}\right) \leqslant \varepsilon$ or in equal $\inf \left\{\mu\left(|f| \mathbb{1}_{\{|f| \geqslant g\}}\right): g \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{\geqslant 0}(\&)\right\}=0$. Assume $\mu(|f|) \in \mathbb{R}_{\geqslant 0}$. Setting $g:=2|f| \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{刃 0}(\mathscr{A})$ we evidently have $\{|f| \geqslant g\}=\{f=0\} \cup\{|f|=\infty\}$ and hence applying Corollary $\S 02.23$ (ii) also $\mu\left(|f| \mathbb{1}_{\{|f| \geqslant g\}}\right)=0$. We obtain the converse by exploiting $\mu(|f|)=\mu\left(|f| \mathbb{1}_{\{|f| \geqslant g\}}\right)+\mu\left(|f| \mathbb{1}_{\{|| |<g\}}\right) \leqslant \varepsilon+\mu(g) \in \mathbb{R}_{>_{0}}$, which in turn implies $\mu(|f|) \in \mathbb{R}_{>0}$.
$\S 02.37$ Definition. A class of functions $\mathcal{F} \subseteq \mathcal{L}_{1}(\mu)$ is called uniformly μ-integrable if

$$
\inf \left\{\sup _{f \in \mathcal{F}} \mu\left(|f| \mathbb{1}_{\{|| | \geqslant g\}}\right): g \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})\right\}=0 .
$$

If $\mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ is finite, then uniform μ-integrability is equivalent to the condition:

$$
\inf \left\{\sup _{f \in \mathcal{F}} \mu\left(|f| \mathbb{1}_{\{|f| \geq a\}}\right): a \in \mathbb{R}_{\geq 0}\right\}=0 .
$$

§02.38 Remark.
(a) Let \mathcal{F} be uniformly μ-integrable and let $\varepsilon \in \mathbb{R}_{>0}$. A function $g \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{>0}(\mathscr{A})$ is called ε-majorant if $\sup _{f \in \mathcal{F}} \mu\left(|f| \mathbb{1}_{\{|f| \geqslant g\}}\right) \leqslant \varepsilon$. Evidently, there exists a ε-majorant g for \mathcal{F} and every $h \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ with $h \geqslant g$ is also a ε-majorant for \mathcal{F}.
(b) A family $\left(f_{i}\right)_{i \in \mathcal{I}}$ in $\overline{\mathcal{M}}(\mathscr{A})$ is called uniformly μ-integrable if the class $\left\{f_{i}: i \in \mathcal{I}\right\}$ is.
(c) Let $\mathcal{F}_{i}, i \in \llbracket n \rrbracket$, be finitly many uniformly μ-integrable classes in $\overline{\mathcal{M}}(\mathscr{A})$. Then their union $\mathcal{F}:=\cup_{i \in \llbracket n \rrbracket} \mathcal{F}_{\mathcal{F}}$ is also uniformly μ-integrable. Indeed, for every $\varepsilon \in \mathbb{R}_{>0}$ and ε-majorant g_{i} for $\mathcal{F}_{i}, i \in \llbracket n \rrbracket$, the function $g_{1} \vee \cdots \vee g_{n}$ is a ε-majorant for \mathcal{F}.
(d) Let $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$ and let $g \in \mathcal{L}_{p}(\mu) \cap \overline{\mathcal{M}}_{刃 0}(\mathscr{A})$ satisfy $|f| \leqslant g \mu$-a.e. for all $f \in \mathcal{F}$. Then
 ε-majorant for \mathcal{F}^{p}, since $\mu\left(|f|^{p} \mathbb{1}_{\left\{\left|| |^{p}>h\right\}\right.}\right) \leqslant \mu\left(|g|^{p} \mathbb{1}_{\left\{|g|^{p}>h\right\}}\right) \leqslant \varepsilon$ for all $f \in \mathcal{F}$.
§02.39 Lemma. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space.
(i) If $\mathcal{F} \subseteq \mathcal{L}_{1}(\mu)$ is a finite set then \mathcal{F} is uniformly μ-integrable.
(ii) If $\mathcal{F}, \mathcal{G} \subseteq \mathcal{L}_{1}(\mu)$ are uniformly μ-integrable, then $\{f+g: f \in \mathcal{F}, g \in \mathcal{G}\},\{f-g: f \in \mathcal{F}, g \in \mathcal{G}\}$ and $\{|f|: f \in \mathcal{F}\}$ are uniformly μ-integrable.
(iii) If $\mathcal{F} \subseteq \mathcal{L}_{1}(\mu)$ is uniformly μ-integrable, and if, for any $g \in \mathcal{G} \subseteq \overline{\mathcal{M}}(\mathscr{A})$, there exists an $f \in \mathcal{F}$ with $|g| \leqslant|f|$, then $\mathcal{G} \subseteq \mathcal{L}_{1}(\mu)$ is also uniformly μ-integrable.
(iv) Let $\mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ be finite, let $p \in \mathbb{R}_{>1}$ and let \mathcal{F} be bounded in $\mathcal{L}_{p}(\mu)$, that is, $\sup \left\{\|f\|_{\mathcal{L}_{p}}: f \in \mathcal{F}\right\} \in \mathbb{R}_{>0}$. Then \mathcal{F} is uniformly μ-integrable.
§02.40 Proof of Lemma §02.39. We refer to the lecture EWS / Exercise.
§02.41 Theorem. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space. $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$ is uniformly μ-integrable if and only if the following two conditions hold:
(gI1) \mathcal{F} is bounded in $\mathcal{L}_{1}(\mu)$, i.e. $\sup \{\mu(|f|): f \in \mathcal{F}\} \in \mathbb{R}_{\geqslant 0}$.
(gI2) For any $\varepsilon \in \mathbb{R}_{>0}$ there are $h \in \mathcal{L}_{1}(\mu) \cap \overline{\mathcal{M}}_{>0}(\mathscr{A})$ and $\delta \in \mathbb{R}_{>0}$ such that for all $A \in \mathscr{A}$ holds the implication: $\mu\left(h \mathbb{1}_{A}\right) \leqslant \delta \Rightarrow \sup _{f \in \mathcal{F}} \mu\left(|f| \mathbb{1}_{A}\right) \leqslant \varepsilon$.
$\S 02.42$ Proof of Theorem $\S 02.41$. is given in the lecture.
$\$ 02.43$ Theorem. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space, let $p \in \mathbb{R}_{\geqslant 1}$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_{p}(\mu) \cap$ $\mathcal{M}(\mathscr{A})$. Then (i) $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges in $\mathcal{L}_{p}(\mu)$, is equivalent to (ii) $\left(\left|f_{n}\right|^{p}\right)_{n \in \mathbb{N}}$ is uniformly μ integrable and $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges in μ-measure.
$\S 02.44$ Proof of Theorem §02.43. (i) \Rightarrow (ii) in the lecture, for the converse we refer to Bauer (1992, Theorem 21.4, p.142)
$\S 02.45$ Remark. The Theorem $\S 02.43$ guarantees the existence of a $\mathcal{L}_{p}(\mu)$-integrable function under the possible limits in μ-measure of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$.
$\S 02.46$ Corollary. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ-finite, let $p \in \mathbb{R}_{\geqslant 1}$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_{p}(\mu)$. Assume $f_{n} \xrightarrow{\mu} f \in \mathcal{M}(\mathscr{A})$ and $\left(\left|f_{n}\right|^{p}\right)_{n \in \mathbb{N}}$ is uniformly μ-integrable. Then $f \in \mathcal{L}_{p}(\mu)$ and $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$.
§02.47 Proof of Corollary §02.46. is given in the lecture.
$\S 02.48$ Summary. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space, let $p \in \overline{\mathbb{R}}_{\geqslant 1}$, and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ belong to $\mathcal{L}_{p}(\mu)$. Then the following claims are equivalent:
(i) There is $f \in \mathcal{L}_{p}(\mu)$ such that $f_{n} \xrightarrow{\mathcal{L}_{p}(\mu)} f$.
(ii) $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a $\mathcal{L}_{p}(\mu)$-Cauchy sequence, i.e. $\lim _{n, m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{\mathcal{L}_{p}}=0$.

Assume in addition $p \in \mathbb{R}_{\geqslant 1}$ and $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite. Then (i) and (ii) are equivalent to
(iii) $\left(\left|f_{n}\right|^{p}\right)_{n \in \mathbb{N}}$ is uniformly μ-integrable, and there is $f \in \mathcal{N}(\mathscr{A})$ such that $f_{n} \xrightarrow{\mu} f$.

The limes in (i) and in (iii) coincide.
Figure 02 [§02] Implications of convergence criteria.

The Figure 02 [§02] was created based on Klenke (2020, Abb.6.1, p.159).

§02|03 \mathcal{L}_{p}-Spaces

$\S 02.49$ Reminder. For $p \in \overline{\mathbb{R}}_{>0}$ and $f, g \in \overline{\mathcal{M}}(\mathscr{A})$ we have shown that $\|f-g\|_{\mathcal{L}_{p}(\mu)}=0$ if and only if $f=g \mu$-a.e.. In this case we now consider f and g as equivalent. More precisely, for each $f \in \overline{\mathcal{M}}(\mathscr{A})$ we introduce the μ-equivalence class $\{f\}_{\mu}:=\{g \in \overline{\mathcal{M}}(\mathscr{A}): g=f \mu$-a.e. $\}$ and hence $\{0\}_{\mu}=\{g \in \overline{\mathcal{M}}(\mathscr{A}): g=0 \mu$-a.e. $\}$. For any $p \in \overline{\mathbb{R}}_{\geqslant 1},\{0\}_{\mu}$ is a subvector space of $\mathcal{L}_{p}(\mu)$. Thus formally we can build the factor space

$$
\mathbb{L}_{p}:=\mathbb{L}_{p}(\mu):=\mathbb{L}_{p}(\Omega, \mathscr{A}, \mu):=\left\{\{f\}_{\mu}:=f+\{0\}_{\mu}: f \in \mathcal{L}_{p}(\mu)\right\} .
$$

For $\{f\}_{\mu} \in \mathbb{L}_{p}(\mu)$, define $\left\|\{f\}_{\mu}\right\|_{\mathbb{L}_{p}(\mu)}:=\|f\|_{\mathcal{L}_{p}}$ for any $f \in\{f\}_{\mu}$. Also let $\mu\left(\{f\}_{\mu}\right):=\mu(f)$ if this expression is defined for f. Note that $\left\|\{f\}_{\mu}\right\|_{L_{\rho}(\mu)}$ and $\mu\left(\{f\}_{\mu}\right)$ do not depend on the choice of the representative $f \in\{f\}_{\mu}$. Similarly, for $\{f\}_{\mu},\{g\}_{\mu} \in \mathbb{L}_{2}(\mu)$ define

$$
\left\langle\{f\}_{\mu},\{g\}_{\mu}\right\rangle_{\mathbb{L}_{2}(\mu)}:=\langle f, g\rangle_{\mathcal{L}_{2}(\mu)}=\mu(f g)
$$

with $f \in\{f\}_{\mu}$ and $g \in\{g\}_{\mu}$.
$\S 02.50$ Lemma. Let $(\Omega, \mathscr{A}, \mu)$ be an arbitrary measure space and $f, g \in \overline{\mathcal{M}}(\mathscr{A})$.
(i) (Hölder's inequality) Let $s, r \in \overline{\mathbb{R}}_{\geqslant 1}$ with $\frac{1}{s}+\frac{1}{r}=1$. Then $\mu(|f g|) \leqslant\|f\|_{\mathcal{L}_{p}}\|g\|_{\mathcal{L}_{q}}$. (Cauchy-Schwarz inequality) If $f, g \in \mathcal{L}_{2}$ then $\left|\langle f, g\rangle_{\mathcal{L}_{2}}\right| \leqslant\|f\|_{\mathcal{L}_{2}}\|g\|_{\mathcal{L}_{2}}$.
(ii) If $\mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ is finite, $s \in \overline{\mathbb{R}}_{>0}$ and $r \in(0, s)$. Then $\mu(\Omega)^{1 / s}\|f\|_{\mathcal{L}_{r}(\mu)} \leqslant \mu(\Omega)^{1 / r}\|f\|_{\mathcal{L}_{s}(\mu)}$ and hence $\mathcal{L}_{s}(\mu) \subseteq \mathcal{L}_{r}(\mu)$.
(iii) (Minkowski's inequality) For any $p \in \overline{\mathbb{R}}_{>1},\|f+g\|_{\mathcal{L}_{p}} \leqslant\|f\|_{\mathcal{L}_{p}}+\|g\|_{\mathcal{L}_{p}}$.
(iv) (Fischer-Riesz) For any $p \in \overline{\mathbb{R}}_{\geqslant 1}$, $\left(\mathbb{L}_{p}(\mu),\|\cdot\|_{\mathbb{L}_{p}(\mu)}\right)$ is a Banach space. $\left(\mathbb{L}_{2}(\mu),\langle\cdot, \cdot\rangle_{\mathbb{L}_{2}(\mu)}\right)$ is a real Hilbert space.
$\S 02.51$ Proof of Lemma §02.50. For (i) and (iii) we refer to the lecture EWS or Bauer (1992, Satz $14.1 / 14.2$, p.85/86). (ii) is shown in the lecture and (iv) can be found, for example, in Klenke (2008, Theorem 7.18, p.151)
$\$ 02.52$ Remark. Let $(V,\langle\cdot, \cdot\rangle)$ be a Hilbert space. Then the Riesz-Fréchet representation theorem states, that a map $F: V \rightarrow \mathbb{R}$ is continuous and linear if and only if there is an $f \in V$ with $F(x)=\langle f, x\rangle$ for all $x \in V$. The uniquely determined element $f \in V$ is called representative of F. In the next section we will need the representation theorem for the space \mathcal{L}_{2}, which unlike \mathbb{L}_{2} is not a Hilbert space. The representation theorem still holds if V is a linear vector space and $\langle\cdot, \cdot\rangle$ is a complete positive semidefinite symmetric bilinear form (complete semi-inner product) (c.f. Klenke (2008) section 7.3).
$\S 02.53$ Lemma. The map $F: \mathcal{L}_{2}(\mu) \rightarrow \mathbb{R}$ is continuous and linear if and only if there is an $f \in \mathcal{L}_{2}(\mu)$ with $F(g)=\mu(g f)$ for all $g \in \mathcal{L}_{2}(\mu)$.
§02.54 Proof of Lemma §02.53. we refer to Klenke (2008, Corollary 7.28, p.154)

§03 Measures with density - Theorem of Radon-Nikodym

$\S 03.01$ Definition. Let $\nu, \mu \in \mathfrak{M}(\mathscr{A})$ be arbitrary measures on (Ω, \mathscr{A}).
$\nu \ll \mu: \nu$ is called absolutely continuous with respect to μ, μ-continuous, or dominated by μ, if any μ-null set is also a ν-null set, that is, $\nu(A)=0$ for all $A \in \mathscr{A}$ with $\mu(A)=0$. The measures Maße μ and ν are called equivalent (symbolically $\mu \ll \nu$), if $\nu \ll \mu$ and $\mu \ll \nu$.
$\mu \perp \nu: \mu$ is called singular to ν or ν-singular, if there exists a μ-null set $N \in \mathscr{A}$ such that $\nu(\Omega \backslash N)=0$, or in equal $\nu=\mathbb{1}_{N} \nu$, that is, $\nu(A)=\nu(A \cap N)$ for all $A \in \mathscr{A}$.
$\S 03.02$ Remark. Evidently, $\mu \perp \nu$ if and only if there are $\Omega_{\mu}, \Omega_{\nu} \in \mathscr{A}$ with $\Omega=\Omega_{\mu} \biguplus \Omega_{\nu}$ and $\mu\left(\Omega_{\nu}\right)=$ $0=\nu\left(\Omega_{\mu}\right)$, and hence if and only if $\nu \perp \mu$. Consequently measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ with $\mu \perp \nu$ are also called mutually singular. The condition $\nu=\mathbb{1}_{N} \nu$ means the support of the meassure ν is contained in $N \in \mathscr{A}$. Note that $\nu \ll \mu$ and $\nu \perp \mu$ imply together $\nu(N)=0$, and hence $\nu=0$.
§03.03 Lemma. Let $\nu, \mu \in \mathfrak{M}(\mathscr{A})$ be measures on (Ω, \mathscr{A}). ν is called totally continuous with respect to μ if, for any $\varepsilon \in \mathbb{R}_{>0}$ there exists $a \delta \in \mathbb{R}_{>0}$ such that $\nu(A) \leqslant \varepsilon$ for all $A \in \mathscr{A}$ with $\mu(A) \leqslant \delta$. If ν is totally continuous with respect to μ, then $\nu \ll \mu$. If $\nu \in \mathfrak{M}_{e}(\mathscr{A})$ is finite, then the converse also holds.
$\S 03.04$ Proof of Lemma $\S 03.03$. is given in the lecture.
Reminder. For measures $\mu, \nu \in \mathfrak{M}(\mathscr{A})$ we write $\nu \leqslant \mu$ if $\nu(A) \leqslant \mu(A)$ for all $A \in \mathscr{A}$.
$\S 03.05$ Lemma. Let $\nu, \mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ be finite measures with $\nu \leqslant \mu$, then there exists $h \in \mathcal{M}_{[0,1]}(\mathscr{A})$ such that $\nu=h \mu$.
§03.06 Proof of Lemma $\S 03.05$. is given in the lecture.
§03.07 Theorem of Radon-Nikodym. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be a σ-finite measure and let $\nu \in \mathfrak{M}(\mathscr{A})$ be a μ-continuous measure, i.e. $\nu \ll \mu$. Then ν has a density $\mathbb{f}=\mathrm{d} \nu / \mathrm{d} \mu \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ with respect to μ, that is, $\nu=\mathbb{T} \mu$.
$\S 03.08$ Proof of Theorem $\S 03.07$. is given in the lecture.
§03.09 Remark. Let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ-finite measures with $\nu \ll \mu$ and let $\mathbb{F}=\mathrm{d} \nu / \mathrm{d} \mu \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ be a μ-density of ν. Then Theorem $\S 03.07$ implies directly the usual chain rules:
(a) If $g \in \overline{\mathcal{M}}(\mathscr{A})$ is ν-quasiintegrable, then $\nu\left(g \mathbb{1}_{A}\right)=\mu\left(g \not \mathbb{1}_{A}\right)$ for all $A \in \mathscr{A}$.
(b) If $\rho \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is a σ-finite measure with $\rho \ll \nu \ll \mu$ then $\frac{\mathrm{d} \rho}{\mathrm{d} \mu}=\frac{\mathrm{d} \rho}{\mathrm{d} \nu} \frac{\mathrm{d} \nu}{\mathrm{d} \mu} \mu$-a.e..
(c) If $h \in \mathcal{M}_{[0,1]}(\mathscr{A})$ with $h=\frac{\mathrm{d} \nu}{\mathrm{d}(\nu+\mu)} \mu$-a.e. then $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}=\frac{h}{1-h} \mu$-a.e..
§03.10 Example.
(a) Continuous probability measures on $\left(\mathbb{R}^{k}, \mathscr{B}^{k}\right)$ as studied in the lecture EWS are probability measures dominated by the Lebesgue measure λ^{k} with corresponding (Radon-Nikodym-) density.
(b) Discret probability measures on a countable set Ω introduced in the lecture EWS are probability measures dominated by the counting measure ζ_{Ω} and the mass function corresponds to the (Radon-Nikodym-) density. Similarly, if $\Omega \subseteq \mathbb{R}$ then the discrete measure $\mu \in \mathfrak{M}_{\sigma}(\mathscr{B})$ with mass function \mathbb{p} as in Example $\S 01.18$ (c) is absolutely continuous with respect to the counting measure $\zeta_{\Omega} \in \mathfrak{M}_{\sigma}(\mathscr{B})$ with (Radon-Nikodym-) density p.
§03.11 Lebesgue's decomposition theorem. Let $\mu, \nu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be σ-finite measures on (Ω, \mathscr{A}). Then there exists a unique decomposition $\nu=\nu_{a}+\nu_{s}$ of ν into two measures $\nu_{a}, \nu_{s} \in \mathfrak{M}(\mathscr{A})$ such
that $\nu_{a} \ll \mu$ and $\nu_{s} \perp \mu$ is the μ-continuous, respectively the μ-singular part of ν. Moreover, $\nu_{a}, \nu_{s} \in \mathfrak{M}_{\sigma}(\mathscr{A})$ are σ-finite, and $\nu_{a}, \nu_{s} \in \mathfrak{M}_{f}(\mathscr{A})$ are finite if and only if $\nu \in \mathfrak{M}_{e}(\mathscr{A})$ is finite. ν_{a} has a μ-density $\mathrm{d} \nu_{a} / \mathrm{d} \mu \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ with $\mathrm{d} \nu_{a} / \mathrm{d} \mu \in \mathbb{R}_{>0} \mu$-a.e.
§03.12 Proof of Theorem §03.11. is given in the lecture.
§03.13 Remark. If $\mathbb{f}=\mathrm{d} \nu_{a} / \mathrm{d} \mu \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$ is a μ-density of ν_{a} as in Theorem $\S 03.11$ then the positive real function $\tilde{\mathbb{f}}:=\mathbb{f} \mathbb{1}_{\left\{\tilde{f} \in \mathbb{R}_{\geq 0}\right\}} \in \mathcal{M}_{\geqslant 0}(\mathscr{A})$ is also a μ-density of ν_{a}, since $\mathbb{f}=\tilde{\mathbb{f}} \mu$-a.e. In other words $\tilde{\mathbb{f}} \in \mathcal{M}_{\geqslant 0}(\mathscr{A})$ is also a version of the Radon-Nikodym density of ν_{a} with respect to μ. Consequently, without loss of generality we chose here and subsequently a positive real version of the Radon-Nikodym density. Furthermore, given $\mathbb{f}=\mathrm{d} \nu_{a} / \mathrm{d} \mu \in \mathcal{M}_{\geqslant 0}(\mathscr{A})$ let us define a numerical function $\mathrm{L}:=\mathbb{f} \mathbb{1}_{N^{\mathrm{c}}}+\infty \mathbb{1}_{N} \in \overline{\mathcal{M}}_{{ }^{0} 0}(\mathscr{A})$ with $\mu(N)=0=\nu_{s}\left(N^{\mathrm{c}}\right)$ where $\{\mathrm{L}=\infty\}=N$ and the Lebesgue decomposition writes $\nu=\mathrm{L} \mu+\mathbb{1}_{\{\mathrm{L}=\infty\}} \nu$, i.e. for all $A \in \mathscr{A}$ we have $\nu(A)=\mu\left(\mathbb{1}_{A} \mathrm{~L}\right)+\nu(A \cap\{\mathrm{~L}=\infty\})$.
§03.14 Definition. Let $\nu, \mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ-finite measures on (Ω, \mathscr{A}), where $\nu \ll \mu$ does not necessarily hold. Any positive numerical function $\mathrm{L} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ satisfying

$$
\begin{equation*}
\mu(\mathrm{L}=\infty)=0 \text { and } \nu=\mathrm{L} \mu+\mathbb{1}_{\{\mathrm{L}=\infty\}} \nu \tag{03.01}
\end{equation*}
$$

is called density ratio of ν with respect to μ, or μ-density ratio of ν.
$\S 03.15$ Lemma. Let $\nu, \mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ be two σ-finite measures. Then the μ-density ratio $\mathrm{L} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{A})$ of ν is unique up to $(\nu+\mu)$-a.e. equivalence.
§03.16 Proof of Lemma §03.15. is given in the lecture.

Alternative formulation of the theorem of Radon-Nikodym

§03.17 Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$ be a class of numerical functions. A function $g \in \overline{\mathcal{M}}(\mathscr{A})$ is called a μ-essential supremum over \mathcal{F}, symbolically $g=$ μ-ess $\sup _{f \in \mathcal{F}} f$, if (a) $f \leqslant g \mu$-a.e. for all $f \in \mathcal{F}$, and (b) if $h \in \overline{\mathcal{M}}(\mathscr{A})$ satisfies $f \leqslant h \mu$-a.e. for all $f \in \mathcal{F}$ then $g \leqslant h \mu$-a.e.
$\$ 03.18$ Remark. The μ-essential supremum can be seen as an extension of the usual concept of the supremum. If \mathcal{F} is countable and $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ is σ-finite, then $g:=\sup _{f \in \mathcal{F}} f$ satisfies the conditions $\S 03.17$ (a) and (b), and hence $\sup _{f \in \mathcal{F}} f=\mu$-ess $\sup _{f \in \mathcal{F}} f \mu$-a.e. In contrast, if for example $\mathcal{F}=\left\{\mathbb{1}_{\{x\}}, x \in B\right\}$ with uncountable $B \in \mathscr{B}$ such that $\lambda(B) \in \mathbb{R}_{>0}$, then the λ-essential supremum and the usual supremum differ. Precisely, $\sup _{f \in \mathcal{F}} f=\mathbb{1}_{B} \neq 0=\lambda$-ess $\sup _{f \in \mathcal{F}} f . \quad \square$
§03.19 Lemma. Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{A})$ and $\mathcal{F} \subseteq \overline{\mathcal{M}}(\mathscr{A})$. Then:
(i) $g:=\mu$-ess $\sup _{f \in \mathcal{F}} f$ exists and it is μ-a.e. uniquely determined, that is, if $g \in \overline{\mathcal{M}}(\mathscr{A})$ is a solution of Definition $\S 03.17$ (a) and (b) then also $\widetilde{g} \in \overline{\mathcal{M}}(\mathscr{A})$ with $\mu(\{g \neq \widetilde{g}\})=0$.
(ii) There exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{F} with $g=\sup _{n \in \mathbb{N}} f_{n} \mu$-a.e.
(iii) If \mathcal{F} is increasing filtered (for all $h, k \in \mathcal{F}$ exists $f \in \mathcal{F}$ with $f \geqslant h \vee k$), then there exists an isotone sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{F} with $f_{n} \uparrow g \mu$-a.e..
§03.20 Proof of Lemma §03.19. We refer to Witting (1985, Satz 1.102, S.105).
§03.21 Lemma. Let $\mu, \nu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ be finite and mutually not singular measures on (Ω, \mathscr{A}). Then there is $\Omega_{0} \in \mathscr{A}$ with $\mu\left(\Omega_{0}\right) \in \mathbb{R}_{>0}$ and $\varepsilon \in \mathbb{R}_{>0}$ with $\varepsilon \mathbb{1}_{\Omega_{0}} \mu \leqslant \mathbb{1}_{\Omega_{0}} \nu$.
§03.22 Proof of Lemma §03.21. The claim is shown in Klenke (2020, Lemma 7.46, S.184) with help of the Hahn-decomposition for signed measures. An alternative proof of the claim is given in the proof of Bauer (1992, Satz 17.10, S.117) exploiting Bauer (1992, Lemma 17.9, S.114).
§03.23 Lemma. Let $\nu, \mu \in \mathfrak{M}_{\mathrm{f}}(\mathscr{A})$ be finite with $\nu \leqslant \mu$. Set $\mathcal{F}:=\left\{f \in \overline{\mathcal{M}}_{\neq 0}(\mathscr{A}): f \mu \leqslant \nu\right\}$ and $g:=\mu$-ess $\sup _{f \in \mathcal{F}} f$. Then $\nu=g \mu$, that is, g is a version of the μ-density of ν.
$\S 03.24$ Proof of Lemma §03.23. is given in the lecture.

§04 Measures on product spaces

§04|01 Finite product measures

§04.01 Reminder. Let \mathcal{I} be an arbitrary nonempty index set and let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right), i \in \mathcal{I}$, be measurable spaces. The set $\mathcal{S}_{\mathcal{I}}:=Х_{i \in \mathcal{I}} \mathcal{S}_{i}$ of all maps $\left(s_{i}\right)_{i \in \mathcal{I}}: \mathcal{I} \rightarrow \cup_{i \in \mathcal{I}} \mathcal{S}_{i}$ such that $s_{i} \in \mathcal{S}_{i}$ for all $i \in \mathcal{I}$ is called product space or Cartesian product. We identify the map $i \mapsto s_{i}$ and the family $\left(s_{i}\right)_{i \in \mathcal{I}}$. If $\mathcal{S}_{i}=\mathcal{S}$ for all $i \in \mathcal{I}$ then we write $\mathcal{S}^{\mathcal{I}}:=\mathcal{S}_{\mathcal{I}}$, and in case $n:=|\mathcal{I}| \in \mathbb{N}$ also $\mathcal{S}^{n}:=\mathcal{S}^{\mathcal{I}}$ for short. For every $\mathcal{J} \subseteq \mathcal{I}$ the map $\Pi_{\mathcal{J}}: \mathcal{S}_{\mathcal{I}} \rightarrow \mathcal{S}_{\mathcal{J}}$ with $\left(s_{i}\right)_{i \in \mathcal{I}} \mapsto\left(s_{j}\right)_{j \in \mathcal{J}}$ is called canonical projection and in particular for $j \in \mathcal{I}$ the map $\Pi_{j}:=\Pi_{(j)}: \mathcal{S}_{\mathcal{I}} \rightarrow \mathcal{S}_{j}$ with $\left(s_{i}\right)_{i \in \mathcal{I}} \mapsto s_{j}$ is called coordinate map such that $\times_{i \in \mathcal{I}} E_{i}=\bigcap_{i \in \mathcal{I}} \Pi_{i}^{-1}\left(E_{i}\right)$ for all $E_{i} \subseteq \mathcal{S}_{i}$ and $i \in \mathcal{I}$.
§04.02 Definition. Let \mathcal{I} be an arbitrary nonempty index set.
(a) Let (Ω, \mathscr{A}) be a measurable space and for each $i \in \mathcal{I}$ let $\mathscr{A}_{i} \subseteq \mathscr{A}$ be a σ-algebra. The σ-algebra

$$
\bigwedge_{i \in \mathcal{I}} \mathscr{A}_{i}:=\bigcap_{i \in \mathcal{I}} \mathscr{A}_{i} \quad \text { and } \quad \bigvee_{i \in \mathcal{I}} \mathscr{A}_{i}:=\sigma\left(\bigcup_{i \in \mathcal{I}} \mathscr{A}_{i}\right)
$$

is respectively the largest σ-algebra on Ω, that belongs to all $\mathscr{A}_{i}, i \in \mathcal{I}$, and the smallest σ-algebra on Ω, that contains all $\mathscr{A}_{i}, i \in \mathcal{I}$.
(b) For each $i \in \mathcal{I}$ let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$ be a measurable space. The product- σ-algebra

$$
\mathscr{S}_{\mathcal{I}}:=\bigotimes_{i \in \mathcal{I}} \mathscr{S}_{i}
$$

is the smallest σ-algebra on the product space $\mathcal{S}_{\mathcal{I}}=X_{i \in \mathcal{I}} \mathcal{S}_{i}$ such that for every $i \in \mathcal{I}$ the coordinate map $\Pi_{i}: S_{\mathcal{I}} \rightarrow S_{i}$ is measurable with respect to $\mathscr{S}_{\mathcal{I}}-\mathscr{S}_{i}$, i.e. $\Pi_{i} \in \mathcal{M}\left(\delta_{\mathcal{I}}, S_{i}\right)$; that is,

$$
\mathscr{S}_{\mathcal{I}}=\bigotimes_{i \in \mathcal{I}} \mathscr{S}_{i}:=\bigvee_{i \in \mathcal{I}} \sigma\left(\Pi_{i}\right)=\bigvee_{i \in \mathcal{I}} \Pi_{i}^{-1}\left(\mathscr{S}_{i}\right) .
$$

If $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)=(\mathcal{S}, \mathscr{S})$ for all $i \in \mathcal{I}$, then we also write $\mathscr{S}^{I}:=\mathscr{S}_{I}$, and $\mathscr{S}^{n}:=\mathscr{S}^{I}$ in case $n:=|\mathcal{I}| \in \mathbb{N}$. The family $\left(\Pi_{i}\right)_{i \in \mathcal{I}}$ is called the canonical process on $\left(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}}\right)$.

Consider now the situation of finitely many measure spaces $\left(\mathcal{S}_{i}, \mathscr{S}_{i}, \mu_{i}\right), i \in \llbracket n \rrbracket$, where $n \in \mathbb{N}$.
§04.03 Lemma. For every $i \in \llbracket n \rrbracket$ let \mathscr{E}_{i} be a generator of the σ-algebra \mathscr{S}_{i} on \mathcal{S}_{i} and let $\left(\mathcal{E}_{i k}\right)_{k \in \mathbb{N}}$ be a sequence in \mathscr{E}_{i} such that $\mathcal{E}_{i k} \uparrow \mathcal{S}_{i}$. Then the product- σ-algebra $\mathscr{S}_{[n]}=\bigotimes_{i \in \llbracket n \rrbracket} \mathscr{S}_{i}$ is generated by the class of sets $\left\{\mathrm{X}_{i \in \llbracket n \rrbracket} \mathcal{E}_{i}: \mathcal{E}_{i} \in \mathscr{E}_{i}, i \in \llbracket n \rrbracket\right\}$.
§04.04 Proof of Lemma §04.03. is given in the lecture.
$\S 04.05$ Remark. Let $\mathscr{S}_{1}=\left\{\emptyset, \mathcal{S}_{1}\right\}$ and $\mathscr{E}_{1}=\{\emptyset\}$. Let $\mathscr{E}_{2}=\mathscr{S}_{2}$ be a σ-algebra on \mathcal{S}_{2} containing at least 4 elements. Then the class of sets $\left\{\emptyset \times E: E \in \mathscr{E}_{2}\right\}$ does not generate the product- σ-algebra $\mathscr{S}_{1} \otimes \mathscr{S}_{2}$. Consequently, the restrictive assumption on the generator in Lemma $\S 04.03$ cannot simply be dispensed with. On the other hand side by applying Lemma $\S 04.03$ the product- σ Algebra $\mathscr{S}_{\llbracket n]}=\bigotimes_{i \in \llbracket n \rrbracket} \mathscr{S}_{i}$ is generated by the class of sets $\left\{\mathbf{X}_{i \in \llbracket n \rrbracket} \mathcal{E}_{i}: \mathcal{E}_{i} \in \mathscr{S}_{i}, i \in \llbracket n \rrbracket\right\}$
$\S 04.06$ Definition. A measure $\mu_{[n]} \in \mathfrak{M}\left(\mathscr{S}_{[n]}\right)$ on $\left(\mathcal{S}_{[n]}, \mathscr{S}_{[n]]}\right)$ is called product measure if

$$
\mu_{\llbracket n \rrbracket}\left(X_{i \in \llbracket n \rrbracket} \mathcal{E}_{i}\right)=\mu_{\llbracket \llbracket \rrbracket}\left(\bigcap_{i \in \llbracket n \rrbracket} \Pi_{i}^{-1}\left(\mathcal{E}_{i}\right)\right)=\prod_{i \in \llbracket n \rrbracket} \mu_{i}\left(\mathcal{E}_{i}\right) \quad \text { for } \quad \mathcal{E}_{i} \in \mathscr{S}_{i}, i \in \llbracket n \rrbracket .
$$

In this case we write $\bigotimes_{i \in \llbracket n \rrbracket} \mu_{i}:=\mu_{[n]]}$. If $\mu_{i}=\mu$ for all $i \in \llbracket n \rrbracket$, then we write $\mu^{n}:=\mu_{[n n]}$.
§04.07 Lemma (Uniqueness of finite product measures). For every $i \in \llbracket n \rrbracket$ let \mathscr{E}_{i} be a \cap-closed generator of the σ-algebra \mathscr{S}_{i} on \mathcal{S}_{i} and let (uC) $\left(\mathcal{E}_{i k}\right)_{k \in \mathbb{N}}$ be a sequence in \mathscr{E}_{i} such that $\mu_{i}\left(\mathcal{E}_{i k}\right) \in \mathbb{R}_{\geqslant 0}$ for every $k \in \mathbb{N}$ and $\mathcal{E}_{i k} \uparrow \mathcal{S}_{i}$. Then there is at most one measure $\mu_{[n]} \in \mathfrak{M}\left(\mathscr{S}_{[n])}\right)$ on $\left(\mathcal{S}_{[n]}, \mathscr{S}_{[n]]}\right)$ with

$$
\mu_{\llbracket \llbracket \rrbracket}\left(\times_{i \in \llbracket n \rrbracket} \mathcal{E}_{i}\right)=\prod_{i \in \llbracket n \rrbracket} \mu_{i}\left(\mathcal{E}_{i}\right) \quad \text { for } \quad \mathcal{E}_{i} \in \mathscr{E}_{i}, i \in \llbracket n \rrbracket .
$$

§04.08 Proof of Lemma §04.07. is given in the lecture.
§04.09 Remark. Under the assumptions of Lemma $\$ 04.07$ follows immediately that for every $i \in \llbracket n \rrbracket$ the measure $\mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{i}\right)$ is σ-finite.
$\S 04.10$ Notation. For $i \in \llbracket 2 \rrbracket$ let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$ be a measurable space. For all $\mathcal{E} \subseteq \mathcal{S}_{1} \times \mathcal{S}_{2}, s_{1} \in \mathcal{S}_{1}$ and $s_{2} \in \mathcal{S}_{2}$ we write $\mathcal{E}_{s_{1}}:=\left\{s_{2} \in \mathcal{S}_{2}:\left(s_{1}, s_{2}\right) \in \mathcal{E}\right\}$ and $\mathcal{E}^{s_{2}}:=\left\{s_{1} \in \mathcal{S}_{1}:\left(s_{1}, s_{2}\right) \in \mathcal{E}\right\}$.
§04.11 Lemma. For all $\mathcal{E} \in \mathscr{S}_{1} \otimes \mathscr{S}_{2}, s_{1} \in \mathcal{S}_{1}$ and $s_{2} \in \mathcal{S}_{2}$ we have $\mathcal{E}_{s_{1}} \in \mathscr{S}_{2}$ und $\mathcal{E}^{s_{2}} \in \mathscr{S}_{1}$.
§04.12 Proof of Lemma §04.11. is given in the lecture.
$\S 04.13$ Remark. Due to Lemma $\S 04.11 \mu_{2}\left(\varepsilon_{s_{1}}\right)$ and $\mu_{1}\left(\mathcal{E}^{s_{2}}\right)$ are well-defined for all $\mathcal{E} \in \mathscr{S}_{1} \otimes \mathscr{S}_{2}, s_{1} \in \mathcal{S}_{1}$ and $s_{2} \in \mathcal{S}_{2}$.
§04.14 Lemma. For $i \in \llbracket 2 \rrbracket$ let $\mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{i}\right)$ be a σ-finite measure on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$. Then, for all $\varepsilon \in \mathscr{S}_{1} \otimes \mathscr{S}_{2}$, the map $\mu_{2}\left(\varepsilon_{.}\right): s_{1} \mapsto \mu_{2}\left(\varepsilon_{s}\right)$ and $\mu_{1}\left(\varepsilon^{*}\right): s_{2} \mapsto \mu_{1}\left(\varepsilon^{s_{2}}\right)$ defined on \mathcal{S}_{1} respectively \mathcal{S}_{2} is positive numerical, that is, $\mu_{2}\left(\varepsilon_{.}\right) \in \overline{\mathcal{M}}_{\geqslant 0}\left(\mathscr{S}_{1}\right)$ and $\mu_{1}\left(\varepsilon^{*}\right) \in \overline{\mathcal{M}}_{\Rightarrow 0}\left(\mathscr{S}_{2}\right)$.
§04.15 Proof of Lemma §04.14. is given in the lecture.
§04.16 Theorem (Existence of a product measure). For $i \in \llbracket 2 \rrbracket$ let $\mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{i}\right)$ be a σ-finite measure on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$. Then there exists a unique product measure $\mu_{[2]}$ on $\left(\mathcal{S}_{[2]]}, \mathscr{S}_{[2]]}\right)$. Moreover, $\mu_{[2]} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{[1]}\right)$ is also σ-finite and $\mu_{1}\left(\mu_{2}\left(\varepsilon_{.}\right)\right)=\mu_{[2]}(\mathcal{E})=\mu_{2}\left(\mu_{1}\left(\mathcal{E}^{*}\right)\right)$ for all $\mathcal{E} \in \mathscr{S}_{[2]}$.
§04.17 Proof of Theorem §04.16. is given in the lecture.
$\S 04.18$ Remark. The last statement can easily be extended to a finite product measure. It should be noted that the parentheses in the products can be arbitrarily rearranged. Formally we identify the product sets $\mathcal{S}_{\llbracket n-1]} \times \mathcal{S}_{n}$ und $\mathcal{S}_{\llbracket n]}$ as usual with help of the bijection $\left(\left(s_{i}\right)_{i \in \llbracket n-1 \rrbracket}, s_{n}\right) \mapsto\left(s_{i}\right)_{i \in \llbracket n]}$. The agreed equality of the sets implies then directly the equality of the corresponding products of σ-algebras $\mathscr{S}_{\llbracket n-1]} \otimes \mathscr{S}_{n}$ and $\mathscr{S}_{\llbracket n]}$ and the associative property $\left(\bigotimes_{i \in \llbracket m \rrbracket} \mathscr{S}_{i}\right) \otimes\left(\bigotimes_{i \in \llbracket n-m \rrbracket} \mathscr{S}_{m+i}\right)=$ $\bigotimes_{i \in \llbracket n \rrbracket} \mathscr{S}_{i}$ for $m \in \llbracket n-1 \rrbracket$.
§04.19 Corollary (Existence of product measures). For $i \in \llbracket n \rrbracket$ let $\mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{i}\right)$ be a σ-finite measure on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$. Then there exists a unique σ-finite product measure $\mu_{[n]]} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{[n]}\right)$ on $\left(\mathcal{S}_{[n]]}, \mathscr{S}_{[n]]}\right)$.
§04.20 Proof of Corollary §04.19. is given in the lecture.
§04.21 Remark. For measures that are not necessarily σ-finite, it is still possible to prove the existence, but no longer the uniqueness, of a product measure.

§04|02 Projective family

§04.22 Reminder. If $\left(\Omega_{i}, \tau_{i}\right), i \in \mathcal{I}$, are topological spaces, then the product topology τ on Ω_{τ} is the coarsest topology with respect to which all coordinate maps $\Pi_{i}: \Omega_{I} \rightarrow \Omega_{i}$ are continuous.
§04.23 Lemma. Let \mathcal{I} be countable, for every $i \in \mathcal{I}$ let \mathcal{S}_{i} be a separable, complete metric space (Polish) with Borel σ-algebra $\mathscr{B}_{i}:=\mathscr{B}_{s}$ and let $\mathscr{B}_{s_{1}}$, be the Borel σ-algebra with respect to the product topology on $\mathcal{S}_{\mathcal{I}}=X_{i \in \mathcal{I}} \mathcal{S}_{i}$. Then $\mathcal{S}_{\mathcal{I}}$ is Polish and $\mathscr{B}_{S_{t}}=\mathscr{B}_{\mathcal{I}}=\bigotimes_{i \in \mathcal{I}} \mathscr{B}_{i}$. In particular, $\mathscr{B}_{\mathbb{R}^{n}}=\mathscr{B}^{n}$ for $n \in \mathbb{N}$.
§04.24 Proof of Lemma §04.23. We refer to Klenke (2008, Theorem 14.8, p.273) or Bauer (1992, Theorem 22.1, p.151).
§04.25 Definition. Let \mathcal{I} be an arbitrary nonempty index set and for any $\mathcal{J} \subseteq \mathcal{I}$ let $\Pi_{\mathcal{J}}$ be the canonical projection on $\left(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{I}\right)$. For any $\mathcal{E} \in \mathscr{S}_{\mathcal{J}}, \Pi_{J}^{-1}(\mathcal{E}) \in \mathscr{S}_{I}$ is called a cylinder set with base \mathcal{J}. The set of such cylinder sets is denoted by $\mathcal{Z}_{\mathcal{J}}:=\left\{\Pi_{J}^{-1}(\mathcal{E}): \varepsilon \in \mathscr{S}_{J}\right\} \subseteq \mathscr{S}_{I}$. In particular, if $\mathcal{E}_{\mathcal{J}}=Х_{j \in \mathcal{J}} \mathcal{E}_{j} \in \mathscr{S}_{J}$, then $\Pi_{J}^{-1}(\mathcal{E}) \in \mathscr{S}_{I}$ is called a rectangular cylinder with base \mathcal{J}. The set of such rectangular cylinders will be denoted by $z_{J}^{R}:=\left\{\Pi_{J}^{-1}\left(\mathcal{E}_{\mathcal{J}}\right): \varepsilon_{J}=X_{j \in \mathcal{J}} \mathcal{E}_{j} \in \mathscr{S}_{J}\right\} \subseteq \mathscr{S}_{I}$. For every $i \in \mathcal{I}$ let $\mathscr{E}_{i} \subseteq \mathscr{S}_{i}$. The set of rectangular cylinders for which in addition $\mathcal{E}_{j} \in \mathscr{E}_{j}$ for all $j \in \mathcal{J}$ holds will be denoted by $\mathcal{Z}_{\mathcal{J}}^{\mathscr{E}, R}:=\left\{\Pi_{\mathcal{J}}^{-1}\left(\mathcal{E}_{\mathcal{J}}\right): \mathcal{E}_{\mathcal{J}}=\times_{j \in \mathcal{J}} \mathcal{E}_{j}, \mathcal{E}_{j} \in \mathscr{E}_{j}, j \in \mathcal{J}\right\} \subseteq \mathscr{S}_{I}$. Write $z:=\bigcup\left\{\mathcal{Z}_{J}: \mathcal{J} \subseteq \mathcal{I}\right.$ finite $\}$ and similarly define z^{R} and $z^{\mathcal{E}, R}$.
§04.26 Remark. Every \mathcal{Z}_{J} is a σ-algebra, and \mathcal{Z} is a algebra where $\mathscr{S}_{I}=\sigma(\mathcal{Z})$. Moreover, if every \mathscr{E}_{i} is \cap-closed, then $z^{\mathcal{E}, R}$ is also \cap-closed (Exercise).
§04.27 Lemma. For any $i \in \mathcal{I}$ let $\mathscr{E}_{i} \subseteq \mathscr{S}_{i}$ be a generator of \mathscr{S}_{i}.
(i) $\mathscr{S}_{\mathcal{J}}=\sigma\left(\times_{j \in \mathcal{J}} \varepsilon_{j}: \mathcal{E}_{j} \in \mathscr{E}_{j}, j \in \mathcal{J}\right)$ for every finite $\mathcal{J} \subseteq \mathcal{I}$.
(ii) $\mathscr{S}_{I}=\sigma\left(z^{R}\right)=\sigma\left(\mathcal{Z}^{\delta, R}\right)$.
(iii) Let (A1) $\mu \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{\mathcal{I}}\right)$ be a σ-finite measure on $\left(\mathcal{S}_{\mathcal{I}}, \mathscr{S}_{\mathcal{I}}\right)$, assume (A2) every $\mathscr{E}_{\mathcal{E}}$ is \cap-closed, and (A3) there is a sequence $\left(\mathcal{E}_{n}\right)_{n \in \mathbb{N}}$ in $z^{\mathcal{E}, R}$ with $\mathcal{E}_{n} \uparrow \mathcal{S}_{工}$ and $\mu\left(\mathcal{E}_{n}\right) \in \mathbb{R}_{\geqslant 0}$ for all $n \in \mathbb{N}$. Then μ is uniquely determined by the values $\mu(A)$ for all $A \in \mathcal{Z}^{\mathscr{\delta}, R}$.
§04.28 Proof of Lemma §04.27. Exercise.
§04.29 Comment. The condition (A3) in Lemma $\S 04.27$ (iii) is fulfilled, if $\mu \in \mathfrak{M}_{e}\left(\mathscr{S}_{I}\right)$ is finite and $\mathcal{S}_{i} \in \mathscr{E}_{i}$ for every $i \in \mathcal{I}$ (compare Lemma §01.28).
§04.30 Notation. For $\mathcal{J} \subseteq \mathcal{K} \subseteq \mathcal{I}$ the map $\Pi_{\mathcal{J}}^{\mathcal{K}}: \mathcal{S}_{\mathcal{K}} \rightarrow \mathcal{S}_{\mathcal{J}}$ with $\left(s_{k}\right)_{k \in \mathcal{K}} \mapsto\left(s_{j}\right)_{j \in \mathcal{J}}$ is called canonical projection, where evidently $\Pi_{J}=\Pi_{J}^{\mathcal{I}}$.
$\S 04.31$ Definition. For every finite $\mathcal{J} \subseteq \mathcal{I}$ let $\mathbb{P}_{\mathcal{J}} \in \mathcal{W}\left(\mathscr{S}_{J}\right)$ be a probability measure on $\left(\mathcal{S}_{\mathcal{J}}, \mathscr{S}_{\mathcal{J}}\right)$. The familiy $\left\{\mathbb{P}_{J}: \mathcal{J} \subseteq \mathcal{I}\right.$ finite $\}$ is called projective or consistent if $\mathbb{P}_{\mathcal{J}}=\mathbb{P}_{\mathcal{K}} \circ\left(\Pi_{J}^{\mathcal{K}}\right)^{-1}$ for all finite $\mathcal{J} \subseteq \mathcal{K} \subseteq \mathcal{I}$.
$\S 04.32$ Remark. Let $\mathbb{P} \in \mathcal{W}\left(\mathscr{S}_{J}\right)$ be a probability measure on $\left(\mathcal{S}_{\mathcal{J}}, \mathscr{S}_{\mathcal{J}}\right)$. Since $\Pi_{J}=\Pi_{J}^{\mathcal{K}} \circ \Pi_{\kappa}$, the family $\left\{\mathbb{P}_{\mathcal{J}}:=\mathbb{P} \circ \Pi_{J}: \mathcal{J} \subseteq \mathcal{I}\right.$ finite $\}$ is consistent. Thus, consistency is a necessary condition for the existence of a measure \mathbb{P} on the product space with $\mathbb{P}_{\mathcal{J}}:=\mathbb{P} \circ \Pi_{J}$. If all the measurable spaces are Polish, spaces then this condition is also sufficient.
$\$ 04.33$ Kolmogorov's extension theorem. Let \mathcal{I} be an arbitrary nonempty index set and let \mathcal{S}_{i} be a separable and complete metric space (Polish) with Borel σ algebra $\mathscr{B}_{i}:=\mathscr{B}_{s_{i}}$ for all $i \in \mathcal{I}$. Let $\left\{\mathbb{P}_{f}: \mathcal{J} \subseteq \mathcal{I}\right.$ finite $\}$ be a consistent family of probability measures. Then there exists a unique probability measure $\mathbb{P} \in \mathcal{W}\left(\mathscr{B}_{\mathcal{I}}\right)$ on $\left(\mathcal{S}_{\mathcal{I}}, \mathscr{B}_{\mathcal{I}}\right)$ with $\mathbb{P}_{\mathcal{J}}=\mathbb{P} \circ \Pi_{J}^{-1}$ for all finite $\mathcal{J} \subseteq \mathcal{I}$. \mathbb{P} is called projective limit.
§04.34 Proof of Theorem §04.33. We refer to Klenke (2008, Theorem 14.36, p. 287)
§04.35 Definition. Let $\mathbb{P}_{i} \in \mathcal{W}\left(\mathscr{S}_{i}\right)$ be a probability measure on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$ for all $i \in \mathcal{I}$. A probability measure $\mathbb{P}_{I} \in \mathcal{W}\left(\mathscr{S}_{I}\right)$ on $\left(\mathcal{S}_{I}, \mathscr{S}_{I}\right)$ is called product measure of the $\mathbb{P}_{i}, i \in \mathcal{I}$, if

$$
\mathbb{P}_{\mathcal{I}}\left(\times_{j \in \mathcal{J}} \mathcal{E}_{i}\right)=\mathbb{P}_{\mathcal{I}}\left(\bigcap_{j \in \mathcal{J}} \Pi_{j}^{-1}\left(\mathcal{E}_{j}\right)\right)=\prod_{j \in \mathcal{J}} \mathbb{P}_{j}\left(\varepsilon_{j}\right) \quad \text { for } \quad \mathcal{E}_{j} \in \mathscr{S}_{j}, j \in \mathcal{J} \subseteq \mathcal{I} \text { finite }
$$

In this case we write $\bigotimes_{i \in \mathcal{I}} \mathbb{P}_{i}:=\mathbb{P}_{I}$. If $\mathbb{P}_{i}=\mathbb{P}$ for all $i \in \mathcal{I}$ then $\mathbb{P}^{I}:=\mathbb{P}_{I}$ and $\mathbb{P}^{n}:=\mathbb{P}_{I}$ in case $n:=|\mathcal{I}| \in \mathbb{N}$.
$\S 04.36$ Remark. Let \mathcal{I} be an arbitrary nonempty index set. For every $i \in \mathcal{I}$ let \mathcal{S}_{i} be a separable and complete metric space (Polish) with Borel σ-algebra $\mathscr{B}_{i}:=\mathscr{B}_{s_{i}}$ and $\mathbb{P}_{i} \in \mathcal{W}\left(\mathscr{B}_{i}\right)$ be a probability measure on $\left(\mathcal{S}_{i}, \mathscr{B}_{i}\right)$. For every finite $\mathcal{J} \subseteq \mathcal{I}$ let $\mathbb{P}_{\mathcal{J}}:=\bigotimes_{j \in \mathcal{J}} \mathbb{P}_{j}$ be the finite product measure of the $\mathbb{P}_{j}, j \in \mathcal{J}$. Evidently, the family $\left\{\mathbb{P}_{J}: \mathcal{J} \subseteq \mathcal{I}\right.$ finite $\}$ is projective. Making use of Theorem $\S 04.33$ there exists a unique product measure $\mathbb{P}_{I}:=\bigotimes_{i \in \mathcal{I}} \mathbb{P}_{i} \in \mathcal{W}\left(\mathscr{B}_{I}\right)$ on $\left(\mathcal{S}_{\mathcal{I}}, \mathscr{B}_{I}\right)$. Considering the canonical process $\left(\Pi_{i}\right)_{i \in \mathcal{I}}$ under \mathbb{P}_{I}, all coordinate maps Π_{i} are independent, i.e. $\Perp_{i \in \mathcal{I}} \Pi_{i}$.

§04|03 Integration with respect to product measures

§04.37 Notation. Let $h: \mathcal{S}_{1} \times \mathcal{S}_{2} \rightarrow \mathcal{S}_{3}$ be a map. For all $s_{1} \in \mathcal{S}_{1}$ and $s_{2} \in \mathcal{S}_{2}$ we write $h_{s_{1}}: \mathcal{S}_{2} \rightarrow \mathcal{S}_{3}$ with $s_{2} \mapsto h_{s_{1}}\left(s_{2}\right):=h\left(s_{1}, s_{2}\right)$ and $h^{s_{2}}: \mathcal{S}_{1} \rightarrow \mathcal{S}_{3}$ with $s_{1} \mapsto h^{s_{2}}\left(s_{1}\right):=h\left(s_{1}, s_{2}\right)$.
$\S 04.38$ Lemma. For $i \in \llbracket 3 \rrbracket$, let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$ be a measurable space. For all $h \in \mathcal{M}\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}, \mathscr{S}_{3}\right), s_{1} \in \mathcal{S}_{1}$ and $s_{2} \in \mathcal{S}_{2}$ we have $h_{s_{1}} \in \mathcal{M}\left(\mathscr{S}_{2}, \mathscr{S}_{3}\right)$ and $h^{s_{2}} \in \mathcal{M}\left(\mathscr{S}_{1}, \mathscr{S}_{3}\right)$.
§04.39 Proof of Lemma §04.38. is given in the lecture.
$\S 04.40$ Theorem (Tonelli). For $i \in \llbracket 2 \rrbracket$ let $\mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{i}\right)$ be a σ-finite measure on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$. Then, for every $h \in \overline{\mathcal{M}}_{\geq 0}\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}\right)$ the map $\mu_{1}\left(h_{0}\right): s_{2} \mapsto \mu_{1}\left(h^{s_{2}}\right)$ and $\mu_{2}\left(h_{.}\right): s_{1} \mapsto \mu_{2}\left(h_{s_{1}}\right)$ defined on \mathcal{S}_{1} and \mathcal{S}_{2}, respectively, is positive numerical, that is, $\mu_{1}(h) \in \overline{\mathcal{M}}_{\geq 0}\left(\mathscr{S}_{2}\right)$ and $\mu_{2}\left(h_{\text {。 }}\right) \in \overline{\mathcal{M}}_{00}\left(\mathscr{S}_{1}\right)$. Moreover, it holds

$$
\begin{aligned}
&\left(\mu_{1} \otimes \mu_{2}\right)(h)=\mu_{2}\left(\mu_{1}(h)\right)=\int \mu_{1}\left(h^{s_{2}}\right) \mu_{2}\left(\mathrm{~d} s_{2}\right)=\iint h\left(s_{1}, s_{2}\right) \mu_{1}\left(\mathrm{~d} s_{1}\right) \mu_{2}\left(\mathrm{~d} s_{2}\right) \\
&=\int \mu_{2}\left(h_{s_{1}}\right) \mu_{1}\left(\mathrm{~d} s_{1}\right)=\mu_{1}\left(\mu_{2}(h \cdot)\right)
\end{aligned}
$$

§04.41 Proof of Theorem §04.40. is given in the lecture.
$\S 04.42$ Definition. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space, $(\mathcal{S}, \mathscr{S})$ be a measurable space, and $N \in \mathscr{A}$ be an μ-null set. A function $h: N^{c}:=\Omega \backslash N \rightarrow \mathcal{S}$ is called μ-almost everywhere defined and $\mathscr{A}-\mathscr{S}$-measurable if $h^{-1}(\mathscr{S}) \subseteq \mathscr{A}$ holds.
§04.43 Remark. If $h, g \in \overline{\mathcal{M}}(\mathscr{A})$ are μ-almost everywhere finite, then the function $g-h$ is μ-almost everywhere defined and $\mathscr{A}-\overline{\mathscr{B}}$-measurable. This holds in particular if g and h are μ-integrable. Now, if f is $\overline{\mathbb{R}}$-valued, μ-almost everywhere defined with μ-null set N and $\mathscr{A}-\overline{\mathscr{B}}$-measurable, then we can define $\tilde{f}(\omega):=0$ for $\omega \in N$ and otherwise $\tilde{f}(\omega):=f(\omega)$. Then $\tilde{f} \in \overline{\mathcal{M}}(\mathscr{A})$ is numerical. If \tilde{f} is furthermore μ-integrable, then we define for f the integral $\mu(f)=\int f \mathrm{~d} \mu:=$ $\mu(\tilde{f})$.
§04.44 Corollary (Fubini's theorem). Let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}, \mu_{i}\right), i \in \llbracket 2 \rrbracket$, be σ-finite measure spaces and $h \in$ $\mathcal{L}_{1}\left(\mu_{1} \otimes \mu_{2}\right)$. Then $\mu_{2}\left(h_{0}\right): s_{1} \mapsto \mu_{2}\left(h_{s_{s}}\right)$ is μ_{1}-almost everywhere defined and $\mathscr{S}_{1}-\overline{\mathscr{B}}$-measurable, and $\mu_{1}\left(h^{\prime}\right): s_{2} \mapsto \mu_{1}\left(h^{s_{2}}\right)$ is μ_{2}-almost everywhere defined and \mathscr{S}_{2} - $\overline{\mathscr{B}}$-measurable. It holds that

$$
\mu_{2}\left(\mu_{1}(h)\right)=\int \mu_{1}\left(h^{s_{2}}\right) \mu_{2}\left(\mathrm{~d} s_{2}\right)=\left(\mu_{1} \otimes \mu_{2}\right)(h)=\int \mu_{2}\left(h_{s_{1}}\right) \mu_{1}\left(\mathrm{~d} s_{1}\right)=\mu_{1}\left(\mu_{2}(h)\right) .
$$

§04.45 Proof of Corollary §04.44. is given in the lecture.
§04.46 Remark. The last statements can be easily extended to finite product measures, as in Remark §04.18.
§04.47 Theorem. For each $i \in \llbracket n \rrbracket$, let $\left(\mathcal{S}_{i}, \mathscr{S}_{i}, \mu_{i}\right)$ be a σ-finite measure space, $\mathbb{f}_{i} \in \mathcal{M}_{\geqslant 0}\left(\mathscr{A}_{i}\right)$, and $\nu_{i}:=\mathbb{f}_{i} \mu_{i}$. Then the product measure $\nu_{[n]}=\prod_{i \in \llbracket n \rrbracket} \nu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{[n 1]}\right)$ is σ-finite and absolutely continuous with respect to the product measure $\mu_{[n]]}=\prod_{i \in \llbracket n \rrbracket} \mu_{i} \in \mathfrak{M}_{\sigma}\left(\mathscr{S}_{[n] \mid}\right)$ with product density $\prod_{i \in \llbracket n \rrbracket} \mathbb{f}_{i} \in \mathcal{M}_{\geq 0}\left(\otimes_{(n)}\right)$, meaning $\nu_{[n]}=\left(\prod_{i \in \llbracket n \rrbracket} \mathbb{F}_{i}\right) \mu_{[n]}$.
§04.48 Proof of Theorem §04.47. is given in the lecture.
§04.49 Reminder. Now, let $\nu=\mathbb{P}_{0}$ and $\mu=\mathbb{P}_{1}$ be probability measures on $(\mathcal{S}, \mathscr{S})$, where it is not necessarily the case that $\mathbb{P}_{0}<\mathbb{P}_{1}$. Then any positive, measurable function $\mathrm{L} \in \overline{\mathcal{M}}_{刃 0}(\mathscr{S})$ with $\mathbb{P}_{0}=L \mathbb{P}_{1}+\mathbb{1}_{\mathrm{L}=\infty} \mathbb{P}_{0}$ and $\mathbb{P}_{1}\left(\mathrm{~L} \in \mathbb{R}_{\geqslant 0}\right)=1$ is is a \mathbb{P}_{1}-density ratio of \mathbb{P}_{0} (cf. Definition §03.14). Let $\mu \in \mathfrak{M}_{\sigma}(\mathscr{S})$ denote a σ-finite measure such that $\mathbb{P}_{i}<\mu, i \in \llbracket 2 \rrbracket$, (for example, the finite measure $\left.\mu=\mathbb{P}_{0}+\mathbb{P}_{1}\right)$, and let $\mathbb{f}_{i} \in \mathcal{M}_{\geqslant 0}(\mathscr{S})$ be a μ-density of $\mathbb{P}_{i}, i \in \llbracket 2 \rrbracket$. Then

$$
\mathrm{L}_{\star}:=\frac{\mathbb{f}_{0}}{\mathbb{T}_{1}} \mathbb{\{}_{\left\{\mathbb{T}_{1} \in \mathbb{R}_{>0}\right\}}+\infty \mathbb{1}_{\left\{\mathfrak{f}_{1}=0\right\} \cap\left\{\left\{\in \mathbb{R}_{>0}\right\}\right.} \in \overline{\mathcal{M}}_{\approx 0}(\mathscr{P})
$$

is a specific choice of the \mathbb{P}_{1}-density ratio of \mathbb{P}_{0}. We note that a \mathbb{P}_{0}-density ratio of \mathbb{P}_{1} is given by

In the special case where $\mathbb{P}_{0}<\mathbb{P}_{1}$, the \mathbb{P}_{1}-density ratio of \mathbb{P}_{0} is a \mathbb{P}_{1}-density of \mathbb{P}_{0} and is \mathbb{P}_{1} determined.
$\S 04.50$ Lemma. For each $i \in \llbracket n \rrbracket$, let $\mathbb{P}_{0 \mid i}, \mathbb{P}_{1 \mid i} \in \mathcal{W}\left(\mathscr{S}_{i}\right)$ be probability measures on $\left(\mathcal{S}_{i}, \mathscr{S}_{i}\right)$ with $\mathbb{P}_{1 \mid i}$ density ratio L_{i} of $\mathbb{P}_{0 \mid i}$. Then the product $\mathrm{L}:=\prod_{i \in \llbracket n \rrbracket} \mathrm{~L}_{i}$ is a density ratio of $\mathbb{P}_{0}:=\bigotimes_{i \in \llbracket n \rrbracket} \mathbb{P}_{0 \mid i}$ with respect to $\mathbb{P}_{1}:=\bigotimes_{i \in \llbracket n \rrbracket} \mathbb{P}_{1 \mid}$.
§04.51 Proof of Lemma §04.50. is given in the lecture.

§04|04 Integration with respect to transition kernel

$\S 04.52$ Definition. Let (Ω, \mathscr{A}) and $(\mathcal{S}, \mathscr{S})$ be two measurable spaces. A map $\kappa: \Omega \times \mathscr{S} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ is called a (σ-)finite transition kernel from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$ if it satisfies the following two conditions:
(tK1) For all $\omega \in \Omega, \kappa_{\omega}: \mathscr{S} \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ with $S \mapsto \kappa_{\omega}(S):=\kappa(\omega, S)$ is a $(\sigma-)$ finite measure on $(\mathcal{X}, \mathscr{X})$, i.e. $\kappa_{\omega} \in \mathfrak{M}_{e}(\mathscr{S})$ (respectively $\kappa_{\omega} \in \mathfrak{M}_{\sigma}(\mathscr{S})$.
(tK2) For all $S \in \mathscr{S}, \kappa^{S}: \Omega \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ with $\omega \mapsto \kappa^{S}(\omega):=\kappa(\omega, S)$ is positive, numerical and \mathscr{S}-measurable, i.e. $\kappa^{S} \in \overline{\mathcal{M}}_{\geq 0}(\mathscr{S})$.
If for every $\omega \in \Omega$, the measure in (tK1) is a probability measure, $\kappa_{\omega} \in \mathcal{W}(\mathscr{S})$, then κ is called a Markov kernel.
§04.53 Remark. It suffices to require condition (tK2) only for sets from a \cap-closed generator \mathscr{E} of \mathscr{S}, which contains \mathcal{S} or a sequence $\left(\mathcal{E}_{n}\right)_{n \in \mathbb{N}}$ of sets such that $\mathcal{E}_{n} \uparrow \mathcal{S}$. Then $\mathscr{D}:=\left\{S \in \mathscr{S}: \kappa^{S} \in \overline{\mathcal{M}}_{>0}\left({ }_{(Q)}\right)\right\}$ is a Dynkin system (exercise) with $\mathscr{E} \subseteq \mathscr{D} \subseteq \mathscr{S}$, and from the π - λ-Theorem $\S 01.11$, it follows that $\mathscr{D}=\sigma(\mathscr{E})=\mathscr{S}$.
§04.54 Lemma. Let κ be a finite transition kernel from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$, and let $h \in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A} \otimes \mathscr{S})$ be positive numerical. Then the function $\kappa_{0}\left(h_{0}\right): \Omega \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ defined by

$$
\omega \mapsto \kappa_{\omega}\left(h_{\omega}\right)=\int h_{\omega} \mathrm{d} \kappa_{\omega}
$$

is well-defined and belongs to $\overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$.
§04.55 Proof of Lemma §04.54. is given in the lecture.
$\S 04.56$ Notation. For $\mathbb{1}_{A} \in \mathcal{M}_{\geq 0}(\mathscr{A} \otimes \mathscr{S})$, that is, $A \in \mathscr{A} \otimes \mathscr{S}$, according to Lemma $\S 04.54$, the function $\kappa_{\bullet}\left(A_{\bullet}\right)=\kappa_{\bullet}\left(\left(\mathbb{1}_{A}\right)_{\bullet}\right): \Omega \rightarrow \overline{\mathbb{R}}_{\geqslant 0}$ defined by

$$
\omega \mapsto \kappa_{\omega}\left(A_{\omega}\right)=\kappa_{\omega}\left(\left(\mathbb{1}_{A}\right)_{\omega}\right)=\int \mathbb{1}_{A}(\omega, s) \kappa_{\omega}(\mathrm{d} s)
$$

is well-defined and belongs to $\overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A})$.
$\S 04.57$ Lemma. Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space, $(\mathcal{S}, \mathscr{S})$ be a measurable space, and κ be a finite transition kernel from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$. Then there exists a uniquely determined σ-finite measure $\mu \odot \kappa \in \mathfrak{M}_{\sigma}(\mathscr{A} \otimes \mathscr{S})$ on the product space $(\Omega \times \mathcal{S}, \mathscr{A} \otimes \mathscr{S})$ such that

$$
(\mu \odot \kappa)(B)=\mu\left(\kappa .\left(B_{\mathbf{\bullet}}\right)\right) \quad \text { for } B \in \mathscr{A} \otimes \mathscr{S}
$$

where for all $A \in \mathscr{A}$ and $S \in \mathscr{S}$, we have

$$
(\mu \odot \kappa)(A \times S)=\mu\left(\mathbb{1}_{A} \kappa^{S}\right)=\int_{A} \kappa^{S} \mathrm{~d} \mu=\int_{A} \kappa(\omega, S) \mu(\mathrm{d} \omega)
$$

If κ is a Markov kernel and μ is a probability measure, then $\mu \odot \kappa$ is a probability measure.
$\S 04.58$ Proof of Lemma $\S 04.57$. is given in the lecture.
§04.59 Theorem (Tonelli/Fubini for transition kernel). Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space, $(\mathcal{S}, \mathscr{S})$ be a measurable space, and κ be a finite transition kernel from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$. If $\in \overline{\mathcal{M}}_{\geqslant 0}(\mathscr{A} \otimes \mathscr{S})$
or $h \in \mathcal{L}_{1}(\mu \odot \kappa)$ then

$$
\begin{aligned}
(\mu \odot \kappa)(h)=\mu\left(\kappa_{\cdot}\left(h_{\cdot}\right)\right)=\int \kappa_{\omega}\left(h_{\omega}\right) \mu(\mathrm{d} \omega)=\int\left(\int h_{\omega}\right. & \left.\mathrm{d} \kappa_{\omega}\right) \mu(\mathrm{d} \omega) \\
& =\iint h(\omega, s) \kappa(\omega, \mathrm{d} s) \mu(\mathrm{d} \omega)
\end{aligned}
$$

§04.60 Proof of Theorem §04.59. is given in the lecture.
$\S 04.61$ Notation. Consider a probability space $(\Omega, \mathscr{A}, \mathbb{P})$, a measurable space $(\mathcal{S}, \mathscr{S})$, and a Markov kernel κ from (Ω, \mathscr{A}) to $(\mathcal{S}, \mathscr{S})$. Due to Lemma $\S 04.57, \mathbb{P} \odot \kappa \in \mathcal{W}(\mathscr{A} \otimes \mathscr{S})$ is a uniquely determined probability measure on $(\Omega \times \mathcal{S}, \mathscr{A} \otimes \mathscr{S})$. Then we denote by

$$
(\kappa \mathbb{P})(S):=\mathbb{P}\left(\kappa^{S}\right)=\int \kappa^{S} \mathrm{~d} \mathbb{P}=\int \kappa(\omega, S) \mathbb{P}(\mathrm{d} \omega), \quad \text { for } S \in \mathscr{S}
$$

the marginal distribution $\kappa \mathbb{P} \in \mathcal{W}(\mathscr{S})$ on $(\mathcal{S}, \mathscr{S})$ induced by $\mathbb{P} \odot \kappa \in \mathcal{W}(\mathscr{A} \otimes \mathscr{S})$.

Bibliography

Bauer, H. (1992). Maß- und Integrationstheorie. 2., überarbeitete Auflage: Berlin etc.: Walter de Gruyter.
Klenke, A. (2008). Probability theory. A comprehensive course. London: Springer.

- (2020). Wahrscheinlichkeitstheorie. 4., überarbeitete und ergänzte Auflage: Springer Spektrum.
Witting, H. (1985). Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. German. Stuttgart: B. G. Teubner.

