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Chapter 1

Asymptotic properties of M- and Z-estimators

Asymptotic properties of M - and Z-estimators are presented generalising
the minimum contrast approach introduced in the lecture Statistik 1. For
a more detailed exposition we refer to the text book van der Vaart [1998].
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§03|01 Testing procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

§01 Introduction

§01|01 Motivation / illustration

§01.01 Example (Linear model). The dependence of the variation of a real random variable Y1 (response)
on the variation of a random vector X1 = (X1j )i∈JkK in Rk (explanatory variable) is often de-
scribed by a linear relationshipE

(
Y1

∣∣X1

)
=
∑

j∈JkK γjX1j = X t
1γ or equivalently Y1 = X t

1γ+ε1

where ε1 is a real random error satisfying E
(
ε1

∣∣X1

)
= 0. We aim to infer on the unknown pa-

rameter of interest γ ∈ Rk from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK. Writing Y := (Yi)i∈JnK

and X t = (X1 · · ·Xn) we have E
(
Y
∣∣X) = Xγ. Any (measurable) choice

γ̂ ∈ arg inf
γ∈Rk

M̂n(γ) with M̂n(γ) := 1
n

∑
i∈JnK

(Yi −X t
iγ)2 = 1

n
‖Y −Xγ‖2 (01.01)

is called a Least Squares Estimator (LSE), where arg inf denotes the subset of vectors in Rk at-
taining the function’s smallest value. If X tX =

∑
i∈JnKXiX

t
i is strictly positive definite (hence,

invertible) then γ̂ = (X tX)−1X tY =
(∑

i∈JnKXiX
t
i

)−1∑
i∈JnK YiXi is the unique LSE. Un-

der “usual“ conditions (Example §20.14) holds 1
n

∑
i∈JnKXiX

t
i

P−→ E(X1X
t
1) =: Ω (LLN). If

in addition E(ε2
i |Xi) = σ2, then 1√

n

∑
i∈JnK εiXi

d−→ N(0,σ2Ω) (CLT). Applying Slutzky’s lemma

§20.10 and the continuous mapping theorem §20.09 holds
√
n(γ̂ − γ)

d−→ N(0,σ2Ω−1) for Ω > 0.
Further inference on γ̂ (hypothesis testing, confidence intervals, etc.) is typically based on this
asymptotic result. However, a linear relationship E

(
Y
∣∣X) = Xγ is often too restrictive. �

§01.02 Example (Generalised linear model). Consider a real random variable Y1 and a random vector
X1 in Rk obeying E

(
Y1

∣∣X1

)
= g(X t

1γ) for a known link function g : R → R. We aim to
infer on the unknown parameter of interest γ ∈ Rk from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK.
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Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

As an illustration let us consider the effect of three different drugs on the behaviour of certain
animals. In a trial each drug is given in different dose to certain animals and the number of
effected animals is counted. The Table 1.1 summarises the results. Let Yjk denote the counts of
an effect among njk animals applying a log-dose Xjk, j ∈ JJkK of the drug k ∈ JKK. Assuming
an “independent and identical” behaviour of the njk animals it seems reasonable to model Yjk
as Binomial-distributed random variable, Yjk ∼ Bin(njk,πjk) for short, with unknown percentage
πjk ∈ (0, 1). It may be reasonable to assume that njkπjk = E

(
Yjk
∣∣Xjk

)
= g(γk + γ0Xjk)

where (γk)k∈JKK is a drug specific factor and γ0 is a common effect of the log-dose for all drugs.
The model is called “probit” and “logit”, respectively, if g is the standard-normal distribution
function and the logit-distribution function (x 7→ ex

1+ex
). As in Example §01.01 inference on

γ = (γk)k∈J0,KK is often based on a LSE, i.e., any (measurable) choice γ̂ ∈ arg inf
γ∈RK+1 M̂n(γ)

with M̂n(γ) := 1
K

∑
k∈JKK

1
JK

∑
j∈JJkK(Yjk − g(γk + γ0Xjk))

2.

Table 01 [§01]

drug log-dose effect no effect drug log-dose effect no effect

1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.

Figure 01 [§01]
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Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: ◦; 3: -. �

§01.03 Example (Nonlinear regression). Consider a real random variable Y1 and a random vector X1 in

2 Statistics 2



§01 Introduction Chapter 1 Asymptotic properties of M- and Z-estimators

R
k obeying E

(
Y1

∣∣X1

)
= g(X1, γ) for a given link function g : R

k × Rp → R. We aim to infer
on the unknown parameter γ ∈ Rp from n ∈ N i.i.d. copies (Yi, Xi), i ∈ JnK. The next figure
shows the widely used Gompertz function g(x, (a, b, c)) = a exp(−b exp(x log(c))).

Figure 02 [§01]
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As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Figure 03 [§01]
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Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.
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Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

Table 02 [§01]

Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane

3,541 205,8 90,9 37,1 5,686 297,3 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 49,4 2,648 305,7 142 86
4,722 401,6 187,2 44,9 3,303 300,1 143,7 90,2
0,593 224,9 92,7 116,3 3,054 305,4 141,1 87,4
0,268 402,6 102,2 128,9 3,302 305,2 141,5 87
2,797 212,7 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33
3,196 133,3 140,8 87,6 2,002 417,2 83,9 32,9
2,021 470,9 144,2 86,9 9,604 251 294,4 41,5
0,896 300 68,3 81,7 7,754 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2

Isomerisation reaction rate of an n-pentane into an isopentane.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special
case is given by

E
(
Yi
∣∣(Xi1, Xi2, Xi3)

)
=

γ1γ3(Xi2 −Xi3/1.632)

1 + γ2Xi1 + γ3Xi2 + γ4Xi3

, i ∈ JnK, (01.02)

where Xi1, Xi2 and Xi3 is the partial pressure of hydrogen, isopentane and n-pentane, re-
spectively, and (γj)j∈J4K is the unknown parameter of interest. As in Example §01.01 infer-
ence on γ is often based on a LSE, i.e., any (measurable) choice γ̂ ∈ arg infγ∈R4 M̂n(γ) with

M̂n(γ) := 1
n

∑
i∈JnK(Yi − g(Xi, γ))2. �

§01.04 Example (Quantile regression). Consider a real random variable Y1 and a random vector X1 in
R
k obeying Y1 = X t

1γ + ε1 with quantile condition P
(
ε1 6 0

∣∣X1

)
= α for a given probability

α ∈ (0, 1) or equivalently P
(
Y1 6 X t

1γ
∣∣X1

)
= α meaning that the conditional-α-quantile of

Y1 given X1 equals X t
1γ. Let qα denote the α-quantile of PZ ∈ W(B), i.e., P(Z 6 qα) = α.

Define τα(z) := (1−α)z−+αz+ where τα(z) = (1−α)|z| if z 6 0 and τα(z) = αz otherwise.
Under regularity conditions the function q 7→ E(τα(Z − q)) attains its minimum at the value
q = qα. Roughly, the α-quantile satisfies 0 = ∂

∂q
E(τα(Z − q))

∣∣
q=qα

, since

∂

∂q
E(τα(Z − q)) = (1− α)

∂

∂q

∫ q

−∞
(q − z)f(z)dz + α

∂

∂q

∫ ∞
q

(z − q)f(z)dz

= (1− α)

∫ q

−∞
f(z)dz − α

∫ ∞
q

f(z)dz

= (1 − α)P(Z 6 q) − αP(Z > q) = P(Z 6 q) − α.

Thereby, a reasonable estimator of γ is any (measurable) choice γ̂ ∈ arg inf
γ∈Rk M̂n(γ) with

M̂n(γ) = 1
n

∑
i∈JnK τα(Yi −X t

iγ). �

§01.05 Example (Generalised Method of Moments). Given a random vector Z1 in Rp and a function hJ =
(hj)j∈JJK : R

k × Rp → R
J let the unknown parameter of interest γ ∈ Rk satisfy PZ1hj(γ) =

E
(
hj(γ, Z1)

)
= 0 for all j ∈ JJK, or PZ1hJ(γ) = E

(
hJ(γ, Z1)

)
= 0 for short. Supposing an

4 Statistics 2



§01 Introduction Chapter 1 Asymptotic properties of M- and Z-estimators

i.i.d. sample (Zi)i∈JnK any (measurable) choice γ̂ satisfying P̂nhj(γ̂) = 1
n

∑
i∈JnK hj(γ̂, Zi) = 0

for all j ∈ JJK, or Ĥn(γ̂) = 0 with Ĥn(γ) := P̂nh
J(γ) = 1

n

∑
i∈JnK hJ(γ, Zi), γ ∈ Rk, for

short, is called moment estimator. In case a moment estimator does not exist, setting M̂n(γ) :=

(P̂nh
J(γ))tWn(P̂nh

J(γ)) for a given weighting matrix Wn one might consider any (measurable)
choice γ̂ ∈ arg inf

γ∈Rk M̂n(γ) called a Generalised Method of Moments (GMM) estimator. �

§01|02 Notation / definition

§01.06 Reminder. Denote by W(X ) the set of all probability measures on a measurable space (X,X ).
For a non-empty index set Θ a family PΘ := (Pθ )θ∈Θ of probability measures on X is formally
defined by the map Θ → W(X ) with θ 7→ Pθ . Here and subsequently, for each θ ∈ Θ denotes
Eθ the expectation with respect to Pθ . For a random variable X taking its values in (X,X ) we
write shortly X©∼ PΘ, if X ∼ Pθ for some θ ∈ Θ. If the random variables (Xi)i∈JnK form an
independent and identically distributed (i.i.d.) sample of X ∼ P with values in (X,X ), then
P
⊗n = ⊗i∈JnKP denotes the joint product probability measure of the family (Xi)i∈JnK taking its

values in the measurable product space (X
n
,X

⊗n
). We write (Xi)i∈JnK

i.i.d.∼ P or (Xi)i∈JnK ∼ P⊗n

for short. We denote by P⊗nΘ := (P⊗nθ )θ∈Θ a family of product probability measures on X
⊗n.

Any random variable S on (X,X ) taking values in a measurable space (S,S ), i.e., X -S -
measurable function S : X → S, is called observation or statistic. We denote by PS

Θ := (PS
θ )θ∈Θ

the family of probability measures on (S,S ) induced by S. A map γ : Θ→ Γ and its value γ(θ)
for each θ ∈ Θ is called parameter and parameter value of interest, respectively. A parameter
of interest γ : Θ → Γ is called identifiable, if for any θ1, θ2 ∈ Θ from γ(θ1) 6= γ(θ2) follows
Pθ1 6= Pθ2. �

§01.07 Definition. The triple (X,X ,PΘ) is called a statistical experiment or statistical model. The
non-empty set Θ and X is called parameter and sample space, respectively. A statistical model
(X,X ,PΘ) is called adequate for a random variableX , ifX©∼ PΘ. Given a familyP⊗nΘ of product
probability measures (X

n
,X

⊗n
,P⊗nΘ ) is called a statistical product experiment. We denote by

(S,S ,PS
Θ ) the statistical model induced by a (S,S )-valued statistic S on (X,X ). A statistic γ̂

on (X,X ) with values in the measurable space (Γ,G ) is called estimator or estimation function
for the identifiable parameter of interest γ. A statistical model (X,X ,PΘ) (and the family PΘ)
is called dominated, if a σ-finite measure µ on X exists, µ ∈ Mσ(X ) for short, such that for
each θ ∈ Θ the probability measure Pθ is absolutely continuous with respect to µ, i.e., Pθ � µ.
We write shortly PΘ

� µ. Any version of the Radon-Nikodym densities

L(θ, x) :=
dPθ
dµ

(x) x ∈ X, θ ∈ Θ

considered as function of θ parametrised by x is called likelihood or likelihood function where
typically it is understand as a random function L : Θ → X

+
with θ 7→ L(θ) := L(θ, •). Its

logarithm ` := log L (with convention log(0) := −∞) is called log-likelihood or log-likelihood
function. The likelihood and log-likelihood in the corresponding dominated product experiment
(X

n
,X

⊗n
,P⊗nΘ ) are

∏
i∈JnK L(θ, x

i
) and

∑
i∈JnK `(θ, xi), θ ∈ Θ, xn ∈ X

n, respectively. �

§01.08 Reminder. Let (X,X ,PΘ) be dominated by µ ∈Mσ(X ). If µ is finite, then µ � Pµ := 1
µ(X)

µ ∈
W(X ) and hence PΘ is also dominated by Pµ. If µ is not finite, then there exists a countable
and measurable partition {Xm,m ∈ N} of X with µ(Xm) ∈ R

+

\0 for all m ∈ N. For each
m ∈ N define Pµ

(
•
∣∣Xm

)
∈ W(X ) with A 7→ Pµ

(
A
∣∣Xm

)
:= µ(A∩Xm)

µ(Xm)
. Then we have µ � Pµ :=∑

m∈N 2−mPµ
(
•
∣∣Xm

)
∈W(X ), since Pµ(A) = 0 implies µ(A∩Xm) = 0 for all m ∈ N and thus

Statistics 2 5



Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

µ(A) = 0. Therewith, we have shown, that for each µ ∈ Mσ(X ) there is Pµ ∈ W(X ) with
µ � Pµ which automatically dominates PΘ too. On the other hand, there is a probability measure
Po =

∑
i∈N ciPθi with ci ∈ R+, θi ∈ Θ for all i ∈ N and

∑
i∈N ci = 1, and thus Po � µ, such

that Pθ � Po for all θ ∈ Θ (e.g. Statistik 1, Satz §08.04). We call any such probability measure
Po privileged dominating measure. Therefore, we eventually assume with out loss of generality
that the dominating measure is indeed a probability measure. �

§01.09 Example (MLE). Let (X,X ,PΘ) be a statistical model dominated by µ ∈ Mσ(X ) with likeli-
hood L(θ) = dPθ/dµ and log-likelihood `(θ) = log L(θ) for θ ∈ Θ and let (Θ,T ) be a mea-
surable space. Any statistic θ̂ on (X,X ) with values in (Θ,T ) is called Maximum-Likelihood-
Estimator (MLE) for θ, if L(θ̂) = supθ∈Θ L(θ) µ-a.s. meaning L(θ̂(x), x) = supθ∈Θ L(θ, x)

for µ-a.e. x ∈ X, or equivalently `(θ̂) = supθ∈Θ `(θ) µ-a.s.. Considering a statistical product
experiment (X

n
,X

⊗n
,P⊗nΘ ) dominated by µ⊗n ∈ Mσ(X

⊗n
) and setting M̂n(θ) := −P̂n`(θ), i.e.

M̂n(θ, xn) = − 1
n

∑
i∈JnK `(θ, xi) for xn ∈ X

n, the MLE θ̂ is determined by θ̂ ∈ arg infθ∈Θ M̂n(θ)
µ-a.s.. However, in general it is not guaranteed that MLE is unique or even exits. The MLE
depends on the version of the likelihood, but there exists often a canonical choice. Furthermore,
γ(θ̂) is called MLE for a parameter of interest γ : Θ → Γ, if γ(θ̂) is a statistic on (X

n
,X

⊗n
)

with values in (Γ,G ). �

§01.10 Remark. In all the examples the estimator γ̂ of the parameter of interest γ is determined by
γ̂ ∈ arg infγ∈Γ M̂n(γ) for some random function γ 7→ M̂n(γ) ∈ X of the data. Obviously,
rather than minimising (or maximising) a criterion function we might search for a zero of the
associated normal or estimating equations, that is, γ̂ is determined as a zero of a random vector
function γ 7→ Ĥn(γ) ∈ X

k
. Note that estimator is defined PΘ-a.s. only, meaning that one can

change the estimator on a PΘ-zero set N , i.e., Pθ (N) = 0 for all θ ∈ Θ. �

§01.11 Definition. Let (Xn,Xn,P
n

Θ = (Pn
θ )θ∈Θ for all n ∈ N be a statistical model over the same

parameter space Θ and let γ : Θ→ Γ be a parameter of interest. We call a function M : Θ×Γ→
R and H : Θ × Γ → R

k
criterion function, if for all θ ∈ Θ the function M(θ) : γ 7→ M(θ, γ),

respectively H(θ) : γ 7→ H(θ, γ), has in γ(θ) an unique minimum, respectively an unique zero. A
sequence (M̂n)n∈N and (Ĥn)n∈N of functions M̂n : Γ×Xn → R and Ĥn : Γ×Xn → R

k
is called

random criterion function or criterion process, if the following two conditions are satisfied:

(CP1) For all γ ∈ Γ is M̂n(γ) : x 7→ M̂n(γ, x), respectively Ĥn(γ) : x 7→ Ĥn(γ, x), a statistic,
that is, M̂n(γ) ∈Xn , respectively Ĥn(γ) ∈X

k

n .

(CP2) For all γ ∈ Γ and θ ∈ Θ it holds M̂n(γ)
P
n
θ−→ M(θ, γ), respectively Ĥn(γ)

P
n
θ−→ H(θ, γ).

Every (measurable) choice γ̂n : Xn → Γ (if it exists) is called a M -estimator, respectively a
Z-estimator, if it satisfies

M̂n(γ̂n) = inf
γ∈Γ

M̂n(γ) P
n

Θ -a.s., respectively Ĥn(γ̂n) = 0 P
n

Θ -a.s.,

or more generally, if it is, respectively, a near minimum and near zero, that is, M̂n(γ̂n) 6
infγ∈Γ M̂n(γ) + o

P
n
θ

(1) and Ĥn(γ̂n) = o
P
n
θ

(1). �

§01.12 Remark. There exists a measurable version of a minimum of an almost surely continuous func-
tion on a compact set (see Witting and Müller-Funk [1995], Satz 6.7). Note that in Defini-
tion §01.11 the criterion process M̂n (respectively Ĥn) is defined for each n ∈ N on a different

measurable space. We write, however, shortly M̂n(γ)
P
n
θ−→ M(θ, γ), if for each ε ∈ R+

\0 holds
P
n
θ (|M̂n(γ) − M(θ, γ)| > ε)

n→∞−−−→ 0. Let us briefly consider a sample (Xi)i∈JnK©∼ P
⊗n

Θ of a
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§02 Consistency Chapter 1 Asymptotic properties of M- and Z-estimators

random variable X©∼ PΘ. Keeping Notation §19.05 in mind Pf and P̂nf denotes the integral of
f ∈ L1(X ,P) with respect to P and the empirical measure P̂n(xn) = 1

n

∑
i∈JnK δxi , xn ∈ X

n, re-
spectively. Revisiting each of the Examples §01.01 to §01.04 there is a function m : Γ×X→ R

with m(γ) ∈ L1(X ), γ ∈ Γ, such that the criterion process M̂n and the associated criterion
function M is for each γ ∈ Γ given by M̂n(γ) = P̂nm(γ), i.e. M̂n(γ, xn) = 1

n

∑
i∈JnK m(γ, x

i
),

xn ∈ X
n, and M(θ, γ) = Pθm(γ) =

∫
X

m(γ, x)Pθ (dx), respectively. Analogously, a moment
estimator as in Example §01.05 is a Z-estimator. By construction in each example is the condi-
tion (CP1) and with the help of the LLN (see Remark §20.06) also the condition (CP2) satisfied.
Note that the GMM estimator in Example §01.05 is also a M -estimator with criterion process
satisfying (CP1) and (CP2). �

§01.13 Definition. For two probability measure P0 and P1 on a measurable space (X,X ) is the function

KL(P0 |P1 ) =

{
P0

(
log

dP0
dP1

)
=
∫

log
(dP0

dP1

)
dP0 , if P0

� P1 ,

+∞, otherwise

called Kullback-Leibler-divergence of P0 with respect to P1 . �

§01.14 Reminder. The Kullback-Leibler-divergence satisfies KL(P0 |P1 ) > 0 as well as KL(P0 |P1 ) = 0
if and only if P0 = P1 , but KL(•|•) is not symmetric. Moreover, for product measures holds
KL(P0,1 ⊗ P0,2|P1,1 ⊗ P1,2) = KL(P0,1|P1,1) + KL(P0,2|P1,2) (e.g. Statistik 1, Lemma §17.03). �

§01.15 Example (MLE, §01.09 continued.). Let (X
n
,X

⊗n
,P⊗nΘ ) be a statistical product experiment dom-

inated by a privileged measure Po ∈W(X ) (see Reminder §01.08) with likelihood L(θ) = dPθ/
dPo , log-likelihood ` = log(L) and parameter of interest θ (i.e., γ = idΘ). Furthermore, for
all θ, θo ∈ Θ let Pθ and Pθo be mutually dominated (i.e. Pθ � Pθo and Pθo � Pθ , for short Pθ �� Pθo),
which implies Pθo �� Po , and hence −KL(Pθo|Po ) = KL(Po |Pθo). Then M̂n(θ) := −P̂n`(θ) ∈ X

⊗n

with

xn 7→ M̂n(θ, xn) = − 1

n

∑
i∈JnK

`(θ, x
i
)

is a criterion process associated to the criterion function M(θo, θ) := KL(Pθo|Pθ ) − KL(Pθo|Po )
assuming here and subsequently that the parameter θ is identifiable, that is, fromPθ1 = Pθ2 follows
θ1 = θ2. Identifiability is a natural condition since it is a necessary condition for the existence
of a consistent estimator. However, if θ is identifiable then θ 7→ M(θo, θ) attains its minimum
M(θo, θo) = −KL(Pθo|Po ) uniquely at θo (keeping Reminder §01.14 in mind). The corresponding
M -estimator is thus just a MLE. �

§02 Consistency

Here and subsequently, let (Γ, d) be a metric space endowed with its Borel-σ-algebra G := BΓ,
let (Xn,Xn,P

n
Θ = (Pn

θ )θ∈Θ) for all n ∈ N be a statistical model over the parameter space Θ and
let γ : Θ→ Γ be an identifiable parameter of interest.

§02.01 Reminder. For each n ∈ N let γ̂n be an estimator of γ, i.e. a statistic on (Xn,Xn) with values in
(Γ,G ). The sequence (γ̂n)n∈N of estimators is called (weakly) consistent, if for all ε ∈ R+

\0 holds
P
n
θ (d(γ̂n, γ(θ)) > ε) = o(1) as n → ∞ for all θ ∈ Θ. Note that the estimator γ̂n can be defined

for each n ∈ N on a different measurable space. We write, however, shortly d(γ̂n, γ(θ)) = o
P
n
θ

(1)

as n→∞. Moreover, saying „γ̂n is consistent“ always means the sequence (γ̂n)n∈N is (weakly)
consistent. �
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Chapter 1 Asymptotic properties of M- and Z-estimators §02 Consistency

Consider an M-estimator γ̂n for a random criterion function M̂n with associated criterion

function M, that is, M̂n(γ)
P
n
θ−→ M(θ, γ) holds point-wise for each γ ∈ Γ. For example, due to

the LLN M̂n(γ) = P̂nm(γ)
P
⊗n
θ−−→ Pθm(γ) = M(θ, γ) provided m(γ) ∈ L1(X ,Pθ ). The hope is

that a minimising value of M̂n(γ) then converges to the minimising value of M(θ, γ). However,
in general point-wise convergence will not be sufficient.

§02.02 Theorem. Under the assumptions and notations of Definition §01.11 any M -estimator γ̂n of
γ, i.e., M̂n(γ̂n) 6 M̂n(γ(θ)) + o

P
n
θ

(1), is consistent, i.e., d(γ̂n, γ(θ)) = o
P
n
θ

(1), if in addition the
following two conditions are satisfied:

(CO1) sup
γ∈Γ
|M̂n(γ)−M(θ, γ)| = o

P
n
θ

(1) (uniform convergence in probability);

(CO2) inf
γ∈Γ:d(γ,γ(θ))>ε

M(θ, γ) > M(θ, γ(θ)) for any ε ∈ R+

\0 (identification).

§02.03 Proof of Theorem §02.02. is given in the lecture. �

§02.04 Corollary. Under the assumptions and notations of Definition §01.11 any Z-estimator γ̂n of γ,
i.e., Ĥn(γ̂n) = o

P
n
θ

(1), is consistent, i.e., d(γ̂n, γ(θ)) = o
P
n
θ

(1), if in addition the following two
conditions are satisfied:

(CO1) sup
γ∈Γ
‖Ĥn(γ)− H(θ, γ)‖ = o

P
n
θ

(1) (uniform convergence in probability);

(CO2) inf
γ∈Γ:d(γ,γ(θ))>ε

‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖ for any ε ∈ R+

\0 (identification).

§02.05 Proof of Corollary §02.04. is given in the lecture. �

§02.06 Lemma. If (i) Γ is compact, (ii) M(θ, γ) > M(θ, γ(θ)) for all γ ∈ Γ\{γ(θ)}, and (iii) γ 7→
M(θ, γ) is continuous, then (CO2) in Theorem §02.02 holds.

§02.07 Proof of Lemma §02.06. is left as an exercise. �

§02.08 Example (MLE, §01.15 continued). Assuming in addition that the parameter space Θ is com-
pact and that the criterion function θ 7→ M(θo, θ) := KL(Pθo|Pθ ) − KL(Pθo|Po ) is continuous then
employing Lemma §02.06 the condition (CO2) of Theorem §02.02 is satisfied. �

§02.09 Lemma. (CO1) in Theorem §02.02 is satisfied, if the following conditions hold:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ M(θ, γ) is continuous and M̂n(γ) = M(θ, γ) + o
P
n
θ

(1) for all γ ∈ Γ, and

(iii) lim
δ↓0

lim sup
n→∞

P
n
θ

(
sup

γ1,γ2∈Γ:d(γ1,γ2)6δ
|M̂n(γ1)− M̂n(γ2)| > ε

)
= 0 for all ε ∈ R+

\0.

§02.10 Proof of Lemma §02.09. is given in the lecture. �

§02.11 Example. Given (X
n
,X

⊗n
,P⊗nΘ ) and γ : Θ → Γ for each γ ∈ Γ let m(γ) ∈ X be a real

function x 7→ m(γ, x) belonging to L1(X ,Pθ ). Consider M̂n(γ) := P̂nm(γ), i.e. M̂n(γ, xn) =
1
n

∑
i∈JnK m(γ, x

i
), xn ∈ X

n, and M(θ, γ) := Pθm(γ) where due to the LLN §20.06 M̂n(γ) =

M(θ, γ) + o
P
⊗n
θ

(1) for each γ ∈ Γ. Suppose in addition the following conditions:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ m(γ, x) is continuous for Pθ -a.e. x ∈ X,

(iii) there is H ∈ L1(X ,Pθ ) with supγ∈Γ |m(γ, x)| 6 |H(x)| for Pθ -a.e. x ∈ X, or equivalently,
supγ∈Γ |m(γ)| belongs to L1(X ,Pθ ).
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Then, (I) γ 7→ Pθm(γ) = M(θ, γ) is continuous and (CO1) supγ∈Γ|M̂n(γ) −M(θ, γ)| = o
P
⊗n
θ

(1).
Indeed, by dominated convergence (see §20.20) (ii) and (iii) imply together (I). Consider (CO1).
Define the random variable ∆n

δ := supγ1,γ2∈Γ:d(γ1,γ2)6δ |M̂n(γ1) − M̂n(γ2)| ∈ X
⊗n

. We show
below for all ε, η ∈ R+

\0 exists δ ∈ R+

\0 with lim supn→∞P
⊗n
θ

(
∆n
δ > ε

)
6 η which in turn

by Lemma §02.09 implies the claim (CO1). Let ε, η ∈ R+

\0. Keeping ∆1
δ ∈ X with x 7→

∆1
δ(x) = supγ1,γ2∈Γ:d(γ1,γ2)6δ |m(γ1, x) − m(γ2, x)| in mind and applying the elementary trian-

gular inequality we have ∆n
δ 6 P̂n∆

1
δ point-wise on X

n. Moreover, due to (i) and (ii) for Pθ -a.e.
x ∈ X the function γ 7→ m(γ, x) is uniformly continuous on Γ, and thus limδ→0 ∆1

δ(x) = 0.
Therewith, dominated convergence (see §20.20), which can be applied due to (iii), implies
limδ→0Pθ∆

1
δ = 0. In particular there is δ ∈ R+

\0 such that Pθ∆1
δ 6 ηε, which in turn implies

P
⊗n
θ ∆n

δ 6 P
⊗n
θ (P̂n∆

1
δ) = Pθ∆

1
δ 6 ηε. Employing Markov’s inequality §20.18 the last estimate

implies the claim, that is, for all ε, η ∈ R+

\0 exists δ ∈ R+

\0 with lim supn→∞P
⊗n
θ

(
∆n
δ > ε

)
6 η.

If in addition to (i)-(iii) and, hence (I)

(iv) there is γ(θ) ∈ Γ with M(θ, γ) > M(θ, γ(θ)) for all γ ∈ Γ\{γ(θ)},
then applying Lemma §02.06 it holds (CO2) inf

γ∈Γ:d(γ,γ(θ))>ε
M(θ, γ) > M(θ, γ(θ)). To summarise,

with (CO1) and (CO2) the conditions of Theorem §02.02 are satisfied. Consequently, any M -
estimator γ̂n, i.e., M̂n(γ̂n) 6 infγ∈Γ M̂n(γ) + o

P
⊗n
θ

(1), and thus M̂n(γ̂n) 6 M̂n(γ(θ)) + o
Pθ
⊗n(1), is

a consistent estimator of γ, i.e., d(γ̂n, γ(θ)) = o
P
⊗n
θ

(1). �

§02.12 Lemma. (CO1) in Corollary §02.04 is satisfied, if the following conditions hold:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ H(θ, γ) is continuous and ‖Ĥn(γ)− H(θ, γ)‖ = o
P
n
θ

(1) for all γ ∈ Γ, and

(iii) lim
δ↓0

lim sup
n→∞

P
n
θ

(
sup

γ1,γ2∈Γ:d(γ1,γ2)6δ
‖Ĥn(γ1)− Ĥn(γ2)‖ > ε

)
= 0 for all ε ∈ R+

\0.

§02.13 Proof of Lemma §02.12. is left as an exercise. �

§02.14 Example. Given (X
n
,X

⊗n
,P⊗nΘ ), γ : Θ → Γ and (Xi)i∈JnK ∼ P⊗nθ for θ ∈ Θ, for each γ ∈ Γ

let h(γ) ∈ X
k

be a numerical function belonging to L
k

1
(Pθ ) for all γ ∈ Γ. Consider Ĥn(γ) :=

P̂nh(γ), i.e. Ĥn(γ, xn) = 1
n

∑
i∈JnK h(γ, x•i), xn ∈ X

n, and H(θ, γ) := Pθh(γ) where due to the

LLN §20.06 ‖Ĥn(γ) − H(θ, γ)‖ = o
P
⊗n
θ

(1) for each γ ∈ Γ. Suppose in addition the following
conditions:
(i) (Γ, d) is a compact metric space,

(ii) γ 7→ h(γ, x) is continuous for Pθ -a.e. x ∈ X,

(iii) supγ∈Γ‖h(γ)‖ belongs to L1
(Pθ ).

Then, arguing line by line as in Example §02.11 (I) γ 7→ Pθh(γ) = H(θ, γ) is continuous and
(CO1) supγ∈Γ‖Ĥn(γ)− H(θ, γ)‖ = o

P
⊗n
θ

(1). If in addition to (i)-(iii) and hence (I)

(iv) there is γ(θ) ∈ Γ with ‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖ for all γ ∈ Γ\{γ(θ)},
then applying Lemma §02.06 it holds (CO2) inf

γ∈Γ:d(γ,γ(θ))>ε
‖H(θ, γ)‖ > 0 = ‖H(θ, γ(θ))‖. To

summarise, with (CO1) and (CO2) the conditions of Corollary §02.04 are satisfied. Consequently,
any Z-estimator γ̂n, i.e., Ĥn(γ̂n) = o

P
⊗n
θ

(1) is a consistent estimator of γ, i.e., d(γ̂n, γ(θ)) =
o
P
⊗n
θ

(1). �

§02.15 Remark. The conditions (CO1) and (CO2) of Corollary §02.04 (respectively, (CO1) and (CO2) of
Theorem §02.02) being sufficient to ensure consistency might be weakened in specific situations
as we see next. �
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§02.16 Proposition. Let Γ ⊆ R and Ĥn(γ) = H(θ, γ) + o
P
n
θ

(1) for all γ ∈ Γ where H is a deterministic
function. Assume in addition that either

(Ia) γ 7→ Ĥn(γ) is continuous and has exactly one zero γ̂n, or
(Ib) γ 7→ Ĥn(γ) is non-decreasing with Ĥn(γ̂n) = o

P
n
θ

(1),

and that (II) H(θ, γ(θ)− ε) < 0 < H(θ, γ(θ) + ε) for every ε ∈ R+

\0. Then, γ̂n = γ(θ) + o
P
n
θ

(1).

§02.17 Proof of Proposition §02.16. is given in the lecture. �

§02.18 Example. Consider P ∈ W(B) and h(γ, t) := sign(t − γ) with sign(t) := 1{t>0} − 1{t60}

for all γ, t ∈ R. The sample median γ̂n is a (near) zero of the map γ 7→ Ĥn(γ) := P̂nh(γ),
i.e. Ĥn(γ, xn) = 1

n

∑
i∈JnK h(γ, x

i
), xn ∈ Rn. Considering H(γ) = Ph(γ) = P((γ,∞)) −

P((−∞, γ)) we have obviously Ĥn(γ) = H(γ) + o
P
⊗n(1) for each γ ∈ Γ. Keeping in mind

that γ 7→ Ĥn(γ) is non-increasing from Proposition §02.16 follows consistency of the sample
median γ̂n, i.e., γ̂n = γo + o

P
⊗n(1), if for any ε ∈ R+

\0 in addition H(γo − ε) > 0 > H(γo + ε) or
equivalently P((−∞, < γo−ε)) < 1/2 < P((−∞, γo+ε)). In other words, the sample median
γ̂n is a consistent estimator of the population median, if it is unique. �

§03 Asymptotic normality

Here and subsequently, for k, n ∈ N let Γ ⊆ Rk be endowed with its Borel-σ-algebra G := BΓ,
let (X

n
,X

⊗n
,P⊗nΘ ) be a statistical product experiment over the parameter space Θ and let γ :

Θ→ Γ be an identifiable parameter of interest.

§03.01 Heuristics. Consider Ĥn(γ) = P̂nh(γ), i.e. Ĥn(γ, xn) = 1
n

∑
i∈JnK h(γ, x

i
), xn ∈ X

n, and

H(θ, γ) = Pθh(γ) for γ ∈ Γ and θ ∈ Θ. Let γ̂n be a zero of γ 7→ Ĥn(γ), i.e., γ̂n is a Z-estimator.
Assume in addition that γ̂n = γ(θ) + o

P
⊗n
θ

(1) where γ(θ) is a zero of γ 7→ H(θ, γ). Heuristically,
consider a Taylor expansion of a real-valued H around γ(θ) ∈ Γ ⊆ R, that is, 0 = Ĥn(γ̂n) =

Ĥn(γ(θ))+(γ̂n−γ(θ))
˙̂
Hn(γ(θ))+ 1

2
(γ̂n−γ(θ))2 ¨̂

Hn(γ̃n) for some γ̃n between γ(θ) and γ̂n. Thus,

rewriting the last identity
√
n(γ̂n−γ(θ)) = −

√
nĤn(γ(θ))

( ˙̂
Hn(γ(θ))+ 1

2
(γ̂n−γ(θ))

¨̂
Hn(γ̃n)

)−1.
If h(γ(θ)) belongs to L2(Pθ ), then due to the CLT it holds −

√
n(Ĥn(γ(θ)) − H(θ, γ(θ))) =

−
√
n(P̂nh(γ(θ)) − Pθh(γ(θ)))

d−→ N(0,Pθ h2(γ(θ))). If moreover ḣ(γ(θ)) ∈ L1(Pθ ), then by the LLN
˙̂
Hn(γ(θ)) = P̂nḣ(γ(θ)) = Pθ ḣ(γ(θ)) + o

P
⊗n
θ

(1). If in addition ¨̂
Hn(γ̃n) = O

P
⊗n
θ

(1) then employing

Slutzky’s lemma §20.10 it follows
√
n(γ̂n−γ(θ))

d−→ N(0,(Pθ ḣ(γ(θ)))−2Pθ h2(γ(θ))). In the sequel, γ is a vector
and h vector-valued. Consequently, ḣ(γ(θ)) is a matrix and we denote by ‖ḣ(γ(θ))‖F its Frobe-

nius norm, where ‖M‖F :=
(∑

j∈JJK
∑

k∈JKKM
2
jk

)1/2 for any matrix M = (Mjk) ∈ R
(J,K). �

§03.02 Theorem. Under the assumptions and notations of Definition §01.11 with Γ ⊆ Rk let γ̂n be a
consistent Z-estimator of γ, i.e. γ̂n = γ(θ) + o

P
⊗n
θ

(1), with Ĥn(γ̂n) = o
P
⊗n
θ

(n−1/2). Assume the
criterion process Ĥn is continuous differentiable in a neighbourhood U of γ(θ) ∈ int(Γ) with

derivative ˙̂
Hn := ∂

∂γ
Ĥn ∈X

(k,k)
and satisfies the following two conditions:

(AN1)
√
nĤn(γ(θ))

d−→ N(0,Ωθ) under P⊗nθ for some positive semidefinite Ωθ ∈ R
(k,k),

(AN2) supγ∈U‖
˙̂
Hn(γ) − Ḣ(θ, γ)‖F = o

P
⊗n
θ

(1) for some continuous matrix-valued function γ 7→
Ḣ(θ, γ) with regular Ḣ(θ, γ(θ)) having Ḣ−1

θ as inverse.

Then
√
n(γ̂n − γ(θ)) +

√
nḢ−1

θ Ĥn(γ(θ)) = o
P
⊗n
θ

(1) and
√
n(γ̂n − γ(θ))

d−→ N(0,Ḣ−1
θ Ωθ(Ḣ−1

θ )t).
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§03.03 Proof of Theorem §03.02. is given in the lecture. �

§03.04 Corollary. Under the assumptions and notations of Definition §01.11 with Γ ⊆ Rk let γ̂n be a
consistent M -estimator of γ, i.e. γ̂n = γ(θ) + o

P
⊗n
θ

(1), with M̂n(γ̂n) = infγ∈Γ M̂n(γ). Assume the
criterion process M̂n is twice continuously differentiable in a neighbourhood U of γ(θ) ∈ int(Γ)

with derivatives ˙̂
Mn := ∂

∂γ
M̂n ∈ X

k
(score function) and ¨̂

Mn := ∂2

∂2γ
M̂n ∈ X

(k,k)
and satisfies

in addition the following two conditions:

(AN1)
√
n

˙̂
Mn(γ(θ))

d−→ N(0,Ωθ) under P⊗nθ for some positive semidefinite Ωθ > 0,

(AN2) supγ∈U‖
¨̂
Mn(γ) − M̈(θ, γ)‖F = o

P
⊗n
θ

(1) for some continuous matrix-valued function γ 7→
M̈(θ, γ) with regular M̈(θ, γ(θ)) having M̈−1

θ as inverse.

Then
√
n(γ̂n − γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ ).

§03.05 Proof of Corollary §03.04. is given in the lecture. �

§03.06 Example (§02.11 continued). Given (X
n
,X

⊗n
,P⊗nΘ ) and γ : Θ → Γ for each γ ∈ Γ let m(γ) ∈

L1
(Pθ ) be a real function. Consider M̂n(γ) = P̂nm(γ) and M(θ, γ) = Pθm(γ) where due to the

LLN M̂n(γ) = M(θ, γ) + o
P
⊗n
θ

(1) for each γ ∈ Γ. Suppose in addition that
(i) Γ is compact,

(ii) γ 7→ m(γ, x) is twice continuously differentiable in a neighbourhood U of γ(θ) ∈ int(Γ)
for Pθ -a.e. x ∈ X with derivatives ṁ := ∂

∂γ
m and m̈ := ∂2

∂2γ
m

(iii) ṁ(γ(θ)) ∈ L2
(Pθ ) with Pθ ṁ(γ(θ)) = 0 and Ωθ := Pθ ṁ(γ(θ))ṁ(γ(θ))t > 0,

(iv) supγ∈U‖m̈(γ)‖F ∈ L1
(Pθ ) and M̈θ := Pθ m̈(γ(θ)) is regular with inverse M̈−1

θ .

hold true. If the M-estimator satisfies γ̂n = γ(θ) + o
P
⊗n
θ

(1) then
√
n(γ̂n − γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ )

due to Corollary §03.04 since the conditions (AN1)-(AN2) are satisfied. Indeed, following Ex-
ample §02.11, (iv) implies the condition (AN2) and due to the CLT the condition (AN1) follows
from (iii). However, estimators of M̈θ and Ωθ are necessary in order to use the asymptotic dis-
tribution to conduct inference. A typical approach to obtain these estimators is as follows. First

replacing Pθ by P̂n, the quantity ̂̈Mn(γ) := P̂nṁ(γ) and Ω̂n(γ) = P̂nṁ(γ)ṁ(γ)t is just an empirical
counterpart of M̈γ(γ) = Pθ ṁ(γ) and Ωθ(γ) = Pθ ṁ(γ)ṁ(γ)t, respectively. Secondly, replace γ

by its estimator γ̂n we obtain ̂̈Mn := ̂̈Mn(γ̂n) and Ω̂n := Ω̂n(γ̂n) as estimator of M̈θ = M̈θ(γ(θ))
and Ωθ = Ωθ(γ(θ)), respectively. If in addition to (i)-(iv) the following condition holds
(v) supγ∈U‖ṁ(γ)‖ belongs to L2

(Pθ ).

Then supγ∈U‖
̂̈Mn(γ) − M̈θ(γ)‖F = o

P
⊗n
θ

(1) and supγ∈U‖Ω̂n(γ) − Ωθ(γ)‖F = o
P
⊗n
θ

(1) following
line by line the arguments in Example §02.11. From these uniform convergences and γ̂n =

γ(θ) + o
P
⊗n
θ

(1) follows ̂̈Mn = M̈θ + o
P
⊗n
θ

(1) and Ω̂n = Ωθ + o
P
⊗n
θ

(1) which in turn implies V̂n :=̂̈M−1

n Ω̂n
̂̈M−1

n = M̈−1
θ ΩθM̈

−1
θ + o

P
⊗n
θ

(1). Consequently, by applying Slutzky’s lemma §20.10 we

have
√
nV̂
−1/2
n (γ̂n − γ(θ))

d−→ N(0,Idk)
. �

§03.07 Example (MLE, §01.15 continued). Let (X
n
,X

⊗n
,P⊗nΘ ) with Pθ �� Po for all θ ∈ Θ, likelihood

L(θ) = dPθ/dPo , log-likelihood ` = log L and parameter of interest θ (i.e., γ = idΘ) as in
Example §01.15. Consider the MLE θ̂n which maximises the (joint) log-likelihood θ 7→ P̂n`(θ).
Let the following conditions be satisfied:
(i) (Θ, d) is a compact metric space,
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(ii) the parameter θ is identifiable, i.e., θ1 6= θ2 implies Pθ1 6= Pθ2

(iii) the map θ 7→ `(θ, x) is continuous for Pθ -a.e. x ∈ X,

(iv) supθ∈Θ |`(θ)| belongs to L1
(Pθ ).

Then combining the arguments in the Examples §02.08 and §02.11 the conditions (CO1) and
(CO2) of Theorem §02.02 are satisfied, which in turn implies consistency of the MLE θ̂n =
θ + o

P
⊗n
θ

(1). In addition let the following conditions be fulfilled
(v) for Pθ -a.e. x ∈ X the map θ 7→ `(θ, x) is twice continuously differentiable in a neighbour-

hood U of θ ∈ Θ with derivatives ˙̀
θ := ∂

∂θ
` and ῭

θ := ∂2

∂2θ
`,

(vi) supθ∈U‖ ˙̀
θ‖ ∈ L2

(Pθ ) and supθ∈U‖῭θ‖F ∈ L1
(Pθ ),

(vii) the Fisher-information matrix Iθ := Pθ ( ˙̀
θ

˙̀t
θ) is strictly positive definite.

Then the conditions (AN1) and (AN2) of Corollary §03.04, and the identity Iθ = −Pθ ῭
θ are

satisfied (for details see Statistik 1 Satz §17.22). Therewith, the MLE satisfies
√
n(θ̂n − θ) =

√
nI−1

θ P̂n
˙̀
θ + o

P
⊗n
θ

(1) and, consequently,
√
n(θ̂n − θo)

d−→ N(0,I−1
θ ). �

§03.08 Remark. The conditions (v) and (vi) in Example §03.07 can be weakened replacing differen-
tiability by Hellinger-differentiability. Keeping the Hellinger-distance H(Pθ ,Pθo) = ‖L1/2(θ) −
L1/2(θo)‖L2(Po ) in mind, where L1/2(θ) ∈ L2

(Po ) using ‖L1/2(θ)‖2
L2

(Po )
= Po (L(θ)) = 1 < ∞,

the family PΘ is called Hellinger-differentiable with derivative ˙̀
θo in θo ∈ int(Θ) ⊆ R

k, if
˙̀
θo ∈ L

k

2
(Pθo) and hence ˙̀

θoL
1/2(θo) ∈ L

k

2
(Po ) such that

lim
θ→θo

∫
X

∣∣∣∣L1/2(θ, x)− L1/2(θo, x)− 1
2
〈 ˙̀θo(x), θ − θo〉L1/2(θo, x)

‖θ − θo‖

∣∣∣∣2Po (dx)

= lim
h→0

‖L1/2(θo + h)− L1/2(θo)− 1
2
〈 ˙̀θo , h〉L1/2(θo)‖2

L2(Po )

‖h‖2
= 0

The map x 7→ ˙̀
θo(x) is also called score function. Keeping ˙̀

θo ∈ L
k

2
(Pθo) in mind the Fisher-

information matrix Iθo = Pθo( ˙̀
θo

˙̀t
θo

) is well-defined. Note that, the score function and the Fisher-
information matrix are independent of the dominating measure Po . �

§03|01 Testing procedures

§03.09 Heuristics. Let (Xn,Xn,P
n

Θ ) for all n ∈ N be a statistical model over the parameter space Θ
and let γ : Θ → Γ be an identifiable parameter of interest. Given a map A : Γ → R

p we
eventually test the hypothesis H0 : A(γ) = 0 against the alternative H1 : A(γ) 6= 0. Typical
examples include A(γ) = γ − γo for a given value γo, or more generally, linear hypothesis
A(γ) = Mγ − ao for a given value ao and matrix M . It covers in particular testing the j-th
coordinate of γ = (γj)j∈JkK, i.e.,A(γ) = γj−γjo . Under regularity conditions it seems reasonable

to assume an estimator γ̂n of γ having underPn
θ the property

√
n(A(γ̂n)−A(γ(θ)))

d−→ N(0,Σθ) with
invertible asymptotic covariance matrix Σθ. If we have in addition an estimator Σ̂n = Σθ+o

P
n
θ

(1)

at hand. Then under the hypothesis H0, i.e., for Pn
θ with A(γ(θ)) = 0, a Wald test exploits the

property Ŵn := nA(γ̂n)tΣ̂−1
n A(γ̂n)

d−→ χ2
p where χ2

p is a Chi-square-distribution with p degrees
of freedom. Precisely, a Wald test rejects the hypothesis H0 : A(γ) = 0 if Ŵn exceeds the 1-α-
Quantile χ2

p,1−α of a χ2
p-distribution. Obviously, the Wald test does exactly meets the asymptotic

level α, i.e., limn→∞P
n
θ (Ŵn > χ2

p,1−α) = P(W > χ2
p,1−α) = α where W ∼ χ2

p. However, the
behaviour of the test statistic Ŵn under the alternative H1 is still an open questions, which we
intent to study in the next sections. �
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§03.10 Example (§03.06 continued). Let (X
n
,X

⊗n
,P⊗nΘ ), γ : Θ → Γ be an identifiable parameter of

interest and let m(γ) ∈ L1
(Pθ ) for all γ ∈ Γ. For each γ ∈ Γ let M̂n(γ) = P̂nm(γ) and M(θ, γ) =

Pθm(γ). Under the conditions (i)-(v) in Example §03.06 an M-estimator γ̂n ∈ arg infγ∈Γ M̂n(γ)

satisfies
√
n(γ̂n − γ(θ))

d−→ N(0,M̈−1
θ ΩθM̈−1

θ ) under P⊗nθ . Moreover, we have eventually access to

estimators ̂̈Mn = M̈θ + o
P
⊗n
θ

(1) and Ω̂n = Ωθ + o
P
⊗n
θ

(1). Let A : Γ→ R
p be continuously differen-

tiable in a neighbourhood of γ(θ) then applying the delta method §20.16 we obtain
√
n(A(γ̂n)−

A(γ(θ)))
d−→ N(0,Σθ) under P⊗nθ with Σθ := Ȧγ(θ)M̈

−1
θ ΩθM̈

−1
θ Ȧtγ(θ). From Ȧγ̂n = Ȧγ(θ) +o

P
⊗n
θ

(1) fol-

lows Σ̂n := Ȧγ̂n
̂̈M−1

n Ω̂n
̂̈M−1

n Ȧtγ̂n = Σθ + o
P
⊗n
θ

(1) and, thus
√
nΣ̂
−1/2
n (A(γ̂n)− A(γ(θ)))

d−→ N(0,Idp)

which under H0, i.e., for P⊗nθ with A(γ(θ)) = 0, implies Ŵn := nA(γ̂n)tΣ̂−1
n A(γ̂n)

d−→ χ2
p. �
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Chapter 2

Asymptotic properties of tests

Asymptotic properties of tests under local alternatives are presented com-
plementing the Neyman-Pearson theory introduced in the lecture Statistik
1. For a more detailed exposition we refer to the text books Witting and
Müller-Funk [1995] and van der Vaart [1998].

Overview

§04 Contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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§04 Contiguity

§04|01 Preliminaries: likelihood ratios and differentiable models

§04.01 Motivation. Considering a statistical model (Xn,Xn,P
n

Θ ), a parameter of interest γ : Θ → Γ, a
partition {H 0,H 1} of the parameter values of interests Γ = H 0

⊎
H 1 (i.e. Γ = H 0 ∪H 1,

∅ = H 0 ∩ H 1 and H 0 6= ∅ 6= H 1) we are interested in a (randomised) test ϕn ∈ X
+

n

(i.e. ϕn : Xn → [0, 1]) of the hypothesis H0 : H 0 against the alternative H1 : H 1. Under
regularity conditions we may have at hand an estimator γ̂n of γ with known asymptotic distribu-
tion. Typically the estimator γ̂n allows us to construct a test statistic Tn with known asymptotic
distribution under H0, i.e. under Pn

θ with γ(θ) ∈ H 0. Exploiting the asymptotic distribution an
associated test ϕn = 1{

Tn 6∈Cα
} does eventually not exceed asymptotically a given level α ∈ (0, 1)

under the hypothesisH0. However, we like to investigate also its power under the alternativeH1,
i.e. under a specific Pn

θ with γ(θ) ∈H 1. �

§04.02 Reminder. Let ν and µ be measures on (X,X ).
(a) For any positive numerical function f ∈ X

+
the map B 7→ fµ(B) := µ(1Bf) =

∫
B
f dµ

defines a measure fµ on (X,X ). Any f = dν/dµ ∈ X
+

satisfying ν = fµ is called
density of ν with respect to µ, or µ-density for short.

(b) We say ν is dominated by µ, symbolically ν � µ, if for eachB ∈X with µ(B) = 0 follows
ν(B) = 0. The measures µ and ν are called equivalent or mutually dominated, symbolically
µ �� ν , if both ν � µ and µ � ν .

(c) We say ν and µ are orthogonal or singular, symbolically ν ⊥ µ, if there exists X = Xµ

⊎
Xν

with Xµ,Xν ∈ X and µ(Xν) = 0 = ν(Xµ). Evidently, we have ν ⊥ µ if and only if there
exists N ∈X with µ(N) = 0 such that ν = 1Nν .
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Chapter 2 Asymptotic properties of tests §04 Contiguity

We note that g ∈ L1
(fµ) if and only if gf ∈ L1

(µ). In this case holds fµ(g) =
∫
g d(fµ) =∫

(gf) dµ = µ(gf) (Klenke [2012], Satz 4.15, p. 93). Let additionally ν ∈ Mσ(X ) be a σ-finite
measure on (X,X ). If f1µ = ν = f2µ for f1, f2 ∈ X

+
, then f1 = f2 µ-a.e.. In other words

a density is unique up to µ-a.e. equivalence (Klenke [2012], Satz 7.29, p. 159). If in addition
µ ∈ Mσ(X ), then by Lebesgue’s decomposition theorem there exists νa, ν⊥ ∈ Mσ(X ) such
that ν = νa + ν⊥ with ν⊥ ⊥ µ and νa = fµ where f ∈X

+
and f ∈ R+ µ-a.e.. (Klenke [2012], Satz

7.33, p. 160) Furthermore, there is a Radon-Nikodym-density f ∈ X
+

with ν = fµ and f ∈ R+

µ-a.e. if and only if ν � µ (Klenke [2012], Korollar 7.34, p. 161). If f ∈X
+ is a Radon-Nikodym-

density of ν with respect to µ, i.e. ν = fµ, then the positive real function f1{f∈R+} ∈ X
+ is it

too. Consequently, without loss of generality we consider here and subsequently a positive real
version of the Radon-Nikodym-density. Furthermore, given f = d νa /dµ ∈ X

+ let us define a
numerical function L := f1Nc +∞1N ∈ X

+
with µ(N) = 0 = ν⊥(N c) where

{
L =∞

}
= N

and the Lebesgue decomposition writes ν = Lµ + 1{L=∞}ν , i.e. for all A ∈X we have ν(A) =
µ(1AL) + ν(A ∩

{
L =∞

}
). �

§04.03 Definition. Let P0 ,P1 ∈ W(X ) be probability measures on (X,X ). Any positive numerical
random variable L ∈X

+

satisfying

P0 (L =∞) = 0 and P1 = LP0 + 1{L=∞}P1 for all B ∈X (04.01)

is called a likelihood ratio (LR) of P1 with respect to P0 , symbolically dP1/dP0 := L. �

Here and subsequently, let P0 ,P1 ∈ W(X ) and L := dP1/dP0 be a likelihood ratio of P1 with
respect to P0 . We first note that P0 (L) = P1 (L < ∞) ∈ [0, 1] and P0 (L ∈ R+) = 1 by definition,
and also P1 (L = 0) = LP0 (L = 0) + P1 ({L = 0} ∩ {L =∞}) = 0.

§04.04 Property.
(i) P0 ⊥ P1 ⇔ ∃B ∈ X : P0 (B) = 0 (hence LP0 (B) = 0) and P1 (B) = 1 (hence P1 (B ∩ {L =
∞}) = 1)⇔ P1 (L =∞) = 1⇔ P0 (L) = 0;

(ii) P0 6⊥ P1 ⇔ ∀B ∈ X : P0 (B) = 0 implies P1 (B) < 1 (particularly for B = {L = ∞})⇔
P1 (L =∞) < 1⇔ P0 (L) > 0;

(iii) P1
� P0 ⇔ ∀B ∈ X : P0 (B) = 0 implies P1 (B) = 0 (particularly for B = {L = ∞})⇔

P1 (L =∞) = 0⇔ P0 (L) = 1.

§04.05 Remark. Note that both P0 and P1 are dominated by Pµ := 1
2
(P0 + P1 ) ∈ W(X ). Let fi ∈ X

+

denote a Pµ-density of Pi , i ∈ {0, 1} (c.f. Reminder §04.02), then

L∗ =
f1

f0

1{f0∈R+

\0} +∞1{f0=0}∩{f1∈R+

\0} (04.02)

is a likelihood ratio of P1 with respect to P0 , i.e., L∗ = dP1/dP0 . Indeed, L∗ ∈ X
+

satisfies
P0 (L∗ =∞) 6 P0 (f0 = 0) = 0 and for all B ∈X

L∗P0 (B) + P1 (B ∩ {L∗ =∞}) = f0Pµ
(
f1
f0
1B∩{f0∈R+

\0}

)
+ P1 (B ∩ {f0 = 0} ∩ {f1 ∈ R

+

\0})
= f1Pµ(B ∩ {f0 ∈ R

+

\0}
)

+ P1 (B ∩ {f0 = 0}) = P1 (B).

Consequently, L∗ is always a version of the likelihood ratio dP1/dP0 . In general the likelihood
ratio dP1/dP0 (and similar dP0/dP1 ) is uniquely determined by (04.01) up to (P0 + P1 )-a.e. equiva-
lence (e.g. WTheorie 1, Lemma §03.15 or Witting [1985] Satz 1.110 a), p. 112). Moreover, the positive
numerical random variable L−1

∗ = f0
f1
1{f1∈R+

\0} +∞1{f1=0}∩{f0∈R+

\0} is a version of the likelihood ratio
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dP0/dP1 switching the roles of P0 and P1 . Consequently, (iii) can equivalently be written as P1
� P0

⇔ P1 (dP0/dP1 = 0) = P1 (L
−1
∗ = 0) = P1 (L∗ = ∞) = 0. However, given any version L = dP1/

dP0 of the likelihood ratio the measure P1 can be written as a sum P1 = P1
a +P1

⊥ of two measures
P1
a,P1

⊥ ∈ Mσ(X ) where P1
a := LP0 and P1

⊥ := 1{L=∞}P1 with P1
⊥(B) = P1 (B ∩ {L = ∞}),

B ∈ X is, respectively, the absolute continuous and singular part of P1 with respect to P0

(Lebesgue decomposition). �

§04.06 Property. The two measures P1
a := LP0 and P1

⊥ := 1{L=∞}P1 in Mσ(X ) satisfy
(i) P1 = P1

a + P1
⊥, P1

a � P0 , and P1
⊥ ⊥ P0 ;

(ii) P1 (f) > P1
a(f) = LP0 (f) = P0 (Lf) = P1 (f1{L<∞}) for all f ∈X

+

;

(iii) P0
� P1 if and only if P0 (L) = 1 if and only if P1 (dP0/dP1 = 0) = P1 (L =∞) = 0 if and only

if for all f ∈X
+

holds P1 (f) = P0 (Lf). �

§04.07 Reminder. Consider a Rk-valued statistic S defined on (X,X ), i.e. S ∈ X
k. If P1

� P0 , then
the probability measure PS

1 = P1 ◦ S−1 ∈W(B
k
) induced by S under P1 can be calculated from

the probability measure P(S,L)
0 = P0 ◦ (S,L)−1 induced by the random vector (S,L) under P0

through the formula

P1 (S ∈ B) = P
S

1 (1B) = P0

(
1B(S)L

)
= P

(S,L)

0

(
1B(ΠS

)ΠL

)
for all B ∈ Bk

using the coordinate maps ΠL
(S,L) = L and ΠS

(S,L) = S. The formula, however, is only valid
under the assumption P1

� P0 , since a part of P1 orthogonal to P0 can’t be recovered. �

Here and subsequently, let PΘ = (Pθ )θ∈Θ with Θ ⊆ Rk be a family of probability measures on
a measurable space (X,X ), and for each θo, θ ∈ Θ let Lθo(θ) := dPθ/dPθo denote a likelihood
ratio of Pθ with respect to Pθo. Keep in mind, that Lθo(θo) = 1(= 1X).

§04.08 Definition. Let s > 1 and θo ∈ int(Θ). The statistical model (X,X ,PΘ) (and the family PΘ) is
called Ls

(θo)-differentiable with derivative ˙̀
θo , if ˙̀

θo ∈ L
k

s
(Pθo) and for all θ → θo hold

‖s(L1/s
θo

(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖Ls(Pθo) = o(‖θ − θo‖) (04.03)

and Pθ (Lθo(θ) =∞) = o(‖θ − θo‖s). �

§04.09 Remark. In case s = 1 the defining condition Pθ (Lθo(θ) = ∞) = o(‖θ − θo‖) follows from
(04.03) (Witting [1985], Hilfssatz 1.178, p164). We note that L1

(θo)-differentiability implies L1
(Pθo)-

continuity of θ 7→ Lθo(θ) in θo, i.e., ‖Lθo(θ) − Lθo(θo)‖L1
(Pθo)

= o(1) as θ → θo. Since Lθo(θ)

is unique up to Pθ + Pθo-a.e.-equivalence Ls
(θo)-differentiability does not depend on the version

Lθo(θ) of the likelihood ratio dPθ/dPθo. �

§04.10 Lemma. If PΘ is L1
(θo)-differentiable with derivative ˙̀

θo , then it holds Pθo( ˙̀
θo) = 0. For any

s > r > 1 if PΘ is Ls
(θo)-differentiable with derivative ˙̀

θo , then PΘ is also Lr
(θo)-differentiable

with derivative ˙̀
θo .

§04.11 Proof of Lemma §04.10. is given in the lecture. �

In order to avoid additional integrability conditions in Definition §04.08 the function θ 7→
s(L

1/s
µ (θ) − 1) is considered. The next assertion formulates differentiability under additional

integrability conditions.
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§04.12 Lemma. Let s > 1 and θo ∈ int(Θ). The family PΘ is Ls
(θo)-differentiable with derivative ˙̀

θo , if
˙̀
θo ∈ L

k

s
(Pθo) , Lθo(θ) ∈ Ls

(Pθo) for all θ ∈ U(θo) and for all θ → θo hold

‖(Lθo(θ)− 1)− 〈 ˙̀θo , θ − θo〉‖Ls(Pθo) = o(‖θ − θo‖)

and Pθ (Lθo(θ) =∞) = o(‖θ − θo‖s).

§04.13 Proof of Lemma §04.12. is given in the lecture. �

Let us assume in addition, that the family PΘ is dominated by µ ∈ Mσ(X ). For each θ ∈ Θ
denote by Lµ(θ) := dPθ/dµ ∈ X

+ a Radon-Nikodym density of Pθ with respect to µ. Keeping
Remark §04.05 in mind L∗,θo(θ) =

Lµ (θ)

Lµ (θo)
1{Lµ (θo)∈R+

\0} +∞1{Lµ (θo)=0}∩{Lµ (θ)∈R+

\0} as in (04.02) is for
each θo, θ ∈ Θ a version of the likelihood ratio dPθ/dPθo. We note that{

L∗,θo(θ) =∞
}

=
{
{Lµ(θo) = 0} ∩ {Lµ(θ) ∈ R+

\0}
}
⊆
{

Lµ(θo) = 0
}

=: Nθo ,

where Pθo(Nθo) = 0, and for all θ ∈ Θ holds Lµ (θ)

Lµ (θo)
1N cθo = L∗,θo(θ)1N cθo < ∞ and Pθ (Nθo) =

Pθ (Nθo ∩ {Lµ(θ) ∈ R+

\0}) = Pθ (L∗,θo(θ) = ∞) = Pθ (dPθ/dPθo = ∞). Decomposing the integral
with respect to X = Nθo

⊎
N c
θo

it follows

‖2(L1/2
µ (θ)− L1/2

µ (θo))− 〈 ˙̀θo , (θ − θo)〉L1/2
µ (θo)‖2

L2
(µ)

= ‖2(L
1/2
∗,θo(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2

L2
(Pθo)

+ ‖1Nθo2L1/2
µ (θ)‖2

L2(µ)

= ‖2(L
1/2
∗,θo(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2

L2
(Pθo)

+ 4Pθ (L∗,θo(θ) =∞)

= ‖2(L
1/2
θo

(θ)− 1)− 〈 ˙̀θo , (θ − θo)〉‖2

L2
(Pθo)

+ 4Pθ (Lθo(θ) = ∞). (04.04)

Keeping Remark §03.08 in mind for θo ∈ int(Θ) the family PΘ is Hellinger-differentiable with
derivative ˙̀

θo , if ˙̀
θo ∈ L

k

2
(Pθo), hence ˙̀

θoL
1/2
µ (θo) ∈ L

k

2
(µ), and for θ → θo

‖L1/2
µ (θ)− L1/2

µ (θo)− 1
2
〈 ˙̀θo , θ − θo〉L1/2

µ (θo)‖L2
(µ) = o(‖θ − θo‖).

Exploiting the identity (04.04) we obtain immediately the next property.

§04.14 Property. Let PΘ
� µ ∈ Mσ(X ) and θo ∈ int(Θ). The family PΘ is Hellinger-differentiable

with derivative ˙̀
θo if and only if PΘ is L2

(θo)-differentiable with derivative ˙̀
θo .

§04.15 Proposition. Let PΘ
� µ ∈ Mσ(X ) with open Θ ⊆ Rk. If the likelihood Lµ(θ) := dPθ/dµ,

θ ∈ Θ, satisfies in addition the following conditions:

(i) for each x ∈ X the map θ 7→ s(θ, x) := L
1/2
µ (θ, x) is continuously differentiable with

derivative ṡθ := ∂
∂θ
s,

(ii) ṡθ ∈ L2
(µ) for all θ ∈ Θ, and hence Iθ := 4µ(ṡθṡ

t
θ) ∈ R

(k,k)

> ,

(iii) the map θ 7→ Iθ is continuous.
Then PΘ is for all θ0 ∈ Θ Hellinger-differentiable with score function ˙̀

θo = 2
ṡθo
s(θo)

1{s(θo)∈R+

\0}.

§04.16 Proof of Proposition §04.15. is given in the lecture. �

§04.17 Example. Consider a statistical location model (R,B,PR) dominated by the Lebesgue mea-
sure λ ∈ Mσ(B) with likelihood for each θ ∈ R given by L(θ, x) = g(x − θ), x ∈ R,
where g is a strictly positive density. If g is continuously differentiable with derivative ġ satis-
fying λ(|ġ|2/g) < ∞ then due to Proposition §04.15 the family PR is Hellinger-differentiable
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with score function ˙̀
θ = −ġ(x− θ)/g(x− θ). Indeed, setting s(θ, x) :=

√
g(x− θ), we have

ṡθ(x) = ∂
∂θ

√
g(x− θ) = −1

2
ġ(x − θ)/

√
g(x− θ) which is continuous in θ and hence condi-

tion (i) is satisfied. Moreover conditions (ii) and (iii) hold true, since θ 7→ Iθ = 4λ(ṡθ)
2 =

λ(|ġ|2/g) < ∞ is constant and thus continuous. Applying Proposition §04.15 the family PR is
Hellinger-differentiable with score function ˙̀

θo = 2
ṡθo
s(θo)

1{s(θo)∈R+

\0} = −ġ(x− θo)/g(x− θo). �

§04|02 Contiguity

We introduce next an asymptotic version of absolute continuity. In this section we restrict
our attention to probability measures Pn

0 ,P
n

1 ∈ W(Xn), n ∈ N, in short (Pn
0 )n∈N, (P

n
1 )n∈N ∈

(W(Xn))n∈N. We aim to obtain the limiting distribution of (test) statistics Sn ∈ X
k

n , n ∈ N,
under Pn

1 if its limiting distribution under Pn
0 is known.

§04.18 Definition. Let Pn
0 ,P

n
1 ∈ W(Xn), n ∈ N. The sequence (Pn

1 )n∈N is called contiguous with re-
spect to (Pn

0 )n∈N, symbolicallyPn
1 / P

n
0 , if for any (Bn)n∈N ∈ (Xn)n∈N with limn→∞P

n
0 (Bn) = 0

holds limn→∞P
n

1 (Bn) = 0. The sequences (Pn
1 )n∈N and (Pn

0 )n∈N are called mutually contiguous,
symbolically Pn

0 / . Pn
1 , if both Pn

1 / Pn
0 and Pn

0 / Pn
1 . �

§04.19 Lemma. Let Pn
0 ,P

n
1 ∈W(Xn), n ∈ N.

(i) Pn
1 / Pn

0 ⇔ for all (Sn)n∈N ∈ (X
k

n )n∈N holds: Sn
P
n

0−→ 0⇒ Sn
P
n

1−→ 0;

(ii) For any statistic Sn : (Xn,Xn)→ (S,S ), n ∈ N, holds: Pn
1 / Pn

0 ⇒ P
n

1 ◦ S−1
n / Pn

0 ◦ S−1
n ;

(iii) For any sub-sequence (nk)k∈N in N holds: Pn
1 / Pn

0 ⇒ P
nk

1 / Pnk
0 ;

(iv) Pn
1 / Pn

0 ⇔ for any ε ∈ R+

\0 exists δ ∈ R+

\0 such that for all (Bn)n∈N ∈ (Xn)n∈N holds:
lim supn→∞P

n
0 (Bn) < δ⇒ lim supn→∞P

n
1 (Bn) < ε;

(v) Let (Sn)n∈N ∈ (X
k

n )n∈N and Pn
1 / Pn

0 , then:

(v-a) Pn
0 ◦ S−1

n
d−→ P0 and Pn

1 ◦ S−1
n

d−→ P1 ⇒ P1
� P0 ;

(v-b) (Pn
0 ◦ S−1

n )n∈N tight⇒ (Pn
1 ◦ S−1

n )n∈N tight.

§04.20 Proof of Lemma §04.19. is given in the lecture. �

§04.21 Remark. Next we characterise contiguity in terms of the asymptotic behaviour of the likelihood
ratio Ln = dPn

1 /dP
n

0 ∈ X
+

n , n ∈ N. First recall that Pn
1 (Ln < ∞) = P

n
0 (Ln) ∈ [0, 1] and

P
n

0 (Ln = ∞) = P
n

1 (Ln = 0) = 0 for each n ∈ N. Consequently, the probability measure
P
n

0 ◦ L−1
n ∈ W(B) is concentrated in R+ meaning that Pn

0 ◦ L−1
n (R+) = P

n
0 (Ln ∈ R+) = 1

for each n ∈ N. Moreover, (Pn
0 ◦ L−1

n )n∈N is tight, since for any ε ∈ R+

\0 and c > 1/ε holds
P
n

0 (Ln > c) 6 1
c
P
n

0 (Ln) 6 1
c
< ε by Markov’s inequality. However, Pn

1 ◦ L−1
n is generally not

concentrated in R+, but under Pn
1 / Pn

0 holds Pn
1 (Ln = ∞) → 0 since Pn

0 (Ln = ∞) = 0 for all
n ∈ N. Thereby, the limit distribution of Pn

1 ◦ L−1
n (if it exists) is concentrated in R+. �

Formally, we write Ln = Ln1{Ln∈R+
} +∞1{

Ln=∞
}, where the second summand is negligible

in the sense of Slutzky’s lemma under contiguity Pn
1 / Pn

0 .

§04.22 Definition. (Tn)n∈N ∈ (Xn)n∈N converges in distribution to PT ∈ W(B) under Pn, shortly
Tn

d−→ P
T under Pn, if

P
n ◦ T−1

n
d−→ P

T
:⇔ P

n ◦ (Tn1{Tn∈R})−1 d−→ P
T and P

n
(Tn 6∈ R)→ 0. (04.05)

We note that any family of probability measures on (R,B) is tight, since R is compact. A
non trivial formulation of tightness for probability measures provides the next definition.
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§04.23 Definition. A sequence (Pn)n∈N ∈W(B) is called asymptotically tight if for all ε ∈ R+

\0 exists
M ∈ R+

\0 and no ∈ N such that for all n > no holds Pn([−M,M ]c) < ε. �

§04.24 Remark. Asymptotic tightness of (Pn)n∈N ∈ W(B) is equivalently characterised by: for any
(Mn)n∈N in R with Mn ↑ ∞ holds Pn([−Mn,Mn]c)

n→∞−−−→ 0. In particular, we have immedi-
ately Pn({−∞,∞}) n→∞−−−→ 0. The concept of asymptotic tightness and tightness as in Defini-
tion §20.21 coincide if Pn(R) = 1 for all n ∈ N. Furthermore, it can be shown that the claim of
Prohorov’s theorem Property §20.24 holds also for families of asymptotically tight probability
measures. �

§04.25 Theorem. For each n ∈ N letPn
0 ,P

n
1 ∈W(Xn), let Ln := dPn

1 /dP
n

0 ∈X
+

n be a likelihood ratio
of Pn

1 with respect to Pn
0 and let PL

0 ,P
L

1 ∈W(B). Then the following statements are equivalent:
(a1) Pn

1 / Pn
0 ;

(a2) Pn
0 (Ln)

n→∞−−−→ 1 and for any ε ∈ R+

\0 exists M ∈ R+

\0 with supn∈NP
n

0 (Ln1{Ln>M
}) < ε, i.e.

(Pn
0 ◦ L−1

n )n∈N is uniformly integrable;

(a3) (Pn
1 ◦ L−1

n )n∈N is asymptotically tight.

If in addition Ln
d−→ P

L
0 under Pn

0 , i.e. Pn
0 ◦ L−1

n
d−→ P

L
0 , then the following statements are

equivalent:
(b1) Pn

1 / Pn
0 ;

(b2) 1 =
∫
R
yPL

0 (dy) = P
L

0 (idR) = P
L

0 (idR1R);

(b3) Ln
d−→ P

L
1 under Pn

1 with PL
1 (B) = P

L
0 (idR1B) =

∫
B
yPL

0 (dy) for all B ∈ B.

§04.26 Proof of Theorem §04.25. is given in the lecture. �

Since Pn
0 (Ln) = P

n
1 (Ln <∞) it holds Pn

0 (Ln)→ 1⇔ P
n

1 (Ln =∞)→ 0. Keeping (04.01) in
mind the mass of the absolute continuous part of Pn

1 with respect to Pn
0 converges two 1, if and

only if, the singular part vanishes.

§04.27 Corollary. Under the notations of Theorem §04.25 the following statements are equivalent:
(i) Pn

1 / Pn
0 ;

(ii) if Pnk
0 ◦ L−1

nk

d−→ P
L

0 ∈W(B) along a sub-sequence (nk)k∈N, then PL
0 (idR) = 1;

(iii) if Pnk
0 ◦ L−1

nk

d−→ P
L

0 ∈ W(B) along a sub-sequence (nk)k∈N, then Pnk
1 ◦ L−1

nk

d−→ P
L

1 , with
P

L
1 (B) = P

L
0 (idR1B) for all B ∈ B.

§04.28 Proof of Corollary §04.27. is given in the lecture. �

We are particularly interested in mutual contiguity (Pn
0 /. P

n
1 ) of (Pn

0 )n∈N and (Pn
1 )n∈N, which

can be characterised by applying Theorem §04.25 and its analogous formulation switching the
roles of Pn

0 and Pn
1 . However, for n ∈ N the transformation of a likelihood ratio Ln = dPn

1 /dP
n

0

into a log-likelihood ratio (LLR) `n := log Ln = log
(
dPn

1 /dP
n

0

)
∈ X captures equally both

orthogonal events
{

Ln = 0
}

and
{

Ln =∞
}

. Generally, `n takes the value −∞ and +∞ with
positivePn

0 - andPn
1 -probability, respectively. In other wordsPn

0 ◦`−1
n andPn

1 ◦`−1
n is concentrated

in [−∞,∞) and (−∞,∞], respectively, since by Definition §04.03 of Ln it holds

P
n

0 (`n =∞) = 0 and P
n

1 (`n = −∞) = 0 for all n ∈ N. (04.06)

Thereby, similar to Remark §04.21 under mutual contiguity Pn
0 / . Pn

1 it follows

P
n

1 (`n =∞)→ 0 and P
n

0 (`n = −∞)→ 0 as n→∞. (04.07)
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Consequently, the limit distribution of `n under both Pn
0 and Pn

1 , if it exists, is concentrated in R.
Keeping Definition §04.22 in mind under mutual contiguityPn

0 /. P
n

1 convergence in distribution
of `n under Pn

0 and Pn
1 to P`

0 ,P
`

1 ∈W(B), respectively, is equivalently characterised by

P
n

0 ◦ `−1
n

d−→ P
`

0 ⇔ P
n

0 ◦ (`n1{`n>−∞})−1 d−→ P
`

0 and

P
n

1 ◦ `−1
n

d−→ P
`

1 ⇔ P
n

1 ◦ (`n1{`n<∞})−1 d−→ P
`

1 . (04.08)

If L−1
n = dPn

0 /dP
n

1 is a likelihood ratio ofPn
0 with respect toPn

1 , as for example in Remark §04.05,
then making use of the identity log L−1

n = − log Ln = −`n the convergence in distribution of `n
under Pn

0 respectively Pn
1 implies immediately the corresponding convergence of log L−1

n . Sim-
ilar to Theorem §04.25 (b1)-(b3) the next result characterises mutual contiguity in terms of the
log-likelihood ratio `n.

§04.29 Theorem. For each n ∈ N let Pn
0 ,P

n
1 ∈ W(Xn), let `n := log Ln = log(dPn

1 /dP
n

0 ) ∈ Xn be a
log-likelihood ratio such that also L−1

n = dPn
0 /dP

n
1 ∈X

+

n and letP`
0 ,P

`
1 ∈W(B). If in addition

`n
d−→ P

`
0 under Pn

0 , i.e. Pn
0 ◦ `−1

n
d−→ P

`
0 , then the following statements are equivalent:

(b’1) Pn
1 / . Pn

0 ;

(b’2) 1 =
∫
R

exp(z)P`
0 (dz) = P

`
0 (exp) = P

`
0 (exp1R)

(b’3) `n
d−→ P

`
1 under Pn

1 with P`
1 (B) = P

`
0 (exp1B) =

∫
B

exp(z)P`
0 (dz) for all B ∈ B .

§04.30 Proof of Theorem §04.29. is given in the lecture. �

§04.31 Remark. Let f`0 and f
`
1 denote, respectively, a µ-density of P`

0 and P`
1 with respect to a measure

µ ∈ Mσ(B) dominating P`
0 , and hence P`

1 . The measure P`
1 in Theorem §04.29 (b’3) is equally

defined by f
`
1 (z) = exp(z)f

`
0 (z) for µ-a.e. z ∈ R. �

§04.32 Corollary. Under the notations of Theorem §04.29 if Pn
0 ◦ `−1

n
d−→ N(µ,σ2) for (µ, σ) ∈ R × R+

then the following statements are equivalent:

(b”1) Pn
1 / . Pn

0 ;

(b”2) µ = −σ2/2

(b”3) `n
d−→ N(σ2/2,σ2) under Pn

1 .

§04.33 Proof of Corollary §04.32. is given in the lecture. �

§04.34 Example (Le Cam’s first lemma). For n ∈ N let Pn
0 ,P

n
1 ∈ W(Xn) and Ln := dPn

1 /dP
n

0 ∈ X
+

n .
If `n := log Ln

d−→ N(−σ2/2,σ2) under Pn
0 , then Pn

1 / . Pn
0 and `n

d−→ N(σ2/2,σ2) under Pn
1 due to Corol-

lary §04.32. For σ > 0 from σ−1(`n + σ2/2)
d−→ N(0,1) under Pn

0 follows thus σ−1(`n + σ2/2)
d−→

N(σ,1) under Pn
1 . In other words in this situation there is asymptotically a location shift by σ. �

For each n ∈ N let Pn
0 ,P

n
1 ∈ W(Xn), let Ln := dPn

1 /dP
n

0 ∈ X
+

n be a likelihood ratio of
P
n

1 with respect to Pn
0 , let `n := log Ln and let Sn ∈ X

k

n be a Rk-valued statistic defined on
(Xn,Xn). We search conditions which allow to calculate the limiting distribution of (Sn,Ln)
respectively (Sn, `n) under Pn

1 , from the limiting distribution of (Sn,Ln) respectively (Sn, `n)
under Pn

0 . Keeping again (§04.22) in mind under mutual contiguity Pn
0 / . Pn

1 the joint conver-
gence in distribution of (Sn,Ln)

d−→ P
(S,L)

1 ∈ W(B
k+1

) under Pn
1 , (Sn, `n)

d−→ P
(S,`)

0 ∈ W(B
k+1

)
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under Pn
0 and (Sn, `n)

d−→ P
(S,`)

1 ∈W(B
k+1

) under Pn
1 , respectively, is equally characterised by

P
n

1 ◦ (Sn,Ln)−1 d−→ P
(S,L)

1 ⇔ P
n

1 ◦ (Sn,Ln1{Ln<∞
})−1 d−→ P

(S,L)

1 ,

P
n

0 ◦ (Sn, `n)−1 d−→ P
(S,`)

0 ⇔ P
n

0 ◦ (Sn, `n1{`n>−∞})−1 d−→ P
(S,`)

0 and

P
n

1 ◦ (Sn, `n)−1 d−→ P
(S,`)

1 ⇔ P
n

1 ◦ (Sn, `n1{`n<∞})−1 d−→ P
(S,`)

1 . (04.09)

Denote by ΠL
:= Πk+1

∈ B
k+1, i.e. y = (yi)i∈Jk+1K 7→ ΠL

(y) := yk+1 (respectively Π`
:= Πk+1

∈
B

k+1) the coordinate map which allows us to write∫
C

yP
(S,L)

1 (ds, dy) =

∫
Rk+1

1C(s, y)ΠL
(s, y)P

(S,L)

1 (ds, dy) = P
(S,L)

1 (1CΠL
) for all C ∈ B

k+1
.

§04.35 Theorem. For each n ∈ N let Pn
0 ,P

n
1 ∈ W(Xn), let `n = log Ln = log(dPn

1 /dP
n

0 ) ∈ Xn be a
log-likelihood ratio, and let Sn ∈X

k

n be a Rk-valued statistic. Then, we have

(i) If (Sn,Ln)
d−→ P

(S,L)
0 ∈ W(B

k+1
) under Pn

0 and P(S,L)
0 (ΠL

1
R
k+1) = P

(S,L)
0 (ΠL

) = 1, then

(Sn,Ln)
d−→ P

(S,L)
1 under Pn

1 with P(S,L)
1 (C) := P

(S,L)
0 (ΠL

1C) for all C ∈ B
k+1.

(ii) If (Sn, `n)
d−→ P

(S,`)
0 ∈ W(B

k+1
) under Pn

0 and P(S,`)
0 (exp(Π`

)1Rk+1) = P
(S,`)

0 (exp(Π`
)) = 1,

then (Sn, `n)
d−→ P

(S,`)
1 under Pn

1 with P(S,`)
1 (C) := P

(S,`)
0 (exp(Π`

)1C) for all C ∈ B
k+1.

§04.36 Proof of Theorem §04.35. is given in the lecture. �

§04.37 Example (Le Cam’s third lemma). For each n ∈ N let Pn
0 ,P

n
1 ∈ W(Xn), let `n = log Ln =

log(dPn
1 /dP

n
0 ) ∈Xn be a log-likelihood ratio, and let Sn ∈X

k

n be aRk-valued statistic. Suppose
that the limit distribution of (Sn, `n) under Pn

0 is multivariate normal, that is

P
n

0 ◦ (Sn, `n)−1 d−→ P
(S,`)

0 = N(v,M) with v =

(
µ

−σ2

2

)
and M =

(
Σ τ
τ t σ2

)
. (04.10)

Then it holds (Sn, `n)
d−→ P

(S,`)
1 = N(v′,M) under Pn

1 with v′ = (µ + τ, σ2/2)t. Indeed, since
P

(S,`)
0 (exp(Π`

)) = 1 both assumptions of Theorem §04.35 (ii) are satisfied and hence it remains
to calculate the limit distribution P(S,`)

1 (C) := P
(S,`)

0 (exp(Π`
)1C) for all C ∈ B

k+1. Suppose
first M > 0, or equivalently Σ > 0 and σ > 0, then P(S,`)

0 has a density f
(S,`)
0 with respect

to the Lebesgue-measure λk+1 ∈ Mσ(B
k+1

) and (see Remark §04.31) the Lebesgue-density
f

(S,`)
1 of P(S,`)

1 satisfies f
(S,`)
1 (s, z) = exp(z)f

(S,`)
0 (s, z) for λk+1-a.e. (s, z) ∈ Rk+1. Keeping the

coordinate map Π`
in mind we denote by f

`
0 and f

`
1 the marginal density of P(S,`)

0 ◦Π`
andP(S,`)

1 ◦Π`
,

respectively. Denoting by f
S|`=z
0 and f

S|`=z
1 , respectively, a conditional density of S given ` = z

under the joint distribution P(S,`)
1 and P(S,`)

1 (see Notation §21.11 (iv)) we have f
S|`=z
1 (s)f

`
1 (z) =

exp(z)f
S|`=z
0 (s)f

`
0 (z) for λk+1-a.e. (s, z) ∈ Rk+1. Exploiting Theorem §04.29 (b’3) it holds f`1 (z) =

exp(z)f
`
0 (z) for λ-a.e. z ∈ R (see Remark §04.31). Consequently, it remains to verify that N(v,M)

and N(v′,M) have the same conditional distribution given ` = z. Indeed, both are again multivariate
normal (see Notation §21.11 (v)) with equal covariance matrix Σ− σ2ττ t and conditional mean
P
S|`=z

0 (idRk) = µ + σ−2τ(z + σ2/2) = µ + τ + σ−2τ(z − σ2/2) = P
S|`=z

1 (idRk). The case
of a positive semi-definite Σ and σ2 > 0 follows by similar arguments when considering the
projection onto the image of Σ. If σ = 0 the claim follows from Lemma §04.19 (i) together with
Slutzky’s lemma §20.10. In particular, note that Sn

d−→ N(µ,Σ) under Pn
0 and Sn

d−→ N(µ+τ,Σ) under Pn
1

(see Reminder §04.07). �
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§05 Local asymptotic normality (LAN)

§05.01 Aim. For each n ∈ N let (Xn,Xn,P
n

Θ = (Pn
θ )θ∈Θ) with Θ ⊆ Rk be a statistical experiment. We

aim to approximate (Xn,Xn,P
n

Θ ) in a certain sense by a Gaussian location model after suitable
reparametrisation.

§05.02 Reminder. Consider on (R
k
,B

k
) the family N

R
k
×{Σ} := (N(h,Σ))h∈Rk of multivariate normal dis-

tributions with common strictly positive definite covariance matrix Σ ∈ R(k,k)

>
and log-likelihood

ratio log
(
dN(h,Σ)/dN(0,Σ)

)
(z) = 〈Σ−1h, z〉 − 1

2
〈Σ−1h, h〉, z ∈ Rk. Noting that for each h ∈ Rk

the likelihood L(h) = dN(h,Σ)/dλ
k of N(h,Σ) with respect to the Lebesgue measure λk on Rk satis-

fies L(h, x) = L(0, x − h) for all x ∈ Rk the statistical experiment (R
k
,B

k
,N

R
k
×
{

Σ
}) is called a

Gaussian location model. �

Consider a localised reparametrisation centred around a parameter value θo ∈ int(Θ) which
is in the sequel regarded as fixed.

§05.03 Definition. Consider a sequence of statistical experiments (Xn,Xn,P
n

Θ ), n ∈ N, with common
parameter set Θ ⊆ Rk. Given a localising rate (δn)n∈N with δn = o(1) for each n ∈ N define
a local parameter set Θn

o := {δ−1
n (θ − θo) : θ ∈ Θ} ⊆ R

k. For each θ ∈ Θ and associated
local parameter h = δ−1

n (θ − θo) ∈ Θn
o rewriting Pn

θ as Pn
θo+δnh we obtain a sequence of localised

statistical experiment (Xn,Xn,P
n
δnΘno+θo := (Pn

θo+δnh)h∈Θno ), n ∈ N. �

§05.04 Remark. In the sequel we eventually take the local parameter set Θn
o equal to Rk which is not

correct if the parameter set Θ is a strict subset ofRk. However, if θo ∈ int(Θ) is an inner point of
Θ, which is assumed throughout this section, then for each h ∈ Rk the parameter θ = θo + δnh
belongs to Θ for every sufficiently large n. In other words, the local parameter set Θn

o converges
to the whole of Rk as n → ∞, i.e., ∪n∈NΘn

o = R
k. Thereby, we tactically may either define

the probability measure Pθo+δnh arbitrarily if θo + δnh does not belong to Θ, or assume that n is
sufficiently large. �

§05.05 Aim. We show, for large n, that the localised statistical experiment (Xn,Xn,P
n

δnR
k
+θo

) and a Gaus-
sian location model (R

k
,B

k
,N

R
k
×
{
I−1
θo

}) are similar in statistical properties whenever the original
experiments, i.e., θ 7→ Pθ , are “smooth”.

§05.06 Heuristics. Consider a statistical experiment (X,X ,PΘ) dominated by µ ∈ Mσ(X ), i.e.,
PΘ
� µ, with Θ ⊆ R, positive real likelihood L(θ) = dPθ/dµ ∈ X

+ and log-likelihood ` =
log L. Assume that for all x ∈ X, the map θ 7→ `(θ, x) is twice differentiable with derivatives
˙̀
θ := ∂

∂θ
` and ῭

θ := ∂2

∂2θ
`. A Taylor expansion of the log-likelihood ratio leads to `(θ + h, x) −

`(θ, x) = h ˙̀
θ(x) + 1

2
h2 ῭

θ(x) + o
x
(h2) where the remainder term depends on x. Considering

a product experiment (X
n
,X

⊗n
,P⊗nΘ ) eventually it holds log(dP⊗nθ+h/

√
n/dP

⊗n
θ ) = h

√
nP̂n
(

˙̀
θ

)
+

1
2
h2P̂n

(
῭
θ

)
+ Rn where the score ˙̀ has mean zero, i.e., Pθ

(
˙̀
θ

)
= 0, and the Fisher informa-

tion Iθ equals −Pθ
(
῭
θ

)
= Pθ

(
| ˙̀θ|2

)
. Setting Znθ :=

√
nP̂n
(

˙̀
θ

)
from the central limit theorem

§20.13 follows Znθ
d−→ N(0,Iθ) under P⊗nθ while due to the law of large numbers §20.06 it holds

P̂n ῭
θ = −Iθ + o

P
⊗n
θ

(1). If in addition the remainder term is negligible, i.e., Rn = o
P
⊗n
θ

(1), then the
log-likelihood ratio permits an expansion

log(dP
⊗n
θ+h/

√
n/dP

⊗n
θ ) = hZnθ − 1

2
h2Iθ + o

P
⊗n
θ

(1)

which in the limit equals the log-likelihood ratio in a Gaussian location model. �
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§05.07 Definition. A sequence of statistical experiments (Xn,Xn,P
n

Θ )n∈N with Θ ⊆ Rk is called local
asymptotic normal (LAN) in θo ∈ int(Θ), if there is a localising rate (δn)n∈N with δn = o(1), a
sequence of statistics (Znθo)n∈N ∈ (X

k

n )n∈N and a matrix Iθo ∈ R
(k,k) such that for every h ∈ Rk

the following three statements hold true:
(a) θo + δnh ∈ Θ for all sufficiently large n, i.e., n > no(h);

(b) Znθo
d−→ N(0,Iθo ) under Pn

θo , i.e., Pn
θo ◦ (Znθo)

−1 d−→ N(0,Iθo );

(c) log(dPn
θo+δnh/dP

n
θo ) = 〈Znθo , h〉 −

1
2
〈Iθoh, h〉 +Rn,h where Rn,h = o

P
n
θo

(1).
The matrix Iθo and the sequence of statistics (Znθo)n∈N is called, respectively, Fisher information
at θo and central sequence. �

§05.08 Comment. If we assume in addition a strictly positive definite matrix Iθo ∈ R
(k,k)

>
with inverse

I−1
θo

the sequence of statistics (Z̃nθo := I−1
θo
Znθo)n∈N ∈ (X

k

n )n∈N is equally a central sequence

satisfying Z̃nθo
d−→ N(0,I−1

θo
) under Pn

θ and log(dPn
θo+δnh/dP

n
θo ) = 〈Iθoh, Z̃nθo〉 −

1
2
〈Iθoh, h〉 + o

P
n
θo

(1). In
other words the likelihood ratio dPn

θo+δnh/dP
n
θo equals approximately the likelihood ratio dN(h,I−1

θo
)/

dN(0,I−1
θo

) as in the Reminder §05.02. Consequently, the localised statistical model (Xn,Xn,P
n
δnΘno+θo)

is similar to a Gaussian location model (R
k
,B

⊗k
,N

R
k
×{I−1

θo
}) in the sense of Definition §05.07. �

§05.09 Definition. A LAN sequence of statistical experiments is called uniformly local asymptotic nor-
mal (ULAN) in θo ∈ Θ, if the condition (c) in Definition §05.07 is replaced by
(c’) for hn → h it holds log(dPn

θo+δnhn/dP
n
θo ) = 〈Znθo , h〉 −

1
2
〈Iθoh, h〉 + o

P
n
θo

(1). �

§05.10 Theorem. Let (Xn,Xn,P
n

Θ )n∈N be LAN in θo ∈ Θ ⊆ Rk with localising rate (δn)n∈N, central
sequence (Znθo)n∈N and Fisher information matrix Iθo ∈ R

(k,k). Then for any h, h′ ∈ Rk the
following statements hold true:
(i) (Pn

θo+δnh)n∈N and (Pn
θo+δnh′)n∈N are mutually contiguous, i.e., Pn

θo+δnh / . P
n
θo+δnh′ ;

(ii) Znθo
d−→ N(Iθoh,Iθo ) under Pn

θo+δnh.
If the sequence of statistical experiments is ULAN, then for any hn → h and h′n → h′ in Rk the
following statements hold true:
(i’) (Pn

θo+δnhn)n∈N and (Pn
θo+δnh′n

)n∈N are mutually contiguous, i.e., Pn
θo+δnhn / .P

n
θo+δnh′n

;

(ii’) Znθo
d−→ N(Iθoh,Iθo ) under Pn

θo+δnhn.

§05.11 Proof of Theorem §05.10. is given in the lecture. �

§05.12 Theorem. Let PΘ
� µ ∈ Mσ(X ) with open Θ ⊆ Rk be Hellinger-differentiable in θo ∈ Θ with

derivative ˙̀
θo and Fisher information matrix Iθo = Pθo( ˙̀

θo
˙̀t
θo

) ∈ R(k,k)

> . Then the sequence of
product experiments (X

n
,X

⊗n
,P⊗nΘ ) is ULAN in θo with localising rate δn := n−1/2 and central

sequence Znθo :=
√
n P̂n( ˙̀

θo), n ∈ N, that is,

(i)
√
n P̂n( ˙̀

θo)
d−→ N(0,Iθo ) under P⊗nθo and

(ii) for hn → h it holds log(dP⊗nθo+hn/
√
n/dP

⊗n
θo ) = 〈Znθo , h〉 −

1
2
〈Iθoh, h〉 + o

P
⊗n
θo

(1).

§05.13 Proof of Theorem §05.12. is given in the lecture. �

§05.14 Corollary. Under the assumptions of Theorem §05.12 consider for each n ∈ N a statistical
product experiment (X

n
,X

⊗n
,P⊗nΘ ) and an estimator γ̂n ∈ (X

⊗n
)p of a parameter of interest γ :

Θ→ R
p allowing an expansion

√
n(γ̂n−γ(θo)) =

√
n P̂n(ψθo)+oP⊗nθo

(1) for some function ψθo ∈
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L
p
2 (Pθo) with Pθo(ψθo) = 0. Then,

√
n(γ̂n− γ(θo))

d−→ N(0,Σo)
under P⊗nθo with Σo := Pθo(ψθoψ

t
θo

) and

for each h ∈ Rk holds
√
n(γ̂n − γ(θo))

d−→ N(τh,Σo)
under P⊗nθo+h/

√
n with τh := Pθo(ψθo ˙̀t

θo
)h.

§05.15 Proof of Corollary §05.14. is given in the lecture. �

§05.16 Example (Example §03.06 continued). Under the assumptions of Theorem §05.12 let γ : θ → R
p

be a parameter of interest. Consider m(γ) ∈ L1(Pθ ) for all γ ∈ Rp, a criterion process M̂n(γ) =

P̂n
(
m(γ)

)
, a criterion function M(θ, γ) = Pθ

(
m(γ)

)
and a M-estimator γ̂n ∈ arg infγ∈Γ{M̂n(γ)}

of {γo := γ(θo)} = arg infγ∈Γ{M(θo, γ)}. Under regularity conditions as in Example §03.06
we have

√
n(γ̂n − γo) =

√
nP̂n
(
ψθo
)

+ o
Pθo
⊗n(1) with ψθo := −M̈−1

o ṁ(γo) assuming a regular
matrix M̈o := Pθo

(
m̈(γo)

)
. Consequently, setting Σo = Pθo(ψθoψ

t
θo

) = M̈−1
o Pθo(ṁ(γo)ṁ(γo)

t)M̈−1
o

from Corollary §05.14 it follows
√
n(γ̂n − γo)

d−→ N(τh,Σo)
under P

⊗n
θo+h/

√
n with τh = −M̈−1

o Pθo(ṁ(γo) ˙̀t
θo)h.

In the particular case of a MLE θ̂n of θ, i.e., (γ = id
R
k), as in Example §03.07 setting m :=

− log(dPθ/dPo ) we have ṁ(θo) = − ˙̀
θo , Iθo = Pθo

(
ṁ(θo)ṁ(θo)

t
)

= Pθo
(
m̈(θo)

)
= M̈o and

thus Σo = M̈−1
o Pθo(ṁ(γo)ṁ(γo)

t)M̈−1
o = I−1

θo
and τh := −M̈−1

o Pθo(ṁ(θo) ˙̀t
θo

)h = h. Therewith,
√
n(θ̂n − θo)

d−→ N(h,I−1
θo

) under P⊗nθo+h/
√
n. �

§05.17 Remark. Supposing
√
n(θ̂n−θo) =

√
n P̂n(ψθo)+o

P
⊗n
θo

(1) let us further assume a transformation
A : Θ → R

p that is “smooth”, and hence by employing the delta method §20.16, for instance
satisfies

√
n(A(θ̂n)−A(θo)) = Ȧθo

√
n P̂n(ψθo) + o

P
⊗n
θo

(1). Consequently, it follows
√
n(A(θ̂n)−

A(θo))
d−→ N(τh,Σo)

under P⊗nθo+h/
√
n with τh = ȦθoPθo(ψθo ˙̀t

θo
)h and Σo = ȦθoPθo(ψθoψ

t
θo

)Ȧtθo . In the

special case of a MLE we have
√
n(A(θ̂n)− A(θo))

d−→ N(Ȧθoh,ȦθoI
−1
θo
Ȧtθo ) under P⊗nθo+h/

√
n. �

§06 Asymptotic relative efficiency

§06.01 Heuristics (§03.09 and §03.10 continued). Under the conditions of Corollary §05.14 consider the
statistical testing task H0 : A(θo) = 0 against the alternative H1 : A(θo) 6= 0 for some trans-
formation A : Θ → Rp satisfying

√
n(A(θ̂n) − A(θo)) = Ȧθo

√
n P̂n(ψθo) + o

Pθo
⊗n(1). As in

§03.09 let Ŵn := nA(θ̂n)tΣ̂−1
n A(θ̂n) where Σ̂n = Σ + o

Pθo
⊗n(1) is a consistent estimator of

Σ = ȦθoPθo(ψθoψ
t
θo

)Ȧtθo , then a Wald test is given by ϕn := 1{
Ŵn>χ2

p,1−α

}. Thereby, under H0, i.e.

A(θo) = 0, we have
√
nA(θ̂n) = Ȧθo

√
n P̂n(ψθo) + o

P
⊗n
θo

(1) and Ŵn
d−→ χ2

p under P⊗nθo which in
turn implies P⊗nθo (ϕn = 1)

n→∞−−−→ χ2
p((χ

2
p,1−α,∞)) = α. In other words, the Wald test is asymp-

totically a level α test. For each θ ∈ Θ let us denote βϕn(θ) := P
⊗n
θ (ϕn) = P

⊗n
θ (ϕn = 1) =

P
⊗n
θ (Ŵn > χ2

p,1−α) which equals the power of the Wald test ϕn underH1, i.e. θ ∈ Θ withA(θ) 6=
0. In the sequel we consider local alternatives of the form θ = θo + h/

√
n and thus we are inter-

ested in βϕn(θo+h/
√
n) = P

⊗n
θo+h/

√
n(Ŵn > χ2

p,1−α). Keeping Remark §05.17 underP⊗nθo+h/
√
n we have

√
nA(θ̂n)

d−→ N(ȦθoPθo(ψθo
˙̀t
θo

)h,Σ), assuming additionally Σ > 0 also Σ−1/2
√
nA(θ̂n)

d−→ N(ah,Idp)
with

ah := Σ−1/2ȦθoPθo(ψθo ˙̀
θo)

th, and hence, nA(θ̂n)tΣ−1A(θ̂n)
d−→ χ2

p(‖ah‖2). Here χ2
p(c) denotes

a non-central χ2-distribution with p degrees of freedom and non-centrality parameter c ∈ R+.
Moreover, Ŵn− nA(θ̂n)tΣ−1A(θ̂n) = o

P
⊗n
θo

(1) and thus Ŵn− nA(θ̂n)tΣ−1A(θ̂n) = o
P
⊗n
θo+h/

√
n

(1) due
to Lemma §04.19 (ii) by employing that P⊗nθo / . P⊗nθo+h/

√
n are mutually contiguous. Consequently,

Ŵn
d−→ χ2

p(‖ah‖2) under P⊗nθo+h/
√
n and thus βϕn(θo + h/

√
n)

n→∞−−−→ χ2
p(‖ah‖2)

(
(χ2

p,1−α,∞)
)
. Note

that ah simplifies to htȦtθo(ȦθoI
−1
θo
Ȧtθo)

−1Ȧθoh in the particular case of a MLE θ̂n. �

Statistics 2 25



Chapter 2 Asymptotic properties of tests §06 Asymptotic relative efficiency

§06.02 Reminder (Gauß test). In a Gaussian location model, i.e. Y ©∼ N
R
k
×{I−1

θo
} with Iθo ∈ R

(k,k)

>
, consider

the binary testing taskH0 : {N(0,I−1
θo

)} against the alternativeH1 : {N(h,I−1
θo

)} for some h ∈ Rk. In this
situation the log-likelihood ratio `h = log(dN(h,I−1

θo
)/dN(0,I−1

θo
)) satisfies `h(y) = 〈Iθoy, h〉 − 1

2
σ2
h for

all y ∈ Rk with σ2
h := 〈Iθoh, h〉. Consequently, `h ∼ N(−σ2

h/2,σ
2
h) under N(0,I−1

θo
), i.e. under the hypoth-

esisH0, and `h ∼ N(σ2
h/2,σ

2
h) under N(h,I−1

θo
), i.e. under the alternativeH1. For α ∈ (0, 1) let ch,1−α ∈ R

satisfy N(−σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
= α and thus N(0,I−1

θo
)(`h > ch,1−α) = N(−σ2

h/2,σ
2
h)

(
(ch,1−α,∞)

)
= α.

Keeping in mind that any most powerful level-α test has Neyman-Pearson form and the Gauß
test ϕ? := 1{`h>ch,1−α} is a Neyman-Pearson level-α test. Its power given by βϕ?(h) := N(h,I−1

θo
)(ϕ

? =

1) = N(h,I−1
θo

)(`h > ch,1−α) = N(σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
is maximal in the class of all level-α tests, i.e.,

for any level-α test ϕ holds βϕ(h) 6 βϕ?(h). In other words, ϕ? is a most powerful level-α test
(Statistik 1, Satz §18.16, p.56). �

§06.03 Example (Neyman-Pearson test). Assume local asymptotic normality as in Definition §05.07
where `h,n := log(dPn

θo+δnh/dP
n
θo )

d−→ N(−σ2
h/2,σ

2
h) under Pn

θo with σ2
h := 〈Iθoh, h〉 for h ∈ Rk. Hence

by Le Cam’s first lemma (Example §04.34) mutual contiguity Pn
θo+δnh / . P

n
θo and `h,n

d−→ N(σ2
h/2,σ

2
h)

under Pn
θo+δnh hold. Consider the binary testing task of the hypothesis H0 : {Pn

θo } against a local
alternative H1 : {Pn

θo+δnh}. In this situation ϕ?n = 1{`h,n>ch,n,1−α} is a Neyman-Pearson test, which
is a most powerful level-α test, if Pn

θo (ϕ?n = 1) = α. Keeping its power function βϕ?n(θ) =
P
n
θ (ϕ?n) = P

n
θ (ϕ?n = 1) = P

n
θ (`h,n > ch,n,1−α) evaluated at θ in mind the value βϕ?n(θo + δnh)

equals the maximal size of the power in the class of all level-α tests. Considering ch,1−α ∈ R
as in Reminder §06.02 under local asymptotic normality it follows α = P

n
θo (ϕ?n) = P

n
θo (`h,n >

ch,n,1−α)
n→∞−−−→ N(−σ2

h/2,σ
2
h)

(
(ch,1−α,∞)

)
= α which implies ch,n,1−α

n→∞−−−→ ch,1−α, and in addition
βϕ?n(θo+δnh) = P

n
θo+δnh(ϕ

?
n) = P

n
θo+δnh(`h,n > ch,n,1−α)

n→∞−−−→ N(σ2
h/2,σ

2
h)

(
(ch,1−α,∞)

)
= βϕ?(h) with

Neyman-Pearson test ϕ? in a Gaussian location model as in Reminder §06.02. �

§06.04 Theorem. Let Θ ⊆ R. Consider a one-sided test task H0 : (−∞, θo] against H1 : (θo,∞).
Suppose that (Xn,Xn,P

n
Θ ) is LAN in θo ∈ Θ with localising sequence (δn)n∈N, central sequence

(Znθo)n∈N ∈ (Xn)n∈N and strictly positive Fisher information Iθo ∈ R
+

\0.

(i) Given a sequence (Tn)n∈N ∈ (Xn)n∈N of test statistics satisfying (Tn,Z
n
θo

)
d−→ N(0,M) with

M =
(
(σ2, ρ)t, (ρ, Iθo)

t
)

consider the randomised test ϕn := 1{
Tn>cn

} + γn1{Tn=cn

} with
γn ∈ [0, 1] and cn ∈ R such that βϕn(θo) = P

n
θo (ϕn) = P

n
θo (Tn > cn) + γnP

n
θo (Tn = cn) =

αn
n→∞−−−→ α. Choosing z1−α ∈ R with 1− F[0,1](z1−α) := N(0,1)

(
(z1−α,∞)

)
= α we have

βϕn(θo + δnh) = P
n

θo+δnh(ϕn)
n→∞−−−→ F[0,1](−z1−α + hρ/σ).

(ii) In case Tn = Znθo consider ϕ?n = 1{Znθo>z1−αI
1/2
θo
}, i.e. γn = 0 and cn = z1−αI

1/2
θo

. Then

βϕ?n(θo) = P
n
θo (ϕ?n) = P

n
θo (I

−1/2
θo

Znθo > z1−α)
n→∞−−−→ 1− F[0,1](z1−α) = α and

βϕ?n(θo + δnh) = P
n

θo+δnh(ϕ
?
n)

n→∞−−−→ F[0,1](−z1−α + hI
1/2
θo

).

§06.05 Proof of Theorem §06.04. is given in the lecture. �

§06.06 Remark.
(a) By using Theorem §04.35 directly it could be possible to calculate an asymptotic power of

a test if log(dPn
θo+δnh/dP

n
θo )

d−→ P under Pn
θo where P equals not necessarily N(0,1).

(b) Let (Y1, Y2) ∼ N(0,M) with M =
(
(σ2, ρ)t, (ρ, Iθo)

t
)

as in Theorem §06.04 (i), then ρ2 =
|Cov(Y1, Y2)|2 6 var

m
(Y1)var

m
(Y2) = σ2Iθo . Consequently, the test ϕ?n given in (ii) max-

imises the asymptotic power when considering only a randomised test ϕn as given in part
(i) of Theorem §06.04. �
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§06.07 Theorem. Let the assumptions of Theorem §06.04 be satisfied. Any test ϕn of the one-sided
testing task H0 : (∞, θo] against H1 : (θo,∞) with βϕn(θo) := P

n
θo (ϕn) = αn

n→∞−−−→ α fulfils
(i) lim supn→∞ βϕn(θo + δnh) 6 F[0,1](−z1−α + h

√
Iθo) for all h ∈ R+

\0;

(ii) lim infn→∞ βϕn(θo − δnh) > F[0,1](−z1−α − h
√
Iθo) for all h ∈ R+

\0.

§06.08 Proof of Theorem §06.07. is given in the lecture. �

§06.09 Remark. Keeping Theorem §06.07 in mind we call the test (sequence) (ϕ?n)n∈N given in Theo-
rem §06.04 (ii) asymptotically uniformly most powerful level-α test (sequence) in the class of all
asymptotic level-α test (sequences). Its asymptotic power function equals F[0,1](−z1−α + h

√
Iθo)

which is the power function of the uniformly most powerful test of H0 : (−∞, 0] against
H1 : (0,∞) in the limit Gaussian location experiment (R,B ,NR×{I−1

θo
}). �

§06.10 Asymptotic relative efficiency. Let (Xn,Xn,P
n

Θ )n∈N be LAN with localising rate δn := n−1/2.
Consider a test ϕan satisfying the conditions of Theorem §06.04 (i) and hence, admitting an
asymptotic power function such that βϕan(θo + h/

√
n)

n→∞−−−→ F[0,1](−z1−α + hρa/σa). Thereby,
choosing η = h/

√
n the approximation βϕan(θo + η) ≈ F[0,1](−z1−α + η

√
nρa/σa) is reasonable.

In analogy, if ϕbn is another test satisfying the conditions of Theorem §06.04 (i) and admitting
βϕbn(θo + η) ≈ F[0,1](−z1−α + η

√
nρb/σb). Roughly speaking, this means, that at θo + η the

power of the test ϕana and ϕbnb with sample size na and nb, respectively, is approximately equal
if naρ2

a/σ
2
a = nbρ

2
b/σ

2
b . The quantity are(ϕana , ϕ

b
nb

) = (na/nb) = (ρ2
bσ

2
a)/(ρ

2
aσ

2
b ) is called

asymptotic relative efficiency. Meaning, that a sample of size na = are(ϕana , ϕ
b
nb

)nb is needed
for the test ϕana to attain at θo + η approximately the same power F[0,1](−z1−α + η

√
naρa/σa) =

F[0,1](−z1−α + η
√
nbρb/σb) as the test ϕbnb with sample size nb. A comparison with the test

ϕ?n as in Theorem §06.04 (ii) allows analogously to introduce a notion of asymptotic absolute
efficiency. �

§07 Rank tests

§07.01 Reminder. Consider on the sample space (R
n
,B

n
) the statistic T : R

n → R
n with x 7→ T (x) =

(Ti(x))i∈JnK and Ti(x) := min{c ∈ R :
∑

j∈JnK 1{xj6c} > i}, i ∈ JnK. Since T1(x) 6 T2(x) 6
· · · 6 Tn(x) for all x ∈ Rn the statistic T (and any other statistic with this property) is called
an order statistic. Denote by Sn the symmetric group of order n, i.e. the set of all permutations
of the set JnK. We identify as usual a vector s = (si)i∈JnK ∈ JnKn with the map s : JnK → JnK,
i 7→ s(i) := si, and hence Sn ⊆ JnKn. Let s− ∈ Sn denote the inverse permutation of s ∈ Sn, i.e.
idSn = s ◦ s− = s− ◦ s. For a permutation s = (si)i∈JnK ∈ Sn and a vector x = (xi)i∈JnK ∈ R

n

we write shortly xs := (xsi)i∈JnK. A Borel-measurable map S := (Si)i∈JnK : R
n → Sn, i.e.

S−1({s}) ∈ B
n for all s ∈ Sn, is called a random permutation on (R

n
,B

n
). The associated map

S− : R
n → Sn satisfying idSn = S−(x) ◦ S(x) = S(x) ◦ S−(x) for all x ∈ X is trivially again

Borel-measurable, and hence called random inverse permutation of S. Moreover the statistic
XS : R

n → R
n with x 7→ XS(x) := (xSi(x))i∈JnK = xS(x) =

∑
s∈Sn xs1{s}(S(x)) (a finite sum of

Borel-measurable functions x 7→ xs1S−1(s)(x)) is called a random arrangement. �

§07.02 Definition. A random permutationO = (Oi)i∈JnK on (R
n
,B

n
) is called order permutation, if the

associated random arrangementXO : R
n → R

n with x 7→ xO(x) is an order statistic, i.e. xO1(x) 6
xO2(x) 6 · · · 6 xOn(x) for all x ∈ Rn. A random permutation R = (Ri)i∈JnK on (R

n
,B

n
) is

called rank permutation, if its random inverse permutation O := R− is an order permutation.
For i ∈ JnK the i-th component Ri(x) of R(x) is called the rank of the i-th component of
x ∈ Rn. �
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§07.03 Comment. An order permutation O is uniquely determined on the Borel-set
{
xi 6= xj

}
:={

(xi)i∈JnK ∈ R
n
: xi 6= xj ,∀ j ∈ JnK\{i},∀ i ∈ JnK

}
only. However, for x ∈ Rn, the permutation o :=

O(x) ∈ Sn and i ∈ JnK the value at the i-th position in the ordered vector xo equals the value at
the oi-th position in the original vector x. Conversely, for the permutation r := R(x) ∈ Sn of
the rank permutation R := O− the value at the ri-th position in the ordered vector xo equals the
value at the i-th position in the original vector x. �

§07.04 Remark. The map R∗ = (R∗i )i∈JnK : R
n → Sn with x 7→ R∗i (x) :=

∑
j∈JiK 1

{
xi=xj

} +∑
j∈JnK 1

{
xi>xj

} for each i ∈ JnK is a rank permutation. Indeed, for each x ∈ R
n we have

r := R∗(x) ∈ Sn (r : JnK → JnK is injective and hence bijective) and its inverse permutation
o := r− satisfies xo1 6 xo2 6 · · · 6 xon . Furthermore, each component of R∗ is B-2JnK-
measurable, and hence R∗ is a rank permutation. On the Borel-set

{
xi 6= xj

}
each rank permu-

tation R = (Ri)i∈JnK is uniquely determined by Ri(x) =
∑

j∈JnK 1{xj6xi} = R∗i (x), i ∈ JnK. For

each y ∈ R define F̂n(y) := P̂n(1(−∞,y]) with F̂n(y, x) := 1
n

∑
j∈JnK 1

{
xj6y

} ∈ [0, 1] for all x ∈ Rn.

F̂n is called empirical cumulative distribution function. If in addition r := R(x) and o := r− for
x ∈

{
xi 6= xj

}
then i = nF̂n(xoi , x) and ri = nF̂n(xi, x) for each i ∈ JnK. �

§07.05 Comment. We assume a product probability measure Pn =
⊗

j∈JnKPj on the sample space
(R

n
,B

n
) where for each j ∈ JnK the marginal probability measure Pj ∈ W(B) admits a

Lebesgue density fj = dPj /dλ and hence Pn � λn ∈ Mσ(Bn) with Lebesgue density dPn/
dλn =

∏
j∈JnK fj. Noting that the complement

{
xi = xj

}
:=

{
xi 6= xj

}c of the Borel-set{
xi 6= xj

}
is a λn null set, and hence it is also a Pn null set. Thereby, each rank permuta-

tion R on (R
n
,B

n
) with corresponding order permutation O := R− satisfies xO1(x) < xO2(x) <

· · · < xOn(x) for Pn-a.e. x ∈ Rn. Moreover, for Pn-a.e. x ∈ Rn the vector of ranks R(x) (and
the rang permutation R) is determined by Ri(x) =

∑
j∈JnK 1{xj6xi} = nF̂n(xi, x), i ∈ JnK. �

§07.06 Lemma. Consider a product probability measure P⊗n on (R
n
,B

n
) with identical marginal dis-

tribution P ∈W(B), cumulative distribution function F (y) := P(1(−∞,y]), y ∈ R, and Lebesgue
density f = dP/dλ. Let R and XO with O = R− be a rang permutation on (R

n
,B

n
) and the

corresponding order statistic, respectively.
(i) R is under P⊗n uniformly distributed on the symmetric group Sn, precisely, (P⊗n)R({s}) =

(P⊗n ◦R−1)({s}) = P⊗n(R = s) = 1
n!

, s ∈ Sn, in short R ∼ (P⊗n)R = USn
.

(ii) R and XO are independent under P⊗n.

(iii) The distribution of XO admits under P⊗n a Lebesgue density f(
XO
x) = n!1B(x)

∏
i∈JnK f(xi),

x ∈ Rn, with B := {(xi)i∈JnK ∈ R
n
, x1 < . . . < xn}.

(iv) For each i ∈ JnK the distribution of the i-th component ofXO admits under P⊗n a Lebesgue
density fi(x) = i

(
n
i

)
|F(x)|i−1|1− F(x)|n−if(x), x ∈ R.

§07.07 Proof of Lemma §07.06. is given in the lecture. �

§07.08 Definition. Let Po and P be probability measures on (R,B). We say Po is stochastically smaller
than P, or Po � P for short, if Po ((c,∞)) 6 P((c,∞)) for all c ∈ R. If in addition Po 6= P, then
we write Po ≺ P. �

§07.09 Remark. Roughly speaking, Po � P says that realisations of Po are typically smaller than reali-
sations of P. �

§07.10 Example. For σ ∈ R+ consider on (R,B) a Gaussian location family NR×{σ2}. Then for all
a, b ∈ R holds N(a,σ2) ≺ N(b,σ2) if and only if a � b. More generally, given a location family PR on
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(R,B) as introduced in Example §04.17 with likelihood function L(θ, x) = g(x− θ), θ, x ∈ R,
for some strictly positive Lebesgue-density g on R. Then for all a, b ∈ R holds Pa ≺ Pb if and
only if a � b. �

§07.11 Heuristics. Given a sample from each distribution Po ,P ∈ W(B) we consider the testing task
Ho : P = Po against the alternative H1 : Po ≺ P. Loosely speaking, this means, that we
aim to reject the null hypothesis if realisations of Po are significantly smaller than realisation
of P. More precisely, we assume a sample of n = m + l independent real random vari-
ables (Xi)i∈JnK where the first m and the last l have as common marginal distribution Po and
P, respectively. In other words X = (Xi)i∈JnK takes its values in the pooled sample space
(R

n
,B

n
). Considering a rank permutation R on (R

n
,B

n
) and an observation x ∈ Rn it seems

reasonable to reject the hypothesis if the sum of ranks within the first group of m random vari-
ables, i.e. Wo(x) :=

∑
i∈JmKRi(x), takes sufficiently smaller values then the sum of ranks

within the second group of l random variables, i.e. W (x) :=
∑

i∈JlKRi+m(x) where obviously

Wo(x) +W (x) =
∑

i∈JnKRi(x) =
∑

i∈JnK i = n(n+1)
2

. �

§07.12 Lemma. For m, l ∈ N and n := m + l let R = (Ri)i∈JnK be a rang permutation on (Rn,Bn),
Wo :=

∑
i∈JmKRi, W :=

∑
i∈JlKRi+m and Uml : Rn → J0,mlK with x 7→ Uml(x) :=∑

i∈JmK
∑

j∈JlK 1{xi>xj+m}. Then for each x ∈ {xi 6= xj} it holds Wo(x) = Uml(x) + m(m+1)
2

and consequently W (x) = ml − Uml(x) + l(l+1)
2

.

§07.13 Proof of Lemma §07.12. is given in the lecture. �

§07.14 Comment. Keeping Lemma §07.12 in mind, we use the test statistic Wo or equivalently Uml to
reject the hypothesis H0 : P = Po against the alternative H1 : Po ≺ P, if Uml < c or equivalently
Wo < c+m(m+1)

2
for a certain threshold c ∈ (0,ml]. The test is called (one-sided) Mann-Whitney

U-test or Wilcoxon two-sample rank sum test1. The critical value has to be chosen according to
a pre-specified level α ∈ (0, 1) which under the null hypothesis necessitates the knowledge of
the distribution of Uml or an asymptotic approximation. Interestingly the next proposition shows
that under the null hypothesis the distribution of Uml is distribution free in the following sense:
If Po = P and P admits a Lebesgue density, then the distribution of Uml is determined and it is
independent of the underlying distribution P. �

§07.15 Proposition. For m, l ∈ N and n := m + l let P⊗n ∈ W(B
n
) with identical marginal distri-

bution P � λ. For all k ∈ J0,mlK it holds P⊗n(Uml = k) = N(k;m, l)/
(
n
k

)
where N(k;m, l)

denotes the number of all partitions
∑

i∈JmK ki = k of k in m increasingly ordered numbers
k1 6 k2 6 · · · 6 km taking from the set J0, lK. In particular, it holds P⊗n(Uml = k) =
P
⊗n(Uml = ml − k).

§07.16 Proof of Proposition §07.15. is given in the lecture. �

§07.17 Remark. For small values of k the partition number N(k;m, l) can be calculated by combina-
torical means and there exists tables gathering certain quantiles of theUml-distribution. However,
for large values of k the exact calculation of quantiles of the Uml-distribution may be avoided by
using an appropriate asymptotic approximation. In the sequel we let m and l and thus n = m+ l
tend to infinity, which formally means that we consider sequences (mn)n∈N and (ln)n∈N satisfy-
ing mn + ln = n for any n ∈ N. Here and subsequently we assume that mn/n

n→∞−−−→ γ ∈ (0, 1)
and hence ln/n

n→∞−−−→ 1− γ. For sake of presentation, however, we drop the additional index n
and write shortly n = m+ l with m/n n→∞−−−→ γ and hence l/n n→∞−−−→ 1− γ. �

1The version based on Wo has been proposed by Wilcoxon [1945], while the Uml-version has been independently
be introduced by Mann and Whitney [1947].
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§07.18 Theorem. For m, l ∈ N and n := m+ l let P⊗n ∈W(B
n
) with identical marginal distribution

P � λ, and hence continuous cumulative distribution function F. Consider Uml : R
n → J0,mlK

and Tml : R
n → R with x 7→ Uml(x) :=

∑
i∈JmK

∑
j∈JlK 1{xi>xj+m} and

x 7→ Tml(x) := l
∑
i∈JmK

F(xi)−m
∑
i∈JlK

F(xi+m) = l
∑
i∈JmK

(F(xi)−1/2)−m
∑
i∈JlK

(F(xi+m)−1/2).

Define further vml := ml(n + 1)/12, T ?ml := Tml/
√
vml and U?

ml := (Uml −ml/2)/
√
vml. If in

addition m/n → γ ∈ (0, 1) then U?
ml − T ?ml = o

P⊗n
(1) and T ?ml

d−→ N(0,1) under P⊗n, and thus

U?
ml

d−→ N(0,1) under P⊗n.

§07.19 Proof of Theorem §07.18. is given in the lecture. �

§07.20 Remark. Considering two independent samples (Xi)i∈JmK ∼ P
⊗m
o and (Xi+m)i∈JlK ∼ P

⊗l set
n := m+ l and X := (Xi)i∈JnK. Keeping Theorem §07.18 in mind we reject the null hypothesis
Ho : Po = P against the alternative H1 : Po ≺ P, if Uml(X) < ml/2 + zα

√
vml with F[0,1](zα) =

α ∈ (0, 1). This test is asymptotically a level-α test due to Theorem §07.18 by exploiting that
under the null P⊗n(Uml < ml/2 + zα

√
vml)

n→∞−−−→ F[0,1](zα) = α for m/n n→∞−−−→ γ ∈ (0, 1).
Note that we reject similarly the null hypothesis Ho : Po = P against the alternative H1 : P ≺ Po
if Uml > ml/2 + z1−α

√
vml. Next we study the (asymptotic) size of the power of the rank test

under local alternatives where we use that under the assumptions of Theorem §07.18 it holds

U?
ml =

Uml −ml/2√
vml

=
√

l
n+1

1√
m

∑
i∈JmK

F(Xi)−1/2√
1/12

−
√

m
n+1

1√
l

∑
i∈JlK

F(Xi+m)−1/2√
1/12

+ o
P
⊗n(1)

=
√

1− γ
√
m P̂m(g) −√γ

√
l P̂l (g) + o

P
⊗n(1) (07.01)

setting g :=
√

12(F − 1/2), P̂m(g) := 1
m

∑
i∈JmK g(Xi) and P̂l (g) := 1

l

∑
i∈JlK g(Xi+m) where

P̂m(g) and P̂l (g) are independent, P(g) = 0, and P(g2) = 1 by construction. �

§08 Asymptotic power of rank tests

§08.01 Motivation. Considering the test of the hypothesis H0 : Po = P against the alternative H1 :
Po ≺ P we restrict our attention to the special case that Po and P belong to a location family PR as
introduced in Example §04.17. Precisely, we assume that the family PR of probability measures
on (R,B) is dominated by the Lebesgue measure. For each θ ∈ R, Pθ admits a likelihood
function given by L(θ, x) = g(x−θ), x ∈ R, where g is a continuous and strictly positive density
onR. Recall that in this contextPa ≺ Pb holds if and only if a � b (see Example §07.10). Observe
further that we can assume that Po = P0 (possibly after a reparametrisation). For m, l ∈ N
and n = m + l supposing independent random variables (Xi)i∈JnK with (Xi)i∈JmK©∼ P

⊗m
R and

(Xi+m)i∈JlK ∼ P
⊗l

0 their joint distribution belongs to the two sample location family Pm,l
R :=(

P
m,l
θ := P

⊗m
θ ⊗ P⊗l0

)
θ∈R. Summarising, based on the statistical two sample location experiment

(R
n
,B

n
,Pm,l

R ) the aim is to test the hypothesis H0 : θ = 0 against the alternative H1 : 0 < θ. �

§08.02 Regular location model. A location family PR of probability measures on (R,B) dominated by
the Lebesgue measure λ ∈Mσ(B) with likelihood for each θ ∈ R and a strictly positive density
g ∈ B+ given by L(θ, x) = g(x − θ), x ∈ R, is called regular if the density g is in addition
continuously differentiable with derivative ġ satisfying λ(|ġ|2/g) <∞. �
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§08.03 Reminder. A regular location family PR is Hellinger-differentiable in each θ ∈ R with score
function ˙̀

θ = −ġ(x− θ)/g(x− θ) and Fisher information I := Iθ = λ(|ġ|2/g) (see Exam-
ple §04.17). Due to Theorem §05.12 the statistical product experiment (R

m
,B

m
,P⊗mR ) is ULAN

in θo = 0 with localising rate (δm := m−1/2)m∈N and central sequence (Zm0 := −
√
mP̂m(ġ/g))m∈N.

Precisely, for any sequence hm → h as m→∞ it holds

log(dP
⊗m
hm/
√
m/dP

⊗m
0 ) = −h

√
mP̂m(ġ/g)− 1

2
h2I + o

P
⊗m

0

(1)

and
√
mP̂m(ġ/g)

d−→ N(0,I) under P⊗m0 . Given a two sample location family Pm,l
R for any θ ∈ R

the log of the likelihood-ratio satisfies log(dPm,l
θ /dPm,l

0 ) = log(dP⊗mθ /dP⊗m0 ). Thereby, if the
location family is regular and m/n n→∞−−−→ γ ∈ (0, 1), whence hm := h

√
m/n

n→∞−−−→ h
√
γ, it

follows

`h,n := log(dP
m,l

h/
√
n/dP

m,l

0 ) = log(dP
⊗m
hm/
√
m/dP

⊗m
0 )

= −h√γ
√
m P̂m(ġ/g) − γ

2
h2I + o

P
⊗n

0

(1) (08.01)

We consider in the sequel a rank test ϕn = 1{
U?ml>z1−α

} with F[0,1](−z1−α) = α ∈ (0, 1) based
on the standardised test statistic U?

ml = (Uml −ml/2)/
√
vml and its asymptotic decomposition

given in (07.01). �

§08.04 Theorem. Assume a two sample regular location model (R
n
,B

n
,Pm,l

R ), n = m + l ∈ N. Con-
sider a rank test ϕn = 1{

U?ml>z1−α

} with F[0,1](−z1−α) = α ∈ (0, 1) for the testing task H0 : θ = 0

against H1 : θ > 0. If m/n n→∞−−−→ γ ∈ (0, 1), then:
(i) Under the null hypothesis Ho : θ = 0 we have Pm,l

0 (ϕn) = P
⊗m+l

0 (U?
ml > z1−α)

n→∞−−−→ α, i.e.,
ϕn is an asymptotic level-α test;

(ii) The power function βϕn(θ) = P
m,l
θ (ϕn), θ ∈ R, of the rank test ϕn = 1{

U?ml>z1−α

} satisfies

under local alternatives βϕn(h/
√
n) = P

m,l

h/
√
n(U

?
ml > z1−α)

n→∞−−−→ F[0,1](−z1−α + hρ) with
ρ = λ(g2)

√
12γ(1− γ) for each h ∈ R+.

§08.05 Proof of Theorem §08.04. is given in the lecture. �

§08.06 Comment. Let us briefly consider a rank testϕn = 1{
Uml<ml/2+zα

√
vml

} = 1{
U?ml<zα

} with F[0,1](zα) =

α ∈ (0, 1) for the testing task of the null hypothesisH0 : θ = 0 against the alternativeH1 : 0 > θ.
Similar to Theorem §08.04 ϕn is an asymptotic level-α test with power for local alternatives
βϕn(−h/

√
n) = P

m,l

−h/
√
n(U

?
ml < zα)

n→∞−−−→ F[0,1](zα + hρ), h ∈ R+. �

§08.07 Two sample Gaussian location model. For m, l ∈ N, n = m + l and variance σ2 ∈ R+

\0

the joint distribution of independent random variables (Xi)i∈JnK with (Xi)i∈JmK©∼ N
⊗m
R×{σ2} and

(Xi+m)i∈JlK ∼ N
⊗l
(0,σ2) belongs to a two sample Gaussian location model N

m,l

R×{σ2} :=
(
N
m,l

(θ,σ2) :=

N
⊗m
(θ,σ2) ⊗ N

⊗l
(0,σ2)

)
θ∈R. �

§08.08 Remark. For σ ∈ R+

\0 a Gaussian location family NR×{σ2} on (R,B) is regular with score function
˙̀
θ(x) = (x − θ)/σ, x ∈ R, and Fisher information Iθ = λ(|ġ|2/g) = N(θ,σ2)( ˙̀2

θ) =
∫
R

(x −
θ)2/σ2N(θ,σ2)(dx) = 1, θ ∈ R (using the notations in Example §04.17). �

§08.09 Example. Assume a two sample Gaussian location model (R
n
,B

n
,N

m,l

R×{σ2}), n = m + l ∈ N
and σ ∈ R+

\0. Define the statistics Tml := l
∑

i∈JmKXi − m
∑

i∈JlKXi+m ∈ B
n and V 2

ml :=
ml(m+l)
(m+l)−2

(∑
i∈JmK(Xi− 1

m

∑
i∈JmKXi)

2 +
∑

i∈JlK(Xi+m− 1
l

∑
i∈JlKXi+m)2

)
∈ B

n, and set Vml :=
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V 2
ml. Under N

m,l

(0,σ2) the standardised (Student-) t-statistic T ?ml := Tml/Vml ∈ B
n

has a tn−2-
distribution with n − 2 degrees of freedom, i.e. T ?ml ∼ tn−2. We denote by tn−2,α a α-quantile
of a tn−2-distribution, i.e., Ftn−2

(tn−2,α) = α ∈ (0, 1). Consider for the testing task of the null
hypothesis Ho : θ = 0 against the alternative H1 : 0 < θ (or H1 : 0 > θ) the t-test ϕ?n =
1{

T ?ml>tn−2,1−α

} (or ϕ?n = 1{
T ?ml<tn−2,α

}), which is by construction a level-α test. Since a Gaussian
location model is regular (see Remark §08.08) we can directly apply Theorem §08.04 to derive
its asymptotic power function under local alternatives. However, Theorem §08.04 allows us to
study a t-test in an arbitrary regular location model (Definition §08.02). More precisely, for
θ ∈ R and σ ∈ R+

\0 define v(θ,σ) ∈ B with x 7→ v(θ,σ)(x) := (x − θ)/σ. As in Remark §08.08
˙̀
θ = v(θ,σ) and Iθ = N(θ,σ2)(v

2
(θ,σ)) = 1, θ ∈ R, is the score function and Fisher information,

respectively, in a Gaussian location family NR×{σ2} with variance σ2 ∈ R+

\0. Considering a regular
location family PR with P0 ∈W2(B) (see Notation §19.05) and hence Pθ ∈W2(B) for all θ ∈ R
we have σ2 := P0 (v

2
(0,1)) = λ(v2

(0,1)g) = λ(id2
Rg) =

∫
R
x2g(x)λ(dx) <∞ and Pθ (v2

(θ,σ)) = 1 for
all θ ∈ R exploiting the translation invariance of the Lebesgue measure. �

§08.10 Regular mean location family with finite variance. A regular location familyPR of probability
measures on (R,B) is said to have finite variance σ2 ∈ R+

\0, if P0 ∈ W2(B) (and hence Pθ ∈
W2(B) for all θ ∈ R), and σ2 = P0 (v

2
(0,1)) (and hence Pθ (v2

(θ,σ)) = 1 for all θ ∈ R). We call
a regular location family satisfying in addition P0 (v(0,1)) = 0 (and hence Pθ (v(θ,σ)) = 0 for all
θ ∈ R) a regular mean location family. �

§08.11 Theorem. Assume a two sample regular mean location model (R
n
,B

n
,Pm,l

R ) with finite variance
σ2 ∈ R+

\0. Consider a t-test ϕ?n = 1{
T ?m,l>tn−2,1−α

} with 1 − Ftn−2
(tn−2,1−α) = α ∈ (0, 1) for the

testing task H0 : θ = 0 against H1 : θ > 0. If m/n n→∞−−−→ γ ∈ (0, 1), then:
(i) Under the null hypothesis H0 : θ = 0 we have Pm,l

0 (ϕ?n) = P
m,l

0 (T ?m,l > tn−2,1−α)
n→∞−−−→ α,

i.e., ϕ?n is an asymptotic level-α test;

(ii) The power function βϕ?n(θ) = P
m,l
θ (ϕ?n), θ ∈ R of the t-test ϕ?n = 1{

T ?m,l>tn−2,1−α

} satisfies

under local alternatives βϕ?n(h/
√
n) = P

m,l

h/
√
n(T

?
ml > tn−2,1−α)

n→∞−−−→ F[0,1](−z1−α + ρ) with
ρ = hσ−1

√
γ(1− γ).

§08.12 Proof of Theorem §08.11. is given in the lecture. �

§08.13 Remark. Given a two sample regular mean location model (Rn,Bn,PR
m,l), n = m + l ∈ N

with density g ∈ B+ and finite variance σ2 ∈ R
+

\0 let us compare the asymptotic level-α
rank-test ϕn = 1{

U?ml>z1−α

} (see Theorem §08.04) and the t-test ϕ?n = 1{
T ?ml>tn−2,1−α

} (see The-
orem §08.11). Using their asymptotic power functions the asymptotic relative efficiency (see
Definition §06.10) between both tests equals are(ϕn, ϕ

?
n) = 12σ2(λg2)2. In the particular case

of a Gaussian location model, i.e., g(x) = 1√
2πσ

exp(−x2/(2σ2)) we have λg2 = 1/(2σ
√
π) and

hence are(ϕn, ϕ
?
n) = 3/π ≈ 0.955. On the other hand denoting by D the class of all Lebesgue-

densities g ∈ B+ satisfying λ(v(0,σ)g) = 0 and λ(v2
(0,σ)g) = 1 Hodges and Lehmann [1956] have

shown that infg∈D 12σ2(λg2)2 = 0.864 and supg∈D 12σ2(λg2)2 =∞. �
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Chapter 3

Nonparametric estimation by projection

This chapter presents an introduction to nonparametric estimation of
curves along the lines of the textbooks by Tsybakov [2009] and Comte
[2015] where far more details, examples and further discussions can be
found.

Overview
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§11|04 Local and maximal local φ-error . . . . . . . . . . . . . . . . . . . . . 41

§12 Orthogonal projection estimator . . . . . . . . . . . . . . . . . . . . . . . . . 42
§12|01 Global and maximal global v-risk . . . . . . . . . . . . . . . . . . . . 43
§12|02 Local and maximal local φ-risk . . . . . . . . . . . . . . . . . . . . . 46

§13 Minimax optimal estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
§13|01 Minimax theory: a general approach . . . . . . . . . . . . . . . . . . . 50
§13|02 Deriving a lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 53
§13|03 Lower bound based on two hypotheses . . . . . . . . . . . . . . . . . 54
§13|04 Lower bound based on m hypotheses . . . . . . . . . . . . . . . . . . 56

§14 Data-driven estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
§14|01 Data-driven estimation procedures . . . . . . . . . . . . . . . . . . . . 58
§14|02 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
§14|03 GSSM: data-driven global estimation . . . . . . . . . . . . . . . . . . 62
§14|04 Goldenshluger and Lepskij’s method . . . . . . . . . . . . . . . . . . . 66
§14|05 GSSM: data-driven local estimation . . . . . . . . . . . . . . . . . . . 68

§09 Review

Nonparametric density estimation. Consider for a non-empty set of parameters Θ a family PΘ

of probability measures on (R,B) which contains the distribution of an observable real ran-
dom variable, X©∼ PΘ. The family PΘ captures the prior knowledge about the distribution of
the observation. For example, a family given by a set of parameters Θ containing only one
singleton, i.e., Θ = {θo}, and hence X ∼ Pθo for some probability measure Pθo ∈ W(B),
means, the data generating process is known to us in advance. On the contrary, a parameter
set Θ = W(B) reflects a lack of prior knowledge. A parametric model PΘ for some parame-
ter set Θ ⊆ Rk provides in a certain sense a trade-off between both extremes. In this chapter
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Chapter 3 Nonparametric estimation by projection §09 Review

our aim is to avoid an assumption of a finite dimensional set of parameters. For example, con-
sider (Xi)i∈JnK

i.i.d.∼ P ∈ W(B), that is, an independent and identically distributed sample with
common probability measure P ∈ W(B). A reasonable estimator of the associated cumulative
distribution function (c.d.f.) F(t) := P((−∞, t]), t ∈ R, is the empirical cumulative distri-
bution function (e.c.d.f.) F̂n(t) := P̂n((−∞, t]), t ∈ R. For each t ∈ R, F̂n(t) is an unbiased
estimator of F(t) with variance var

m
(F̂n(t)) = 1

n
F(t)(1− F(t)). Consequently, F̂n(t) converges in

probability to F(t), and thus it is a consistent estimator. Moreover, by the law of large numbers
the convergence holds almost surely in any point and also uniformly, by Glivenko-Cantelli’s
theorem, i.e., ‖F̂n − F‖

L∞
= o(1) P-a.s.. If we assume in addition that P admits a Lebesgue

density then F̂n is a unbiased estimator with minimal variance, by Lehman-Scheffé’s theorem.
However, comparing different probability measures using their associated c.d.f.’s is visually dif-
ficult and as a consequence, other measures for dissimilarities are typically used. Consider, for
instance, for two probability measures P and Po on (R,B) their total variation distance given
by ‖P − Po‖TV := sup{|P(B) − Po (B)|, B ∈ B}. We note that for any probability measure
P ∈W(B) admitting a Lebesgue-density we have ‖P − P̂n‖TV = 1 P-a.s. for any n ∈ N. As a
consequence the empirical probability measure P̂n is not a consistent estimator of P in terms of
the total variation distance. In other words, dependending on the measure of accuracy (metric,
topology, etc.) a different estimator of P might be reasonable.

§09.01 Lemma (Scheffé’s theorem). Let P,Po ∈ W(B) admit a µ-density p and p
o
, respectively, for

some µ ∈Mσ(B). Then ‖P − Po‖TV = 1
2
µ(|p − p

o
|) = 1

2
‖p − p

o
‖
L1(µ).

§09.02 Proof of Lemma §09.01. is given in the lecture. �

In the sequel let D be the set of Lebesgue densities on (R,B), and hence D ⊆ L1 = L1(B, λ).
Pp = pλ and E

p
denote for each density p ∈ D the associated probability measure and expec-

tation, respectively. We consider the statistical product experiment (Rn,Bn,PD
⊗n = (Pp

⊗n) p∈D)
and (Xi)i∈JnK©∼ PD

⊗n. Typically, for s > 1 we access the accuracy of an estimator p̂ of p

either by a local measure, e.g. Pp

⊗n(| p̂ (t) − p(t)|s), for t ∈ R, or by a global measure, e.g.
Pp

⊗n(
∥∥ p̂ − p

∥∥s
Ls

) = Pp

⊗n(λ(| p̂ − p |s)), with a focus on the special cases s = 1 and s = 2.
For an introduction to Kernel density estimation we refer to the lecture course Statistik 1 (§22 -
§24).

Nonparametric regression. We describe the dependence of the variation of a real-valued ran-
dom variable Y (response) on the variation of an explanatory random variable X by a functional
relationship E

(
Y
∣∣X = x

)
= f (x) where f is an unknown functional parameter of interest. For

a detailed discussion of the case of a deterministic explanatory variable we refer to Tsybakov
[2009]. Here and subsequently, we restrict our attention to the special case of a real-valued
explanatory variable X , and hence, a random vector (X, Y ) taking values in (R

2
,B

2
). The

joint distribution of (X, Y ) is uniquely determined by the functional parameter of interest f ,
the conditional distribution of the error ξ := Y − f (X ) given X and the marginal distribution
of X which are generally all not known in advance. However, the joint distribution is typically
parametrised by the regression function f only and we write shortly (X, Y ) ∼ Pf . Thereby, the
dependence on the marginal distribution PX of the regressor X and the conditional distribution
of the error term ξ given X is usually not made explicit. For sake of simplicity, suppose in
addition that the joint distribution Pf of (X, Y ) admits a joint Lebesgue density p . Denoting by
pX the marginal density of X we use for the conditional density pY |X of Y given X the Pf -a.s.
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§10 Noisy version of the parameter Chapter 3 Nonparametric estimation by projection

identity pXpY |X = p which allows for Pf -a.e. x ∈ R to write

q(x) := f (x)p
X
(x) = E

(
Y
∣∣X = x

)
p
X
(x)

=

∫
R

yp
Y |X=x

(y)dyp
X
(x) =

∫
R

yp(x, y)dy. (09.01)

Consequently, the function of interest is Pf -a.s. given by f = q/pX which motivates the fol-
lowing estimation strategy. Given a sample of (X, Y ) estimate separately q and pX, say by q̂

and p̂X, and then form a estimator f̂ = q̂/ p̂X (possibly in addition to be regularised). There are
many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel
let F be a family of regression functions and for each f ∈ F denote by Pf and Ef the asso-
ciated probability measure of (X, Y ) and its expectation, respectively. We denote by PF the
family of possible distributions of (X, Y ), but keep in mind, that the distribution Pf of (X, Y )
is generally not uniquely determined by f ∈ F only. If

{
(X

i
, Y

i
) : i ∈ JnK

}
form an indepen-

dent and identically distributed (i.i.d.) sample of (X, Y ) ∼ Pf then P⊗nf = ⊗j∈JnKPf denotes the

joint product probability measure of the family ((X
i
, Y

i
))i∈JnK. We write ((X

i
, Y

i
))i∈JnK

i.i.d.∼ Pf
or ((X

i
, Y

i
))i∈JnK ∼ P

⊗n
f for short. We denote by P⊗nF := (P⊗nf )f∈F the corresponding family

of product probability measures. For s > 1 we access also the accuracy of an estimator f̂ of
f either by a local measure, e.g. P⊗nf (|f̂(t) − f (t)|s), for t ∈ R, or by a global measure, e.g.
P
⊗n
f (‖f̂ − f‖s

Ls
) = P

⊗n
f (λ(|f̂ − f |s)) with a focus on the special cases s = 1 and s = 2. For an

introduction to smoothing techniques we refer to the lecture course Statistik 1 (§22 - §24).

§10 Noisy version of the parameter

Let (H, 〈·, ·〉
H
) be a separable real Hilbert spaces. We are interested in the reconstruction of θ ∈ H

from a noisy version of it, which we formalise first in this section by introducing stochastic
processes.

§10|01 Stochastic process

§10.01 Notation. Here and subsequently, a non-empty and generally non-finite subset J of N, Z or
R and a subset U of J denote an index set. We consider the product spaces RJ = j∈J R

and RU = u∈U R, where we identify the family y• = (y
j
)j∈J ∈ R

J and the map y• : J → R

with j 7→ y
j
. The map ΠU : R

J → R
U given by y• = (y

j
)j∈J 7→ (y

j
)j∈U =: ΠUy• is called

canonical projection. In particular, for each j ∈ J the coordinate map Πj
:= Π{j} : R

J → R

is given by y• = (y
j ′
)j ′∈J 7→ y

j
=: Πj

y•. Moreover, RJ is equipped with the product Borel-
σ-algebra B

⊗J
:=
⊗

j∈J B . Recall that B
⊗J equals the smallest σ-algebra on RJ such that

all coordinate maps Πj
, j ∈ J are measurable. i.e., B

⊗J
= σ(Πj

, j ∈ J ). Moreover, let
(J ,J , ν) be a measure space with σ-finite ν ∈Mσ(J ) and L2

(ν) := L2
(J ,J , ν) the usual set

of square integrable real-valued functions defined on (J ,J , ν). Define the set of equivalence
classes J := L2(ν) := L2(J ,J , ν), which forms a Hilbert space endowed with usual inner product
〈·, ·〉

J
:= 〈·, ·〉

L2(ν )
and induced norm ‖·‖

J
:= ‖·‖

L2(ν ). Eventually, we define arithmetic operations

on elements of RJ coordinate-wise, for example meaning a•b• = (ajbj)j∈J and ra• = (raj)j∈J
for a•, b• ∈ R

J and r ∈ R. Let us further introduce 0• := (0)j∈J and 1• := (1)j∈J . �

§10.02 Comment. Given a measure space (Ω,A , µ) , s ∈ [1,∞] and the usual space Ls
(Ω,A , µ) of

Ls
(µ)-integrable functions introduce for each A -B-measurable h : Ω → R, in short h ∈ A , the
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Chapter 3 Nonparametric estimation by projection §10 Noisy version of the parameter

µ-equivalence class {h}µ := {ho ∈ A : h = ho µ-a.e.}. For s ∈ R+
define the set of equivalence

classes Ls(µ) := Ls(A , µ) := Ls(Ω,A , µ) := {{h}µ : h ∈ Ls
(A , µ)} and ‖{h}µ‖Ls(µ) := ‖h‖

Ls(µ)

for {h}µ ∈ Ls(µ). For s > 1, (Ls(µ), ‖·‖
Ls(µ)) is a normed vector space. Formally, we denote by

{•}µ : Ls
(µ) → Ls(µ) the natural injection h 7→ {h}µ . In case s = 2 the norm ‖{h}µ‖L2(µ) :=

‖h‖
L2

(µ) = (µ(|h|2)1/2 is induced by the inner product ({h}µ , {ho}µ) 7→ 〈{h}µ , {ho}µ〉L2(µ)
:=

µ(hho), and hence (L2(µ), 〈·, ·〉
L2(µ)

) is a Hilbert space. As usual we identify the equivalence class
{h}µ with its representative h, and write h ∈ L2(µ) for short. If λ = µ is the Lebesgue-measure
then we write shortly (L2, 〈·, ·〉L2

) and {•} : L2 → L2. �

§10.03 Stochastic process. Let (Yj )j∈J be a family of real-valued random variables on a common
probability space (Ω,A ,P), that is, Yj ∈ A for each j ∈ J . Consider the RJ -valued random
variable Y• := (Yj )j∈J where Y• : Ω → R

J is a A -B⊗J -measurable map given by ω 7→
(Yj (ω))j∈J =: Y• (ω). Y• is called a stochastic process. Its distribution PY• := P ◦ Y −1

• is the
image probability measure of P under the map Y• , i.e. Y• ∼ PY• for short. Further, denote by
P
YU = P ◦ Y −1

U = P
Y• ◦ Π−1

U the distribution of the stochastic process YU := ΠUY• = (Yu )u∈U on
U ⊆ J . The family (PYU )U⊆J finite is called family of finite-dimensional distributions of Y• or PY• .
In particular, PYj = PΠj

Y• = P
Y• ◦ Π−1

j
denotes the distribution of Yj = Πj

Y• . Furthermore, for
j, j

o
∈ J we write P(Yj ) = P

Y• (Πj
) and Cov(Yj , Yjo ) := P(Yj Yjo ) − P(Yj )P(Yjo ) = P

Y• (ΠjΠjo
) −

P
Y• (Πj

)PY• (Πjo
), if it exists, for the expectation of Yj and the covariance of Yj and Yjo with respect

to PY• . �

§10.04 Assumption. The stochastic process Y• = (Yj )j∈J on a common measurable space (Ω,A ) as
a function Ω × J → R with (ω, j) 7→ Yj (ω) is A ⊗J -B-measurable, Y• ∈ A ⊗J for
short. �

§10.05 Definition. Let Y• = (Yj )j∈J ∼ PY• be a stochastic process satisfying Assumption §10.04. If
P(|Yj |) ∈ R+, i.e. Yj ∈ L1

(P) or Πj
∈ L1

(PY• ) in equal, for each j ∈ J , then m• := (mj :=

P(Yj ))j∈J ∈ R
J is called mean function of Y• where m• ∈J due to Assumption §10.04. If in

addition ν(m2
•) ∈ R+, i.e. m• ∈ J then m• is called (J-)mean. If P(|Yj |2) ∈ R+, i.e., Yj ∈ L2

(P)

or Πj
∈ L2

(PY• ) in equal, for each j ∈ J , then cov•,• = (cov
j ,jo

:= Cov(Yj , Yjo ))j ,jo∈J ∈ R
J 2

is
called covariance function of Y• , where cov•,• ∈ J 2 due to Assumption §10.04. A linear and
bounded (continuous) operator from J into itself, Γ ∈ L(J) for short, satisfying 〈Γx•, y•〉J =

Cov(ν(x•Y• ), ν(y•Y• )) =
∫
J

∫
J yj cov

j ,jo
x
jo
ν(dj)ν(dj

o
) for all y•, x• ∈ J = L2(ν) is called covari-

ance operator of Y• or PY• . If Y• admits a mean function m• ∈ J (respectively mean m• ∈ J)
and a covariance function cov•,• ∈J 2 (respectively covariance operator Γ ∈ L(J)) then we write
shortly Y• ∼ P

(m•,cov•,•)
(respectively Y• ∼ P

(m•,Γ)
). �

§10.06 Remark. A covariance operator Γ ∈ L(J) associated with a stochastic process Y• ∼ P
Y• is

self-adjoint and non-negative definite, Γ ∈ L>(J) for short. If

sup
{
P(|ν(y•Y• )|2): y• ∈ J = L2(ν), ‖y•‖J 6 1

}
∈ R+

,

which holds whenever P(‖Y• ‖2
J
) ∈ R+ or in equal ‖Y• ‖J ∈ L2

(P) (implying Y• ∈ J P-a.s.),
then there exists a covariance operator Γ ∈ L>(J) satisfying 〈Γx•, y•〉J = Cov(ν(x•Y• ), ν(y•Y• )).

Observe that ‖Y• ‖2
J

= sup
{∣∣ν(y•Y• )

∣∣2: y• ∈ J, ‖y•‖J 6 1
}

. Note that ‖Y• ‖J ∈ L2
(P) is a sufficient

condition for the existence of a covariance operator, but it is not a necessary condition. �

§10.07 Empirical mean model. Assume a probability space (Z,Z ,P) and a stochastic process ψ• =
(ψ

j
)j∈J ∈ Z ⊗J , i.e. Z × J 3 (z, j) 7→ ψ

j
(z) ∈ R is Z ⊗J -B-measurable, satis-

fying in addition ψ
j
∈ L1

(P) := L1
(Z,Z ,P) for each j ∈ J . Consider the product probability
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space (Z
n
,Z

⊗n
,P⊗n) and Y• = (Yj )j∈J with Yj := P̂n(ψj) ∈ Z

⊗n where zn = (zni )i∈JnK 7→
Yj (zn) = (P̂n(ψj))(z

n) = n−1
∑

i∈JnK ψj(z
n
i ) for each j ∈ J and Y• ∈ Z

⊗n ⊗J . By con-
struction m• = (mj = P(ψ

j
))j∈J ∈ J is the mean function of Y• . For each j ∈ J the

statistic εj := n1/2(P̂n(ψj)− P(ψ
j
)) ∈ Z

⊗n is centred, i.e. εj ∈ L1
(P⊗n) with P⊗n(εj) = 0, and

ε• = (εj)j∈J ∈ Z
⊗n ⊗J . Since Yj = mj + n−1/2εj for each j ∈ J by construction we write

shortly Y• = m• + n−1/2ε•. If for each j ∈ J in addition ψ
j
∈ L2

(P) := L2
(Z,Z ,P) then we

have Yj = P̂n(ψj) ∈ L2
(P⊗n) and, hence εj ∈ L2

(P⊗n) by construction. The covariance function
cov•,• ∈J 2 of ε• = (εj)j∈J is given for each j, j

o
∈ J by

cov
j ,jo

= Cov(εj , εjo) = P(ψ
j
ψ
jo
)− P(ψ

j
)P(ψ

jo
) = nCov(Yj , Yjo ).

Consequently, we have ε• ∼ P
(0,cov•,•)

and Y• = m• + n−1/2ε• ∼ P
(m•,n−1cov•,•)

. There exists a covariance

operator Γ ∈ L>(J), if in addition sup
{
P(
∣∣ν(y•ψ•)

∣∣2): y• ∈ J = L2(ν), ‖y•‖J 6 1
}
∈ R+, which holds

whenever ‖ψ•‖J ∈ L2
(P) or in equal P(‖ψ•‖2

J
) ∈ R+. Observe that ‖ψ•‖2

J
= sup{

∣∣ν(y•ψ•)
∣∣2 : y• ∈

J, ‖y•‖J 6 1}. Note that ‖ψ•‖J ∈ L2
(P) is a sufficent condition for the existence of a covariance

operator, but it is not necessary. �

§10.08 White noise process. A stochastic process Ẇ• = (Ẇj)j∈J is called white noise process, if
(Ẇj)j∈J is a family of independent and identically distributed random variables, where each Ẇj

has zero mean and variance one, Ẇj ∼ P
(0,1)

and Ẇ• ∼ P⊗J(0,1) in short. �

§10.09 Notation. In other words, the distribution PẆ• of a white noise process Ẇ• = (Ẇj)j∈J ∼ P
Ẇ•

equals the product of its marginal P
(0,1)

-distributions, i.e. PẆ• = ⊗j∈JPẆj = ⊗j∈J P
(0,1)

= P⊗J(0,1) . �

§10.10 Remark. The centred stochastic process ε• := (εj)j∈J of error terms in an Empirical mean
model §10.07 is in general not a white noise process. �

§10.11 Notation. We denote by `2 := L2(νN) = L2(N, 2
N, ν

N
) = J the space of all square-summable real-

valued sequences endowed with counting measure ν
N

:=
∑

j∈N δ{j} over the index set N. �

§10.12 Property. Let Ẇ• := (Ẇj)j∈N ∼ P⊗N
(0,1)

be a white noise process. By assumption Ẇ• admits
0• := (0)j∈N as `2-mean and Γ = id`2 ∈ L>(`2) as covariance operator, i.e. Ẇ• ∼ P

(0•,id`2 )
, since

〈x•, y•〉̀
2

=
∑

j∈N yjxj =
∑

j∈N yj
∑

jo∈N
cov

j ,jo
x
jo

= 〈Γx•, y•〉̀
2

. �

§10.13 Gaussian process. A stochastic process Y• = (Yj )j∈J ∼ P
(m•,cov•,•)

satisfying Assumption §10.04
with mean function m• ∈J and covariance function cov•,• ∈J 2 is called a Gaussian process,
if the family of finite-dimensional distributions (PYU )U⊆J finite consists of normal distributions,
that is, YU = (Yu )u∈U is normally distributed with mean vector (mu)u∈U and covariance matrix
(cov

u,u′
)u,u′∈U . We write shortly Y• ∼ N(m•,cov•,•)

or Y• ∼ N(m•,Γ•,•)
, if in addition there exist a covariance

operator Γ•,• ∈ L>(J) associated with Y• . The Gaussian process Ḃ• ∼ N(0•,idJ ) with J-mean zero and
covariance operator idJ is called iso-Gaussian process or Gaussian white noise process, which
equals Ḃ• ∼ N

⊗N
(0,1) in the particular case J = L2(νN) = `2. �

§10.14 Definition (Random function). Let (H, 〈·, ·〉
H
) be an Hilbert space equipped with its Borel-σ-

algebra BH, which is induced by its topology. An A -BH-measurable map Y : (Ω,A ) →
(H,BH) is called an H-valued random variable or a random function in H. �

§10.15 Lemma. Consider (`2, 〈·, ·〉̀
2

). There does not exist a non-zero random function Y• = (Yj )j∈N in
`2 which is a Gaussian white noise process.

§10.16 Proof of Lemma §10.15. Exercise. �
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§10|02 Noisy parameter

§10.17 Assumption. The Hilbert space J = L2(J ,J , ν) and the surjective partial isometry U ∈ L(H,J),
i.e. UU

?
= idJ , are fixed and presumed to be known in advance. �

§10.18 Notation. Here and subsequently, we write θ• = (θj)j∈J := Uθ ∈ J. Keep in mind, that we
identify equivalence classes and their representatives. Our aim is the reconstruction of θ• and
hence U

?
θ• ∈ H from a noisy version of θ•. �

§10.19 Noisy parameter. Let ε• = (εj)j∈J be a stochastic process satisfying Assumption §10.04 with
mean zero and let n ∈ N be a sample size. The stochastic process θ̂• = θ• + n−1/2ε• with J-mean
θ• is called a noisy version of the parameter θ• ∈ J, or noisy parameter for short. We denote
by Pn

θ the distribution of θ̂•. If ε• admits (possibly depending on θ•) a covariance function, say
cov•,• ∈ J 2, or a covariance operator, say Γ ∈ L>(J), then we eventually write ε• ∼ P

(0•,cov•,•)
and

θ̂• ∼ P
(θ•,n−1cov•,•)

or ε• ∼ P
(0•,Γ)

and θ̂• ∼ P
(θ•,n−1Γ)

for short. The reconstruction of θ• ∈ J (or in equal
U
?
θ• ∈ H) from a noisy version θ̂• ∼ Pn

θ is called a statistical direct problem. �

§10.20 Sequence space model. Consider J = `2 = L2(νN). Let ε• = (εj)j∈N be a real-valued stochastic
process satisfying Assumption §10.04 with mean 0• ∈ `2 and let n ∈ N be a sample size. The
observable noisy version θ̂• = θ• + n−1/2ε• ∼ Pn

θ• with `2-mean θ• ∈ `2 as in §10.11 takes the form
of a sequence space model (SSM)

θ̂j = θj + n−1/2εj , j ∈ N. (10.01)

If ε• admits a covariance function (possibly depending on θ•), say cov•,• ∈ 2N
2

, then we eventually
write θ̂• ∼ P

(θ•,n−1cov•,•)
for short. If in addition ε• admits a covariance operator Γ ∈ L>(`2) (an infinite

matrix) then we write θ̂• ∼ P
(θ•,n−1Γ)

. �

§10.21 Gaussian sequence space model. Let Ḃ• := (Ḃj)j∈N ∼ N
⊗N
(0,1) be a Gaussian white noise process.

The observable noisy version θ̂• = θ• + n−1/2Ḃ• with `2-mean θ• ∈ `2 takes the form of a Gaussian
sequence space model (GSSM)

θ̂j = θj + n−1/2Ḃj , j ∈ N with (Ḃj)j∈N ∼ N
⊗N
(0,1) (10.02)

and we denote by N
n

θ•
the distribution of the stochastic process θ̂•. �

§10.22 Notation. Consider the measure space ([0, 1],B
[0,1]
, λ[0,1]) where λ[0,1] denotes the restriction of

the Lebesgue measure to the Borel-σ-algebra B
[0,1]

over [0, 1], and the Hilbert space L2(λ[0,1]) :=
L2([0, 1],B

[0,1]
, λ[0,1]). Assume that θ ∈ L2(λ[0,1]) =: H. Consider an orthonormal system (uj)j∈N in

L2(λ[0,1]). Then U : L2(λ[0,1]) → `2 with h 7→ Uh := h• = (hj := 〈h, uj〉H)j∈N is a surjective partial
isometry U ∈ L(L2(λ[0,1]), `2). Its adjoint operator U

? ∈ L(`2,L2(λ[0,1])) satisfies U
?
a• =

∑
j∈N ajuj for

all a• ∈ `2. We call h• = (hj)j∈N (generalised) Fourier coefficients and U (generalised) Fourier
series transform. �

§10.23 Nonparametric density estimation on [0, 1]. Let D
2

be a set of square-integrable Lebesgue
densities on ([0, 1],B

[0,1]
), and hence D

2
⊆ L2(λ[0,1]) =: H. We denote for each density p ∈ D

2

by Pp := pλ[0,1] and Ep the associated probability measure and expectation, respectively. As-
suming an iid. sample (Xi)i∈JnK of size n ∈ N we consider the statistical product exper-
iment

(
[0, 1]n,B⊗n

[0,1]
,P⊗nD2

:= (P⊗np ) p∈D2

)
. Let U ∈ L(L2(λ[0,1]), `2) be a generalised Fourier se-

ries transform (see Notation §10.22) which is fixed and known in advanced. Evidently, for
each p ∈ D

2
⊆ L2(λ[0,1]) the generalised Fourier coefficients p

•
= (p

j
)j∈N = U p satisfy
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p
j

= 〈p , uj〉H = λ[0,1](puj) = pλ[0,1](uj) = Pp(uj), i.e. uj ∈ L1([0, 1],B
[0,1]
,Pp) =: L1(Pp), for each

j ∈ N. Moreover, the stochastic process (uj)j∈N on ([0, 1],B
[0,1]
,Pp) is B

[0,1]
⊗ 2N-B-measurable.

Similar to an Empirical mean model §10.07 we define p̂
•

= ( p̂
j

:= P̂n(uj))j∈N ∈ B⊗n
[0,1]
⊗ 2N

where xn = (xni )i∈JnK 7→ p̂
j
(xn) = (P̂n(uj))(x

n) = n−1
∑

i∈JnK uj(x
n
i ) for each j ∈ N. By

construction p
•

= (p
j

= Pp(uj))j∈N ∈ 2N is the mean function of p̂
•
. For each j ∈ N the

statistic εj := n1/2(P̂n(uj)− Pp(uj)) ∈ B⊗n
[0,1]

is centred, i.e. εj ∈ L1([0, 1]n,B⊗n
[0,1]
,P⊗np ) =: L1(P

⊗n
p )

with P⊗np (εj) = 0, and ε• = (εj)j∈N ∈ B⊗n
[0,1]
⊗ 2N. Since p̂

j
= p

j
+ n−1/2εj for each j ∈ N by

construction p̂
•

= p
•

+ n−1/2ε• is a noisy version of p
•
. �

§11 Orthogonal projection

§11.01 Notation (Reminder). Consider a measure space (J ,J , ν) as in Notation §10.01. For w• ∈ R
J

define the multiplication map M
w•

: R
J → R

J with a• 7→ M
w•
a• := w•a• := (wjaj)j∈J . If

w• ∈ J , i.e. w• is J -B-measurable, then we have M
w•

: J → J too. We denote by MJ

the set of all multiplication maps defined on J . If in addition w• ∈ L∞(ν) then we have also
M

w•
: L2(ν) = J → J identifying eventually equivalence classes and representatives. We set

LM(J) :=
{

M
w•
∈ MJ : w• ∈ L∞(ν)

}
⊆ L(J) noting that ‖M

w•
‖
L(J)

= sup{‖w•a•‖J : ‖a•‖J 6 1} 6
‖w•‖L∞(ν ) for each M

w•
∈ LM(J). �

§11.02 Notation. For A ∈ J we denote by 1A• = (1Aj )j∈J the indicator function where for each
j ∈ J , 1Aj = 1 if j ∈ A and 1Aj = 0 otherwise. Obviously, 1A• is J -B-measurable, i.e.
1A• ∈ J , and it belongs to L∞(ν), and to L2(ν) whenever ν(A) ∈ R+. Since {j} ∈ J we
have 1{j}• ∈ J and 1{j}• ∈ L∞(ν). Obviously, we have 1• = 1J• ∈ L∞(ν) and M1•

∈ LM(J).
For each w• ∈ L∞(ν) set Jw• := {{a•w•}ν : a• ∈ L2

(ν)} = {a•w• : a• ∈ J = L2(ν)} and
hence in particular J1A• = {a•1A• : a• ∈ J}. Given 0• = (0)j∈J for w• ∈ J we write further
Nw := {w• = 0•} := {j ∈ J : wj = 0} ∈ J , and denote by dom(M

w•
) = {a• ∈ J : a•w• ∈ J},

ran(M
w•
) = {a•w• : a• ∈ dom(M

w•
) ⊆ J} and ker(M

w•
) = {a• ∈ J : {a•w•}ν = 0•}, respectively,

the domain, range and nullspace of M
w•

: J ⊇ dom(M
w•
) → J. We write w• ∈ J\0, if w• ∈ J

and ν(Nw) = 0. Similarly, if w• ∈ (R+)J is J -B+-measurable, then we write w• ∈ J +, and
w• ∈J +

\0 assuming additionally ν(Nw) = 0. �

§11.03 Property. For each w• ∈ J + ∩ L∞(ν) the multiplication M
w•
∈ L>(J) ⊆ L(J) is a positive semi-

definite operator. Keeping Nw = {w• = 0} ∈ J in mind its range and null space is given by
ran(M

w•
) = Jw• and ker(M

w•
) = J1Nw• = ran(M

1Nw•
), respectively. M

w•
∈ LM(J) is consequently injective

if and only ifw• ∈J\0, i.e. w• ∈J and ν(Nw) = 0. For eachA ∈J settingAc := J \A ∈J
the range and null space of M

1A•
∈ L>(J) ⊆ L(J) is given by ran(M

1A•
) = J1A• and ker(M

1A•
) = J1A

c

• ,
respectively. Obviously, we have M2

1A•
= M

1A•
and hence M

1A•
is an orthogonal projection and

J = J1A• ⊕ J1A
c

• . Moreover, the map M1•
= idJ equals the identity on J. �

§11|01 Weigthed norms and inner products

§11.04 Notation. Extending the real line by the points −∞ and +∞ we define R := R ∪ {±∞}.
We denote by B the Borel-σ-field over R and note that the trace of B ∩ R over R equals B .
Thereby, each a• ∈ J + is in a canonical way also J -B

+
measurable, a• ∈ J

+
for short. For

w• ∈ J and hence w2
• ∈ J

+
, consider the measure w2

• ν on (J ,J ), i.e., w2
• = dw2

• ν/dν is
the Radon-Nikodym density of w2

• ν with respect to ν . We write shortly 〈·, ·〉
w

:= 〈·, ·〉
L2(w2

• ν )
and

‖·‖w := ‖·‖
L2(w2

• ν ). For w• ∈ J we denote its Moore-Penrose inverse by w†• := w−1
• 1

N c
w•

• ∈ J

meaning w†j := w−1
j if j ∈ N c

w•
and w†j := 0 if j ∈ Nw. Obviously, we have w†•w•w†• = w†• ,
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w•w
†
•w• = w• and w•w†• = w†•w• = 1N

c
w•

• . We set Jw := Lw2(ν) := dom(M
w†•

) and write w2|†
• := (w†• )

2 =
(w2

• )
† for short. �

§11.05 Property. Let w• ∈ J . Then for each a• ∈ L2
(w2

• ν) we have w2
• ν(|a•|2) = ν(|w•a•|2). If

w• ∈ R ν -a.e., thenw2
• ν ∈Mσ(J ) is a σ-finite measure and L2(w

2
• ν) endowed with inner product

〈·, ·〉
w

= 〈·, ·〉
L2(w2

• ν )
= 〈M

w•
·,M

w•
·〉
L2(ν )

is a separable Hilbert space. If in addition w• ∈ L∞(ν), then

L2
(w2|†

• ν) = L2
(ν)w• + J1Nw• = {w•h• : h• ∈ L2

(ν)}+ {h•1Nw• : h• ∈J }. (11.01)

Indeed, for each h• ∈ J consider the decomposition h• = w•w
†
• h• + h•1

Nw
• . The claim follows

immediately from the equivalence of h• ∈ L2
(w2|†

• ν) and w†• h• ∈ L2
(ν). Under w• ∈ L∞(ν) the map

M
w•

: L2
(ν) → L2

(ν) is well-defined, and setting dom(M
w†•

) = {h• ∈ L2
(ν) : w†• h• ∈ L2

(ν)} =
L2

(ν)w• + L2
(ν)1Nw• ⊆ L2

(w2|†
• ν) (similar to (11.01)). Consequently, if in addition ν(Nw) = 0, then

dom(M
w†•

) = L2
(w2|†

• ν). If w• ∈ L∞(ν) then M
w•
∈ LM(J), and M

w†•
: J ⊇ dom(M

w†•
) → J. Moreover,

we have dom(M
w•
) = J, ran(M

w•
) = Jw• and ker(M

w•
) = J1Nw• (see Property §11.03). Therewith,

it follows dom(M
w†•

) = Jw• ⊕ J1Nw• . Consequently, if in addition ν(Nw) = 0, then Jw = Lw2(ν) =
dom(M

w†•
) = Jw• = L2(w

2|†
• ν). The last equality follows from (11.01) since both measures w2|†

• ν
and ν share the same null sets (i.e. they mutually dominate each other). �

§11|02 Orthogonal projection

§11.06 Notation. For a non-empty and generally non-finite subset J of N, Z or R and m ∈ N we set
JmK := [−m,m] ∩ J and we write shortly 1m• = (1mj )j∈J := 1JmK

• . Furthermore, we define
1m|⊥• := 1• − 1m• . �

§11.07 Property. For each m ∈ N, M1m•
∈ L>(J) and M

1m|⊥•

∈ L>(J) is the orthogonal projection onto the
linear subspace J1m• ⊆ J and its orthogonal complement J1m|⊥• = (J1m• )⊥ ⊆ J, respectively, that
is J = J1m• ⊕ J1m|⊥• . We have point-wise 1m• −1• = o(1) as m→∞ meaning that for each j ∈ J
holds 1mj − 1j = o(1) as m → ∞. Considering the orthogonal projection M1m•

∈ L>(J) and the
identity M1•

= idJ ∈ L>(J) point-wise convergence M1m•
− idJ = o(1) as m →∞ holds too, that

is, ‖(M1m•
− id•,•)a•‖J = ‖(1m• − 1•)a•‖J = ‖1m|⊥• a•‖J = o(1) as m →∞ for all a• ∈ J. �

§11.08 Orthogonal projection. Givenm ∈ Nwe define for each θ• = Uθ ∈ J its orthogonal projection
θm• := θ•1

m
• ∈ J1m• (and θm := U

?
θm• ∈ H). �

§11|03 Global and maximal global v-error

We shall measure first globally the accuracy of the orthogonal projection θm• := θ•1
m
• of θ• ∈ J.

§11.09 Property. If v• ∈ J\0 (i.e. ν(Nv) = 0) and θ• ∈ L2(v
2
• ν) (i.e. ‖θ•‖2

v
= v2

• ν(θ2
• ) ∈ R+), then for

each m ∈ N we have θm• ∈ L2(v
2
• ν) too, since ‖θm• ‖2

v
= v2

• ν(θ2
• 1

m
• ) 6 v2

• ν(θ2
• ). Moreover, it holds

‖θm• − θ•‖2
v

= ‖θ•1m|⊥• ‖2
v

= v2
• ν(θ2

• 1
m|⊥
• ) 6 v2

• ν(θ2
• ) ∈ R+ and ‖θm• − θ•‖2

v
= o(1) as m → ∞ by

dominated convergence. �

§11.10 Comment. We assume throughout this chapter that the Hilbert space J = L2(J ,J , ν) and the
surjective partial isometry U ∈ L(H,J) is fixed and known in advance. Considering a v-error
means the weight sequences v• ∈ J is also fixed and known in advance. Consequently, the
condition v• ∈J\0 does not impose an additional restriction. �

§11.11 Global v-error. Given v• ∈ J\0, m ∈ N, a parameter θ• = Uθ ∈ L2(v
2
• ν) and its orthogonal

projection θm• = θ•1
m
• ∈ J1m• we call ‖θm• − θ•‖v = ‖θ•1m|⊥• ‖v ∈ R

+ global v-error. �
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§11.12 Assumption. Consider weights a•, v• ∈ J\0, i.e. ν(Na) = 0 = ν(Nv), such that a• ∈ L∞(ν)

and (av)• := (ajvj)j∈J = a•v• ∈ L∞(ν). We write (av)(m) := ‖(av)•1
m|⊥
• ‖L∞(ν ) ∈ R

+ for each
m ∈ N. �

§11.13 Reminder. Under Assumption §11.12 we have Ja = La2(ν) = dom(M
a†•
) = Ja• = L2(a

2|†
• ν) and the

three measures ν , a2|†
• ν and v2

• ν dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). Consequently, Ja ⊆ J = L2(ν) and if h• ∈ L2(a

2|†
• ν) satisfies v2

• ν(h2
•) ∈ R+,

for example, then h• ∈ L2(v
2
• ν) too. �

§11.14 Notation. Under Assumption §11.12 and given a constant r ∈ R+

\0 we consider Ja = La2(ν) =
L2(a

2|†
• ν) endowed with ‖·‖a† := ‖·‖

Ja := ‖·‖
L2(a2|†• ν ) and the ellipsoid

Ja,r := {h• ∈ Ja : ‖h•‖2

a†
= a2|†

• ν(h
2
•) = ν(a2|†

• h
2
•) 6 r2} ⊆ Ja.

Keep in mind that (av)• ∈ L∞(ν) implies (av)(m) := ‖(av)•1
m|⊥
• ‖L∞(ν ) ∈ R

+ for each m ∈ N. �

§11.15 Property. Under Assumption §11.12 we have Ja• ⊆ L2(v
2
• ν). Indeed, for each h• ∈ Ja•, i.e.,

‖h•‖a†• ∈ R
+, follows ‖h•‖2

v
= ν(h2

•a
2|†
• (av)2

• ) 6 ‖h•‖2
a†
‖(av)•‖2

L∞(ν )
∈ R+. �

§11.16 Abstract smoothness condition. Under Assumption §11.12 the parameter θ• ∈ J satisfies an
abstract smoothness condition if there is r ∈ R+

\0 such that θ• ∈ Ja,r ⊆ Ja. �

§11.17 Lemma. Under Assumption §11.12 for each m ∈ N the orthogonal projection θm• := θ•1
m
• ∈

J1m• of θ• ∈ Ja,r ⊆ L2(v
2
• ν) satisfies ‖θm• − θ•‖v = ‖θ•1m|⊥• ‖v6 r (av)(m).

§11.18 Proof of Lemma §11.17. is given in the lecture. �

§11.19 Maximal global v-error. Under Assumption §11.12 form ∈ N, a parameter θ• = Uθ ∈ Ja,r and
its orthogonal projection θm• = θ•1

m
• ∈ J1m• we call sup

{
‖θm• − θ•‖v: θ• ∈ Ja,r

}
maximal global

v-error over the class of parameters Ja,r. �

§11|04 Local and maximal local φ-error

Secondly, we measure locally the accuracy of the orthogonal projection θm• := θ•1
m
• ∈ J1m• of

θ• = Uθ ∈ J.

§11.20 Notation. For φ
•
∈ J and dom(φν) := {h• ∈ J = L2(ν) : φ

•
h• ∈ L1(ν)} we consider the linear

functional φν : J ⊇ dom(φν) → R given by h• 7→ φν(h•) := ν(φ
•
h•) with a slight abuse of

notations. �

§11.21 Comment. If φ
•
∈ J = L2(ν), then it follows dom(φν) = J and ‖φν‖

L(J,R)
= ‖φ

•
‖
J
∈ R+.

Consequently, we have φν ∈ L(J,R) and φν(h•) = 〈h•, φ•〉J , in other words φ
•

is a Fréchet-Riesz
representative of the continuous linear functional φ

•
ν . �

§11.22 Property. If φ
•
∈ J\0 (i.e. ν(Nφ) = 0) and θ• ∈ dom(φν) (i.e. θ•φ• ∈ L1(ν)), then for each

m ∈ N we have θm• ∈ dom(φν) too, since ‖φ
•
θm• ‖L1(ν ) = ν(|φ

•
θ•|1m• ) 6 ν(|φ

•
θ•|). Moreover, it holds

|φν(θ•)− φν(θm• )| 6 |φ
•
|ν(|θm• − θ•|) = |φ

•
|ν(|θ•|1m|⊥• ) 6 ν(|φ

•
θ•|) ∈ R+ and |φν(θ•)− φν(θm• )| =

o(1) as m →∞ by dominated convergence. �

§11.23 Comment. We assume throughout this chapter that the Hilbert space J = L2(J ,J , ν) and the
surjective partial isometry U ∈ L(H,J) is fixed and known in advance. Considering a φ-error
means the linear function φν and hence in equal φ

•
∈ J is also fixed and known in advance.

Consequently, the condition φ
•
∈J\0 does not impose an additional restriction. �
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§11.24 Local φ-error. Given φ
•
∈ J\0, m ∈ N, a parameter θ• = Uθ ∈ dom(φν) and its orthogonal

projection θm• = θ•1
m
• ∈ J1m• we call |φν(θ•)− φν(θm• )| = |φν(θ•1

m|⊥
• )| ∈ R+ local φ-error. �

§11.25 Assumption. Consider φ
•
, a• ∈J\0, i.e. ν(Nφ) = 0 = ν(Na), such that a• ∈ L∞(ν) and (aφ)• :=

(ajφj )j∈J = a•φ• ∈ L2(ν) and hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1
m|⊥
• ‖L2(ν ) = o(1) as m →∞. �

§11.26 Reminder. Under Assumption §11.25 we have Ja = La2(ν) = dom(M
a†•
) = Ja• = L2(a

2|†
• ν) and

the three measures ν , |φ
•
|ν and a2|†

• ν dominate mutually each other (see Property §11.05). Con-
sequently, Ja ⊆ J = L2(ν) and if h• ∈ L2(a

2|†
• ν) satisfies ν(|φ

•
h•|) ∈ R

+, for example, then
h• ∈ L1(|φ• |ν) too. �

§11.27 Property. Under Assumption §11.25 we have Ja ⊆ dom(φν). Indeed, for each h• ∈ Ja, i.e.
‖h•‖a† ∈ R

+, we have ‖φ
•
h•‖L1(ν ) = ν(|h•a†•(aφ)•|) 6 ‖h•‖a†‖(aφ)•‖L2(ν ) ∈ R

+. �

§11.28 Notation (Reminder). Under Assumption §11.25 the parameter θ• = Uθ ∈ J satisfies an abstract
smoothness condition if there is r ∈ R+

\0 such that θ• ∈ Ja,r = {h• ∈ Ja : ‖h•‖2
a†
6 r2} ⊆ Ja where

‖·‖a† = ‖·‖
Ja := ‖·‖

L2(a2|†• ν ) (see Definition §11.16). Since (aφ)• ∈ L2(ν) we have ‖a•1m|⊥• ‖φ =

‖(aφ)•1
m|⊥
• ‖L2(ν ) = o(1) as m →∞ by dominated convergence. �

§11.29 Lemma. Under Assumption §11.25 for each m ∈ N the orthogonal projection θm• := θ•1
m
• ∈

J1m• of θ• ∈ Ja•,r ⊆ dom(φν) satisfies |φν(θ• − θm• )| = |φν(θ•1
m|⊥
• )| 6 ν(|φ

•
θ•|1m|⊥• )6 r ‖a•1m|⊥• ‖φ.

§11.30 Proof of Lemma §11.29. is given in the lecture. �

§11.31 Maximal local φ-error. Under Assumption §11.25 for m ∈ N, a parameter θ• = Uθ ∈ Ja,r and
its orthogonal projection θm• = θ•1

m
• ∈ J1m• we call sup

{
|φν(θ•)− φ•ν(θm• )|: θ• ∈ Ja,r

}
maximal

local φ-error over the class of parameters Ja,r . �

§12 Orthogonal projection estimator

§12.01 Notation (Reminder). Consider a measure space (J ,J , ν) as in Notation §10.01. For w• ∈ R
J

define the multiplication map M
w•

: R
J → R

J with a• 7→ M
w•
a• := w•a•. For w• ∈ J we have

M
w•

: J → J too. We denote by MJ the set of all multiplication maps defined on J . If in
addition w• ∈ L∞(ν) then we have also M

w•
: L2(ν) = J → J identifying eventually equivalence

classes and representatives. We set LM(J) := MJ :=
{

M
w•
∈ MJ : w• ∈ L∞(ν)

}
⊆ L(J) noting that

‖M
w•
‖
L(J)

= sup
{
‖w•a•‖J : ‖a•‖J 6 1

}
6 ‖w•‖L∞(ν ) for each M

w•
∈ LM(J). �

§12.02 Reminder. If w• ∈ L∞(ν) then M
w•
∈ LM(J), and M

w†•
: J ⊇ dom(M

w†•
) → J. Moreover, we

have dom(M
w•
) = J, ran(M

w•
) = Jw• and ker(M

w•
) = J1Nw• (see Property §11.03), and dom(M

w†•
) =

Jw• ⊕ J1Nw• (see Property §11.05). Consequently, if in addition ν(Nw) = 0, then Jw = Lw2(ν) =
dom(M

w†•
) = Jw• = L2(w

2|†
• ν). For eachm ∈ Nwe write 1m• = (1mj )j∈J := 1JmK

• and 1m|⊥• := 1•−1m•
with JmK := [−m,m] ∩ J . Consequently, M1m•

∈ L>(J) and M
1m|⊥•

∈ L>(J) is the orthogonal
projection onto the linear subspace J1m• ⊆ J and its orthogonal complement J1m|⊥• = (J1m• )⊥ ⊆
J, respectively, that is J = J1m• ⊕ J1m|⊥• (see Property §11.07). Finally, given θ• = Uθ ∈ J we
consider the orthogonal projections θm• = θ•1

m
• ∈ J1m• (and θm := U

?
θm• ∈ H) (Definition §11.08).

�

§12.03 Notation (Reminder). Consider a centred stochastic processes ε• = (εj)j∈J satisfying Assump-
tion §10.04 and let n ∈ N be a sample size. The observable noisy version θ̂• = θ• + n−1/2ε• of the
parameter θ• = Uθ ∈ J takes the form of a statistical direct problem (see Definition §10.19). We
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denote by Pn
θ• the distribution of θ̂•. We write ε• ∼ P

(0•,Γ)
if ε• admits a covariance operator Γ ∈ L>(J)

possibly depending on θ•. �

§12.04 Definition. Given a noisy version θ̂• ∼ Pn
θ• of the parameter θ• = Uθ ∈ J for each m ∈ N we

call θ̂m• := θ̂•1
m
• orthogonal projection estimator (OPE) of θ•. �

§12.05 GSSM (§10.21 continued). Considering `2 = L2(N, 2
N, ν

N
) we illustrate the OPE in a Gaussian

sequence space model §10.21. Here the observable stochastic process θ̂• = θ• + n−1/2Ḃ• is a noisy
version of θ• = Uθ ∈ `2 and Ḃ• ∼ N

⊗N
(0,1). Consequently, θ̂• admits a N

n

θ•
-distribution belonging to

the family N
n

Θ := (N
n

θ•
)θ•∈Θ . Summarising the observations satisfy a statistical product experiment

(R
N
,B⊗N,N

n

Θ ) where Θ ⊆ `2. �

§12|01 Global and maximal global v-risk

We measure first the accuracy of the OPE θ̂m• = θ̂•1
m
• of θm• = θ•1

m
• ∈ J1m• with θ• = Uθ ∈ J by a

global mean-v-error, i.e. v-risk.

§12.06 Reminder. If v• ∈J\0 and θ• ∈ L2(v
2
• ν) then we have θm• ∈ L2(v

2
• ν) too and ‖θm• − θ•‖2

v
= o(1) as

m →∞ (Property §11.09). �

§12.07 Assumption. Consider a noisy version θ̂• = θ• + n−1/2ε• ∼ P
n
θ of θ• = Uθ ∈ J satisfying

Assumption §10.04, v θ• := P
n
θ (ε2

• ) := (Pn
θ (ε2

j ))j∈J ∈ L∞(ν) and ε•1
m
• ∈ L∞(ν) P

n
θ -a.s., for each

m ∈ N. �

§12.08 Comment. Under Assumption §12.07 if v•1
m
• ∈ L2(ν) then we have v•ε•1

m
• ∈ L2(ν) P

n
θ -a.s.. If in

addition θ• ∈ L2(v
2
• ν), and hence θm• ∈ L2(v

2
• ν) (Property §11.09), then it follows

v•θ̂
m

• = n−1/2v•ε•1
m
• + v•θ

m
• ∈ L2(ν) P

n

θ -a.s.. (12.01)

If J ⊆ Z (at most countable) then Assumption §10.04 and v θ• = P
n
θ (ε2

• ) ∈ L∞(ν) implies the
additional assumption ε•1

m
• ∈ L∞(ν) P

n
θ -a.s.. However, the last implication does generally not

hold, if J ∈ {R,R+} for example. �

§12|01|01 Global v-risk

§12.09 Definition. Under Assumption §12.07, v• ∈ J\0, θ• ∈ L2(v
2
• ν) and v•1

m
• ∈ J for m ∈ N the

global v-risk of an OPE θ̂m• = θ̂•1
m
• ∈ L2(v

2
• ν) P

n
θ -a.s. satisfies

P
n

θ (‖θ̂m• − θ•‖2

v
) = P

n

θ (‖(θ̂• − θ•)1m• ‖2

v
) + ‖θ•1m|⊥• ‖2

v
(12.02)

with variance term P
n
θ (‖(θ̂• − θ•)1m• ‖2

v
) = n−1P

n
θ (‖v•ε•1m• ‖2

J
) and bias term ‖θ•1m|⊥• ‖v• . �

§12.10 Property. Under Assumption §12.07, v• ∈J\0 and 1m• ∈ L2(v
2
• ν) for m ∈ N we have

P
n

θ

(
‖v•ε•1m• ‖2

J

)
=

∫
J
P
n

θ (ε2
j )v2

j 1
m
j ν(dj) = ν(v θ• v

2
• 1

m
• ) (12.03)

and consequently Pn
θ (‖(θ̂• − θ•)1m• ‖2

v•
) 6 n−1‖v θ• ‖L∞(ν )‖1m• ‖2

v•
∈ R+. �

§12.11 Notation. For a• ∈ (R)N with minimal value in B ⊆ N we define

arg min
{
am : m ∈ B

}
:= min

{
m ∈ B : am 6 aj , ∀j ∈ B

}
. �
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§12.12 Proposition (Upper bound). Let Assumption §12.07, v• ∈ J\0, θ• ∈ L2(v
2
• ν) and 1m• ∈ L2(v

2
• ν) for

all m ∈ N be satisfied. For all n,m ∈ N setting

R
m

n (θ•, v•) := ‖θ•1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (θ•, v•) : m ∈ N
}

and R
◦
n(θ•, v•) := R

m◦n
n (θ•, v•) = min

{
R
m

n (θ•, v•) : m ∈ N
}

(12.04)

we have Pn
θ (‖θ̂m

◦
n

• − θ•‖2
v
) 6 (1 ∨ ‖v θ• ‖L∞(ν )) R◦n(θ•, v•).

§12.13 Proof of Proposition §12.12. is given in the lecture. �

§12.14 Definition. Let θ• ∈ L2(v
2
• ν) and θ̂m• ∈ L2(v

2
• ν) P

n
θ -a.s. for all m ∈ N. If there exist C ∈ R+

\0 and
for each n ∈ N, R◦n ∈ R

+

\0 and m◦
n
∈ N satisfying

C
−1

R
◦
n 6 inf

m∈N
P
n

θ ‖θ̂
m

• − θ•‖2

v
6 Pn

θ ‖θ̂
m◦n
• − θ•‖2

v
6 C R

◦
n,

then we call R◦n oracle bound, m◦
n

oracle dimension and θ̂m
◦
n

• oracle optimal (up to the constant
C). As a consequence, up to the constant C

2 the statistic θ̂m
◦
n

• attains the lower global v-risk bound
within the family of OPE’s, that is, Pn

θ ‖θ̂m
◦
n

• − θ•‖2
v
6 C

2
infm∈NP

n
θ ‖θ̂m• − θ•‖2

v
. �

§12.15 Oracle inequality. Under Assumption §12.07 let v• ∈J\0, θ• ∈ L2(v
2
• ν) and 1m• ∈ L2(v

2
• ν) for all

m ∈ N. If in addition 1 6 max(‖v θ• ‖L∞(ν ), ‖(v θ• )−1‖
L∞(ν )) 6 v

θ
∈ R+

\0 then (12.04) implies

v−1
θ

R
m

n (θ•, v•) 6 P
n

θ (‖θ̂m• − θ•‖2

v
) = n−1ν(v θ• v

2
• 1

m
• ) + ‖θ•1m|⊥• ‖2

v

6 v
θ
R
m

n (θ•, v•) for all m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality

v−1
θ

R
◦
n(θ•, v•) 6 inf

m∈N
P
n

θ (‖θ̂m• − θ•‖2

v
) 6 Pn

θ (‖θ̂m
◦
n

• − θ•‖2

v
)

6 v
θ
R
◦
n(θ•, v•) 6 v2

θ
inf
m∈N

P
n

θ (‖θ̂m• − θ•‖2

v
), (12.05)

and, hence R◦n(θ•, v•), m◦n and the statistic θ̂m
◦
n

• , respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v2

θ•
). �

§12.16 Remark. We shall emphasise that for each fixed m ∈ N with ‖1m• ‖v ∈ R
+ we have n−1‖1m• ‖v =

o(1) as n → ∞. As a consequence, if ‖1m• ‖v ∈ R
+ for all m ∈ N and ‖θ•1m|⊥• ‖v = o(1)

as m → ∞ then we obtain R◦n(θ•, v•) = o(1) as n → ∞, and thus, R◦n(θ•, v•) is also called an
oracle rate. Indeed, for all δ ∈ R+

\0 there exists m
δ
∈ N and n

δ
∈ N such that we have both

‖θ•1mδ|⊥
• ‖2

v
6 δ/2 and n−1‖1mδ

• ‖2
v
6 δ/2 for all n > n

δ
, and whence R◦n(θ•, v•) 6 Rmδ

n (θ•, v•) 6 δ.
However, note that the oracle dimensionm◦

n
= m◦

n
(θ•, v•) as defined in Proposition §12.12 depends

on the unknown parameter of interest θ•, and thus also the oracle optimal statistic θ̂m
◦
n

• . In other
words θ̂m

◦
n

• is not a feasible estimator. �

§12.17 Corollary (GSSM §12.05 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §12.05, where

Ḃ• ∼ N
⊗N
(0,1) and θ• = Uθ ∈ `2. For v• ∈ (R\0)

N and θ• ∈ `2(v
2
• ) the (infeasible) OPE θ̂m

◦
n

• = θ̂•1
m◦n
• ∈

`21
m◦n
• ⊆ `2(v

2
• ) with oracle dimension m◦

n
as in (12.04) satisfies

N
n

θ•

(
‖θ̂m

◦
n

• − θ•‖2

v

)
= R

◦
n(θ•, v•) = inf

m∈N
N
n

θ•

(
‖θ̂m• − θ•‖2

v

)
,

and hence it is oracle optimal (with constant 1).
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§12.18 Proof of Corollary §12.17. is given in the lecture. �

§12.19 Illustration. Here and subsequently, we use for two sequences a•, b• ∈ (R+

\0)
N the notation an '

bn if the sequence a•/b• is bounded away both from zero and infinity. We illustrate the last results
considering usual behaviour for the bias and variance term. We distinguish the following two
cases

(p) v• ∈ J or there is m ∈ N with ‖θm• − θ•‖2
v

= 0,

(np) v• 6∈ J and for all m ∈ N holds ‖θm• − θ•‖2
v
∈ R+

\0.

Interestingly, in case (p) the oracle bound is parametric, that is, nR◦n(θ•, v•) = O(1), in case
(np) the oracle bound is nonparametric, i.e. limn→∞ nR◦n(θ•, v•) = ∞. In case (np) consider the
following two specifications:

Table 01 [§12]

Order of the oracle rate R◦n(θ•, v•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

v2j = j2v θ2j ‖θ•1m|⊥• ‖2
v

‖1m• ‖2
v

m◦
n

R◦n(θ•, v•)

(o) v ∈ (−1/2, a) j−2a−1 m−2(a−v) m2v+1 n
1

2a+1 n−
2(a−v)
2a+1

v = −1/2 j−2a−1 m−2a−1 logm
( n
logn

) 1
2a+1

logn
n

(s) v + 1/2 ∈ R+
\0 e−j

2a m(1−2(a−v))+e−m
2a

m2v+1 (log n)
1
2a

(logn)
2v+1

2a

n

v = −1/2 e−j
2a e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 01 [§12] the order of the oracle rate R◦n(θ•, v•) is depict for v > −1/2 only.
In case v < −1/2 the oracle rate R◦n(θ•, v•) is parametric. �

§12|01|02 Maximal global v-risk

§12.20 Reminder. Under Assumption §11.12 we have Ja = La2(ν) = dom(M
a†•
) = Ja• ⊆ J and the

three measures ν , a2|†
• ν and v2

• ν dominate mutually each other, i.e. they share the same null
sets (see Property §11.05). We consider Ja endowed with ‖·‖a† = ‖M

a†•
·‖

J
and given a constant

r ∈ R+

\0 the ellipsoid Ja,r := {h• ∈ Ja• : ‖h•‖a† 6 r} ⊆ Ja. Since (av)• ∈ L∞(ν), and hence
(av)(m) := ‖(av)•1

m|⊥
• ‖L∞(ν ) ∈ R

+ for each m ∈ N we have Ja ⊆ L2(v
2
• ν) (Property §11.15), and

‖θ•1m|⊥• ‖v 6 r (av)(m) for all θ• ∈ Ja•,r (Lemma §11.17). �

§12.21 Proposition. Let the Assumptions §12.07 and §11.12 and 1m• ∈ L2(v
2
• ν) for all m ∈ N be satis-

fied. For all n,m ∈ N setting

R
m

n (a•, v•) := [(av)2
(m) ∨ n−1‖1m• ‖2

v
], m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}

(12.06)

we have Pn
θ (‖θ̂m

?
n

• − θ•‖2
v
) 6 (‖v θ• ‖L∞(ν ) + r2) R?

n(a•, v•) for all θ• = Uθ ∈ Ja,r and n ∈ N.

§12.22 Proof of Proposition §12.21. is given in the lecture. �

§12.23 Remark. Under the assumptions of Proposition §12.21 if there exists in addition v ∈ R+ satis-
fying ‖v θ• ‖L∞(ν ) 6 v for all θ• ∈ Ja•,r then

sup
{
P
n

θ (‖θ̂m
?
n

• − θ•‖2

v•
): θ• ∈ Ja,r

}
6 (v + r2)R

?

n(a•, v•) for all n ∈ N.
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Arguing similarly as in Remark §12.16 we note that R?

n(a•, v•) = o(1) as n → ∞, whenever
‖1m• ‖v• ∈ R

+ for all m ∈ N and (av)(m) = o(1) as m → ∞. The latter is satisfied, for example,
if (av)• = a•v• ∈ J (in equal a• ∈ L2(v

2
• ν)). Note that the dimension m?

n
:= m?

n
(a•, v•) as defined in

(12.06) does not depend on the unknown parameter of interest θ• but on the class Ja•,r only, and
thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• is known in advance, then the
OPE θ̂m

?
n

• is a feasible estimator. �

§12.24 Corollary (GSSM §12.05 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §12.05, where

Ḃ• ∼ N
⊗N
(0,1) and θ• = Uθ ∈ `2. Under Assumption §11.12 the OPE θ̂m

?
n

• = θ̂•1
m?

n

• ∈ `21
m?

n

• ⊆ `2(v
2
• )

with dimension m?
n

as in (12.06) satisfies

sup
{

N
n

θ•

(
‖θ̂m

?
n

• − θ•‖2

v

)
: θ• ∈ `a,r2

}
6 C R

?

n(a•, v•) for all n ∈ N (12.07)

with constant C = 1 + r2.

§12.25 Proof of Corollary §12.24. is given in the lecture. �

§12.26 Illustration. We illustrate the last results considering usual behaviour for (av)•, v• ∈ J . We
distinguish the following two cases (p) v• ∈ J, and (np) v• 6∈ J. Interestingly, in case (p)
the bound in Proposition §12.21 is parametric, that is, nR?

n(a•, v•) = O(1), in case (np) the
bound is nonparametric, i.e. limn→∞ nR?

n(a•, v•) = ∞. In case (np) consider the following two
specifications:

Table 02 [§12]

Order of the rate R?

n(a•, v•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

vj = jv a2j (av)2
(m) ‖1m• ‖2

v
m?

n
R?

n(a•, v•)

(o) v ∈ (−1/2, a) j−2a m−2(a−v) m2v+1 n
1

2a+1 n−
2(a−v)
2a+1

v = −1/2 j−2a m−2a−1 logm
( n
logn

) 1
2a+1

logn
n

(s) v + 1/2 ∈ R+
\0 e−j

2a m2ve−m
2a

m2v+1 (log n)
1
2a n−1(log n)

2v+1
2a

v = −1/2 e−j
2a e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 02 [§12] the order of the rate R?

n(a•, v•) is depict for > −1/2 only. In case
v < −1/2 the rate R?

n(a•, v•) is parametric. �

§12|02 Local and maximal local φ-risk

We measure secondly the accuracy of the OPE θ̂m• = θ̂•1
m
• of θm• = θ•1

m
• ∈ J1m• with θ• = Uθ ∈ J

by a local mean-φ-error, i.e. φ-risk.

§12.27 Reminder. If φ
•
∈ J\0 and θ• ∈ dom(φν) := {h• ∈ J = L2(ν) : φ

•
h• ∈ L1(ν)} then we have

|φν(θ•)− φν(θm• )| = o(1) as m →∞ (Property §11.22). �

§12.28 Assumption. Consider a noisy version θ̂• = θ• + n−1/2ε• ∼ P
n
θ of θ• = Uθ ∈ J satisfying

Assumption §10.04, ε• ∼ P
(0•,Γθ)

with Γθ ∈ L>(J) and ε•1
m
• ∈ L2(ν) P

n
θ -a.s. for each m ∈ N. �

§12.29 Comment. Under Assumption §12.28 if 1m• ∈ L2(φ
2

•
ν) then Pn

θ -a.s. we have |ν(|φ
•
ε•1

m
• |)|2 6

ν(φ2

•
1m• )ν(ε2

• 1
m
• ) ∈ R+ and hence ε•1

m
• ∈ dom(φν). If in addition θ• ∈ dom(φν), and hence

θm• ∈ dom(φν) (Property §11.22), then it follows

n−1/2ε•1
m
• + θ

m
• = θ̂

m

• ∈ dom(φν) P
n

θ -a.s.. (12.08)
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IfJ ⊆ Z (at most countable) then Assumption §10.04 and Γθ ∈ L>(J) implies v θ• = P
n
θ (ε2

• ) ∈ L∞(ν)

and hence the additional assumption ε•1
m
• ∈ L2(ν) P

n
θ -a.s.. However, the last implication does

generally not hold, if J ∈ {R,R+} for example. �

§12|02|01 Local φ-risk

§12.30 Definition. Under Assumption §12.28, φ
•
∈J\0, θ• ∈ dom(φν) and 1m• ∈ L2(φ

2

•
ν) for m ∈ N the

local φ-risk of an OPE θ̂m• = θ̂•1
m
• ∈ dom(φν) P

n
θ• -a.s. satisfies

P
n

θ (|φν(θ̂
m

• − θ•)|2) = P
n

θ (|φ
•
ν((θ̂• − θ•)1m• )|2) + |φν(θ•1

m|⊥
• )|2. (12.09)

with variance Pn
θ (|φν((θ̂• − θ•)1m• )|2) = n−1P

(0•,Γθ)
(|φν(ε•1

m
• )|2) and bias |φν(θ•1

m|⊥
• )|. �

§12.31 Property. Under Assumption §12.28, φ
•
∈J\0 and 1m• ∈ L2(φ

2

•
ν) for m ∈ N we have

P
(0•,Γθ)

(|φν(ε•1
m
• )|2) = 〈Γθ(φ•1

m
• ), φ

•
1m• 〉J =: ‖φ

•
1m• ‖2

Γθ
6 ‖Γθ‖L(J)

‖1m• ‖2

φ
(12.10)

and consequently Pn
θ (|ν(φ

•
(θ̂• − θ•)1m• )|2) 6 n−1‖Γθ‖L(J)

‖1m• ‖2
φ
∈ R+. �

§12.32 Proposition (Upper bound). Let Assumption §12.28, φ
•
∈J\0, θ• ∈ dom(φν) and 1m• ∈ L2(φ

2

•
ν) for

all m ∈ N be satisfied. For all m,n ∈ N setting

R
m

n (θ•, φ•) := |φν(θ•1
m|⊥
• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (θ•, φ•) : m ∈ N
}

and R
◦
n(θ•, φ•) := R

m◦n
n (θ•, φ•) := min

{
R
m

n (θ•, φ•) : m ∈ N
}

(12.11)

we have Pn
θ (|φν(θ̂m

◦
n

• − θ•)|2) 6 (1 ∨ ‖Γθ‖L(J)
)R◦n(θ•, φ•).

§12.33 Proof of Proposition §12.32. is given in the lecture. �

§12.34 Definition. Let θ• ∈ dom(φ
•
ν) and θ̂m• ∈ dom(φν) P

n
θ• -a.s. for all m ∈ N. If there exist C ∈ R+

\0

and for each n ∈ N, R◦n ∈ R
+

\0 and m◦
n
∈ N satisfying

C
−1

R
◦
n 6 inf

m∈N
P
n

θ (|φν(θ̂
m

• − θ•)|2) 6 Pn

θ (|φν(θ̂
m◦n
• − θ•)|2) 6 C R

◦
n,

then we call R◦n oracle bound, m◦
n

oracle dimension and θ̂m
◦
n

• oracle optimal (up to the constant
C). As a consequence, up to the constant C

2 the statistik θ̂m
◦
n

• attains the lower local φ
•
-risk bound

within the family of OPE’s, that is, Pn
θ (|φν(θ̂m

◦
n

• − θ•)|2) 6 C
2
infm∈NP

n
θ (|φν(θ̂m• − θ•)|2). �

§12.35 Comment. If Γθ ∈ L>(J) is invertible with inverse Γ−1

θ ∈ L(J), i.e. ΓθΓ
−1

θ = idJ = Γ−1

θ Γθ , then
we write shortly v

θ
:= max(‖Γθ‖L(J)

, ‖Γ−1

θ ‖L(J)
) ∈ R+

\0. In this situation for all a• ∈ J we have
v−1
θ
‖a•‖2

J
6 ‖a•‖2

Γθ
= 〈Γθa•, a•〉J 6 v

θ
‖a•‖2

J
. �

§12.36 Oracle inequality. Under Assumption §12.28 let φ
•
∈ J\0, θ• ∈ dom(φν) and 1m• ∈ L2(φ

2

•
ν)

for all m ∈ N. If in addition 1 6 max(‖Γθ‖L(J)
, ‖Γ−1

θ ‖L(J)
) 6 v

θ
∈ R

+

\0. then (12.11) and
Comment §12.35 imply

v−1
θ

R
m

n (θ•, φ•) 6 P
n

θ (|φν(θ̂
m

• − θ•)|2) = n−1‖φ
•
1m• ‖2

Γθ
+ |φν(θ•1

m|⊥
• )|2

6 v
θ
R
m

n (θ•, φ•) for all m,n ∈ N.
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As a consequence we immediately obtain the following oracle inequality

v−1
θ

R
◦
n(θ•, φ•) 6 inf

m∈N
P
n

θ (|φν(θ̂
m

• − θ•)|2) 6 Pn

θ (|φν(θ̂
m◦n
• − θ•)|2)

6 v
θ
R
◦
n(θ•, φ•) 6 v2

θ
inf
m∈N

P
n

θ (|φν(θ̂
m

• − θ•)|2), (12.12)

and hence, R◦n(θ•, φ•), m
◦
n

and the statistic θ̂m
◦
n

• , respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v2

θ•
). �

§12.37 Remark. Arguing similarly as in Remark §12.16 we note that R◦n(θ•, φ•) = o(1) as n → ∞,
whenever ‖1m• ‖2

φ
∈ R+ for all m ∈ N and |φν(θ•1

m|⊥
• )
∣∣ = o(1) as m →∞. The latter is satisfied,

for example, if θ• ∈ dom(φν). The oracle dimension m◦
n

= m◦
n
(θ•, φ•) as defined in (12.11) depends

again on the unknown parameter of interest θ•, and thus also the oracle optimal statistic θ̂m
◦
n

• . In
other words θ̂m

◦
n

• is not a feasible estimator. �

§12.38 Corollary (GSSM §12.05 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §12.05, where Ḃ• ∼

N
⊗N
(0,1) and θ• = Uθ ∈ `2. For θ• ∈ dom(φν

N
) the (infeasible) OPE θ̂m

◦
n

• = θ̂•1
m◦n
• ∈ `21

m◦n
• ⊆ dom(φν

N
)

with oracle dimension m◦
n

as in (12.11) satisfies

N
n

θ•
(|φν

N
(θ̂

m◦n
• − θ•)|2) = R

◦
n(θ•, φ•) = inf

m∈N
N
n

θ•
(|φν

N
(θ̂

m

• − θ•)|2),

and hence it is oracle optimal (with constant 1).

§12.39 Proof of Corollary §12.38. is given in the lecture. �

§12.40 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in Illustration §12.19 we distinguish here the
following two cases

(p) φ
•
∈ J or there is K ∈ N with sup{|φν(θ•1

m|⊥
• )|2 : m ∈ N ∩ [K,∞)} = 0,

(np) φ
•
6∈ J and for all m ∈ N holds sup{|φν(θ•1

m|⊥
• )|2 : m ∈ N ∩ [K,∞)} ∈ R+

\0.

In case (p) the oracle bound is again parametric, i.e. nR◦n(θ•, φ•) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. limn→∞ nR◦n(θ•, φ•) =∞. In case (np) consider the following
two specifications

Table 03 [§12]

Order of the oracle rate R◦n(θ•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 θj |φν(θ•1
m|⊥
• )|2 ‖1m• ‖2

φ
m◦

n
R◦n(θ•, φ•)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
1
2a n−

(a−v)
a

v = 0 j−a−1/2 m−2a logm
( n
logn

) 1
2a

logn
n

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v (log n)
1
2a

(logn)
v
a

n

v = 0 e−j
2a m(1−2a)+e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 03 [§12] the order of the oracle rate R◦n(θ•, φ•) is depict for v > 0 only. For
v < 0 the oracle rate R◦n(θ•, φ•) is parametric. �
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§12|02|02 Maximal local φ-risk

§12.41 Reminder. Under Assumption §11.25 we have Ja = La2(ν) = dom(M
a†
) = Ja• ⊆ J and the

three measures ν , a2|†
• ν and |φ

•
|ν dominate mutually each other, i.e. they share the same null

sets (see Property §11.05). We consider Ja endowed with ‖·‖a† = ‖M
a†•
·‖

J
and given a constant

r ∈ R
+

\0 the ellipsoid Ja,r := {h• ∈ Ja : ‖h•‖a† 6 r} ⊆ Ja. Since (aφ)• ∈ J, and hence
‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖J ∈ R

+ for each m ∈ N (‖a•1m|⊥• ‖φ = o(1) as m → ∞ by dominated
convergence) we have Ja ⊆ dom(φν) (Property §11.27), and |φν(θ•1

m|⊥
• )| 6 r ‖a•1m|⊥• ‖φ for all

θ• ∈ Ja,r (Lemma §11.29). �

§12.42 Proposition. Let the Assumptions §11.25 and §12.28, and 1m• ∈ L2(φ
2

•
ν) for all m ∈ N be

satisfied. For all n,m ∈ N setting

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}

(12.13)

we have Pn
θ (|φν(θ̂m• − θ•)|2) 6 (‖Γθ‖L(J)

∨ r2) R?

n(a•, φ•) for all θ• = Uθ ∈ Ja,r and n ∈ N.

§12.43 Proof of Proposition §12.42. is given in the lecture. �

§12.44 Remark. Under the assumptions of Proposition §12.42 if there exists in addition v ∈ R+ satis-
fying ‖Γθ‖L(J)

6 v for all θ• ∈ Ja,r then

sup
{
P
n

θ (|φν(θ̂
m?

n

• − θ•)|2): θ• ∈ Ja,r
}
6 (v ∨ r2)R

?

n(a•, φ•) for all n ∈ N.

Arguing similarly as in Remark §12.16 we note that R?

n(a•, φ•) = o(1) as n → ∞, whenever
‖1m• ‖2

φ
∈ R+ for all m ∈ N and ‖a•1m|⊥• ‖φ = o(1) as m → ∞. The latter is satisfied, for

example, if (aφ)• ∈ J (in equal a• ∈ L2(φ
2

•
ν)). Note that the dimension m?

n
:= m?

n
(a•, φ•) as defined

in (12.13) does not depend on the unknown parameter of interest θ• but on the class Ja,r only, and
thus also the statistic θ̂m

?
n

• . In other words, if the regularity of θ• is known in advance, then the
OPE θ̂m

?
n

• is a feasible estimator. �

§12.45 Corollary (GSSM §12.05 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §12.05, where

Ḃ• ∼ N
⊗N
(0,1) and θ• = Uθ ∈ `2. Under Assumption §11.25 the OPE θ̂m

?
n

• = θ̂•1
m?

n

• ∈ `21
m?

n

• ⊆ dom(φν
N
)

with dimension m?
n

as in (12.13) satisfies

sup
{

N
n

θ•
(|φν

N
(θ̂

m?
n

• − θ•)|2): θ• ∈ `a,r2

}
6 C R

?

n(a•, φ•) for all n ∈ N (12.14)

with constant C = 1 ∨ r2.

§12.46 Proof of Corollary §12.45. is given in the lecture. �

§12.47 Illustration. We illustrate the last results considering usual behaviour for a•, φ• ∈ J . We
distinguish the following two cases (p) φ

•
∈ J, and (np) φ

•
6∈ J. Interestingly, in case (p)

the bound in Proposition §12.42 is parametric, that is, nR?

n(a•, φ•) = O(1), in case (np) the
bound is nonparametric, i.e. limn→∞ nR?

n(a•, φ•) = ∞. In case (np) consider the following two
specifications:

Table 04 [§12]
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Order of the rate R?

n(a•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 a2j ‖a•1m|⊥• ‖2
φ

‖1m• ‖2
φ

m?
n

R?

n(a•, φ•)

(o) v ∈ (0, a) j−2a m−2(a−v) m2v n
1
2a n−

(a−v)
a

v = 0 j−2a m−2a logm
( n
logn

) 1
2a

logn
n

(s) v ∈ R+
\0 e−j

2a m2(v−a)+e−m
2a

m2v (log n)
1
2a

(logn)
v
a

n

v = 0 e−j
2a e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 04 [§12] the order of the rate R?

n(a•, φ•) is depict for v > 0 only. For v < 0
the rate R?

n(a•, φ•) is parametric. �

§13 Minimax optimal estimation

§13|01 Minimax theory: a general approach

Suppose that the function of interest θ belongs to a class Θ ⊆ H. For each noise level n ∈ N
let Pn

Θ := (Pn
θ )θ∈Θ denote a family of probability measures and let En

θ be the expectation with
respect to the measure Pn

θ in Pn
Θ . Moreover, we assume that the probability measure associated

with an observable quantity belongs to Pn
Θ .

§13.01 GSSM (§10.21 continued). Considering `2 = L2(N, 2
N, ν

N
) and a surjective partial isometry U ∈

L(H, `2), which is fixed and presumed to be known in advance, we illustrate the minimax approach
in a Gaussian sequence space model §10.21. Here the observable stochastic process θ̂• = θ• +

n−1/2Ḃ• is a noisy version of θ• = Uθ ∈ `2 and Ḃ• ∼ N
⊗N
(0,1). Consequently, θ̂• admits a N

n

θ•
-

distribution belonging to the family N
n

Θ := (N
n

θ•
)θ•∈Θ . Summarising the observations satisfy a

statistical product experiment (R
N
,B⊗N,N

n

Θ ) where Θ ⊆ `2. �

Assume furthermore, that an estimator θ̃ of θ based on the observable quantities is available
which takes its values in H but does not necessarily belong to Θ. We shall measure the accuracy
of any estimator θ̃ of θ by its distance dist(θ̃, θ) where dist(·, ·) is a certain semi metric to be specified
below. Moreover, we call the quantity Pn

θ

(
d2

ist(θ̃, θ)
)

risk of the estimator θ̃ of θ.

§13.02 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on observable quantities with probability measure Pn

θ ∈ Pn
Θ we call

R
n
[ θ̃ |Θ ] := sup

{
P
n

θ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
its maximal risk over Θ. �

§13.03 Remark. An advantage of taking a maximal risk instead of a risk is that the former does not
depend on the unknown function θ. Imagine we would have taken a constant estimator, say
θ̃ = h, of θ. This would be the perfect estimator if by chance θ = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. �

§13.04 Definition. Consider a maximal riskR
n
[ • |Θ ] over a family Pn

Θ of probability measures. Let θ̂ be
an estimator of θ ∈ Θ, C ∈ R+

\0 and for each n ∈ N let R?

n ∈ R
+ satisfy
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(lower) R?

n is a lower bound up to the constant C
−1 of the maximal risk over Θ, that is

inf
θ̃
R

n
[ θ̃ |Θ ] > C

−1
R
?

n

where the infimum is taken over all possible estimators of θ;

(upper) R?

n is an upper bound up to the constant C of the maximal risk over Θ, that is

R
n
[ θ̂ |Θ ] 6 C R

?

n

Then we call R?

n minimax-bound and the estimator θ̂ minimax-optimal (up to the constant C). As
a consequence, up to the constant C

2 the estimator θ̂ attains the lower maximal risk bound that
is,R

n
[ θ̂ |Θ ] 6 C

2
inf θ̃ Rn

[ θ̃ |Θ ]. �

§13.05 Remark. We call a minimax-bound (R?

n)n∈N a minimax-optimal rate (of convergence) if in
addition R?

n = o(1) as n → ∞. It is worth noting that a minimax-optimal rate is not unique
since every other rate that is equivalent of order is also minimax-optimal. �

§13.06 Nonparametric regression with uniform design (nRu). Let the [0, 1]×R-valued random vec-
tor (X, Y ) obeys PX -a.e. a nonparametric regression model Pf

(
Y
∣∣X) = f (see section §09).

For convenience, in addition the regressor X is supposed to be uniformly distributed on the
interval [0, 1], i.e. X ∼ U[0,1]. As a consequence, we have pX = 1[0,1] and L2([0, 1],B

[0,1]
,PX ) =

L2([0, 1],B
[0,1]
, λ[0,1]) = L2(λ[0,1]). Here and subsequently we assume that the conditional distribution

P
Y |X
f of Y given X is regular, and thus PY |X

f (idR) = Pf
(
Y
∣∣X) = f PX-a.s.. Let us denote in this

situation by Uf := U[0,1]�PY |X
f the joint distribution of (X, Y ) defined on ([0, 1]×R,B

[0,1]
⊗B),

but keep in mind, that the conditional distributionPY |X
f of Y givenX is still not specified. We as-

sume that f ∈ F ⊆ L2(λ[0,1]). Summarising the observations satisfy a statistical product experiment
(([0, 1]×R)n,Bn

[0,1]×R,U
⊗n
F = (U

⊗n
f )f∈F ) where F ⊆ L2(λ[0,1]). Let us assume in addition that Y

given X is normally distributed with conditional mean f (X ) and conditional variance σ2 ∈ R+

\0,
that is PY |X

f = N(f (X ),σ2). In this situation we denote by Uf ,σ := U[0,1]�N(f (X ),σ2) the joint distribution
of (X, Y ). We first consider the case that the variance σ2 is known a priori (i.e. σ2 = 1), and
in a second step we dismiss this information. Obviously, the distribution U

⊗n
f ,σ depends not only

on the parameter of interest f ∈ F and the noise level n ∈ N, but also on the variance σ2 ∈ R+

\0

which plays the role of a nuisance parameter. Consequently, let UF×R+

\0
:= (Uf ,σ)f∈F ,σ∈R+

\0
de-

note the family of possible distributions of (X, Y ). Summarising, if the variance is unknown
then the observations satisfy a statistical product experiment (([0, 1]×R)n,Bn

[0,1]×R,U
⊗n
F×R+

\0
) where

F ⊆ L2(λ[0,1]). �

More generally, given a class of solutions Θ, a class of nuisance parameters Ξ and a noise level
n ∈ N let Pn

Θ×Ξ := (Pn
θ,ξ)θ∈Θ,ξ∈Ξ denote a family of probability measures. Moreover, we assume

that the probability measure associated with an observable quantity belongs to Pn
Θ×Ξ. Note that

dismissing in Model §13.06 the assumption of a normally distributed error the class of nuisances
parameters Ξ equals the family of possible conditional distributions of the error terms.

§13.07 Definition. Given an estimator θ̃ of a function of interest θ belonging to a class of solutions Θ
based on observable quantities with probability measure Pn

θ,ξ ∈ Pn
Θ×Ξ we call

R
n
[ θ̃ |Θ,Ξ ] := sup

{
P
n

θ,ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ, ξ ∈ Ξ

}
its maximal risk over Θ × Ξ. �
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§13.08 Remark. Taking the supremum over the class of nuisances parameters allows us to quantify the
additional complexity due to the presence of the nuisance parameter. Moreover, if there exist an
estimator θ̂, a constant C ∈ R+

\0 and for each n ∈ N there is R?

n ∈ R
+ such that

(lower) R?

n is a lower bound up to the constant C of the maximal risk over Θ × Ξ, that is

inf
θ̃
R

n
[ θ̃ |Θ,Ξ ] > C

−1
R
?

n

where the infimum is taken over all possible estimators of θ;

(upper) R?

n is an upper bound up to the constant C of the maximal risk over Θ × Ξ, that is

R
n
[ θ̂ |Θ,Ξ ] 6 C R

?

n,

then we call R?

n minimax-bound and the estimator θ̂ minimax-optimal (up to the constant C).
As a consequence, up to the constant C

2 the estimator θ̂ attains the lower maximal risk bound
that is, R

n
[ θ̂ |Θ,Ξ ] 6 C

2
inf θ̃ Rn

[ θ̃ |Θ,Ξ ]. Typically, we assume first that the nuisance parameter
ξ is known a priori, and hence Pn

Θ×{ξ} is a family of probability measures associated with the
observable quantities. In this situation, we consider the maximal risk

{
P
n
θ,ξ

(
d2

ist(θ̃, θ)
)
: θ ∈ Θ

}
and

we seek a bound R?

n up to a constant which depends possibly on the nuisance parameter ξ .
However, if the bound R?

n is a valid lower and upper bound up to a constant uniformly for all
nuisance parameters ξ ∈ Ξ, then it is, obviously, also a bound of the maximal riskR

n
[ θ̂ |Θ,Ξ ]. �

§13.09 Reminder. Considering a Hilbert space J = L2(J ,J , ν) and a surjective partial isometry U ∈
L(H,J), which are fixed and presumed to be known in advance, we study statistical direct prob-
lems as in Definition §10.19. Given weights a• ∈ J\0 we introduce Ja = dom(M

a†•
) = Ja• =

L2(a
2|†
• ν) endowed with ‖·‖a† := ‖·‖

L2(a2|†• ν ) and the ellipsod Ja,r :=
{
h• ∈ Ja: ‖h•‖2a† 6 r2

}
⊆ Ja,

where the measures ν and a2|†
• ν dominate mutually each other. We consider the following global

and local measures of accuracy (compare Subsections §12|01 and §12|02).
(global) Given weights v• ∈ J\0 satisfying Assumption §11.12 introduce L2(v

2
• ν) = dom(M

v•
) =

Jv†• ⊆ J and ‖·‖v = ‖M
v•
·‖

J
, where Ja,r ⊆ L2(v

2
• ν) (Property §11.15). For θ• = Uθ ∈ Ja,r we

call dist(θ̃•, θ•) = ‖θ̃• − θ•‖v global v-error, Pn
θ

(
‖θ̃• − θ•‖2

v

)
global v-risk and

Rv

n
[ θ̃• |Ja,r ] := sup

{
P
n

θ

(
‖θ̃• − θ•‖2

v

)
: θ• = Uθ ∈ Ja,r

}
maximal v-risk over Ja,r.

(local) Given φ
•
∈J\0 satisfying Assumption §11.25 introduce dom(φν) :=

{
h• ∈ J: φ

•
h• ∈ L1(ν)

}
and the linear functional φν : J ⊇ dom(φν) → R with h• 7→ φν(h•) := ν(φ

•
h•) where

Ja,r ⊆ dom(φν) (Property §11.27). For θ• ∈ Ja,r we call dist(θ̃•, θ•) = |φν(θ̃•− θ•)| local φ-error,
P
n
θ

(
|φν(θ̃• − θ•)|2

)
local φ-risk and

Rφ

n
[ θ̃• |Ja,r ] := sup

{
P
n

θ

(
|φν(θ̃• − θ•)|2

)
: θ• = Uθ ∈ Ja,r

}
maximal φ-risk over Ja,r .

We formulate the results in terms of θ• = Uθ ∈ J rather than directly for θ ∈ H. Since U
is known, considering the class Ha,r := U

?
Ja,r :=

{
U
?
θ•: θ• ∈ Ja,r

}
we obtain immediately also

bounds over Ha,r for the maximal global risk

Rv

n
[ θ̃ |U?

Ja,r ] := sup
{
P
n

θ

(
‖U(θ̃ − θ)‖2

v

)
: θ ∈ Ha,r

}
and maximal local risk

Rφ

n
[ θ̃ |U?

Ja,r ] := sup
{
P
n

θ

(
|φν(U(θ̃ − θ))|2

)
: θ ∈ Ha,r

}
which we do not explicitly state in the sequel. �
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§13|02 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

§13.10 Definition. Let P0 and P1 be two probability measures on a measurable space (X,X ).
(a) The function

KL(P0 |P1 ) =

{
P0

(
log

dP0
dP1

)
=
∫

log
(dP0

dP1

)
dP0 , if P0

� P1 ,

+∞, otherwise

is called Kullback-Leibler-divergence of P0 with respect to P1 .
Let µ ∈Mσ(X ) be a P0 and P1 dominating σ-finite measure (e.g. P0 ,P1

� µ = P0 +P1 ). We write
dP0 := dP0/dµ and dP1 := dP1/dµ for short.
(b) The Hellinger distance between P0 and P1 is defined by

H(P0 ,P1 ) :=
( ∫
|
√

dP0 −
√

dP1 |2
)1/2

:= ‖
√

dP0 −
√

dP1‖L2(µ)

(c) and the Hellinger affinity is given by

ρ(P0 ,P1 ) :=

∫ √
dP0

√
dP1 := 〈

√
dP0 ,

√
dP1〉L2(µ)

,

where both do not depend on the choice of the dominating measure µ. �

§13.11 Remark. The Kullback-Leibler-divergence satisfies KL(P0 |P1 ) > 0 as well as KL(P0 |P1 ) = 0
if and only if P0 = P1 , but KL(·|·) is not symmetric. Moreover, for product measures holds
KL(P0,1 ⊗ P0,2|P1,1 ⊗ P1,2) = KL(P0,1|P1,1) + KL(P0,2|P1,2). �

§13.12 Lemma. (i) 0 6 H2(P0 ,P1 ) 6 2; (ii) ρ(P0 ,P1 ) = 1− 1
2
H2(P0 ,P1 ); and (iii) H2(P0 ,P1 ) 6 KL(P0 |P1 ).

§13.13 Proof of Lemma §13.12. Exercise. �

§13.14 Lemma. For a•, b• ∈ `2 and n ∈ N we have KL(N
n

a•
|Nn

b•
) = n

2
‖a• − b•‖2

`2
.

§13.15 Proof of Lemma §13.14. Exercise. �

§13.16 Notation. Recall that the semi metric dist(·, ·) is symmetric and satisfies the triangular inequality.
Morever, here and subsequently we suppose that for an estimator θ̃ and parameter θ0 and θ1 such
that dist(θ

0, θ1) ∈ R+

\0 the quantities dist(θ̃, θ
0) and dist(θ̃, θ

1) are measurable. �

§13.17 Lemma. Let P0 and P1 be two probability measures on a measurable space (X,X ). Suppose
that for an estimator θ̃ and parameter θ0 and θ1 with dist(θ

0, θ1) ∈ R+

\0 the quantities dist(θ̃, θ
0) and

dist(θ̃, θ
1) are measurable. Then, we have

P0

(
d2

ist(θ̃, θ
0
)
)

+ P1

(
d2

ist(θ̃, θ
1
)
)
>

1

2
d2

ist(θ
0
, θ

1
) ρ2(P0 ,P1 ). (13.01)

§13.18 Proof of Lemma §13.17. is given in the lecture. �
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§13|03 Lower bound based on two hypotheses

§13.19 Lemma (Lower bound based on two hypotheses). Given a noise level n ∈ N let Pn
Θ := (Pn

θ )θ∈Θ be
a family of probability measures. If there are θ0, θ1 ∈ Θ with associated probability measures
P0 := P

n

θ0 and P1 := P
n

θ1 such that H(P0 ,P1 ) 6 1 then we have

inf
θ̃
R

n
[ θ̃ |Θ ] >

1

16
d2

ist(θ
0
, θ

1
).

where the infimum is taken over all possible estimators.

§13.20 Proof of Lemma §13.19. is given in the lecture. �

§13.21 Remark (Lower bound for a local φ-risk). Due to the bounded Hellinger distance in Lemma §13.19,
Le Cam’s general method (see Le Cam [1973]) and Pinsker’s inequality allow to derive a lower
bound for a local φ-risk as in Reminder §13.09. However, in this special setting a lower bound
can be obtained elementarily from Lemma §13.19, which in this situation states

inf
θ̃•

Rφ

n
[ θ̃• |Θ ] >

1

16
|φν(θ

0
• − θ1

• )|2.

If we consider furthermore candidates θ0
• := θ∗• and θ1

• = −θ∗• for some θ∗• ∈ Θ such that
−θ∗• ∈ Θ, then trivially |φν(θ0

• − θ1
• )|2 = 4|φν(θ∗• )|2 which in turn implies due to the last

assertion

inf
θ̃•

Rφ

n
[ θ̃• |Θ ] >

1

4
|φν(θ

∗
• )|2. (13.02)

Often a minimax-optimal lower bound can be found by constructing a candidate θ∗• = Uθ∗ ∈ Θ
that has the largest possible |φν(θ∗• )|2-value but Pn

θ∗ and Pn
−θ∗ are still statistically indistinguishable

in the sense that H(Pn
θ∗ ,P

n
−θ∗) 6 1. �

§13.22 Reminder (Maximal local φ-risk in GSSM §13.01). Given Model §13.01 we consider an OPE as
in Section §12. Here the observable stochastic process θ̂• = θ• + n−1/2Ḃ• ∼ N

n

θ•
is a noisy version

of θ• = Uθ ∈ Θ ⊆ `2 and Ḃ• ∼ N
⊗N
(0,1). Consequently, θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ . Summarising the observations satisfy a statistical product experiment

(R
N
,B

N
,N

n

Θ ) where Θ ⊆ `2. Under Assumption §11.25 in Corollary §12.45 an upper bound
for a maximal local φ-risk of an OPE is shown. More precisely, the performance of the OPE
θ̂m• = θ̂•1

m
• ∈ `21

m
• ⊆ dom(φν

N
) with dimension m ∈ N is measured by its maximal local φ-risk,

that is

Rφ

n
[ θ̂

m

• | `a,r2
] := sup

{
N
n

θ•

(
|φν

N
(θ̂

m

• − θ•)|2
)
: θ• ∈ `a,r2

}
.

Let us recall (12.13) where for n,m ∈ N we have defined

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (13.03)

By Corollary §12.45 under Assumption §11.25 the maximal local φ-risk of an OPE θ̂m
?
n

• with
optimally choosen dimension m?

n
as in (13.03) satisfies

Rφ

n
[ θ̂

m?
n

• | `a,r2
] 6 CR

?

n(a•, φ•)

with C = 1 ∨ r2. �
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§13.23 Notation. For sequences a•, b• ∈ (K)N taking its values inK ∈ {R,R+,R+

\0,Q,Z, . . . } we write
a• ∈ (K)N↗ and b• ∈ (K)N↘ if a• and b•, respectively, is monotonically non-decreasing and non-
increasing. If in addition an → ∞ and bn → 0 as n → ∞, then we write a• ∈ (K)N↑∞ and
b• ∈ (K)N↓0 for short. �

§13.24 Assumption. Consider φ
•
, a• ∈ (R\0)

N such that a• ∈ `∞ and (aφ)• ∈ `2 (i.e. Assumption §11.25
is satisfied and ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m →∞), and in addition a2

• ∈ (R+

\0)
N
↓0 . �

§13.25 Comment. Assuming a2
• ∈ (R+

\0)
N
↘ is rather weak. If we suppose in addition lim infj→∞ a2

j >
c > 0, and hence a2

• 6∈ (R+

\0)
N
↓0 , then the assumption (aφ)• ∈ `2 implies φ

•
∈ `2 and hence the

rate R?

n(a•, φ•) is parametric (Illustration §12.47). Since we are interested in the case of a non-
parametric, the additional assumption a2

• ∈ (R+

\0)
N
↓0 imposes a rather weak condition satisfied also

in Illustration §12.47.
If a2

2 > n−1 then exploiting the definition (13.03) and φ
2
∈ R\0 we have

R
1

n(a•, φ•) = n−1φ
2

1
+ (aφ)2

2 + ‖a•12|⊥
• ‖2

φ
> n−1φ

2

1
+ n−1φ

2

2
+ ‖a•12|⊥

• ‖2

φ
= R

2

n(a•, φ•),

and consequently m?
n
− 1 ∈ N. In this situation, from (definition of the arg min)

n−1‖1m?
n−1

• ‖2

φ
+ (aφ)2

m?
n

+ ‖a•1m
?
n |⊥

• ‖2

φ

= R
m?

n−1

n (a•, φ•) > R
m?

n

n (a•, φ•) = n−1‖1m?
n−1

• ‖2

φ
+ n−1φ

2

m?
n

+ ‖a•1m
?
n |⊥

• ‖2

φ

follows (aφ)2
m?

n

> n−1φ2

m?
n

, and hence a2
m?

n

> n−1 (since φ
m?

n

∈ R\0). On the other hand from

n−1‖1m?
n

• ‖2

φ
+ (aφ)2

m?
n+1 + ‖a•1m

?
n+1|⊥

• ‖2

φ

= R
m?

n

n (a•, φ•) 6 R
m?

n+1

n (a•, φ•) = n−1‖1m?
n

• ‖2

φ
+ n−1φ

2

m?
n

+ ‖a•1m
?
n+1|⊥

• ‖2

φ

follows (aφ)2
m?

n+1 6 n−1φ2

m?
n+1

, and hence a2
m?

n+1 6 n−1 (since φ
m?

n+1
∈ R\0). Assuming a2

2 > n−1 we use
the property a2

m?
n

> n−1 > a2
m?

n+1 in the next proof. �

§13.26 Proposition (GSSM §13.01 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §13.01 where

Ḃ• ∼ N
⊗N
(0,1) and θ• = Uθ ∈ `2. Given Assumption §13.24 and the notations in (13.03) for all

n ∈ N ∩ (a−2
2 ,∞) we have

inf θ̃•R
φ

n
[ θ̃• | `a,r2

] > 8−1(1 ∧ 2r2) R
?

n(a•, φ•) (13.04)

where the infimum is taken over all estimators θ̃•.

§13.27 Proof of Proposition §13.26. is given in the lecture. �

§13.28 Illustration. Consider the two specifications (o) and (s) depict in Table 04 [§12] of the Illus-
tration §12.47. In both cases Assumption §13.24 is satisfied. Consequently, due to Proposi-
tion §13.26 the Table 04 [§12] presents the order of the minimax rate R?

n(a•, φ•) which is attaind
by the minimax-optimal OPE θ̂m

?
n

• = θ̂•1
m?

n

• ∈ `21
m?

n

• ⊆ dom(φν
N
) with optimally selected dimen-

sion m?
n

(Corollary §12.45). We shall stress, that the order of m?
n

given in the Table 04 [§12]
depends on the parameter a ∈ R+

\0 characterising the (abstract) smoothness of the solution which
is generally not known in advance. �
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§13|04 Lower bound based on m hypotheses

§13.29 Notation. For m ∈ N set Tm := {−1, 1}m and for each τ := (τ
j
)j∈JmK ∈ Tm and j ∈ JmK

introduce τ (j) ∈ Tm given by τ (j)

j
:= −τ

j
and τ (j)

l
:= τ

l
for l ∈ JmK\{j}. �

§13.30 Lemma (Assouad’s cube technique). Given a noise level n ∈ N let Pn
Θ := (Pn

θ )θ∈Θ be a family
of probability measures. Suppose there exist m ∈ N and distances d(j)

ist (·, ·), j ∈ JmK such that
d2

ist(·, ·) >
∑

j∈JmK |d
(j)
ist (·, ·)|2. If for each τ ∈ Tm there is θτ ∈ Θ with associated probability

measure Pτ := P
n
θτ such that for all τ ∈ Tm and j ∈ JmK we have H(Pτ ,Pτ (j)) 6 1 then we obtain

inf
θ̃
R

n
[ θ̃ |Θ ] > 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

|d(j)
ist (θ

τ
, θ

τ (j)

)|2

where the infimum is taken over all possible estimators.

§13.31 Proof of Lemma §13.30. is given in the lecture. �

§13.32 Remark (Lower bound of a global v-risk). The last result allows to derive a lower bound for a
global v-risk as in Reminder §13.09 which in case J = `2 = L2(N, 2

N, ν
N
) states

inf
θ̃•

Rv

n
[ θ̃• |Θ ] > 2−m

∑
τ∈Tm

1

16

∑
j∈JmK

v2
j |θ

τ
j − θτ

(j)

j |2.

If we assume furthermore candidates θτ• := (τ
j
θ?j 1

m
j )j∈N ∈ Θ, τ ∈ Tm, for some θ?• = Uθ? ∈ Θ,

then it is easily seen that
∑

j∈JmK v
2
j |θτj − θτ

(j)

j |2 = 4
∑

j∈JmK v
2
j |θ?j |2 = 4‖θ?• 1m• ‖2

v
which in turn

implies

inf
θ̃•

Rv

n
[ θ̃• |Θ ] > 2−m

∑
τ∈Tm

1

4
‖θ?• 1m• ‖2

v
=

1

4
‖θ?• 1m• ‖2

v
. (13.05)

Often a minimax-optimal lower bound can be found by choosing the parameter m and the func-
tion θ∗ that have the largest possible ‖θ?• 1m• ‖2

v
-value although that the associated Pτ , τ ∈ Tm are

still statistically indistinguishable in the sense that H(Pτ ,Pτ (j)) 6 1 for all j ∈ JmK and τ ∈ Tm. �

§13.33 Reminder (Maximal global v-risk in GSSM §13.01). Given Model §13.01 we consider an OPE as
in Section §12. Here the observable stochastic processi θ̂• = θ• + n−1/2Ḃ• ∼ N

n

θ•
is a noisy version

of θ• = Uθ ∈ Θ ⊆ `2 and Ḃ• ∼ N
⊗N
(0,1). Consequently, θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ . Summarising the observations satisfy a statistical product experiment

(R
N
,B

N
,N

n

Θ ) where Θ ⊆ `2. Under Assumption §11.12 in Corollary §12.24 an upper bound
for a maximal global v-risk of an OPE is shown. More precisely, the performance of the OPE
θ̂m• = θ̂•1

m
• ∈ `21

m
• ⊆ `2(v

2
• ) with dimension m ∈ N is measured by its maximal global v-risk over

the ellipsoid `a,r
2

, that is

Rv

n
[ θ̂

m

• | `a,r2
] := sup

{
N
n

θ•

(
‖θ̂m• − θ•‖2

v

)
: θ• ∈ `a•,r2

}
.

Let us recall (12.06) where for n,m ∈ N we have defined (av)2
(m) := ‖(av)2

•1
m|⊥
• ‖`∞ and

R
m

n (a•, v•) := (av)2
(m) ∨ n−1‖1m• ‖2

v
, m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}
. (13.06)

By Corollary §12.24 under Assumption §11.12 the maximal global v-risk of an OPE θ̂m
?
n

• with
optimally chosen dimension m?

n
as in (13.06) satisfies

Rv

n
[ θ̂

m?
n

• | `a,r2
] 6 CR

?

n(a•, v•)

with C = 1 + r2. �
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§13.34 Notation. For w• ∈ `∞ ∩ (R\0)
N we set w2

(0) := ‖w2
• ‖`∞ and w2

(•) = (w2
(j) := ‖w2

• 1
j |⊥
• ‖`∞)j∈N, where

by construction w2
(j) = sup

{
w2
i : i ∈ N ∩ [j + 1,∞)

}
, j ∈ N

0
and w2

(•) ∈ (R+

\0)
N
↘ . �

§13.35 Assumption. Consider v•, a• ∈ (R\0)
N such that a• ∈ `∞ and (av)• ∈ `∞ (i.e. Assumption §11.12

is satisfied), and in addition (av)2
(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that for all m ∈ N

(av)2
(m−1) > min

{
(av)2

j : j ∈ JmK
}
> C(av)(av)2

(m−1)

or in equal C(av)‖(av)−2
• 1

m
• ‖`∞ 6 (av)−2

(m−1). �

§13.36 Comment. Note that (av)2
(•) ∈ (R+

\0)
N
↘ by definition, hence (av)2

(•) ∈ (R+

\0)
N
↓0 is satisfied if and only

if (av)2
(m) = o(1) as m → ∞ (i.e. the maximal global approximation is consistent). Moreover if

(av)2
• ∈ (R+

\0)
N
↓0 then we have trivially (av)2

(•) ∈ (R+

\0)
N
↓0 and ‖(av)−2

• 1
m
• ‖`∞ = (av)−2

m = (av)−2
(m−1) for

all m ∈ N, i.e. Assumption §13.35 is satisfied with C(av) = 1.
For m?

n
and R?

n := Rm?
n

n (a•, v•) as in (13.06) we distinguish case i) : R?

n = n−1‖1m?
n

• ‖2
v
> (av)2

(m?
n) and

case ii) : R?

n = (av)2
(m?

n) > n−1‖1m?
n

• ‖2
v
. Consider case i) first. If (av)2

(1) > n−1v2
1 then R1

n(a•, v•) =

n−1v2
1 ∨ (av)2

(1) = (av)2
(1) and hence m?

n
− 1 ∈ N. In this situation, from n−1‖1m?

n−1
• ‖2

v
< n−1‖1m?

n

• ‖2
v

(since v2
m?

n

∈ R+

\0), the definition (13.06) and

n−1‖1m?
n−1

• ‖2

v
∨ (av)2

(m?
n−1) = R

m?
n−1

n (a•, v•) > R
?

n = n−1‖1m?
n

• ‖2

v

it follows Rm?
n−1

n (a•, v•) = (av)2
(m?

n−1) and hence (av)2
(m?

n−1) > n−1‖1m?
n

• ‖2
v
. Consider case ii). We set

m�
n

:= min
{
m ∈ N ∩ [m?

n
+ 1,∞): n−1‖1m• ‖2

v
> (av)2

(m)

}
(13.07)

where the defining set is not empty since (av)2
(•) ∈ (R+

\0)
N
↓0 . We note that (av)2

(m�n−1) = (av)2
(m?

n).
Indeed, in the non trivial case m�

n
−1 > m?

n
for each m ∈ Jm?

n
+ 1,m�

n
− 1K we have Rm

n (a•, v•) =
(av)2

(m) > n−1‖1m• ‖2
v
, which together with (av)2

(m?
n) = R?

n 6 Rm

n (a•, v•) = (av)2
(m) 6 (av)2

(m?
n) (since

(av)2
(•) ∈ (R+

\0)
N
↓0 ) implies the equality (av)2

(m) = (av)2
(m?

n) for all m ∈ Jm?
n

+ 1,m�
n
− 1K. Moreover,

from (av)2
(m?

n) = R?

n 6 Rm�n
n (a•, v•) = n−1‖1m�n• ‖2

v
it follows (av)2

(m�n−1) = (av)2
(m?

n) 6 n−1‖1m�n• ‖2
v
. To

summarise, assuming (av)2
(1) > n−1v2

1 we use in the next proof the properties case i) (av)2
(m?

n−1) >

n−1‖1m?
n

• ‖2
v

and case ii) (av)2
(m?

n) = (av)2
(m�n−1) 6 n−1‖1m�n• ‖2

v
. �

§13.37 Proposition (GSSM §13.01 continued). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §13.01 where

Ḃ• ∼ N
⊗N
(0,1) and θ• = Uθ ∈ `2. Given Assumption §13.35 and the notations in (13.06) for all

n ∈ N ∩ (v2
1 (av)−2

(1) ,∞) we have

inf θ̃•R
v

n
[ θ̃• | `a,r2

] > 8−1(1 ∧ 2C(av)r
2) R

?

n(a•, v•) (13.08)

where the infimum is taken over all estimators θ̃•.

§13.38 Proof of Proposition §13.37. is given in the lecture. �

§13.39 Illustration. Consider the two specifications (o) and (s) depict in Table 02 [§12] of the Illus-
tration §12.26. In both cases Assumption §13.35 is satisfied. Consequently, due to Proposi-
tion §13.37 the Table 02 [§12] presents the order of the minimax rate R?

n(a•, v•) which is attaind
by the minimax-optimal OPE θ̂m

?
n

• = θ̂•1
m?

n

• ∈ `21
m?

n

• ⊆ `2(v
2
• ) with optimally selected dimension m?

n

(Corollary §12.24). We shall stress, that the order of m?
n

given in the Table 02 [§12] depends on
the parameter a ∈ R+

\0 characterising the (abstract) smoothness of the solution which is generally
not known in advance. �
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§14 Data-driven estimation

§14|01 Data-driven estimation procedures

Considering a Hilbert space J = L2(J ,J , ν) and a surjective partial isometry U ∈ L(H,J), which
are fixed and presumed to be known in advance, we study data-driven estimation procedures in
statistical direct problems as in Definition §10.19. Precisely, we consider the observable noisy
version θ̂• = θ• + n−1/2ε• of the parameter θ• = Uθ ∈ J where the centred stochastic processes
ε• = (εj)j∈J satisfies Assumption §10.04 and n ∈ N is a sample size. We denote by Pn

θ the
distribution of θ̂•. Based on the noisy parameter θ̂• we consider the family (θ̂m• = θ̂•1

m
• )m∈N of

orthogonal projections estimators (OPE’s) of θ• defined in Definition §12.04. For each m ∈ N
we shall measure the accuracy of the OPE θ̂m• by its risk Pn

θ

(
d2

ist(θ̂
m, θ)

)
where dist(·, ·) is a certain

semi metric such as a global v-error (Definition §12.09) or a local φ-error (Definition §12.30).
Moreover, given θ• = Uθ ∈ J we consider the family of orthogonal projections (OP’s) (θm• =
θ•1

m
• ∈ J1m• )m∈N (Definition §11.08) where we tactically set θ∞• := θ•. Let us here assume that

there exist C ∈ R+

\0, and for each n,m ∈ N, var
n,m

(θ•, dist) ∈ R+ and Rm

n (θ•, dist) = d2
ist(θ

m
• , θ•) +

var
n,m

(θ•, dist) such that the risk of the estimator θ̂m satisfy

C
−1

R
m

n (θ•, dist) 6 P
n

θ

(
d2

ist(θ̂
m

• , θ•)
)
6 C{d2

ist(θ
m
• , θ•) + var

n,m
(θ•, dist)} = CR

m

n (θ•, dist). (14.01)

Minimising the right hand side in the last display as a function of m ∈ N leads to an optimal
dimension (if it exists) and upper bound

m◦
n

:= m◦
n
(θ•, dist) := arg min

{
R
m

n (θ•, dist) = d2
ist(θ

m
• , θ•) + var

n,m
(θ•, dist): m ∈ N

}
and

R
◦
n(θ•, dist) := R

m◦n
n (θ•, dist) = min

{
R
m

n (θ•, dist): m ∈ N
}
. (14.02)

Combining (14.01) and (14.02) (up to the constant C) we have that m◦
n

is an oracle dimension,
R◦n(θ•, dist) an oracle bound and the OPE θ̂m

◦
n with oracle dimensionm◦

n
is oracle optimal. However,

the oracle dimension m◦
n
(θ•, dist) given in (14.02) depends on the unknown parameter of interest θ•,

and thus also the oracle optimal statistic θ̂m
◦
n

• . In other words θ̂m
◦
n

• is not a feasible estimator. We
present in what follows two data-driven procedures to select a dimension m̂ within an admissible
subset JMK ⊆ N of dimension parameters given by an integer M ∈ N, which eventually leads
to a feasible data-driven estimator θ̂m̂• depending on the observable quantities only. We call any
data-driven estimator θ̂• adaptive for a class Θ of solutions if for all θ• ∈ Θ there is a constant
Kθ•
∈ R+

\0 possibly depending on θ• such that Pn
θ•

(
d2

ist(θ̂•, θ•)
)
6 KθR

◦
n(θ•, dist) for all n ∈ N. Each of

those two different data-driven strategies involves in addition a sequence pen• = (pen
m
)m∈N ∈

(R+)N of penalties. Both, the upper bound M and the sequence of penalties, depend on the
noise level n and possibly on the class Θ of solutions. However, for ease of presentation we
omit the additional subscripts. We eventually show that there are constants C1,C2 ∈ R

+

\0 possibly
depending on the solution θ• ∈ Θ and (bias

m
(θ•, dist))m∈N, (R

re

n(θ•, dist))n∈N ∈ (R+)N such that for
all n ∈ N the risk of the data-driven estimator θ̂m̂• satisfies

P
n

θ•

(
d2

ist(θ̂
m̂

• , θ•)
)
6 C1 min

{
bias2

m
(θ•, dist) + pen

m
: m ∈ JMK

}
+ C2R

re

n(θ•, dist). (14.03)

If in addition for all θ• ∈ Θ there is a constant C3 ∈ R
+

\0 such that for all n ∈ N we have also

m◦
n
∈ JMK, bias

m◦n
(θ•, dist) 6 C3dist(θ

m◦n
• , θ•) and pen

m◦n
6 C3var

n,m◦n
(θ•, dist). (14.04)

Then due to (14.03) the data-driven estimator θ̂m̂• satisfies

P
n

θ•

(
d2

ist(θ̂
m̂

• , θ•)
)
6 C1C3 min

{
d2

ist(θ
m
• , θ•) + var

n,m
(θ•, dist): m ∈ JMK

}
+ C2R

re

n(θ•, dist)

= C1C3R
◦
n(θ•, dist) + C2R

re

n(θ•, dist).
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and hence, if in addition Rre

n(θ•, dist) 6 C4R
◦
n(θ•, dist) for a constant C4 ∈ R

+

\0, then θ̂m̂• is adaptive.
Indeed, we have Pn

θ•

(
d2

ist(θ̂
m̂
• , θ•)

)
6 KR◦n(θ•, dist) with K := C1C3 + C2C4.

§14.01 Remark. In oder to establish a feasible method we have to select an upper bound M. Let us
briefly descibe heuristically the strategy we eventually apply. For each θ• ∈ Θ and n,m ∈ N let
var

n,m
(dist) = var

n,m
(θ•, dist) do not depend on θ• ∈ Θ and moreover let var

n,•(dist) = (var
n,m

(dist))m∈N ∈
(R+)N↑∞ be known in advance. Furthermore, for all n ∈ N let var

n,1
(dist) 6 Cdist for some constant

Cdist ∈ R
+

\0, which is evidently also known in advance. Consequently, the defining set of M
n

:=

max
{
m ∈ N: var

n,m
(dist) 6 Cdist

}
is not empty and finite. For all n ∈ N with R◦n(θ•, dist) 6 Cdist

follows then m◦
n
∈ JM

n
K since Cdist > R◦n(θ•, dist) > var

n,m◦n
(dist). In other words the feasible upper

bound M
n

satisfies the first condition in assumption (14.04). �

§14.02 GSSM (§10.21 continued). Considering `2 = L2(N, 2
N, ν

N
) and a surjective partial isometry U ∈

L(H, `2), which is fixed and presumed to be known in advance, we illustrate the different data-
driven procedures in a Gaussian sequence space model §10.21. Here the observable stochastic
process θ̂• = θ•+n−1/2Ḃ• is a noisy version of θ• = Uθ ∈ `2 and Ḃ• ∼ N

⊗N
(0,1). Consequently, θ̂• admits

a N
n

θ•
-distribution belonging to the family N

n

Θ := (N
n

θ•
)θ•∈Θ . Summarising the observations satisfy

a statistical product experiment (R
N
,B⊗N,N

n

Θ ) where Θ ⊆ `2. �

§14|02 Model selection

Given a noisy version θ̂• ∼ Pn
θ• in a statistical direct problem as in Definition §10.19. and a col-

lection of admissible models JMK for some M ∈ N we seek to minimise the global v-risk within
the family (θ̂m• = θ̂•1

m
• )m∈JMK of OPE’s defined in Definition §12.04. Here and subsequently, let

Assumption §12.07, v• ∈J\0, θ• ∈ L2(v
2
• ν) and 1m• ∈ L2(v

2
• ν) for all m ∈ N be satisfied.

§14.03 Reminder. For all n,m ∈ N we set

R
m

n (θ•, v•) := ‖θ•1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (θ•, v•) : m ∈ N
}

and R
◦
n(θ•, v•) := R

m◦n
n (θ•, v•) = min

{
R
m

n (θ•, v•) : m ∈ N
}

(14.05)

Since θm• = θ•1
m
• ∈ L2(v

2
• ν) (Property §11.09) and θ̂m• = θ̂•1

m
• ∈ L2(v

2
• ν) P

n
θ• -a.s. (Comment §12.08),

for each a• ∈ L2(v
2
• ν)1m• applying the Cauchy-Schwarz inequality we have

v2
• ν(|a•θ̂•|) = v2

• ν(|a•θ̂•1m• |) 6 ‖a•‖v‖θ̂
m

• ‖v ∈ R
+
,

and hence a•θ̂• ∈ L1(v
2
• ν) P

n
θ• -a.s.. �

The first selection method is inspired by the work of Barron et al. [1999] and for an extensive
overview of model selection by penalised contrast, the reader may refer to Massart [2007]. Let
us introduce a contrast function

Υ : L2(v
2
• ν) ⊇

⋃
m∈N

L2(v
2
• ν)1m• → R with a• 7→ Υ(a•) := ‖a•‖2

v
− 2v2

• ν(a•θ̂•) (14.06)

where for each m ∈ N the OPE θ̂m• = θ̂•1
m
• and a• ∈ L2(v

2
• ν)1m• ⊆ L2(v

2
• ν) satisfy

Υ(a•) = ‖a•‖2

v•
− 2v2

• ν(a•θ̂•) = ‖a•‖2

v
− 2〈a•, θ̂

m

• 〉v = ‖a• − θ̂
m

• ‖2

v
− ‖θ̂m• ‖2

v
.

Consequently, for each m ∈ N the OPE θ̂m• = θ̂•1
m
• minimises the contrast function, that is,

−‖θ̂m• ‖2

v
= Υ(θ̂

m

• ) = inf
{

Υ(a•) : a• ∈ L2(v
2
• ν)1m•

}
. (14.07)
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Given an upper bound M ∈ N and penalties pen• = (pen
m
)m∈N ∈ (R+)N we select a dimension

among the collection of admissible values JMK as minimiser of a penalised contrast criterion,
that is

m̂ := arg min
{

Υ(θ̂
m

• ) + pen
m

: m ∈ JMK
}
. (14.08)

The data-driven estimator of θ• is now given by θ̂m̂• and below we derive an upper bound for its
global v-risk Pn

θ•

(
‖θ̂m̂• −θ•‖2

v

)
. The construction of the penalty sequence pen• and the upper bound

M given below is motivated by the following key arguments used in the proof of the risk bound
which we present first. Moreover, both pen• and M will depend, among others, on the noise level
n, however, for sake of simplicity we will omit an additional subscript. The key argument for
our reasoning is the next assertion. For a ∈ R we write (a)

+
:= a ∨ 0 shortly.

§14.04 Lemma (key argument). If pen• ∈ (R+)N then for all M ∈ N and m ∈ JMK we have

‖θ̂m̂• − θ•‖2

v
6 3‖θm• − θ•‖2

v
+ 4pen

m
+ 8 max

{(
‖θ̂j• − θj• ‖2

v
− pen

j
/4
)

+
: j ∈ Jm,MK

}
.

§14.05 Proof of Lemma §14.04. is given in the lecture. �

Similar to m◦
n

as in (14.05), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension m� ∈ JMK to be specified below. Due to the last assertion for
each θ ∈ Θ we have

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 3‖θm

�

• − θ•‖2

v
+ 4pen

m�

+ 8P
n

θ

(
max

{(
‖θ̂j• − θj• ‖2

v
− pen

j
/4
)

+
: j ∈ Jm�,MK

})
(14.09)

Keeping in mind that m� ∈ JMK in contrast to m◦
n
∈ N eventually realises an optimal statistical-

error-squared-bias trade-off among the collection of admissable values JMK rather than N, we
wish the upper bound M to be as large as possible. In contrast, in order to control the remainder
term, the last term in (14.09), we are eventually a forced to use a rather small upper bound M.
However, we bound the remainder term by imposing the following assumption, which though
holds true for a wide range of solutions θ• ∈ Θ under reasonable model assumptions.

§14.06 Assumption. There exists a constant C := C(θ•) ∈ R+

\0 possibly depending on the parameter
θ• ∈ Θ and (Rre

n(θ•, v•))n∈N ∈ (R+)N such that for each n ∈ N the upper bound M ∈ N and
m� ∈ JMK satisfy

P
n

θ

(
max

{(
‖θ̂j• − θj• ‖2

v
− pen

j
/4
)

+
: j ∈ Jm�,MK

})
6 C R

re

n(θ•, v•).

The next assertion provides an upper bound for the v-risk of the estimator θ̂m̂ with data-driven
choice m̂ given by (14.08).

§14.07 Proposition. Let m� ∈ JMK satisfy the Assumption §14.06 then we have

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 3‖θm

�

• − θ•‖2

v
+ 4pen

m�
+ 8 C R

re

n(θ•, v•).

§14.08 Proof of Proposition §14.07. is given in the lecture. �

§14.09 Corollary. If m� = arg min
{
‖θm• − θ•‖2

v
+ pen

m
: m ∈ JMK

}
satisfies Assumption §14.06, then

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 4 min

{
‖θm• − θ•‖2

v
+ pen

m
: m ∈ JMK

}
+ 8 C R

re

n(θ•, v•).
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§14.10 Proof of Corollary §14.09. is given in the lecture. �

§14.11 Remark. Considering the v-risk bound of the estimator θ̂m
�

• with dimension parameter m� the
first rhs. term in the upper risk-bound given in Proposition §14.07 is strongly reminiscent of the
variance-squared-bias upper bound Rm�

n (θ•, v•) = ‖θm• − θ•‖2
v

+ var
n,m�

(θ•, v•) as given in (14.02). In-
deed, in many cases the penalty term pen

m�
is in the same order as the statistical error var

n,m�
(θ•, v•).

Consequently, provided the reminder term Rre

n(θ•, v•) is negligble compared to Rm�

n (θ•, v•), the upper
risk bound of the data-driven estimator is given by Rm�

n (θ•, v•) (up to a constant). Moreover, since
m� realises an optimal trade-off between squared-bias and statistical error among the admissable
values M, in many cases Rm�

n (θ•, v•) is of optimal orcale order R◦n(θ•, v•). �

We eventually are in a situation where the sequence of penalties pen• ∈ (R+)N satisfying the
Assumption §14.06 still depends on characteristics of the unknown parameter θ and thus it is
only partially known in advance. Assuming a sequence of estimators p̂en• ∈ (R+)N we select
similar to (14.08) the dimension

m̂ := arg min
{

Υ(θ̂
m

• ) + p̂en
m

: m ∈ JMK
}
. (14.10)

The data-driven estimator of θ• is now given by θ̂m̂• and below we derive an upper bound for its
global v-risk Pn

θ

(
‖θ̂m̂• − θ•‖2

v

)
. The key argument for our reasoning is the next assertion. Its proof

follows along the lines of the Proof §14.05.

§14.12 Lemma (key argument). If p̂en•, pen• ∈ (R+)N then for all M ∈ N and m ∈ JMK we have

‖θ̂m̂• − θ•‖2

v
6 3‖θ•1m|⊥• ‖2

v
+ 2pen

m
+ 2p̂en

m
+ 2
(
pen

m̂
− p̂en

m̂

)
+

+ 8 max
{(
‖θ̂j• − θj• ‖2

v
− pen

j
/4
)

+
: j ∈ Jm,MK

}
.

§14.13 Proof of Lemma §14.12. is given in the lecture. �

Similar to m◦
n

as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension m� ∈ JMK to be specified below (analogously to (14.09)).
Due to the last assertion for each θ ∈ Θ we have

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 3‖θ•1m|⊥• ‖2

v
+ 2pen

m
+ 8P

n

θ

(
max

{(
‖θ̂j• − θj• ‖2

v
− pen

j
/4
)

+
: j ∈ Jm,MK

})
+ 2P

n

θ

(
p̂en

m

)
+ 2P

n

θ

((
pen

m̂
− p̂en

m̂

)
+

)
. (14.11)

We bound the first remainder term by imposing Assumption §14.06, which though hold true for
a wide range of solutions θ• = Uθ ∈ Θ under reasonable model assumptions.

§14.14 Proposition. If m� ∈ JMK satisfies the Assumption §14.06 then we have

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 3‖θ•1m|⊥• ‖2

v
+ 2pen

m
+ 8C R

re

n(θ•, v) + 2P
n

θ

(
p̂en

m

)
+ 2P

n

θ

((
pen

m̂
− p̂en

m̂

)
+

)
.

§14.15 Proof of Proposition §14.14. is given in the lecture. �

§14.16 Corollary. If m� = arg min
{
‖θ•1m|⊥• ‖2

v
+ pen

m
: m ∈ JMK

}
satisfies Assumption §14.06 with con-

stant C ∈ [1,∞), Pn
θ (p̂en

m�
) 6 K1pen

m�
and Pn

θ

((
pen

m̂
− p̂en

m̂

)
+

)
6 K2 Rre

n(θ) for some K1,K2 ∈
[1,∞), then

P
n

θ

(
‖θ̂m̂• − θ•‖2

v

)
6 4K1 min

{
‖θ•1m|⊥• ‖2

v
+ pen

m
: m ∈ JMK

}
+ (2K2 + 8C )R

re

n(θ).

§14.17 Proof of Corollary §14.16. is given in the lecture. �
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§14|03 GSSM: data-driven global estimation

Let us first state some elementary inequalities for Gaussian random variables. There exist several
results for tail bounds of sums of independent squared Gaussian random variables and we present
next a version which is due to Birgé [2001] and the formulation (14.12) can be found in Lemma
1 in Laurent and Massart [2000].

§14.18 Lemma. Let a• ∈ (R)N and Ḃ• = (Ḃj)j∈N ∼ N
⊗N
(0,1). For all η ∈ R+ and m ∈ N we have

N
⊗N
(0,1)

(
‖a•Ḃ•1m• ‖2

`2
− ‖a•1m• ‖2

`2
> 2‖a2

• 1
m
• ‖`2
√
η + 2‖a2

• 1
m
• ‖`∞η

)
6 exp(−η). (14.12)

which for all ζ ∈ R+ setting η := ζ(ζ ∧ 1)‖a•1m• ‖2
`2
/(4‖a2

• 1
m
• ‖`∞) ∈ R+ implies

N
⊗N
(0,1)

(
‖a•Ḃ•1m• ‖2

`2
> (1 + 3ζ/2)‖a•1m• ‖2

`2

)
6 exp(−η). (14.13)

Moreover, for any ξ ∈ [1,∞) we have

N
⊗N
(0,1)

((
‖a•Ḃ•1m• ‖2

`2
− (1 + 3ξ/2)‖a•1m• ‖2

`2

)
+

)
6 6‖a2

• 1
m
• ‖`∞ exp

(
− (ξ/4)‖a•1m• ‖2

`2
‖a2

• 1
m
• ‖−1

`∞

)
. (14.14)

§14.19 Proof of Lemma §14.18. Exercise. �

§14|03|01 Global v-risk

§14.20 Reminder (Global oracle v-risk in GSSM §14.02). Given Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ , Θ ⊆ `2. Let us recall (12.04) in Proposition §12.12 where for v• ∈

(R\0)
N, θ• ∈ `2(v

2
• ) and n,m ∈ N we have defined

R
m

n (θ•, v•) := ‖θ•1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (θ•, v•) : m ∈ N
}

and R
◦
n(θ•, v•) := R

m◦n
n (θ•, v•) = min

{
R
m

n (θ•, v•) : m ∈ N
}
. (14.15)

Due to Corollary §12.17 the (infeasible) OPE θ̂m
◦
n

• = θ̂•1
m◦n
• ∈ `21

m◦n
• ⊆ `2(v

2
• ) with oracle dimension

m◦
n

as in (14.15) satisfies

N
n

θ•

(
‖θ̂m

◦
n

• − θ•‖2

v

)
= R

◦
n(θ•, v•) = inf

m∈N
N
n

θ•

(
‖θ̂m• − θ•‖2

v

)
,

and hence it is oracle optimal (with constant 1). �

§14.21 Assumption. Let v• ∈ (R\0)
N satisfy

Cv :=
∑
m∈N

4‖v2
• 1

m
• ‖`∞ exp

(
− ‖v•1m• ‖2

`2
/(4‖v2

• 1
m
• ‖`∞)

)
∈ R+

. �

§14.22 Comment. Since ‖v2
• 1

m
• ‖`∞ ∈ R

+

\0 and ‖v2
• 1

m
• ‖`∞ > v2

1 for all m ∈ N, the Assumption §14.21
implies ‖v2

• 1
m
• ‖`∞‖v•1

m
• ‖−2

`2
= o(1) and ‖v•1m• ‖−2

`2
= o(1) as m →∞. �

§14.23 Illustration. Consider v2
• = (ja)j∈N for a ∈ R+

\0. Then ‖v2
• 1

m
• ‖`∞ = ma and ‖v•1m• ‖2

`2
' ma+1.

Consequently, we have∑
m∈N

4‖v2
• 1

m
• ‖`∞ exp

(
− ‖v•1m• ‖2

`2
/(4‖v2

• 1
m
• ‖`∞)

)
'
∑
m∈N

ma exp
(
−m

)
∈ R+

\0.
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and the assumption Assumption §14.21 is satisfied. On the contrary if v2
• = (exp(ja))j∈N for

a > 1, then ‖v2
• 1

m
• ‖`∞ = exp(ma) and ‖v•1m• ‖2

`2
' exp(ma). Consequently, we have∑

m∈N

4‖v2
• 1

m
• ‖`∞ exp

(
− ‖v•1m• ‖2

`2
/(4‖v2

• 1
m
• ‖`∞)

)
'
∑
m∈N

exp(ma) ' ∞

and the assumption Assumption §14.21 is not satisfied. �

§14.24 Corollary. Under Assumption §14.21 we have

N
n

θ•

(
max

{(
‖θ̂j• − θj• ‖2

v
− 5

2
‖1j•‖2

v
n−1
)

+
: j ∈ JMK

})
6 (3/2)Cvn

−1 for all M ∈ N. (14.16)

§14.25 Proof of Corollary §14.24. is given in the lecture. �

§14.26 Notation. Consider a sequence of penalties penv
• = (penv

m
)m∈N ∈ (R+

\0)
N given by

penv
m

:= 10n−1‖1m• ‖2

v
, for each m ∈ N (14.17)

which is obviously known in advance. Considering the data-driven OSE θ̂m̂• = θ̂•1
m̂
• with di-

mension parameter m̂ selected as in (14.08) with penalty sequence penv
• given in (14.17) and

arbitrary but fixed upper bound M ∈ N we derive below an upper bound for its global v-risk,
N
n

θ•

(
‖θ̂m̂• − θ•‖2

v

)
. �

§14.27 Proposition (GSSM (§14.02 continued)). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §14.02 where

θ• ∈ `2 and Ḃ• ∼ N
⊗N
(0,1). Given v• ∈ (R\0)

N, M ∈ N and penv
• as in (14.17) consider a data-driven

OPE θ̂m̂• = θ̂•1
m̂
• ∈ `21

m̂
• ⊆ `2(v

2
• ) of θ• ∈ `2(v

2
• ) with

m̂ := arg min
{
− ‖θ̂m• ‖v + penv

m
: m ∈ JMK

}
. (14.18)

If Assumption §14.21 is satisfied with Cv ∈ R
+

\0, then for all n,M ∈ N we have

N
n

θ•

(
‖θ̂m̂• − θ•‖2

v

)
6 40 min

{
R
m

n (θ•, v•): m ∈ JMK
}

+ 12 Cv n
−1 (14.19)

where Rm

n (θ•, v•) := ‖θm• − θ•‖2
v

+ n−1‖1m• ‖2
v•

is defined as in (14.15).

§14.28 Proof of Proposition §14.27. is given in the lecture. �

§14.29 Comment. The oracle bound R◦n(θ•, v•) = Rm◦n
n (θ•, v•) = min

{
Rm

n (θ•, v•): m ∈ N
}

(for details see
Reminder §14.20) satisfies nR◦n(θ•, v•) > ‖1m

◦
n

• ‖2
v
> v2

1 . Consequently, the last upper bound in
(14.19) and the oracle bound R◦n(θ•, v•) coincide up to a constant (40 + 12 Cvv

−2
1 ) provided the

oracle dimension fulfils m◦
n
∈ JMK. Therefore, we wish the upper bound M to be as large as

possible. The next assertion shows that

M
v

:= max
{
m ∈ N: ‖1m• ‖2

v
6 nv2

1

}
∈ N (14.20)

is a suitable choice for the upper bound, where the defining set is not empty and finite since
‖1m• ‖−2

v
= o(1) as m →∞. �

§14.30 Corollary (GSSM (§14.02 continued)). Given v• ∈ (R\0)
N, Mv ∈ N as in (14.20) and penv

• as in
(14.17) consider a data-driven OPE θ̂m̂• = θ̂•1

m̂
• ∈ `21

m̂
• ⊆ `2(v

2
• ) with

m̂ := arg min
{
− ‖θ̂m• ‖v + penv

m
: m ∈ JMvK

}
. (14.21)
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Under the assumptions of Proposition §14.27 for each n ∈ N such that R◦n(θ•, v•) 6 v2
1 we have

N
n

θ•

(
‖θ̂m̂• − θ•‖2

v

)
6 40 R

◦
n(θ•, v•) + 12 Cv n

−1 6 CR
◦
n(θ•, v•) (14.22)

and, hence up to the constant C := 40 + 12 Cvv
−2
1 the feasible data-driven estimator θ̂m̂• is oracle

optimal.

§14.31 Proof of Corollary §14.30. is given in the lecture. �

§14.32 Remark. If Assumption §14.21 is not satisfied (see Illustration §14.23), then we can’t make use
of Corollary §14.24. In this situation let v• ∈ (R\0)

N and δ• ∈ ([1,∞))N satisfy

Cv,δ :=
∑
m∈N

4‖v2
• 1

m
• ‖`∞ exp

(
− δm‖v•1m• ‖2

`2
/(4‖v2

• 1
m
• ‖`∞)

)
∈ R+

. (14.23)

Consider a sequence of penalties penv,δ
• = (penv,δ

m
)m∈N ∈ (R+

\0)
N given by

penv,δ
m

:= 4(1 + 3δm/2)n−1‖1m• ‖2

v
, for each m ∈ N (14.24)

which is obviously known in advance. Similar to Corollary §14.24 due to (14.23) for each
M ∈ N we obtain

nN
n

θ•

(
max

{(
‖θ̂j• − θj• ‖2

v
− (1 + 3δj/2)‖1j•‖2

v
n−1
)

+
: j ∈ JMK

})
6
∑

m∈JMK

6‖v2
• 1

m
• ‖`∞ exp

(
− δm‖v•1m• ‖2

`2
/(4‖v2

• 1
m
• ‖`∞)

)
= (3/2)Cv,δ.

Thus, the sequence of penalties penv,δ
• ∈ (R+

\0)
N given in (14.24) satisfies the Assumption §14.06

with C = (3/2)Cv,δ and Rre

n(θ•, v•) = n−1. Consequently, the data-driven OPE θ̂m̂• = θ̂•1
m̂
• ∈ `21

m̂
• ⊆

`2(v
2
• ) with

m̂ := arg min
{
− ‖θ̂m• ‖v + penv,δ

m
: m ∈ JMK

}
(14.25)

due to Proposition §14.07 for all θ• ∈ `2(v
2
• ) and n,M ∈ N fulfils

N
n

θ•

(
‖θ̂m̂• − θ•‖2

v

)
6 min

{
3‖θm• − θ•‖2

v
+ 4penv,δ

m
: m ∈ JMK

}
+ 8(3/2)Cv,δn

−1

6 40 min
{
‖θm• − θ•‖2

v
+ n−1δm‖1m• ‖2

v
: m ∈ JMK

}
+ 12Cv,δn

−1

Introduce R�n(θ•, v•) := min
{
‖θm• − θ•‖2

v
+ n−1δm‖1m• ‖2

v
: m ∈ N

}
where R�n(θ•, v•) > R◦n(θ•, v•) >

n−1v2
1 since in general n−1δm‖1m• ‖2

v
> n−1‖1m• ‖2

v
for all m ∈ N. Consequently, if the upper bound

M ∈ N satisfies arg min
{
‖θm• − θ•‖2

v
+ n−1δm‖1m• ‖2

v
: m ∈ N

}
=: m� ∈ JMK then we obtain

N
n

θ•

(
‖θ̂m̂• − θ•‖2

v

)
6 CR�n(θ•, v•) with C := 40 + 12Cv,δ. However, the upper bound R�n(θ•, v•) faces a

deterioration by the factor δ• and thus it is generally not an oracle bound. �

§14|03|02 Maximal global v-risk

§14.33 Reminder (Maximal global v-risk in GSSM §14.02). Given Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ , Θ ⊆ `2. Under Assumption §11.12 in Corollary §12.24 an upper bound

for a maximal global v-risk of an OPE is shown. More precisely, the performance of the OPE
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θ̂m• = θ̂•1
m
• ∈ `21

m
• ⊆ `2(v

2
• ) with dimension m ∈ N is measured by its maximal global v•-risk over

the ellipsoid `a,r
2

, that is

Rv

n
[ θ̂

m

• | `a,r2
] := sup

{
N
n

θ•

(
‖θ̂m• − θ•‖2

v

)
: θ• ∈ `a,r2

}
.

Let us recall (12.06) where for n,m ∈ N we have defined (av)2
(m) := ‖(av)2

•1
m|⊥
• ‖`∞ and

R
m

n (a•, v•) := (av)2
(m) ∨ n−1‖1m• ‖2

v
, m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}
. (14.26)

By Corollary §12.24 under Assumption §11.12 the maximal global v-risk of an OPE θ̂m
?
n

• with
optimally choosen dimension m?

n
as in (14.26) satisfies

Rv

n
[ θ̂

m?
n

• | `a,r2
] 6 CR

?

n(a•, v•)

with C = 1 + r2. Moreover, under Assumption §13.35 due to Proposition §13.37 R?

n(a•, v•)

provides (up to a constant) also a lower bound of the maximal global v-risk over the ellipsoid
`a,r

2
for any estimator. Consequently, (up to a constant) R?

n(a•, v•) is a minimax bound and θ̂m
?
n

• is
minimax optimal. However, the optimal dimension m?

n
depends on a• ∈ (R+

\0)
N characterising

the ellipsoid `a,r
2

. �

§14.34 Proposition (GSSM (§14.02 continued)). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §14.02 where

θ• ∈ `2 and Ḃ• ∼ N
⊗N
(0,1). Given v• ∈ (R\0)

N, M ∈ N and penv
• as in (14.17) consider a data-driven

OPE θ̂m̂• = θ̂•1
m̂
• ∈ `21

m̂
• ⊆ `2(v

2
• ) with m̂ as in (14.18). If Assumptions §11.12 and §14.21 (with

Cv ∈ R
+

\0) are satisfied, then for all n,M ∈ N we have

Rv

n
[ θ̂

m̂

• | `a,r2
] 6 (3r2 + 40) min

{
R
m

n (a•, v•): m ∈ JMK
}

+ 12 Cv n
−1 (14.27)

where Rm

n (θ•, v•) := (av)2
(m) ∨ n−1‖1m• ‖2

v
is defined as in (14.26).

§14.35 Proof of Proposition §14.34. is given in the lecture. �

§14.36 Comment. The minimax bound R?

n(a•, v•) = Rm?
n

n (a•, v•) = min
{

Rm

n (a•, v•): m ∈ N
}

(for details
see Reminder §14.33) satisfies nR?

n(a•, v•) > ‖1m
?
n

• ‖2
v
> v2

1 . Consequently, the last upper bound in
(14.27) and the minimax bound R?

n(a•, v•) coincide up to a constant (3r2 +40+12 Cvv
−2
1 ) provided

the minimax dimension fulfils m?
n
∈ JMK. Therefore, we wish the upper bound M to be as large

as possible. The next assertion shows that Mv as in (14.20) is a suitable choice for the upper
bound. �

§14.37 Corollary (GSSM (§14.02 continued)). Given v• ∈ (R\0)
N, Mv ∈ N as in (14.20) and penv

• as in
(14.17) consider a data-driven OPE θ̂m̂• = θ̂•1

m̂
• ∈ `21

m̂
• ⊆ `2(v

2
• ) with m̂ as in (14.21). Under the

assumptions of Proposition §14.34 for each n ∈ N such that R?

n(a•, v•) 6 v2
1 we have

Rv

n
[ θ̂

m?
n

• | `a,r2
] 6 (3r2 + 40) R

?

n(a•, v•) + 12 Cv n
−1 6 CR

?

n(a•, v•) (14.28)

and, hence up to the constant C := 3r2 + 40 + 12 Cvv
−2
1 the feasible data-driven estimator θ̂m̂• is

minimax optimal.

§14.38 Proof of Corollary §14.37. is given in the lecture. �
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§14|04 Goldenshluger and Lepskij’s method

The next selection method is inspired by a bandwidth selection method in kernel density estima-
tion proposed in Goldenshluger and Lepskij [2011]. Let us consider a probability measure Pn

θ

for some θ• ∈ Θ. We shall measure the accuracy of the estimator θ̂m• of θ• by its risk Pn
θ•

(
d2

ist(θ̂
m
• , θ•)

)
where dist(·, ·) is a certain semi metric to be specified below. Inspired by Lepskij’s method (which
appeared in a series of papers by Lepskij [1990, 1991, 1992a,b]) given an integer M ∈ N and a
sequence pen• ∈ (R+)N of penalties we define a contrast contr• ∈ (R+)JMK by

contr
m

:= max
{(

d2
ist(θ̂

j

• , θ̂
m

• )− pen
j
− pen

m

)
+
: j ∈ Km,MK

}
= max

{(
d2

ist(θ̂
m∨j
• , θ̂

m∧j
• )− pen

m∨j − pen
m∧j

)
+
: j ∈ Km,MK

}
, m ∈ JMK. (14.29)

In the spirit of Goldenshluger and Lepskij [2011] combining the contrast given in (14.29) and
the penalisation approach of model selection in Subsection §14|02 we select the dimension

m̂ := arg min
{
contr

m
+ pen

m
: m ∈ JMK

}
. (14.30)

The data-driven estimator of θ• is now given by θ̂m̂• and below we derive an upper bound for its
risk Pn

θ

(
d2

ist(θ̂
m̂
• , θ•)

)
. The construction of the penalty sequence pen• and the upper bound M given

below is motivated by the following key argument used in the proof of the risk bound which
we present first. Moreover, both pen• and M will depend, among others, on the noise level n,
however, for sake of simplicity we will omit an additional subscript. The key argument for our
reasoning is the next assertion.

§14.39 Lemma (key argument). Let bias•(θ•, dist) = (bias
m
(θ•, dist))m∈N ∈ (R+)N be defined by

bias
m
(θ•, dist) := sup

{
dist(θ

j
• , θ

m
• ): j ∈ Jm,∞K := N ∩ [m,∞) ∪ {∞}

}
, ∀m ∈ N. (14.31)

If pen• ∈ (R+)N then for all M ∈ N and m ∈ JMK we have

d2
ist(θ̂

m̂

• , θ•) 6 16bias2
m
(θ•, dist) + 16

3
pen

m
+ 28 max

{(
d2

ist(θ̂
j

• , θ
j
• )− pen

j
/3
)

+
: j ∈ Jm,MK

}
.

§14.40 Proof of Lemma §14.39. is given in the lecture. �

Similar to m◦
n

as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension m� ∈ JMK to be specified below. Due to the last assertion for
each θ ∈ Θ we have

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 16bias2

m�
(θ•, dist) + 16

3
pen

m�

+ 28P
n

θ

(
max

{(
d2

ist(θ̂
j

• , θ
j
• )− pen

j
/3
)

+
: j ∈ Jm�,MK

})
. (14.32)

Keeping in mind thatm� in contrast tom◦
n

eventually realises an optimal statistical-error-squared-
bias trade-off among the collection of admissable values JMK rather than N, we wish the upper
bound M to be as large as possible. In contrast, in order to control the remainder term, the
last term in (14.32), we a forced to use a rather small upper bound M. However, we bound the
remainder term by imposing a condition similar to Assumption §14.06, which though holds true
for a wide range of solutions θ• = Uθ ∈ Θ under reasonable model assumptions.

§14.41 Assumption. There exists a constant C := C(θ•) ∈ R+

\0 and (Rre

n(θ•, dist))n∈N ∈ (R+)N possibly
depending on the parameter θ• = Uθ ∈ Θ such that for each n ∈ N the upper bound M ∈ N and
m� ∈ JMK satisfy

P
n

θ

(
max

{(
d2

ist(θ̂
m

• , θ
m
• )− pen

m
/3
)

+
: m ∈ Jm�,MK

})
6 C R

re

n(θ•, dist). (14.33)
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The next assertion provides an upper bound for the risk of the estimator θ̂m̂ with data-driven
choice m̂ given by (14.30).

§14.42 Proposition. Let m� ∈ JMK satisfy the Assumption §14.41 then we have

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 16bias2

m�
(θ•, dist) + 16

3
pen

m�
+ 28C R

re

n(θ•, dist).

§14.43 Proof of Proposition §14.42. is given in the lecture. �

§14.44 Corollary. If m� = arg min
{
bias2

m
(θ•, dist) + pen

m
: m ∈ JMK

}
satisfies Assumption §14.41, then

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 16 min

{
bias2

m
(θ•, dist) + pen

m
: m ∈ JMK

}
+ 28 C R

re

n(θ).

§14.45 Proof of Corollary §14.44. is given in the lecture. �

§14.46 Comment. Considering a global v-error we note that bias2
m
(θ•, dist) = ‖θm• − θ•‖2

v
for all m ∈ N,

and hence the upper bound in Corollary §14.44 equals up to the numerical constants the upper
bound in Corollary §14.09 using a model selection approach (Subsection §14|02). Consequently,
when globally estimating the parameter in a GSSM with a Goldenshluger and Lepskij method
rather than a model selection approach as in Subsection §14|03 we eventually obtain the same
upper bounds (up to the numerical constants). However, we shall stress that in opposite to
model selection the method by Goldenshluger and Lepskij does not require, that the estimator
minimises a contrast function. �

We eventually are in a situation where the sequence of penalties pen• ∈ (R+)N satisfying the
Assumption §14.41 still depends on characteristics of the unknown parameter θ and thus it is
only partially known in advance. Assuming a sequence of estimators p̂en• ∈ (R+)N we define an
estimated contrast ĉontr• ∈ (R+)JMK by

ĉontr
m

:= max
{(

d2
ist(θ̂

j

• , θ̂
m

• )− p̂en
j
− p̂en

m

)
+
: j ∈ Km,MK

}
= max

{(
d2

ist(θ̂
m∨j
• , θ̂

m∧j
• )− p̂en

m∨j − p̂en
m∧j

)
+
: j ∈ Km,MK

}
, m ∈ JMK (14.34)

and similar to (14.30) we select the dimension

m̂ := arg min
{
ĉontr

m
+ p̂en

m
: m ∈ JMK

}
. (14.35)

The data-driven estimator of θ• is now given by θ̂m̂• and below we derive an upper bound for its
risk Pn

θ

(
d2

ist(θ̂
m̂
• , θ•)

)
. The key argument for our reasoning is the next assertion. Its proof follows

along the lines of the Proof §14.40.

§14.47 Lemma (key argument). Let bias•(θ•, dist) = (bias
m
(θ•, dist))m∈N ∈ (R+)N be defined as in (14.31)

(Lemma §14.39). If p̂en•, pen• ∈ (R+)N then for all M ∈ N and m ∈ JMK we have

d2
ist(θ̂

m̂

• , θ•) 6 16bias2
m
(θ•, dist) + 4

3
pen

m
+ 28 max

{(
d2

ist(θ̂
j

• , θ
j
• )− pen

j
/3
)

+
: j ∈ Jm,MK

}
+ 8 max

{(
pen

j
− p̂en

j

)
+
: j ∈ Jm,MK

}
+ 4p̂en

m
.

§14.48 Proof of Lemma §14.47. is given in the lecture. �

Similar to m◦
n

as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension m� ∈ JMK to be specified below (analogously to (14.32)).
Due to the last assertion for each θ ∈ Θ we have

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 16bias2

m�
(θ•, dist)+ 4

3
pen

m�
+28P

n

θ

(
max

{(
d2

ist(θ̂
j

• , θ
j
• )− pen

j
/3
)

+
: j ∈ Jm�,MK

})
+ 8P

n

θ

(
max

{(
pen

j
− p̂en

j

)
+
: j ∈ Jm�,MK

})
+ 4P

n

θ

(
p̂en

m�

)
. (14.36)
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We bound the remainder terms by imposing conditions including Assumption §14.41, which
though hold true for a wide range of solutions θ• = Uθ ∈ Θ under reasonable model assumptions.

§14.49 Assumption. There exists a constant C := C(θ•) ∈ R+

\0 and (Rre

n(θ•, dist))n∈N ∈ (R+)N possibly
depending on the parameter θ• = Uθ ∈ Θ such that for each n ∈ N the penatlties p̂en•, pen• ∈
(R+)N, the upper bound M ∈ N and m� ∈ JMK satisfy (14.33) in Assumption §14.41 and in
addition

P
n

θ

(
max

{(
pen

j
− p̂en

j

)
+
: j ∈ Jm�,MK

})
6 C R

re

n(θ•, dist).

The next assertion provides an upper bound for the risk of the estimator θ̂m̂ with data-driven
choice m̂ given by (14.35).

§14.50 Proposition. If m� ∈ JMK satisfies the Assumption §14.49 then we have

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 16bias2

m�
(θ•, dist) + 4

3
pen

m�
+ 4P

n

θ (p̂en
m�

) + 36C R
re

n(θ•, dist).

§14.51 Proof of Proposition §14.50. is given in the lecture. �

§14.52 Corollary. If m� = arg min
{
bias2

m
(θ•, dist) + pen

m
: m ∈ JMK

}
satisfies Assumption §14.49 and

P
n
θ (p̂en

m�
) 6 Kpen

m�
for some K ∈ [1,∞), then

P
n

θ

(
d2

ist(θ̂
m̂

• , θ•)
)
6 (16 ∨ 6K) min

{
bias2

m
(θ•, dist) + pen

m
: m ∈ JMK

}
+ 36 C R

re

n(θ).

§14.53 Proof of Corollary §14.52. is given in the lecture. �

§14|05 GSSM: data-driven local estimation

Lemma §14.18 in Subsection §14|03 presents tail bounds of sums of independent squared Gaus-
sian random variables. We state next an elementary tail bound and a concentration inequality of
a single Gaussian random variable.

§14.54 Lemma. Let Z ∼ N(0,1). For all η ∈ R+

\0 and ζ,K ∈ [1,∞) we have

N(0,1)(Z > η) 6 (2πη2)−1/2 exp(−η2/2) and N(0,1)

((
Z2 − 2ζ(1 + log K)

)
+

)
6 K

−ζ
. (14.37)

§14.55 Proof of Lemma §14.54. Exercise. �

§14|05|01 Local φ-risk

§14.56 Reminder (Local oracle φ-risk in GSSM §14.02). Given Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ , Θ ⊆ `2. Let us recall (12.11) in Proposition §12.32 where φ

•
∈ (R\0)

N,
θ• ∈ dom(φν

N
) and n,m ∈ N we have defined

R
m

n (θ•, φ•) := |φν
N
(θ•1

m|⊥
• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (θ•, φ•) : m ∈ N
}

and R
◦
n(θ•, φ•) := R

m◦n
n (θ•, φ•) = min

{
R
m

n (θ•, φ•) : m ∈ N
}
. (14.38)

Due to Corollary §12.38 the (infeasible) OPE θ̂m
◦
n

• = θ̂•1
m◦n
• ∈ `21

m◦n
• ⊆ dom(φν

N
) with oracle

dimension m◦
n

as in (14.38) satisfies

N
n

θ•
(|φν

N
(θ̂

m◦n
• − θ•)|2) = R

◦
n(θ•, φ•) = inf

m∈N
N
n

θ•
(|φν

N
(θ̂

m

• − θ•)|2),

and hence it is oracle optimal (with constant 1). �
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§14.57 Corollary. For φ
•
∈ (R\0)

N and n,M ∈ N setting Km := (‖1m• ‖2
φ
∨ 1)m2 > 1, m ∈ N, we have

N
n

θ•

(
max

{(
|φν

N
(θ̂

m

• − θm• )|2 − 2(1 + log Km)n−1‖1m• ‖2

φ

)
+
: m ∈ JMK

})
6 2n−1. (14.39)

§14.58 Proof of Corollary §14.57. is given in the lecture. �

§14.59 Notation. Consider a sequence of penalties penφ• = (penφ
m
)m∈N ∈ (R+

\0)
N given by

penφ
m

:= 6
(
1 +

(
log‖1m• ‖2

φ

)
+

+ 2 logm
)
n−1‖1m• ‖2

φ
, for each m ∈ N (14.40)

which is obviously known in advance. Moreover, studying a φ-error the bias term introduced in
(14.31) becomes

bias
m
(θ•, φ•) = sup

{
|φν

N
(θ

j
• − θm• )| = |φν

N
(θ•1

Km,jK
• )|: j ∈ Jm,∞K

}
∀m ∈ N.

If θ• ∈ dom(φν
N
) and hence ν

N
(|φ

•
θ•|) ∈ R then bias

m
(θ•, φ•) 6 ν

N
(|φ

•
θ•|1m|⊥• ) = o(1) as m → ∞ by

dominated convergence. Considering the data-driven OSE θ̂m̂• = θ̂•1
m̂
• with dimension parameter

m̂ selected as in (14.30) with penalty sequence penφ• given in (14.40) and arbitrary but fixed upper
bound M ∈ N we derive below an upper bound for its local φ-risk, N

n

θ•

(
|φν

N
(θ̂m• − θm• )|2

)
. �

§14.60 Proposition (GSSM (§14.02 continued)). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §14.02 where

θ• ∈ `2 and Ḃ• ∼ N
⊗N
(0,1). Given φ

•
∈ (R\0)

N, M ∈ N and penφ• as in (14.40) consider a data-driven
OPE θ̂m̂• = θ̂•1

m̂
• ∈ `21

m̂
• ⊆ dom(φν

N
) of θ• ∈ dom(φν

N
) with

m̂ := arg min
{
contrφ

m
+ penφ

m
: m ∈ JMK

}
and

contrφ
m

:= max
{(
|φν

N
(θ̂

j

• − θ̂
m

• )|2 − penφ
j
− penφ

m

)
+
: j ∈ Km,MK

}
, m ∈ JMK. (14.41)

Then for all n,M ∈ N we have

N
n

θ•

(
|φν

N
(θ̂

m̂

• − θ•)|2
)

6 64 min
{
bias2

m
(θ•, φ•) +

(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)
n−1‖1m• ‖2

φ
: m ∈ JMK

}
+ 56n−1. (14.42)

§14.61 Proof of Proposition §14.60. is given in the lecture. �

§14.62 Comment. Let us compare the dominating part of the upper bound given in (14.42), that is

min
{
bias2

m
(θ•, φ•) +

(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)
n−1‖1m• ‖2

φ
: m ∈ JMK

}
(14.43)

with the oracle bound R◦n(θ•, φ•) = min
{
|φν

N
(θm• − θ•)|2 + n−1‖1m• ‖2

φ
: m ∈ N

}
(for details see

Reminder §14.56). In (14.43) we face eventually a deterioration by three sources. First, we
generally have bias

m
(θ•, φ•) > |φνN(θm• − θ•)|, but note that for θ•φ• ∈ (R+)N equality holds, that is

bias
m
(θ•, φ•) = sup

{
ν
N
(φ
•
θ•1

Km,jK
• ): j ∈ Jm,∞K

}
= ν

N
(φ
•
θ•1

m|⊥
• ) = |φν

N
(θ

m
• − θ•)|

for all m ∈ N. Secondly, the variance term features an additional factor 1 +
(

log‖1m• ‖2
φ

)
+

+

logm, and finally the upper bound M might impose an additional deterioration. We note that the
oracle bound R◦n(θ•, φ•) is parametric, i.e. nR◦n(θ•, φ•) = O(1) as n → ∞, if φ

•
∈ `2 (case (p) in

Illustration §12.40). In the sequel we consider only the case φ
•
6∈ `2, i.e. ν

N
(|φ

•
|2) =∞. We set

M
φ

:= max
{
m ∈ N: ‖1m• ‖2

φ
6 nφ2

1

}
∈ N (14.44)

where the defining set is not empty and finite since ‖φ
•
‖2
`2

= ∞. The next assertion shows that
this is a suitable choice for the upper bound. Moreover, we estimate the bias term by bias

m
(θ•, φ•) 6

ν(|φ
•
θ•|1m|⊥• ) where equality holds whenever θ•φ• ∈ (R+)N. �
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§14.63 Corollary (GSSM (§14.02 continued)). Given φ
•
∈ (R\0)

N with φ
•
6∈ `2, Mφ ∈ N as in (14.44) and

penφ• as in (14.40) consider a data-driven OPE θ̂m̂• = θ̂•1
m̂
• ∈ `21

m̂
• ⊆ dom(φν

N
) of θ• ∈ dom(φν

N
)

with

m̂ := arg min
{
contrφ

m
+ penφ

m
: m ∈ JMφK

}
and

contrφ
m

:= max
{(
|φν

N
(θ̂

j

• − θ̂
m

• )|2 − penφ
j
− penφ

m

)
+
: j ∈ Km,MφK

}
, m ∈ JMφK. (14.45)

For n,m ∈ N we set

R
m

n (θ•, φ•) :=
(
ν
N
(|φ

•
θ•|1m|⊥• )

)2
+
(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)
n−1‖1m• ‖2

φ
,

m� := arg min
{

R
m

n (θ•, φ•) : m ∈ N
}

and

R
�
n(θ•, φ•) := R

m�

n (θ•, φ•) = min
{

R
m

n (θ•, φ•) : m ∈ N
}
. (14.46)

Under the assumptions of Proposition §14.60 for each n ∈ N such that R�n(θ•, φ•) 6 φ2

1
we have

N
n

θ•

(
|φν

N
(θ̂

m̂

• − θ•)|2
)
6 64 R

�
n(θ•, φ•) + 56n−1 6 (64 + 56φ

−2

1
)R
�
n(θ•, φ•). (14.47)

§14.64 Proof of Proof §14.64. is given in the lecture. �

§14.65 Comment. The data-driven bound R�n(θ•, φ•) compared to the oracle bound R◦n(θ•, φ•) features a
deterioration of the variance term at least by a logarithmic factor. The appearance of the loga-
rithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. �

§14.66 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case φ

•
6∈ `2 only.

Table 01 [§14]

Order of the oracle rate R◦n(θ•, φ•) and the data-driven rate R�n(θ•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 θj (ν
N
(|φ

•
θ•|1m|⊥• ))2 ‖1m• ‖2

φ
Mφ m� R◦n(θ•, φ•) R�n(θ•, φ•)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
1
2v

( n
logn

) 1
2a n−

(a−v)
a

(
logn
n

)(a−v)
a

v = 0 j−a−1/2 m−2a logm en
( n
(logn)2

) 1
2a

logn
n

(logn)2

n

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v n
1
2v (log n)

1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a m(1−2a)+e−2m2a

logm en (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 01 [§14] the order of the oracle rate R◦n(θ•, φ•) and the data-driven rate
R◦n(θ•, φ•) is depict for v > 0 only. In case v < 0 we have φ

•
∈ `2 and thus Corollary §14.63 is not

applicable. �

§14|05|02 Maximal local φ-risk

§14.67 Reminder (Maximal local φ-risk in GSSM §14.02). Given Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version θ̂• admits a N

n

θ•
-distribution belonging to the

family N
n

Θ := (N
n

θ•
)θ•∈Θ , Θ ⊆ `2. Under Assumption §11.25 in Corollary §12.45 an upper bound
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for a maximal local φ-risk of an OPE is shown. More precisely, the performance of the OPE
θ̂m• = θ̂•1

m
• ∈ `21

m
• ⊆ dom(φν

N
) with dimension m ∈ N is measured by its maximal local φ-risk

over the ellipsoid `a,r
2

, that is

Rφ

n
[ θ̂

m

• | `a,r2
] := sup

{
N
n

θ•

(
|φν

N
(θ̂

m

• − θ•)|2
)
: θ• ∈ `a,r2

}
.

Let us recall (12.13) where for n,m ∈ N we have defined

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (14.48)

By Corollary §12.45 under Assumption §11.25 the maximal local φ-risk of an OPE θ̂m
?
n

• with
optimally choosen dimension m?

n
as in (14.48) satisfies

Rφ

n
[ θ̂

m?
n

• | `a,r2
] 6 CR

?

n(a•, φ•)

with C = 1 ∨ r2. Moreover, under Assumption §13.24 due to Proposition §13.26 R?

n(a•, φ•)

provides (up to a constant) also a lower bound of the maximal local φ-risk over the ellipsoid
`a,r

2
for any estimator. Consequently, (up to a constant) R?

n(a•, φ•) is a minimax bound and θ̂m
?
n

• is
minimax optimal. However, the optimal dimension m?

n
depends on a• ∈ (R+

\0)
N characterising

the ellipsoid `a,r
2

. �

§14.68 Proposition (GSSM (§14.02 continued)). Let θ̂• = θ• + n−1/2Ḃ• ∼ N
n

θ•
as in Model §14.02 where

θ• ∈ `2 and Ḃ• ∼ N
⊗N
(0,1). Given φ

•
∈ (R\0)

N, M ∈ N and penφ• as in (14.40) consider a data-driven
OPE θ̂m̂• = θ̂•1

m̂
• ∈ `21

m̂
• ⊆ dom(φν

N
) with m̂ as in (14.41). If Assumption §11.25 is satisfied, then

for all n,M ∈ N we have

Rφ

n
[ θ̂

m̂

• | `a,r2
]

6 (16r2 ∨ 64) min
{
‖a•1m|⊥• ‖2

φ
+
(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)
n−1‖1m• ‖2

φ
: m ∈ JMK

}
+ 56n−1. (14.49)

§14.69 Proof of Proposition §14.68. is given in the lecture. �

§14.70 Corollary (GSSM (§14.02 continued)). Given φ
•
∈ (R\0)

N with φ
•
6∈ `2, Mφ ∈ N as in (14.44)

and penφ• as in (14.40) consider a data-driven OPE θ̂m̂• = θ̂•1
m̂
• ∈ `21

m̂
• ⊆ dom(φν

N
) with m̂ as in

(14.45). For n,m ∈ N we set

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+
(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)
n−1‖1m• ‖2

φ
,

m� := arg min
{

R
m

n (a•, φ•) : m ∈ N
}

and

R
�
n(a•, φ•) := R

m�

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (14.50)

Under Assumption §11.25 for each n ∈ N such that R�n(a•, φ•) 6 φ2

1
we have

Rφ

n
[ θ̂

m̂

• | `a,r2
] 6 (16r2 ∨ 64) R

�
n(a•, φ•) + 56n−1 6 (16r2 ∨ 64 + 56φ

−2

1
)R
�
n(a•, φ•). (14.51)

§14.71 Proof of Proof §14.71. is given in the lecture. �

§14.72 Comment. The data-driven bound R�n(a•, φ•) compared to the minimax bound R?

n(a•, φ•) features
a deterioration of the variance term at least by a factor log n. The appearance of the logarithmic
factor within the bound is a known fact in the context of local estimation (cf. Laurent et al. [2008]
who consider model selection given direct Gaussian observations). Brown and Low [1996] show
that it is unavoidable in the context of nonparametric Gaussian regression and hence it is widely
considered as an acceptable price for adaptation. �
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§14.73 Illustration. We illustrate the last results considering usual behaviour for a•, φ• ∈ (R\0)
N. As in

Illustration §12.47 we distinguish again the following two cases (p) φ
•
∈ `2, and (np) φ

•
6∈ `2.

Interestingly, in case (p) the minimax bound R?

n(a•, φ•) in Proposition §12.42 is parametric, that
is, nR?

n(a•, φ•) = O(1), in case (np) the bound is nonparametric, i.e. limn→∞ nR?

n(a•, φ•) =∞. In
case (np) consider the following two specifications:

Table 02 [§14]

Order of minimax rate R?

n(a•, φ•) and the data-driven rate R�n(a•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 a2j ‖a•1m|⊥• ‖2
φ

‖1m• ‖2
φ

Mφ m� R?

n(a•, φ•) R�n(a•, φ•)

(o) v ∈ (0, a) j−2a m−2(a−v) m2v n
1
2v

( n
logn

) 1
2a n−

(a−v)
a

( logn
n

)a−v
a

v = 0 j−2a m−2a logm en
( n
(logn)2

) 1
2a

logn
n

(logn)2

n

(s) v ∈ R+
\0 e−j

2a m2(v−a)+e−m
2a

m2v n
1
2v (log n)

1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a e−m

2a

logm en (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 02 [§14] the order of the minimax rate R?

n(a•, φ•) and the data-driven rate
R�n(a•, φ•) is depict for v > 0 only. For v < 0 we have φ

•
∈ `2 and thus Corollary §14.70 is not

applicable. �
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Chapter 4

Nonparametric density estimation

This chapter presents nonparametric density estimation along the lines
of the textbooks by Tsybakov [2009] and Comte [2015] where far more
details, examples and further discussions can be found.

Overview
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§17|01 Maximal local φ-risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
§17|02 Maximal global v-risk . . . . . . . . . . . . . . . . . . . . . . . . . . 82

§18 Data-driven density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 83
§18|01 Data-driven global estimation by model selection . . . . . . . . . . . . 83
§18|02 Data-driven local estimation by Goldenshluger and Lepskij’s method . 87

§15 Noisy density coefficients

§15.01 Notation (Reminder). Consider the measure space ([0, 1],B
[0,1]
, λ[0,1]) where λ[0,1] denotes the re-

striction of the Lebesgue measure to the Borel-σ-algebra B
[0,1]

over [0, 1], and the Hilbert space
L2(λ[0,1]) := L2([0, 1],B

[0,1]
, λ[0,1]) of square Lebesgue-integrable functions endowed with its usual inner

product 〈h1, h2〉L2(λ[0,1])
= λ[0,1](h1h2) for all h1, h2 ∈ L2(λ[0,1]). Let D

2
be a set of square-integrable

Lebesgue densities on ([0, 1],B
[0,1]

), and hence D
2
⊆ L2(λ[0,1])(=: H) as in Model §10.23. We de-

note for each density p ∈ D
2

by Pp := pλ[0,1] and Ep the associated probability measure and
expectation, respectively. Keep in mind, that we identify equivalence classes and their represen-
tatives. �

§15.02 Assumption. We consider the statistical product experiment
(
[0, 1]n,B⊗n

[0,1]
,P⊗nD2

:= (P⊗np ) p∈D2

)
of size n ∈ N and for p ∈ D

2
⊆ L2(λ[0,1]) we denote by (Xi)i∈JnK ∼ P⊗np an iid. sample of X ∼ Pp .

§15.03 Notation (Reminder). Consider an orthonormal system (uj)j∈N in L2(λ[0,1]). Then U : L2(λ[0,1])→ `2

with h 7→ Uh := h• = (hj := 〈h, uj〉L2(λ[0,1])
)j∈N is a surjective partial isometry U ∈ L(L2(λ[0,1]), `2). Its

adjoint operator U
? ∈ L(`2,L2(λ[0,1])) satisfies U

?
a• =

∑
j∈N ajuj =: ν

N
(a•u•) for all a• ∈ `2. We call

h• = (hj)j∈N (generalised) Fourier coefficients and U (generalised) Fourier series transform. �

§15.04 Remark. Let U ∈ L(L2(λ[0,1]), `2) be a generalised Fourier series transform as in Notation §15.03
where L2(λ[0,1]) = ker(U) ⊕ ran(U

?
) and ran(U

?
) =

{
U
?
a• = ν

N
(a•u•): a• ∈ `2

}
. If U is not injective,

then there exists K ⊆ N and an orthonormal basis (vj)j∈K of ker(U), and each h ∈ L2(λ[0,1]) with
h• := Uh admits an expansion h = U

?
h• +

∑
j∈K 〈h, vj〉L2(λ[0,1])

vj . We denote by 1[0,1] ∈ B
[0,1]

the
constant function with x 7→ 1[0,1](x) := 1. If 1[0,1] ∈ ker(U) then we have 〈h,1[0,1]〉L2(λ[0,1])

= 0 for all
h ∈ ran(U

?
), or in equal 〈ν

N
(a•u•),1[0,1]〉L2(λ[0,1])

= 0 for all a• ∈ `2, and in particular 〈uj ,1[0,1]〉L2(λ[0,1])
=
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0 for all j ∈ N. For each density p ∈ L2(λ[0,1]) we have 〈p ,1[0,1]〉L2(λ[0,1])
= λ[0,1](p) = 1. In

other words the coefficient 〈p ,1[0,1]〉L2(λ[0,1])
is always known. Therefore, we assume here and

subsequently 1[0,1] ∈ ker(U). Moreover we have L2(λ[0,1]) ⊆ L1([0, 1],B
[0,1]
,Pp) =: L1(Pp). Indeed,

h ∈ L2(λ[0,1]) satisfies Pp(|h|) = pλ[0,1](|h|) = 〈p , |h|〉
L2(λ[0,1])

6 ‖p‖
L2(λ[0,1])

‖h‖
L2(λ[0,1])

∈ R+, and hence
h ∈ L1(Pp). Evidently, we have uj ∈ L1(Pp) for all j ∈ N and the Fourier coefficients p

•
=

(p
j
)j∈N = U p ∈ `2 of p ∈ L2(λ[0,1]) fulfil p

j
= 〈p , uj〉L2(λ[0,1])

= λ[0,1](puj) = pλ[0,1](uj) = Pp(uj) for
all j ∈ N. In addition we assume that for each p ∈ D

2
⊆ L2(λ[0,1]) the orthonormal system (uj)j∈N

belongs also to L2(Pp) := L2([0, 1],B
[0,1]
,Pp), i.e. uj ∈ L2(Pp) for all j ∈ N. �

§15.05 Assumption. The orthonormal system (uj)j∈N in L2(λ[0,1]), and its associated generalised Fourier
series transform U ∈ L(L2(λ[0,1]), `2) with h 7→ Uh := h• = (hj := 〈h, uj〉L2(λ[0,1])

)j∈N, is fixed and
known in advance. U is a partial isometry with (os1) 1[0,1] ∈ ker(U). (os2) For all p ∈ D

2
⊆

L2(λ[0,1]) the orthonormal system (uj)j∈N belongs to L2(Pp). �

§15.06 Remark. If in addition D
2
⊆ L∞(λ[0,1]) then for each p ∈ D

2
we have L2(λ[0,1]) ⊆ L2(Pp). Indeed,

h ∈ L2(λ[0,1]) satisfies Pp(|h|2) = λ[0,1](p |h|2) 6 ‖p‖
L∞(λ[0,1])

‖h‖2
L2(λ[0,1])

∈ R+. Consequently, any
orthonormal system in L2(λ[0,1]) belongs also to L2(Pp), and (os2) in Assumption §15.05 is satisfied.
Alternatively, (os2) is fulfilled for arbitrary D

2
⊆ L2(λ[0,1]) if (uj)j∈N belongs also to L∞(λ[0,1]). �

§15.07 Notation (Reminder). Similar to an Empirical mean model §10.07 for each j ∈ N we de-
fine p̂

j
:= P̂n(uj) ∈ B⊗n

[0,1]
with xn 7→ (P̂n(uj))(x

n) = n−1
∑

i∈JnK uj(x
n
i ). Since the stochas-

tic process u• = (uj)j∈N on ([0, 1],B
[0,1]

) is B
[0,1]
⊗ 2N-B-measurable, the stochastic process

p̂
•

= ( p̂
j

:= P̂n(uj))j∈N on ([0, 1]n,B⊗n
[0,1]

) is B⊗n
[0,1]
⊗ 2N-B-measurable, p̂

•
∈ B⊗n

[0,1]
⊗ 2N for

short. By construction p
•

= (p
j

= Pp(uj))j∈N ∈ 2N is the `2-mean of p̂
•
. For each j ∈ N

the statistic εj := n1/2(P̂n(uj)− Pp(uj)) ∈ B⊗n
[0,1]

is centred, i.e. εj ∈ L1([0, 1]n,B⊗n
[0,1]
,P⊗np ) =: L1(P

⊗n
p )

with P⊗np (εj) = 0, and ε• = (εj)j∈N ∈ B⊗n
[0,1]
⊗ 2N. Since p̂

j
= p

j
+ n−1/2εj for each j ∈ N by

construction p̂
•

= p
•

+ n−1/2ε• is a noisy version of p
•

(see Definition §10.19). Moreover, under

Assumption §15.05 p̂
•

admits a covariance function covp

•,• ∈ R
N

2

given for j, j
o
∈ N by

nCov( p̂
j
, p̂

jo
) = Cov(εj , εjo) = P

⊗n
p (εjεjo) = Pp(ujujo

)−Pp(uj)Pp(ujo
) = Pp(ujujo

)− p
j
p
jo

=: covp

j ,jo
.

Consequently, we have ε• ∼ P
(0•,covp

•,•)
and p̂

•
= p

•
+ n−1/2ε• ∼ P

( p
•
,n−1covp

•,•)
(see Definition §10.19). �

§15.08 Noisy density coefficients. Under Assumptions §15.02 and §15.05 the stochastic process ε• =

(εj := n1/2(P̂n(uj) − Pp(uj)))j∈N satisfies Assumption §10.04, i.e. ε• ∈ B⊗n
[0,1]
⊗ 2N, and ε• has

mean zero under P⊗np . The stochastic process p̂
•

= p
•

+ n−1/2ε• with `2-mean p
•

is called a
noisy version of the density coefficients p

•
= U p ∈ `2, or noisy density coefficients for short.

Moreover ε• admits under P⊗np a covariance function covp

•,• ∈ R
N

2

given for j, j
o
∈ N by covp

j ,jo
=

Pp(ujujo
) − Pp(uj)Pp(ujo

). We eventually write ε• ∼ P
(0•,covp

•,•)
and p̂

•
∼ P

( p
•
,n−1covp

•,•)
. If in addition ε•

admits a covariance operator Γp ∈ L>(`2) then we write ε• ∼ P
(0•,Γp)

and p̂
•
∼ P

( p
•
,n−1Γp)

for short. �

§15.09 Remark. The centred stochastic process ε• := (εj)j∈N of error terms in Definition §15.08 is in
general not a white noise process. �

§15.10 Lemma. Under Assumptions §15.02 and §15.05 consider the stochastic process ε• ∈ B⊗n
[0,1]
⊗ 2N

as in Definition §15.08.
(i) If p ∈ L∞(λ[0,1]) then under P⊗np , ε• ∼ P

(0•,covp
•,•)

admits a covariance operator Γp ∈ L>(`2) given by

a• 7→ Γpa• = (ν
N
(covp

j ,•a•) =
∑
jo∈N

covp

j ,jo
ajo)j∈N
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where ‖Γp‖L(`2)
6 ‖p‖

L∞(λ[0,1])
.

(ii) If p ∈ L∞(λ[0,1]) and p−1 := 1
p
∈ L∞(λ[0,1]) then Γp ∈ L>(`2) is invertible with inverse Γ−1

p ∈ L(`2)

where ‖Γ−1

p ‖L(`2)
6 ‖p−1‖

L∞(λ[0,1])
.

Consequently, if v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R+

\0 then for all a• ∈ `2 we have

v−1
p
‖a•‖2

`2
6 ‖a•‖2

Γp
= 〈Γpa•, a•〉̀

2

6 v
p
‖a•‖2

`2
.

§15.11 Proof of Lemma §15.10. is given in the lecture. �

§15.12 Remark. For each j ∈ N consider 1{j}• = (1{j}(l))l∈N ∈ (R)N where (1{j}• )j∈N forms an or-
thonormal basis in `2. If p ∈ L∞(λ[0,1]) from Lemma §15.10 (i) for each j ∈ N we obtain

P
⊗n
p

(
ε2
j

)
= P

⊗n
p

(
|ν
N
(1{j}• ε•)|2

)
= 〈Γp1

{j}
• ,1{j}• 〉̀

2

6 ‖p‖
L∞(λ[0,1])

‖1{j}• ‖2

`2
= ‖p‖

L∞(λ[0,1])

Keeping the last identities in mind if v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R
+

\0 then due to
Lemma §15.10 for all j ∈ N we have v−1

p
6 P⊗np

(
ε2
j

)
6 v

p
. �

§16 Projection density estimator

§16.01 Notation (Reminder). Consider the measure space (N, 2N, ν
N
) as in Notation §10.11. For w• ∈

R
N define the multiplication map M

w•
: R

N → R
N with a• 7→ M

w•
a• := w•a•. Note that each

w• ∈ R
N is 2N-B-measurable. We denote by M

R
N the set of all multiplication maps defined on

R
N. If in addition w• ∈ `∞ = L∞(N, 2N, ν

N
) then we have also M

w•
: `2 → `2. We set LM(`2) ={

M
w•
∈ M

R
N : w• ∈ `∞

}
⊆ L(`2) noting that ‖M

w•
‖
L(`2)

= sup
{
‖w•a•‖`2 : ‖a•‖`2 6 1

}
6 ‖w•‖`∞ for each

M
w•
∈ LM(`2). �

§16.02 Reminder. If w• ∈ `∞ then M
w•
∈ LM(`2), and M

w†•
: `2 ⊇ dom(M

w†•
) → `2. Moreover, we have

dom(M
w•
) = `2, ran(M

w•
) = `2w• and ker(M

w•
) = `21

Nw
• with Nw =

{
j ∈ N: wj = 0

}
∈ 2N (see

Property §11.03), and dom(M
w†•

) = `2w•⊕ `21
Nw
• (see Property §11.05). Consequently, if in addition

ν
N
(Nw) = 0 or in equal w• ∈ (R\0)

N, then w†• = w−1
• ∈ (R\0)

N, hence w2|†
• = w−2

• ∈ (R+

\0)
N, and

`w
2

= dom(M
w−1
•

) = `2w• = L2(w
−2
• νN) =: `2(w

−2
• ). For each m ∈ N we write 1m• = (1mj )j∈N := 1JmK

•

and 1m|⊥• := 1• − 1m• with JmK := [−m,m] ∩ N. Consequently, M1m•
∈ L>(`2) and M

1m|⊥•

∈ L>(`2)

is the orthogonal projection onto the linear subspace `21
m
• ⊆ `2 and its orthogonal complement

`21
m|⊥
• = (`21

m
• )⊥ ⊆ `2, respectively, that is `2 = `21

m
• ⊕ `21

m|⊥
• (see Property §11.07). Finally, given

h• = Uh ∈ `2 for h ∈ L2(λ[0,1]) we consider the orthogonal projections hm• = h•1
m
• ∈ `21

m
• and

hm := U
?
hm• ∈ L2(λ[0,1]) (Definition §11.08). �

§16.03 Notation (Reminder). Consider the stochastic processes ε• = (εj := n1/2(P̂n(uj) − Pp(uj)))j∈N
given in Definition §15.08. The observable noisy density coefficients p̂

•
= p

•
+ n−1/2ε• of

the density coefficents p
•

= U p ∈ `2 take the form of a statistical direct problem (see Def-
inition §10.19). Under Assumptions §15.02 and §15.05 ε• is centred and admits a covariance
function covp

•,• ∈ R
N

2

given in Definition §15.08, i.e. ε• ∼ P
(0•,covp

•,•)
and p̂

•
∼ P

( p
•
,n−1covp

•,•)
. If in addition

p ∈ L∞(λ[0,1]) then ε• admits a covariance operator Γp ∈ L>(`2) given in Lemma §15.10, i.e. ε• ∼ P
(0•,Γp)

and p̂
•
∼ P

( p
•
,n−1Γp)

�

§16.04 Definition. Given a noisy version p̂
•

= p
•

+ n−1/2ε• of the density coefficients p
•

= U p ∈ `2 for
each m ∈ N we call p̂m

•
:= p̂

•
1m• orthogonal projection estimator (OPE) of p

•
. �
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§16.05 Remark. Under Assumptions §15.02 and §15.05 we consider the function (with random coef-
ficents) p̂m := 1[0,1] + U

?
p̂m
•

which belongs to L2(λ[0,1]), integrates to one, but may take on negative
values. Fortunately, there is a simple remedy — its L2(λ[0,1])-projection onto a class of nonnegative
densities,

p̂ :=
(
p̂
m− c

)
+

with c ∈ R+ such that λ[0,1]( p̂ ) = 1.

We call p̂m an orthogonal projection density estimator of p . If p = 1[0,1] + U
?
p
•

(for example
ker(U) is spanned by u0 := 1[0,1] or in equal (uj)j∈N0

is an orthonormal basis of L2(λ[0,1])), then we
have

‖ p̂m− p‖2

L2(λ[0,1])
= ‖ p̂m

•
− p

•
‖2

`2
.

In this situation all results for the OPE p̂m
•

of the density coefficients immediately transfer onto
the orthogonal projection density estimator p̂m of the density p . �

§16|01 Global and maximal global v-risk

We measure first the accuracy of the OPE p̂m
•

= p̂
•
1m• of pm

•
= p

•
1m• ∈ `21

m
• with p

•
= U p ∈ `2

by a global mean-v-error, i.e. v-risk.

§16.06 Reminder. If v• ∈ (R\0)
N and p

•
∈ `2(v

2
• ) then we have pm

•
= p

•
1m• ∈ `2(v

2
• ) too and ‖pm

•
− p

•
‖2
v

=

o(1) asm →∞ (Property §11.09). Moreover, ε• ∈ B⊗n
[0,1]
⊗2N given in Definition §15.08 satisfies

v•ε•1
m
• ∈ `2 (note that 1m• ∈ `2 and v•1

m
• , ε•1

m
• ∈ `∞) and thus also

n−1/2v•ε•1
m
• + v• p

m

•
= v• p̂

m

•
∈ `2. (16.01)

Finally, under Assumptions §15.02 and §15.05 and p ∈ L∞(λ[0,1]) due to Lemma §15.10 we have
P
⊗n
p (ε2

• ) ∈ `∞, more precisely, ‖P⊗np (ε2
• )‖`∞ 6 ‖p‖L∞(λ[0,1])

(see Remark §15.12). �

§16|01|01 Global v-risk

§16.07 Proposition (Upper bound). Let Assumptions §15.02 and §15.05, v• ∈ (R\0)
N and p

•
∈ `2(v

2
• ) be

satisfied and for all n,m ∈ N set

R
m

n (p
•
, v•) := ‖p

•
1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (p
•
, v•) : m ∈ N

}
and R

◦
n(p

•
, v•) := R

m◦n
n (p

•
, v•) = min

{
R
m

n (p
•
, v•) : m ∈ N

}
. (16.02)

If p ∈ L∞(λ[0,1]) then we have P⊗np (‖ p̂m◦n
•
− p

•
‖2
v
) 6 ‖p‖

L∞(λ[0,1])
R◦n(p

•
, v•).

§16.08 Proof of Proposition §16.07. is given in the lecture. �

§16.09 Oracle inequality. Under Assumptions §15.02 and §15.05 let v• ∈ (R\0)
N and p

•
∈ `2(v

2
• ). If in

addition v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R+

\0 then v−1
p
6 v p

j := P
⊗n
p

(
ε2
j

)
6 v

p
for all j ∈ N

(see Remark §15.12), and hence Property §12.15 implies

v−1
p

R
m

n (p
•
, v•) 6 P

⊗n
p (‖ p̂m

•
− p

•
‖2

v
) = n−1ν

N
(v p

• v
2
• 1

m
• ) + ‖p

•
1m|⊥• ‖2

v

6 v
p
R
m

n (p
•
, v•) for all m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.14)

v−1
p

R
◦
n(p

•
, v•) 6 inf

m∈N
P
⊗n
p (‖ p̂m

•
− p

•
‖2

v
) 6 P⊗np (‖ p̂m

◦
n

•
− p

•
‖2

v
)

6 v
p
R
◦
n(p

•
, v•) 6 v2

p
inf
m∈N

P
⊗n
p (‖ p̂m

•
− p

•
‖2

v
), (16.03)
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and, hence R◦n(p
•
, v•), m◦n and the statistic p̂m

◦
n

•
, respectively, is an oracle bound, an oracle dimen-

sion and oracle optimal (up to the constant v2
p
). We observe that R◦n(p

•
, v•) = o(1) as n → ∞

(Remark §12.16), and thus, R◦n(p
•
, v•) is an oracle rate. However, note that the oracle dimension

m◦
n

= m◦
n
(p
•
, v•) depends on the unknown density coefficients p

•
, and thus also the oracle optimal

statistic p̂m
◦
n

•
. In other words p̂m

◦
n

•
is not a feasible estimator. �

§16.10 Illustration. We illustrate the last results considering usual behaviour for the bias and variance
term. We distinguish the following two cases

(p) v• ∈ `2 or there is m ∈ N with ‖pm
•
− p

•
‖2
v

= 0,

(np) v• 6∈ `2 and for all m ∈ N holds ‖pm
•
− p

•
‖2
v
∈ R+

\0.

Interestingly, in case (p) the oracle bound is parametric, that is, nR◦n(p
•
, v•) = O(1), in case

(np) the oracle bound is nonparametric, i.e. limn→∞ nR◦n(p
•
, v•) =∞. In case (np) consider the

following two specifications:

Table 01 [§16]

Order of the oracle rate R◦n(p
•
, v•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

v2j = j2v p2

j
‖p

•
1m|⊥• ‖2

v
‖1m• ‖2

v
m◦

n
R◦n(p

•
, v•)

(o) v ∈ (−1/2, a) j−2a−1 m−2(a−v) m2v+1 n
1

2a+1 n−
2(a−v)
2a+1

v = −1/2 j−2a−1 m−2a−1 logm
( n
logn

) 1
2a+1

logn
n

(s) v + 1/2 ∈ R+
\0 e−j

2a m(1−2(a−v))+e−m
2a

m2v+1 (log n)
1
2a

(logn)
2v+1

2a

n

v = −1/2 e−j
2a e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 01 [§16] the order of the oracle rate R◦n(p
•
, v•) is depict for v > −1/2 only.

In case v < −1/2 the oracle rate R◦n(p
•
, v•) is parametric. �

§16|01|02 Maximal global v-risk

§16.11 Assumption. Consider weights a•, v• ∈ (R\0)
N with a• ∈ `∞ and (av)• := (ajvj)j∈N = a•v• ∈ `∞.

We write (av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for each m ∈ N. The orthonormal system (uj)j∈N
in L2(λ[0,1]) and u0 := 1[0,1] form an (os1’) orthonormal basis (uj)j∈N0

in L2(λ[0,1]) and as process
u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

) satisfies (os2’) ‖ν
N
(a2
•u

2
•)‖L∞(λ[0,1])

=: τ2
a,u ∈ R

+. �

§16.12 Reminder. Under Assumption §16.11 we have `a
2

= dom(M
a−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and v2
• νN dominate mutually each other, i.e. they share the same null sets

(see Property §11.05). We consider `a
2

endowed with ‖·‖a−1 = ‖M
a−1
•
·‖`2 and given a constant

r ∈ R
+

\0 the ellipsoid `a,r
2

:= {a• ∈ `a
2

: ‖a•‖a−1 6 r} ⊆ `a
2
. Since (av)• ∈ `∞, and hence

(av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for each m ∈ N we have `a
2
⊆ `2(v

2
• ) (Property §11.15), and

‖a•1m|⊥• ‖v 6 r (av)(m) for all a• ∈ `a,r2
(Lemma §11.17). �

§16.13 Remark. We replace Assumption §15.05 (os1) and (os2), respectively, by the stronger Assump-
tion §16.11 (os1’) and (os2’). Indeed, under (os1’) we have (os1) 1[0,1] ∈ ker(U). Furthermore,
(uj)j∈N belongs to L∞(λ[0,1]) due to (os2’) (and a• ∈ (R\0)

N), and hence (os2) is fulfilled (see also
Remark §15.06). �

§16.14 Lemma. Under Assumption §16.11 set

D
a,r

2
:=
{
p ∈ L2(λ[0,1]): p is a density and p

•
= U p ∈ `a,r

2

}
. (16.04)
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Then we have sup
{
‖p‖

L∞(λ[0,1])
: p ∈ Da,r

2

}
6 1 + rτa,u.

§16.15 Proof of Lemma §16.14. is given in the lecture. �

§16.16 Proposition (Upper bound). Let Assumptions §15.02 and §16.11 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, v•) ∈ R+ as in (12.06) (Proposition §12.21) we have

sup
{
P
⊗n
p (‖ p̂m

?
n

•
− p

•
‖2

v
): p ∈ Da,r

2

}
6 C R

?

n(a•, v•).

with constant C = 1 + rτa,u + r2.

§16.17 Proof of Proposition §16.16. is given in the lecture. �

§16.18 Illustration. The trigonometric basis given for x ∈ [0, 1] by

u0 := 1[0,1], u2k(x) :=
√

2 cos(2πkt), u2k−1(x) :=
√

2 sin(2πkt), k ∈ N,

is an orthonormal basis of L2(λ[0,1]). It satisfies Assumption §16.11 (os1’), since ‖u2
j‖L2(λ[0,1])

= 2
for all j ∈ N. Consequently, for all a• ∈ `2 also the Assumption §16.11 (os2’) is satisfied with
τ2
a,u 6 2‖a•‖2

`2
.

(o) If a2j = a2j−1 = j−a, a ∈ N, j ∈ N, then
{
h ∈ L2(λ[0,1]): Uh ∈ `a

2

}
is a subset of the

Sobolev space of a-times differentiable periodic functions. Moreover, up to a constant, for
any function h ∈ L2(λ[0,1]) the weighted norm ‖h•‖2

a−1 equals the L2-norm of its a-th weak

derivative h(a) (Tsybakov [2009]).

(s) If aj = exp(−j2a), a > 1/2, j ∈ N, then
{
h ∈ L2(λ[0,1]): Uh ∈ `a

2

}
is a class of analytic

functions (Kawata [1972]).

In Table 02 [§12] (Illustration §12.26) the order of the rate R?

n(a•, v•) is depict for the two cases
(o) and (s). We note that we have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. �

§16|02 Local and maximal local φ-risk

We measure secondly the accuracy of the OPE p̂m
•

= p̂
•
1m• of pm

•
= p

•
1m• ∈ `21

m
• with p

•
= U p ∈

`2 by a local mean-φ-error, i.e. φ-risk.

§16.19 Reminder. If φ
•
∈ (R\0)

N and p
•
∈ dom(φν

N
) :=

{
a• ∈ `2: φ•a• ∈ `1

}
, then we have pm

•
= p

•
1m• ∈

dom(φν
N
) too and |φν

N
(p
•
− pm

•
)| = o(1) as m →∞ (Property §11.22). Moreover, ε• ∈ B⊗n

[0,1]
⊗ 2N

given in Definition §15.08 satisfies ε•1
m
• ∈ dom(φν

N
) (note that φ

•
1m• , ε•1

m
• ∈ `2) and thus also

n−1/2ε•1
m
• + p

m

•
= p̂

m

•
∈ dom(φν

N
). (16.05)

Finally, under Assumptions §15.02 and §15.05 and p ∈ L∞(λ[0,1]) due to Lemma §15.10 (i) the
process ε• ∈ B⊗n

[0,1]
⊗ 2N admits a covariance operator Γp ∈ L>(`2), i.e. ε• ∼ P

(0•,Γp)
, satisfying

‖Γp‖L(`2)
6 ‖p‖

L∞(λ[0,1])
. �

§16|02|01 Local φ-risk

§16.20 Proposition (Upper bound). Let Assumptions §15.02 and §15.05, φ
•
∈ (R\0)

N and p
•
∈ dom(φν

N
)

be satisfied and for all n,m ∈ N set

R
m

n (p
•
, φ
•
) := |φν

N
(p
•
1m|⊥• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (p
•
, φ
•
) : m ∈ N

}
and R

◦
n(p

•
, φ
•
) := R

m◦n
n (p

•
, φ
•
) := min

{
R
m

n (p
•
, φ
•
) : m ∈ N

}
. (16.06)

If p ∈ L∞(λ[0,1]) then we have P⊗np (|φν
N
( p̂m

◦
n

•
− p

•
)|2) 6 ‖p‖

L∞(λ[0,1])
R◦n(p

•
, φ
•
).
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§16.21 Proof of Proposition §16.20. is given in the lecture. �

§16.22 Oracle inequality. Under Assumptions §15.02 and §15.05 let φ
•
∈ (R\0)

N and p
•
∈ dom(φν

N
).

If in addition v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R+

\0 then max(‖Γp‖L(`2)
, ‖Γ−1

p ‖L(`2)
) 6 v

p
(see

Lemma §15.10), and hence Property §12.36 implies

v−1
p

R
m

n (p
•
, φ
•
) 6 P⊗np (|φν

N
( p̂

m

•
− p

•
)|2) = n−1‖φ

•
1m• ‖2

Γp
+ |φν

N
(p
•
1m|⊥• )|2

6 v
p
R
m

n (p
•
, φ
•
) for all m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.34)

v−1
p

R
◦
n(p

•
, φ
•
) 6 inf

m∈N
P
⊗n
p (|φν

N
( p̂

m

•
− p

•
)|2) 6 P⊗np (|φν

N
( p̂

m◦n

•
− p

•
)|2)

6 v
p
R
◦
n(p

•
, φ
•
) 6 v2

p
inf
m∈N

P
⊗n
p (|φν

N
( p̂

m

•
− p

•
)|2), (16.07)

and hence, R◦n(p
•
, φ
•
), m◦

n
and the statistic p̂m

◦
n

•
, respectively, is an oracle bound, an oracle dimen-

sion and oracle optimal (up to the constant v2
p
). We observe that R◦n(p

•
, φ
•
) = o(1) as n → ∞

(Remark §12.37), and thus, R◦n(p
•
, φ
•
) is an oracle rate. However, note that the oracle dimension

m◦
n

= m◦
n
(p
•
, φ
•
) depends on the unknown density coefficients p

•
, and thus also the oracle optimal

statistic p̂m
◦
n

•
. In other words p̂m

◦
n

•
is not a feasible estimator. �

§16.23 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in Illustration §16.10 we distinguish here the
following two cases
(p) φ

•
∈ `2 or there is K ∈ N with sup{|φν

N
(p
•
1m|⊥• )|2 : m ∈ N ∩ [K,∞)} = 0,

(np) φ
•
6∈ `2 and for all m ∈ N holds sup{|φν

N
(p
•
1m|⊥• )|2 : m ∈ N ∩ [K,∞)} ∈ R+

\0.
In case (p) the oracle bound is again parametric, i.e. nR◦n(p

•
, φ
•
) = O(1), while in case (np) the

oracle bound is nonparametric, i.e. limn→∞ nR◦n(p
•
, φ
•
) =∞. In case (np) consider the following

two specifications

Table 02 [§16]

Order of the oracle rate R◦n(p
•
, φ
•
) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 p
j

|φν
N
(p
•
1m|⊥• )|2 ‖1m• ‖2

φ
m◦

n
R◦n(p

•
, φ
•
)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
1
2a n−

(a−v)
a

v = 0 j−a−1/2 m−2a logm
( n
logn

) 1
2a

logn
n

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v (log n)
1
2a

(logn)
v
a

n

v = 0 e−j
2a m(1−2a)+e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 02 [§16] the order of the oracle rate R◦n(p
•
, φ
•
) is depict for v > 0 only. For

v < 0 the oracle rate R◦n(p
•
, φ
•
) is parametric. �

§16|02|02 Maximal local φ-risk

§16.24 Assumption. Consider φ
•
, a• ∈ (R\0)

N with a• ∈ `∞ and (aφ)• := (ajφj )j∈N = a•φ• ∈ `2, and
hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. The orthonormal system (uj)j∈N in L2(λ[0,1])

and u0 := 1[0,1] form an (os1’) orthonormal basis (uj)j∈N0
in L2(λ[0,1]) and as process u2

• = (u2
j )j∈N

on ([0, 1],B
[0,1]

) satisfies (os2’) ‖ν
N
(a2
•u

2
•)‖L∞(λ[0,1])

6 τ2
a,u for τa,u ∈ [1,∞). �
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§16.25 Reminder. Under Assumption §16.24 we have `a
2

= dom(M
a−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). We consider `a•

2
endowed with ‖·‖a−1 = ‖M

a−1
•
·‖`2 and given a constant

r ∈ R
+

\0 the ellipsoid `a,r
2

:= {a• ∈ `a•
2

: ‖a•‖a−1 6 r} ⊆ `a
2
. Since (aφ)• ∈ `2, and hence

‖a•1m|⊥• ‖φ = ‖(aφ)•1
m|⊥
• ‖`2 ∈ R

+ for each m ∈ N (‖a•1m|⊥• ‖φ = o(1) as m → ∞ by dominated
convergence) we have `a

2
⊆ dom(φν

N
) (Property §11.27), and |φν

N
(p
•
1m|⊥• )| 6 r ‖a•1m|⊥• ‖φ for all

p
•
∈ `a,r

2
(Lemma §11.29). �

§16.26 Remark. We replace Assumption §15.05 (os1) and (os2), respectively, by the stronger As-
sumption §16.24 (os1’) and (os2’) (see Remark §16.13). Moreover, considering the set Da,r

2

of densities in L2(λ[0,1]) defined in (16.04) we have ‖p‖
L∞(λ[0,1])

6 1 + rτa,u for all p ∈ Da,r
2

due to
Lemma §16.14. �

§16.27 Proposition (Upper bound). Let Assumptions §15.02 and §16.24 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, φ•) ∈ R
+ as in (12.13) (Proposition §12.42) we have

sup
{
P
⊗n
p (|φν

N
( p̂

m

•
− p

•
)|2): p ∈ Da,r

2

}
6 C R

?

n(a•, φ•).

with constant C = (1 + rτa,u) ∨ r2.

§16.28 Proof of Proposition §16.27. is given in the lecture. �

§16.29 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.24 for all a• ∈ `2. In Table 04 [§12] the order of the rate R?

n(a•, φ•) is depict for the two
cases (o) and (s) introduced in Illustration §12.47. We note that we have a• ∈ `2 in case (o) for
a > 1/2 while in case (s) for a ∈ R+

\0. �

§17 Minimax optimal density estimation

§17|01 Maximal local φ-risk

§17.01 Reminder (Maximal local φ-risk). Under Assumptions §15.02 and §16.24 the observable noisy
density coefficients p̂

•
= p

•
+ n−1/2ε• of the density coefficients p

•
= U p ∈ `2 take the form of a

statistical direct problem (see Definition §10.19) where the stochastic processes ε• ∈ B⊗n
[0,1]
⊗ 2N

is given in Definition §15.08. Under Assumptions §15.02 and §16.24 in Proposition §16.27 an
upper bound for a maximal local φ-risk of an OPE over the class Da,r

2
of densities in L2(λ[0,1])

defined in (16.04) is shown. More precisely, the performance of the OPE p̂m
•

= p̂
•
1m• ∈ `21

m
• ⊆

dom(φν
N
) with dimension m ∈ N is measured by its maximal local φ-risk, that is

Rφ

n
[ p̂

m

•
|Da,r

2
] := sup

{
P
⊗n
p

(
|φν

N
( p̂

m

•
− p

•
)|2
)
: p ∈ Da,r

2

}
.

Let us recall (12.13) (Proposition §12.42) where for n,m ∈ N we have defined

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (17.01)

By Proposition §16.27 under Assumptions §15.02 and §16.24 the maximal local φ-risk of an
OPE p̂m

?
n

•
with optimally choosen dimension m?

n
as in (17.01) satisfies

Rφ

n
[ p̂

m?
n

•
|Da,r

2
] 6 C R

?

n(a•, φ•)

with C = (1 + rτa,u) ∨ r2. �
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§17.02 Lemma (Lower bound based on two hypotheses). If there are p0, p1 ∈ Da,r
2

with associated proba-
bility measures P0 := Pp

0 and P1 := Pp
1 such that H2(P0 ,P1 ) 6 2n−1 then for all n > 2 we have

inf p̃
•

Rφ

n
[ p̃
•
|Da,r

2
] >

1

64
|φν

N
(p

0

•
− p

1

•
)|2.

where the infimum is taken over all possible estimators.

§17.03 Proof of Lemma §17.02. is given in the lecture. �

§17.04 Remark. If we consider furthermore candidate densities p0 := 1[0,1] + U
?
p∗
•

and p1 = 1[0,1] −
U
?
p∗
•

for some p∗
•
∈ `a,r

2
, and hence by definition p0, p1 ∈ Da,r

2
, then trivially |φν(p0

•
− p1

•
)|2 =

4|φν
N
(p∗
•

)|2. If the associated probability measures P0 := Pp
0 and P1 := Pp

1 satisfy H2(P0 ,P1 ) 6 2n−1

then due to Lemma §17.02 for all n > 2 we have

inf p̃
•

Rφ

n
[ p̃
•
|Da,r

2
] >

1

16
|φν

N
(p
∗
•

)|2. (17.02)

We find a minimax-optimal lower bound by constructing a candidate p∗
•
∈ `a,r

2
that has the largest

possible |φν
N
(p∗
•

)|2-value but P⊗np
0 and P⊗np

1 are still statistically indistinguishable in the sense that
H2(Pp

0,Pp
1) 6 2n−1. �

§17.05 Lemma. Under Assumption §16.24 let p∗
•
∈ `a,r

2
with ‖p∗

•
‖a−1 6 1/(2τa,u). Then p0 := 1[0,1]+U

?
p∗
•

and p1 := 1[0,1] − U
?
p∗
•

belong to Da,r
2

, and the associated probability measures P0 := Pp
0 and

P1 := Pp
1 satisfy H2(P0 ,P1 ) 6 2‖p∗

•
‖2
`2

.

§17.06 Proof of Lemma §17.05. is given in the lecture. �

§17.07 Reminder. Under Assumption §16.24 let in addition a2
• ∈ (R+

\0)
N
↓0 (see Notation §13.23), then

Assumption §13.24 is satisfied. If a2
2 > n−1 then exploiting the definition (17.01) of m?

n
we have

a2
m?

n

> n−1 > a2
m?

n+1 (see Comment §13.25) which we use in the next proof. �

§17.08 Proposition (Lower bound). Let Assumptions §15.02 and §16.24 be satisfied. If a2
• ∈ (R+

\0)
N
↓0 then

for all n ∈ N ∩ (1 ∨ a−2
2 ,∞) we have

inf p̃
•

Rφ

n
[ p̃
•
|Da,r

2
] > C R

?

n(a•, φ•) (17.03)

with constant C := 16−1(r2 ∧ 1/(4τ2
a,u) ∧ 1) and infimum taken over all estimators.

§17.09 Proof of Proposition §17.08. is given in the lecture. �

§17.10 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.24 for all a• ∈ `2 (see Illustration §16.29). In Table 04 [§12] the order of the rate
R?

n(a•, φ•) is depict for the two cases (o) and (s) introduced in Illustration §16.29. We note that we
have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. In both cases the additional
assumption a2

• ∈ (R+

\0)
N
↓0 is satisfied. Consequently, due to Proposition §17.08 the Table 04 [§12]

presents the order of the minimax rate R?

n(a•, φ•) which is attaind by the minimax-optimal OPE
p̂m

?
n

•
= p̂

•
1m

?
n

• ∈ `21
m?

n

• ⊆ dom(φν
N
) with optimally selected dimension m?

n
(Proposition §16.27). We

shall stress, that the order of m?
n

given in the Table 04 [§12] depends on the parameter a ∈ R+

\0

characterising the (abstract) smoothness of the density of interest which is generally not known
in advance. �
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§17|02 Maximal global v-risk

§17.11 Reminder (Maximal global v-risk). Under Assumptions §15.02 and §16.11 the observable noisy
density coefficients p̂

•
= p

•
+ n−1/2ε• of the density coefficients p

•
= U p ∈ `2 take the form of a

statistical direct problem (see Definition §10.19) where the stochastic processes ε• ∈ B⊗n
[0,1]
⊗ 2N

is given in Definition §15.08. Under Assumptions §15.02 and §16.11 in Proposition §16.16 an
upper bound for a maximal global v-risk of an OPE over the class Da,r

2
of densities in L2(λ[0,1])

defined in (16.04) is shown. More precisely, the performance of the OPE p̂m
•

= p̂
•
1m• ∈ `2(v

2
• )1

m
• ⊆

`2(v
2
• ) with dimension m ∈ N is measured by its maximal global v-risk, that is

Rv

n
[ p̂

m

•
|Da,r

2
] := sup

{
P
⊗n
p

(
‖ p̂m

•
− p

•
‖2

v

)
: p ∈ Da,r

2

}
.

Let us recall (12.06) (Proposition §12.21) where for n,m ∈ N we have defined (av)2
(m) =

‖(av)•1
m|⊥
• ‖2

`∞
and

R
m

n (a•, v•) := [(av)2
(m) ∨ n−1‖1m• ‖2

v
], m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}
. (17.04)

By Proposition §16.16 under Assumptions §15.02 and §16.11 the maximal global v•-risk of an
OPE p̂m

?
n

•
with optimally choosen dimension m?

n
as in (17.04) satisfies

Rv

n
[ p̂

m?
n

•
|Da,r

2
] 6 C R

?

n(a•, v•)

with C = 1 + rτa,u + r2. Furthermore, as in Notation §13.29 for m ∈ N we set Tm := {−1, 1}m
and for each τ := (τ

j
)j∈JmK ∈ Tm and j ∈ JmK we introduce τ (j) ∈ Tm given by τ (j)

j
:= −τ

j
and

τ (j)

l
:= τ

l
for l ∈ JmK\{j}. �

§17.12 Lemma (Assouad’s cube technique). If for each τ ∈ Tm there is pτ ∈ Da•,r
2

with associated proba-
bility measure Pτ := Pp

τ such that for all τ ∈ Tm and j ∈ JmK we have H(Pτ ,Pτ (j)) 6 2n−1 then for
all n > 2

inf p̃
•

Rv

n
[ p̃
•
|Da,r

2
] > 2−m

∑
τ∈Tm

1
64

∑
j∈JmK

(
v2
j |p

τ

j
− p

τ (j)

j
|2
)

where the infimum is taken over all possible estimators.

§17.13 Proof of Lemma §17.12. is given in the lecture. �

§17.14 Remark. If we assume furthermore candidate densities pτ := 1[0,1]+U
?
pτ
•

with pτ
•

:= (τ
j
p?
j
1mj )j∈N,

τ ∈ Tm, for some p?
•
∈ `a,r

2
, where evidently pτ

•
∈ `a,r

2
too and hence pτ ∈ Da•,r

2
, then it is easily

seen that
∑

j∈JmK

(
v2
j |pτj − pτ

(j)

j
|2
)

= 4‖p?
•
1m• ‖2

v•
. If for all τ ∈ Tm and j ∈ JmK the associated

probability measures Pτ := Pp
τ and P

τ (j) := P
p
τ
(j) satisfy H(Pτ ,Pτ (j)) 6 2n−1 then due to Lemma §17.12

for all n > 2 we have

inf p̃
•

Rv

n
[ p̃
•
|Da,r

2
] > 2−m

∑
τ∈Tm

1
16
‖p?

•
1m• ‖2

v
= 1

16
‖p?

•
1m• ‖2

v
. (17.05)

We find a minimax-optimal lower bound by choosing the parameter m and the function p∗
•

that
have the largest possible ‖p?

•
1m• ‖2

v•
-value although that the associated Pτ , τ ∈ Tm are still statisti-

cally indistinguishable in the sense that H2(Pτ ,Pτ (j)) 6 2n−1 for all j ∈ JmK and τ ∈ Tm. �

§17.15 Lemma. Under Assumption §16.11 let p∗
•
∈ `a,r

2
with ‖p∗

•
‖a−1

•
6 1/(2τa,u). Then for each τ ∈ Tm,

pτ := 1[0,1] + U
?
pτ
•

with pτ
•

:= (τ
j
p?
j
1mj )j∈N belongs to Da,r

2
, and for each j ∈ JmK the associated

probability measures Pτ := Pp
τ and P

τ (j) := P
p
τ
(j) satisfy H2(Pτ ,Pτ (j)) 6 2‖p∗

•
1m• ‖2

`∞
.
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§17.16 Proof of Lemma §17.15. is given in the lecture. �

§17.17 Reminder. For w• ∈ `∞ we set w2
(0) := ‖w2

• ‖`∞ and w2
(•) = (w2

(j) := ‖w2
• 1

j |⊥
• ‖`∞)j∈N (Nota-

tion §13.34) where by construction w2
(j) = sup

{
w2
i : i ∈ N ∩ [j + 1,∞)

}
, j ∈ N

0
and w2

(•) ∈ (R+

\0)
N
↘ .

Under Assumption §16.11 let in addition (av)2
(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that

C(av)‖(av)−2
• 1

m
• ‖`∞ 6 (av)−2

(m−1) or in equal

(av)2
(m−1) > min

{
(av)2

j : j ∈ JmK
}
> C(av)(av)2

(m−1)

for all m ∈ N, then Assumption §13.35 is satisfied. For m?
n

and R?

n := Rm?
n

n (a•, v•) as in (17.04)
we distinguish case i) : R?

n = n−1‖1m?
n

• ‖2
v
> (av)2

(m?
n) and case ii) : R?

n = (av)2
(m?

n) > n−1‖1m?
n

• ‖2
v
.

Due to Comment §13.36 if (av)2
(1) > n−1v2

1 then in case i) (av)2
(m?

n−1) > n−1‖1m?
n

• ‖2
v
, while in case ii)

setting (the defining set is not empty since (av)2
(•) ∈ (R+

\0)
N
↓0 )

m�
n

:= min
{
m ∈ N ∩ [m?

n
+ 1,∞): n−1‖1m• ‖2

v
> (av)2

(m)

}
(17.06)

we have (av)2
(m?

n) = (av)2
(m�n−1) 6 n−1‖1m�n• ‖2

v
. We use those estimates in the next proof. �

§17.18 Proposition (Lower bound). Let Assumptions §15.02 and §16.11 be satisfied. If (av)2
(•) ∈ (R+

\0)
N
↓0

and there exists C(av) ∈ (0, 1] such that C(av)‖(av)−2
• 1

m
• ‖`∞ 6 (av)−2

(m−1) for all m ∈ N, then for all
n ∈ N ∩ (1 ∨ v2

1 (av)−2
(1) ,∞) we have

inf p̃
•

Rv

n
[ p̃
•
|Da,r

2
] > C R

?

n(a•, v•) (17.07)

with constant C := (C(av)/16)(r2 ∧ 1/(4τ2
a,u) ∧ 1) and infimum taken over all estimators.

§17.19 Proof of Proposition §17.18. is given in the lecture. �

§17.20 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.11 for all a• ∈ `2 (see Illustration §16.18). In Table 02 [§12] the order of the rate
R?

n(a•, v•) is depict for the two cases (o) and (s) introduced in Illustration §16.18. We note that
we have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. In both cases the additional
assumptions, (av)2

(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that C(av)‖(av)−2

• 1
m
• ‖`∞ 6 (av)−2

(m−1)

for all m ∈ N, are satisfied. Consequently, due to Proposition §17.18 the Table 02 [§12]
presents the order of the minimax rate R?

n(a•, v•) which is attaind by the minimax-optimal OPE
p̂m

?
n

•
= p̂

•
1m

?
n

• ∈ `21
m?

n

• ⊆ `2(v
2
• ) with optimally selected dimension m?

n
(Proposition §16.16). We

shall stress, that the order of m?
n

given in the Table 02 [§12] depends on the parameter a ∈ R+

\0

characterising the (abstract) smoothness of the density of interest which is generally not known
in advance. �

§18 Data-driven density estimation

§18|01 Data-driven global estimation by model selection

The next assertion provides our key argument in order to control the deviations of the reminder
term. The inequality is due to Talagrand [1996] and in this form for example given in Klein and
Rio [2005].

§18.01 Lemma (Talagrand’s inequality). Let (Zi)i∈JnK be independent (Z,Z )-valued random variables
and let

{
rt: t ∈ T

}
⊆ Z be a countable class of Borel-measurable functions. For t ∈ T setting

rt = n−1
∑

i∈JnK {rt(Zi)− E
(
rt(Zi)

)
} we have

E
((

sup
{
|rt|2: t ∈ T

}
− 6H

2)
+

)
6 Ctal

{
v
n

exp
(
−nH

2

6v

)
+ h2

n2 exp
(
−nH
100h

)}
(18.01)
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for some universal numerical constant Ctal ∈ [1,∞) and where

sup
{
|rt(z)|: t ∈ T, z ∈ Z

}
6 h, E

(
sup

{
|rt|: t ∈ T

})
6 H, sup

{
nE
(
|rt|2
)
: t ∈ T

}
6 v. (18.02)

§18.02 Remark. Let us briefly reconsider the OPE p̂m
•

= p̂
•
1m• ∈ `21

m
• with dimension m ∈ N (Defini-

tion §16.04) where p̂
•

= P̂nu• = (P̂nuj)j∈N are noisy versions (Definition §15.08) of the density
coefficients p

•
= U p = Pp(u•) = (Ppuj = λ[0,1](puj))j∈N. For m ∈ N introduce the unit ball

Bm :=
{
a• ∈ `2(v

2
• )1

m
• : ‖a•‖v 6 1

}
contained in the linear subspace `2(v

2
• )1

m
• spanned by (1{j}• )j∈JmK.

Clearly, for each a• ∈ `2(v
2
• )1

m
• we have ra• :=

∑
j∈JmK v

2
j ajuj = ν

N
(v2
• a•u•) ∈ B

[0,1]
, i.e. it is a

B
[0,1]

-B-measurable function, where P̂n(ra•) = ν
N
(v2
• a•P̂nu•) = ν

N
(v2
• a• p̂• ), Pp(ra•) = ν

N
(v2
• a•Ppu•) =

ν
N
(v2
• a• p• ) and hence ra• = P̂n(ra•)− Pp(ra•) = ν

N
(v2
• a•( p̂• − p

•
)) = 〈 p̂

•
− p

•
, a•〉v. Consequently, we

obtain

‖ p̂m
•
− p

m

•
‖2

v
= sup

{
|〈 p̂

•
− p

•
, a•〉v|

2: a• ∈ Bm
}

= sup
{
|ra•|2: a• ∈ Bm

}
The last identity provides the necessary argument to apply below Talagrand’s inequality (§18.01).
Note that, the unit ball Bm is not a countable set, however, it contains a countable dense subset,
say Bm , since `2(v

2
• ) is separable. Exploiting the continuity of the inner product it is straight-

forward to see that sup
{
|〈b•, a•〉v|

2: a• ∈ Bm
}

= sup
{
|〈b•, a•〉v|

2: a• ∈ Bm

}
for all b• ∈ `2(v

2
• ).

Consequently, provided that

sup
{
‖u•(x)1m• ‖v: x ∈ [0, 1]

}
= sup

{
|ra•(x)|: a• ∈ Bm , x ∈ [0, 1]

}
6 h,

P
⊗n
p

(
‖ p̂m

•
− p

m

•
‖2

v

)
= P

⊗n
p

(
sup

{
|ra•|2: a• ∈ Bm

})
6 H

2
,

sup
{
Pp

(
|ν
N
(v2
• a•(u• − Ppu•))|2

)
: a• ∈ Bm

}
= sup

{
nP

⊗n
p

(
|ra•|2

)
: a• ∈ Bm

}
6 v. (18.03)

due to Talagrand’s inequality (§18.01) we have

P
⊗n
p

((
‖ p̂m

•
− p

m

•
‖2

v
− 6H

2)
+

)
6 Ctal

{
v
n

exp
(
−nH

2

6v

)
+ h2

n2 exp
(
−nH
100h

)}
(18.04)

for some universal numerical constant Ctal ∈ [1,∞). �

§18|01|01 Global v-risk

§18.03 Assumption. The weights v• ∈ (R\0)
N satisfy

∀x ∈ R+

\0 :
∑
m∈N

{x‖v2
• 1

m
• ‖`∞ exp

(
− ‖v•1m• ‖2

`2
/(x‖v2

• 1
m
• ‖`∞)

)
} =: Cv

(x) ∈ R+
. (18.05)

The orthonormal system (uj)j∈N in L2(λ[0,1]) and u0 := 1[0,1] form an (os1’) orthonormal ba-
sis (uj)j∈N0

in L2(λ[0,1]) and as process u• = (uj)j∈N on ([0, 1],B
[0,1]

) for all m ∈ N satisfies
(os2”) sup

{
‖u•(x)1m• ‖2

v•
: x ∈ [0, 1]

}
6 τ2

v,u‖1m• ‖2
v•
∈ R+ for τv,u ∈ [1,∞). �

§18.04 Remark. We replace Assumption §15.05 (os1) and (os2), respectively, by the stronger Assump-
tion §18.03 (os1’) and (os2”). Indeed, under (os1’) we have (os1) 1[0,1] ∈ ker(U). Furthermore,
(uj)j∈N belongs to L∞(λ[0,1]) due to (os2”) (and v• ∈ (R\0)

N), and hence (os2) is fulfilled (see
also Remark §15.06). Under Assumption §18.03 (18.05) we have ‖v•1m• ‖−2

`2
= o(1) as m → ∞

(Comment §14.22), see also Illustration §14.23 for an example when (18.05) is not satisfied. �

§18.05 Reminder (Global oracle v-risk). Given Assumptions §15.02 and §18.03 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p̂

•
= p

•
+ n−1/2ε• of
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the density coefficients p
•

= U p ∈ `2 take the form of a statistical direct problem (see Def-
inition §10.19) where the stochastic processes ε• ∈ B⊗n

[0,1]
⊗ 2N is given in Definition §15.08.

Under Assumptions §15.02 and §18.03, (and hence Assumption §15.05 and v• ∈ (R\0)
N see Re-

mark §18.04) and p
•
∈ `2(v

2
• ) in §16.09 an oracle inequality for the global v-risk of the OPE’s is

shown. More presicely, as in (16.02) (Proposition §16.07) for all n,m ∈ N setting

R
m

n (p
•
, v•) := ‖p

•
1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (p
•
, v•) : m ∈ N

}
and R

◦
n(p

•
, v•) := R

m◦n
n (p

•
, v•) = min

{
R
m

n (p
•
, v•) : m ∈ N

}
. (18.06)

and assuming v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R+

\0 due to Property §16.09 the (infeasible)
OPE p̂m

◦
n

•
= p̂

•
1m

◦
n

• ∈ `2(v
2
• )1

m◦n
• ⊆ `2(v

2
• ) with oracle dimension m◦

n
as in (18.06) satisfies

v−1
p

R
◦
n(p

•
, v•) 6 inf

m∈N
P
⊗n
p (‖ p̂m

•
− p

•
‖2

v
) 6 P⊗np (‖ p̂m

◦
n

•
− p

•
‖2

v
)

6 v
p
R
◦
n(p

•
, v•) 6 v2

p
inf
m∈N

P
⊗n
p (‖ p̂m

•
− p

•
‖2

v
),

and hence it is oracle optimal (with constant v2
p
). �

§18.06 Notation. Consider a sequence of penalties penv
• = (penv

m
)m∈N ∈ (R+

\0)
N given by

penv
m

:= 24 τ2
v,un

−1‖1m• ‖2

v
, for each m ∈ N (18.07)

and the upper bound (where the defining set is not empty)

M
v

:= max
{
m ∈ N: ‖1m• ‖2v 6 nv

2
1 , m 6 exp(

n1/2

100 )
}

(18.08)

which are obviously known in advance. Considering the data-driven OSE p̂m̂
•

= p̂
•
1m̂• with

dimension parameter

m̂ := arg min
{
− ‖ p̂m

•
‖2

v
+ penv

m
: m ∈ JMvK

}
(18.09)

we derive below an upper bound for its global v-risk, P⊗np

(
‖ p̂m̂

•
− p

•
‖2
v

)
. �

§18.07 Lemma. Under Assumptions §15.02 and §18.03 and p ∈ L∞(λ[0,1]) for penv
• ∈ (R+

\0)
N as in (18.07)

and Mv ∈ N as in (18.08) we have

P
⊗n
p

(
max

{(
‖ p̂m

•
− p

m

•
‖2

v
− penv

m
/4
)

+
: m ∈ JMvK

})
6 Ctalτ

2
v,u

(
Cv

(x
p
) + v2

1

)
n−1 (18.10)

for some universal numerical constant Ctal ∈ [1,∞) and x
p

:= 6‖p‖
L∞(λ[0,1])

τ−2
v,u ∈ R

+.

§18.08 Proof of Lemma §18.07. is given in the lecture. �

§18.09 Proposition (Upper bound). Under Assumptions §15.02 and §18.03 and p ∈ L∞(λ[0,1]) for Mv ∈ N
as in (18.08) and penv

• ∈ (R+

\0)
N as in (18.07) the data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `2(v

2
• )1

m̂
• ⊆ `2(v

2
• )

of p
•
∈ `2(v

2
• ) with data-driven dimension m̂ ∈ JMvK as in (18.09) satisfies

P
⊗n
p

(
‖ p̂m̂

•
− p

•
‖2

v

)
6 96τ2

v,u min
{

R
m

n (p
•
, v•): m ∈ JMvK

}
+ Cτ2

v,u

(
Cv

(x
p
) + v2

1

)
n−1 (18.11)

for some universal numerical constant C = 8Ctal ∈ [1,∞) and x
p

:= 6‖p‖
L∞(λ[0,1])

τ−2
v,u ∈ R

+.

§18.10 Proof of Proposition §18.09. is given in the lecture. �

Statistics 2 85



Chapter 4 Nonparametric density estimation §18 Data-driven density estimation

§18|01|02 Maximal global v-risk

§18.11 Assumption. Consider weights a•, v• ∈ (R\0)
N with a• ∈ `∞ and (av)• := (ajvj)j∈N = a•v• ∈ `∞.

We write (av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for eachm ∈ N. The weights v• ∈ (R\0)
N satisfy (18.05).

The orthonormal system (uj)j∈N in L2(λ[0,1]) and u0 := 1[0,1] form an (os1’) orthonormal basis
(uj)j∈N0

in L2(λ[0,1]) and as process u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

) satisfies (os2’) ‖ν
N
(a2
•u

2
• )‖L∞(λ[0,1])

6
τ2
a,u and (os2”) sup

{
‖u•(x)1m• ‖2

v
: x ∈ [0, 1]

}
6 τv,u‖1m• ‖2

v
∈ R+ for τa,u, τv,u ∈ [1,∞). �

§18.12 Reminder (Maximal global v-risk). Given Assumptions §15.02 and §18.11 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p̂

•
= p

•
+ n−1/2ε• of the

density coefficients p
•

= U p ∈ `2 take the form of a statistical direct problem (see Defini-
tion §10.19) where the stochastic processes ε• ∈ B⊗n

[0,1]
⊗ 2N is given in Definition §15.08. Under

Assumptions §15.02 and §18.11 in Proposition §16.16 an upper bound for a maximal global
v-risk of an OPE is shown over the set Da,r

2
given in (16.04) (Lemma §16.14). More precisely,

the performance of the OPE p̂m
•

= p̂
•
1m• ∈ `2(v

2
• )1

m
• ⊆ `2(v

2
• ) with dimension m ∈ N is measured

by its maximal global v-risk over the ellipsoid Da,r
2

, that is

Rv

n
[ p̂

m

•
|Da,r

2
] := sup

{
P
⊗n
p

(
‖ p̂m̂

•
− p

•
‖2

v

)
: p ∈ Da,r

2

}
.

As in (12.06) for n,m ∈ N setting (av)2
(m) := ‖(av)2

•1
m|⊥
• ‖`∞ and

R
m

n (a•, v•) := (av)2
(m) ∨ n−1‖1m• ‖2

v
, m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}

(18.12)

by Proposition §16.16 under Assumptions §15.02 and §18.03 the maximal global v-risk of an
OPE p̂m

?
n with optimally choosen dimension m?

n
as in (18.12) satisfies

Rv

n
[ θ̂

m?
n

• |Da,r

2
] 6 CR

?

n(a•, v•)

with C = 1+rτa,u +r2. Moreover, due to Proposition §17.18 R?

n(a•, v•) provides (up to a constant)
also a lower bound of the maximal global v-risk over the ellipsoid Da,r

2
for any estimator. Conse-

quently, (up to a constant) R?

n(a•, v•) is a minimax bound and p̂m
?
n

•
is minimax optimal. However,

the optimal dimension m?
n

depends on a• ∈ (R+

\0)
N characterising the ellipsoid Da,r

2
. �

§18.13 Proposition (Upper bound). Under Assumptions §15.02 and §18.03 for Mv ∈ N as in (18.08) and
penv

• ∈ (R+

\0)
N as in (18.07) the data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `2(v

2
• )1

m̂
• ⊆ `2(v

2
• ) with data-driven

dimension m̂ ∈ JMvK as in (18.09) satisfies

Rv

n
[ p̂

m̂

•
|Da,r

2
] 6 (3r2 + 96τ2

v,u) min
{

R
m

n (a•, v•): m ∈ JMvK
}

+ Cτ2
v,u

(
Cv

(ξ) + v2
1

)
n−1 (18.13)

for some universal numerical constant C = 8Ctal ∈ [1,∞) and ξ := 6(1 + rτa,u)τ
−2
v,u ∈ R

+.

§18.14 Proof of Proposition §18.13. is given in the lecture. �

§18.15 Comment. The minimax bound R?

n(a•, v•) = Rm?
n

n (a•, v•) = min
{

Rm

n (a•, v•): m ∈ N
}

(for details
see Reminder §18.12) satisfies nR?

n(a•, v•) > ‖1m
?
n

• ‖2
v
> v2

1 . Consequently, the last upper bound in
(18.13) and the minimax bound R?

n(a•, v•) coincide up to a constant (3r2 +96τ2
v,u +Cτ2

v,u

(
Cv

(x
a
)v−2

1 +

1
)
) provided the minimax dimension fulfils m?

n
∈ JMvK. Therefore, we wish the upper bound Mv

to be as large as possible. The next assertion shows that Mv as in (18.08) is a suitable choice for
the upper bound. �
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§18.16 Corollary. Under the assumptions of Proposition §18.13 for each n ∈ N such that R?

n(a•, v•) 6

v2
1 and m?

n
6 exp(n

1/2

100
) we have

Rv

n
[ p̂

m̂

•
|Da,r

2
] 6 (3r2 + 96τ2

v,u) min
{

R
m

n (a•, v•): m ∈ JMvK
}

+ Cτ2
v,u

(
Cv

(x
a
) + v2

1

)
n−1

6 KR
?

n(a•, v•) (18.14)

and, hence up to the constant K := 3r2 + 96τ2
v,u + Cτ2

v,u

(
Cv

(ξ)v−2
1 + 1

)
the feasible data-driven

estimator p̂m̂
•

is minimax optimal.

§18.17 Proof of Corollary §18.16. is given in the lecture. �

§18.18 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §18.11 (os1’), (os2’) for all a• ∈ `2 and (os2”). In Table 02 [§12] (Illustration §12.26) the
order of the rate R?

n(a•, v•) is depict for the two specifications (o) and (s). We note that we have
a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. The sequence v• satisfies Assump-
tion §18.11, i.e. (18.05), for v > −1/2. Moreover, the optimal dimension m?

n
given in Table 02

[§12] satisfies m?
n
6 exp(n

1/2

100
), and thus (under the above restrictions) the adaptive density esti-

mator attains the minimax optimal rate R?

n(a•, v•) up to the constant given in Corollary §18.16. �

§18|02 Data-driven local estimation by Goldenshluger and Lepskij’s method

The next assertion provides our key argument in order to control the deviations of the reminder
term. The Bernstein inequality in the formulation (18.15) Exrcise is for example given in Comte
[2015], Appendix B, Lemma B.2.

§18.19 Lemma (Bernstein inequality). Let (Zi)i∈JnK be independent random variables with P(Zi) = 0,
P
(
Z

2

i

)
6 v2 ∈ R+ and |Zi| 6 2b ∈ R+ for all i ∈ JnK. Then for any x ∈ R+ we have

P
(

1
n

∑
i∈JnK

Zi > x
)
6 max

{
exp

(
− nx2

4v2

)
, exp

(
− nx

4b

)}
and

P
(∣∣ 1√

n

∑
i∈JnK

Zi

∣∣ > x
)
6 2 max

{
exp

(
− x2

4v2

)
, exp

(
− n1/2x

4b

)}
. (18.15)

Moreover, for any K ∈ [1,∞) we have

P
((∣∣ 1√

n

∑
i∈JnK

Zi

∣∣2 − (4v2 + 32b
2
(log K)n−1) log K

)
+

)
6 8K

−1{v2 + 16b
2
n−1}. (18.16)

§18.20 Proof of Lemma §18.19. Exercise �

§18.21 Remark. Let us briefly reconsider the OPE p̂m
•

= p̂
•
1m• ∈ `21

m
• with dimension m ∈ N (Def-

inition §16.04) where p̂
•

= P̂nu• = (P̂nuj)j∈N are noisy versions (Definition §15.08) of the
density coefficients p

•
= U p = Ppu• = (Ppuj = λ[0,1](puj))j∈N. Clearly, φν

N
((u• − p

•
)1m• ) is

a B
[0,1]

-B-measurable function. Therefore, given (Xi)i∈JnK ∼ P
⊗n
p for i ∈ JnK setting Zi :=

φν
N
((u•(Xi)− p

•
)1m• ) we have Pp(Zi) = 0 exploing p

•
= Ppu• and

φν
N
(( p̂

•
− p

•
)1m• ) = P̂n

(
φν

N
((u• − p

•
)1m• )

)
= n−1

∑
i∈JnK

Zi.
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Consequently, provided that

Pp(Z
2

i ) = Pp

(
|φν

N
((u• − p

•
)1m• )|2

)
6 v2

p,m ∈ R
+
,

sup
{
|φν

N
(u•(x)1m• )|: x ∈ [0, 1]

}
6 bm ∈ R

+
, and hence |Zi| 6 2bm, ∀i ∈ JnK, (18.17)

due to the Bernstein inequality (Lemma §18.19 (18.16)) we have

P
((∣∣n1/2φν

N
(( p̂

•
− p

•
)1m• )

∣∣2 − (4v2
p,m + 32b

2

m(log K)n−1) log K
)

+

)
6 8K

−1{v2
p,m + 16b

2

mn
−1}. (18.18)

for any K ∈ [1,∞). �

§18|02|01 Local φ-risk

§18.22 Assumption. Let φ
•
∈ (R\0)

N and the orthonormal system (uj)j∈N in L2(λ[0,1]) and u0 := 1[0,1] form
an (os1’) orthonormal basis (uj)j∈N0

in L2(λ[0,1]) and as process u• = (uj)j∈N on ([0, 1],B
[0,1]

) for
all m ∈ N satisfies (os2”) sup

{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6 τ2

u m ∈ R
+ for τu ∈ [1,∞). �

§18.23 Remark. We replace Assumption §15.05 (os1) and (os2), respectively, by the stronger Assump-
tion §18.22 (os1’) and (os2”). Indeed, under (os1’) we have (os1) 1[0,1] ∈ ker(U). Furthermore,
(uj)j∈N belongs to L∞(λ[0,1]) due to (os2”), and hence (os2) is fulfilled (see also Remark §15.06).
We use in the sequel that under Assumption §18.22 (os2”) for each m ∈ N

sup
{
|φν

N
(u•(x))1m• )|2: x ∈ [0, 1]

}
6 ‖1m• ‖2

φ
sup

{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6 τ2

u m‖1m• ‖2

φ
=: b

2

m (18.19)

by applying the Cauchy Schwarz inequality and moreover (see Proof §15.11)

Pp

(
|φν

N
((u• − p

•
)1m• )|2

)
6 Pp

(
|φν

N
(u•1

m
• )|2

)
=: v2

p,m 6 ‖p‖L∞(λ[0,1])
‖1m• ‖2

φ
(18.20)

exploiting Lemma §15.10 (i). Combining (18.19), (18.20) and (18.18) (Remark §18.21) we
obtain

P
((∣∣n1/2φν

N
(( p̂

•
− p

•
)1m• )

∣∣2 − (4v2
p,m + 32b

2

m(log K)n−1) log K
)

+

)
6 8K

−1{‖p‖
L∞(λ[0,1])

+ 16τ2
u mn

−1}‖1m• ‖2

φ
(18.21)

for any m ∈ N and K ∈ [1,∞). �

§18.24 Reminder (Local oracle φ-risk). Given Assumptions §15.02 and §18.22 we consider an OPE as in
Definition §16.04. Here the observable noisy density coefficients p̂

•
= p

•
+n−1/2ε• of the density

coefficients p
•

= U p ∈ `2 take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes ε• ∈ B⊗n

[0,1]
⊗ 2N is given in Definition §15.08. Under Assump-

tions §15.02 and §18.22, (and hence Assumption §15.05 and φ
•
∈ (R\0)

N see Remark §18.23)
and p

•
∈ dom(φν

N
) in §16.22 an oracle inequality for the local φ-risk of the OPE’s is shown.

More presicely, as in (16.06) (Proposition §16.20) for all n,m ∈ N setting

R
m

n (p
•
, φ
•
) := |φν

N
(p
•
1m|⊥• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (p
•
, φ
•
) : m ∈ N

}
and R

◦
n(p

•
, φ
•
) := R

m◦n
n (p

•
, φ
•
) = min

{
R
m

n (p
•
, φ
•
) : m ∈ N

}
. (18.22)
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and assuming v
p

:= max(‖p‖
L∞(λ[0,1])

, ‖p−1‖
L∞(λ[0,1])

) ∈ R+

\0, and hence max(‖Γp‖L(`2)
, ‖Γ−1

p ‖L(`2)
) 6 v

p

(see Lemma §15.10), due to Property §16.22 the (infeasible) OPE p̂m
◦
n

•
= p̂

•
1m

◦
n

• ∈ `21
m◦n
• ⊆

dom(φν) with oracle dimension m◦
n

as in (18.22) satisfies

v−1
p

R
◦
n(p

•
, φ
•
) 6 inf

m∈N
P
⊗n
p (|φν

N
( p̂

m

•
− p

•
)|2) 6 P⊗np (|φν

N
( p̂

m◦n

•
− p

•
)|2)

6 v
p
R
◦
n(p

•
, φ
•
) 6 v2

p
inf
m∈N

P
⊗n
p (|φν

N
( p̂

m

•
− p

•
)|2),

and hence it is oracle optimal (with constant v2
p
). �

Partially known penalty sequence

§18.25 Notation. Consider first a sequence of penalties penp,φ
• = (penp,φ

m
)m∈N ∈ (R+

\0)
N given by

penp,φ
m

:= 12n−1
(
v2
p,m + 8b

2

m(log Km)n−1
)
(log Km) with v2

p,m := Pp

(
|φν

N
(u•1

m
• )|2

)
,

b
2

m := τ2
u m‖1m• ‖2

φ
, and Km := (1 ∨ ‖1m• ‖2

φ
)m3 ∈ [1,∞) for each m ∈ N, (18.23)

which is obviously only partially known in advance, and arbitrary but fixed upper bound M ∈ N.
Considering the data-driven OSE p̂m̂

•
= p̂

•
1m̂• with dimension parameter selected by Goldensh-

luger and Lepskij’s method

m̂ := arg min
{
contrp,φ

m
+ penp,φ

m
: m ∈ JMK

}
and

contrp ,φ
m

:= max
{(
|φν

N
( p̂

j

•
− p̂

m

•
)|2 − penp,φ

j
− penp,φ

m

)
+
: j ∈ Km,MK

}
, m ∈ JMK. (18.24)

Moreover, studying a φ-error the bias term introduced in (14.31) becomes

bias
m
(p
•
, φ
•
) = sup

{
|φν

N
(p

j

•
− p

m

•
)| = |φν

N
(p
•
1Km,jK
• )|: j ∈ Jm,∞K

}
∀m ∈ N.

If p
•
∈ dom(φν

N
) and hence ν

N
(|φ

•
p
•
|) ∈ R then bias

m
(p
•
, φ
•
) 6 ν

N
(|φ

•
p
•
|1m|⊥• ) = o(1) as m →∞ by

dominated convergence. Considering the data-driven OSE p̂m̂
•

= p̂
•
1m̂• with dimension parameter

m̂ selected as in (18.24) with penalty sequence penp,φ
• given in (18.23) and arbitrary upper bound

M ∈ N we derive below an upper bound for its local φ-risk, P⊗np

(
|φν

N
( p̂m̂
•
− p

•
)|2
)
. �

§18.26 Lemma. Under Assumptions §15.02 and §18.22 and p ∈ L∞(λ[0,1]) for penp ,v
• ∈ (R+

\0)
N as in

(18.23) and for any M ∈ N we have

P
⊗n
p

(
max

{(
|φν

N
( p̂

m

•
− p

m

•
)|2 − penp,φ

m
/3
)

+
: m ∈ JMK

})
6 14{‖p‖

L∞(λ[0,1])
+16τ2

u n
−1}n−1. (18.25)

§18.27 Proof of Lemma §18.26. is given in the lecture. �

§18.28 Proposition (Upper bound). Under Assumptions §15.02 and §18.22 and p ∈ L∞(λ[0,1]) for penp,v
• ∈

(R+

\0)
N as in (18.23) the data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) of p

•
∈ dom(φν

N
) with

data-driven dimension m̂ ∈ JMK as in (18.24) satisfies for all n,M ∈ N

P
⊗n
p

(
|φν

N
( p̂

m̂

•
− p

•
)|2
)
6 64(‖p‖

L∞(λ[0,1])
+ 8τ2

u )

×min
{
bias2

m
(p
•
, φ
•
) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−1): m ∈ JMK

}
+ 392(‖p‖

L∞(λ[0,1])
+ 16τ2

u n
−1)n−1. (18.26)

§18.29 Proof of Proposition §18.28. is given in the lecture. �
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§18.30 Comment. Let us compare the dominating part of the upper bound given in (18.26), that is

min
{
bias2

m
(p
•
, φ
•
) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−1): m ∈ JMK

}
(18.27)

with the oracle bound R◦n(θ•, φ•) = min
{
|φν

N
(pm
•
− p

•
)|2 + n−1‖1m• ‖2

φ
: m ∈ N

}
(for details see

Reminder §18.24). In (18.27) we face eventually a deterioration by three sources. First, we
generally have bias

m
(p
•
, φ
•
) > |φν

N
(pm
•
− p

•
)|, but note that for p

•
φ
•
∈ (R+)N equality holds, that is

bias
m
(p
•
, φ
•
) = sup

{
ν
N
(φ
•
p
•
1Km,jK
• ): j ∈ Jm,∞K

}
= ν

N
(φ
•
p
•
1m|⊥• ) = |φν

N
(p

m

•
− p

•
)|

for allm ∈ N. Secondly, the variance term features an additional factor (log Km)(1∨(log Km)mn−1),
and finally the upper bound M might impose an additional deterioration. We note that the or-
acle bound R◦n(p

•
, φ
•
) is parametric, i.e. nR◦n(p

•
, φ
•
) = O(1) as n → ∞, if φ

•
∈ `2 (case (p) in

Illustration §12.40). In the sequel we consider only the case φ
•
6∈ `2, i.e. ν

N
(|φ

•
|2) =∞. We set

M
φ

:= max
{
m ∈ N: ‖1m• ‖2

φ
6 nφ2

1

}
∈ N (18.28)

where the defining set is not empty and finite since ‖φ
•
‖2
`2

=∞. The next assertion shows that this
is a suitable choice for the upper bound. Moreover, we estimate the bias term by bias

m
(p
•
, φ
•
) 6

ν(|φ
•
p
•
|1m|⊥• ) where equality holds whenever p

•
φ
•
∈ (R+)N. �

§18.31 Corollary. Given φ
•
∈ (R\0)

N with φ
•
6∈ `2, Mφ ∈ N as in (18.28) and penp,φ

• as in (18.23)
consider a data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) of p

•
∈ dom(φν

N
) with

m̂ := arg min
{
contrφ

m
+ penp,φ

m
: m ∈ JMφK

}
and

contrp,φ
m

:= max
{(
|φ
•
ν
N
(θ̂

j

• − θ̂
m

• )|2 − penp,φ
j
− penp,φ

m

)
+
: j ∈ Km,MφK

}
, m ∈ JMφK. (18.29)

For n,m ∈ N we set

R
m

n (p
•
, φ
•
) :=

(
ν
N
(|φ

•
p
•
|1m|⊥• )

)2

+ (1 +
(

log‖1m• ‖2

φ

)
+

+ logm)
(
1 + (

(
log‖1m• ‖2

φ

)
+

+ logm)mn−1
)
n−1‖1m• ‖2

φ
•

,

m� := arg min
{

R
m

n (p
•
, φ
•
) : m ∈ N

}
and

R
�
n(p

•
, φ
•
) := R

m�

n (p
•
, φ
•
) = min

{
R
m

n (p
•
, φ
•
) : m ∈ N

}
. (18.30)

Under the assumptions of Proposition §18.28 for each n ∈ N such that R�n(p
•
, φ
•
) 6 φ2

1
we have

P
⊗n
p

(
|φν

N
( p̂

m̂

•
− p

•
)|2
)
6 576(‖p‖

L∞(λ[0,1])
+ 8τ2

u )R
�
n(p

•
, φ
•
) + 392(‖p‖

L∞(λ[0,1])
+ 16τ2

u n
−1)n−1

6 (576 + 784φ
−2

1
)(‖p‖

L∞(λ[0,1])
+ 8τ2

u )R
�
n(p

•
, φ
•
). (18.31)

§18.32 Proof of Corollary §18.31. is given in the lecture. �

§18.33 Comment. The data-driven bound R�n(p
•
, φ
•
) compared to the oracle bound R◦n(p

•
, φ
•
) features

a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. �

90 Statistics 2



§18 Data-driven density estimation Chapter 4 Nonparametric density estimation

§18.34 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case φ

•
6∈ `2 only.

Table 01 [§18]

Order of the oracle rate R◦n(p
•
, φ
•
) and the data-driven rate R�n(p

•
, φ
•
) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 p
j

(ν
N
(|φ

•
p
•
|1m|⊥• ))2 ‖1m• ‖2

φ
Mφ m� R◦n(p

•
, φ
•
) R�n(p

•
, φ
•
)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
1
2v n−

(a−v)
a

a ∈ (1/2,∞)
( n
logn

) 1
2a

( logn
n

)(a−v)
a

a ∈ (0, 1/2]
( n
logn

) 1
a+1/2

( logn
n

)2(a−v)
a+1/2

v = 0 j−a−1/2 m−2a logm en
logn
n

a ∈ (1/2,∞)
( n
(logn)2

) 1
2a

(logn)2

n

a ∈ (0, 1/2]
( n2

(logn)3

) 1
2a+1

( (logn)3

n2

) a
a+1/2

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v n
1
2v (log n)

1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a m(1−2a)+e−2m2a

logm en (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 01 [§18] the order of the oracle rate R◦n(p
•
, φ
•
) and the data-driven rate

R�n(p
•
, φ
•
) is depict for v > 0 only. In case v < 0 we have φ

•
∈ `2 and thus Corollary §18.31 is not

applicable. Moreover, in case (s) for a ∈ R+

\0 and (o) for a ∈ (1/2,∞) the rate R�n(p
•
, φ
•
) features

only an additional logarithmic factor compared with the oracle rate R◦n(p
•
, φ
•
). �

Estimated penalty sequence

§18.35 Notation. The penalty sequence penp,v
• ∈ (R+

\0)
N given in (18.23) still depends on characteristics

of the unknown density p . More precisly, for m ∈ N the term penp,v
m

involves the quantity v2
p,m =

Pp

(
|φν

N
(u•1

m
• )|2

)
which we eventually estimate without bias by v̂2

m := P̂n
(
|φν

N
(u•1

m
• )|2

)
. Based

on this estimator let us introduce a fully data-driven sequence of penalties p̂en
φ
• = (p̂en

φ
m
)m∈N ∈

(R+

\0)
N given by

p̂en
φ

m
:= 12n−1

(
2v̂2

m + 3×8b
2

m(log Km)n−1
)
(log Km) with v̂2

m := P̂n
(
|φν

N
(u•1

m
• )|2

)
,

b
2

m := τ2
u m‖1m• ‖2

φ
, and Km := (1 ∨ ‖1m• ‖2

φ
•

)m3 ∈ [1,∞) for each m ∈ N, (18.32)

which is now fully known in advance, and arbitrary but fixed upper bound M ∈ N. Consider-
ing the data-driven OSE p̂m̂

•
= p̂

•
1m̂• with dimension parameter selected by Goldenshluger and

Lepskij’s method

m̂ := arg min
{
ĉontr

φ

m
+ p̂en

φ
m

: m ∈ JMK
}

and

ĉontr
φ

m
:= max

{(
|φν

N
( p̂

j

•
− p̂

m

•
)|2 − p̂en

φ
j
− p̂en

φ
m

)
+
: j ∈ Km,MK

}
, m ∈ JMK (18.33)

we derive below an upper bound for its local φ-risk, P⊗np

(
|φν

N
( p̂m̂
•
− p

•
)|2
)
. �

§18.36 Lemma. Under Assumptions §15.02 and §18.22 and p ∈ L∞(λ[0,1]) for penp,φ
• , p̂en

φ
• ∈ (R+

\0)
N as in

(18.23) and (18.32), respectively, and for any M ∈ N we have

P
⊗n
p

(
max

{(
penp,φ

j
− p̂en

φ

j

)
+
: j ∈ JMK

})
6 40{‖p‖

L∞(λ[0,1])
+ 6τ2

u n
−1}n−1. (18.34)

§18.37 Proof of Lemma §18.36. is given in the lecture. �
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§18.38 Proposition (Upper bound). Under Assumptions §15.02 and §18.22 and p ∈ L∞(λ[0,1]) for p̂en
φ
• ∈

(R+

\0)
N as in (18.32) the data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) of p

•
∈ dom(φν

N
) with

data-driven dimension m̂ ∈ JMK as in (18.33) satisfies for all n,M ∈ N

P
⊗n
p

(
|φν

N
( p̂

m̂

•
− p

•
)|2
)
6 112(‖p‖

L∞(λ[0,1])
+ 12τ2

u )

×min
{
bias2

m
(p
•
, φ
•
) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−1): m ∈ JMK

}
+ 1440(‖p‖

L∞(λ[0,1])
+ 16τ2

u n
−1)n−1. (18.35)

§18.39 Proof of Proposition §18.38. is given in the lecture. �

§18.40 Comment. We shall stress that the last upper bound (18.35) in Proposition §18.38 (for the fully
data-driven procedure) and the upper bound (18.26) in Proposition §18.28 (for the partially data-
driven procedure) differ only in the numerical constants. Thus, thus the proof of the next results
follows line by line their counterparts above. �

§18.41 Corollary. Given φ
•
∈ (R\0)

N with φ
•
6∈ `2, Mφ ∈ N as in (18.28) and p̂en

φ
• as in (18.32) consider

a data-driven OPE p̂m̂
•

= p̂
•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) of p

•
∈ dom(φν

N
) with

m̂ := arg min
{
ĉontr

φ

m
+ p̂en

φ
m

: m ∈ JMφK
}

and

ĉontr
φ

m
:= max

{(
|φ
•
ν
N
(θ̂

j

• − θ̂
m

• )|2 − p̂en
φ

j
− p̂en

φ

m

)
+
: j ∈ Km,MφK

}
, m ∈ JMφK. (18.36)

For n,m ∈ N let m� and R�n(p
•
, φ
•
) defined as in (18.30). Under the assumptions of Proposi-

tion §18.38 for each n ∈ N such that R�n(p
•
, φ
•
) 6 φ2

1
we have

P
⊗n
p

(
|φν

N
( p̂

m̂

•
− p

•
)|2
)
6 1008(‖p‖

L∞(λ[0,1])
+ 8τ2

u )R
�
n(p

•
, φ
•
) + 1440(‖p‖

L∞(λ[0,1])
+ 16τ2

u n
−1)n−1

6 (1008 + 1920φ
−2

1
)(‖p‖

L∞(λ[0,1])
+ 12τ2

u )R
�
n(p

•
, φ
•
). (18.37)

§18.42 Proof of Proof §18.42. is given in the lecture. �

§18.43 Comment. The fullay data-driven bound R�n(p
•
, φ
•
) equals exactly the bound in the partially

known case. Therefore, the Comment §18.33 and the Illustration §18.34 apply here equally. �

§18|02|02 Maximal local φ-risk

§18.44 Assumption. Consider φ
•
, a• ∈ (R\0)

N with a• ∈ `∞ and (aφ)• := (ajφj )j∈N = a•φ• ∈ `2, and
hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. The orthonormal system (uj)j∈N in L2(λ[0,1])

and u0 := 1[0,1] form an (os1’) orthonormal basis (uj)j∈N0
in L2(λ[0,1]) and as process u2

• = (u2
j )j∈N

on ([0, 1],B
[0,1]

) satisfies (os2’) ‖ν
N
(a2
•u

2
•)‖L∞(λ[0,1])

6 τ2
a,u and (os2”) sup

{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6

τum ∈ R
+ for τa,u, τu ∈ [1,∞). �

§18.45 Remark. Assumption §18.44 contains Assumption §18.22 and thus Assumption §15.05 (os1)
and (os2) are satisfied (see Remark §18.23). Moreover, considering the set Da,r

2
of densities in

L2(λ[0,1]) defined in (16.04) we have ‖p‖
L∞(λ[0,1])

6 1+rτa,u for all p ∈ Da,r
2

due to (os2’) which allows
us to apply Lemma §16.14. Consequently, given in addition Assumption §15.02 all assumptions
of Proposition §18.38 are satisfied. �

§18.46 Reminder (Maximal local φ-risk). Given Assumptions §15.02 and §18.44 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p̂

•
= p

•
+ n−1/2ε• of

the density coefficients p
•

= U p ∈ `2 take the form of a statistical direct problem (see Def-
inition §10.19) where the stochastic processes ε• ∈ B⊗n

[0,1]
⊗ 2N is given in Definition §15.08.
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Under Assumptions §15.02 and §18.44 (and hence Assumption §16.24) in Proposition §16.27
an upper bound for a maximal local φ-risk of an OPE is shown over the set Da,r

2
given in (16.04)

(Lemma §16.14). More presicely, as in (12.13) (Proposition §12.42) for all n,m ∈ N setting

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (18.38)

by Proposition §16.27 under Assumptions §15.02 and §18.44 the maximal local φ-risk of an
OPE p̂m

?
n

•
with optimally choosen dimension m?

n
as in (18.38) satisfies

Rφ

n
[ p̂

m?
n

•
|Da,r

2
] 6 C R

?

n(a•, φ•)

with C = (1+rτa,u)∨r2. Moreover, due to Proposition §17.08 R?

n(a•, φ•) provides (up to a constant)
also a lower bound of the maximal global φ-risk over the ellipsoid Da,r

2
for any estimator. Conse-

quently, (up to a constant) R?

n(a•, φ•) is a minimax bound and p̂m
?
n

•
is minimax optimal. However,

the optimal dimension m?
n

depends on a• ∈ (R+

\0)
N characterising the ellipsoid Da,r

2
. �

§18.47 Proposition (Upper bound). Under Assumptions §15.02 and §18.44 for p̂en
φ
• ∈ (R+

\0)
N as in

(18.32) the OPE p̂m̂
•

= p̂
•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) with fully data-driven dimension m̂ ∈ JMK

as in (18.33) satisfies for all n,M ∈ N

Rφ

n
[ p̂

m̂

•
|Da,r

2
] 6 168(r2 + rτa,u + 9τ2

u )

×min
{
‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−1): m ∈ JMK

}
+ 1440(1 + rτa,u + 16τ2

u n
−1)n−1. (18.39)

§18.48 Proof of Proposition §18.47. is given in the lecture. �

§18.49 Corollary. Under Assumptions §15.02 and §18.44 and φ
•
6∈ `2 given Mφ ∈ N as in (18.28) and

p̂en
φ

• ∈ (R+

\0)
N as in (18.32) consider a data-driven OPE p̂m̂

•
= p̂

•
1m̂• ∈ `21

m̂
• ⊆ dom(φν

N
) with

data-driven dimension m̂ ∈ JM
n
K as in (18.36). For n,m ∈ N we set

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ

+
(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)(

1 + (
(

log‖1m• ‖2

φ

)
+

+ logm)mn−1
)
n−1‖1m• ‖2

φ
•

,

m� := arg min
{

R
m

n (a•, φ•) : m ∈ N
}

and

R
�
n(a•, φ•) := R

m�

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (18.40)

For each n ∈ N such that R�n(a•, φ•) 6 φ2

1
we have

Rφ

n
[ p̂

m̂

•
|Da,r

2
] 6 1512(r2 + rτa,u + 9τ2

u )R
�
n(a•, φ•) + 1440(1 + rτa,u + 16τ2

u n
−1)n−1

6 (1512 + 1440φ
−2

1
)(r2 + rτa,u + 17τ2

u )R
�
n(a•, φ•). (18.41)

§18.50 Proof of Corollary §18.49. is given in the lecture. �

§18.51 Comment. The data-driven bound R�n(a•, φ•) compared to the minimax bound R?

n(a•, φ•) features
a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. �
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§18.52 Illustration. We illustrate the last results considering the two specifications (o) and (o) given in
Table 04 [§12] (Illustration §12.47). We restrict ourselves again to the case φ

•
6∈ `2 only.

Table 02 [§18]

Order of the minimax rate R?

n(a•, φ•) and the data-driven rate R�n(a•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 a2j ‖a•1m|⊥• ‖2
φ

‖1m• ‖2
φ

Mφ m� R?

n(a•, φ•) R�n(a•, φ•)

(o) v ∈ (0, a) j−a m−2(a−v) m2v n
1
2v n−

(a−v)
a

a ∈ (1/2,∞)
( n
logn

) 1
2a

( logn
n

)(a−v)
a

a ∈ (0, 1/2]
( n
logn

) 1
a+1/2

(
logn
n

)2(a−v)
a+1/2

v = 0 j−a m−2a logm en
logn
n

a ∈ (1/2,∞)
( n
(logn)2

) 1
2a

(logn)2

n

a ∈ (0, 1/2]
( n2

(logn)3

) 1
2a+1

( (logn)3

n2

) a
a+1/2

(s) v ∈ R+
\0 e−j

2a m2(v−a)+e−m
2a

m2v n
1
2v (log n)

1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a e−m

2a

logm en (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 02 [§18] the order of the minimax rate R?

n(a•, φ•) and the data-driven rate
R�n(a•, φ•) is depict for v > 0 only. In case v < 0 we have φ

•
∈ `2 and thus Corollary §18.49 is not

applicable. Moreover, in case (s) for a ∈ R+

\0 and (o) for a ∈ (1/2,∞) the rate R�n(a•, φ•) features
only an additional logarithmic factor compared with the minimax rate R?

n(a•, φ•). �
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Chapter 5

Nonparametric regression

This chapter presents nonparametric regression with uniform design
along the lines of the textbooks by Tsybakov [2009] and Comte [2015]
where far more details, examples and further discussions can be found.

Overview

§19 Noisy regression coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
§20 Projection regression estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 98

§20|01 Global and maximal global v-risk . . . . . . . . . . . . . . . . . . . . 98
§20|02 Local and maximal local φ-risk . . . . . . . . . . . . . . . . . . . . . 101

§21 Minimax optimal regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
§21|01 Maximal local φ-risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
§21|02 Maximal global v-risk . . . . . . . . . . . . . . . . . . . . . . . . . . 105

§22 Data-driven regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
§22|01 Data-driven global estimation by model selection . . . . . . . . . . . . 107
§22|02 Data-driven local estimation by Goldenshluger and Lepskij’s method . 112

§19 Noisy regression coefficients

§19.01 Notation (Reminder). Consider the measure space ([0, 1],B
[0,1]
, λ[0,1]) where λ[0,1] denotes the re-

striction of the Lebesgue measure to the Borel-σ-algebra B
[0,1]

over [0, 1], and the Hilbert space
L2(λ[0,1]) := L2([0, 1],B

[0,1]
, λ[0,1]) of square Lebesgue-integrable functions. Let (X, Y ) be a [0, 1]×R-

valued random vector. We denote by PX ∈ W(B
[0,1]

) the marginal distribution of X , by PY |X a
regular conditional distribution of Y given X , and by PX,Y = P

X �PY |X ∈W(B
[0,1]
⊗B) the joint

distribution of (X, Y ). We tactically identify X and Y with the coordinate map Π[0,1]
and ΠR

,
respectively, and thus (X, Y ) with the identity id[0,1]×R such that P = P

X,Y ∈W(B
[0,1]
⊗B). If in

addition Y ∈ L1
(P) = L1

([0, 1]×R,B
[0,1]
⊗B,P) then PY |X (idR) = P

(
Y
∣∣X) =: f ∈ B

[0,1]
is unique

up to PX -a.s. equality. Moreover, we have f ∈ L1
(PX ) = L1

([0, 1],B
[0,1]
,PX ) and the error term

ξ := Y − f (X ) satisfies ξ ∈ L1
(P) with P(ξ) = 0. Let us denote in this situation by PY |X

f and
Pf := P

X�PY |X
f ∈W(B

[0,1]
⊗B), respectively, a regular conditional distribution of Y givenX and

the joint distribution of (X, Y ). Keep however in mind, that even if f ∈ L1
(PX ) is fixed the condi-

tional distribution PY |X
f is still not fully specified. In what follows we assume that the error term

ξ has in addition a finite second moment and its distribution does not depend on the regression
function, that is ξ ∼ Pξ ∈ P{0}×R+

\0
where P{0}×R+

\0
⊆ W(B) is the subset of all probability distribu-

tions over (R,B) with finite second moment and mean zero. For a ∈ R denote by Pξ
a ∈ W(B)

the distribution of ξ + a. If ξ and X are independent, which is assumed throughtout this chapter,
then there exists a PX-null set N ∈ B

[0,1]
such that PY |X=x

f (B) = P
ξ
f (x)(B) for all B ∈ B and

x ∈ N c (Witting [1985], Satz 129, p.130). In other words, (x,B) 7→ P
ξ
f (x)(B) is a version of the con-

ditional distributions of Y given X . Evidently, if for each B ∈ B the map Pξ
• (B) : R → [0, 1]

with a 7→ P
ξ
a (B) is Borel-measurable, Pξ

• (B) ∈ B for short, then Pξ
• : R ×B → [0, 1] with

(a,B) 7→ P
ξ
a (B) is a Markov kernel from (R,B) to (R,B). In this situation, for any f ∈ B

[0,1]
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the mapPξ
f (X ) : [0, 1]×B → [0, 1] with (x,B) 7→ P

ξ
f (x)(B) is a Markov kernel from ([0, 1],B

[0,1]
) to

(R,B), and hence it is a regular version of the conditional distribution of Y givenX , in symbols
P
Y |X
f = P

ξ
f (X ). Consequently, we have Pf = P

X �Pξ
f (X ) ∈W(B

[0,1]
⊗B). We assume in what follows

that f ∈ F
2
⊆ L2(P

X ) identifying again equivalence classes and their representatives. �

§19.02 Assumption. The [0, 1] × R-valued random vector (X, Y ) ∼ Pf = P
X � PY |X

f ∈ W(B
[0,1]
⊗B)

satisfies Y ∈ L1
(Pf ) and Pf

(
Y
∣∣X) = f PX -a.s. with regression function f ∈ F

2
⊆ L2(λ[0,1]).

(NR1) The error term ξ = Y − f (X ) ∼ Pξ ∈ P{0}×R+

\0
has a finite second moment, mean zero and

its distribution does not depend on the regression function f . We set σ2
ξ

:= P
ξ(id2

R) = Pf (ξ
2).

(NR2) The error term ξ and the explanatory variable X are independent.

(NR3) The map Pξ
• : R ×B → [0, 1] with (a,B) 7→ P

ξ
a (B) is a Markov kernel from (R,B)

to (R,B). Consequently, under (NR2) the Markov kernel Pξ
f (X ) is a regular version of the

conditional distribution of Y given X , i.e. PY |X
f = P

ξ
f (X ).

(NR4) The regressor X is uniformly distributed on the interval [0, 1], i.e. X ∼ U[0,1], and thus
P
X = U[0,1] = λ[0,1]. Denote by Uf := U[0,1] � PY |X

f the joint distribution of (X, Y ).
Under (NR1)-(NR4) given f ∈ F

2
and Pξ ∈ P{0}×R+

\0
the joint distribution Uf = U[0,1] � Pξ

f (X ) of
(X, Y ) is fully specified and we set UF2×P

{0}×R
+

\0

:= (Uf = U[0,1] � Pξ
f (X ))f∈F2,Pξ∈P

{0}×R
+

\0

. We consider

the statistical product experiment
(
([0, 1]×R)n, (B

[0,1]
⊗B)⊗n,U

⊗n
F2×P

{0}×R
+

\0

:= (U
⊗n
f )f∈F2,Pξ∈P

{0}×R
+

\0

)
of

size n ∈ N and for f ∈ F
2

and Pξ ∈ P{0}×R+

\0
we denote by ((X

i
, Y

i
))i∈JnK ∼ U

⊗n
f an iid. sample of

(X, Y ) ∼ Uf = U[0,1] � Pξ
f (X ). �

§19.03 Notation (Reminder). Consider an orthonormal system (uj)j∈N in L2(λ[0,1]). Then U : L2(λ[0,1])→ `2

with h 7→ Uh := h• = (hj := 〈h, uj〉L2(λ[0,1])
)j∈N is a surjective partial isometry U ∈ L(L2(λ[0,1]), `2). Its

adjoint operator U
? ∈ L(`2,L2(λ[0,1])) satisfies U

?
a• =

∑
j∈N ajuj =: ν

N
(a•u•) for all a• ∈ `2. We call

h• = (hj)j∈N (generalised) Fourier coefficients and U (generalised) Fourier series transform. �

§19.04 Remark. Let U ∈ L(L2(λ[0,1]), `2) be a generalised Fourier series transform as in Notation §19.03.
For f , h ∈ L2

(PX ) ⊆ L1
(PX ) we have fh ∈ L1

(PX ) and thus PX (fh) ∈ R. Keeping in mind that
X and Y equals the coordinate map Π[0,1]

and ΠR
, respectively, due to Assumption §19.02 (NR1),

i.e., ξ ∈ L2
(Pf ), hence ξh(X ) ∈ L1

(Pf ), and (NR2) we have Pf (ξh(X )) = Pf (ξ)PX (h) = 0. Con-
sequently, we obtain Y h(X ) = (f (X ) + ξ)h(X ) ∈ L1

(Pf ) and Pf (Y h(X )) = P
X (fh) ∈ R.

Moreover, if in addition f ∈ L∞(PX ) then we have also fh ∈ L2
(PX ) which together with

Pf (ξ
2h2(X )) = Pf (ξ

2)PX (h2) = σ2
ξ
P
X (h2) ∈ R+ implies Y h(X ) ∈ L2

(Pf ). Since λ[0,1] = P
X

and Uf = Pf under Assumption §19.02 (NR4) for all f , h ∈ L2(λ[0,1]) it follows immediately
Uf (Y h(X )) = λ[0,1](fh) = 〈f, h〉

L2(λ[0,1])
identifying again equivalence classes and their represen-

tatives. Evidently, we have uj ∈ L2(λ[0,1]) for all j ∈ N and the (generalised) Fourier coefficients
f• = (f

j
)j∈N = Uf ∈ `2 of f ∈ L2(λ[0,1]) fulfil f

j
= 〈f , uj〉L2(λ[0,1])

= Uf (Y uj(X )) for all j ∈ N. �

§19.05 Assumption. The orthonormal system (uj)j∈N in L2(λ[0,1]), and its associated generalised Fourier
series transform U ∈ L(L2(λ[0,1]), `2) with h 7→ Uh := h• = (hj := 〈h, uj〉L2(λ[0,1])

)j∈N, is fixed and
known in advance. �

§19.06 Remark. Under Assumptions §19.02 and §19.05 we impose in the sequel that f ∈ F
2
⊆ L∞(λ[0,1])

which in turn for all j ∈ N implies Y uj(X ) ∈ L2
(Uf ) with

Uf (Y
2u2

j (X )) = Uf (ξ
2u2

j (X )) + Uf (f
2
(X )u2

j (X )) = Uf (ξ
2)P

X
(u2

j ) + P
X

(f
2
u2
j )

= σ2

ξ
+ λ[0,1](f

2
u2
j )6 σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
∈ R+

.
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Alternatively, if uj ∈ L∞(λ[0,1]) then for all f ∈ L2(λ[0,1]) it follows that Y uj(X ) ∈ L2
(Uf ) with

Uf (Y
2u2

j (X )) 6 σ2
ξ

+ ‖u2
j‖L∞(λ[0,1])

‖f‖2
L2(λ[0,1])

∈ R+. �

§19.07 Notation. Setting Z := [0, 1] × R, Z := B
[0,1]
⊗ B and ψ

j
(X, Y ) := Y uj(X ) ∈ Z for

each j ∈ N under the Assumptions §19.02 and §19.05 the stochastic process ψ• = (ψ
j
)j∈N ∈

Z ⊗ 2N satisfies ψ
j
∈ L1

(Uf ) for each j ∈ N. Similar to an Empirical mean model §10.07
we define f̂• := P̂n(ψ•) ∈ Z

⊗n ⊗ 2N with zn = ((x
i
, y

i
))i∈JnK 7→ f̂

j
(zn) = (P̂n(ψj))(z

n) =
n−1
∑

i∈JnK ψj(xi, yi) = n−1
∑

i∈JnK yiuj(xi) for each j ∈ N. For f ∈ L2(λ[0,1]) by construction

f• = (f
j

= Uf (ψj))j∈N ∈ 2N is the `2-mean of f̂•. Consequently, ε• := n1/2(P̂n − Uf )(ψ•) = (εj =

n1/2(P̂n(ψj) − f
j
))j∈N ∈ Z

⊗n ⊗ 2N is centred, i.e. εj ∈ L1(U
⊗n
f ) with U

⊗n
f (εj) = 0. Evidently,

f̂• = f• + n−1/2ε• is a noisy version of f• (see Definition §10.19). Moreover, if f ∈ L∞(λ[0,1]) then f̂•
admits a covariance function covf•,• ∈ R

N
2

given for j, j
o
∈ N by

nCov(f̂
j
, f̂

jo
) = Cov(εj , εjo) = U

⊗n
f (εjεjo) = Uf (ψjψjo)− Uf (ψj)Uf (ψjo)

= Uf (Y
2uj(X )ujo

(X )) − f
j
f
jo

=: covf
j,jo
.

Consequently, we have ε• ∼ P
(0,covf•,•)

and f̂• = f• + n−1/2ε• ∼ P
(f•,n

−1covf•,•)
(see Definition §10.19). �

§19.08 Noisy regression coefficients. Under Assumptions §19.02 and §19.05 the stochastic process
ε• = n1/2(P̂n −Uf )(ψ•) satisfies Assumption §10.04, i.e. ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N, and ε• has mean

zero under U⊗nf . The stochastic process f̂• = f• + n−1/2ε• with `2-mean f• is called a noisy version
of the regression coefficients f• = Uf ∈ `2, or noisy regression coefficients for short. Moreover,
if f ∈ L∞(λ[0,1]) then ε• admits under U⊗nf a covariance function covf•,• ∈ R

N
2

given for j, j
o
∈ N

by covf
j,jo

= Uf (Y
2uj(X )ujo

(X )) − f
j
f
jo
. We eventually write ε• ∼ P

(0•,covf•,•)
and f̂• ∼ P

(f•,n
−1covf•,•)

. If in
addition ε• admits a covariance operator Γf ∈ L>(`2) then we write ε• ∼ P

(0•,Γf)
and f̂• ∼ P

(f•,n
−1Γf)

for
short. �

§19.09 Remark. The centred stochastic process ε• := (εj)j∈N of error terms in Definition §19.08 is in
general not a white noise process. �

§19.10 Lemma. Under Assumptions §19.02 and §19.05 consider ε• ∈ (B
[0,1]
⊗B)⊗n ⊗ 2N as in Defini-

tion §19.08.
(i) If f ∈ L∞(λ[0,1]) then under U⊗nf , ε• ∼ P

(0•,covf•,•)
admits a covariance operator Γf ∈ L>(`2) given by

a• 7→ Γfa• = (ν
N
(covf

j,•a•) =
∑
jo∈N

covf
j,jo
ajo)j∈N

where ‖Γf‖L(`2)
6 σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
.

(ii) If f ∈ L∞(λ[0,1]) and σ2
ξ
∈ R+

\0 then Γf ∈ L>(`2) is invertible with inverse Γ−1

f ∈ L(`2) where
‖Γ−1

f ‖L(`2)
6 σ−2

ξ
.

Consequently, if v
f

:= max(σ−2
ξ
, σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 then for all a• ∈ `2 we have

v−1
f
‖a•‖2

`2
6 ‖a•‖2

Γf
= 〈Γfa•, a•〉̀

2

6 v
f
‖a•‖2

`2
.

§19.11 Proof of Lemma §19.10. is given in the lecture. �

§19.12 Reminder. Consider the orthonormal basis (1{j}• )j∈N in `2 (compare Remark §15.12). If f ∈
L∞(λ[0,1]) from Lemma §19.10 (i) for each j ∈ N we obtain

U
⊗n
f

(
ε2
j

)
= U

⊗n
f

(
|ν
N
(1{j}• ε•)|2

)
= 〈Γf1{j}• ,1{j}• 〉̀

2

6 (σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
)‖1{j}• ‖2

`2
= σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
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Keeping the last identities in mind if v
f

:= max(σ−2
ξ
, σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 then for all j ∈ N
we have v−1

f
6 U

⊗n
f

(
ε2
j

)
6 v

f
due to Lemma §19.10. �

§20 Projection regression estimator

§20.01 Notation (Reminder). Consider the measure space (N, 2N, ν
N
) as in Notation §10.11. For w• ∈

R
N define the multiplication map M

w•
: R

N → R
N with a• 7→ M

w•
a• := w•a•. Note that each

w• ∈ R
N is 2N-B-measurable. We denote by M

R
N the set of all multiplication maps defined on

R
N. If in addition w• ∈ `∞ = L∞(N, 2N, ν

N
) then we have also M

w•
: `2 → `2. We set LM(`2) ={

M
w•
∈ M

R
N : w• ∈ `∞

}
⊆ L(`2) noting that ‖M

w•
‖
L(`2)

= sup
{
‖w•a•‖`2 : ‖a•‖`2 6 1

}
6 ‖w•‖`∞ for each

M
w•
∈ LM(`2). �

§20.02 Reminder. If w• ∈ `∞ then M
w•
∈ LM(`2), and M

w†•
: `2 ⊇ dom(M

w†•
) → `2. Moreover, we have

dom(M
w•
) = `2, ran(M

w•
) = `2w• and ker(M

w•
) = `21

Nw
• with Nw =

{
j ∈ N: wj = 0

}
∈ 2N (see

Property §11.03), and dom(M
w†•

) = `2w•⊕ `21
Nw
• (see Property §11.05). Consequently, if in addition

ν
N
(Nw) = 0 or in equal w• ∈ (R\0)

N, then w†• = w−1
• ∈ (R\0)

N, hence w2|†
• = w−2

• ∈ (R+

\0)
N, and

`w
2

= dom(M
w−1
•

) = `2w• = L2(w
−2
• νN) =: `2(w

−2
• ). For each m ∈ N we write 1m• = (1mj )j∈N := 1JmK

•

and 1m|⊥• := 1• − 1m• with JmK := [−m,m] ∩ N. Consequently, M1m•
∈ L>(`2) and M

1m|⊥•

∈ L>(`2)

is the orthogonal projection onto the linear subspace `21
m
• ⊆ `2 and its orthogonal complement

`21
m|⊥
• = (`21

m
• )⊥ ⊆ `2, respectively, that is `2 = `21

m
• ⊕ `21

m|⊥
• (see Property §11.07). Finally, given

h• = Uh ∈ `2 for h ∈ L2(λ[0,1]) we consider the orthogonal projections hm• = h•1
m
• ∈ `21

m
• and

hm := U
?
hm• ∈ L2(λ[0,1]) (Definition §11.08). �

§20.03 Notation (Reminder). Consider the stochastic processes ε• = n1/2(P̂n−Uf )(ψ•) ∈ (B
[0,1]
⊗B)⊗n⊗

2N given in Definition §19.08. The observable noisy version f̂• = f• + n−1/2ε• of the regression
coefficients f• = Uf ∈ `2 take the form of a statistical direct problem (see Definition §10.19).
Under Assumptions §19.02 and §19.05 ε• is centred and admits a covariance function covf•,• ∈ R

N
2

given in Definition §19.08, i.e. ε• ∼ P
(0•,covf•,•)

and f̂• ∼ P
(f•,n

−1covf•,•)
. If in addition f ∈ L∞(λ[0,1]) then ε•

admits a covariance operator Γf ∈ L>(`2) given in Lemma §19.10, i.e. ε• ∼ P
(0•,Γf)

and f̂• ∼ P
(f•,n

−1Γf)
�

§20.04 Definition. Given a noisy version f̂• = f• + n−1/2ε• of the regression coefficients f• = Uf ∈ `2

for each m ∈ N we call f̂m• := f̂•1
m
• orthogonal projection estimator (OPE) of f•. �

§20.05 Remark. If f = U
?
f• (for example (uj)j∈N is an orthonormal basis of L2(λ[0,1])), then we have

‖U?
f̂
m

• − f‖2

L2(λ[0,1])
= ‖f̂m• − f•‖2

`2
.

In this situation all results for the OPE f̂m• of the regression coefficients immediately transfer onto
the orthogonal projection regression estimator f̂m := U

?
f̂m• of the regression function f . �

§20|01 Global and maximal global v-risk

We measure first the accuracy of the OPE f̂m• = f̂•1
m
• of fm• = f•1

m
• ∈ `21

m
• with f• = Uf ∈ `2 by

a global mean-v-error, i.e. v-risk.

§20.06 Reminder. If v• ∈ (R\0)
N and f• ∈ `2(v

2
• ) then we have fm• = f•1

m
• ∈ `2(v

2
• ) too and ‖fm• − f•‖2

v
=

o(1) asm →∞ (Property §11.09). Moreover, ε• ∈ (B
[0,1]
⊗B)⊗n⊗2N given in Definition §19.08

satisfies v•ε•1
m
• ∈ `2 (note that 1m• ∈ `2 and v•1

m
• , ε•1

m
• ∈ `∞) and thus also

n−1/2v•ε•1
m
• + v•f

m

• = v•f̂
m

• ∈ `2. (20.01)
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Finally, under Assumptions §19.02 and §19.05 and f ∈ L∞(λ[0,1]) due to Lemma §19.10 we have
U
⊗n
f (ε2

• ) ∈ `∞, more precisely, ‖U⊗nf (ε2
• )‖`∞ 6 σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
(see Reminder §19.12). �

§20|01|01 Global v-risk

§20.07 Proposition (Upper bound). Let Assumptions §19.02 and §19.05, v• ∈ (R\0)
N and f• ∈ `2(v

2
• ) be

satisfied and for all n,m ∈ N set

R
m

n (f•, v•) := ‖f•1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (f•, v•) : m ∈ N
}

and R
◦
n(f•, v•) := R

m◦n
n (f•, v•) = min

{
R
m

n (f•, v•) : m ∈ N
}
. (20.02)

If f ∈ L∞(λ[0,1]) then we have U
⊗n
f (‖f̂m

◦
n

• − f•‖2
v
) 6 1 ∨ (σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
) R◦n(f•, v•).

§20.08 Proof of Proposition §20.07. is given in the lecture. �

§20.09 Oracle inequality. Under Assumptions §19.02 and §19.05 let v• ∈ (R\0)
N and f• ∈ `2(v

2
• ). If in

addition v
f

:= max(σ−2
ξ
, σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 then v−1
f
6 v fj := U

⊗n
f

(
ε2
j

)
6 v

f
for all j ∈ N

(see Reminder §19.12), and hence Property §12.15 implies

v−1
f

R
m

n (f•, v•) 6 U
⊗n
f (‖f̂m• − f•‖2

v
) = n−1ν

N
(v f• v

2
• 1

m
• ) + ‖f•1m|⊥• ‖2

v

6 v
f
R
m

n (f•, v•) for all m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.14)

v−1
f

R
◦
n(f•, v•) 6 inf

m∈N
U
⊗n
f (‖f̂m• − f•‖2

v
) 6 U

⊗n
f (‖f̂m

◦
n

• − f•‖2

v
)

6 v
f
R
◦
n(f•, v•) 6 v2

f
inf
m∈N

U
⊗n
f (‖f̂m• − f•‖2

v
), (20.03)

and, hence R◦n(f•, v•), m◦n and the statistic f̂m
◦
n

• , respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v2

f
). We observe that R◦n(f•, v•) = o(1) as n → ∞

(Remark §12.16), and thus, R◦n(f•, v•) is an oracle rate. However, note that the oracle dimen-
sion m◦

n
= m◦

n
(f•, v•) depends on the unknown regression coefficients f•, and thus also the oracle

optimal statistic f̂m
◦
n

• . In other words f̂m
◦
n

• is not a feasible estimator. �

§20.10 Illustration. We illustrate the last results considering usual behaviour for the bias and variance
term. We distinguish the following two cases

(p) v• ∈ `2 or there is m ∈ N with ‖fm• − f•‖2
v

= 0,

(np) v• 6∈ `2 and for all m ∈ N holds ‖fm• − f•‖2
v
∈ R+

\0.

Interestingly, in case (p) the oracle bound is parametric, that is, nR◦n(f•, v•) = O(1), in case
(np) the oracle bound is nonparametric, i.e. limn→∞ nR◦n(f•, v•) = ∞. In case (np) consider the
following two specifications:
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Table 01 [§20]

Order of the oracle rate R◦n(f•, v•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

v2j = j2v f 2

j
‖f•1m|⊥• ‖2

v
‖1m• ‖2

v
m◦

n
R◦n(f•, v•)

(o) v ∈ (−1/2, a) j−2a−1 m−2(a−v) m2v+1 n
1

2a+1 n−
2(a−v)
2a+1

v = −1/2 j−2a−1 m−2a−1 logm
( n
logn

) 1
2a+1

logn
n

(s) v + 1/2 ∈ R+
\0 e−j

2a m(1−2(a−v))+e−m
2a

m2v+1 (log n)
1
2a

(logn)
2v+1

2a

n

v = −1/2 e−j
2a e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 01 [§20] the order of the oracle rate R◦n(f•, v•) is depict for v > −1/2 only.
In case v < −1/2 the oracle rate R◦n(f•, v•) is parametric. �

§20|01|02 Maximal global v-risk

§20.11 Assumption. Consider weights a•, v• ∈ (R\0)
N with a• ∈ `∞ and (av)• := (ajvj)j∈N = a•v• ∈ `∞.

We write (av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for each m ∈ N. The orthonormal system (uj)j∈N in
L2(λ[0,1]) is (os1) complete, i.e an orthonormal basis in L2(λ[0,1]) and as process u2

• = (u2
j )j∈N on

([0, 1],B
[0,1]

) satisfies (os2) ‖ν
N
(a2
•u

2
•)‖L∞(λ[0,1])

6 τ2
a,u for τa,u ∈ [1,∞). �

§20.12 Reminder. Under Assumption §20.11 we have `a•
2

= dom(M
a−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and v2
• νN dominate mutually each other, i.e. they share the same null sets

(see Property §11.05). We consider `a
2

endowed with ‖·‖a−1 = ‖M
a−1
•
·‖`2 and given a constant

r ∈ R
+

\0 the ellipsoid `a,r
2

:= {b• ∈ `a
2

: ‖b•‖a−1 6 r} ⊆ `a
2
. Since (av)• ∈ `∞, and hence

(av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for each m ∈ N we have `a
2
⊆ `2(v

2
• ) (Property §11.15), and

‖b•1m|⊥• ‖v 6 r (av)(m) for all b• ∈ `a,r2
(Lemma §11.17). �

§20.13 Lemma. Under Assumption §20.11 set

F
a,r

2
:=
{
h ∈ L2(λ[0,1]): h• = Uh ∈ `a,r

2

}
. (20.04)

Then we have sup
{
‖h‖

L∞(λ[0,1])
: h ∈ F a,r

2

}
6 rτa,u.

§20.14 Proof of Lemma §20.13. is given in the lecture. �

§20.15 Proposition (Upper bound). Let Assumptions §19.02 and §20.11 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, v•) ∈ R+ as in (12.06) (Proposition §12.21) we have

sup
{
U
⊗n
f (‖f̂m

?
n

• − f•‖2

v
): f ∈ F a,r

2

}
6 C R

?

n(a•, v•).

with constant C = σ2
ξ

+ r2τ2
a,u + r2.

§20.16 Proof of Proposition §20.15. is given in the lecture. �

§20.17 Illustration. The trigonometric basis given for x ∈ [0, 1] by

u1 := 1[0,1], u2k(x) :=
√

2 cos(2πkt), u2k+1(x) :=
√

2 sin(2πkt), k ∈ N,

is an orthonormal basis of L2(λ[0,1]), hence it satisfies Assumption §20.11 (os1). Keeping in mind
that ‖u2

j‖L2(λ[0,1])
6 2 for all j ∈ N also the Assumption §20.11 (os3) is satisfied for all a• ∈ `2
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because τ2
a,u 6 2‖a•‖2

`2
(see also Illustration §16.18). In Table 02 [§12] (Illustration §12.26) the

order of the rate R?

n(a•, v•) is depict for the two cases (o) and (s). We note that we have a• ∈ `2 in
case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. �

§20.18 Remark. In Proposition §20.15 an upper bound is shown under Assumption §19.02 which
amongst others imposes that Uf = U[0,1] � Pξ

f (X ) with Pξ ∈ P{0}×R+

\0
. Recall that P{0}×R+

\0
⊆ W(B)

denotes the subset of all probability distributions over (R,B) with finite second moment and
mean zero. For σ2 ∈ R+

\0 let us further introduce P{0}×(0,σ2] ⊆ P{0}×R+

\0
containing only probability

distributions with second moment bounded by σ2. In what follows we treat the distribution Pξ of
the error term as a nuisance parameter and consider the maximal risk over both F a,r

2
and P{0}×(0,σ2]

(see Definition §13.07). �

§20.19 Corollary (Upper bound). Let Assumptions §19.02 and §20.11 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, v•) ∈ R+ as in (12.06) (Proposition §12.21) we have

sup
{

(U[0,1] � P
ξ

f (X ))
⊗n(‖f̂m?

n

• − f•‖2

v

)
: f ∈ F a,r

2
,Pξ ∈ P{0}×(0,σ2]

}
6 C R

?

n(a•, v•).

with constant C = σ2 + r2τ2
a,u + r2.

§20.20 Proof of Corollary §20.19. is given in the lecture. �

§20|02 Local and maximal local φ-risk

We measure secondly the accuracy of the OPE f̂m• = f̂•1
m
• of fm• = f•1

m
• ∈ `21

m
• with f• = Uf ∈ `2

by a local mean-φ-error, i.e. φ-risk.

§20.21 Reminder. If φ
•
∈ (R\0)

N and f• ∈ dom(φν
N
) :=

{
a• ∈ `2: φ•a• ∈ `1

}
, then we have fm• = f•1

m
• ∈

dom(φν
N
) too and |φν

N
(f• − fm• )| = o(1) as m → ∞ (Property §11.22). Moreover, ε• ∈

(B
[0,1]
⊗B)⊗n⊗2N given in Definition §19.08 satisfies ε•1

m
• ∈ dom(φν

N
) (note that φ

•
1m• , ε•1

m
• ∈ `2)

and thus also

n−1/2ε•1
m
• + f

m

• = f̂
m

• ∈ dom(φν
N
). (20.05)

Finally, under Assumptions §19.02 and §19.05 and f ∈ L∞(λ[0,1]) due to Lemma §19.10 (i) the
process ε• ∈ (B

[0,1]
⊗B)⊗n⊗ 2N admits a covariance operator Γf ∈ L>(`2), i.e. ε• ∼ P

(0•,Γf)
, satisfying

‖Γf‖L(`2)
6 σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
. �

§20|02|01 Local φ-risk

§20.22 Proposition (Upper bound). Let Assumptions §19.02 and §19.05, φ
•
∈ (R\0)

N and f• ∈ dom(φν
N
)

be satisfied and for all n,m ∈ N set

R
m

n (f•, φ•) := |φν
N
(f•1

m|⊥
• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (f•, φ•) : m ∈ N
}

and R
◦
n(f•, φ•) := R

m◦n
n (f•, φ•) := min

{
R
m

n (f•, φ•) : m ∈ N
}
. (20.06)

If f ∈ L∞(λ[0,1]) then we have U
⊗n
f (|φν

N
(f̂m

◦
n

• − f•)|2) 6 1 ∨ (σ2
ξ

+ ‖f‖2
L∞(λ[0,1])

) R◦n(f•, φ•).

§20.23 Proof of Proposition §20.22. is given in the lecture. �
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§20.24 Oracle inequality. Under Assumptions §19.02 and §19.05 let φ
•
∈ (R\0)

N and f• ∈ dom(φν
N
).

If in addition v
f

:= max(σ−2
ξ
, σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 then max(‖Γf‖L(`2)
, ‖Γ−1

f ‖L(`2)
) 6 v

f
(see

Lemma §19.10), and hence Property §12.36 implies

v−1
f

R
m

n (f•, φ•) 6 U
⊗n
f (|φν

N
(f̂

m

• − f•)|2) = n−1‖φ
•
1m• ‖2

Γf
+ |φν

N
(f•1

m|⊥
• )|2

6 v
f
R
m

n (f•, φ•) for all m,n ∈ N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.34)

v−1
f

R
◦
n(f•, φ•) 6 inf

m∈N
U
⊗n
f (|φν

N
(f̂

m

• − f•)|2) 6 U
⊗n
f (|φν

N
(f̂

m◦n
• − f•)|2)

6 v
f
R
◦
n(f•, φ•) 6 v2

f
inf
m∈N

U
⊗n
f (|φν

N
(f̂

m

• − f•)|2), (20.07)

and hence, R◦n(f•, φ•), m
◦
n

and the statistic f̂m
◦
n

• , respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v2

f
). We observe that R◦n(f•, φ•) = o(1) as n → ∞

(Remark §12.37), and thus, R◦n(f•, φ•) is an oracle rate. However, note that the oracle dimen-
sion m◦

n
= m◦

n
(f•, φ•) depends on the unknown regression coefficients f•, and thus also the oracle

optimal statistic f̂m
◦
n

• . In other words f̂m
◦
n

• is not a feasible estimator. �

§20.25 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in Illustration §20.10 we distinguish here the
following two cases
(p) φ

•
∈ `2 or there is K ∈ N with sup{|φν

N
(f•1

m|⊥
• )|2 : m ∈ N ∩ [K,∞)} = 0,

(np) φ
•
6∈ `2 and for all m ∈ N holds sup{|φν

N
(f•1

m|⊥
• )|2 : m ∈ N ∩ [K,∞)} ∈ R+

\0.
In case (p) the oracle bound is again parametric, i.e. nR◦n(f•, φ•) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. limn→∞ nR◦n(f•, φ•) =∞. In case (np) consider the following
two specifications

Table 02 [§20]

Order of the oracle rate R◦n(f•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 f
j

|φν
N
(f•1

m|⊥
• )|2 ‖1m• ‖2

φ
m◦

n
R◦n(f•, φ•)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
1
2a n−

(a−v)
a

v = 0 j−a−1/2 m−2a logm
( n
logn

) 1
2a

logn
n

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v (log n)
1
2a

(logn)
v
a

n

v = 0 e−j
2a m(1−2a)+e−m

2a

logm (log n)
1
2a

log logn
n

We note that in Table 02 [§20] the order of the oracle rate R◦n(f•, φ•) is depict for v > 0 only. For
v < 0 the oracle rate R◦n(f•, φ•) is parametric. �

§20|02|02 Maximal local φ-risk

§20.26 Assumption. Consider φ
•
, a• ∈ (R\0)

N with a• ∈ `∞ and (aφ)• := (ajφj )j∈N = a•φ• ∈ `2, and
hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. The orthonormal system (uj)j∈N in L2(λ[0,1])

is (os1) complete, i.e an orthonormal basis in L2(λ[0,1]) and as process u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

)
satisfies (os2) ‖ν

N
(a2
•u

2
•)‖L∞(λ[0,1])

6 τ2
a,u for τa,u ∈ [1,∞). �
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§20.27 Reminder. Under Assumption §20.26 we have `a
2

= dom(M
a−1
•
) = `2a• ⊆ `2 and the three

measures ν
N
, a−2

• νN and |φ
•
|ν
N

dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). We consider `a•

2
endowed with ‖·‖a−1 = ‖M

a−1
•
·‖`2 and given a constant

r ∈ R
+

\0 the ellipsoid `a,r
2

:= {a• ∈ `a•
2

: ‖a•‖a−1 6 r} ⊆ `a
2
. Since (aφ)• ∈ `2, and hence

‖a•1m|⊥• ‖φ = ‖(aφ)•1
m|⊥
• ‖`2 ∈ R

+ for each m ∈ N (‖a•1m|⊥• ‖φ = o(1) as m → ∞ by dominated
convergence) we have `a

2
⊆ dom(φν

N
) (Property §11.27), and |φν

N
(f•1

m|⊥
• )| 6 r ‖a•1m|⊥• ‖φ for all

f• ∈ `
a,r

2
(Lemma §11.29). �

§20.28 Remark. Under Assumption §20.26 considering the set F a,r
2

of regression functions in L2(λ[0,1])

defined in (20.04) we have ‖f‖
L∞(λ[0,1])

6 rτa,u for all f ∈ F a,r
2

due to Lemma §20.13. �

§20.29 Proposition (Upper bound). Let Assumptions §19.02 and §20.26 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, φ•) ∈ R
+ as in (12.13) (Proposition §12.42) we have

sup
{
U
⊗n
f (|φν

N
(f̂

m

• − f•)|2): f ∈ F a,r
2

}
6 C R

?

n(a•, φ•).

with constant C = σ2
ξ

+ r2τ2
a,u.

§20.30 Proof of Proposition §20.29. is given in the lecture. �

§20.31 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.26 for all a• ∈ `2. In Table 04 [§12] the order of the rate R?

n(a•, φ•) is depict for the two
cases (o) and (s) introduced in Illustration §12.47. We note that we have a• ∈ `2 in case (o) for
a > 1/2 while in case (s) for a ∈ R+

\0. �

§20.32 Corollary (Upper bound). Let Assumptions §19.02 and §20.26 be satisfied. For n ∈ N consid-
ering m?

n
∈ N and R?

n(a•, φ•) ∈ R
+ as in (12.13) (Proposition §12.42) we have

sup
{

(U[0,1] � P
ξ

f (X ))
⊗n(|φν

N
((f̂

m

• − f•)1m• )|2
)
: f ∈ F a,r

2
,Pξ ∈ P{0}×(0,σ2]

}
6 C R

?

n(a•, φ•).

with constant C = σ2 + r2τ2
a,u.

§20.33 Proof of Corollary §20.32. is given in the lecture. �

§21 Minimax optimal regression

§21|01 Maximal local φ-risk

§21.01 Reminder (Maximal local φ-risk). Under Assumptions §19.02 and §20.26 the observable noisy
version f̂• = f• + n−1/2ε• of the regression coefficients f• = Uf ∈ `2 take the form of a statistical
direct problem (see Definition §10.19) where the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N

is given in Definition §19.08. Under Assumptions §19.02 and §20.26 in Proposition §20.29
is shown an upper bound for a maximal local φ

•
-risk of an OPE over the class F a,r

2
⊆ L2(λ[0,1])

of regression functions defined in (20.04). More precisely, assuming Pξ ∈ P{0}×R+

\0
with σ2

ξ
=

P
ξ(id2

R) ∈ R+

\0 and for f ∈ F a,r
2

setting Uf := U[0,1] � Pξ
f (X ) the performance of the OPE f̂m• =

f̂•1
m
• ∈ `21

m
• ⊆ dom(φν

N
) with dimension m ∈ N is measured by its maximal local φ-risk, that is

Rφ

n
[ f̂

m

• | F
a,r

2
, {Pξ} ] := sup

{
U
⊗n
f

(
|φν

N
(f̂

m

• − f•)|2
)
: Uf := U[0,1] � Pξ

f (X ), f ∈ F a,r
2

}
.

indicating explicitaly the dependence on the error distribution Pξ ∈ P{0}×R+

\0
. Let us recall (12.13)

(Proposition §12.42) where for n,m ∈ N we have defined

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (21.01)
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By Proposition §20.29 under Assumptions §19.02 and §20.26 the maximal local φ-risk of an
OPE f̂m

?
n

• with optimally choosen dimension m?
n

as in (21.01) satisfies

Rφ

n
[ f̂

m?
n

• | F
a,r

2
, {Pξ} ] 6 C R

?

n(a•, φ•)

with C = σ2
ξ

+ r2τ2
a,u. �

§21.02 Lemma (Lower bound based on two hypotheses). Given Pξ ∈ P{0}×R+

\0
if there are f 0, f 1 ∈ F a,r

2
with

associated probability measures P0 := U[0,1] � Pξ

f
0
(X )

and P1 := U[0,1] � Pξ

f
1
(X )

such that KL(P0 |P1 ) 6
2n−1 then for all n > 2 we have

inf f̃•R
φ

n
[ f̃• | F

a,r

2
, {Pξ} ] >

1

64
|φν

N
(f

0

• − f
1

• )|2.

where the infimum is taken over all possible estimators.

§21.03 Proof of Lemma §21.02. is given in the lecture. �

§21.04 Remark. If we consider furthermore candidate regression functions f 0 := f ∗ and f 1 = −f ∗
for some f ∗ ∈ F a,r

2
, and hence by definition f 0, f 1 ∈ F a,r

2
, then trivially |φν(f 0

• − f 1

• )|2 =
4|φν

N
(f ∗• )|2. If the associated probability measures Uf

0 = U[0,1] � Pξ

f
0
(X )

and Uf
1 = U[0,1] � Pξ

f
1
(X )

satisfy KL(Uf
0|Uf

1) 6 2n−1 then due to Lemma §21.02 for all n > 2 we have

inf f̃•R
φ

n
[ f̃• | F

a,r

2
, {Pξ} ] >

1

16
|φν

N
(f
∗
• )|2. (21.02)

We find a minimax-optimal lower bound by constructing a candidate f ∗ = U
?
f ∗• ∈ F a,r

2
that has

the largest possible |φν
N
(f ∗• )|2-value but U⊗nf 0 and U

⊗n
f

1 are still statistically indistinguishable in
the sense that KL(Uf

0|Uf
1) 6 2n−1 . �

§21.05 Assumption. The distribution Pξ ∈ W(B) admits a Lebesgue-density pξ := dPξ/dλ and ξ +
x ∼ Pξ

x for all x ∈ R. There exist constants Cξ, xξ ∈ R
+

\0 such that

∀x ∈ [−x
ξ
, x

ξ
] : KL(P

ξ |Pξ

x ) =

∫
p
ξ
(u) log

( pξ(u)

pξ(u− x)

)
λ(du) 6 Cξ x

2.

�

§21.06 Lemma. Let Pξ ∈ W(B) satisfy Assumption §21.05 with constants Cξ, xξ ∈ R
+

\0 and under
Assumption §20.26 let f ?• ∈ `

a,r

2
fulfill ‖f ?• ‖a−1 6 x

ξ
/(2τa,u). Setting f 0 := U

?
f ? and f 1 := −U

?
f ?

the distributions Uf
τ := U[0,1] � Pξ

f
τ
(X ), τ ∈ {0, 1} satisfy KL(Uf

0|Uf
1) 6 4Cξ‖f

?‖2
L2(λ[0,1])

.

§21.07 Proof of Lemma §21.06. is given in the lecture. �

§21.08 Reminder. Under Assumption §20.26 let in addition a2
• ∈ (R+

\0)
N
↓0 (see Notation §13.23), then

Assumption §13.24 is satisfied. If a2
2 > n−1 then exploiting the definition (21.01) of m?

n
we have

a2
m?

n

> n−1 > a2
m?

n+1 (see Comment §13.25) which we use in the next proof. �

§21.09 Proposition (Lower bound). Let Pξ ∈ W(B) satisfy Assumption §21.05 with constants Cξ, xξ ∈
R

+

\0 and let Assumptions §19.02 and §20.26 be fulfilled. If a2
• ∈ (R+

\0)
N
↓0 then for all n ∈ N∩ (1∨

a−2
2 ,∞) we have

inf f̃•R
φ

n
[ f̃• | F

a,r

2
, {Pξ} ] > C R

?

n(a•, φ•) (21.03)

with constant C := 16−1
(
r2 ∧ x2

ξ
/(4τ2

a,u) ∧ 1/(2Cξ)
)

and infimum taken over all estimators.
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§21.10 Proof of Proposition §21.09. is given in the lecture. �

§21.11 Comment. If ξ is normally distributed with mean zero and variance σ2
ξ
∈ R+

\0, i.e. ξ ∼ N(0,σ2
ξ ),

then for all x ∈ R we have

KL(N(0,σ2
ξ )|N(x,σ2

ξ )) = N(0,σ2
ξ )

(
log

dN(0,σ2
ξ )

dN(x,σ2
ξ )

)
=

x2

2σ2
ξ

and thus Assumption §21.05 holds with Cξ = 1/(2σ2
ξ
) and x2

ξ
= ∞ (see Proof §13.15). Conse-

quently, from Proposition §21.09 we obtain immediately,

inf f̃•R
φ

n
[ f̃• | F

a,r

2
, {N(0,σ2

ξ )} ] > C R
?

n(a•, φ•) (21.04)

with constant C := 16−1(r2 ∧ σ2
ξ
) and infimum taken over all estimators. �

§21.12 Corollary (Lower bound). Let Assumptions §19.02 and §20.26 be fulfilled and let σ2 ∈ R+

\0. If
a2
• ∈ (R+

\0)
N
↓0 then for all n ∈ N ∩ (1 ∨ a−2

2 ,∞) we have

inf f̃•R
φ

n
[ f̃• | F

a,r

2
,P{0}×(0,σ2] ] > C R

?

n(a•, φ•) (21.05)

with constant C := 16−1(r2 ∧ σ2) and infimum taken over all estimators.

§21.13 Proof of Corollary §21.12. is given in the lecture. �

§21.14 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.26 for all a• ∈ `2 (see Illustration §20.31). In Table 04 [§12] the order of the rate
R?

n(a•, φ•) is depict for the two cases (o) and (s) introduced in Illustration §12.47. We note that we
have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. In both cases the additional
assumption a2

• ∈ (R+

\0)
N
↓0 is satisfied. Consequently, due to Proposition §21.09 the Table 04 [§12]

presents the order of the minimax rate R?

n(a•, φ•) which is attaind by the minimax-optimal OPE
f̂m

?
n

• = f̂•1
m?

n

• ∈ `21
m?

n

• ⊆ dom(φν
N
) with optimally selected dimension m?

n
(Proposition §20.29). We

shall stress, that the order of m?
n

given in the Table 04 [§12] depends on the parameter a ∈ R+

\0

characterising the (abstract) smoothness of the density of interest which is generally not known
in advance. �

§21|02 Maximal global v-risk

§21.15 Reminder (Maximal global v-risk). Under Assumptions §19.02 and §20.11 the observable noisy
version f̂• = f• + n−1/2ε• of the regression coefficients f• = Uf ∈ `2 take the form of a statistical
direct problem (see Definition §10.19) where the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N

is given in Definition §19.08. Under Assumptions §19.02 and §20.11 in Proposition §20.15
is shown an upper bound for a maximal global v-risk of an OPE over the class F a,r

2
⊆ L2(λ[0,1])

of regression functions defined in (20.04). More precisely, assuming Pξ ∈ P{0}×R+

\0
with σ2

ξ
=

P
ξ(id2

R) ∈ R+

\0 and for f ∈ F a,r
2

setting Uf := U[0,1] � Pξ
f (X ) the performance of the OPE fm• =

f̂•1
m
• ∈ `21

m
• ⊆ `2(v

2
• ) with dimension m ∈ N is measured by its maximal global v-risk, that is

Rv

n
[ f̂

m

• | F
a,r

2
, {Pξ} ] := sup

{
U
⊗n
f

(
‖f̂m• − f•‖2

v

)
: Uf := U[0,1] � Pξ

f (X ), f ∈ F a,r
2

}
.

Let us recall (12.06) (Proposition §12.21) where for n,m ∈ N we have defined (av)2
(m) =

‖(av)•1
m|⊥
• ‖2

`∞
and

R
m

n (a•, v•) := [(av)2
(m) ∨ n−1‖1m• ‖2

v
], m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}
. (21.06)
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By Proposition §20.15 under Assumptions §19.02 and §20.11 the maximal global v-risk of an
OPE f̂m

?
n

• with optimally choosen dimension m?
n

as in (21.06) satisfies

Rv

n
[ f̂

m?
n

• | F
a,r

2
, {Pξ} ] 6 C R

?

n(a•, v•)

with C = σ2
ξ

+ r2τ2
a,u + r2. Furthermore, as in Notation §13.29 for m ∈ N we set Tm := {−1, 1}m

and for each τ := (τ
j
)j∈JmK ∈ Tm and j ∈ JmK we introduce τ (j) ∈ Tm given by τ (j)

j
:= −τ

j
and

τ (j)

l
:= τ

l
for l ∈ JmK\{j}. �

§21.16 Lemma (Assouad’s cube technique). Given Pξ ∈ P{0}×R+

\0
if for each τ ∈ Tm there is f τ ∈ F a•,r

2
with

associated probability measure Uf
τ := U[0,1]�Pξ

f
τ
(X ) such that for all τ ∈ Tm and j ∈ JmK we have

KL(Uf
τ |U

f
τ
(j)) 6 2n−1 then for all n > 2

inf f̃•R
v

n
[ f̃• | F

a,r

2
, {Pξ} ] > 2−m

∑
τ∈Tm

1
64

∑
j∈JmK

(
v2
j |f

τ

j
− f τ

(j)

j
|2
)

where the infimum is taken over all possible estimators.

§21.17 Proof of Lemma §21.16. is given in the lecture. �

§21.18 Remark. Assume candidate regression functions f τ := U
?
f τ• with f τ• := (τ

j
f ?
j
1mj )j∈N, τ ∈ Tm,

for some f ?• ∈ `a,r
2

, where evidently f τ• ∈ `a,r
2

too, then trivially
∑

j∈JmK

(
v2
j |f

τ

j
− f τ

(j)

j
|2
)

=

4‖f ?• 1m• ‖2
v•

. If for all τ ∈ Tm and j ∈ JmK the associated probability measures Uf
τ = U[0,1] �Pξ

f
τ
(X )

and U
f
τ
(j) := U[0,1] � Pξ

f
τ
(j)

(X )
satisfy KL(Uf

τ |U
f
τ
(j)) 6 2n−1 then due to Lemma §21.16 for all n > 2

we have

inf f̃•R
v

n
[ f̃• | F

a,r

2
, {Pξ} ] > 2−m

∑
τ∈Tm

1
16
‖f ?• 1m• ‖2

v
= 1

16
‖f ?• 1m• ‖2

v
. (21.07)

We find a minimax-optimal lower bound by choosing the parameter m and the function f ?• that
have the largest possible ‖f ?• 1m• ‖2

v•
-value although that the associated U

⊗n
f
τ , τ ∈ Tm are still statis-

tically indistinguishable in the sense that KL(Uf
τ |U

f
τ
(j)) 6 2n−1 for all j ∈ JmK and τ ∈ Tm. �

§21.19 Lemma. Let Pξ ∈ W(B) satisfy Assumption §21.05 with constants Cξ, xξ ∈ R
+

\0 and under
Assumption §20.11 let f ?• ∈ `a,r

2
fulfill ‖f ?• ‖a−1 6 x

ξ
/(2τa,u). For each τ ∈ Tm introduce f τ• :=

(τ
j
f ?
j
1mj )j∈N ∈ `a,r2

and f τ := U
?
f τ• ∈ F a,r

2
with associated probability measure Uf

τ = U[0,1]�Pξ

f
τ
(X ).

Then for each j ∈ JmK we have KL(Uf
τ |U

f
τ
(j)) 6 4Cξ‖f

∗
• 1

m
• ‖2

`∞
.

§21.20 Proof of Lemma §21.19. is given in the lecture. �

§21.21 Reminder. For w• ∈ `∞ we set w2
(0) := ‖w2

• ‖`∞ and w2
(•) = (w2

(j) := ‖w2
• 1

j |⊥
• ‖`∞)j∈N (Nota-

tion §13.34) where by construction w2
(j) = sup

{
w2
i : i ∈ N ∩ [j + 1,∞)

}
, j ∈ N

0
and w2

(•) ∈ (R+

\0)
N
↘ .

Under Assumption §20.11 let in addition (av)2
(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that

C(av)‖(av)−2
• 1

m
• ‖`∞ 6 (av)−2

(m−1) or in equal

(av)2
(m−1) > min

{
(av)2

j : j ∈ JmK
}
> C(av)(av)2

(m−1)

for all m ∈ N, then Assumption §13.35 is satisfied. For m?
n

and R?

n := Rm?
n

n (a•, v•) as in (21.06)
we distinguish case i) : R?

n = n−1‖1m?
n

• ‖2
v
> (av)2

(m?
n) and case ii) : R?

n = (av)2
(m?

n) > n−1‖1m?
n

• ‖2
v
.

Due to Comment §13.36 if (av)2
(1) > n−1v2

1 then in case i) we obtain (av)2
(m?

n−1) > n−1‖1m?
n

• ‖2
v
, while

in case ii) setting (the defining set is not empty since (av)2
(•) ∈ (R+

\0)
N
↓0 )

m�
n

:= min
{
m ∈ N ∩ [m?

n
+ 1,∞): n−1‖1m• ‖2

v
> (av)2

(m)

}
(21.08)

we have (av)2
(m?

n) = (av)2
(m�n−1) 6 n−1‖1m�n• ‖2

v
. We use those estimates in the next proof. �
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§21.22 Proposition (Lower bound). Let Pξ ∈ W(B) satisfy Assumption §21.05 with constants Cξ, xξ ∈
R

+

\0 and let Assumptions §19.02 and §20.11 be fulfilled. If (av)2
(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈

(0, 1] such that C(av)‖(av)−2
• 1

m
• ‖`∞ 6 (av)−2

(m−1) for all m ∈ N, then for all n ∈ N∩ (1∨v2
1 (av)−2

(1) ,∞)
we have

inf f̃•R
v

n
[ f̃• | F

a,r

2
, {Pξ} ] > C R

?

n(a•, v•) (21.09)

with constant C := 16−1(C(av)x2
ξ
/(4τ2

a,u)∧C(av)r
2∧1/(2Cξ)) and infimum taken over all estimators.

§21.23 Proof of Proposition §21.22. is given in the lecture. �

§21.24 Comment. If ξ ∼ N(0,σ2
ξ ) with σ2

ξ
∈ R+

\0 then Assumption §21.05 holds with Cξ = 1/(2σ2
ξ
) and

x2
ξ

=∞ (see Comment §21.11). Consequently, from Proposition §21.22 we obtain immediately

inf f̃•R
v

n
[ f̃• | F

a,r

2
, {N(0,σ2

ξ )} ] > C R
?

n(a•, v•) (21.10)

with constant C := 16−1(C(av)r
2 ∧ σ2

ξ
) and infimum taken over all estimators. �

§21.25 Corollary (Lower bound). Let Assumptions §19.02 and §20.11 be fulfilled and let σ2 ∈ R+

\0. If
(av)2

(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that C(av)‖(av)−2

• 1
m
• ‖`∞ 6 (av)−2

(m−1) for allm ∈ N,
then for all n ∈ N ∩ (1 ∨ v2

1 (av)−2
(1) ,∞) we have

inf f̃•R
φ

n
[ f̃• | F

a,r

2
,P{0}×(0,σ2] ] > C R

?

n(a•, φ•) (21.11)

with constant C := 16−1(C(av)r
2 ∧ σ2) and infimum taken over all estimators.

§21.26 Proof of Corollary §21.25. is given in the lecture. �

§21.27 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.11 for all a• ∈ `2 (see Illustration §20.17). In Table 02 [§12] the order of the rate
R?

n(a•, v•) is depict for the two cases (o) and (s) introduced in Illustration §12.26. We note that we
have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. In both cases the additional
assumptions, (av)2

(•) ∈ (R+

\0)
N
↓0 and there exists C(av) ∈ (0, 1] such that C(av)‖(av)−2

• 1
m
• ‖`∞ 6 (av)−2

(m−1)

for all m ∈ N, are satisfied. Consequently, due to Proposition §21.22 the Table 02 [§12]
presents the order of the minimax rate R?

n(a•, v•) which is attaind by the minimax-optimal OPE
f̂m

?
n

• = f̂•1
m?

n

• ∈ `21
m?

n

• ⊆ `2(v
2
• ) with optimally selected dimension m?

n
(Proposition §20.15). We

shall stress, that the order of m?
n

given in the Table 02 [§12] depends on the parameter a ∈ R+

\0

characterising the (abstract) smoothness of the regression function of interest which is generally
not known in advance. �

§22 Data-driven regression

§22|01 Data-driven global estimation by model selection

§22.01 Reminder. Talagrand’s inequality stated in the form of Lemma §18.01 provides again our key
argument in order to control the deviations of the reminder term. Let us briefly recall how we
intend to apply Talagrand’s inequality (see Remark §18.02 for a similar approach). Reconsider
the stochastic process ψ• = (ψ

j
(X, Y ) := Y uj(X ))j∈N ∈ (B

[0,1]
⊗B) ⊗ 2N where ψ

j
∈ L1

(Uf )

for each j ∈ N and the OPE f̂m• = f̂•1
m
• ∈ `21

m
• with dimension m ∈ N (Definition §20.04).

f̂• = P̂nψ• = (P̂nψj)j∈N are noisy versions (Definition §15.08) of the regression coefficients f• =
Uf = Uf (ψ•) = (Ufψj = Uf (Y uj(X )))j∈N (see Notation §19.07). For m ∈ N introduce
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the unit ball Bm :=
{
a• ∈ `2(v

2
• )1

m
• : ‖a•‖v 6 1

}
contained in the linear subspace `2(v

2
• )1

m
• spanned by

(1{j}• )j∈JmK. Clearly, for each a• ∈ `2(v
2
• )1

m
• we have ra• :=

∑
j∈JmK v

2
j ajψj = ν

N
(v2
• a•ψ•) ∈ B

[0,1]
⊗B,

i.e. it is a B
[0,1]
⊗B-B-measurable function, where P̂n(ra•) = ν

N
(v2
• a•P̂nψ•) = ν

N
(v2
• a•f̂•), Uf (ra•) =

ν
N
(v2
• a•Ufψ•) = ν

N
(v2
• a•f•) and hence ra• = P̂n(ra•) − Uf (ra•) = ν

N
(v2
• a•(f̂• − f•)) = 〈f̂• − f•, a•〉v. Let

Bm be a countable dense subset of the unit ball Bm (see Remark §18.02 for more details), then
we obtain

‖f̂m• − f
m

• ‖2

v
= sup

{
|〈f̂• − f•, a•〉v|

2: a• ∈ Bm
}

= sup
{
|ra•|2: a• ∈ Bm

}
.

The last identity provides the necessary argument to apply below Talagrand’s inequality (§18.01)
where we need to calculate the three constants h, H and v. We note that ψ• ∈ (B

[0,1]
⊗B) ⊗ 2N

and thus ra• = ν
N
(v2
• a•ψ•) ∈ B

[0,1]
⊗B is not bounded. Therefore, we decompose ψ• = ψb

• +ψu

• into
two parts ψb

• , ψ
u

• ∈ (B
[0,1]
⊗B) ⊗ 2N, a bounded and a remaining unbounded one. To be more

precise, for a• ∈ `2(v
2
• )1

m
• setting rb

a• := ν
N
(v2
• a•ψ

b

• ) ∈ B
[0,1]
⊗B and ru

a• := ν
N
(v2
• a•ψ

u

• ) ∈ B
[0,1]
⊗B

let sup
{
|rb
a•(x, y)|: a• ∈ Bd, x ∈ [0, 1], y ∈ R

}
∈ R be satisfied. Introducing further rb

a• := P̂n(r
b
a•) −

Uf (r
b
a•) and ru

a• := P̂n(r
u
a•)− Uf (r

u
a•) we evidently have

‖f̂m• − f
m

• ‖2

v
= sup

{
|rb
a• + ru

a• |2: a• ∈ Bm
}

6 2 sup
{
|rb
a• |2: a• ∈ Bm

}
+ 2 sup

{
|ru
a• |2: a• ∈ Bm

}
= 2‖(P̂nψb

• − Ufψ
b

• )1m• ‖2

v
+ 2‖(P̂nψu

• − Ufψ
u

• )1m• ‖2

v
(22.01)

Considering the first term on the right hand side provided that

sup
{
‖ψb

• (x, y)1m• ‖v: x ∈ [0, 1], y ∈ R
}

= sup
{
|rb
a•(x, y)|: a• ∈ Bd, x ∈ [0, 1], y ∈ R

}
6 hm,

U
⊗n
f

(
‖(P̂nψb

• − Ufψ
b

• )1m• ‖2

v

)
= U

⊗n
f

(
sup

{
|rb
a• |2: a• ∈ Bd

})
6 H

2

m,

sup
{
Uf

(
|ν
N
(v2
• a•(ψ

b

• − Ufψ
b

• ))|2
)
: a• ∈ Bd

}
= sup

{
nU

⊗n
f

(
|rb
a• |2
)
: a• ∈ Bd

}
6 vm (22.02)

we eventually apply Talagrand’s inequality (§18.01) and we obtain

U
⊗n
f

((
‖(P̂nψb

• − Ufψ
b

• )1m• ‖2

v
− 6H

2

m

)
+

)
6 Ctal

{
vm
n

exp

(
−nH

2

m

6vm

)
+

h2
m

n2 exp
(
−nHm

100hm

)}
(22.03)

for some universal numerical constant Ctal ∈ [1,∞). �

§22|01|01 Global v-risk

§22.02 Assumption. The weights v• ∈ (R\0)
N satisfy

∀x ∈ R+

\0 :
∑
m∈N

{x‖v2
• 1

m
• ‖`∞ exp

(
− ‖v•1m• ‖2

`2
/(x‖v2

• 1
m
• ‖`∞)

)
} =: Cv

(x) ∈ R+
. (22.04)

The orthonormal system (uj)j∈N in L2(λ[0,1]) is (os1) complete, i.e an orthonormal basis in L2(λ[0,1])

and satisfies as process u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

) for τv,u ∈ [1,∞) and for all m ∈ N

(os3) sup
{
‖u•(x)1m• ‖2

v•
: x ∈ [0, 1]

}
6 τ2

v,u‖1m• ‖2
v•
∈ R+. �

§22.03 Remark. Under Assumption §22.02 (18.05) we have ‖v•1m• ‖−2
`2

= o(1) as m → ∞ (Com-
ment §14.22), see also Illustration §14.23 for an example when (18.05) is not satisfied. �

§22.04 Reminder (Global oracle v-risk). Given Assumptions §19.02 and §22.02 we consider an OPE
as in Definition §20.04. Here the observable noisy version f̂• = f• + n−1/2ε• of the regression
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coefficients f• = Uf ∈ `2 take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N is given in Definition §19.08. Under

Assumptions §19.02 and §22.02, (and hence Assumption §19.05 and v• ∈ (R\0)
N) and f• ∈ `2(v

2
• )

in §20.09 an oracle inequality for the global v-risk of the OPE’s is shown. More presicely, as in
(20.02) (Proposition §20.07) for all n,m ∈ N setting

R
m

n (f•, v•) := ‖f•1m|⊥• ‖2

v
+ n−1‖1m• ‖2

v
, m◦

n
:= arg min

{
R
m

n (f•, v•) : m ∈ N
}

and R
◦
n(f•, v•) := R

m◦n
n (f•, v•) = min

{
R
m

n (f•, v•) : m ∈ N
}
. (22.05)

and assuming v
f

:= max(σ−2
ξ
, σ2

ξ
+‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 due to Property §20.09 the (infeasible) OPE

f̂m
◦
n

• = f̂•1
m◦n
• ∈ `2(v

2
• )1

m◦n
• ⊆ `2(v

2
• ) with oracle dimension m◦

n
as in (22.05) satisfies

v−1
f

R
◦
n(f•, v•) 6 inf

m∈N
U
⊗n
f (‖f̂m• − f•‖2

v
) 6 U

⊗n
f (‖f̂m

◦
n

• − f•‖2

v
)

6 v
f
R
◦
n(f•, v•) 6 v2

f
inf
m∈N

U
⊗n
f (‖f̂m• − f•‖2

v
),

and hence it is oracle optimal (with constant v2
f
). �

Partially known penalty sequence

§22.05 Notation. Consider a sequence of penalties penf,v• = (penf,v
m

)m∈N ∈ (R+

\0)
N given by

penf,v
m

:= 48v2
f τ

2
v,un

−1‖1m• ‖2

v
, for each m ∈ N with v2

f := 1 + Uf (Y
2) (22.06)

which is obviously only partially known in advance, and the in advance known upper bound
(where the defining set is not empty)

M
v

:= max
{
m ∈ N: ‖1m• ‖2v 6 nv

2
1 , m 6 n

−2/3 exp(
n1/6

100 )
}
. (22.07)

Considering the partially data-driven OSE f̂ m̂• = f̂•1
m̂
• with dimension parameter

m̂ := arg min
{
− ‖f̂m• ‖v + penf,v

m
: m ∈ JMvK

}
(22.08)

we derive below an upper bound for its global v•-risk, U⊗nf
(
‖f̂ m̂• − f•‖2

v

)
. �

§22.06 Lemma. Under Assumptions §19.02 and §22.02, Y ∈ L5
(Uf ) and f ∈ L∞(λ[0,1]) for penf,v• ∈ (R+

\0)
N

as in (22.06) and Mv ∈ N as in (22.07) we have

U
⊗n
f

(
max

{(
‖f̂m• − f

m

• ‖2

v
− penf,v

m
/4
)

+
: m ∈ JMvK

})
6 2Ctalτ

2
v,u(Cv

(x
ξ,f

) + v2
1 )(1 + Uf (Y

2) + Uf (|Y |5))n−1 (22.09)

for some universal numerical constant Ctal ∈ [1,∞) and x
ξ,f

= 6(σ2
ξ

+ ‖f‖2
L∞(λ[0,1])

)/(v2
f τ

2
v,u) ∈ R

+.

§22.07 Proof of Lemma §22.06. is given in the lecture. �

§22.08 Proposition (Upper bound). Under Assumptions §19.02 and §22.02, Y ∈ L5
(Uf ) and f ∈ L∞(λ[0,1])

for Mv ∈ N as in (22.07) and penf,v• ∈ (R+

\0)
N as in (22.06) the partially data-driven OPE

f̂ m̂• = f̂•1
m̂
• ∈ `2(v

2
• )1

m̂
• ⊆ `2(v

2
• ) of f• ∈ `2(v

2
• ) with data-driven dimension m̂ ∈ JMvK as in (22.08)

satisfies

U
⊗n
f

(
‖f̂ m̂• − f•‖2

v

)
6 192(1 + Uf (Y

2))τ2
v,u min

{
R
m

n (f•, v•): m ∈ JMvK
}

+ Cτ2
v,u(Cv

(x
ξ,f

) + v2
1 )(1 + Uf (Y

2) + Uf (|Y |5))n−1 (22.10)

for some universal numerical constant C = 16Ctal ∈ [1,∞) and x
ξ,f

= 6(σ2
ξ
+‖f‖2

L∞(λ[0,1])
)v−2

f τ
−2
v,u ∈

R
+.
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§22.09 Proof of Proposition §22.08. is given in the lecture. �

§22.10 Comment. The oracle bound R◦n(f•, v•) = Rm◦n
n (f•, v•) = min

{
Rm

n (f•, v•): m ∈ N
}

(for details see
Reminder §22.04) satisfies nR◦n(f•, v•) > ‖1m

◦
n

• ‖2
v
> v2

1 . Consequently, the last upper bound
in (22.10) and the oracle bound R◦n(f•, v•) coincide up to a constant (192(1 + Uf (Y

2))τ2
v,u +

Cτ2
v,u(Cv

(x
ξ,f

)v−2
1 + 1)(1 + Uf (Y

2) + Uf (|Y |5))) provided the oracle dimension fulfils m◦
n
∈ JMvK.

Therefore, we wish the upper bound Mv to be as large as possible. The next assertion shows that
Mv as in (22.07) is a suitable choice for the upper bound. �

§22.11 Corollary. Under the assumptions of Proposition §22.08 for each n ∈ N such that R◦n(f•, v•) 6

v2
1 and m◦

n
6 n−2/3 exp(n

1/6

100
) we have

U
⊗n
f

(
‖f̂ m̂• − f•‖2

v

)
6 KR

◦
n(f•, v•)

and, hence up to the constant K = 32(Ctal + 12)τ2
v,u(Cv

(x
ξ,f

)v−2
1 + 1)(1 + Uf (|Y |5)) the infeasible

partially data-driven estimator f̂ m̂• is oracle optimal.

§22.12 Proof of Corollary §22.11. is given in the lecture. �

§22.13 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §22.02 (os1), (os3) for all a• ∈ `2. In Table 01 [§12] (Illustration §12.19) the order of the
rate R◦n(f•, v•) is depict for the two specifications (o) and (s). We note that we have a• ∈ `2 in
case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. The sequence v• satisfies Assumption §22.02,
i.e. (22.04), for v > −1/2. Moreover, the optimal dimension m◦

n
given in Table 01 [§12]

satisfies m◦
n
6 n−2/3 exp(n

1/6

100
), and thus (under the above restrictions) the partially data-driven

(hence not feasible) density estimator attains the oracle rate R◦n(f•, v•) up to the constant given in
Corollary §22.11. �

Estimated penalty sequence

§22.14 Notation. The penalty sequence penf,v• ∈ (R+

\0)
N given in (22.06) still depends amongst others

on characteristics of the unknown regression function f . More precisly, for m ∈ N the term
penf,v

m
involves the quantity v2

f = 1 + Uf (Y
2) which we eventually estimate without bias by

v̂2 := 1 + P̂n(Y
2) (keeping in mind that we identify Y and the coordinate map ΠR

). Therewith,
let us introduce a fully data-driven sequence of penalties p̂en

v
• = (p̂en

v
m
)m∈N ∈ (R+

\0)
N given by

p̂en
v

m
:= 2×48v̂2τ2

v,un
−1‖1m• ‖2

v
for each m ∈ N with v̂2 := 1 + P̂n

(
Y 2
)

(22.11)

and the upper bound Mv ∈ N given in (22.07) which are both fully known in advance. Consider-
ing the data-driven OSE f̂ m̂• = f̂•1

m̂
• with dimension parameter selected by

m̂ := arg min
{
− ‖f̂m• ‖v + p̂en

v
m

: m ∈ JMvK
}

(22.12)

we derive below an upper bound for its global v-risk, U⊗nf
(
‖f̂ m̂• − f•‖2

v

)
. �

§22.15 Proposition (Upper bound). Under Assumptions §19.02 and §22.02, Y ∈ L5
(Uf ) and f ∈ L∞(λ[0,1])

for Mv ∈ N as in (22.07) and p̂en
v

m
∈ (R+

\0)
N as in (22.11) the fully data-driven OPE f̂ m̂• = f̂•1

m̂
• ∈

`2(v
2
• )1

m̂
• ⊆ `2(v

2
• ) of f• ∈ `2(v

2
• ) with data-driven dimension m̂ ∈ JMvK as in (22.08) satisfies

U
⊗n
f

(
‖f̂ m̂• − f•‖2

v

)
6 288τ2

v,u(1 + Uf (Y
2)) min

{
R
m

n (f•, v•): m ∈ JMvK
}

+ Cτ2
v,u(Cv

(x
ξ,f

) + v2
1 )(1 + Uf (|Y |5))n−1 (22.13)
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for x
ξ,f

= 6(σ2
ξ

+ ‖f‖2
L∞(λ[0,1])

)v−2
f τ

−2
v,u ∈ R

+ and some universal numerical constant C = 3(16Ctal +

384) ∈ [1,∞).

§22.16 Proof of Proposition §22.15. is given in the lecture. �

§22.17 Comment. We shall stress that the last upper bound (22.13) in Proposition §22.15 (for the fully
data-driven procedure) and the upper bound (22.10) in Proposition §22.08 (for the partially data-
driven procedure) differ only in the constants. Thus, Comment §22.10 still applies here and the
proof of the next results follows line by line their counterparts above. �

§22.18 Corollary. Under the assumptions of Proposition §22.15 for each n ∈ N such that R◦n(f•, v•) 6

v2
1 and m◦

n
6 n−2/3 exp(n

1/6

100
) we have

U
⊗n
f

(
‖f̂ m̂• − f•‖2

v

)
6 KR

◦
n(f•, v•)

and, hence up to the constant K = 5(16Ctal + 384)τ2
v,u(Cv

(x
ξ,f

)v−2
1 + 1)(1 + Uf (|Y |5)) the feasible

fully data-driven estimator f̂ m̂• is oracle optimal.

§22.19 Proof of Corollary §22.18. is given in the lecture. �

§22|01|02 Maximal global v-risk

§22.20 Assumption. Consider weights a•, v• ∈ (R\0)
N with a• ∈ `∞ and (av)• := (ajvj)j∈N = a•v• ∈ `∞.

We write (av)(m) := ‖(av)•1
m|⊥
• ‖`∞ ∈ R

+ for eachm ∈ N. The weights v• ∈ (R\0)
N satisfy (18.05).

The orthonormal system (uj)j∈N in L2(λ[0,1]) is (os1) complete, i.e an orthonormal basis in L2(λ[0,1])

and as process u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

) satisfies (os2) ‖ν
N
(a2
•u

2
•)‖L2(λ[0,1])

6 τ2
a,u and for all

m ∈ N, (os3) sup
{
‖u•(x)1m• ‖2

v•
: x ∈ [0, 1]

}
6 τ2

v,u‖1m• ‖2
v•
∈ R+. for τa,u, τv,u ∈ [1,∞). �

§22.21 Reminder (Maximal global v-risk). Given Assumptions §19.02 and §22.20 we consider an OPE
as in Definition §20.04. Here the observable noisy version f̂• = f• + n−1/2ε• of the regression
coefficients f• = Uf ∈ `2 take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N is given in Definition §19.08. Under

Assumptions §19.02 and §22.20 in Proposition §16.16 an upper bound for a maximal global
v-risk of an OPE is shown over the set F a,r

2
given in (20.04) (Lemma §20.13). More precisely,

the performance of the OPE f̂m• = f̂•1
m
• ∈ `2(v

2
• )1

m
• ⊆ `2(v

2
• ) with dimension m ∈ N is measured by

its maximal global v-risk over the ellipsoid F a,r
2

, that is

Rv

n
[ f̂

m

• | F
a,r

2
] := sup

{
U
⊗n
f (‖f̂m• − f•‖2

v
): f ∈ F a,r

2

}
.

As in (12.06) (Proposition §12.21) for n,m ∈ N setting (av)2
(m) := ‖(av)2

•1
m|⊥
• ‖`∞ and

R
m

n (a•, v•) := (av)2
(m) ∨ n−1‖1m• ‖2

v
, m?

n
:= arg min

{
R
m

n (a•, v•) : m ∈ N
}

and R
?

n(a•, v•) := R
m?

n

n (a•, v•) = min
{

R
m

n (a•, v•) : m ∈ N
}

(22.14)

by Proposition §20.15 under Assumptions §19.02 and §22.02 the maximal global v-risk of an
OPE f̂m

?
n

• with optimally choosen dimension m?
n

as in (22.14) satisfies

Rv

n
[ f̂

m?
n

• | F
a,r

2
] 6 CR

?

n(a•, v•)

with C = σ2
ξ

+ r2τ2
a,u + r2. Moreover, due to Proposition §21.22 R?

n(a•, v•) provides (up to a
constant) also a lower bound of the maximal global v-risk over the ellipsoid F a,r

2
for any estimator.

Consequently, (up to a constant) R?

n(a•, v•) is a minimax bound and f̂m
?
n

• is minimax optimal.
However, the optimal dimension m?

n
depends on a• ∈ (R+

\0)
N characterising the ellipsoid F a,r

2
. �
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§22.22 Proposition (Upper bound). Under Assumptions §19.02 and §22.20 and Pξ ∈ P{0}×R+

\0
with σ2

ξ
:=

P
ξ(id2

R) ∈ R+

\0 and κ5
ξ

:= P
ξ(|idR|5) ∈ R+

\0 for Mv ∈ N as in (22.07) and p̂en
v

• ∈ (R+

\0)
N as

in (22.11) the fully data-driven OPE f̂ m̂• = f̂•1
m̂
• ∈ `2(v

2
• )1

m̂
• ⊆ `2(v

2
• ) of f• ∈ `2(v

2
• ) with fully

data-driven dimension m̂ ∈ JMvK as in (22.12) satisfies

Rv

n
[ f̂

m?
n

• | F
a,r

2
] 6 (3r2 + 288τ2

v,u(1 + σ2

ξ
+ r2τ2

a,u)) min
{

R
m

n (f•, v•): m ∈ JMvK
}

+ Cτ2
v,u(Cv

(x
ξ
) + v2

1 )(1 + κ5

ξ
+ r5τ5

a,u)n
−1 (22.15)

for x
ξ

:= 6(σ2
ξ

+ r2τ2
a,u)τ

−2
v,u ∈ R

+ and some universal numerical constant C = 96(16Ctal + 384) ∈
[1,∞).

§22.23 Proof of Proposition §22.22. is given in the lecture. �

§22.24 Comment. The minimax bound R?

n(a•, v•) = Rm?
n

n (a•, v•) = min
{

Rm

n (a•, v•): m ∈ N
}

(for details
see Reminder §18.12) satisfies nR?

n(a•, v•) > ‖1m
?
n

• ‖2
v
> v2

1 . Consequently, the last upper bound in
(22.15) and the minimax bound R?

n(a•, v•) coincide up to a constant 3r2 + 288τ2
v,u(1 +σ2

ξ
+ r2τ2

a,u) +
Cτ2

v,u(Cv
(x

ξ
)v−2

1 +1)(1+κ5
ξ
+r5τ5

a,u) provided the minimax dimension fulfilsm?
n
∈ JM

n
K. Therefore,

we wish the upper bound Mv to be as large as possible. The next assertion shows that Mv as in
(22.07) is a suitable choice for the upper bound. �

§22.25 Corollary. Under the assumptions of Proposition §22.22 for each n ∈ N such that R?

n(a•, v•) 6

v2
1 and m?

n
6 n−2/3 exp(n

1/6

100
) we have

Rv

n
[ f̂

m̂

• | F
a,r

2
] 6 (3r2 + 288τ2

v,u(1 + σ2

ξ
+ r2τ2

a,u)) min
{

R
m

n (a•, v•): m ∈ JMvK
}

+ 96(16Ctal + 384)τ2
v,u(Cv

(x
ξ
) + v2

1 )(1 + κ5

ξ
+ r5τ5

a,u)n
−1

6 KR
?

n(a•, v•) (22.16)

and, hence up to the constant K := 3r2 + Cτ2
v,u(Cv

(x
ξ
)v−2

1 + 1)(1 + κ5
ξ

+ r5τ5
a,u) with universal

numerical constant C = 99(16Ctal + 384) ∈ [1,∞) the feasible data-driven estimator f̂ m̂• is
minimax optimal.

§22.26 Proof of Corollary §22.25. is given in the lecture. �

§22.27 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.11 for all a• ∈ `2 (see Illustration §20.17). In Table 02 [§12] the order of the rate
R?

n(a•, v•) is depict for the two cases (o) and (s) introduced in Illustration §12.26. We note that
we have a• ∈ `2 in case (o) for a > 1/2 while in case (s) for a ∈ R+

\0. The sequence v• sat-
isfies Assumption §22.20, i.e. (22.04), for v > −1/2. Moreover, the optimal dimension m?

n

given in Table 02 [§12] satisfies m?
n
6 n−2/3 exp(n

1/6

100
), and thus (under the above restrictions) the

adaptive density estimator attains the minimax optimal rate R?

n(a•, v•) up to the constant given in
Corollary §22.25. �

§22|02 Data-driven local estimation by Goldenshluger and Lepskij’s method

§22.28 Reminder. The Bernstein inequality stated in the form of Lemma §18.19 provides again our
key argument in order to control the deviations of the reminder term. Let us briefly recall how
we intend to apply the Bernstein inequality (see Remark §18.21 for a similar approach). Re-
consider the stochastic process ψ• = (ψ

j
(X, Y ) := Y uj(X ))j∈N ∈ (B

[0,1]
⊗ B) ⊗ 2N where

ψ
j
∈ L1

(Uf ) for each j ∈ N and the OPE f̂m• = f̂•1
m
• ∈ `21

m
• with dimension m ∈ N (Defini-

tion §20.04). f̂• = P̂nψ• = (P̂nψj)j∈N are noisy versions (Definition §15.08) of the regression co-
efficients f• = Uf = Uf (ψ•) = (Ufψj = Uf (Y uj(X )))j∈N (see Notation §19.07). Clearly, rm :=
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φν
N
(ψ•1

m
• ) is a B

[0,1]
⊗B-B-measurable function, where P̂n(rm) = φν

N
(P̂n(ψ•)1

m
• ) = φν

N
(f̂•1

m
• ) and

Uf (rm) = φν
N
(Uf (ψ•)1

m
• ) = φν

N
(f•1

m
• ), and thus rm = P̂n(rm) − Uf (rm) = φν

N
(f̂m• − fm• ). We

note that ψ• and thus rm = φν
N
(ψ•1

m
• ) is not bounded. Therefore, we decompose ψ• = ψb

• + ψu

•

into two parts ψb

• , ψ
u

• ∈ (B
[0,1]
⊗ B) ⊗ 2N, a bounded and a remaining unbounded one. To

be more precise, setting rb
m := φν

N
(ψb

• 1
m
• ) ∈ B

[0,1]
⊗ B and ru

m := φν
N
(ψu

• 1
m
• ) ∈ B

[0,1]
⊗ B let

sup
{
|rb
m(x, y)|: x ∈ [0, 1], y ∈ R

}
∈ R be satisfied. Introducing further rb

m := P̂n(r
b
m) − Uf (r

b
m) and

ru
m := P̂n(r

u
m)− Uf (r

u
m) we evidently have rm = rb

m + ru
m and hence

|φν
N
(f̂

m

• − f
m

• )| = |rb
m + ru

m|2 6 2|rb
m|2 + 2|ru

m|2

= 2|P̂n(rb
m) − Uf (r

b
m)|2 + 2|P̂n(ru

m) − Uf (r
u
m)|2. (22.17)

Considering the first term on the right hand side provided that

Uf (|rb
m − Uf (r

b
m)|2) = Uf (|φνN(ψ

b

• 1
m
• )− Uf (φνN(ψ

b

• 1
m
• ))|2) 6 v2

f,m ∈ R
+
,

sup
{
|rb
m(x, y)|: x ∈ [0, 1], y ∈ R

}
6 bm ∈ R

+
, and hence |rb

m − Uf (r
b
m)| 6 2bm, (22.18)

due to the Bernstein inequality (Lemma §18.19 (18.16)) we have

U
⊗n
f

((∣∣n1/2rb
m

∣∣2 − (4v2
f,m + 32b

2

m(log K)n−1) log K
)

+

)
6 8K

−1{v2
f,m + 16b

2

mn
−1}. (22.19)

for any K ∈ [1,∞). �

§22|02|01 Local φ-risk

§22.29 Assumption. Let φ
•
∈ (R\0)

N and the orthonormal system (uj)j∈N in L2(λ[0,1]) is (os1) complete
and satisfies as process u• = (uj)j∈N on ([0, 1],B

[0,1]
) for τu ∈ [1,∞) and for all m ∈ N satisfies

(os3) sup
{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6 τ2

u m ∈ R
+. �

§22.30 Remark. Keeping Reminder §22.28 in mind we define ψb

• , ψ
u

• ∈ (B
[0,1]
⊗B)⊗ 2N as

ψ
b

• (x, y) = (ψ
b

j
(x, y) := y1[0, n1/6](|y|)uj(x))j∈N and

ψ
u

• (x, y) = (ψ
u

j
(x, y) := y1(n1/6,∞)(|y|)uj(x))j∈N, x ∈ [0, 1], y ∈ R

where evidently ψb

• + ψu

• = ψ• and

|rb
m| = |φνN(ψ

b

• 1
m
• )| = |Y 1[0, n1/6](|Y |)φν

N
(u•(X )1m• )| 6 |Y φν

N
(u•(X )1m• )| = |φν

N
(ψ•1

m
• )| = |rm|.

We use in the sequel that under Assumption §22.29 (os3) for each m ∈ N

sup
{
|rb
m(x, y)|2: x ∈ [0, 1], y ∈ R

}
= sup

{
|y1[0, n1/6](|y|)φν

N
(u•(x)1m• )|2: x ∈ [0, 1], y ∈ R

}
6 n1/3‖1m• ‖2

φ
sup

{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6 n1/3τ2

u m‖1m• ‖2

φ
=: b

2

m (22.20)

by applying the Cauchy Schwarz inequality and moreover (see Proof §15.11)

Uf (|rb
m − Uf (r

b
m)|2) 6 Uf (|rb

m|2) = Uf (|φνN(ψ
b

• 1
m
• )|2) =: v2

f,m

6 Uf (|φνN(ψ•1
m
• )|2) 6 (σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
)‖1m• ‖2

φ
∈ R+

. (22.21)

exploiting (??) in Proof §19.11. Combining (18.19), (18.20) and (18.18) (Remark §18.21) we
obtain

U
⊗n
f

((∣∣n1/2rb
m

∣∣2 − (4v2
f,m + 32b

2

m(log K)n−1) log K
)

+

)
6 8K

−1{σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 16τ2

u mn
−2/3}‖1m• ‖2

φ
(22.22)

for any m ∈ N and K ∈ [1,∞). �
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§22.31 Reminder (Local oracle φ-risk). Given Assumptions §19.02 and §22.29 we consider an OPE as
in Definition §20.04. Here the observable noisy version f̂• = f• + n−1/2ε• of the regression coef-
ficients f• = Uf ∈ `2 take the form of a statistical direct problem (see Definition §10.19) where
the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N is given in Definition §19.08. Under Assump-

tions §19.02 and §22.29 Assumptions §15.02 and §18.22, (and hence Assumption §19.05 and
φ
•
∈ (R\0)

N) and f• ∈ dom(φν
N
) in §20.24 an oracle inequality for the local φ-risk of the OPE’s is

shown. More presicely, as in (20.06) (Proposition §20.22) for all n,m ∈ N setting

R
m

n (f•, φ•) := |φν
N
(f•1

m|⊥
• )|2 + n−1‖1m• ‖2

φ
, m◦

n
:= arg min

{
R
m

n (f•, φ•) : m ∈ N
}

and R
◦
n(f•, φ•) := R

m◦n
n (f•, φ•) = min

{
R
m

n (f•, φ•) : m ∈ N
}
. (22.23)

and assuming v
f

:= max(σ−2
ξ
, σ2

ξ
+‖f‖2

L∞(λ[0,1])
) ∈ R+

\0 due to Property §20.09 the (infeasible) OPE

f̂m
◦
n

• = f̂•1
m◦n
• ∈ `21

m◦n
• ⊆ dom(φν) with oracle dimension m◦

n
as in (22.23) satisfies

v−1
f

R
◦
n(f•, φ•) 6 inf

m∈N
U
⊗n
f (|φν

N
(f̂

m

• − f•)|2) 6 U
⊗n
f (|φν

N
(f̂

m◦n
• − f•)|2)

6 v
f
R
◦
n(f•, φ•) 6 v2

f
inf
m∈N

U
⊗n
f (|φν

N
(f̂

m

• − f•)|2),

and hence it is oracle optimal (with constant v2
f
). �

Partially known penalty sequence

§22.32 Notation. Consider first a sequence of penalties penf,φ• = (penf,φ
m

)m∈N ∈ (R+

\0)
N given by

penf,φ
m

:= 24n−1
(
v2
f,m + 8b

2

m(log Km)n−1
)
(log Km) with v2

f,m := Uf

(
|φν

N
(ψ

b

• 1
m
• )|2

)
,

b
2

m := τ2
u n

1/3m‖1m• ‖2

φ
, and Km := (1 ∨ ‖1m• ‖2

φ
)m3 ∈ [1,∞) for each m ∈ N, (22.24)

which is obviously only partially known in advance, and fully known upper bound

M
φ

:= max
{
m ∈ N: m‖1m• ‖2

φ
6 n2φ2

1

}
∈ N (22.25)

where the defining set is not empty and finite (i.e. Mφ 6 n2). Considering the data-driven OSE
f̂ m̂• = f̂•1

m̂
• with dimension parameter selected by Goldenshluger and Lepskij’s method

m̂ := arg min
{
contrf,φ

m
+ penf,φ

m
: m ∈ JMφK

}
and

contrf,φ
m

:= max
{(
|φν

N
(f̂

j

• − f̂
m

• )|2 − penf,φ
j
− penf,φ

m

)
+
: j ∈ Km,MφK

}
, m ∈ JMφK. (22.26)

Moreover, studying a φ-error the bias term introduced in (14.31) becomes

bias
m
(f•, φ•) = sup

{
|φν

N
(f

j

• − f
m

• )| = |φν
N
(f•1

Km,jK
• )|: j ∈ Jm,∞K

}
∀m ∈ N.

If f• ∈ dom(φν
N
) and hence ν

N
(|φ

•
f•|) ∈ R then bias

m
(f•, φ•) 6 ν

N
(|φ

•
f•|1m|⊥• ) = o(1) as m → ∞ by

dominated convergence. Considering the data-driven OSE f̂ m̂• = f̂•1
m̂
• with dimension parameter

m̂ selected as in (22.26) with penalty sequence penf,φ• given in (22.24) and upper bound Mφ ∈ N
as in (22.25) we derive below an upper bound for its local φ-risk, U⊗nf

(
|φν

N
(f̂ m̂• − f•)|2

)
. �

§22.33 Lemma. Under Assumptions §19.02 and §22.29, f ∈ L∞(λ[0,1]) and Y ∈ L14
(Uf ) for penf,φ• ∈

(R+

\0)
N as in (22.24) and Mφ ∈ N as in (22.25) we have

U
⊗n
f

(
max

{(
|φν

N
(f̂

m

• − f
m

• )|2 − penf,φ
m
/3
)

+
: m ∈ JMφK

})
6 {28σ2

ξ
+ 28‖f‖2

L∞(λ[0,1])
+ 448τ2

u n
−2/3 + 2φ

2

1
τ2

u Uf

(
Y 14
)
}n−1 (22.27)
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§22.34 Proof of Lemma §22.33. is given in the lecture. �

§22.35 Proposition (Upper bound). Under Assumptions §19.02 and §22.29, f ∈ L∞(λ[0,1]) and Y ∈
L14

(Uf ) for penf,φ• ∈ (R+

\0)
N as in (22.24) and Mφ ∈ N as in (22.25) the OPE f̂ m̂• = f̂•1

m̂
• ∈

`21
m̂
• ⊆ dom(φν

N
) of f• ∈ dom(φν

N
) with partially data-driven dimension m̂ ∈ JMφK as in (22.26)

satisfies for all n ∈ N

U
⊗n
f

(
|φν

N
(f̂

m̂

• − f•)|2
)
6 128(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 8τ2

u )

×min
{
bias2

m
(p
•
, φ
•
) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−2/3): m ∈ JMK

}
+ 56

(
14σ2

ξ
+ 14‖f‖2

L∞(λ[0,1])
+ 224τ2

u n
−2/3 + φ

2

1
τ2

u Uf (Y
14)
)
n−1. (22.28)

§22.36 Proof of Proposition §22.35. is given in the lecture. �

§22.37 Comment. Let us compare the dominating part of the upper bound given in (22.28), that is

min
{
bias2

m
(f•, φ•) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−2/3): m ∈ JMφK

}
(22.29)

with the oracle bound R◦n(f•, φ•) = min
{
|φν

N
(fm• − f•)|2 + n−1‖1m• ‖2

φ
: m ∈ N

}
(for details see

Reminder §22.31). In (22.29) we face eventually a deterioration by three sources. First, we
generally have bias

m
(f•, φ•) > |φνN(fm• − f•)|, but note that for f•φ• ∈ (R+)N equality holds, that is

bias
m
(f•, φ•) = sup

{
ν
N
(φ
•
f•1

Km,jK
• ): j ∈ Jm,∞K

}
= ν

N
(φ
•
f•1

m|⊥
• ) = |φν

N
(f

m

• − f•)|

for allm ∈ N. Secondly, the variance term features an additional factor (log Km)(1∨(log Km)mn−2/3),
and finally the upper bound Mφ might impose an additional deterioration. The next assertion
shows that Mφ is a suitable choice for the upper bound. Moreover, we estimate the bias term by
bias

m
(f•, φ•) 6 ν(|φ

•
f•|1m|⊥• ) where equality holds whenever f•φ• ∈ (R+)N. �

§22.38 Corollary. For n,m ∈ N we set

R
m

n (f•, φ•) :=
(
ν
N
(|φ

•
f•|1m|⊥• )

)2

+ (1 +
(

log‖1m• ‖2

φ

)
+

+ logm)
(
1 + (

(
log‖1m• ‖2

φ

)
+

+ logm)mn−2/3
)
n−1‖1m• ‖2

φ
•

,

m� := arg min
{

R
m

n (f•, φ•) : m ∈ N
}

and

R
�
n(f•, φ•) := R

m�

n (f•, φ•) = min
{

R
m

n (f•, φ•) : m ∈ N
}
. (22.30)

Under the assumptions of Proposition §22.35 for each n ∈ N such that m� ∈ JMφK we have

U
⊗n
f

(
|φν

N
(f̂

m̂

• − f•)|2
)
6 1152(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 8τ2

u )R
�
n(f•, φ•)

+ 56
(
14σ2

ξ
+ 14‖f‖2

L∞(λ[0,1])
+ 224τ2

u n
−2/3 + φ

2

1
τ2

u Uf (Y
14)
)
n−1

6 9216
(
(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
)(1 + φ

−2

1
) + τ2

u (1 + 2φ
−2

1
n−2/3 + Uf (Y

14))
)

R
�
n(f•, φ•). (22.31)

§22.39 Proof of Proof §22.39. is given in the lecture. �

§22.40 Comment. The data-driven bound R�n(f•, φ•) compared to the oracle bound R◦n(f•, φ•) features a
deterioration of the variance term at least by a logarithmic factor. The appearance of the loga-
rithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. �
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§22.41 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case φ

•
6∈ `2 only.

Table 01 [§22]

Order of the oracle rate R◦n(f•, φ•) and the data-driven rate R�n(f•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 f
j

(ν
N
(|φ

•
f•|1m|⊥• ))2 ‖1m• ‖2

φ
Mφ m� R◦n(f•, φ•) R�n(f•, φ•)

(o) v ∈ (0, a) j−a−1/2 m−2(a−v) m2v n
2

2v+1 n−
(a−v)
a

a ∈ (3/4,∞)
( n
logn

) 1
2a

( logn
n

)(a−v)
a

a ∈ (0, 3/4]
( n5/6

logn

) 1
a+1/2

( logn
n5/6

)2(a−v)
a+1/2

v = 0 j−a−1/2 m−2a logm n2

logn

logn
n

a ∈ (3/4,∞)
( n
(logn)2

) 1
2a

(logn)2

n

a ∈ (0, 3/4]
( n5/3

(logn)3

) 1
2a+1

( (logn)3

n5/3

) a
a+1/2

(s) v ∈ R+
\0 e−j

2a m(1−2(a−v))+e−2m2a

m2v n
2

2v+1 (log n)
1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a m(1−2a)+e−2m2a

logm n2

logn (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 01 [§22] the order of the oracle rate R◦n(f•, φ•) and the data-driven rate
R�n(f•, φ•) is depict for v > 0 only. In case v < 0 we have φ

•
∈ `2. Moreover, in case (s) for

a ∈ R+

\0 and (o) for a ∈ (3/4,∞) the rate R�n(f•, φ•) features only an additional logarithmic factor
compared with the oracle rate R◦n(f•, φ•). �

Estimated penalty sequence

§22.42 Notation. The penalty sequence penf,v• ∈ (R+

\0)
N given in (22.24) still depends on character-

istics of the unknown regression function f . More precisly, for m ∈ N the term penf,v
m

in-
volves the quantity v2

f,m = Uf

(
|φν

N
(ψb

• 1
m
• )|2

)
which we eventually estimate without bias by

v̂2
m := P̂n

(
|φν

N
(ψb

• 1
m
• )|2

)
. Based on this estimator let us introduce a fully data-driven sequence of

penalties p̂en
φ
• = (p̂en

φ
m
)m∈N ∈ (R+

\0)
N given by

p̂en
φ
m

:= 24n−1
(
2v̂2

m + 3×8b
2

m(log Km)n−1
)
(log Km) with v̂2

m := P̂n
(
|φν

N
(ψ

b

• 1
m
• )|2

)
,

b
2

m := τ2
u n

1/3m‖1m• ‖2

φ
, and Km := (1 ∨ ‖1m• ‖2

φ
•

)m3 ∈ [1,∞) for each m ∈ N, (22.32)

which is now fully known in advance, and fully known upper bound Mφ ∈ N defined in (22.25).
Considering the data-driven OSE f̂ m̂• = f̂•1

m̂
• with dimension parameter selected by Goldensh-

luger and Lepskij’s method

m̂ := arg min
{
ĉontr

φ

m
+ p̂en

φ
m

: m ∈ JMφK
}

and

ĉontr
φ

m
:= max

{(
|φν

N
( p̂

j

•
− p̂

m

•
)|2 − p̂en

φ
j
− p̂en

φ
m

)
+
: j ∈ Km,MφK

}
, m ∈ JMφK (22.33)

we derive below an upper bound for its local φ-risk, U⊗nf
(
|φν

N
(f̂ m̂• − f•)|2

)
. �

§22.43 Lemma. Under Assumptions §19.02 and §22.29 and f ∈ L∞(λ[0,1]) for penf,φ• , p̂en
φ
• ∈ (R+

\0)
N as in

(22.24) and (22.32), respectively, and for any M ∈ N we have

U
⊗n
f

(
max

{(
penf,φ

j
− p̂en

φ

j

)
+
: j ∈ JMK

})
6 80{σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 6τ2

u n
−2/3}n−1. (22.34)
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§22.44 Proof of Lemma §22.43. is given in the lecture. �

§22.45 Proposition (Upper bound). Under Assumptions §19.02 and §22.29, Y ∈ L14
(Uf ) and f ∈

L∞(λ[0,1]) for p̂en
φ
• ∈ (R+

\0)
N as in (22.32) and for Mφ ∈ N as in (22.25) the OPE f̂ m̂• = f̂•1

m̂
• ∈

`21
m̂
• ⊆ dom(φν

N
) of f• ∈ dom(φν

N
) with fully data-driven dimension m̂ ∈ JMφK as in (22.33)

satisfies for all n ∈ N

U
⊗n
f

(
|φν

N
(f̂

m̂

• − f•)|2
)
6 224(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 12τ2

u )

×min
{
bias2

m
(f•, φ•) + n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−2/3): m ∈ JMφK

}
+ 72

(
40σ2

ξ
+ 40‖f‖2

L∞(λ[0,1])
+ 240τ2

u n
−2/3 + φ

2

1
τ2

u Uf (Y
14)
)
n−1. (22.35)

§22.46 Proof of Proposition §22.45. is given in the lecture. �

§22.47 Comment. We shall stress that the last upper bound (22.35) in Proposition §22.45 (for the fully
data-driven procedure) and the upper bound (22.28) in Proposition §22.35 (for the partially data-
driven procedure) differ only in the numerical constants. Thus, thus the proof of the next result
follows line by line their counterparts above. �

§22.48 Corollary. Under the assumptions of Proposition §22.45 for each n ∈ N such that m� ∈ JMφK
we have

U
⊗n
f

(
|φν

N
(f̂

m̂

• − f•)|2
)
6 2016(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
+ 12τ2

u )R
�
n(f•, φ•)

+ 72
(
40σ2

ξ
+ 40‖f‖2

L∞(λ[0,1])
+ 240τ2

u n
−2/3 + φ

2

1
τ2

u Uf (Y
14)
)
n−1

6 2016
(
(σ2

ξ
+ ‖f‖2

L∞(λ[0,1])
)(1 + φ

−2

1
) + 12τ2

u (1 + φ
−2

1
n−2/3 + Uf (Y

14))
)

R
�
n(f•, φ•). (22.36)

§22.49 Proof of Proof §22.49. is given in the lecture. �

§22.50 Comment. The fullay data-driven bound R�n(f•, φ•) equals up to the numerical constants the
bound in the partially known case. Therefore, the Comment §22.40 and the Illustration §22.41
apply here equally. �

§22|02|02 Maximal local φ-risk

§22.51 Assumption. Consider φ
•
, a• ∈ (R\0)

N with a• ∈ `∞ and (aφ)• := (ajφj )j∈N = a•φ• ∈ `2, and
hence ‖a•1m|⊥• ‖φ = ‖(aφ)•1

m|⊥
• ‖`2 = o(1) as m → ∞. The orthonormal system (uj)j∈N in L2(λ[0,1])

is (os1) complete, i.e an orthonormal basis in L2(λ[0,1]) and as process u2
• = (u2

j )j∈N on ([0, 1],B
[0,1]

)
satisfies (os2) ‖ν

N
(a2
•u

2
•)‖L2(λ[0,1])

6 τ2
a,u and for all m ∈ N, (os3) sup

{
‖u•(x)1m• ‖2

`2
: x ∈ [0, 1]

}
6

τ2
u ‖1m• ‖2

v•
∈ R+. for τa,u, τu ∈ [1,∞). �

§22.52 Remark. Under Assumption §22.51 considering the set F a,r
2

of regression functions in L2(λ[0,1])

defined in (20.04) we have ‖f‖
L∞(λ[0,1])

6 rτa,u for all f ∈ F a,r
2

due to Lemma §20.13. Consequently,
given in addition Assumption §19.02 all assumptions of Proposition §22.45 are satisfied. �

§22.53 Reminder (Maximal local φ-risk). Given Assumptions §19.02 and §22.51 we consider an OPE as
in Definition §20.04. Here the observable noisy version f̂• = f• + n−1/2ε• of the regression coef-
ficients f• = Uf ∈ `2 take the form of a statistical direct problem (see Definition §10.19) where
the stochastic processes ε• ∈ (B

[0,1]
⊗B)⊗n ⊗ 2N is given in Definition §19.08. Under Assump-

tions §19.02 and §22.51 (and hence Assumption §20.26) in Proposition §20.29 an upper bound
for a maximal local φ-risk of an OPE is shown over the set F a,r

2
given in (20.04) (Lemma §20.13)
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More precisely, the performance of the OPE f̂m• = f̂•1
m
• ∈ `21

m
• ⊆ dom(φν

N
) with dimension

m ∈ N is measured by its maximal global φ-risk over the ellipsoid F a,r
2

, that is

Rφ

n
[ f̂

m

• | F
a,r

2
] := sup

{
U
⊗n
f (|φν

N
(f̂

m

• − f•)|2): f ∈ F a,r
2

}
.

As in (12.13) (Proposition §12.42) for all n,m ∈ N setting

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
, m?

n
:= arg min

{
R
m

n (a•, φ•) : m ∈ N
}

and R
?

n(a•, φ•) := R
m?

n

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (22.37)

by Proposition §20.29 under Assumptions §19.02 and §22.51 the maximal local φ-risk of an
OPE f̂m

?
n

• with optimally choosen dimension m?
n

as in (22.37) satisfies

Rφ

n
[ f̂

m?
n

• | F
a,r

2
] 6 C R

?

n(a•, φ•)

with C = σ2
ξ

+ r2τ2
a,u. Moreover, due to Proposition §21.09 R?

n(a•, φ•) provides (up to a constant)
also a lower bound of the maximal global φ-risk over the ellipsoid F a,r

2
for any estimator. Conse-

quently, (up to a constant) R?

n(a•, φ•) is a minimax bound and f̂m
?
n

• is minimax optimal. However,
the optimal dimension m?

n
depends on a• ∈ (R+

\0)
N characterising the ellipsoid F a,r

2
. �

§22.54 Proposition (Upper bound). Under Assumptions §19.02 and §22.51 and Pξ ∈ P{0}×R+

\0
with σ2

ξ
:=

P
ξ(id2

R) ∈ R+

\0 and κ14
ξ

:= P
ξ(id14

R ) ∈ R+

\0 for Mφ ∈ N as in (22.25) and and p̂en
φ

• ∈ (R+

\0)
N as in

(22.32) the OPE f̂ m̂• = f̂•1
m̂
• ∈ `21

m̂
• ⊆ dom(φν

N
) with fully data-driven dimension m̂ ∈ JMφK as

in (22.33) satisfies for all n ∈ N

Rφ

n
[ f̂

m̂

• | F
a,r

2
] 6 224(σ2

ξ
+ r2τ2

a,u + 12τ2
u )

×min
{
‖a•1m|⊥• ‖2

φ
+ n−1‖1m• ‖2

φ
(log Km)(1 ∨ (log Km)mn−2/3): m ∈ JMφK

}
+ 576

(
5σ2

ξ
+ 5r2τ2

a,u + 30τ2
u n
−2/3 + 211φ

2

1
τ2

u (κ14

ξ
+ r14τ14

a,u )
)
n−1. (22.38)

§22.55 Proof of Proposition §22.54. is given in the lecture. �

§22.56 Corollary. Under the assumptions of Proposition §22.54 for n,m ∈ N we set

R
m

n (a•, φ•) := ‖a•1m|⊥• ‖2

φ

+
(
1 +

(
log‖1m• ‖2

φ

)
+

+ logm
)(

1 + (
(

log‖1m• ‖2

φ

)
+

+ logm)mn−2/3
)
n−1‖1m• ‖2

φ
•

,

m� := arg min
{

R
m

n (a•, φ•) : m ∈ N
}

and

R
�
n(a•, φ•) := R

m�

n (a•, φ•) = min
{

R
m

n (a•, φ•) : m ∈ N
}
. (22.39)

For each n ∈ N such that m� ∈ JMφK we have

Rφ

n
[ f̂

m̂

• | F
a,r

2
] 6 2016(σ2

ξ
+ r2τ2

a,u + 12τ2
u )R

�
n(a•, φ•)

+ 576
(
5σ2

ξ
+ 5r2τ2

a,u + 30τ2
u n
−2/3 + 211φ

2

1
τ2

u (κ14

ξ
+ r14τ14

a,u )
)
n−1

6 576
(
(4 + 5φ

−2

1
)(σ2

ξ
+ r2τ2

a,u + 12τ2
u ) + 211τ2

u (κ14

ξ
+ r14τ14

a,u

)
R
�
n(a•, φ•). (22.40)

§22.57 Proof of Corollary §22.56. is given in the lecture. �

§22.58 Comment. The data-driven bound R�n(a•, φ•) compared to the minimax bound R?

n(a•, φ•) features
a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. �
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§22.59 Illustration. We illustrate the last results considering the two specifications (o) and (o) given in
Table 04 [§12] (Illustration §12.47). We restrict ourselves again to the case φ

•
6∈ `2 only.

Table 02 [§22]

Order of the minimax rate R?

n(a•, φ•) and the data-driven rate R�n(a•, φ•) as n →∞

(j ∈ N) (a ∈ R+

\0) (squarred bias) (variance)

φ
j

= jv−1/2 a2j ‖a•1m|⊥• ‖2
φ

‖1m• ‖2
φ

Mφ m� R?

n(a•, φ•) R�n(a•, φ•)

(o) v ∈ (0, a) j−a m−2(a−v) m2v n
2

2v+1 n−
(a−v)
a

a ∈ (3/4,∞)
( n
logn

) 1
2a

( logn
n

)(a−v)
a

a ∈ (0, 3/4]
( n5/6

logn

) 1
a+1/2

( logn
n5/6

)2(a−v)
a+1/2

v = 0 j−a m−2a logm n2

logn

logn
n

a ∈ (3/4,∞)
( n
(logn)2

) 1
2a

(logn)2

n

a ∈ (0, 3/4]
( n5/3

(logn)3

) 1
2a+1

( (logn)3

n5/3

) a
a+1/2

(s) v ∈ R+
\0 e−j

2a m2(v−a)+e−m
2a

m2v n
1
2v (log n)

1
2a

(logn)
v
a

n

(logn)
v
a (log logn)

n

v = 0 e−j
2a e−m

2a

logm en (log n)
1
2a

log logn
n

(log logn)2

n

We note that in Table 02 [§22] the order of the minimax rate R?

n(a•, φ•) and the data-driven rate
R�n(a•, φ•) is depict for v > 0 only. In case v < 0 we have φ

•
∈ `2. Moreover, in case (s) for

a ∈ R+

\0 and (o) for a ∈ (3/4,∞) the rate R�n(a•, φ•) features only an additional logarithmic factor
compared with the minimax rate R?

n(a•, φ•). �
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Appendix A

Probability theory

Elements of the PROBABILITY THEORY are recalled along the lines of the
text book Klenke [2008] where a detailed exposition with many examples
can be found.

§19 Fundamentals

§19.01 Notation. For x, y ∈ R we agree on the following notations bxc := max{k ∈ Z : k 6 x}
(integer part), x ∨ y = max(x, y) (maximum), x ∧ y = min(x, y) (minimum), x+ = max(x, 0)
(positive part), x− = max(−x, 0) (negative part) and |x| = x− + x+ (modulus).

(i) We set R+ := [0,∞), R+

\0 := (0,∞), R\0 := R \ {0}, R := [−∞,∞], R
+

:= [0,∞].

(ii) For a, b ∈ R with a < b we write Ja, bK := [a, b] ∩ Z, Ja, bJ := [a, b) ∩ Z and Ka, bK :=
(a, b] ∩ Z. Moreover, let JnK := J1, nK and JnJ := J1, nJ for n ∈ N.

(iii) For an = (ai)i∈JnK, b
n = (bi)i∈JnK ∈ R

n
we write an < bn, if ai < bi for all i ∈ JnK. For

an < bn, define the open rectangle as the Cartesian product (an, bn) :=
n
i=1(ai, bi) :=

(a1, b1)× (a2, b2)× · · · × (an, bn). Analogously, we define [an, bn], (an, bn] and [an, bn).

(iv) We call B:= BR the Borel-σ-field over the compactified real lineR, where the sets {−∞},
{∞} and R are in R closed and open, respectively, and hence Borel-measurable. In partic-
ular, the trace B := BR = B ∩ R of B over R is the Borel-σ-field over R. Furthermore,
we write B

+

:= B ∩R
+

, B+ := B ∩R+ and B+

\0 := B ∩R+

\0.

(v) Given a measurable space (Ω,A ) a Borel-measurable function g : Ω→ R and f : Ω→ R

is called real and numerical, respectively, and we write g ∈ A and f ∈ A for short.
g respectively f is called positive if g(Ω) ∈ R+ respectively f(Ω) ∈ R

+

, then we write
g ∈ A+ and f ∈ A

+

- We call a Borel-measurable function fk = (fi)i∈JkK : Ω → R
k
, that

is fi ∈ A for each i ∈ JkK, and gk = (gi)i∈JkK : Ω → Rk, numerical and real, respectively
and we write fk ∈ A

k
and gk ∈ A k for short. �

§19.02 Property.
(i) For X, Y ∈ A and a ∈ R holds: aX ∈ A (with convention 0 × ∞ = 0); X ∨ Y :=

max(X, Y ), X ∧ Y := min(X, Y ) ∈ A and particularly X+ := X ∨ 0, X− := (−X)+ ∈
A

+

, |X| ∈ A
+

,
{
X < Y

}
,
{
X 6 Y

}
,
{
X = Y

}
∈ A , and bXc ∈ A

+

.

(ii) For Xn = (Xi)i∈JnK ∈ A n, i.e., Xi ∈ A , i ∈ JnK, and Borel-measurable h : Rn → Rm

holds h(Xn) ∈ A m, and in particular X1 +X2, X1 −X2, X1X2 ∈ A , and X1/X2 ∈ A .

(iii) Let (Xn)n∈N be a sequence in A . Then supn∈NXn ∈ A , infn∈NXn ∈ A , X? =
lim inf
n→∞

Xn ∈ A and X? = lim sup
n→∞

Xn ∈ A . If X := lim
n→∞

Xn exists, then X ∈ A .

(iv) Let S : (Ω,A )→ (S,S ) be measurable, σ(S) := S−1(S ) ⊆ A the sub-σ-field generated
by S and Y : Ω → R. Then the following conditions are equivalent: (a) Y is σ(S)-
measurable, symbolically Y ∈ σ(S); (b) There exists a measurable ϕ : (S,S ) → (R,B),
in short ϕ ∈ S , with Y = ϕ(S). If Y is real, bounded or positive, then ϕ has each of those
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properties too.

(Ω,A ) (S,S )

(R,B)

S

Y = ϕ(S) ∈ σ(S)
ϕ ∈ S

The function ϕ is uniquely determined by Y on S(Ω), and for all s 6∈ S(Ω) it can be
arbitrarily be extended.

(v) For every X ∈ A
+

the sequence of simple random variables (Xn)n∈N in A
+

given by
Xn := (2−nb2nXc) ∧ n satisfies (a) Xn ↑ X; (b) Xn 6 X ∧ n; (c) For each c ∈ R+ holds
limn→∞Xn = X uniformly on

{
X 6 c

}
. �

§19.03 Notation. For a measure µ on (Ω,A ) we denote the integral of f ∈ A with respect to µ by
µf :=

∫
fdµ, if it exists. For s ∈ R+

\0 define ‖f‖
Ls(µ) := (µ|f |s)1/s, and ‖f‖

L∞(µ) := inf{c ∈
R

+ : µ(|f | > c) = 0}. For s ∈ R
+

\0 := (0,∞] a function f ∈ A is called Ls
(µ)-integrable, if

‖f‖
Ls(µ) < ∞. We denote the set of all Ls

(µ)-integrable functions by Ls
(µ) := Ls

(A , µ) := {f ∈
A : ‖f‖

Ls(µ) < ∞}. Note that ‖·‖
Ls(µ) is a seminorm on Ls

(µ) for each s ∈ [1,∞]. Given a
metric space (X, d) equipped with its Borel-σ-field BX we denote by Cb := Cb(X) the set of
all bounded and continuous functions mapping X into R. For any finite measure µ on (X,BX)
we have ‖h‖

L∞(µ) < ∞ for all h ∈ Cb and thus Cb ⊆ L∞(BX, µ) in equal. We denote by λ the
Lebesgue measure on (R,B) and write shortly Ls := Ls

(B) := Ls
(B, λ). �

§19.04 Notation. We understand a vector ak = (ai)i∈JkK as a column vector, i.e., ak = (a1 · · · ak)t ∈ R
k

and hence we identify R
k

and R
(k,1)

. We denote by ‖·‖ and 〈·, ·〉 the Euclidean norm and inner
product on Rk, respectively, i.e, ‖ak‖ = (

∑
i∈JkK |ai|2)1/2 and 〈ak, bk〉 =

∑
i∈JkK aibi = (bk)tak

for all ak, bk ∈ Rk
. For s ∈ R+

\0 we define ‖ak‖s := (
∑

i∈JkK |ai|s)1/s and ‖ak‖∞ := maxi∈JkK |ai|.
Note that fk ∈ A

k
and gk ∈ A k imply ‖fk‖s ∈ A and ‖gk‖s ∈ A for any s ∈ R

+

\0. We call
fk = (fi)i∈JkK L

k

s
(µ)-integrable if ‖fk‖s ∈ Ls

(µ) or equivalently fi ∈ Ls
(µ) for each i ∈ JkK. We

define ‖fk‖
L
k

s
(µ)

:= ‖‖fk‖p‖Ls(µ) and L
k

s
(µ) := L

k

s
(A , µ) := {fk ∈ A

k
: ‖fk‖

L
k

s
(µ)
< ∞} with a

slight abuse of notation. �

§19.05 Notation. Let X be a random variable, i.e. a measurable function, defined on a probability
space (Ω,A ,P) with values in a measurable space (X,X ). The probability measure on (X,X )
induced by X is denoted by PX := P ◦X−1 and we write X ∼ PX for short. For f ∈ X the
expectation of f with respect to PX or equivalently of f(X) with respect to P (if it exists)
is denoted by Ef

X := PXf = Pf(X) =: Ef(X) for short. For example, when applied to
the empirical measure P̂n given by P̂n(xn) := 1

n

∑
i∈JnK δxi for xn = (xi)i∈JnK ∈ Xn this yields

P̂nf ∈X with xn 7→ (P̂nf)(xn) := 1
n

∑
i∈JnK f(xi). In other words, for each xn ∈ Xn, (P̂nf)(xn)

is an abbreviation for the average 1
n

∑
i∈JnK f(xi). We denote by W(X ) the set of all probability

measures on (X,X ) and for Rn equipped with its Borel-σ-field Bn := BRn by Ws(Bn) ⊆
W(Bn) the subset of all probability measures on (Rn,Bn) with finite s ∈ R+ absolute mean,
that is, for all P ∈Ws(Bn) the identity mapping idn : Rn → Rn belongs to L

n

s
(P). Furthermore,

for Y ∼ P we write E(Y ) = P(Y ) := P(idn) =
(
P(Πi

)
)
i∈JnK using for i ∈ JnK the coordinate

map Πi
: Rn → R with xn = (xi)i∈JnK 7→ Πi

(xn) := xi. �
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§19.06 Property. Let X ∈ L
k

2
(P), i.e. ‖X‖2

L
k

2
(P)

= P(‖X‖2) < ∞. For each b ∈ Rn and A ∈ R(n,k)

we have Y := AX + b ∈ L
n

2
(P). If we further denote by µ := PX ∈ Rk and Σ := Cov(X) =

P(X − µ)(X − µ)t = P(XX t)− µµt ∈ R(k,k) expectation vector and covariance matrix of X ,
respectively, then P(Y ) = Aµ+ b ∈ Rn and Cov(Y ) = AΣAt ∈ R(n,n). �

§19.07 Definition. A L
k

2
(P)-random vector X with µ := P(X) and Σ := Cov(X) is multivariate nor-

mally distributed, X ∼ N(µ,Σ) for short, if for each c ∈ Rk the real random variable 〈X, c〉 is
normally distributed with mean 〈µ, c〉 and variance 〈Σc, c〉, i.e., 〈X, c〉 ∼ N(〈µ,c〉,〈Σc,c〉). If Idk de-
notes the k-dimensional identity matrix, then X ∼ N(0,Idk)

is called a standard normal random
vector. �

§19.08 Property. A random vector X = (Xi)i∈JkK is standard normal, i.e., X ∼ N(0,Idk)
if and only if its

components
{
Xi : i ∈ JkK ∈ K

}
are independent and identically N(0,1)-distributed. �

§19.09 Remark. In other words, a multivariate N(0,Idk)
-distribution equals the product of its marginal

N(0,1)-distributions, or N(0,Idk)
= N(0,1)

⊗k :=
⊗

i∈JkK N(0,1) for short. �

§20 Convergence of random variables

Here and subsequently, a metric space is equipped with its Borel-σ-field.

§20.01 Definition. Let X and Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X, d). The sequence (Xn)n∈N converges to X:

(a) almost surely (P-a.s.), if P(limn→∞ d(Xn, X) = 0) = 1. We write Xn
n→∞−−−→ X P-a.s., or

briefly, Xn
P-a.s.−−−→ X .

(b) almost completely (P-a.c.), if
∑

n∈NP(d(Xn, X) > ε) < ∞ for all ε ∈ R+

\0. We write

Xn
n→∞−−−→ X P-a.c., or briefly, Xn

P-a.c.−−−→ X .

(c) in probability, if limn→∞P
(
d(Xn, X) > ε

)
= 0 for all ε ∈ R+

\0. We write Xn
n→∞−−−→ X in

P, or briefly, Xn
P−→ X .

(d) in distribution, if limn→∞P
Xnf = PXf for any f ∈ Cb(X). We write Xn

n→∞−−−→ X in
distribution, or briefly, Xn

d−→ X and with a slight abuse of notation also Xn
d−→ PX .

(e) in Ls
(P) or s-th mean, if limn→∞P(d(Xn, X)s) = 0. We write Xn

n→∞−−−→ X in Ls
(P), or

briefly, Xn
Ls(P)

−−→ X . �

§20.02 Remark. Let X and Xn, n ∈ N, be random vectors in Rk, i.e., (Rk,Bk)-valued random vari-
ables, and ‖·‖s as in Notation §19.04. Convergence of (Xn)n∈N to X in s-th mean, that is,
P‖Xn − X‖ss = ‖Xn − X‖s

L
k

s
(P)

n→∞−−−→ 0, equals the component-wise convergence of (X i
n)n∈N

to X i in Ls
(P), i.e., P|X i

n −X i|s = ‖X i
n −X i‖s

Ls(P)

n→∞−−−→ 0 for each i ∈ JkK. �

§20.03 Property. Let X and Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X, d).

(i) The following statements are equivalent: (a) Xn
P-a.s.−−−→ X; (b) supm>n d(Xm, Xn)

P−→
0; (c) ∀ε, δ ∈ R

+

\0 : ∃N ∈ N : ∀n > N : P
(⋂

j>n

{
d(Xj, X) 6 ε

})
> 1 − δ and

(d) supm>n d(Xm, X)
P−→ 0.
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(ii) (Continuous mapping theorem) Let g : X → R be continuous and let (Xn)n∈N converge
to X P-a.s. (respectively, in probability or in distribution). Then (g(Xn))n∈N converges to
g(X) P-a.s. (respectively, in probability or in distribution).

(iii) Counter examples show, that the converse (in gray) of the following direct implications (in
red) do not hold. �

Xn
L∞(P)

−−−→ X

Xn
Ls(P)

−−→ X Xn
P-a.c.−−−→ X

Xn
Lr(P)

−−→ X Xn
P-a.s.−−−→ X

Xn
P−→ X

Xn
d−→ X

inf{ε ∈ R+

\0 : P(d(Xn, X) > ε) = 0} n→∞−−−−−→ 0

r < s

P
(
d(Xn, X)s

) n→∞−−−−−→ 0
∀ ε ∈ R+

\0 :
∑

n∈N
P
(
d(Xn, X) > ε

)
<∞

P(lim sup
n→∞

d(Xn, X) = 0) = 1

∀ ε ∈ R+

\0 : lim
n→∞

P
(
d(Xn, X) > ε

)
= 0

∀h ∈ Cb : lim
n→∞

PXnh = PXh

§20.04 Definition. A family of
{
Xn,j : j ∈ JknK, n ∈ N ∈ K

}
of real L2-random variables is called a

standardised array, if for every n ∈ N the family
{
Xn,j : j ∈ JknK ∈ K

}
is independent, centred

and normed, i.e., E(Xn,j) = 0, j ∈ JknK and
∑

j∈JknK var
m
(Xn,j) = 1. A standardised array{

Xn,j : j ∈ JknK, n ∈ N ∈ K
}

is said to satisfy
(a) the Lindeberg condition, if limn→∞

∑
j∈JknKE

(
X2
n,j1

{
|Xn,j |>δ

}) = 0 for every δ ∈ R+

\0;

(b) the Lyapunov condition, if there is δ ∈ R+

\0 such that limn→∞
∑

j∈JknKE|Xn,j|2+δ = 0. �

§20.05 Property. Let (Xn)n∈N be a sequence of independent real random variables.
(i) (Law of Large Numbers) Let Xn, n ∈ N, be identically distributed. Then X1 ∈ L1

(P) if and
only if limn→∞

1
n

∑
i∈JnKXi = P(X1) P-a.s. (and then also in L1

(P)).

(ii) (Lévy’s equivalence theorem) For partial sums (Sn :=
∑

i∈JnKXi)n∈N P-a.s. convergence is
equivalent to convergence in probability. Otherwise, they diverge with probability one.
(Kolmogorov’s three-series theorem) (Sn)n∈N converges P-a.s. if and only if there is ε ∈ R+

\0

such that each of the following three conditions holds: (a)
∑

n∈NP(|Xn| > ε) < ∞;
(b)

∑
n∈NE(Xn1

{
|Xn|6ε

}) converges; and (c)
∑

n∈N var
m
(Xn1

{
|Xn|6ε

}) <∞.

Let
{
Xn,j : j ∈ JknK, n ∈ N ∈ K

}
be a standardised array.
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(iii) The Lyapunov condition implies the Lindeberg condition.

(iv) (Central Limit Theorem of Lindeberg (1922)) If the Lindeberg condition hold, then (for the
row sum) S∗n =

∑
j∈JknKXnj

d−→ N(0,1). �

§20.06 Remark (Law of Large Numbers). LetXk
n , n ∈ N, be i.i.d. random vector inRk. Then ‖Xk

1 ‖Lk1(P)
=

P‖Xk
1 ‖1 <∞ if and only if 1

n

∑
i∈JnKX

k
i

P-a.s.−−−→ E(Xk
1 ) (then also in L

k

1
(P)). �

§20.07 Property (Portemanteau). Let X and Xn, n ∈ N, be random variables on a probability space
(Ω,A ,P) with values in a metric space (X, d). The following statements are equivalent:

(i) Xn
d−→ X;

(ii) lim infn→∞P(Xn ∈ U) > P(X ∈ U) for all open U ⊆ X;

(iii) lim supn→∞P(Xn ∈ F ) 6 P(X ∈ F ) for all closed F ⊆ X;

(iv) limn→∞P(Xn ∈ B) = P(X ∈ B) for all measurable B with P(X ∈ ∂B) = 0 where B,
B and ∂B = B\B is the closure, interior and the boundary of B, respectively. �

§20.08 Property (Helly-Bray). Let X and Xn, n ∈ N, be random vectors in Rk with cumulative distri-
bution function (c.d.f.) for each x ∈ Rk given by F(x) := P(X 6 x) and Fn(x) := P(Xn 6 x).
Then the following statements are equivalent: (i) Xn

d−→ X and (ii) limn→∞ Fn(x) = F(x) for all
points of continuity x of F . �

§20.09 Property (Continuous mapping theorem). Let (X1, d1) and (X2, d2) be metric spaces and let ϕ :
X1 → X2 be measurable. Denote by Uϕ the set of points of discontinuity of ϕ. If X and

Xn, n ∈ N, are X1-valued random variables with P(X ∈ Uϕ) = 0 and Xn
d−→ X , then

ϕ(Xn)
d−→ ϕ(X). �

§20.10 Property (Slutzky’s lemma). Let X and Xn, Yn, n ∈ N, be random variables taking values in a
common metric space (X, d) and satisfying Xn

d−→ X and d(Xn, Yn)
P−→ 0. Then Yn

d−→ X . �

§20.11 Example. Let X and Xn, n ∈ N, be a random vector in Rk satisfying Xn
d−→ X .

(a) If Yn, n ∈ N, are random vector inRk and c ∈ Rk such that Yn
d−→ c, thenXn+Yn

d−→ X+c.

(b) If Σn, n ∈ N are random matrices in R(k,k) and Σ is a matrix in R(k,k) such that Σn
d−→ Σ,

then ΣnXn
d−→ ΣX . If in addition Σ is strictly positive definite, and thus invertible, then

Σ−1
n Xn

d−→ Σ−1X and Σ
−1/2
n Xn

d−→ Σ−1/2X . �

§20.12 Property (Cramér-Wold device). Let Xn, n ∈ N, be random vectors in Rk. Then, the following
are equivalent: (a) There is a random vector X with Xn

d−→ X . (b) For any v ∈ Rk, there is a
real Xv with 〈v,Xn〉

d−→ Xv. If (a) and (b) hold, then Xv and 〈v,X〉 are identically distributed
(i.d.), Xv d

= 〈v,X〉 for short, for all v ∈ Rk. �

§20.13 Property (Lindeberg-Feller CLT). For each n ∈ N let
{
Yn,j : j ∈ JknK ∈ K

}
be independent and

centred L
p
2 -random vectors such that (i)

∑
j∈JknKE‖Yn,j‖21{‖Yn,j‖>ε}

n→∞−−−→ 0 for any εR+

\0 and

(ii)
∑

j∈JknKE(Yn,jY
t
n,j)

n→∞−−−→ Σ. Then
∑

j∈JknK Yn,j
d−→ N(0,Σ). �

§20.14 Example. Let X and Xn, n ∈ N, be i.i.d. L
k

2
(P)-random vectors with µ = P(X) and strictly

positive definite Σ = Cov(X).
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(a) (CLT) 1√
n

∑
i∈JnK(Xi − µ)

d−→ N(0,Σ),

(b) (LLN) Xn := 1
n

∑
i∈JnKXi

P−→ µ,

(c) (LLN) 1
n

∑
i∈JnKXiX

t
i

P−→ E(XX t),

(d) Σ̂n := 1
n

∑
i∈JnK(Xi − Xn)(Xi − Xn)t = 1

n

∑
i∈JnKXiX

t
i − XnX

t

n

P−→ E(XX t) − µµt =

Cov(X) = Σ (using (b) and (c) and continuous mapping theorem §20.03)

(e)
√
nΣ
−1/2
n (X − µ)

d−→ N(0,Idk)
(using (a), (d) and Slutzky’s lemma §20.10 as in the Exam-

ple §20.11 (b)) �

§20.15 Remark. A map φ : Rk → Rm, that is defined at least in a neighbourhood of θo, is called
differentiable at θo, if there exists a linear map (matrix) φ̇θo : Rk → Rm such that

lim
θ→θo

‖φ(θ)− φ(θo)− φ̇θo(θ − θo)‖
‖θ − θo‖

= 0.

The linear map x 7→ φ̇θo(x) is called (total) derivative as opposed to partial derivatives. A
sufficient condition for φ to be (totally) differentiable is that all partial derivatives ∂φj(θ)/∂θl
exist for θ in a neighbourhood of θo and are continuous at θo. �

§20.16 Property (Delta method). Let φ : Rk ⊇ Dφ → Rm be a map defined on a subset Dφ of Rk

and differentiable at θo. Let T and Tn, n ∈ N be random variables taking their values in the
domain Dφ of φ. If rn(Tn − θo)

d−→ T for numbers rn →∞, then rn(φ(Tn)− φ(θo))
d−→ φ̇θo(T ).

Moreover, the difference between rn(φ(Tn) − φ(θo)) and φ̇θo(rn(Tn − θo)) converges to zero in
probability. �

§20.17 Remark. Commonly,
√
n(Tn − θo)

d−→ N(µ,Σ). Then applying the delta method it follows that
√
n(φ(Tn)− φ(θo))

d−→ N(φ̇θoµ,φ̇θoΣφ̇tθo ). �

§20.18 Property (Markov’s inequality). If X is a L
k

s
(P)-random vector for some s > 1, then P(‖X‖s >

c) 6 c−sP(‖X‖s
s
) = c−s‖X‖s

L
k

s
(P)

. �

§20.19 Property (Monotone convergence). Let (Xn)n∈N be a sequence of monotonically increasing real
L1

(P)-random variables converging P-a.s. to a numerical random variable X , for short Xn ↑ X
P-a.s.. Then PX = limn→∞PXn. �

§20.20 Property (Dominated convergence). Let (Xn)n∈N be a sequence of real L1
(P)-random variables

converging P-a.s. to a numerical random variable X , i.e., Xn
P-a.s.−−−→ X . If there is a real

L1
(P) random variable Y with supn∈N |Xn| 6 Y P-a.s. (and thus supn∈N |Xn| ∈ L1

(P)), then

X ∈ L1
(P) and Xn

L1
(P)

−−→ X . �

§20.21 Definition. A sequence of random variables (Xn)n∈N with values in a metric space (X, d) is
called (uniformly) tight (straff) or bounded in probability, if, for any ε ∈ R+

\0, there exists a
compact set Kε ⊆ X such that P(Xn ∈ Kε) > 1− ε for all n ∈ N. �

§20.22 Remark. If (X, d) is Polish, i.e., separable and complete, then every X-valued random variable
is bounded in probability and thus so is every finite family. �

§20.23 Example. A sequence (Xn)n∈N of random vectors in Rk is bounded in probability, if for any
ε > 0, there exists a constant Kε such that P(‖Xn‖ > Kε) 6 ε for all n ∈ N. �
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§20.24 Property (Prohorov’s theorem). Let X and Xn, n ∈ N, be random variables with values in a
Polish space.

(i) If Xn
d−→ X , then (Xn)n∈N is bounded in probability.

(ii) If (Xn)n∈N is bounded in probability, then there exists a sub-sequence (Xnk)k∈N which
converges in distribution. �

§20.25 Landau notation. Let Xn, n ∈ N, be random variables on a probability space (Ω,A ,P) with
values in a metric space (X, d) and let xn, n ∈ N, belong to X.
(i) We write (a) xn = o(1), if d(xn, 0)

n→∞−−−→ 0, and (b) xn = O(1), if supn∈N d(xn, 0) < ∞,

and analogously (a) Xn = o
P
(1), if Xn

P−→ 0, and (b) Xn = O
P
(1), if (Xn)n∈N is bounded

in probability

(ii) Let an, n ∈ N, be strictly positive numbers. We write (a) xn = o(an), if d(xn, 0)/an = o(1),
and that (b) xn = O(an), if d(xn, 0)/an = O(1), and analogously (a) Xn = o

P
(an), if

d(Xn, 0)/an = o
P
(1), and (b) Xn = O

P
(an), if d(Xn, 0)/an = O

P
(1).

(iii) Let An, n ∈ N, be strictly positive random variables on (Ω,A ,P). We write (a) Xn =
o
P
(An), if d(Xn, 0)/An = o

P
(1), and (b) Xn = O

P
(An), if d(Xn, 0)/An = O

P
(1). �

§20.26 Property (Exercise). For real random variables the following properties hold:
(i) o

P
(1) + o

P
(1) = o

P
(1) meaning if Xn = o

P
(1) and Yn = o

P
(1) then Xn + Yn = o

P
(1);

(ii) O
P
(1) + o

P
(1) = O

P
(1);

(iii) O
P
(1) · o

P
(1) = o

P
(1);

(iv) (1 + o
P
(1))−1 = O

P
(1);

(v) o
P
(O

P
(1)) = o

P
(1) meaning if Xn = O

P
(1) and Yn = o

P
(Xn) then Yn = o

P
(1). �

§21 Conditional expectation

In the reminder of this section let (Ω,A ,P) be a probability space, E be the expectation with
respect to P and F ⊆ A be a sub-σ-field of A .

§21.01 Notation. We write shortly X ∈ A
+

, if X is a positive numerical random variable on (Ω,A ),
i.e., X : Ω → R

+

is a A -B
+

-measurable function. In particular, we have F
+

⊆ A
+

and for
Y ∈ F

+

its expectation E(Y ) is well-defined. �

§21.02 Property. For every X ∈ A
+

exists Y ∈ F
+

with E(1FY ) = E(1FX) for all F ∈ F , where Y
is unique up to P-a.s. equality. �

§21.03 Definition. A map Y : Ω→ R
+

is called a (version of the) conditional expectation of X ∈ A
+

given F , symbolically E
(
X
∣∣F) := Y , if

(CE1) Y is F -B
+

-measurable, hence Y ∈ F
+

and

(CE2) E(1FY ) = E(1FX) for any F ∈ F .

Any map E
(
•
∣∣F) : A

+

→ F
+

with X 7→ E
(
X
∣∣F) is called (version of the) conditional

expectation with respect to P given F . It implies a map P
(
•
∣∣F) : A → F

+

with A 7→
P
(
A
∣∣F) := E

(
1A
∣∣F) called (version of the) conditional distribution ofP given F . Exploiting

(CE2) every version satisfies E(1FP
(
A
∣∣F)) =

∫
F
P
(
A
∣∣F)dP = P(F ∩A) for all F ∈ F and

A ∈ A . �
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§21.04 Reminder. Let X ∈ A be a numerical random variable. Considering the decomposition
X = X+ − X− with X+, X− ∈ A

+

we define for X with P(|X|) < ∞, hence E(X+) < ∞
and E(X−) <∞, the expectation E(X) := E(X+)− E(X−). Keep in mind that L1(A ,P) :=
{X ∈ A : E(|X|) <∞} and E : L1(A ,P)→ R denotes the uniquely determined expectation
with respect to P. Note that F ⊆ A implies L1(F ,P) ⊆ L1(A ,P). Let X ∈ L1(A ,P), and
hence E(X+) < ∞ and for any version E

(
X+
∣∣F) holds (CE1), E

(
X+
∣∣F) ∈ F

+

and (CE2),
E(1FE

(
X+
∣∣F)) = E(1FX

+) for all F ∈ F , in particular with F = Ω also E(E
(
X+
∣∣F)) =

E(X+) < ∞. Therewith, E
(
X+
∣∣F) ∈ L1(F ,P) and analogously also for any version

E
(
X−
∣∣F) ∈ L1(F ,P). Consequently, E

(
X+
∣∣F) − E(X−∣∣F) ∈ L1(F ,P) satisfies (CE2)

too. �

§21.05 Definition. For X ∈ L1(A ,P) and each version E
(
X+
∣∣F),E(X−∣∣F) ∈ L1(F ,P) we call

E
(
X
∣∣F) := E

(
X+
∣∣F) − E(X−∣∣F) ∈ L1(F ,P) a (version of the) conditional expectation

of X given F . Any map

E
(
•
∣∣F) : L1(A ,P)→ L1(F ,P) with X 7→ E

(
X
∣∣F) := E

(
X+
∣∣F)− E(X−∣∣F)

is called a (version of the) conditional expectation with respect to P given F . �

§21.06 Remark. Due to Property §21.02 versions of the conditional expectation of X ∈ A
+

or X ∈
L1(A ,P) given F differ only on null sets. This property does in generally not extend to the
version of the conditional expectation with respect to P given F , since for each X we obtain a
null set, and their union in general is not a null set. �

§21.07 Definition. Let (Ω1,A1), (Ω2,A2) be measurable spaces. A map κ : Ω1 × A2 → R
+ is called

Markov kernel (from (Ω1,A1) to (Ω2,A2)), if
(MK1) A2 7→ κ(ω1, A2) is for all ω1 ∈ Ω1 a probability measure on (Ω2,A2), symbolically

κ(ω1, •) ∈W(A2);

(MK2) ω1 7→ κ(ω1, A2) is A1-B-measurable for allA2 ∈ A2, symbolically κ(•, A2) ∈ A+
1. �

§21.08 Notation. Consider a probability space (Ω1,A1,P), a measurable space (Ω2,A2) and a Markov
kernel κ (from (Ω1,A1) to (Ω2,A2)). Then there exists an unique probability measure κ�P on
(Ω2 × Ω1,A2 ⊗A1) determined by

κ� P(A2 × A1) =

∫
A1

κ(ω1, A2)P(dω1), for all A1 ∈ A1, A2 ∈ A2.

If f ∈ A2 ⊗A1

+

or f ∈ L1(κ� P) then

κ� Pf =

∫
Ω2×Ω1

f(ω2, ω1)κ� P(dω2, dω1) =

∫
Ω1

∫
Ω2

f(ω2, ω1)κ(ω1, dω2)P(dω1).

Furthermore, we denote by κP the marginal distribution on (Ω2,A2) induced by κ � P, i.e.
κP(A2) = κ� P(A2 × Ω1) =

∫
Ω1
κ(ω1, A2)P(dω1) for all A2 ∈ A2. �

§21.09 Definition.
(a) P

(
•
∣∣F) is called regular (version of the) conditional distribution ofP given F , if (ω,A) 7→

P
(
A
∣∣F)(ω) satisfies the conditions (MK1) and (MK2), i.e. P

(
•
∣∣F) is a Markov kernel

(from (Ω,F ) to (Ω,A )).

(b) E
(
•
∣∣F) is called regular (version of the) conditional expectation with respect to P given

F , if the implied conditional distribution P
(
•
∣∣F) of P given F is regular, and for each

ω ∈ Ω is X 7→ E
(
X
∣∣F)(ω) the expectation with respect to P

(
•
∣∣F)(ω). �
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§21.10 Property.

(i) Each regular conditional distribution of P given F is implied by a regular conditional
expectation with respect to P given F .

(ii) For any probability measure P on a polish space (Ω, d) endowed with its Borel-σ-algebra
BΩ and sub-σ-field F ⊆ BΩ exists a regular conditional distribution of P given F . �

§21.11 Notation.

(i) Let X be a random variable on (Ω,A ,P) with values in a measurable space (X,X ). For
h ∈ L1(X ,PX) denotes EX

(
h
∣∣F) := E

(
h(X)

∣∣F) ∈ L1(F ,P) a conditional expectation
of h(X) given F andEX

(
•
∣∣F) : L1(X ,PX)→ L1(F ,P) with h 7→ EX

(
h
∣∣F) a (regular)

(version of the) conditional expectation with respect to PX given F .

(ii) Let S be a random variable on (Ω,A ,P) with values in a measurable space (S,S ). For
h ∈ L1(A ,P) we call E

(
h
∣∣σ(S)

)
∈ L1(σ(S),P) be a conditional expectation of h given

F = σ(S). Keeping E
(
h
∣∣σ(S)

)
∈ σ(S) in mind and applying Property §19.02 (iv) there

is ϕ ∈ S with E
(
h
∣∣σ(S)

)
= ϕ(S), that is, E

(
h
∣∣σ(S)

)
(ω) = ϕ(S(ω)), ω ∈ Ω. Then

E
(
h
∣∣S) := ϕ ∈ L1(S ,PS) andE

(
h
∣∣S = s

)
:= ϕ(s) ∈ R is called a (version of the) condi-

tional expectation of h given S respectively S = s, and E
(
•
∣∣S) : L1(A ,P)→ L1(S ,PS)

with X 7→ E
(
X
∣∣S) a (regular) (version of the) conditional expectation with respect to P

given S.

(iii) Let (X,S) : (Ω,A ) → (X × S,X ⊗ S ) with joint distribution P(X,S). We denote by
ΠX

: X × S → X and ΠS
: X × S → S with (x, s) 7→ ΠX

(x, s) := x and (x, s) 7→
ΠS

(x, s) := s, respectively, the corresponding coordinate maps. The marginal distribution
ofX respectively S is given byPX = P◦X−1 = P◦Π−1

X
(X,S) = P(X,S)◦Π−1

X
respectively

PS = P(X,S) ◦ Π−1
S

. For each version P(X,S)
(
•
∣∣σ(ΠS

)
)

of the conditional distribution with
respect to P(X,S) given σ(ΠS), the map

PX
(
•
∣∣S) : X → S with B 7→ PX

(
B
∣∣S) := ϕ determined by

PX
(
B
∣∣σ(ΠS

)
)

= P(X,S)
(
Π
−1
X

(B)
∣∣σ(ΠS

)
)

= ϕ(ΠS
)

and analogouslyPX
(
•
∣∣S = s

)
is called (version of the) conditional distribution ofX given

S respectively S = s. We call a version regular, if (s, B) 7→ PX
(
B
∣∣S = s

)
is a Markov ker-

nel (from (S,S ) to (X,X )), where due to Definition §21.03 (CE2)PX
(
•
∣∣S)�PS = P(X,S)

(see Notation §21.08). Analogously, for h ∈ L1(X ,PX) we define a (regular) version
EX

(
h
∣∣S) ∈ L1(S ,PS) and EX

(
h
∣∣S = s

)
∈ R of the conditional expectation of h given S

respectively S = s. If PX
(
•
∣∣S) is a regular conditional distribution of X given S and for

s ∈ S the probability measure PX
(
•
∣∣S = s

)
has for example a finite first absolute moment,

i.e., PX
(
•
∣∣S = s

)
∈ W1(Bn) (see Notation §19.05) then E

(
X
∣∣S = s

)
= EX

(
idX

∣∣S =
s
)

=
∫
X
xPX

(
dx
∣∣S = s

)
.

(iv) Suppose the joint distribution P(X,S) is dominated by a product measure µ⊗ ν where µ and
ν is a σ-finite measure on X and S , respecitively, µ ∈Mσ(X ) and ν ∈Mσ(S ) for short.
Let f(X,S) denote a (µ⊗ν)-density of P(X,S). A µ- and ν -density of the marginal distribution
PX and PS is given by f

X
: x 7→

∫
S
f

(X,S)
(x, s)ν(ds) and f

S
: s 7→

∫
X
f

(X,S)
(x, s)µ(dx),

respectively. The f
X|S

: S× X→ R
+

with

(s, x) 7→ f
X|S=s

(x) =
f

(X,S)
(x, s)

f
S
(s)

1{
f
S
(s)>0

} + f
X

(x)1{
f
S
(s)=0

}
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belongs to S ⊗X
+

and it is a µ-density of the Markov kernelPX|S from (S,S ) to (X,X )
defined by (s, B) 7→ PX|S=s(B) :=

∫
B
f
X|S=s

(x)µ(dx). We call fX|S=s conditional density
of X given S = s.

(v) As an example let (X,S) ∈ Bk+l be multivariate normally distributed with Cov(X,S) =
ΣXS and marginal distributions X ∼ N(µX ,ΣX) and S ∼ N(µS ,ΣS), i.e.,(

X
S

)
∼ N(µ,Σ) with µ =

(
µX
µS

)
∈ Rk+l and Σ =

(
ΣX ΣXS

Σt
XS ΣS

)
.

Assuming Σ > 0 the joint distribution P(X,S) admits a density with respect to the Lebesgue
measure λk+l on (Rk+l,Bk+l). For each s ∈ Rl the conditional density f

X|S=s as in (iv) is a
density of the multivariate normal distribution N(µX|S=s,ΣX|S=s)

-distribution with

µX|S=s := µX + ΣXSΣ−1
S (s− µS) ∈ Rk und ΣX|S=s := ΣX − ΣXSΣ−1

S ΣSX > 0

which is thus a regular conditional distribution of X given S = s. �

§21.12 Property. Let X, Y ∈ L1(A ,P) and F ⊆ A be a sub-σ-field. Any version of the conditional
expectation satisfies the following properties P-a.s.:
(i) For all a, b ∈ R holds E

(
aX + bY

∣∣F) = aE
(
X
∣∣F)+ bE

(
Y
∣∣F); (linear)

(ii) For X 6 Y holds E
(
X
∣∣F) 6 E(Y ∣∣F); (monotone)

(iii) |E
(
X
∣∣F)| 6 E(|X|∣∣F); (triangular inequality)

(iv) For S ∈ A with E
(
|S|
∣∣F) <∞ holds P(|S| <∞) = 1. (finite)

(v) For φ : R→ R convex with φ(X) ∈ L1(A ,P) (Jensen’s inequality)
holds φ

(
E
(
X
∣∣F)) 6 E((φ(X)

)∣∣F).
(vi) For Xn ↑ X P-a.s. holds supn∈NE

(
Xn

∣∣F) = E
(
X
∣∣F). (monotone convergence)

(vii) For Xn → X P-a.s. with |Xn| 6 Y , n ∈ N, (dominated convergence)
holds limn→∞E

(
Xn

∣∣F) = E
(
X
∣∣F) P-a.s. and in L1(A ,P).

If the version is regular, i.e., E
(
•
∣∣F)(ω) is an expectation for all ω ∈ Ω, then the statements

(i)-(vii) holds for all ω ∈ Ω. �

§21.13 Property. Let X, Y ∈ L1(A ,P) and G ⊆ F ⊆ A sub-σ-fields. Any version of the conditional
expectation satisfies the following properties P-a.s.:
(i) For E(|XY |) <∞ and Y ∈ F holds

E
(
XY

∣∣F) = Y E
(
X
∣∣F) and E

(
Y
∣∣F) = E

(
Y
∣∣σ(Y )

)
= Y ;

(ii) E
(
E
(
X
∣∣F)∣∣G ) = E

(
E
(
X
∣∣G )∣∣F) = E

(
X
∣∣G ); (tower property)

(iii) If σ(X) and F are independent, then E
(
X
∣∣F) = E(X); (independence)

(iv) E(E
(
X
∣∣F)) = E(X). (total probability)

(v) For T :=
{
A ∈ A |P(A) ∈ {0, 1}

}
holds E

(
X
∣∣T ) = E(X). �

§21.14 Property. Let F ⊆ A be a sub-σ-field and E
(
•
∣∣F) be a conditional expectation.

(i) E
(
•
∣∣F) : L2(A ,P) → L2(F ,P) is an orthogonal projection, that is, for all X ∈

L2(A ,P) and Y ∈ L2(F ,P) holds

‖X − Y ‖2

L2
(P)

= E(|X − Y |2) > E(|X − E
(
X
∣∣F)|2) = ‖X − E

(
X
∣∣F)‖2

L2
(P)
,

where equality holds if and only if Y = E
(
X
∣∣F) P-a.s..
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(ii) E
(
•
∣∣F) : Ls(A ,P) → Ls(F ,P) is a contraction for s ∈ [1,∞], i.e., ‖E

(
X
∣∣F)‖

Ls(P) 6
‖X‖

Ls(P), and thus bounded and continuous. If (Xn)n∈N converges in Ls(A ,P), then
(E
(
Xn

∣∣F))n∈N converges in Ls(F ,P). �
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