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Chapter 1

Asymptotic properties of M- and Z-estimators

Asymptotic properties of M- and Z-estimators are presented generalising
the minimum contrast approach introduced in the lecture Statistik 1. For
a more detailed exposition we refer to the text book van der Vaart [ 1998].
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§01 Introduction

§01|01 Motivation / illustration

§01.01 Example (Linear model). The dependence of the variation of a real random variable Y; (response)
on the variation of a random vector X; = (X 1j)z‘e[[k]] in R' (explanatory variable) is often de-
scribed by a linear relationship E (Y; | X;) = > jeqr ViX1; = X{vorequivalently Y, = Xjy+e
where ¢, is a real random error satisfying It (61 |X 1) = 0. We aim to infer on the unknown pa-
rameter of interest v € R from n € IN i.i.d. copies (Y;, X;), i € [n]. Writing Y := (Yi)icm
and X' = (X;--- X,,) we have ]E(Y|X) = Xv. Any (measurable) choice

7 € arginf M,(7)  with M, () := 2 Y~ (¥ = X[9)? = L[|y — X2 (01.01)

k
veR i€[n]

is called a Least Squares Estimator (LSE), where arg inf denotes the subset of vectors in R at-

taining the function’s smallest value. If X'X =} ie[n] XX ! is strictly positive definite (hence,

invertible) then 7 = (X'X) ' X'Y = (X, Xin)_l > icpny YiXi is the unique LSE. Un-
der “usual” conditions (Example §20.14) holds %Ziem X X! z E(X:X}) = Q (LLN). If
in addition E(e?|X;) = o2, then \/%; D ieln) €iXi 4 Nyo2) (CLT). Applying Slutzky’s lemma
§20.10 and the continuous mapping theorem §20.09 holds \/n(y — ) N Ng,2q 1 for € > 0.

Further inference on 7 (hypothesis testing, confidence intervals, etc.) is typically based on this
asymptotic result. However, a linear relationship [£ (Y|X ) = X is often too restrictive. O

§01.02 Example (Generalised linear model). Consider a real random variable Y; and a random vector
X; in R" obeying E(Yi|X1) = g(Xiv) for a known link function g : R — R. We aim to
infer on the unknown parameter of interest v € R’ from n € IN i.i.d. copies (Y;, X;), i € [n].

Statistics 2 1
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Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

As an illustration let us consider the effect of three different drugs on the behaviour of certain
animals. In a trial each drug is given in different dose to certain animals and the number of
effected animals is counted. The Table 1.1 summarises the results. Let Y, denote the counts of
an effect among n;;, animals applying a log-dose X, j € [Ji] of the drug k& € [K]. Assuming
an “independent and identical” behaviour of the nj;, animals it seems reasonable to model Y
as Binomial-distributed random variable, Y;;, ~ Bin(nj i) for short, with unknown percentage
mjr € (0,1). It may be reasonable to assume that n,mj, = E(ifjk|X]k) = g(v + Y0Xjk)
where () ke[ is a drug specific factor and v, is a common effect of the log-dose for all drugs.
The model is called “probit” and “logit”, respectively, if g is the standard-normal distribution

function and the logit-distribution function (x 1fel). As in Example §01.01 inference on

v = (Vk)ke[o,x] is often based on a LSE, i.e., any (measurable) choice 7 € arg mfye]}{"’“ I\A/In(v)
with M, (7) = % Yhepry 7 e (Vir — 900 +20X58))°

Table 01 [§01]

drug log-dose | effect no effect K drug log-dose & effect no effect
1 1.01 44 6 2 1 18 30
1 0.89 42 7 2 0.71 16 33
1 0.71 24 22 3 1.4 48 2
1 0.58 16 32 3 1.31 43 3
1 0.41 6 44 3 1.18 38 10
2 1.7 48 0 3 1 27 19
2 1.61 47 3 3 0.71 22 24
2 1.48 47 2 3 0.4 7 40
2 1.31 34 14

Number of animals exhibit an (no) effect in dependence of the drug’s log-dose.

Figure 01 [§01]

1,0 + °
L o

r - o
€
|
y 081 -
"
u
f (o]
i
K
e 0,6 + -
i
t x
e -
i
n
o 041
s o

o
E
‘
‘
e
P 024
. T
s + + + +

0,6 0,9 1,2 1,5
Logdosis
Relative frequency of the effects in dependence of the log-dose, drug 1: x; 2: o; 3: -. O

§01.03 Example (Nonlinear regression). Consider a real random variable Y; and a random vector X in
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§01 Introduction Chapter 1 Asymptotic properties of M- and Z-estimators

R’ obeying ]E(Yl‘Xl) = g(X, ) for a given link function ¢ : R* x R” — R. We aim to infer
on the unknown parameter v € R’ from n € N i.i.d. copies (V;, X;), i € [n]. The next figure
shows the widely used Gompertz function g(z, (a, b, c)) = aexp(—bexp(xlog(c))).

Figure 02 [§01]

B ] so-- b=2
a=3 | b=3 | c=3

- a=a - S bea

- -2 o 2 a - -2 o 2 a - -2 o 2 a

As an illustration consider the following data of a reaction rate of a catalytic isomerisation of
n-pentane into an isopentane given the partial pressure of hydrogen, n-pentane, and isopentane
(see Carr [1960]). Isomerisation is a chemical process where a complex chemical product is
transformed into basic elements. The reaction rate depends on several factors as for example,
the partial pressure and the concentration of a catalyser (hydrogen).

Figure 03 [§01]
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Reaction rate in dependence of the partial hydrogen, n-pentane and isopentane pressure.
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Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

Table 02 [§01]
Reaction Partial pressure Reaction Partial pressure
rate hydrogen n-pentane isopentane rate hydrogen n-pentane isopentane

3,541 205,8 90,9 37,1 5,686 2973 142,2 10,5
2,397 404,8 92,9 36,3 1,193 314 146,7 157,1
6,694 209,7 174,9 49,4 2,648 305,7 142 86
4,722 401,6 187,2 44.9 3,303 300,1 143,7 90,2
0,593 2249 92,7 116,3 3,054 305.,4 141,1 87,4
0,268 402,6 102,2 128.9 3,302 305,2 141,5 87
2,797 212,7 186,9 134,4 1,271 300,1 83 66,4
2,451 406,2 192,6 134,9 11,648 106,6 209,6 33
3,196 133,3 140,8 87,6 2,002 4172 83,9 32,9
2,021 470,9 144,2 86,9 9,604 251 2944 41,5
0,896 300 68,3 81,7 7,754 250,3 148 14,7
5,084 301,6 214,6 101,7 11,59 145,1 291 50,2

Isomerisation reaction rate of an n-pentane into an isopentane.

A commonly used modelling for a reaction rate Y is the Hougen-Watson model where a special
case is given by
Y173(Xi2 — Xi3/1.632)

E }/; X17X17X1 = 5 ) 5 0102
(] (X, Xy X)) L+ %X + 73X + 74 Xis i€lnl ( )

where X;;, X;2 and X3 is the partial pressure of hydrogen, isopentane and n-pentane, re-
spectively, and (7;);c4 is the unknown parameter of interest. As in Example §01.01 infer-

ence on 7 is often based on a LSE, i.e., any (measurable) choice 7 € arg inf_ g M, () with
M, () = %ZZ‘EM(Y; —9(Xi,7))% -

§01.04 Example (Quantile regression). Consider a real random variable Y; and a random vector X in
R’ obeying Y1 = X!~ + &; with quantile condition P (51 < 0|X 1) = « for a given probability
a € (0,1) or equivalently P (Y; < X17|X1 = « meaning that the conditional-c-quantile of
Y; given X; equals X!v. Let q, denote the a-quantile of PZ € W(%), i.e., P(Z < q.) = «.
Define 7,(2) := (1 —a)z~ +az" where 7,(2) = (1 — a)|z| if z < 0 and 7,(2) = az otherwise.
Under regularity conditions the function ¢ — E(7,(Z — ¢)) attains its minimum at the value
g = ¢.- Roughly, the a-quantile satisfies 0 = (%]E(TQ(Z —q)) ‘q:qa’ since

O Bz~ a)) = (1 >6/q< )F(2)d + /
- To — = — ) —Z z Oé— z —
Bq q ) q q)f
(1 -« / f(z)dz — a/ f(z
(1—-a)P q) —aP(Z > q) =P(Z < q) — a.
'{“\hereby, a reasonable estimator of ~ is any (measurable) choice 7 € arg inf7 R M, (y) with
Mn(7> = % Zze[[n]] Ta(Y; - thfy) U

$01.05 Example (Generalised Method of Moments). Given a random vector Z; in R and a function h’ =
(hy)jer : R' x R” — R’ let the unknown parameter of interest v € R satisfy PZth;(y) =
E(h;(v,Z1)) = 0forall j € [J], or P'h’(v) = E(h/(v, Z;)) = 0 for short. Supposing an
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§01 Introduction Chapter 1 Asymptotic properties of M- and Z-estimators

i.i.d. sample (Z;);c[n) any (measurable) choice 7 satisfying ]AP,th (7) = %Zie[[n]] h;(7,Z;) =0
for all j € [J], or H,(3) = 0 with H,(y) := Ph/(y) = S e (v Zi), v € R’, for
Sl;l\OI‘t, is called moment estimator. In case a moment estimator does not exist, setting M, (y) =
(Rh7(7))'W,(Rh7(v)) for a given weighting matrix W, one might consider any (measurable)

choice 7 € arg infy R* M,, () called a Generalised Method of Moments (GMM) estimator. 0O

§01|02 Notation / definition

§01.06 Reminder. Denote by W(.2") the set of all probability measures on a measurable space (X, Z").
For a non-empty index set © a family I := (I2)sce of probability measures on 2" is formally
defined by the map © — W(.Z") with § — . Here and subsequently, for each § € © denotes
I, the expectation with respect to 2. For a random variable X taking its values in (X, 2") we
write shortly X @ R, if X ~ I for some § € ©. If the random variables (X;);c[,) form an
independent and identically distributed (i.i.d.) sample of X ~ P with values in (X, Z"), then
P = @;en)P denotes the joint product probability measure of the family (X;);c, taking its

values in the measurable product space (X", 2°"). We write (X;);c[,] P or (Xs)iepn) ~ P*"
for short. We denote by 2" := (B")yce a family of product probability measures on .2""".

Any random variable S on (X, Z") taking values in a measurable space (8,.7), i.e., Z -.%-
measurable function S : X — 8, is called observation or statistic. We denote by I2”:= (B")gco
the family of probability measures on (8, .%) induced by S. A map v : © — I" and its value ()
for each 6 € O is called parameter and parameter value of interest, respectively. A parameter
of interest v : © — T is called identifiable, if for any 0,6, € O from y(0;) # ~(02) follows
B #B. 0

§01.07 Definition. The triple (X, 2", ) is called a statistical experiment or statistical model. The
non-empty set © and X is called parameter and sample space, respectively. A statistical model
(X, 2, B) is called adequate for arandom variable X, if X @ I,. Given a family 2*" of product
probability measures (X", 2", ") is called a statistical product experiment. We denote by
(8,.7,R’) the statistical model induced by a (8,.7)-valued statistic S on (X, 2"). A statistic ¥
on (X, Z") with values in the measurable space (I', ¢) is called estimator or estimation function
for the identifiable parameter of interest y. A statistical model (X, 2", R) (and the family I2)
is called dominated, if a o-finite measure p on 2 exists, i € M, (Z") for short, such that for
each 6 € O the probability measure I} is absolutely continuous with respect to p, i.e., B < pu.
We write shortly B, < p2. Any version of the Radon-Nikodym densities

dR

L(0,x) := d_;j<x) reX, €0
considered as function of ¢ parametrised by « is called likelihood or likelihood function where
typically it is understand as a random function L : © — 2 with 6 — L(6) := L(6, ). Its
logarithm ¢ := log L. (with convention log(0) := —o0) is called log-likelihood or log-likelihood
function. The likelihood and log-likelihood in the corresponding dominated product experiment
(:X:n7 %-t@n, IP@@”) are HZG[[”H L<07 IL) and ZZE[[TZ]] 6(8, xi)’ 0 € @, T e :X:h’ respectively, -
§01.08 Reminder. Let (X, 2", R) be dominated by i € M, (Z"). If 14 is finite, then u < P, := ﬁu €

W(Z") and hence R, is also dominated by P. If 4 is not finite, then there exists a countable

and measurable partition {X,,,m € IN} of X with ;(X,) € R for all m € N. For each

m € N define B (¢ |X,) € W(2) with A — B(A|X,) := % Then we have p < P :=

>Sew 2R (o |X,) € W(Z'), since B(A) = 0 implies (AN X, ) = 0 forall m € IN and thus

Statistics 2 5



Chapter 1 Asymptotic properties of M- and Z-estimators §01 Introduction

p(A) = 0. Therewith, we have shown, that for each u € M, (Z") there is B € W(Z") with
i < I which automatically dominates I too. On the other hand, there is a probability measure
P =3, ncE withe; e R, 0; € ©foralli € Nand ), v¢; = 1, and thus B < p, such
that B < P for all # € © (e.g. Statistik 1, Satz §08.04). We call any such probability measure
B privileged dominating measure. Therefore, we eventually assume with out loss of generality
that the dominating measure is indeed a probability measure. O

§01.09 Example (MLE). Let (X, 2 ,R) be a statistical model dominated by u € M, (Z") with likeli-
hood L(#) = dB /du and log-likelihood ¢(0) = log L(6) for # € © and let (©,.7) be a mea-
surable space. Any statistic 6 on (X, Z") with values in (0, .7) is called Maximum-Likelihood-
Estimator (MLE) for 6, if L(6) = SUpgeo Li(#) pi-a.s. meaning L(6(z),z) = SUpgeo Li(0, )
for p-a.e. z € X, or equivalently E(a) = SUPgeg ¢(0) p-a.s.. Considering a statistical product
experlment (X", 27" ") dominated by ;" € M, (% ") and setting M, (6) := —P/(6), i.c

M, (6, 2m) = —+ > icpny U0, x,) for an € X", the MLE 4 is determined by 6 € arg infycq M, (6)
p-a.s.. However, in general it is not guaranteed that MLE is unique or even exits. The MLE
depends on the version of the likelihood, but there exists often a canonical choice. Furthermore,
~v(0) is called MLE for a parameter of interest v : © — I, if v(0) is a statistic on (X", 2"
with values in (I, 4). O

§01.10 Remark. In all the examples the estimator 5 of the parameter of interest 7 is determined by
~ € arg 1nf7€PM (v) for some random function v — M,(y) € Z of the data. Obviously,
rather than minimising (or maximising) a criterion function we might search for a zero of the
associated normal or estimating equations, that is, 7 is determined as a zero of a random vector
function v — ﬁn (v) € 2", Note that estimator is defined R-a.s. only, meaning that one can
change the estimator on a 2-zero set N, i.e., R(N) = 0 for all § € ©. O

§01.11 Definition. Let (X,, Z,,R" = (B")seco for all n € IN be a statistical model over the same
parameter space © and let y : G) — I be a parameter of interest. We call a function M : © xI' —
Rand H: © x I' = R’ criterion function, if for all § € © the function M(6) : v — M(6,~),
respectively H(6) : v — H(0,~), has in () an unique minimum, respectively an unique zero. A
sequence (M, )nen and (H, )new of functions M, : T'x X, — Rand H,, : T x X, — R’ is called
random criterion function or criterion process, if the following two conditions are satisfied:
(CP1) Forall v € I'is M, (7) : @ — M, (v, z), respectively H, (v) : z — H,(y, ), a statistic,

that is, M, () € Z,, respectively H,(v) € Z

(CP2) Forally € I"and § € © it holds M,,(v) z, M(6,~), respectively H,(7) z, H(0, ).

Every (measurable) choice 7,, : X, — I' (if it exists) is called a M -estimator, respectively a
Z-estimator, if it satisfies

M, (Fn) = flylellf“ M,(y) R'-as., respectively H,(3,)=0 R'-as.,

or more generally, if it is, respectively, a near minimum and near zero, that is, I\A/[n(;y\n) <
inf ep My, (7) + 0, (1) and H,,(7,,) = 0,.(1). O

$01.12 Remark. There exists a measurable version of a minimum of an almost surely continuous func-
tion on a compact set (see WittirAlg and Miiller—FuAnk [1995], Satz 6.7). Note that in Defini-
tion §01.11 the criterion process M,, (respectively H,,) is defined for each n € IN on a different

measurable space. We write, however, shortly I\Al,,(ﬂ,) T—> M(6, ), if for each ¢ € IRTO holds
IB"(U\A/[H(V) — M(0,7)| > ¢) 7% 0. Let us briefly consider a sample (X;);c) © R of a
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random variable X © R. Keeping Notation §19.05 in mind P f and IP » | denotes the integral of
f € Li(Z,P) with respect to P and the emplrlcal measure P (z7) = 1 w 2ic[n] 0z T € X", re-
spectively. Revisiting each of the Examples §01.01 to §01.04 there is a functionm : I' x X — R
with m(y) € £,(Z7), v € T, such that the criterion process M,, and the associated criterion
function M is for each v € T given by M,(7) = BPm(y), i.e. M,(7,2") = %Ziem m(vy,x,),
e € X', and M(0,7) = Bm(y) = [, m(v,2)R(dx), respectively. Analogously, a moment
estimator as in Example §01.05 is a Z-estimator. By construction in each example is the condi-
tion (CP1) and with the help of the LLN (see Remark §20.06) also the condition (CP2) satisfied.
Note that the GMM estimator in Example §01.05 is also a M-estimator with criterion process
satisfying (CP1) and (CP2). O

$01.13 Definition. For two probability measure B and I on a measurable space (X, Z") is the function

dR _
KL(B|B) = R (log gp) = [ 1o g (5 )d]B, ifP <P,
00, otherwise

called Kullback-Leibler-divergence of |} with respect to Ip. .

01.14 Reminder. The Kullback-Leibler-divergence satisfies KL(R|E) > 0 as well as KL(R|R) = 0

if and only if B = B, but KL(e|e) is not symmetric. Moreover, for product measures holds
KL(R, ® B,|R, ® B,) = KL(B,|R,) + KL(R,|R.,) (e.g. Statistik 1, Lemma §17.03). 0

01.15 Example (MLE, §01.09 continued.). Let (X", 2", ") be a statistical product experiment dom-

§02.01

inated by a privileged measure B € W(.2") (see Reminder §01.08) with likelihood L(6) = dE/
dP, log-likelihood ¢ = log(L) and parameter of interest 6 (i.e., ¥ = idg). Furthermore, for
all 0,6, € © let i} and I, be mutually dominated (i.e. E <« and B, < B, for short E <> F),
which implies B, <> P, and hence —KL(E,|P) = KL(B|B,). Then M,(§) := —P¢(0) € Z"
with

2 > M, ( :--Z@@x

i€[n]

is a criterion process associated to the criterion function M(0,,0) := KL(E|R) — KL(E |R)
assuming here and subsequently that the parameter 6 is identifiable, that is, from I}, = I}, follows
0, = 0. Identifiability is a natural condition since it is a necessary condition for the existence
of a consistent estimator. However, if 6 is identifiable then 6 — M(6,, #) attains its minimum
M(6,,0,) = —KL(E |R) uniquely at §, (keeping Reminder §01.14 in mind). The corresponding
M -estimator is thus just a MLE. O

§02 Consistency

Here and subsequently, let (I', d) be a metric space endowed with its Borel-c-algebra ¢ := %,
let (X,, Z,,R" = (B")sco) for all n € IN be a statistical model over the parameter space © and
let v : © — I' be an identifiable parameter of interest.

Reminder. Foreachn € IN let 7, be an estimator of ~, i.e. a statistic on (X, Z,) with values in
(T',4). The sequence (7,,)nen of estimators is called (weakly) consistent, if for all e € R, holds
B (d(Fn,v(0)) > ) = o(1) as n — oo for all § € ©. Note that the estimator 7,, can be defined
for each n € IN on a different measurable space. We write, however, shortly d(7,,v(0)) = o..(1)
as n — oo. Moreover, saying ,,7,, is consistent always means the sequence (7, ) e iS (weakly)
consistent. O
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Consider an M-estimator % for a random criterion function M with associated criterion
function M, that is, M, (7) L, M(6,~) holds point-wise for each v € I'. For example, due to
the LLN 1,(7) = Bm(7) - B, Bm(y) = M(0, ) provided m(7) € £(2",B). The hope is

that a minimising value of M »(7) then converges to the minimising value of M (6, 7). However,
in general point-wise convergence will not be sufficient.

§02.02 Theorem. Under the assumptions and notations of Definition §01.11 any M-estimator Yn Of
Y, be, Mp(3n) < My (v(0)) + 0,.(1), is consistent, i.e., d(7,,7(0)) = o,(1), if in addition the
following two conditions are satisfied:

(CO1) Sup|1\A/In(7) — M(0,7)] = 0,(1) (uniform convergence in probability);
~yel'

(CO2) inf M(0,~) > M(0,~(0)) for any € € ]R (identification).
yel:d(y,7(0))>e

§02.03 Proof of Theorem §02.02. is given in the lecture. O
§02.04 Corollary. Under the assumptions and notations of Definition §01.11 any Z-estimator 3, of v,

ie, H,(7,) = o(1), is consistent, i.e., d(7,,v(0)) = o,.(1), if in addition the following two
conditions are satisfied:

(CO1) sup||ﬁn(7) — H(0,7)]| = o,(1) (uniform convergence in probability);
el
(CO2) inf ||H( I > 0= [[H(0,~(0))|| for any e € R, (identification).
vEl:d(v(0))>
§02.05 Proof of Corollary §02.04. is given in the lecture. O

§02.06 Lemma. If (i) T is compact, (ii) M(6,~) > M(0,~(0)) for all v € T\{v(0)}, and (iii) v
M(0, ) is continuous, then (CO2) in Theorem §02.02 holds.

§02.07 Proof of Lemma §02.06. is left as an exercise. O

§02.08 Example (MLE, §01.15 continued). Assuming in addition that the parameter space O is com-
pact and that the criterion function 6 — M(0,,0) := KL(E |B) — KL(E,|R) is continuous then
employing Lemma §02.06 the condition (CO2) of Theorem §02.02 is satisfied. O

§02.09 Lemma. (CO1)in Theorem §02.02 is satisfied, if the following conditions hold:
(i) (I, d) is a compact metric space,

(i1) v — M(0,~) is continuous and 1\A/In(7) = M(0,7) + o,(1) forall v € T, and

(iii) hﬁ)l lim sup " ( sup \1\A/In(fyl) — 1\A/In(72)\ >e)=0foralle € R

n—00 71,72€Td(y1,72) <6

§02.10 Proof of Lemma §02.09. is given in the lecture. O

502.11 Example. Given (X", 2" R™") and v : © — T for eachy € I'let m(y) € 2" be a real
function = — m(~, z) belonging to £,(2", ). Consider M n(y) = ]Pm( ), i.e. 1\7[n(7,x") =
& 2 iegm (7, 2), 2 € X7, and M(6,y) := Bm(y) where due to the LLN §20.06 M, (y) =
M(6,7) + o,..(1) for each v € I'. Suppose in addition the following conditions:
(i) (T',d) is a compact metric space,
(i1) v~ m(vy,x) is continuous for B-a.e. x € X,

(iii) thereis H € £,(2", ) with sup, c |m(vy, z)| < |H(z)| for B-a.e. z € X, or equivalently,
sup,cr |m(y)| belongs to £i(27, ).
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Then, (I) ¥ — Bm(y) = M(0, ) is continuous and (CO1) sup7€F|l\A/l (7) = M(0,7)] = 0pe(1).
Indeed, by dominated convergence (see $20.20) (ii) and (i11) imply together D). Cons1der (COl)
Define the random variable A§ := SUp., ., cr.a(y1.9)< IM,,(71) — M, (12)] € Z". We show
below for all £, € R exists § € R{, with lim sup, ., B*"(A? > ) < 5 which in turn
by Lemma §02.09 implies the claim (COl). Let e,n € R|. Keeping A} € 2~ with z
AF(x) = SUD.,, yerdimn <o |m(’yl, x) — m(7,, )| in mind and applying the elementary trian-
gular inequality we have A} EA5 point-wise on X". Moreover, due to (i) and (ii) for B-a.e.
x € X the function v m(v, ) is uniformly continuous on T, and thus lims_,o A}(x) = 0.
Therewith, dominated convergence (see $20.20), which can be applied due to (iii), implies
lims_,o BA} = 0. In particular there is § € ]RfO such that BA} < 7e, which in turn implies
R™" AR < ]P0®"(]AP,LA(1;) = BA} < ne. Employing Markov’s inequality §20.18 the last estimate
implies the claim, that is, for all €, € R exists § € R}, with lim sup,,_,. B*" (A} > ) < 7.
If in addition to (1)-(ii1) and, hence (I)

(iv) thereis y(f) € T with M(6,~) > M(6,~(0)) for all v € T'\{~(0)},

then applying Lemma §02.06 it holds (CO2) - d(inf(g)) M(6,~) > M(0,~(0)). To summarise,
yel:d(v,7(0)) =€
with (CO1) and (CO2) the cond1t1ons of Theorem §02.02 are satlsﬁed Consequently, any M-

estimator A, i.e., M, (5,) < inf.cr M., (v) + 0y(1), and thus M., (5,) < Mp((0)) + Open(1), is
a consistent estimator of 7, i.e., d(Vn, 7(0)) = 0...(1). u

§02.12 Lemma. (CO1)in Corollary §02.04 is satisfied, if the following conditions hold:
(1) (T, d) is a compact metric space,

(i1) v — H(0,~) is continuous and l|ﬁn(7) —H(0,7)|| = oy(1) forall v € T, and

~

(iii) hn(z)l lim sup B" sup ||ﬁn(71) —H,(1)|| =€) =0foralle € R,

n—00 71,72€Td(y1,72) <6

§02.13 Proof of Lemma §02.12. is left as an exercise. O

$02.14 Example. Given (X", 2" B™),v:©0 — T and (XZ)ZeM ~ B*" forf € ©, foreachy € T
let h(y) € 2" be a numencal function belonging to £.(B) for all v € T. Consider H n(y) ==
Ph(y), ie. H (7 ) = ZieM h(y, i), x» € X", and H(0,~) := Bh(y) where due to the

LLN §20.06 ||H,(7) — H(6,7)|| = 0g(1) for each v € I". Suppose in addition the following
conditions:

(i) (T',d) is a compact metric space,
(i1) 7+ h(~y, x) is continuous for B-a.e. z € X,

(iii) sup,cp|/h(7)[| belongs to L,(R).

Then, arguing line by line as in Example §02.11 (I) v — Rh(y) = H(0,~) is continuous and
(CO1) supverﬂﬁn(w) —H(0,7)|| = 0,:.(1). If in addition to (i)-(iii) and hence (I)

(iv) thereis y(f) € I' with ||H(0,~)|| > 0 = [[H(8,~(8))]| for all v € T'\{v(9)},

then applying Lemma §02.06 it holds (CO2) d(lnf( ||H( | > 0 = |[H(8,~(0))]. To
VY
summarise, with (CO1) and 1(C0O2) the condit1ons of Corollary §02.04 are satisfied. Consequently,

any Z-estimator 7, i.e., H,(7,) = op.(1) is a consistent estimator of v, i.e., d(7,,7(0)) =
Ope(1). O

§02.15 Remark. The conditions (CO1) and (CO2) of Corollary §02.04 (respectively, (CO1) and (CO2) of
Theorem §02.02) being sufficient to ensure consistency might be weakened in specific situations
as we see next. 0
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§02.16 Proposition. Let ' C R and ﬁn(y) = H(0,7) + o,(1) for all vy € I where H is a deterministic

function. Assume in addition that either

(Ta) v +— ﬁn(’y) is continuous and has exactly one zero 7, or

(Ib) v+ H, () is non-decreasing with H,,(7,) = o,.(1),

and that (1) H(0,7(0) — ) < 0 < H(0,~(0) + ¢) for every e € R\ Then, 7,, = 7(0) 4 0,.(1).

§02.17 Proof of Proposition §02.16. is given in the lecture. O

§02.18 Example. Consider P € W(%) and h(v,t) := sign(t — ) with sign(t) = L0 — Lycg

§03.01

for all v,¢ € R. The sample median 7, is a (near) zero of the map v — H,(7) := Ph(y),
ie. Hu(y,2") = ;¥ h(r,2), 2 € R'. Considering H(y) = Ph(y) = P((y,00)) —
P((—o00,7)) we have obviously ﬁn(y) = H(y) + o,.(1) for each v € I'. Keeping in mind
that v — ﬁn (7) is non-increasing from Proposition §02.16 follows consistency of the sample
median 7,, i.e., 7, = Yo + 0,..(1), if for any ¢ € R, in addition H(, — ) > 0 > H(y, +¢) or
equivalently P ((—o0, < v, —¢)) < 1/2 < P((—00,7,+¢)). In other words, the sample median
7, 1s a consistent estimator of the population median, if it is unique. 0

§03 Asymptotic normality

Here and subsequently, for k,n € Nlet ' C R’ be endowed with its Borel-c-algebra ¢ := 4,
let (X", 2 o 2°") be a statistical product experiment over the parameter space © and let v :
© — I be an identifiable parameter of interest.

Heuristics. Consider H,(7) = Ph(y), ie. Hp(y,2") = %Ziew h(vy,z), 2= € X", and

H(#,7v) = Bh(y) fory € I'and 0 € ©. Let 7, be a zero of v — H,,(v), i.e., 7, is a Z-estimator.
Assume in addition that 7,, = v(6) 4 o,..(1) where () is a zero of v — H(6,~). Heuristically,

~

consider a Taylor expansion of a real-valued H around ~v(@) € T' C R, thatis, 0 = H,(7,) =
L, (7(0)) + (3 =7 ()L (5(0)) + § (3, =7(6))*TL,(3,,) for some 7, between v(0) and 3. Thus,
rewriting the last identity v/n(5, —(6)) = —v/nHa(7(6)) (Ha (7(0)) + 3 (5a —7(0)) Ha (7)) -
If h(v(6)) belongs to L,(R), then due to the CLT it holds —/n(H,(y(6)) — H(8,~(0))) =
—/n(Bh(~(8)) — Bh(y(6))) 4 Ny If moreover h(v(0)) € £,(R), then by the LLN
ﬁn(fy(é)) = Ph(y(0)) = Bh(~(0)) + 0p-(1). If in addition ﬁn(%) = Oy..(1) then employing
Slutzky’s lemma §20.10 it follows v/n(7,—(6)) LN No.gicen 2en-ey- 1N the sequel, v is a vector
and h vector-valued. Consequently, h(~(#)) is a matrix and we denote by ||L(~(0))||,. its Frobe-

nius norm, where | M||p = (32 jepn Zepx) Mij)l/Q for any matrix M = (Mj;) € R,

§03.02 Theorem. Under the assumptions and notations of Definition §01.11 with I' C R’ let Vn be a

consistent Z-estimator of v, i.e. 7, = (0) + o,.(1), with ﬁn(fyn) = 0p(nV?). Assume the
criterion process H,, is continuous differentiable in a neighbourhood U of ~v(0) € int(I") with
derivative ﬁn = %ﬁn e 2" and satisfies the following two conditions:

(AN1) \/ﬁl/-\ln (v(9)) 4, Ny, under B°" for some positive semidefinite Qg € R*",

(AN2) sup7€U||ﬁn (7) = H(0,7) ||, = 0,.(1) for some continuous matrix-valued function ~
H(6, ) with regular H(6, (0)) having H," as inverse.

Then \/ﬁﬁ/\n o 7(9» + \/ﬁHeﬂﬁn(fY(e)) = Om@"(l) and \/ﬁ(:}/\n o 7(6)) i> N(O,H(;lﬂg(ﬂgl)/’)'
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§03.03 Proof of Theorem §03.02. is given in the lecture. O

§03.04 Corollary. Under the assumptions and notations of Definition §01.11 with I' C R’ let Yn be a
consistent M-estimator of , i.e. Y, = Y(0) + 0,..(1), with l\A/[n(%) = inf,ep Mn(y). Assume the
criterion process 1\7[” is twice continuously differentiable in a neighbourhood U of ~(0) € int(T")
with derivatives 1\A/[n = %1\7[” ca" (score function) and 1\7[n = %I\A/In € 7" and satisfies
in addition the following two conditions:

(AN1) \/ﬁl\A/[n(v(Q)) 4, Ny, under B°" for some positive semidefinite 0y > 0,

(AN2) sup,yeU\]ﬂ\/[n(fy) — M(8,7)|| » = Ope(1) for some continuous matrix-valued function y —

M(, ) with regular NI(0,~v(6)) having M," as inverse.
~ d
Then \/ﬁ(ﬁ)/n - 7(9» - N(oM;lQeM;l)-
§03.05 Proof of Corollary §03.04. is given in the lecture. O

503.06 Example (§02.11 continued). Given (X", 2", ") and v : © — T foreachy € I' let m(7) €
L,(B) be a real function. Consider M,,(7) = Pm(~) and M(#,~) = Bm(vy) where due to the
LLN M, () = M(0,7) + 0,.(1) for each v € I'. Suppose in addition that

(i) I'is compact,

(i1) v — m(y,x) is twice continuously differentiable in a neighbourhood U of v(0) € int(I")

. . . . . 2
for P-a.e. z € X with derivatives m := %m and m := %m

(iii) m(y(0)) € L(R) with Bm(y(#)) = 0 and 2y := B (y(9))m(y(6))" > 0,
(iv) sup,cy ()|l € £,(R) and My := Br(y(6)) is regular with inverse M,".

hold true. If the M-estimator satisfies 7, = v(6) + o,..(1) then \/n(%, — ~(0)) 4, Nosi; 10,5
due to Corollary §03.04 since the conditions (AN1)-(AN2) are satisfied. Indeed, following Ex-
ample §02.11, (iv) implies the cond.i'tion (AN2) and due to the CLT the condition (AN1) follows
from (ii1). However, estimators of My and €24 are necessary in order to use the asymptotic dis-
tribution to conduct inference. A typical approach to obtain these estimators is as follows. First
replacing I} by ]13, the quantity M, (v) := IAan(v) and 0, (v) = Em(y)m(y)t is just an empirical
counterpart of M., (v) = Bi(y) and Qy(y) = Bria(y)ria(7)", respectively. Secondly, replace y
by its estimator 7,, we obtain M, := M, (7,) and ﬁn = ﬁn(%) as estimator of My = M@(’}/(Q))
and Qg = Qy(y(0)), respectively. If in addition to (i)-(iv) the following condition holds

(v) sup,cy|[m(y)]|| belongs to L,(R).

Then supveUHMn(’y) — Mp(9)|l = 0,-(1) and sup.epr |20 (7) — Qo(7) ||z = 0p(1) following
line by line the arguments in Example §02.11. From these uniform convergences and 7, =

7(92 + OE&,,(11) follows M,, = My + 0,.(1) and Q,, = Q + 0,..(1) which in turn implies V, :=

M, Q,M, = M, QM," + o,.(1). Consequently, by applying Slutzky’s lemma §20.10 we
have \/m’}n—lﬂ(% - 7(9)) i> N(O,Idk)' U

$03.07 Example (MLE, §01.15 continued). Let (X", 2", ") with B <> P, for all § € ©, likelihood
L(#) = dR/dR, log-likelihood ¢ = logL and parameter of interest 6 (i.e., v = idg) as in
Example §01.15. Consider the MLE 6,, which maximises the (joint) log-likelihood 6 — ]Eé(@).
Let the following conditions be satisfied:

(i) (©,d) is a compact metric space,
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(i1) the parameter 6 is identifiable, i.e., #; # 6, implies B, # B,

(iii) the map 6 — £(0, x) is continuous for B-a.e. z € X,

(iv) supgee |¢(6)| belongs to L,(B).

Then combining the arguments in the Examples §02.08 and §02.11 the conditions (CO1) and
(CO2) of Theorem §02.02 are satisfied, which in turn implies consistency of the MLE 6,, =
¢ + o,.(1). In addition let the following conditions be fulfilled

(v) for -a.e. z € X the map 0 — (0, z) i 1s twice contmuously differentiable in a neighbour-

hood U of 6 € © with derivatives 69 é and ly == 5 96
(vi) supgey||fsl| € L,(R) and supgey || loll - € L( ),

(vii) the Fisher-information matrix Jy := IB(EQKO) is strictly positive definite.

Then the conditions (AN1) and (AN2) of Corollary §03.04, and the identity J, = —Eég are
satisfied (for details see Statistik 1 Satz §17.22). Therewith, the MLE satisfies /n(6,, — 0) =
\/ﬁﬂgllﬁég + 0,..(1) and, consequently, \/ﬁ(an —0,) 4, A\ O

§03.08 Remark. The conditions (v) and (vi) in Example §03.07 can be weakened replacing differen-
tiability by Hellinger—differentiability. Keeping the Hellinger-distance H(B,B,) = ||L/2(0) —
LY2(0 o)l () in mind, where LY2(0) € L,R) using ||LY/2(0 )H@(]E = RB(L#) =1 < oo,

the famlly ]Po is called Hellinger- dlﬂerentlable with derivative /0 in 0, € int(©) C ]Rk, if
(o, € Ly(E) and hence {y,L}/2(6,) € Ly(E) such that

LY2(0, 2) — LY?(0,, ) — (0, (x),0 — 0,)LY/(0,, z) |?
lim (¢, z) (0o, ) — 5 (b0, () )L (00, 2) P (dx)
600 Jy 10 — 6,
1/2 _T11/2 1y 1/2 2
— lim HL (90 + h) L (00) 2<€007 h>L (90)”&(15) —0
h=0 I1A]f2

The map z — égo (z) is also called score function. Keeping fgo e Ly(B) in mind the Fisher-
information matrix Jg, = B (¢g,¢} ) is well-defined. Note that, the score function and the Fisher-
information matrix are independent of the dominating measure E. O

§03|01 Testing procedures

§03.09 Heuristics. Let (X,, Z,,R") for all n € IN be a statistical model over the parameter space O
and let v : © — T be an identifiable parameter of interest. Given amap A : I' — R’ we
eventually test the hypothesis Hy : A(vy) = 0 against the alternative H; : A(vy) # 0. Typical
examples include A(y) = v — ~, for a given value ~,, or more generally, linear hypothesis
A(y) = M~ — a, for a given value a, and matrix M. It covers in particular testing the j-th
coordinate of v = (v7) jeps i-€., A(y) = 77 —72. Under regularity conditions it seems reasonable

to assume an estimator 7,, of 7 having under B" the property /n(A(7,)—A(v(0))) 4 Ny, With

invertible asymptotic covariance matrix Y. If we have in addition an estimator %,, = Y +0,.(1)
at hand. Then under the hypothesis Hy, i.e., for " with A(v(6)) = 0, a Wald test exploits the

property W, := nAF,)S AR,) 4, X; where x? is a Chi-square-distribution with p degrees
of freedom. Precisely, a Wald test rejects the hypothesis Hy : A(y) = 0 if Wn exceeds the 1-a-
Quantile X]QD,lfa of a Xf?-distribution. Obviously, the Wald test does exactly meets the asymptotic
level o, i.e., lim,_,o B (W, > Xoi-o) =P(W > x3,_,) = a where W ~ x2. However, the

behaviour of the test statistic I¥,, under the alternative H; is still an open questions, which we
intent to study in the next sections. m
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$03.10 Example (§03.06 continued). Let (X", 2", ™), v : © — T be an identifiable parameter of
interest and let m(vy) € £,(B) for all v € I'. For each v € I' let M,,(y) = Bm(y) and M(6,~) =

A~

Bm(v). Under the conditions (i)-(v) in Example §03.06 an M-estimator 7,, € arg inf, .p M, (7)

: ~ d n
satisfies \/n(V, — 7(0)) — Ngy10,.1, under B°". Moreover, we have eventually access to

~

estimators M,, = M, + Op--(1) and Q, = Qp + 0,.(1). Let A : I' = R be continuously differen-
tiable in a neighbourhood of () then applying the delta method §20.16 we obtain \/n(A(7,) —

A(7(6))) % Ny, under B*" with Xy 1= A, )M QeM; A . From Az, = A, g) +0,.(1) fol-
~=-1__ =~-1

A~ . . . A~ ~ d
lows S, := A, M, Q, M, AL =%+ 0,.(1) and, thus /a2, /*(A(F,) — A(7(0))) = Ny,
which under Hy, i.e., for B*" with A(v(6)) = 0, implies W, := nA(F,)'S1AF,) S X;. O
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Chapter 2

Asymptotic properties of tests

Asymptotic properties of tests under local alternatives are presented com-
plementing the Neyman-Pearson theory introduced in the lecture Statistik
1. For a more detailed exposition we refer to the text books Witting and
Miiller-Funk [1995] and van der Vaart [1998].
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§04 Contiguity

§04|01 Preliminaries: likelihood ratios and differentiable models

§04.01 Motivation. Considering a statistical model (X,, 2., R'), a parameter of interest y : © — [, a
partition {J#°, 7'} of the parameter values of interests I' = #° Y 7! (i.e. T = #° U 2",
0 = #°N A" and H° + O #+ ") we are interested in a (randomised) test ¢, € 2.
(.e. @, @ X, — [0,1]) of the hypothesis Hy : 5 against the alternative H; : #'. Under
regularity conditions we may have at hand an estimator 7,, of v with known asymptotic distribu-
tion. Typically the estimator 7,, allows us to construct a test statistic 7,, with known asymptotic
distribution under Hy, i.e. under B" with v(0) € #°. Exploiting the asymptotic distribution an
associated test ¢, = 1 [1.60.) does eventually not exceed asymptotically a given level a € (0, 1)

under the hypothesis Hy. However, we like to investigate also its power under the alternative H,
i.e. under a specific B" with () € J#*. O

§04.02 Reminder. Let v and 1 be measures on (X, 2").
(a) For any positive numerical function f € 2~ the map B ~— fu(B) := pu(1,f) = [ Edp
defines a measure T/ on (X,.2°). Any f = dv/dy € 2 satisfying v = fu is called
density of v with respect to p, or ji-density for short.

(b) We say v is dominated by p, symbolically v < 1, if foreach B € 2 with u(B) = 0 follows
v(B) = 0. The measures p and v are called equivalent or mutually dominated, symbolically
<> v, if both v <y and p < v.

(c) We say v and p are orthogonal or singular, symbolically | 1, if there exists X = X, [{ X,
with X,, X, € 2" and ;(X,) = 0 = v(X,). Evidently, we have v L y if and only if there
exists N € 2" with u(N) = 0 such that v = Tyv.
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We note that g € £,(fu) if and only if ¢f € £,(1). In this case holds fu(g) = [gd(fu)

J(gF) di = p(gf) (Klenke [2012], Satz 4.15. p. 93). Let additionally v € M, (5{) be a o- ﬁmte
measure on (X, 2°). If fu = v = fu for 1, € ?Jr, then f, = f, p-a.e.. In other words
a density is unique up to p-a.e. equivalence (Klenke [2012], Satz 7.29, p. 159). If in addition
p € My(Z), then by Lebesgue’s decomposition theorem there exists v/, v- € M,(Z") such
that v = v/ +v* with vt | yand 1* = fy where f € 2 and f € R™ pi-a.e.. (Klenke [2012]. Satz
7.33, p. 160) Furthermore, there is a Radon-Nikodym-density t € 2 with v = fuand f € R
p-a.e. if and only if v < u (Klenke [2012], Korollar 7.34, p. 161). If f € 2" is a Radon-Nikodym-
density of v with respect to x, i.e. v = fp, then the positive real function 1y € 2 Tis it
too. Consequently, without loss of generality we consider here and subsequently a positive real
version of the Radon-Nikodym-density. Furthermore, given f = d v* /du € 2 " let us define a
numerical function L := fly. 4+ coly € 2 with u(N) = 0 = v*(N¢) where {L=oco} =N
and the Lebesgue decomposition writes v = Ly + 1,,_,v, i.e. forall A € 2 we have v(A) =
p(LL) + v(AN{L = co}). O

§04.03 Definition. Let B, € W(.Z") be probability measures on (X, Z"). Any positive numerical
random variable L. € 7z satisfying

R(L=oco)=0and R =LE +1,_,FB forall Be 2 (04.01)
is called a likelihood ratio (LR) of F with respect to B, symbolically dI2 /d[5 := L. O

Here and subsequently, let B, R € W(Z2") and L. := dR/dR be a likelihood ratio of P with
respect to 2. We first note that B(L) = B(L < oo) € [0,1] and B(L € R") = 1 by definition,
andalso R(L=0)=LR(L=0)+EB({L=0}N{L =o00}) =0.

§04.04 Property.
i) R LRedBe 2 :R(B)
oo})—1)<:>IP1(L—oo) 1
(i) R PeVBc 2 R(B) =
B(L=o0) <1< R(L)>0;
) =
1.

= 0 (hence LR(B) = 0) and B(B) = 1 (hence R(BN{L =
< R(L) =0;

0 implies B (B) < 1 (particularly for B = {L. = >}) &

(i) P<R < VB € 2 :R(B
]P(L ) =0« R(L) =

0 implies B(B) = 0 (particularly for B = {L = x0}) <

§04.05 Remark. Note that both i and ? are dominated by P := (B + B) € W(2'). Letf, € 2~
denote a P-density of P, ¢ € {0, 1} (c.f. Reminder §04.02), then

t, ;
L* = f]l{foE]Rfu} —'— m]l{ﬂ'ozo}m{ﬂ“e]l’{t‘} (0402)
0

is a likelihood ratio of E with respect to B, i.e., L, = dE/dE. Indeed, L, € f+ satisfies
B(L.=00) < R(f, =0)=0and forall B € 2

L.B(B) + BR(B N {L. = co}) = iR (F lpngeery) + B(BN{f, = 0} N {f, e R })
=fE(BN{f, e R }) + R(BN{f, = 0}) = R(B).

Consequently, L, is always a version of the likelihood ratio d; /dRR. In general the likelihood
ratio dB /dR (and similar d} /dR) is uniquely determined by (04.01) up to (I} + P)-a.e. equiva-
lence (e.g. WTheorie 1, Lemma §03.15 or Witting [1985] Satz 1.110 a), p. 112). Moreover, the positive
numerical random variable L, = %%ﬂem} + 0015 —gjn(r,ery 18 @ version of the likelihood ratio
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dR /d switching the roles of I} and . Consequently, (iii) can equivalently be written as < I}
& R(dR/dR = 0) = B(L;! = 0) = B(L, = co) = 0. However, given any version L. = dB/
dRR, of the likelihood ratio the measure P can be written as a sum P = R + P of two measures
R B+ € M,(2") where R := LE and B* := 1,_,B with B*(B) = B(B N {L = oo}),
B € Z is, respectively, the absolute continuous and singular part of I with respect to I}
(Lebesgue decomposition). O

$04.06 Property. The two measures B® := LR and B+ := Ly B in M, (Z) satisfy
() RB=R*+R" R"<RB, and B* L B;

(i) B(f) > B'(f) = LR(f) = R(Lf) = R(/ L) forall f € 2 ;
(i) B <R ifand only if B(L) = 1 ifand only if B(dR /dR = 0) = B(L = co0) = 0 if and only
ifforall f € 2 holds B(f) = B(Lf). o

$04.07 Reminder. Consider a R'-valued statistic S defined on (X, Z),ie. Se & IR < 2, then
the probability measure P° = P o S~! € W(%’k) induced by S under E can be calculated from
the probability measure R = B o (S,L)~" induced by the random vector (S,L) under R
through the formula

R(S € B) = B*(1,) = B(15(S)L) = B*" (1,(11,)11,) forall B € %"

using the coordinate maps IT, (S, L) = L and I1,(.S, L) = S. The formula, however, is only valid
under the assumption I} < B, since a part of I orthogonal to B can’t be recovered. m

Here and subsequently, let B = (I})gco with © C R bea family of probability measures on
a measurable space (X, Z"), and for each 6,,6 € © let Ly () := dE/dE, denote a likelihood
ratio of I} with respect to I} . Keep in mind, that Ly, (6,) = 1(= 1y).

§04.08 Definition. Let s > 1 and 0, € int(©). The statistical model (X, 2, R) (and the family R) is
called L (0,)-differentiable with derivative €9 if €9 cL .(R) and for all § — 6, hold

I(LY*(8) = 1) = (da,. (6 = o)), = 0 (116 = ]l (04.03)
and B (Ly, (6) = 00) = o([|6 — 6, ). :

§04.090 Remark. In case s = 1 the defining condition B (L, (6) = oco) = o(]|6 — 6,||) follows from
(04.03) (Witting [1985], Hilfssatz 1.178, p164). We note that £,(¢,)-differentiability implies £,(B,)-
continuity of 6 — Ly, (¢) in 0,, i.e., [[Lo,(0) — Lo, (0,)||s i) = o(1) as & — 6. Since Ly, (0)
is unique up to B + I -a.e.-equivalence L (6,)-differentiability does not depend on the version
Ly, (0) of the likelihood ratio dI} /dE, . u

§04.10 Lemma. If B is £,(0 dzﬂerentzable with derivative 290, then it holds T, (590) = 0. For any

szr>1ifRis L o)-differentiable with derivative {y,, then R is also L, (6,)-differentiable
with derivative 69

§04.11 Proof of Lemma §04.10. is given in the lecture. O

In order to avoid additional integrability conditions in Definition §04.08 the function 6
s(Li/ °() — 1) is considered. The next assertion formulates differentiability under additional
integrability conditions.
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§04.12 Lemma Lets > 1 and 0 € int(0©). The family R is L,(0.)-differentiable with derivative Eg if
lg, € L)), L90(9) L,(B) forall 0 € U(6,) and for all 9 — 0, hold

1(Lo, (0) = 1) = {lo,, 0 = 00) ¢ ) = 0 (116 — 1)
and I3 (L, (0) = o00) = o([|6 — 6,[°).
§04.13 Proof of Lemma §04.12. is given in the lecture. O

Let us assume in addition, that the family I is dominated by u € M, (Z"). For each § € ©
denote by L, (0) := dB/du € 2~ a Radon-Nikodym density of I} with respect to . Keeping
Remark §04.05 in mind L, ¢, (0) = %ﬂ{mao)em} + 0011, (6,)=0)n(1, @ery @s in (04.02) is for
each 0,,0 € O a version of the likelihood ratio dI /dI}, . We note that

{Leg,(0) = 00} = {{L,.(6,) = 0} N {L,(6) € R }} € {L,.(6,) = 0} =: Ny,

where I} (NVp,) = 0, and for all § € O holds Lul0) g Lig,(0)1y; < oo and B(N,) =

Ly (00) %o
B (N, N{L,(0) € R }) = B(L.y,(0) = o0) = B(dR/dE, = 00). Decomposing the integral
with respect to X = N, i Ny it follows

12(L3/2(0) = /(8,)) = (£o,, (0 = 6. DL 01,
= |21 (8) = 1) = (Lo, (6 = ) 2 ) + 11, 2L2O) 12,
= 2(L5 (6) = 1) = {lo, (6 = 0|2 ., + 4B (L, (6) = o0)
= [12(Ly* () — 1) — (fg,, (6 — 6,)) 17 ) + 4B (Lo, (0) = 00). (04.04)

Keeping Remark §03.08 in mind for 6, 6 mt(@) the family I is Hellinger-differentiable with
derivative Fg if 69 € L( ), hence 69 (0 ) € L (1), and for 0 — 0,

ILL/2(0) = L/2(80) = 5(0a,, 0 — ) L/*(0)]] ) = 0116 = o))
Exploiting the identity (04.04) we obtain immediately the next property.

§04.14 Property. Let R <y € M, (2) and 0, € int(©). The family R, is Hellinger-differentiable
with derivative Ego if and only if R is L,(0,)-differentiable with derlvatlve 69

§04.15 Proposition. Let R < pu € M, (2") with open © C RF*. If the likelihood 1,,(0) := dE/dy,
0 € O, satisfies in addition the following conditions:
(i) for each x € X the map 0 — s(0,z) = L,l/z(ﬁ, x) is continuously differentiable with

derivative $g := 555

(i1) g € Ly(u) for all 6 € O, and hence Jg := 411($p85) € R(;c.,k)’
(ii1) the map 0 — Jg is continuous.

Then R is for all 6y € © Hellinger-differentiable with score function £9 =22 6 )]l{s JeR" }-

§04.16 Proof of Proposition §04.15. is given in the lecture. O

§04.17 Example. Consider a statistical location model (R, %, ) dominated by the Lebesgue mea-
sure A € M, (%) with likelihood for each # € R given by L(6,2) = g(z — 0), z € R,
where ¢ is a strictly positive density. If g is continuously differentiable with derivative ¢ satis-
fying A\(|g|?/g) < oo then due to Proposition §04.15 the family B, is Hellinger-differentiable
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with score function /g = —g(z — 0)/g(z — ). Indeed, setting s(6, x) := /g(z — §), we have
So() = % g(x —0) = —1g(z — 0)/+/g(x — 0) which is continuous in § and hence condi-
tion (i) is satisfied. Moreover conditions (ii) and (iii) hold true, since 8 — Jy = 4)\(39)2 =
A(Jg]*/g) < oo is constant and thus continuous. Applying Proposition §04.15 the family B is
Hellinger-differentiable with score function fy, = 2%1@(90)@1{;} =—g(x—0,)/9(x —0,). O

§04|02 Contiguity

We introduce next an asymptotic version of absolute continuity. In this section we restrict
our attention to probability measures R", B" € W(Z,), n € N, in short (R"),en, (B")nen €
(W(Z.))nen. We aim to obtain the limiting distribution of (test) statistics S, € 2., n € N,
under P" if its limiting distribution under B" is known.

§04.18 Definition. Let R",B" € W(Z,), n € IN. The sequence (E"),cn is called contiguous with re-
spect to (B"),en, symbolically "< ", if for any (B, )nen € (£, )nen With lim,, .. B"(B,) =0
holds lim,, ., B"(B,,) = 0. The sequences (B"),cn and (B"),.cw are called mutually contiguous,
symbolically 5" <> ", if both B" <« B" and B" <« R". i

§04.19 Lemma. Let B", B" € W(Z.), n € IN.

() B" < B" & forall (Sp)nen € (2. )nen holds: Sy = 0= S, 2 0;
(ii) For any statistic S, : (X,, Z,) = (8,#), n €N, holds: "< B"=R"0 S, '<« R0 S,
(iii) For any sub-sequence (ny)ken in IN holds: B" < B" = RB™ <« B™;
(iv) B" <« B" < forany e € R exists § € R, such that for all (B,)nen € (2. )nen holds:
lim sup,,_,. B"(B,) < 6 = lim sup,,_,.. B"(B,) < &;

(V) Let (Sy)nen € (%k)nem and B" <« ", then:

(v-a) B0 St LN RandB" o S, ! LP =P <P;
(v-b) (B" 0 S )nen tight = (B" 0 S, ") e tight.

§04.20 Proof of Lemma §04.19. is given in the lecture. O

§04.21 Remark. Next we characterise contiguity in terms of the asymptotic behaviour of the likelihood
ratio L, = dB"/dR" € 2, , n € N. First recall that B"(L, < oo) = B"(L,) € [0,1] and
B"(L, = o0) = E"(L, = 0) = 0 for each n € IN. Consequently, the probability measure
R" o L' € W(Z) is concentrated in R" meaning that R" o L, (R") = R*(L, € R") =1
for each n € IN. Moreover, (R" o L !),c is tight, since for any ¢ € R and ¢ > 1/¢ holds
E'(L, > ¢) < 1B"(L,) < + < ¢ by Markov’s inequality. However, E" o L, is generally not
concentrated in R", but under B" < B" holds B"(L,, = oo) — 0 since R"(L,, = oo) = 0 for all
n € IN. Thereby, the limit distribution of B" o L (if it exists) is concentrated in R". o

Formally, we write L,, = L, 1 {L.er) + ool (Lo}’ where the second summand is negligible
in the sense of Slutzky’s lemma under contiguity B" < B".

$04.22 Definition. (T},),en € (2, )new converges in distribution to P* € W(Z%) under P", shortly
T, 2 P under P, if

PoT 'SP & Po(T,1 fren)) L P" and P'(T,€R)—0. (04.05)

We note that any family of probability measures on (R, %) is tight, since R is compact. A
non trivial formulation of tightness for probability measures provides the next definition.
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$04.23 Definition. A sequence (P"),ew € W(%) is called asymptotically tight if for all £ € R, exists
M € R, and n, € IN such that for all n > n, holds P"([—M, M]°) < e. O

§04.24 Remark. Asymptotic tightness of (IP"),ew € W(Z%) is equivalently characterised by: for any
(M,)nen in R with M,, 1 oo holds P"([—M,, M,]°) “== 0. In particular, we have immedi-
n—oo

ately P"({—o00,00}) —— 0. The concept of asymptotic tightness and tightness as in Defini-
tion §20.21 coincide if P"(R) = 1 for all n € IN. Furthermore, it can be shown that the claim of
Prohorov’s theorem Property §20.24 holds also for families of asymptotically tight probability
measures. m

§04.25 Theorem. Foreachn € NletB" " € W(Z,), let L, := dR"/dR" € 2. be a likelihood ratio
of B" with respect to B" and let B", B* € W(2). Then the following statements are equivalent:

(al) B"< B,

(a2) R"(L,) == 1 and for any ¢ € R}, exists M € R}, with sup,,c ]E"(Ln]l{Ln>M}) <e¢ le.
(B" o L;Y) e is uniformly integrable;

(@3) (B" o L;1),cw is asymptotically tight.

: .. d 0. n 4 d .
If in addition L, = B under B", i.e. B" o Lt = R", then the following statements are
equivalent:

(b B"< K%
(b2) 1= [ yR"(dy) = B*(idg) = B (idg1x);
(b3) L, % B" under B" with B*(B) = B*(idg1,) = [ yR"(dy) for all B € A.
§04.26 Proof of Theorem §04.25. is given in the lecture. O
Since R"(L,) = E"(L,, < o0) itholds B"(L,) — 1 < B"(L,, = co) — 0. Keeping (04.01) in

mind the mass of the absolute continuous part of P* with respect to " converges two 1, if and
only if, the singular part vanishes.

§04.27 Corollary. Under the notations of Theorem §04.25 the following statements are equivalent:
i B < B
(i) fR™ oL, ! N s W(%) along a sub-sequence (ny,)en, then B"(idgr) = 1;
(iii) if R™ o L;! 4 BY € W(B) along a sub-sequence (ny)ren, then B™ o L} 4 B, with

B"(B) = B"(idg1y) for all B € 2.
§04.28 Proof of Corollary §04.27. is given in the lecture. O
We are particularly interested in mutual contiguity (B" <> B") of (R"),cn and (B"),,cn, which

can be characterised by applying Theorem §04.25 and its analogous formulation switching the
roles of B" and B". However, for n € IN the transformation of a likelihood ratio L,, = dp" JdR"
into a log-likelihood ratio (LLR) ¢, :=log L, = log (dE"/dR") € 2 captures equally both
orthogonal events {Ln = O} and {Ln = oo}. Generally, /,, takes the value —oo and +oo with

positive R"- and B"-probability, respectively. In other words "o/, * and "o/, ! is concentrated
in [—00, 00) and (—o0, o], respectively, since by Definition §04.03 of L,, it holds

R'(¢, =00)=0 and R"({,=-00)=0 foralln e N. (04.06)
Thereby, similar to Remark §04.21 under mutual contiguity B" <> B" it follows

R"(¢, =00) -0 and R"({, =—-00) =0 asn — oo. (04.07)
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Consequently, the limit distribution of /,, under both " and B", if it exists, is concentrated in R.
Keeping Definition §04.22 in mind under mutual contiguity B" <> B" convergence in distribution
of £, under " and B" to B, B* € W(%), respectively, is equivalently characterised by

R o,
15

SE e Ro(ll,. )7 SR
ol SR e Ro(bd, ) SR (04.08)

S

IfL ! = dR"/dR" is a likelihood ratio of R" with respect to 2", as for example in Remark §04.05,
then making use of the identity log L,! = —log L,, = —/,, the convergence in distribution of /,,
under " respectively P" implies immediately the corresponding convergence of log L. !. Sim-
ilar to Theorem §04.25 (b1)-(b3) the next result characterises mutual contiguity in terms of the
log-likelihood ratio /,,.

§0429 Theorem. For eachn € N let B, B" € W(Z,), let £, := logL,, = log(dR"/dR") € Z be a
log-likelihood ratio such that also L, = dR"/dR" € 2. and let B, B € W(2). If in addition

d . 0,1 do . .
b, S P under B, ie. P o Enl 5 ', then the following statements are equivalent:
b’1) P"<a>R",

b’2) 1= fR exp(z)]Be(dz) = I%Z(exp) = ]B[(exp 1g)

b°3) £, L B under B" with E'(B) = B'(exp1,) = [, exp(2)E'(dz) for all B € A.
§04.30 Proof of Theorem §04.29. is given in the lecture. O

50431 Remark. Let f; and f, denote, respectively, a -density of B’ and B with respect to a measure
1 € M, (%) dominating B, and hence B‘. The measure B’ in Theorem §04.29 (b’3) is equally
defined by f{ () = exp(2)f;(2) for y-a.e. z € R. O

§04.32 Corollary. Under the notations of Theorem $§04.29 if B" o {1 4, N,..» for (u,0) € R x R
then the following statements are equivalent:

(b”1) B <> K"
(b™2) p=—0c?/2

(63) £y, 5 N,. .. under B".
§04.33 Proof of Corollary §04.32. is given in the lecture. O

§04.34 Example (Le Cam’s first lemma). Forn € N let B", B" € W(Z,) and L,, := dR"/dR" € yj.
If ¢, .= logL, 4 N_,2/»,» under B", then B" <> R" and ¢, 4 N,2/,2 under B" due to Corol-

lary §04.32. For o > 0 from 0=1((,, + 02/2) N, under E" follows thus o~ (¢,, + 0% /2) 4

N, under B". In other words in this situation there is asymptotically a location shift by 0. O
For each n € N let B", B" € W(Z,), let L, := dB"/dR" € 2. be a likelihood ratio of
" with respect to B", let ,, := logL,, and let S,, € 2" be a R-valued statistic defined on
(X,, Z.). We search conditions which allow to calculate the limiting distribution of (S, L,,)
respectively (S, ¢,) under B, from the limiting distribution of (S, L,,) respectively (S, ¢,)
under R". Keeping again (§04.22) in mind under mutual contiguity B" <> " the joint conver-
gence in distribution of (S, L,,) 4 oD ¢ W(£"") under B, (S.,,,) 4 RO € WZan
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under B" and (S, ¢,,) 4 P ¢ W(Z""") under E", respectively, is equally characterised by

"o (S, La) ™" 5 B o (S Ly, )7 S BV,

=
B0 (Smt) TSRS & Bo (Sl )7 SR and
=

B" o (S, 6,)"" % B B0 (S, baly, )" 4, piso, (04.09)

Denote by IT, :=II,, € &, ie. y = (Yi)iefk+1] — I, (y) = Ykt (respectively II, :=1I,,, €

k+1

B the coordlnate map which allows us to write

k+1

/ yRY (ds, dy) = / Te (s, y)IL (s, y) B (ds, dy) = B (111,) forall C € B
C RE+1

§04.35 Theorem. For eachn € N let ", " € W(%), let £, = log L, = log(dR"/dR") € Z, be a
log-likelihood ratio, and let S,, € % be a R -valued statistic. Then, we have

() If (S,, Ly) 4 pBY ¢ W(Z™") under B' and B*V (11, 1,++) = R®(11,) = 1, then
(S, Ln) & BSY under B" with B (C) := B (I1. 10 for all C € B,

(i) If (Sn, £n) 5 B € W(B) under B and B (exp(I1,) L) = B (exp(IL,)) = 1,
then (S, () 2 B under B with B(C) := B (exp(11)1e) for all C € B

§04.36 Proof of Theorem §04.35. is given in the lecture. O

§04.37 Example (Le Cam’s third lemma). For eachn € Nlet B" B € W(Z,), let ¢, = logL,, =
log(dR" /dR") € Z, be a log-likelihood ratio, and let S,, € 2, be a R'-valued statistic. Suppose
that the limit distribution of (S,,, £,) under R" is multivariate normal, that is

R o (S, ly) ' SR =N, with v= ( ‘f;z) and M = (i ;2> . (04.10)
2

Then it holds (.S, ¢,,) 4 BSY = N, ., under B” with o' = (u + 7,0%/2)". Indeed, since
B (exp(11,)) = 1 both assumptions of Theorem §04.35 (ii) are satisfied and hence it remains
to calculate the limit distribution B*?(C) := R (exp(II,)1,) for all C € #""". Suppose
first M > 0, or equivalently ¥ > 0 and o > 0, then R has a density £ with respect
to the Lebesgue-measure \*' € MU(,%’]M) and (see Remark §04.31) the Lebesgue-density
£59 of B satisfies £°7(s, z) = exp(2)f™"(s, z) for A'-ae. (s,z) € R'. Keeping the
coordinate map II, in mind we denote by f and f, the marginal density of B'*” o I1, and P%%0 I1,,
respectively. Denoting by ;™" and ™", respectively, a conditional density of S given ¢ = z
under the joint distribution IP(SZ and gL (see Notation §21.11 (iv)) we have £ (s )ff(z) =
exp(z )Tfs‘[_ (s)f (2) for N**'-a.e. (s,z) € R"". Exploiting Theorem $04.29 (b’3) it holds f/(z) =
exp(2)f; (2) for A-a.e. z € R (see Remark §04.31). Consequently, it remains to verify that N,
and N, ,,, have the same conditional distribution given ¢ = z. Indeed, both are again multivariate
normal (see Notation §21.11 (v)) with equal covariance matrix X — 0?77 and conditional mean
B (idgs) = p+ o0 27(2 +02/2) = p+ 7+ 0%7(2 — 0%/2) = P*"(idge). The case
of a positive semi-definite 3 and o2 > 0 follows by similar arguments when considering the
projection onto the image of 2. If 0 = 0 the claim follows from Lemma §04.19 (1) together with

Slutzky’s lemma §20.10. In particular, note that .S,, LN N,.s, under B" and S,, LN N,..s under B"
(see Reminder §04.07). o
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§05 Local asymptotic normality (LAN)

§05.01 Aim. For eachn € Nlet (X,, Z,,R" = (B")geco) with © C R’ be a statistical experiment. We
aim to approximate (X,, Z,, R") in a certain sense by a Gaussian location model after suitable
reparametrisation.

heR* of multivariate normal dis-

tributions with common strictly positive definite covariance matrix > € IR(>’ and log-likelihood
ratio log (dAN,,,, /dN,,,) (2) = (57'h,2) — (~'h,h), z € R'. Noting that for each h € R’
the likelihood L(h) = dN,,/d\* of N, 2 with respect to the Lebesgue measure \* on R satis-
fies L(h,z) = L(0, 2 — h) for all z € R" the statistical experiment (R", %" Ny e }) is called a
Gaussian location model. O

$05.02 Reminder. Consider on (R', #") the family N, := (Nosy)

R x{>}

Consider a localised reparametrisation centred around a parameter value 6, € int(©) which
is in the sequel regarded as fixed.

§05.03 Definition. Consider a sequence of statistical experiments (X,, 2., R'), n € IN, with common
parameter set © C R'. Given a localising rate (6, )new With 6, = o(1) for each n € IN define
a local parameter set ©" := {5:1(0 — 0,) : € O} C R". For each # € © and associated
local parameter h = 5,1 (0 — 6,,) € O" rewriting B" as B"; , we obtain a sequence of localised
statistical experiment (DC 2 Bens, = (Bs)heon), n € N O

§05.04 Remark. In the sequel we eventually take the local parameter set © equal to R" which is not
correct if the parameter set © is a strict subset of R'. However, if 6, € int(©) is an inner point of
©, which is assumed throughout this section, then for each h € R’ the parameter 6 = 6, + d,h
belongs to O for every sufficiently large n. In other words, the local parameter set O converges
to the whole of R" as n — 00, i.e., Upen®Ol = R, Thereby, we tactically may either define
the probability measure I ; , arbitrarily if 6, + d,,h does not belong to O, or assume that n is
sufficiently large. O

§05.05 Aim. We show, for large n, that the localised statistical experiment (X, Z,, P and a Gaus-

ny 5. R 40, )
sian location model (IR 78 , Ny o }) are similar in statistical properties whenever the original

experiments, i.e.,  — B, are smooth”.

§05.06 Heuristics. Consider a statistical experiment (X, 2", 2) dominated by u € M, (%), i.e.,
B <y, with © C R, positive real likelihood L(f) = dB/dy € 2 and log-likelihood ¢ =
log L. Assume that for all z € X, the map 6 — (6, x) is twice differentiable with derivatives
ly = £ and 0y = 52 96 A Taylor expansion of the log-likelihood ratio leads to (0 + h,x) —

00, x) = hly(z) + 1h2€9( ) + o,(h?) where the remainder term depends on z. Cons1der1ng
a product experiment (X", 2" IP®") eventually it holds log(dB% ./dR®") = hy/nP (€g) +
1hQ]P (fg) + R,, where the score { has mean zero, i. e., IP(&;) = 0, and the Fisher informa-
tion Jy equals —I (Kg) = ]B(|€9| ) Setting Zj = \/_ P (69) from the central limit theorem
§20.13 follows Zj 4, N, under R°" while due to the law of large numbers $20.06 it holds
IE@@ = —Jp + 0,.(1). If in addition the remainder term is negligible, i.e., R, = o,..(1), then the
log-likelihood ratio permits an expansion

log(dB%,) - /dB™) = hZ§ — 1h*Js + o,.(1)

which in the limit equals the log-likelihood ratio in a Gaussian location model. O

(OS]
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Chapter 2 Asymptotic properties of tests §05 Local asymptotic normality (LAN)

Z,

ni

2 B en with © C R is called local
asymptotic normal (LAN) in 6, € int(©), if there is a localising rate (d,,)n,en With 6, = 0o(1), a
sequence of statistics (2 )nen € (2" ) nen and a matrix J5, € R™" such that for every h € R’
the following three statements hold true:

(@) 0, + 6,h € O for all sufficiently large n, i.e., n > n,(h);

§05.07 Definition. A sequence of statistical experiments (X

d - N 4 d .
(b) 2y — N, under B, ie., B o (Z5 )™ — Ny, 3

(c) log(dR,,./dE]) = (Zg ,h) — 3(Jg,h, h) + Ry ), where R, = o,.(1).

The matrix Jy, and the sequence of statistics (Zf )nen is called, respectively, Fisher information
at 0, and central sequence. m

§05.08 Comment. If we assume in addition a strictly positive definite matrix Jy, € ]R(f’k) with inverse
Jo. ! the sequence of statistics (Zg, = Tg. 1Zgo)nem € (%k)nem is equally a central sequence
satisfying Zj % N, under B" and log(dR",,/dB") = (Jg,h, 2 ) — L(Jg,h, k) + 0, (1). In
other words the likelihood ratio dIB’; ,/dE equals approximately the likelihood ratio dN,, ..,/
dN,,-+, as in the Reminder §05.02. Consequently, the localised statistical model (X,, 2., Be;.s,)

is similar to a Gaussian location model (]Rk, B N, ) in the sense of Definition §05.07. O

R x{9,}
§05.09 Definition. A LAN sequence of statistical experiments is called uniformly local asymptotic nor-
mal (ULAN) in 6, € O, if the condition (c¢) in Definition §05.07 is replaced by
(¢’) for hy, — hitholds log(dR",, , /dR") = (Z§ , h) — 5(Jg,h, h) + 0,.(1). O

§05.10 Theorem. Let (X,, Z,, 2" ),ew be LAN in 0, € © C R" with localising rate (0,,)nen, central
sequence (Zy )new and Fisher information matrix Jg, € R"". Then for any b,k € R’ the
following statements hold true:

7

. ') ') . . n
(1) (B0 new and (B, ) new are mutually contiguous, i.e., B, <> B,

.. d n
(i1) Z{,}O — Ny, s, under 5" .

If the sequence of statistical experiments is ULAN, then for any h,, — h and h!, — 1" in R” the
following statements hold true:

@) (B0 )nen and (B.;,, )new are mutually contiguous, i.e., B, <R, ;

d n
(i1”) ZZD — N(Jeoh,ﬁeu) under I ; .
§05.11 Proof of Theorem §05.10. is given in the lecture. O

§05.12 Theorem. Let R < pu € M, (Z") with open © C R’ be Hellinger-differentiable in 0, € © with
derivative Uy, and Fisher information matrix Jg, = B ((g,lp ) € R(:k). Then the sequence of

product experiments (X", 2°" ") is ULAN in 0, with localising rate §,, := n~"/? and central
sequence 2y = \/nE(ly,), n € N, that is,

(i) /n ]E(égo) N No.,,, under B*" and
(ii) for hy, — hit holds log(dE, . /dB™") = (Z§ . h) — 3(Tg,h, h) + 0p.(1).

§05.13 Proof of Theorem §05.12. is given in the lecture. O

§05.14 Corollary. Under the assumptions of Theorem $05.12 consider for each n € IN a statistical
product experiment (X", 2" | ") and an estimator 7, € (2 ") of a parameter of interest 7y :
© — R allowing an expansion \/n(7, —v(0,)) = /1 E.(Yg,) +open (1) for some function 1y, €
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§06 Asymptotic relative efficiency Chapter 2 Asymptotic properties of tests

LY (B) with B (vy,) = 0. Then, \/n(3, —v(6,)) LN Ny, under B with 3, := B, (Yo,5,) and
for each h € R" holds \/n(3, — 7(6,)) 4, N,,s., under B, — with 7, := ]Bo(wgofgo)h.

§05.15 Proof of Corollary §05.14. is given in the lecture. O

$05.16 Example (Example §03.06 continued). Under the assumptions of Theorem §05.12 lety : § — R’

be a parameter of interest. Consider m(v) € £,(B) for all v € R’, a criterion process M, (7) =
P (m(y)), a criterion function M(6, ) = B (m(v)) and a M-estimator 75,, € arg inf_ p{M,(7)}
of {7, := v(0,)} = arg mfwep{l\/[( »,77)}- Under regularity conditions as in Example §03.06

we have \/n(3, — 7,) = /nP (109,) + 0y (1) With gy, := —M; m(%) assuming a regular
matrix M, := B, (1i1(7,)). Consequently, setting ¥, = B, (15,05 ) = M5B, (1i1(y, )10 (7,)") M
from Corollary §05 14 it follows

ViFn — 7o) > N,., under B, -with7, = —NM;'R (1(y,)0 )h.

In the particular case of a MLE 0, of 0, iec., (v = idg), as in Example §03.07 setting m :=
—log(dR/dR) we have 1(0,) = —{p,, Jp, = B, (1a(6,)10(6,)") = B, (1ir(6,)) = M, and
thus ¥, = M, 'R, (12(7,)10(7,) )M, ! = 9, and 7, := —N 'R, (10(6,)¢%, )h = h. Therewith,
Vi, —0,) % Nz under B . O

505.17 Remark. Supposing /72(0, — 0,) = /1 P (1, ) + 0~ (1) let us further assume a transformation

§06.01

A : © — R’ that is “smooth”, and hence by employing the delta method §20.16, for instance
satisfies \/n(A(0,) — A(0,)) = Ag,v/n B (¢g,) + 0y.(1). Consequently, it follows /n(A(6,) —
A(6)) % N, under B, - with 7, = A9, B, (19,09, )1 and £, = Ag, B (19,0, ) Aj,. In the
special case of a MLE we have v/n(A(6,) — A(6,)) 4 Nuiy g3, , under B . O

§06 Asymptotic relative efficiency

Heuristics (§03.09 and §03.10 continued). Under the conditions of Corollary §05.14 consider the
statistical testing task Hy : A(f,) = 0 against the alternative H; : A(6,) # 0 for some trans-

formation A : © — RP satisfying \/7(A(6,) — A(6,)) = Ag,/nP(t,) + Opei(1). As in
§03.09 let W, := nA(6,)'S:1A(6,) where &, = ¥ + 0g..(1) is a consistent estimator of
Y= Ay P (wgoweo)Ago, then a Wald test is given by ,, := 1 (o2, ) Thereby, under H,, i.e.
A(6,) = 0, we have \/nA(B,) = Ag,/nP(vy,) + 0,.(1) and W, & X under 5" which in

n—oo

turn implies B (¢n, = 1) —— X2((X31_a>00)) = . In other words, the Wald test is asymp-
totically a level « test. For each § € © let us denote 3, (0) := B (p,) = B (¢pn = 1) =

E®"(Wn > X21_,) Which equals the power of the Wald test o, under Hy, i.e. § € © with A(6) #
0. In the sequel we consider local alternatives of the form § = 6, + h/+/n and thus we are inter-

ested in B% (0o+h/\/n) = ]P®+';L/ﬁ(W > X2 1 o) Keeping Remark §05.17 underIPWﬁ we have
VIA®G,) S N s yuvy» Assuming additionally $ > 0 also £1/2\/nA(6,) 2 N, ., with

p = SY2 4y B (1. b, )th, and hence, nA(0,)!SLA(D,) S Xa(llan]|?). Here x2(c) denotes
a non-central x2-distribution with p degrees of freedom and non-centrality parameter ¢ € R'.

Moreover, W, — nA(6,)!S"1A(6,) = (1) and thus W, —nA(6,)'S1A(6,) = 0y (1) due
to Lemma §04.19 (i1) by employing that IP®" <> B, are mutually contiguous. Consequently,
w, %4 X2(|lax||?) under B, - and thus 8, (6, + h/+/n) e, Xa(|lan]? )((Xp1 4, 00)). Note
that aj, simplifies to htAf,o (Agoﬂ(,ol At ) Ay h in the particular case of a MLE 0,. O
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§06.02 Reminder (Gaufs test). In a Gaussian location model,i.e. Y @ N, oy WithJg, € R(f’k), consider

the binary testing task H : {N(O%fal)} against the alternative H : {N(hﬁj;ol)} for some h € R". In this
situation the log-likelihood ratio £, = log(dN,,. /dN,..)) satisfies (4 (y) = (Jp,y, h) — o7 for
all y € R" with oy, := (Jo,h, h). Consequently, £, ~ N,_. , ., under Nz, i-€. under the hypoth-
esis Ho, and £, ~ N, , >, under N, ..., i.e. under the alternative ;. Fora € (0,1) letcy 10 € R
satisfy N<_Ug/2,gg>((0h,1—a, 00)) = « and thus Nogy(ln > Cni—a) = N<_U§/2,Ug)((6h,1—a, 00)) = o
Keeping in mind that any most powerful level-« test has Neyman-Pearson form and the Gau/fs
test o* := 1y, , ,y is a Neyman-Pearson level-a test. Its power given by S, (h) := N, . (¢* =
1) = Npyry (bh > cni-a) = Noz ooy ((Ch,1—a, oo)) is maximal in the class of all level-« tests, i.e.,
for any level-« test ¢ holds 3, (h) < By« (h). In other words, ¢* is a most powerful level-« test
(Statistik 1, Satz §18.16, p.56). O

§06.03 Example (Neyman-Pearson test). Assume local asymptotic normality as in Definition §05.07
where 0}, ,, := log(dR,; ,/dE") N N_.: 5.2 under B" with o2 = (Jg,h, h) for h € R’. Hence

by Le Cam’s first lemma (Example §04.34) mutual contiguity B, , <> E" and ¢}, LN Noz/o02)
under ", , hold. Consider the binary testing task of the hypothesis H, : {E"} against a local
alternative H, : {E,,,}. In this situation ¢} = 1y, .. ., ., is a Neyman-Pearson test, which
is a most powerful level-« test, if B"(¢} = 1) = a. Keeping its power function (. (0) =
B'(¢r) = B"(¢s = 1) = B"(hn, > Chn,i—a) evaluated at § in mind the value .. (6, + 0,,h)
equals the maximal size of the power in the class of all level-« tests. Considering ¢, 1—o € R

7

as in Reminder §06.02 under local asymptotic normality it follows o = B () = B"(¢, >

Chni—a) 2 N ((Chy1—as 00)) = a which implies ¢ 5,1—a ~—— €510, and in addition
. n — .

Box (0o +6nh) = B (er) = Blsn(Chn > Chmi-a) — N(aﬁ/lai)((ch,lfaa OO)) = 6@*(@ with

Neyman-Pearson test (o* in a Gaussian location model as in Reminder §06.02. 0

§06.04 Theorem. Let © C R. Consider a one-sided test task Hy : (—o0,0,| against Hy : (0,,00).
Suppose that (X,, Z,, ') is LAN in 0, € © with localising sequence (0,,)nen, central sequence
(2§ Ynew € (Z:)new and strictly positive Fisher information 35, € R,
(i) Given a sequence (T),)nex € (Z,)nen of test statistics satisfying (T,,, Zy ) 4, No., With
M = ((o% p), (p,J0,)") consider the randomised test p, = Loy Tl with
Y € 10,1] and ¢, € R such that 5,,(0,) = B (¢n) = B (T, > ¢,) + wB(T, = ¢,) =

n—oo

o, — . Choosing z1—, € Rwith1 — Fy (21-4) := N

(0,1) ((Zl—a7 OO)) = a we have

ﬁgon (90 + 6nh) = IB:LHS,,h@On) n—>_oo> I]fo,l](_zlfa + hp/U)-

(i) In case T,, = Zy consider p; = ]l{zg Saragt2p ie. v, = 0andc, = zl,ajéf. Then
Bos (00) = B (h) = R'(9, 72 > 21-0) "5 1= Fyy(21-0) = 0 and

Bt (0o + 0nh) = B0 (95) "= By (=21 + B30,
§06.05 Proof of Theorem §06.04. is given in the lecture. O

§06.06 Remark.

(a) By using Theorem §04.35 directly it could be possible to calculate an asymptotic power of
a test if log(dR",, ,/dR") < P under B" where P equals not necessarily N, , .

(b) Let (Y7,Y2) ~ N, with M = ((0%, p)*, (p.Jp,)") as in Theorem §06.04 (i), then p? =
| Cov(Y71,Y3)|? < var, (Yi)var, (Ys) = 0%Jy,. Consequently, the test ¢ given in (ii) max-
imises the asymptotic power when considering only a randomised test ,, as given in part
(i) of Theorem §06.04. O
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§07 Rank tests Chapter 2 Asymptotic properties of tests

§06.07 Theorem. Let the assumptions of Theorem §06.04 be satisfied. Any test p,, of the one-sided
testing task Hy : (00, 8, against Hy : (0, 00) with B, (0,) := B (¢,) = ay, 22 o fulfils

(i) lim sup,,_, B, (0o + 0nh) < Fouj(—21-a + hy/Jo,) for all h € R ;
(i) lim inf, o By, (0 — 6nh) = Fo (=210 — h/Jg,) forall h € ]RTU.

§06.08 Proof of Theorem §06.07. is given in the lecture. O

§06.09 Remark. Keeping Theorem §06.07 in mind we call the test (sequence) (¢} )nen given in Theo-
rem §06.04 (ii) asymptotically uniformly most powerful level-« test (sequence) in the class of all
asymptotic level-« test (sequences). Its asymptotic power function equals I, ;) (—21-q + hm )
which is the power function of the uniformly most powerful test of Hy : (—o00,0] against
H; : (0, 00) in the limit Gaussian location experiment (R, %, Ny ;. 1,)- 0

" B")nen be LAN with localising rate d,, := n~1/2,
Consider a test ¢? satisfying the conditions of Theorem §06.04 (i) and hence, admitting an
asymptotic power function such that B,a (60, + h/y/1) “— Fo1/(—21-a + hpa/0,). Thereby,
choosing 7 = h/+/n the approximation f,. (6, + 1) ~ o1 /(—21—a + 17v/1pa/0,) is reasonable.
In analogy, if ° is another test satisfying the conditions of Theorem §06.04 (i) and admitting
B (0o + 1) = Kou(—21-a + 1v/npy/0s). Roughly speaking, this means, that at 6, + 7 the

power of the test ¢}, and <p’,’Lb with sample size n, and n,, respectively, is approximately equal

if nap?/o2 = mypy/o;. The quantity are(p? ¢ ) = (n./my) = (pjo2)/(pioy) is called

asymptotic relative efficiency. Meaning, that a sample of size n, = are(¢? , ¢l )n, is needed
for the test o to attain at , + 7 approximately the same power F, ;(—21_o + 1y/Tiapa/0a) =
o (—21—a + 1y/Mwps/0s) as the test <sz,, with sample size n,. A comparison with the test
@y as in Theorem §06.04 (i1) allows analogously to introduce a notion of asymptotic absolute
efficiency. O

§06.10 Asymptotic relative efficiency. Let (X, Z,

§07 Rank tests

§07.01 Reminder. Consider on the sample space (R, %") the statistic T : R — R with z — T'(z) =
(Ti())ierny and Tj(z) := min{c € R : 3> p,; Lijey = 1}, 0 € [n]. Since T1(z) < Ta(z) <
- < T,(z) for all x € R" the statistic 7" (and any other statistic with this property) is called
an order statistic. Denote by §,, the symmetric group of order n, i.e. the set of all permutations
of the set [n]. We identify as usual a vector s = (s;);c,) € [n]” with the map s : [n] — [n],
i — s(i) :== s;, and hence 8,, C [n]". Let s~ € 8,, denote the inverse permutation of s € §,,, i.e.
ids, = s o s~ = s~ o s. For a permutation s = (s;)ic[,] € Sn and a vector = (2;)ic[] € R"
we write shortly x, = (x, );cr,;. A Borel-measurable map S := (5;)ic[y] : R' — 8, ie.
S71({s}) € A" forall s € §,, is called a random permutation on (R, %"). The associated map
S™: R — §, satisfying ids, = S~ (z) o S(x) = S(z) o S~ () for all z € X is trivially again
Borel-measurable, and hence called random inverse permutation of S. Moreover the statistic
Xg:R' = R with z = Xg(2) := (25,(2))ie[n] = Ts@) = Pses, Lsliy(S(2)) (a finite sum of
Borel-measurable functions x +— x1g-1(,(x)) is called a random arrangement. 0

$07.02 Definition. A random permutation O = (O, );c[, on (R, ") is called order permutation, if the
associated random arrangement X : R* — R" with z — To(r) 18 an order statistic, i.e. 1o, () <
Toyz) < +++ < To,( forall z € R'. A random permutation R = (R;)e[, on (R, A") is

called rank permutation, if its random inverse permutation O := R~ is an order permutation.
For ¢ € [n] the i-th component R;(z) of R(z) is called the rank of the i-th component of
reR. m
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§07.03 Comment. An order permutation O is uniquely determined on the Borel-set {;1",- # .'1;]-} =
{(2:)iepg € R @ # 2;,Y5 € [n]\{i},¥i € [n] } only. However, for 2 € R", the permutation o :=
O(z) € 8, and i € [n] the value at the i-th position in the ordered vector z, equals the value at
the o;-th position in the original vector x. Conversely, for the permutation r := R(z) € §,, of
the rank permutation R := O~ the value at the 7;-th position in the ordered vector z, equals the
value at the i-th position in the original vector x. O

§07.04 Remark. The map R* = (R})icfny : R — 8, with z — Ri(z) = Zje[[i]] ]l{zi:wj} +
Zjem 1 [on)) for each i € [n] is a rank permutation. Indeed, for each z € R’ we have
r:= R*(x) € 8, (r : [n] — [n] is injective and hence bijective) and its inverse permutation
o := r~ satisfies z,, < x,, < -+ < z,,. Furthermore, each component of R* is -20n].
measurable, and hence [?* is a rank permutation. On the Borel-set {r, * T } each rank permu-
tation # = (R;)e[n) is uniquely determined by R;(x) = > cf,y Liey<ey = B (%), @ € [n]. For

each iy € R define F, (y) := ]EL(]l(,ooﬂy]) with F(y, ) := L w Dicn] ]l{i o) € [0,1] forall z € R".

F, is called empirical cumulative distribution function. If in addition r := R(x) and 0 := r~ for
x € {x; # x;} then i = nF,(x,,, z) and r; = nk, (z;, z) for each i € [n]. O

§07.05 Comment. We assume a product probability measure P" = ®je[[n]] P on the sample space

(R", #") where for each j € [n] the marginal probability measure P € W(Z%) admits a
Lebesgue density f; = dIP/dA and hence P" < A" € M,(£") with Lebesgue density dIP"/
d\r = ng[[n]] f,. Noting that the complement {v;, = =;} = {z; # z;} of the Borel-set

{x; # x;} is a A" null set, and hence it is also a P" null set. Thereby, each rank permuta-
tion R on (R", #") with corresponding order permutation O := R~ satisfies 20, (z) < Z0,(z) <

- < xo,(z) for P"-a.e. z € R™. Moreover, for P"-a.e. z € R’ the vector of ranks R(z) (and
the rang permutation 1) is determined by R;(x) = > icfn) Lisy<ey = nk (z;, ), i € [n]. O

§07.06 Lemma. Consider a product probability measure P€" on (R, ") with identical marginal dis-
tribution P € W(9A), cumulative distribution function F (y) := P(1_..,), v € R, and Lebesgue
density T = dPP/d\. Let R and Xo with O = R~ be a rang permutation on (R', %") and the
corresponding order statistic, respectively.

(i) R is under P®™ uniformly distributed on the symmetric group 8., precisely, (P®")%({s}) =
(Pe"o R ({s}) =P (R=3s) = 4, s €8, inshort R ~ (P*") =1, .
(i) R and Xo are independent under P®".
(iii) The distribution of Xo admits under PE" a Lebesgue density T, x) = n!1,(x) [ icgny (i),
z € R, with B :={(2;)iefs) € R, 21 < ... < z,}.
(iv) Foreachi € [n] the distribution of the i-th component of X admits under P®™ a Lebesgue
density f.(z) = i(7)|F(z)|" 1 — F(z)|""'f(z), z € R.
§07.07 Proof of Lemma §07.06. is given in the lecture. O

§07.08 Definition. Let P and IP be probability measures on (R, %#). We say P is stochastically smaller
than IP, or I < I’ for short, if E((c,00)) < P((¢,00)) for all ¢ € R. If in addition P # P, then
we write P < IP. O

§07.09 Remark. Roughly speaking, P < IP says that realisations of I} are typically smaller than reali-
sations of IP. o

$07.10 Example. For 0 € R" consider on (R, %) a Gaussian location family N, .,. Then for all
a,b € Rholds N, ., <N, if and only if @ < b. More generally, given a location family I, on
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(R, #) as introduced in Example §04.17 with likelihood function L(0, x) = g(z — 0), 0,z € R,
for some strictly positive Lebesgue-density g on R. Then for all a,b € R holds B < E if and
only if a < b. m

§07.11 Heuristics. Given a sample from each distribution P, P € W(%) we consider the testing task
H, : P = P against the alternative H; : P < P. Loosely speaking, this means, that we
aim to reject the null hypothesis if realisations of I are significantly smaller than realisation
of P. More precisely, we assume a sample of n = m + [ independent real random vari-
ables (Xi)ie[[n]} where the first m and the last [ have as common marginal distribution 2 and
P, respectively. In other words X = (X,-)ie[[n]] takes its values in the pooled sample space
(R", #"). Considering a rank permutation R on (R, ") and an observation z € R" it seems
reasonable to reject the hypothesis if the sum of ranks within the first group of m random vari-

ables, i.e. Wy(x) = >, Ri(2), takes sufficiently smaller values then the sum of ranks
within the second group of [ random variables, i.e. W(z) := ;. Ri+m(z) where obviously
Wo(z) +W(z) = Zie[[n]] Ri(z) = Zie[[n]] i = @ -

§07.12 Lemma. For m,l € N and n :=m + [ let R = (R;);c[n) be a rang permutation on (R", "),
Wo = > icpm B W= 2 icpp Bivm and Uy = R* — [0,ml] with z — Up(z) =
> iclm] 2—je] Yesaymy- Then for each x € {x; 7 x;} it holds Wy(x) = Upn(z) + w
and consequently W (x) = ml — U, (z) + @

§07.13 Proof of Lemma §07.12. is given in the lecture. O

§07.14 Comment. Keeping Lemma §07.12 in mind, we use the test statistic W, or equivalently U,,,; to
reject the hypothesis H : P = P against the alternative H, : B < P, if U,,; < c or equivalently
W, < c—i—w for a certain threshold ¢ € (0, ml]. The test is called (one-sided) Mann-Whitney
U-test or Wilcoxon two-sample rank sum test'. The critical value has to be chosen according to
a pre-specified level o« € (0, 1) which under the null hypothesis necessitates the knowledge of
the distribution of U,,; or an asymptotic approximation. Interestingly the next proposition shows
that under the null hypothesis the distribution of U, is distribution free in the following sense:
If B = IP and P admits a Lebesgue density, then the distribution of U, is determined and it is

independent of the underlying distribution PP. O

§07.15 Proposition. For m,l € N and n := m + [ let P*" € W(%") with identical marginal distri-
bution P < \. For all k € [0, ml] it holds P*" (U, = k) = N(k;m,1)/(}) where N (k;m,1)
denotes the number of all partitions Zie[[m]] ki = k of k in m increasingly ordered numbers

ky < ky < -+ < ky, taking from the set [0,1]. In particular, it holds P*" (U, = k) =
]P®7L(Uml =ml — k’)

§07.16 Proof of Proposition §07.15. is given in the lecture. O

§07.17 Remark. For small values of % the partition number N (k; m,[) can be calculated by combina-
torical means and there exists tables gathering certain quantiles of the U,,;-distribution. However,
for large values of k the exact calculation of quantiles of the U,,,;-distribution may be avoided by
using an appropriate asymptotic approximation. In the sequel we let m and [ and thus n = m +1
tend to infinity, which formally means that we consider sequences (1, ),en and (1) e satisfy-
ing m,, + l,, = n for any n € IN. Here and subsequently we assume that m,, /n 7%y e (0,1)
and hence [,,/n 2% 1 — ~. For sake of presentation, however, we drop the additional index n
and write shortly n = m + [ with m/n === ~ and hence [ /n === 1 — ~. O

I'The version based on W, has been proposed by Wilcoxon [1945], while the U,,,;-version has been independently
be introduced by Mann and Whitney [1947].
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$07.18 Theorem. Form,l € N and n := m + [ let P*" € W(%") with identical marginal distribution

P < \, and hence continuous cumulative distribution function F. Consider U,,; : R — [0, ml]
and Tryy : R — Rowithx — Upy(z) := D iem] 2ojeq Liesay iy and

v T(r) =1 Hai)=m Y Rrigm) =1 (Kz)=1/2)—=m Y (i) —1/2).
i€[m] €[] i€[m] €[]
Define further vy, = mil(n +1)/12, T, = Ty /\/Vm and UY, = (U — ml/2) /\/Om. If in
addition m/n — v € (0,1) then U}, — T, = 0,..(1) and T}, 4 Ny, under P®", and thus
Ur, % N, under P,

§07.19 Proof of Theorem §07.18. is given in the lecture. O

§07.20 Remark. Considering two independent samples (X;)ic[m] ~ P®" and (Xigm)iep ~ P* set

§08.01

n:=m+land X := (X;);c[,- Keeping Theorem §07.18 in mind we reject the null hypothesis
H, : B = P against the alternative i, : B < P, if U,,;;(X) < ml/2 + 2q/Upu With F ;) (20) =
€ (0,1). This test is asymptotically a level-« test due to Theorem §07.18 by exploiting that
under the null P*" (U, < ml/2 + 2an/Umi) —— Fony(2a) = a for m/n 225 ~ € (0,1).
Note that we reject similarly the null hypothesis H, : B = P against the alternative 7, : P < B
if Upy > ml/2 + 21_q/Un. Next we study the (asymptotic) size of the power of the rank test
under local alternatives where we use that under the assumptions of Theorem §07.18 it holds

- U =ml/2 77 N~ Rx)-1/2 Z RXew)l/2 Lo )
ml — - n+1ly/m 1/12 n+1 Vi Oper
vV Uml ] V1/1 V1/12

= 1—7VmE(g) —ﬁﬁz(g) +0,.(1) (07.01)

setting g := V12(F — 1/2), B.(9) := - > icpny 9(Xi) and B(g) := § 2", 9(Xiym) where
P,(g) and I(g) are independent, P(g) = 0, and P(g*) = 1 by construction. O

§08 Asymptotic power of rank tests

Motivation. Considering the test of the hypothesis Hy : B = P against the alternative H; :
P < P we restrict our attention to the special case that 2 and IP belong to a location family B, as
introduced in Example §04.17. Precisely, we assume that the family 2, of probability measures
on (R, #A) is dominated by the Lebesgue measure. For each § € R, |} admits a likelihood
function given by L(6, x) = g(z—#0), x € R, where g is a continuous and strictly positive density
on R. Recall that in this context B < I? holds if and only if @ < b (see Example §07.10). Observe
further that we can assume that P = I (possibly after a reparametrisation). For m,l € IN
andn = m +1 supposing independent random variables (X;);cfn) With (X;)iepn) © B and
(Xitm)iepp ~ B their joint distribution belongs to the two sample location family B :

(]Pm’l =B"® IB@) . Summarising, based on the statistical two sample location experlment

(R", %", B™") the aim is to test the hypothesis Hj : # = 0 against the alternative H, : 0 < §. 0

§08.02 Regular location model. A location family I, of probability measures on (R, %) dominated by

the Lebesgue measure A\ € M, (%) with likelihood for each 6 € R and a strictly positive density
g € # givenby L(0,x) = g(x — 0), x € R, is called regular if the density g is in addition
continuously differentiable with derivative g satisfying A(|g|?/g) < oo. 0
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§08.03 Reminder. A regular location family I, is Hellinger-differentiable in each § € R with score
function /g = —¢(z — 0)/g(x — 0) and Fisher information J := J, = A(|g|*/g) (see Exam-
ple §04.17). Due to Theorem §05.12 the statistical product experiment (R", 2", B™™) is ULAN
in 0, = 0 with localising rate (,,, := m~'/2),,cix and central sequence (2§ := —V/mP.(3/9))men-
Precisely, for any sequence h,,, — h as m — oo it holds

log(dR../dR™") = —hy/mPE,(§/9) — $h*T + 0,..(1)

and \/ﬁ]ﬁ (9/9) 4, Ny, under B*". Given a two sample location family ™ for any § € R
the log of the likelihood-ratio satisﬁes log(dR™ /dB™) = log(dR®™"/dR®™). Thereby, if the
location family is regular and m/n =% 4 € (0, 1), whence h,, := hy/m/n == h,/7, it
follows

U = log(dB)z/dR™) = log(dR. 5 /dR™)
= —h7VmB.(3/9) — 1h*T + o,..(1) (08.01)

We consider in the sequel a rank test ¢, = 1 {Unom} with F, j(—21-4) = o € (0,1) based
on the standardised test statistic U}, = (Uyu — ml/2)/,/vm and its asymptotic decomposition
given in (07.01). O

$08.04 Theorem. Assume a two sample regular location model (R', ", R"'), n = m + 1 € N. Con-
sider a rank test p,, = L. with By 1 (—21-a) = @ € (0, 1) for the testing task Hy : = 0
against Hy : 0 > 0. If m/n “=> v € (0, 1), then:
(i) Under the null hypothesis H, : § = 0 we have B™ (,,) = B*" " (U*, > 21_4) 7% o e,
Yy Is an asymptotic level-« test;
(ii) The power function B,,(0) = B™ (¢,), 0 € R, of the rank test ¢, = 1 [vs ) satisfies
under local alternatives B, (h/\/n) = BIL(UY, > 21-0) — Fou(—21_a + hp) with

ml
H\/129(1 — v) for each h € R".

§08.05 Proof of Theorem §08.04. is given in the lecture. O

§08.06 Comment. Let us briefly consider arank test ¢,, = 1 { =1 [Us,<20) with |, 4)(24) =

Upni <l 2+ 2/Bat
a € (0, 1) for the testing task of the null hypothesis H, : § = 0 against the alternative H; : 0 > 6.

Similar to Theorem §08.04 ¢,, is an asymptotic level-a test with power for local alternatives
n—oo
B (—h/\/M) = Pla(Usy < 20) "5 Fon(za + hp). h € K. -

$08.07 Two sample Gaussian location model. For m,l € IN, n = m + [ and variance 0° € R,
the joint distribution of independent random variables (Xl)ze[[n]] with (X;)icpm] © NS 0 and
(Xigm)ieqg ~ Nﬁ;) belongs to a two sample Gaussian location model Nn;nx’l{au} = (Ngjg) =

®m ®l
Npon ® Nmyaz)) bR O

§08.08 Remark. Foro € IR+ a Gaussian location family N, ., on (R, #) is regular with score function

ly(r) = (v — 0)/o, * € R, and Fisher information Jy = A(|g|*/g) = N, (¢3) = [plz —
0)?/o°N,,»(dz) = 1,0 € R (using the notations in Example §04.17). O

§08.00 Example. Assume a two sample Gaussian location model (R, #", N;f;‘l{ﬂz}), n=m+!0leN
and o € Rj. Define the statistics Ty := 13, g, Xi — MY sepy Xivm € £ and V2, :=

?Zrm)tg(zz'e[[m]] (Xi— ZZE[[m]] X;)? +Zz€[[l]]( itm T 7 Zie[[l]] Xitm)?) € ", and set V,yy :=
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\/V_Til. Under Ng‘;z) the standardised (Student-) t-statistic 7%, := T/ Vi € Z" has a t,_o-
distribution with n — 2 degrees of freedom, i.e. T);, ~ t,_2. We denote by t,_2 , a a-quantile
of a t,_,-distribution, i.e., E,_,(t,—2.) = a € (0,1). Consider for the testing task of the null
hypothesis H, : § = 0 against the alternative H; : 0 < 6 (or H; : 0 > 0) the t-test ¢ =
1 Th>taia ) (orpr =1 {T:nlmim}), which is by construction a level-« test. Since a Gaussian
location model is regular (see Remark §08.08) we can directly apply Theorem §08.04 to derive
its asymptotic power function under local alternatives. However, Theorem §08.04 allows us to
study a t-test in an arbitrary regular location model (Definition §08.02). More precisely, for
9 € Rand o € R, define v(g ) € L with z — v(g,)(2) := (z — 0)/0. As in Remark §08.08
éa = V(g,) and Jy = N(eygz)(wfeja)) =1, 8 € R, is the score function and Fisher information,
respectively, in a Gaussian location family N, ., with variance o? e IR;. Considering a regular
location family B, with i € W5 (%) (see Notation §19.05) and hence B € Wy(£) forall § € R
we have 02 := R(v{;) ))) = AM(v{, )9) = Aidgg) = [ 2%g(2)A(dz) < oo and B (v(y.) = 1 for
all € R exploiting the translation invariance of the Lebesgue measure. O

§08.10 Regular mean location family with finite variance. A regular location family I, of probability
measures on (IR, %) is said to have finite variance 0> € R, if B € Wy(2) (and hence E €
Wy(%) for all 0 € R), and 0* = R(v(,),)) (and hence B(vf, ,)) = 1 forall § € R). We call
a regular location family satisfying in addition I (v(o1)) = 0 (and hence B (v(y)) = 0 for all

0 € R) a regular mean location family. m

§08.11 Theorem. Assume a two sample regular mean location model (R, ", ]R{"’l) with finite variance
o € R,,. Consider a t-test @}, = Ly, Ly with 1 — E _,(th—21-0) = @ € (0,1) for the
testing task Hy : 0 = 0 against Hy : 0 > 0. If m/n MmEN S (0, 1), then:

(i) Under the null hypothesis Hy : 6 = 0 we have B™ (p*) = IE;m’l(T;LJ > tp—21-a) 2%,
i.e., pr is an asymptotic level-« test;

1>tn—2,1-

(i) The power function B,:(0) = B™(¢%), 0 € R of the t-test o5 = 1 (23 >trara) satisfies

n—oo

under local alternatives 3. (h/\/n) = IP;Z;;(T;II > th21-0) — Fouy(—21-a + p) with
p=hat\/y(1—7).

§08.12 Proof of Theorem §08.11. is given in the lecture. O

508.13 Remark. Given a two sample regular mean location model (R”, ", R™!), n = m +1 € N
with density ¢ € %' and finite variance o2 € ]RTU let us compare the asymptotic level-a
rank-test ¢, = 1 (s na) (see Theorem §08.04) and the t-test ¢y = 1 [Trtian ) (see The-

orem §08.11). Using their asymptotic power functions the asymptotic relative efficiency (see

Definition §06.10) between both tests equals are(p,,, ¢%) = 120%(A\g?)?. In the particular case

of a Gaussian location model, i.e., g(z) = \ﬁl exp(—x?/(20?)) we have \g*> = 1/(20/7) and

2mo

hence are(p,, ¢}) = 3/m ~ 0.955. On the other hand denoting by D the class of all Lebesgue-
densities g € £ satisfying A(v(9 ) g) = 0 and )‘(W(Qo,a) g) = 1 Hodges and Lehmann [1956] have
shown that infep 120%(Ag®)* = 0.864 and sup,cp, 120°(Ag?)* = oc. 0
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Chapter 3

Nonparametric estimation by projection

This chapter presents an introduction to nonparametric estimation of
curves along the lines of the textbooks by Tsybakov [2009] and Comte
[2015] where far more details, examples and further discussions can be

found.
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§09 Review

Nonparametric density estimation. Consider for a non-empty set of parameters © a family
of probability measures on (IR, %) which contains the distribution of an observable real ran-
dom variable, X © . The family I captures the prior knowledge about the distribution of
the observation. For example, a family given by a set of parameters © containing only one
singleton, i.e., © = {0,}, and hence X ~ I} for some probability measure B, € W(%A),
means, the data generating process is known to us in advance. On the contrary, a parameter
set © = W(ZA) reflects a lack of prior knowledge. A parametric model B for some parame-
ter set © C R* provides in a certain sense a trade-off between both extremes. In this chapter
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our aim is to avoid an assumption of a finite dimensional set of parameters. For example, con-
sider (X;)ic[ng e W(%), that is, an independent and identically distributed sample with
common probability measure P € W(28). A reasonable estimator of the associated cumulative
distribution function (c.d.f.) F(t) := P((—o0,t]), t € R, is the empirical cumulative distri-

-~

bution function (e.c.d.f) E(t) := P((—oc,t]), t € R. Foreacht € R, F,(¢) is an unbiased
estimator of F(¢) with variance var_(F,()) = LF(t)(1 — F(¢)). Consequently, F.(t) converges in
probability to F(¢), and thus it is a consistent estimator. Moreover, by the law of large numbers
the convergence holds almost surely in any point and also uniformly, by Glivenko-Cantelli’s

theorem, i.c., ||F, — Fll.. = o(1) P-as.. If we assume in addition that P admits a Lebesgue

A~

density then [, is a unbiased estimator with minimal variance, by Lehman-Scheffé’s theorem.
However, comparing different probability measures using their associated c.d.f.’s is visually dif-
ficult and as a consequence, other measures for dissimilarities are typically used. Consider, for
instance, for two probability measures P and P on (R, %) their total variation distance given
by [P — Bl := sup{|P(B) — R(B)|, B € #}. We note that for any probability measure
P € W(£) admitting a Lebesgue-density we have ||P — P
consequence the empirical probability measure ]E is not a consistent estimator of IP in terms of

the total variation distance. In other words, dependending on the measure of accuracy (metric,
topology, etc.) a different estimator of IP might be reasonable.

ry = 1 P-as. forany n € IN. As a

§09.01 Lemma (Scheffé’s theorem). Let P, € W(%) admit a ji-density p and p, respectively, for

some 1 € My (B). Then |P — B, = %u(!p - pl) = %Hp —p

Li(p)

§09.02 Proof of Lemma §09.01. is given in the lecture. O

In the sequel let D be the set of Lebesgue densities on (R, %), and hence D C L, = L,(A, \).
P = pAand ]Ep denote for each density p € D the associated probability measure and expec-

tation, respectively. We consider the statistical product experiment (R", 2", R*" = (P.*") ;cp)
and (X;)icpp © B®". Typically, for s > 1 we access the accuracy of an estimator p of p
either by a local measure, e.g. P*"(|p (t) — p(¢)|®), for t € R, or by a global measure, e.g.
Pe(||p — pHZ) = P*(A(|p — p|*)), with a focus on the special cases s = 1 and s = 2.
For an introduction to Kernel density estimation we refer to the lecture course Statistik 1 (§22 -

§24).

Nonparametric regression. We describe the dependence of the variation of a real-valued ran-
dom variable Y (response) on the variation of an explanatory random variable X by a functional
relationship ]E(Y|X = x) = f(x) where f is an unknown functional parameter of interest. For
a detailed discussion of the case of a deterministic explanatory variable we refer to Tsybakov
[2009]. Here and subsequently, we restrict our attention to the special case of a real-valued
explanatory variable X, and hence, a random vector (X,Y") taking values in (RQ, %2). The
joint distribution of (X,Y") is uniquely determined by the functional parameter of interest f,
the conditional distribution of the error £ := Y — f(X) given X and the marginal distribution
of X which are generally all not known in advance. However, the joint distribution is typically
parametrised by the regression function f only and we write shortly (X ,Y") ~ P. Thereby, the
dependence on the marginal distribution P of the regressor X and the conditional distribution
of the error term £ given X is usually not made explicit. For sake of simplicity, suppose in
addition that the joint distribution I} of (X', Y") admits a joint Lebesgue density p. Denoting by
p* the marginal density of X we use for the conditional density p"'* of Y given X the P-a.s.
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identity p*p"™ = p which allows for P-a.e. z € R to write

q(z) = f(2)p'(z) = E(Y[X = 2) p'(2)
= /R yp " (y)dyp(e) = /}R yp(z,y)dy. (09.01)

Consequently, the function of interest is -a.s. given by f = q/p"* which motivates the fol-
lowing estimation strategy. Given a sample of (X,Y’) estimate separately q and p”, say by q
and p*, and then form a estimator f: q/p" (possibly in addition to be regularised). There are
many different approaches including local smoothing techniques, orthogonal series estimation,
penalised smoothing techniques and combinations of them, to name but a few. In the sequel
let I be a family of regression functions and for each f € J denote by I and IE, the asso-
ciated probability measure of (X ,Y’) and its expectation, respectively. We denote by I the
family of possible distributions of (X, Y’), but keep in mind, that the distribution P of (X,Y")
is generally not uniquely determined by f € F only. If {(X,Y) :i € [n]} form an indepen-
dent and identically distributed (i.i.d.) sample of (X,Y") ~ B then B*" = ®;¢[,j P denotes the
joint product probability measure of the family ((X,Y)))icfny. We write ((X,Y)))ic[n] Sa b

or ((X,Y))iepny ~ B for short. We denote by B*" := (B*") ey the corresponding family
of product probability measures. For s > 1 we access also the accuracy of an estimator f of

f either by a local measure, e.g. B*"(|f(t) — f(t)|*), for t € R, or by a global measure, e.g.

IPf”(Hf— fl;) = E®"(A(|f— f1?)) with a focus on the special cases s = 1 and s = 2. For an
introduction to smoothing techniques we refer to the lecture course Statistik 1 (§22 - §24).

§10 Noisy version of the parameter

Let (H, (-, -),;) be a separable real Hilbert spaces. We are interested in the reconstruction of § € H
from a noisy version of it, which we formalise first in this section by introducing stochastic
processes.

§10|01 Stochastic process

§10.01 Notation. Here and subsequently, a non-empty and generally non-finite subset 7 of IN, Z or
R and a subset U/ of J denote an index set. We consider the product spaces R’ = Xies R
and R = X,y R, where we identify the family 1, = (y ),c7 € R” and the mapy, :J — R
with j — y. The map II, : R’ — R given by Y = (y)jes = (y)jeu = Ly, is called
canonical projection. In particular, for each j € J the coordinate map 11, =TI, : R” - R
is given by 4, = (y,);7:cs +— y, =: ILy. Moreover, R’ is equipped with the product Borel-
o-algebra B = X ieq P Recall that B equals the smallest o-algebra on R’ such that
all coordinate maps 11, j € J are measurable. i.e., B = O'(H]., j € J). Moreover, let
(J, 7 ,v)be ameasure space with o-finite » « M, ( 7 ) and L,(v) := L,(J, #,v) the usual set
of square integrable real-valued functions defined on (7, ¢ ,v). Define the set of equivalence
classes J := [L,(v) := L,(J, #,v), which forms a Hilbert space endowed with usual inner product
{-.); == ("), and induced norm |-, := ||-[|,. Eventually, we define arithmetic operations

on elements of R’ coordinate-wise, for example meaning a.b, = (a,b,) jeg and ra, = (ra;)jer
for a,,b, € R” and r € R. Let us further introduce (, := (0);c and 1, := (1);c. O

§10.02 Comment. Given a measure space (2,.7, 1) , s € [1,00] and the usual space £,(Q, <, 1) of
L (1)-integrable functions introduce for each .o7-%-measurable h : () — R, in short /, € <7, the
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pi-equivalence class {1}, := {h, € o/ : h = h, p-a.e.}. For s € R define the set of equivalence
classes L(n) := L« p) := L2, ) := {{h}, : h € L« )} and [[{h} ||| ) = [Pl
for {h}u 6 H_ J(u). Fors > 1, (Lw), |- H[L () s anormed vector space. Formally, we denote by
{o}, : L) — L,(u) the natural 1nJect10n h +— {h},. Incase s = 2 the norm [[{h}, ||, =
1]l ¢ = ( (Ih[?)!/2 is induced by the inner product ({h},, {h.}.) = ({h}., {h}.) ) =
f1(hh,), and hence (L(n), (-, ) ) is a Hilbert space. As usual we identify the equivalence class
{h}, with its representative h, and write /» € [,(»1) for short. If A = p is the Lebesgue-measure
then we write shortly (L., (-,-) )and {e} : £, — L,. O

§10.03 Stochastic process. Let (Y );cs be a family of real-valued random variables on a common
probability space (2, <7, P), thatis, ¥ € o/ for each j € J. Consider the R’ -valued random
variable ¥/ := (Y )jcs where ¥ : Q — R is a «@7/-%" -measurable map given by w
(Y (w))jeg = ¥ (w). Y is called a stochastic process. lts distribution P* := P oY 'isthe
1mage probablhty measure of P under the map Y/, i.e. ¥/ ~ P for short. Further denote by
P'=PoY '=Po II,' the distribution of the stochastic process ¥, := I1,Y, = (Y )ucs On
U C J. The family (IP Juc 7 finite 18 called family of finite-dimensional distributions of Y, or P*.
In particular, ' = P"* = P* o [T denotes the distribution of ¥/ = I1,Y/. Furthermore, for
j.j, € T we write (1) = P¥(I1) and Cov(1.Y) := P(YY,) — P(¥)P(Y) = P*(ILI1) -

P* (I1,)P* (I1, ), if it exists, for the expectation of ¥ and the covariance of ¥/ and Y with respect
to P*. O

§10.04 Assumption. The stochastic process ¥ = (Y );c7 on a common measurable space (€2, /) as
a function Q x J — R with (w,j) — Y (w) is & ® _#-Z%-measurable, | ¢ «/ «o 7 for
short. O

$10.05 Definition. Let Y = (Y);cs ~ P* be a stochastic process satisfying Assumption §10.04. If
P(lY]) € R',ie. ¥ € L£(P)orII, € £,(P") in equal, for each j € J, then m, := (m, :=
P(Y));es € R” is called mean function of Y, where m, € 7 due to Assumption §10.04. If in
addition v(m?) € R', i.e. m, € J then m, is called (J-)mean. If P(|Y|?) € R', i.e., Y € Ly(P)
or T, € L,(P*) in equal, for each j € J, then cov, = (cov, := Cov(Y,Y)); es € R” is

called covariance function of Y/, where cov,, € / 2 due to Assumonn §10.04. A linear and
bounded (continuous) operator from J into 1tself [' € () for short, satistying (I'z,,y,), =

Cov(v(xY),v(yY)) = [; [,y cov, zv(dj)v(dj,) forall y,z, € J = Lyv) is called covari-

ance operator of ¥, or P*. If ¥ admits a mean function m, € # (respectively mean m, € J)
and a covariance function cov,, € _#* (respectively covariance operator I' € [L(J)) then we write
shortly ¥/ ~ I? (respectwely Yo P ). O

§10.06 Remark. A covariance operator I' € L(J) associated with a stochastic process ¥ ~ P* is
self-adjoint and non-negative definite, [ € [-(J) for short. If

sup {P(\z/(y};’)\z): y €J =L, |ull, < l} e R,
which holds whenever P(|[Y[|?) € R" or in equal /||, « £,(") (implying ¥ € J P-as.),
then there exists a covariance operator I' € [2(J) satisfying (I'z,, y,), = Cov(v(z,Y),v(yY)).

2 ) )
Observe that [|Y||? = sup {|v(Y)|:v. € 3.lul, <1}. Note that |||, € L,(P) is a sufficient
condition for the existence of a covariance operator, but it is not a necessary condition. O

§10.07 Empirical mean model. Assume a probability space (Z, 2, P) and a stochastic process 1) —
(V)jer € 2@ Frie. Zx T 2 (2,7) = ¢¥(2) € Ris Z ® _#-%-measurable, satis-
fying in addition ¢) € L,(P) := £,(Z, Z,P) for each j € J. Consider the product probability
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space (Z', 2% P") and Y, = (Y)jes with Y := D(1) € 2" where 2" = (2)icn] —

1

Y(z") = (I@(z@))(z”) = ') e ¥ (=) foreach j € J and Y € 7" @ #. By con-
struction m, = (m; = P(1)))jes € _# is the mean function of Y. For each j € J the

J

statistic g := TZ,I'Q(I/S,(L,‘/) ~P(ih) € 27" is centred, ie. g € L,(P™) with P*"(g) = 0, and

7

g = (g)jes € Z™" ® F. Since Y = m, + n '/’ for each j € J by construction we write
shortly ¥/ = m, + n . If for each j € J in addition ¢, € L(P) := L,(Z, 2 P) then we
have ¥ = B(¢)) € L,(P™) and, hence & € L,(P™) by construction. The covariance function

cov,, € #*of g = (g);es is given for each j, j, € J by
cov, = Cov(g,g) =P (1)) — P())P()) = nCov(y,Y).

77 7,

Consequently, we have & ~ P and Y = m, +n g ~ P . There exists a covariance

operator I' € [(J), if in addition sup { I’ (|1/(1,1)) ]2): e d =010 |yl, <1} € R, which holds
|, € L) orin equal P([|4;]|?) € R”. Observe that [|4;]|* = sup{|v(y,) iy e
J. ]|yl < 1}. Note that ||¢;|, € £,(P) is a sufficent condition for the existence of a covariance
operator, but it is not necessary. O

whenever |

U

$10.08 White noise process. A stochastic process W, = (V\/;.)je 7 is called white noise process, if
(W,)ecz is a family of independent and identically distributed random variables, where each W,

has zero mean and variance one, W, ~ P and W, ~ I/ in short. m

$10.09 Notation. In other words, the distribution P™ of a white noise process W, = (W) jeg ~ P

equals the product of its marginal F, |-distributions, i.e. PY = ®ije J]PW’ = Qjeg By = By o

§10.10 Remark. The centred stochastic process € := (g );jecy of error terms in an Empirical mean
model §10.07 is in general not a white noise process. O

§10.11 Notation. We denote by /, := L,() = L,(N,2%,) = J the space of all square-summable real-
valued sequences endowed with counting measure 1, := >, d¢;} over the index set IN. O

§10.12 Property. Let W, = (VV;)jelN ~ PN be a white noise process. By assumption W. admits

(0,1)

0 := (O)jelN as l,-mean and I' = id,, € [2(4,) as covariance operator, i.e. \\: ~ b, .., since
(z,, ?J.)gz = Zje]N Y& = Zje]N Y; ZjoelN Cov,, T, = (Fz, y->€2' -
§10.13 Gaussian process. A stochastic process ¥ = (Y )jes ~ B, . satisfying Assumption §10.04

with mean function m, € _# and covariance function cov,, € _#? is called a Gaussian process,
if the family of finite-dimensional distributions (P")yc 7 finite cOnsists of normal distributions,
that is, ¥, = (Y ),y is normally distributed with mean vector (m, ),e;, and covariance matrix
(cov, , Juweu- We write shortly 7 ~ N or) ~ N . ifin addition there exist a covariance
operator I, € [>(J) associated with Y. The Gaussian process 13 ~ N, with J-mean zero and
covariance operator id; is called iso-Gaussian process or Gaussian white noise process, which

equals B, ~ 1\&V in the particular case J = L,(x) = /,. m

§10.14 Definition (Random function). Let (H, (-,-),) be an Hilbert space equipped with its Borel-o-
algebra %,, which is induced by its topology. An .-%,-measurable map YV : (Q,.o/) —
(H, A,) is called an H-valued random variable or a random function in H. u

§10.15 Lemma. Consider ((,, (-, ), ). There does not exist a non-zero random function Y, = (Y)jen in
{, which is a Gaussian white noise process.

§10.16 Proof of Lemma §10.15. Exercise. O
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§10|02 Noisy parameter

§10.17 Assumption. The Hilbert space J = L,(7. 7, v) and the surjective partial isometry U € L(H,J),
i.e. UU" = idy, are fixed and presumed to be known in advance. O

§10.18 Notation. Here and subsequently, we write ¢, = (0 );-, := Uf ¢ J. Keep in mind, that we
identify equivalence classes and their representatives. Our aim is the reconstruction of  and
hence U’} € H from a noisy version of 6. O

§10.19 Noisy parameter. Let €, = (g);cs be a stochastic process satisfying Assumption §10.04 with
mean zero and let n € IN be a sample size. The stochastic process 5 = @ + n "¢ with J-mean
6 is called a noisy version of the parameter ¢, € J, or noisy parameter for short. We denote
by B" the distribution of 5 If € admits (possibly depending on €) a covariance function, say
cov,, € #? or a covariance operator, say I' € [Z(J), then we eventually write € ~ B, | and

0 ~FB,, ., ore ~ B and 0 ~ B, for short. The reconstruction of 6, € J (or in equal
U"6, € H) from a noisy version 6, ~ B" is called a statistical direct problem. 0

§10.20 Sequence space model. Consider J = ¢, = L,(%). Let g = (g ), e be a real-valued stochastic
process satisfying Assumption §10.04 with mean 0, € ¢, and let n € IN be a sample size. The
observable noisy version 6, = 6, + n~"?¢, ~ R" with /,-mean , € ¢, as in §10.11 takes the form
of a sequence space model (SSM)

/0; _ 9] + Ve

R

jeN. (10.01)

If € admits a covariance function (possibly depending on ), say cov,, € 2]N2, then we eventually

write ¢ ~ P

e, , for short. If in addition € admits a covariance operator I' € [(4,) (an infinite

matrix) then we write £, ~ B, O

n'T)*

§10.21 Gaussian sequence space model. Let B := (B/ )jeN ~ N, be a Gaussian white noise process.

The observable noisy version 5 =0+nY 2]3, with /,-mean € € ¢, takes the form of a Gaussian
sequence space model (GSSM)

0=0+n"B,jeN with (B)jen~ Noy (10.02)
and we denote by N\, the distribution of the stochastic process é\ m

§10.22 Notation. Consider the measure space ([0, 1], .\, ) where )\, , denotes the restriction of
the Lebesgue measure to the Borel-o-algebra %, over [0, 1], and the Hilbert space [,(\,,) :=
L,([0,1],%,,, A\s). Assume that ¢ < [,(\,.) =: H. Consider an orthonormal system (11,);c in
Ly(A). Then U : Ly(A) — £, with = Uh := h, = (h, := (h,u,),)jen is a surjective partial
isometry U € L(L,(\.),6). Its adjoint operator U™ € L(4,,L,(\.) satisfies U'a, = > jew G, for
all a, € ¢,. We call h, = (h,)jen (generalised) Fourier coefficients and U (generalised) Fourier

series transform. 0

§10.23 Nonparametric density estimation on [0, 1]. Let [, be a set of square-integrable Lebesgue
densities on ([0,1],4, ), and hence D, C L,(\.,) =: H. We denote for each density p € D,

by I := pA,, and [£ the associated probability measure and expectation, respectively. As-
suming an iid. sample (X);cf,) of size n € IN we consider the statistical product exper-
iment ([0.1]", 2" B = ("), ). Let U € L(L{\),%) be a generalised Fourier se-

ries transform (see Notation §10.22) which is fixed and known in advanced. Evidently, for
each p € D, C L,(\,) the generalised Fourier coefficients p = (@)jem = Up satisfy
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P = (P w) = A(pw) = pAu(y) = B(w), ie w € L(0.1.4,.E) = [,(1), for each
j € IN. Moreover, the stochastic process (u,)jew on ([0,1], 4, ,P) is %, ® 2]N Z-measurable.

01?7 7p u1]

Similar to an Empirical mean model §10.07 we define p = (p := P(u ))jen € B @ 2N

[0,1]

where ' = ()iepy = B() = (B)(@") = n' Tyepeg () for cach j € N. By
construction p = (p = B (u,))jen € 2V is the mean function of p. For each j € IN the
statistic g := n2(P(w) — P () € A" is centred, ie. g € L,(0,1]" 2, B™") = L,(I)
with P™"(g,) = 0, and g = (g)jen € @‘8’” ® 2N. Since p = p +n '/’g foreach j € N by

0.1)

-1/

construction p = p + 1 '/ is a noisy version of p. O

§11 Orthogonal projection

§11.01 Notation (Reminder). Consider a measure space (7, Z, v) as in Notation §10.01. For w, € R’
define the multiplication map M : R’ — R’ with q, — M,a = wa = (wa)jer. If
w, € Z,ie. w, is f#-%-measurable, then we have M, : ¢ — _Z too. We denote by M,
the set of all multiplication maps defined on _¢. If in addition w, € £_(v) then we have also
M, : L,») = J — J identifying eventually equivalence classes and representatives. We set

1) = {M, € M,: w, € L)} C L(J) noting that IM, ll,,, = sup{flwal, : lal, <1} <
Jw.ll, _,, foreach M € (). -

11.02 Notation. For A ¢ ¢ we denote by 1' = (1');c the indicator function where for each
jeJ, I =1ifj € Aand I' = 0 otherwise. Obviously, 1" is _# -%-measurable, i.e.
1! € 7, and it belongs to L.(v), and to L,(v) whenever v(A) € R". Since {j} € 7 we
have 1¥) € ¢ and 17 € L.(v). Obviously, we have I, = 17 € L.(v) and M; € L().
For each w, ¢ L _(v) set yu, := {{aw.}, : a € L)} = {aw, : a, € J = EQ(V)} and
hence in particular i1 ={al! : a € J}. Given O, = (0)jes for u, 7/ we write further

N ={w =0} :={j €T :w =0} € Z,anddenote by dom(\ ) = {a € J : aquw, € J},
ran(M ) = {aw, : a, € dom(M,) C J} and ker(\) = {a, € J : {aw} = 0}, respectively,
the domam, range and nullspace of M J O dom(Xl,) — J. Wewrite v, ¢ 7 ,ifw, € ¢
and v(N,) = 0. Similarly, if v, € (R")7 is B4 -%" -measurable, then we write 1, © /7, and
w, € ¢ assuming additionally v (N) = 0. O

$11.03 Property. For each w, ¢ ¢ (1 L_(v) the multiplication M, € [2(J) C L(J) is a positive semi-
definite operator. Keeping N, = {w =0} € 7 in mind lts range and null space is given by
ran(M, ) = Jw, and ker(M,) = J]]LN = ran(M,.), respectively. M, € '(J) is consequently injective
ifandonly ifw, € #, i.e w, € 7 and 1/(/\[,) = 0. Foreach A € 7 setting A® .= J\A e ¢
the range and null space of M. € L(J) C L(J) is given by ran(M,.) = 112 and ker(My.) = a1,
respectively. Obviously, we have MiA = M. and hence M. is an orthogonal projection and
J = 41! @ 1. Moreover, the map MIL =id J; equals the ideﬂtily on J. 0

§11|01 Weigthed norms and inner products

§11.04 Notation. Extending the real line by the points —oo and +o0o we define R := R U {4o0}.
We denote by %7 the Borel-o-field over R and note that the trace of 4 N R over R equals #.
Thereby, each a, € _#* is in a canonical way also ¢ B measurable, o, € 7+ for short. For
w, € 7 and hence w? € 7+, consider the measure .~ on (J, 7 ), i.e., w! = dw’v/dv is
the Radon-Nikodym density of w?v with respect to v. We write shortly (-,-) = (-, -)Mw ., and
-1, =1 ||[L2w,, For w, € _# we denote its Moore-Penrose inverse by w! := w '1¥ € ¢
meaning w = w; ' if j € N°and w := 0if j € N,. Obviously, we have wiww! = wf,
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wawiw, = w, and waw = wiw, = 1. We set J* := [“(r) := dom(M,,) and write w” ' := (w)? =
(w?)' for short. O
§11.05 Property. Let w, € ¢. Then for each a, € Lywv) we have w?v(|a|?) = v(lw.a|?). If
w, € Rv-ae, thenw?v € M, (_7 ) is a o-finite measure and L,(wv) endowed with inner product

<-, Do = (s ey = (M, M, o) is a separable Hilbert space. If in addition w, € L_(v), then

L) = o, + 1% = {wh, : h, € L)} + {h 1% : h, € B (11.01)

Indeed, for each h, € _# consider the decomposition h, = w,w!h, + h.1%. The claim follows
immediately from the equivalence of h, € L,(wX'v) and wih, € L,(v). Under w, ¢ L_(v) the map
M, : L) — L,(v) is well-defined, and setting dom(M,,) = {h, € L,(v) : wih, € L v} =
Lo, + LwI C L w!v) (similar to (11.01)). Consequently, if in addition v(N)) = 0, then
dom(M,) = Ly(w’v). If w, € L (v) then M, € I!(J), and M, : J O dom(M,,) — J. Moreoven
we have dom(M,) = J, ran(M,) = Jw, and ker(M,) = 31 (see Property §11.03). Therewith,

it follows dom(M,,) = Jw, ® 31, Consequently, if in addition /(N) = 0, then J* = 1°(v) =
dom(M,) = gw, = Ly(w!v). The last equality follows from (11.01) since both measures w?'v
and v share the same null sets (i.e. they mutually dominate each other). m

§11|02 Orthogonal projection

11.06 Notation. For a non-empty and generally non-finite subset 7 of IN, Z or R and m € IN we set
[m] :== [=m,m] N J and we write shortly 1" = (1");cs := 1'"l. Furthermore, we define
(I . 0

$11.07 Property. For eachm € N, My. € L(J) and M,,.. € L(J) is the orthogonal projection onto the

linear subspace 31" C J and its orthogonal complement 31" = (s17")+ C U, respectively, that
is J = 91" @ a1, We have point-wise 1" — 1, = o(1) as m — oo meaning that for each j € J
holds 1" — 1, = o(1) as m — oo. Considering the orthogonal projection My.. € () and the
identity M = id; € () point-wise convergence My —idy = o(1) as m — o0 holds too, that
My —id, Ja. |, = (T = 1)all, = 1" all, = o(1) as m — oo for all a, € J. u

§11.08 Orthogonal projection. Given m € IN we define for each § = U# € J its orthogonal projection
0" = Q1" € 41" (and 0™ := U'Q" € H). O

§11|03 Global and maximal global v-error

We shall measure first globally the accuracy of the orthogonal projection " := 1" of § € J.

§11.09 Property. If v, ¢ 7 (ie. v(N)) = 0)and () < L,(vv) (ie. ||0]2 = vlv(6) € R), then for
eachm € N we have (" € L,(vv) too, since ||0"||> = v:v(Q°1]") < vlv (92). Moreover, it holds
16" = 67 = [T ]2 = viv (6711") < 7w (67) € R and [|0" — 67 = o(1) as m — oo by
dominated convergence. O

11.10 Comment. We assume throughout this chapter that the Hilbert space J = [.,(7. 7 .») and the
surjective partial isometry U & [L(H.J) is fixed and known in advance. Considering a v-error
means the weight sequences v, € _# is also fixed and known in advance. Consequently, the
condition v, ¢ 7  does not impose an additional restriction. O

11.11 Global v-error. Given v, ¢ ¢ ,m < IN, a parameter ¢, — Uf¢ < [,(v'v) and its orthogonal
projection (" = (/1" < 41" we call || — 6|, = [|Q1""||, € R global v-error. 0
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§11.12 Assumption. Consider weights o, v, € 7 ,ie. v(N) = 0 = v(A)), such that a, ¢ L ()

a o

and (av), == (av);cr = av € L.(v). We write (av), = [[(a0) T[], € R’ for each

(m)

m € IN. O

§11.13 Reminder. Under Assumption §11.12 we have J* = [%,(v) = dom(M,) = ya, = L,(aX"v) and the
three measures v, a?fv and v’ dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). Consequently, J* C J = [,(v) and if h, € L,(a?'v) satisfies v?v(h}) € R,
for example, then h, € L,(v}v) too. O

§11.14 Notation. Under Assumption §11.12 and given a constant 1 « IR we consider J* = [°,(v) =

L,(e'v) endowed with |||  := [|-|| ;. := |||, ., and the ellipsoid

0= {h e I |2 = altv(R) = v(alTh) <r*} C I

Keep in mind that (av), € L_(») implies (av) = ||(av) 1", , € R" for each m € IN. O
§11.15 Property. Under Assumption §11.12 we have J* C L,(v}v). Indeed, for each h, € J%, i.e.,
Ihll € R', follows ||h||n2 = v(Ra(av)’) < ||h,||§T||(an).||E w € R". O

§11.16 Abstract smoothness condition. Under Assumption §11.12 the parameter ¢/ < J satisfies an
abstract smoothness condition if there is r € IRTD such that § € J*r C J°. o

§11.17 Lemma. Under Assumption §11.12 for each m € N the orthogonal projection 6" = 1" €

17 of 0, € J° C Ly(2v) satisfies || 0" — 0], = |61 ]| < v (av),,..

§11.18 Proof of Lemma §11.17. is given in the lecture. O

§11.19 Maximal global v-error. Under Assumption §11.12 for . € IN, a parameter ¢, = U6 < J*" and
its orthogonal projection ) = 01" € J1." we call sup {[|§" — €]|,: 6 € J**} maximal global
v-error over the class of parameters J*". O

§11|04 Local and maximal local ¢-error

Secondly, we measure locally the accuracy of the orthogonal projection §" := 1" € 41" of
6 =U6 € J.

§11.20 Notation. For ¢ € ¢ and dom(ov) := {h, € J = L,(v) : ¢h, € L,(v)} we consider the linear
functional ¢ : J O dom(or) — R given by h, — ¢v(h,) := v(¢h,) with a slight abuse of

notations. O
§11.21 Comment. If ¢ < J = IL,(v), then it follows dom(¢v) = J and [|¢v|, . = o], € R
Consequently, we have ¢v € L(J,R) and ¢v(h,) = (h., @) ,» in other words ¢ is a Fréchet-Riesz

representative of the continuous linear functional ¢v. O

§11.22 Property. If ¢ € 7 (ie. 1/(/\/¢) = 0)and 0, € dom(ov) (i.e. ¢ € L,(v)), then for each
m € N we have 0" € dom(¢v) too, since [|¢0" ||, ., = v(|¢0|1") < v(|¢h|). Moreover; it holds
v (6) — dv (") < l@lv (10" — 6]) = |¢lv(1811") < v(l¢h]) € R and [¢v(6) — ¢ (0")

o(1) as m — oo by dominated convergence. O

§11.23 Comment. We assume throughout this chapter that the Hilbert space J = [,(7, 7.~) and the
surjective partial isometry U & [L(H,J) is fixed and known in advance. Considering a ¢-error
means the linear function ¢v and hence in equal ¢ € ¢ is also fixed and known in advance.
Consequently, the condition ¢ < 7  does not impose an additional restriction. m

Statistics 2 41



Chapter 3 Nonparametric estimation by projection §12 Orthogonal projection estimator

§11.24 Local ¢-error. Given ¢ ¢ 7 ,m < IN, a parameter ¢, — Ut/ € dom(or) and its orthogonal
projection /)" = (1" € 41" we call |¢pv(6) — ov(4™)| = |pv (1| € R local ¢-error. O

§11.25 Assumption. Consider ¢.a, ¢ 7 ,ie. v(N)) =0 = v(N),suchthata & L_ () and (a0), =
(0,0);cr = 0.0 € L) and hence 0,17, = (@) 1" 0y = o1) as m — oo, -

§11.26 Reminder. Under Assumption §11.25 we have J* = [I%,(v) = dom(M,) = Ja, = Ly(a'») and
the three measures v, |¢|v and a?'v dominate mutually each other (see Property §11.05). Con-
sequently, J* C J = L,(») and if h, € L,(a?'v) satisfies v(|¢h.|) € R', for example, then
h, € L,(J¢|v) too. O

§11.27 Property. Under Assumption §11.25 we have J° C dom(e¢v). Indeed, for each h, € I, i.e.
1.l € R, we have [|¢h.l, ) = v([h.ai(ag).]) < Rl ll(@o)]l,,., € R

§11.28 Notation (Reminder). Under Assumption §11.25 the parameter § = U# € J satisfies an abstract
smoothness condition if there is r € R, such that 0, € J*" = {h, € J*: [|h |2, <1°} C J° where

[l = -l == NIl @) (see Definition §11.16). Since (a0), € L.(v) we have a1 || =
H(agﬁ),]lf”'lﬂb(y) = o(1) as m — oo by dominated convergence. O

§11.29 Lemma. Under Assumption §11.25 for each m € N the orthogonal projection 6" = 1" €
I of 0, € I+ C dom(ev) satisfies [pv (6, — 07)] = |ov(O1)] < v(|@O1)< v a1

§11.30 Proof of Lemma §11.29. is given in the lecture. O

§11.31 Maximal local ¢-error. Under Assumption §11.25 for m < IN, a parameter ¢, — U < J*" and
its orthogonal projection (" = 1" € 11" we call sup {|¢v(§) — v (§")|: 6, € J* } maximal
local ¢-error over the class of parameters J*'. m

§12 Orthogonal projection estimator

§12.01 Notation (Reminder). Consider a measure space (7, ¢ ,v) as in Notation §10.01. For w, € R’
define the multiplication map M  : R” — R’ with a, — M, a. := w.a,. Forw, € ¢ we have
M, : # — _# too. We denote by M, the set of all multiplication maps defined on _¢. If in
addition w, € £_(v) then we have also M : L,(v) = J — J identifying eventually equivalence
classes and representatives. We set ['(J) := M, := {M eEM,:w e I]_oo(z/)} C L(J) noting that

HMw.”ﬂ_(.ll) = sup {||w'a’-||j: lally < 1} < Hw-Hn_m(u) for each Mw. € (). -

§12.02 Reminder. If v, ¢ L _(v) then M, € [X(J), and M, : J O dom(M,) — J. Moreover, we
have dom(M,) = J, ran(M,) = Jw, and ker(M,) = 51 (see Property §11.03), and dom(M,,) =

Jw, @ 31 (see Property §11.05). Consequently, if in addition () = 0, then J* = [%(v) =
dom(M,,) = sw, = L,(w'v). Foreachm € IN we write 1" = (11")je7 := 1" and 1'" := 1, — 17"

with [m] := [-m,m] N J. Consequently, M. € [Z(J) and M,,,. € () is the orthogonal
projection onto the linear subspace 417" C J and its orthogonal complement J1"* = (s17)+ C

J, respectively, that is J = 51" @ 41" (see Property $11.07). Finally, given (, — U0 € J we
consider the orthogonal projections )" = 01" € 41" (and 0™ := U"§™ € H) (Definition §11.08).

m

§12.03 Notation (Reminder). Consider a centred stochastic processes €, = (& ), satisfying Assump-

tion §10.04 and let » € IN be a sample size. The observable noisy version ¢, = ¢, + n "/’ of the
parameter §, = U# € J takes the form of a statistical direct problem (see Definition §10.19). We
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denote by [ the distribution of §. We write g ~ I, . if € admits a covariance operator | € [°(J)
possibly depending on 6. 0

§12.04 Definition. Given a noisy version @\ ~ RB" of the parameter §, = Uf € J for each m € IN we
call " := Q1 orthogonal projection estimator (OPE) of 6. 0

§12.05 GSSM (§10.21 continued). Considering /, = [ ,(N.2" 1) we illustrate the OPE in a Gaussian
sequence space model §10.21. Here the observable stochastic process 0 =06+ n "B is a noisy
version of (, = U € /,and B ~ N . Consequently, g admits a N; -distribution belonging to
the family N}, := (N, )gco. Summarising the observations satisfy a statistical product experiment
(R", 2™ N!) where © C (,. =

©

§12|01 Global and maximal global v-risk

We measure first the accuracy of the OPE ém = @]lﬁ” of )" = 01" ¢ 41" with ) = U € Jbya
global mean-v-error, i.e. v-risk.

§12.06 Reminder. If v, ¢ # and () € L,(v/v) then we have ()" € [,(vv) too and [0)" — 6||> = o(1) as
m — oo (Property §11.09). O

§12.07 Assumption. Consider a noisy version 5 =0 +n'"e ~ B of § = U# € J satistying
Assumption §10.04, v/ := B"(?) := (B"(?));es € L.(v) and 1" € L (v) B"-a.s., for each
m € IN. 0

§12.08 Comment. Under Assumption §12.07 if v 1" € [,(v) then we have vg 1" € [,(v) B"-a.s.. If in
addition ¢, € [,(v77), and hence 0" € [,(v'v) (Property §11.09), then it follows

00" =n ol +v0"c Lv) B'as. (12.01)

If 7 C 7 (at most countable) then Assumption §10.04 and v’ = 2" (g?) € L__(v) implies the
additional assumption € 1" € L_(v) B"-a.s.. However, the last implication does generally not
hold, if 7 € {IR, R} for example. 0
§12|01j01 Global v-risk

§12.09 Definition. Under Assumption §12.07, v, € 7 , 0 < [L.(v'v) and v 1" < J for m € IN the
global v-risk of an OPE 5,” = 5]11” € L,(vv) P"-a.s. satisfies

]Bn (

q" = A1) = B (1@ - )1)2) + a2 (202

with variance term B" (||(§ — )1 (|2) = n ' B (|[o.g1[|?) and bias term || 1], . 0

§12.10 Property. Under Assumption §12.07, v, ¢ 7 and 1" < [,(vv) for m € IN we have
B (|loel|?) = / B ()0 L v (dj) = v(v/o?1") (12.03)
J
and consequently B ([[(6 — )17 2) < ' [v/]},_, |17 € R -

§12.11 Notation. For a, € (R)N with minimal value in B C IN we define

arg min {(1,m :m € B} ‘= min {m €B:a,<a,Vje B}. O
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§12.12 Proposition (Upper bound). Let Assumption §12.07, v, ¢ Z , 0. € L,(v'v) and 1" € L,(v'v) for
allm € N be satisfied. For all n,m € N setting

R (6,0) = Q12 +n7 072, m? = arg min {R'(6,0) : m € N}
and R (,v) =R} (6,0) = min {R](4,0):m € N} (12.04)

we have B (|07 — 61) < (1V [/]},_,,) R,(0.v).
§12.13 Proof of Proposition §12.12. is given in the lecture. O

§12.14 Definition. Let ¢ < [ ,(v'») and ﬁ e I,(vv) B"-a.s. for all m € IN. If there exist C € R" and

\0
foreachn € N, R}, € R and m; € NN satisfying

C'R, < inf B'[§" — 6]> <B"|§" —4]> < CR,
meN v Y

then we call R’ oracle bound, m: oracle dimension and 0" oracle optimal (up to the constant

C). As a consequence, up to the constant C” the statistic 5,”3 attains the lower global v-risk bound
within the family of OPE’s, that is, B"[|6]" — 6]|? < C*inf,en B')|Q" — o2 O

§12.15 Oracle inequality. Under Assumption §12.07 let v, € 7 , 0 € L,(v'v) and 1" € L,(02v) for all
m € N. Ifin addition | < max(|v'|| . [[(v/)'] ) <v, € R then (12.04) implies

v, RE60) S B0 —a)2) = no'v(v'erlr) + 612
< yR'(@,v) forallm,n € NN.

As a consequence we immediately obtain the following oracle inequality
VR () < inf B ("~ 4)2) < B (18— 0)?)

<V, R (6,0) <V,

0

inf B"(|¢" — 4|, (12.05
g B - a2, (1209
and, hence R’ (4,v,), m’ and the statistic qm, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v;). O

§12.16 Remark. We shall emphasise that for each fixed . € IN with [|1"]| | € R" we have n™'||1"||, =
o(1) as n — oco. As a consequence, if ||[1"||, € R for all m € IN and |01 = o(1)
as m — oo then we obtain R’ (4,v) = o(1) as n — oo, and thus, R’ (§,v,) is also called an
oracle rate. Indeed, for all § € R there exists m, € IN and n, € N such that we have both
16112 < 0/2 and n” |12 < /2 for all n > n,, and whence R’ (4,v,) < R}'(6,v) < 6.
However, note that the oracle dimension m° = m?(f, v,) as defined in Proposition §12.12 depends

on the unknown parameter of interest €, and thus also the oracle optimal statistic @:mi. In other
words §™ is not a feasible estimator. O

§12.17 Corollary (GSSM §12.05 continued). Let 5 = 0 + n‘1/2B ~ N, as in Model §12.05, where
B~ N, and§ =U# € {,. Forv < (R )" and 0, € (,(v}) the (infeasible) OPE §]" = Q1" ¢
0,17 C 0, (v?) with oracle dimension m¢ as in (12.04) satisfies

NI = 012) = R 8.0) = inf N7 (1" - 012),

and hence it is oracle optimal (with constant 1).
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§12.18 Proof of Corollary §12.17. is given in the lecture. O

§12.19 Illustration. Here and subsequently, we use for two sequences a,, b, € (IRTO)]N the notation a, ~
b, if the sequence a, /b, is bounded away both from zero and infinity. We illustrate the last results
considering usual behaviour for the bias and variance term. We distinguish the following two
cases

(p) v, € Jorthereis m € N with || — 0”3 =0,
(np) v, ¢ Jand for all m € N holds || — 4> € R,

Interestingly, in case (p) the oracle bound is parametric, that is, nR’ (4,v) = O(1), in case
(np) the oracle bound is nonparametric, i.e. lim, ., nR; (6,v) = oco. In case (np) consider the
following two specifications:

Table 01 [§12]
Order of the oracle rate R’ (,v,) as n — oo

(j € IN) (a € R") (squarred bias) (variance)
o = 7 R 3 [ | o R..(0.v)
() ve(—1/2,a) j 2 | m2e™ m> | e n-
v=—1/2  jt | mTe logm | (5) T k’%
2v+41
() v+1/2eR, e/ mI—2av))+ gmm® 20l (log n,)ﬁ w
v=—1/2 e’ e logm | (logn )’L logl#

We note that in Table 01 [§12] the order of the oracle rate R (4, v,) is depict for v > —1/2 only.
In case v < —1/2 the oracle rate R}, (6, v,) is parametric. O
§12|01j02 Maximal global v-risk

§12.20 Reminder. Under Assumption §11.12 we have J* = [%,(v) = dom(M,) = sa, € J and the
three measures v, ¢’ and v?’v dominate mutually each other, i.e. they share the same null

sets (see Property §11.05). We consider J* endowed with ||-|| . = [|M, ||, and given a constant
r € IR, the ellipsoid J** := {h, € J* : ||A||, < r} € J° Since (av), € [ _(»), and hence
(av),,, = [[(a0) "]l _,, € R" for each m € IN we have J* C [L,(v») (Property §11.15), and

|01, < r(av),,, forall € J** (Lemma §11.17). 0

(m)

§12.21 Proposition. Let the Assumptions §12.07 and §11.12 and 1" & [L,(v/v) for all m € IN be satis-
fied. For alln,m € NN setting

R} (a,0) := [(av)}, V n’1||]lf"’||§], m’ := arg min {R (a,,v) : m € N}
and R (a,v):=R(a,0)=min{R] (a,0):m e N} (12.06)
we have B (||§"™ — oN2) < ([l ., +1°) R, (a,v) forall , = U € J*" and n € IN.
§12.22 Proof of Proposition §12.21. is given in the lecture. O

§12.23 Remark. Under the assumptions of Proposition §12.21 if there exists in addition v € IR satis-
fying [[v’||, ), < v forall 6 € J** then

sup {]B"(H@m — «9||3) 6 €} <(v+1r )R (a,0) foralln € IN.
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Arguing similarly as in Remark §12.16 we note that R (a,,v) = o(1) as n — oo, whenever
L[], € R" for all m € N and (av),,, = o(1) as m — oo. The latter is satisfied, for example,
if (av), = a,v, € J (in equal a, € L,(v’v)). Note that the dimension m’ := m/(a,, v,) as defined in
(12.06) does not depend on the unknown parameter of interest 6, but on the class J“* only, and
thus also the statistic (/9\7"'7 In other words, if the regularity of  is known in advance, then the
OPE (9 is a feasible estimator. O

§12.24 Corollary (GSSM §12.05 continued). Let 0 0 + n'?B ~ N, as in Model §12.05, where
B ~ N, and 0, = U0 € (.. Under Assumption §11.12 the OPE g = 41 € o1 C Lyw)
with dimension m as in (12.06) satisfies

sup {N; (18" — 6?): 4 e &} < CR(av) foralln €N (12.07)
with constant C = 1 + 1%

§12.25 Proof of Corollary §12.24. is given in the lecture. O

§12.26 Illustration. We illustrate the last results considering usual behaviour for (av),v, € ¢. We
distinguish the following two cases (p) v, € J, and (np) v, ¢ J. Interestingly, in case (p)
the bound in Proposition §12.21 is parametric, that is, nR (a,,0) = O(1), in case (np) the
bound is nonparametric, i.e. lim,, _,,, nR (a,,v) = oco. In case (np) consider the following two
specifications:

Table 02 [§12]
Order of the rate R (a,,0) as n — o0

(j €N (@ € RY)  (squarred bias)  (variance)
— 4v 2 m||2 o *
U/ =1J a; (an)(m) ||]]‘- ||,J m, R‘n (a-? U-)
. (g ‘ _ 2(a—v)
(© ve(-1/2.a) j* | me) m>tt | e o er
. i—2a —2a—1 N\ zarT logn
Ufil/z J ’ m= ]'Ogm (l()gn,) T
W e 241 L B
(8) v+1/2eR, e m=e ™ m (log n)2e (10g n) 2a
e 1 1 1
v=—1/2 e e logm (log n)2e w

We note that in Table 02 [§12] the order of the rate R} (a,,v,) is depict for > —1/2 only. In case
v < —1/2 the rate R (a,, v, is parametric. m
§12|02 Local and maximal local ¢-risk

We measure secondly the accuracy of the OPE é\m = 5,]1:” of 0" = 01" € s1" with ) = U6 € J
by a local mean-¢-error, i.e. ¢-risk.

§12.27 Reminder. If ¢ € 7 and 0 € dom(ov) := {h, € J = Ly(v) : ¢h, € L,(v)} then we have
lov(0) — ¢v(6™)| = o(1) as m — oo (Property §11.22). O

§12.28 Assumption. Consider a noisy VersionHA, =0 +n'"e ~ B of § = U# € J satistying
Assumption §10.04, ¢ ~ P with [} € [2(J) and g 17" € L,(v) 2"-a.s. for each m € IN. o

§12.29 Comment. Under Assumption §12.28 if 1" € [,(¢'v) then B"-a.s. we have |v(|gg1"])]? <
v(¢'1")v(e2l") € R and hence 1" € dom(¢r). If in addition ¢, & dom(or), and hence
0" € dom(er) (Property §11.22), then it follows

el + 0" = 0" € dom(er) B-as. (12.08)
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If 7 C 7 (at most countable) then Assumption §10.04 and [, € 1(J) implies v = B"(g?) € L_(»)
and hence the additional assumption 1" € [ ,(v) B"-a.s.. However, the last implication does
generally not hold, if 7 € {IR, R} for example. O

§12|02/01 Local ¢-risk
§12.30 Definition. Under Assumption §12.28, ¢ € 7 , 0 < dom(¢v)and 1" € L.(¢'v) for m € N the
local ¢-risk of an OPE g = é\ﬂf" € dom(¢v) B"-a.s. satisfies
B (|ov(8" — 6)") = B (Igv (6 — O)T)) + |ov (617" (12.09)

with variance |} (|¢V((0 — 1M} =n" (|pv(e17)|?) and bias |pv (1) u

QF)

§12.31 Property. Under Assumption §12.28, o € 7 and 1" < ,(0'v) for m € IN we have
B (lov(e1)?) = (G(@L"), ¢1), = |17 IF < Tl 117113 (12.10)

and consequently B" (|v (¢ (6, — 6)1™)|2) < n*HEH[mH]l:”||§5 e R O

§12.32 Propeosition (Upper bound). Let Assumption §12.28, ¢ € 7 , 0. € dom(¢v)and 1" € L,(¢'v) for
allm € N be satisfied. For all m,n € N setting
RY(0.) = v (@17 )P + n 172, m 2= arg min {R7(.) : m € IV}
and R (0,¢) =R (0,¢) := min {R(0,¢) :m € N} (12.11)

we have B" (|ov (6" — 0)1?) < 1V [T, ., )R, (6. ).
§12.33 Proof of Proposition §12.32. is given in the lecture. O

§12.34 Definition. Let ¢} ¢ dom(¢r) and 4" € dom(év) R"-a.s. for all m € IN. If there exist C € R,
and for eachn € N, R}, € R, and m; € NN satisfying

C'R, < inf B'(Jov (0" —6)*) <E'(jov(@" —a)]*) <CR,
melN
then we call R’ oracle bound, m: oracle dimension and 9 " oracle optimal (up to the constant

C). As a consequence, up to the constant C” the statistik (9, attains the lower local ¢-risk bound
within the family of OPE’s, that is, " (|¢v (0™ — )|?) < C*infen B"(|or (8" — 6)[?). 0

§12.35 Comment. If I, < [(J) is invertible with inverse I, ' ¢ 1.(J), ie. [I' = id; = I[J''L, then
we write shortly v, :— max(|[[}|| .[[I, 'l ) € R . In this situation for all a, € J we have
v, e < llallf = (Ga, a), < v,lla]3. 0

§12.36 Oracle inequality. Under Assumption §12.28 let ¢ < 7, 6, € dom(er) and 1" € L,(¢'v)
for all m € N. If in addition 1 < max(||L}[| H 1) < v, € R then (12.11) and
Comment §12.35 imply

v, 'R (6.¢) <E (lov(@" = 0)P) = n 91712 + v (L))
<R (@,¢) forallm,n € NN.
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As a consequence we immediately obtain the following oracle inequality

V'R (8,¢) < inf B"(lov(0" — 0)|*) < B"(jov (0" — 6)]?)

meN

<R (0.¢) < V2 inf B (jov(@" — 0)]%), (12.12)

o
" meN

and hence, R’ (4, ¢), m° and the statistic qm, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v;). 0

§12.37 Remark. Arguing similarly as in Remark §12.16 we note that R’ (4,4) = o(1) as n — o0,
whenever H]lmHz € R forallm € N and |¢v (A1"")| = o(1) as m — oo. The latter is satisfied,
for example, if § € dom(¢v). The oracle dimension m® = m?(f, ¢) as defined in (12.11) depends

again on the unknown parameter of interest ¢, and thus also the oracle optimal statistic ™. In
other words ™ is not a feasible estimator. O

§12.38 Corollary (GSSM §12.05 continued). Let 5 =0+ n*1/2]'3, ~ N, as in Model §12.05, where B ~
N and 0 = U0 ¢ (,. For 0 ¢ dom(on,) the (infeasible) OPE " = 1 ¢ (17 C dom(éy)
with oracle dimension m? as in (12.11) satisfies

N (|6 (0" — @)*) = R (0.¢) = inf N (jon (0" — Q)]),

" meN

and hence it is oracle optimal (with constant 1).

§12.39 Proof of Corollary §12.38. is given in the lecture. O

§12.40 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in [llustration §12.19 we distinguish here the
following two cases

(p) ¢ € Jorthereis K € N with sup{|¢v(Q1")|]> :m € NN [K,00)} = 0,
(mp) ¢ ¢ J and for all m € IN holds sup{|¢v (A1]"")[* : m € NN [K, 00)} € R,

In case (p) the oracle bound is again parametric, i.e. nR; (6,¢) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. lim,,_,o, nR’, (6, ¢) = co. In case (np) consider the following
two specifications

Table 03 [§12]
Order of the oracle rate R’ (4, ¢) as n — oo

Jj €N (a € R')  (squarred bias) (variance)
g-i o0 |lev@EME R e | R@)
. 5 —2(a— 1 _(a=v)
(0) v € (0,a) Jf”fl 2 | gy Aev) m2 nza n- e
R i—a—1/2 —2a no\s logn
v=_0 J m log m (l(,)g n ) n
v
” Y 2a 1 1 a
(s) ve R, e mi—ams gm2m 2 (logn)2e %
2 _ o VL log |
v=0 e mi—2+ g=m? logm (logn)2e Leoen ;gn

We note that in Table 03 [§12] the order of the oracle rate R, (6, ¢) is depict for v > 0 only. For
v < 0 the oracle rate R, (6, ¢) is parametric. m
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§12|02|02 Maximal local ¢-risk

§12.41 Reminder. Under Assumption §11.25 we have J* = [%,(v) = dom(M,) = sa, € J and the
three measures v, o’'v and |¢|r dominate mutually each other, i.e. they share the same null

sets (see Property §11.05). We consider J* endowed with [|-|| , = [|M, ||, and given a constant
r € R, the ellipsoid J* := {h, € J* : ||h]|, < r} C J° Since (a0), € J, and hence
|, ]l’"“||¢ = |l(ag). 17|, € R for each m € IN (|[a,1""[|, = o(1) as m — oo by dominated
convergence) we have J* C dom(¢v) (Property §11.27), and ov (017)] < 1|a 1], for all
6 € J* (Lemma §11.29). O

§12.42 Proposition. Let the Assumptions §11.25 and §12.28, and 1" < 1,(¢'v) for all m € IN be
satisfied. For all n,m € N setting

Ry (a,¢) = a1 |2 +nt[T(|5,  m; = arg min {R}(a, ¢) : m € N}
and R (a,d) = Rn"(a,,dg = min {Rn (a.,¢):m € ]N} (12.13)

we have B"(|¢v (6" — 6)|2) < (I, vV 1°) R (a., @) forall § = U € J*" and n € IN.

§12.43 Proof of Proposition §12.42. is given in the lecture. O

§12.44 Remark. Under the assumptions of Proposition §12.42 if there exists in addition v € R" satis-
fying [|I;[|, ,, < v forall § € J* then

sup {B"(lov (6" — 6)]?): 6 € I} < (v V)R (a,¢) foralln € N,

Arguing similarly as in Remark §12.16 we note that R’ (a,,¢) = o(1) as n — oo, whenever
H]lmHi € R forall m € N and [[a, 1|, = o(1) as m — oo. The latter is satisfied, for
example, if (a¢), € J (in equal a, € L,(¢'v)). Note that the dimension m := m’(a,, ¢) as defined
in (12.13) does not depend on the unknown parameter of interest ¢, but on the class J** only, and
thus also the statistic @\m; In other words, if the regularity of  is known in advance, then the
OPE 9 is a feasible estimator. O

§12.45 Corollary (GSSM §12.05 continued). Let 9 = +n'B ~ N, as in Model §12.05, where

T@IN

B ~ N, and 0, = U6 & (.. Under Assumption §11.25 the OPE g = 9]1m € 1™ C dom(ey)
with dimension m as in (12.13) satisfies

sup {NZ(|¢V,N(@,\m’t —Q)):aece} <CR(a,¢) foralln € N (12.14)
with constant C = 1V r°.

§12.46 Proof of Corollary §12.45. is given in the lecture. O

§12.47 Illustration. We illustrate the last results considering usual behaviour for a,¢ € 7. We
distinguish the following two cases (p) ¢ € J, and (np) ¢ ¢ J. Interestingly, in case (p)
the bound in Proposition §12.42 is parametric, that is, nR (a,¢) = O(1), in case (np) the
bound is nonparametric, i.e. lim, ,, nR (a,,¢) = co. In case (np) consider the following two
specifications:

Table 04 [§12]
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Order of the rate R’ (a,,

@) asn — 00

G el (a € R))) (squarred bias) (variance)
S A 11+ Ul (S [ W m | R(a,¢)
¢ ¢
oy —9(a— 1 _(a—v)
(0) v € (0,a) 7 m e m* nza n- " a
Y —2 noo\ o logn
v=0 j m* logm | (15) ==
v
_ a 1 logn)a
(s) ve R, e’ MmO+ emm 2 (logn)2a %
20 1 log |
v=0 eJ e logm (log n)2e w

§13.01

We note that in Table 04 [§12] the order of the rate R (a,, ¢) is depict for v > 0 only. For v < 0
the rate R} (a,, ¢) is parametric. u

§13 Minimax optimal estimation

§13|01 Minimax theory: a general approach

Suppose that the function of interest § belongs to a class © C H. For each noise level n € IN
let B' := (B")pco denote a family of probability measures and let IE; be the expectation with
respect to the measure B" in 2*. Moreover, we assume that the probability measure associated
with an observable quantity belongs to 2.

GSSM (§10.21 continued). Considering /, = [L,(IN,2", ;) and a surjective partial isometry U €
L(H, ), which is fixed and presumed to be known in advance, we illustrate the minimax approach
in a Gaussian sequence space model §10.21. Here the observable stochastic process 6 =10+
"B is a noisy version of f — Ul < (, and B ~ \Tm Consequently, 6 admits a N, -
dlstrlbuuon belonging to the famlly N; = (N, )gco. Summarising the observations satisfy a
statistical product experiment (]h A" N,) where © C /. O
Assume furthermore, that an estimator 6 of 6 based on the observable quantities is available
which takes its values in H but does not necessarily belong to ©. We shall measure the accuracy
of any estimator 0 of 0 by its distance (0, 0) where d,(-, -) is a certain semi metric to be specified
below. Moreover, we call the quantity B" (92(6, 0)) risk of the estimator § of 6.

ist

$13.02 Definition. Given an estimator § of a function of interest 0 belonging to a class of solutions ©

based on observable quantities with probability measure B" € " we call

R0]O] —sup{IP (02 7 9)):9 € @}

1st

its maximal risk over ©. 0

§13.03 Remark. An advantage of taking a maximal risk instead of a risk is that the former does not

depend on the unknown function #. Imagine we would have taken a constant estimator, say
0 = h, of 6. This would be the perfect estimator if by chance # = h, but in all other cases this
estimator is likely to perform poorly. Therefore it is reasonable to consider the supremum over
the whole class of possible functions in order to get consolidated findings. However, considering
the maximal risk may be a very pessimistic point of view. O

§13.04 Definition. Consider a maximal risk R [«|©] over a family R of probability measures. Let 0 be

an estimator of § € ©, C € R, and for each n € N let R}, € R satisfy
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(lower) R’ is a lower bound up to the constant C"' of the maximal risk over ©, that is
" P

inf R[7|0] > C 'R,
0

where the infimum is taken over all possible estimators of 6;

(upper) R is an upper bound up to the constant C of the maximal risk over ©, that is

RJI0] < CR,

Then we call R} minimax-bound and the estimator aminimax—optimal (up to the constant C). As

a consequence, up to the constant C” the estimator § attains the lower maximal risk bound that
is, R[A|0] < C’inf; R[6]6O]. 0

§13.05 Remark. We call a minimax-bound (R),cn a minimax-optimal rate (of convergence) if in
addition R7, = o(1) as n — oo. It is worth noting that a minimax-optimal rate is not unique
since every other rate that is equivalent of order is also minimax-optimal. O

§13.06 Nonparametric regression with uniform design (nRu). Let the [0, 1] X R-valued random vec-
tor (X,Y) obeys P*-a.e. a nonparametric regression model IB(Y’X ) = f (see section §09).
For convenience, in addition the regressor X is supposed to be uniformly distributed on the
interval [0, 1], i.e. X ~ U,,. As a consequence, we have p* = 1, and L,([0,1],4,,,P") =
L,([0,1],4,,, An) = Ly(M\). Here and subsequently we assume that the conditional distribution
P of Y given X is regular and thus B (idg) = B(Y|X) = f P*-a.s.. Let us denote in this

situation by U, := 1[,, " the joint distribution of (X,Y") defined on ([0,1] x R, %, ® %),

[0,1]

but keep in mind, that the cond1t10na1 distribution I} "X of Y given X is still not specified. We as-
sume that f € F C L,(\.,). Summarising the observations satisfy a statistical product experiment
(0. 1] x R)", 2 " = (W,")ser ) where F C L,(A.). Let us assume in addition that Y’

given X is normally distributed with conditional mean f (X ) and conditional variance o* € R,

0
thatis B = N, .., In this situation we denote by 1[,  :=1(,, =N, . the joint distribution
of (X,Y’). We first consider the case that the variance o is known a priori (i.e. 0* = 1), and
in a second step we dismiss this information. Obviously, the distribution U;" depends not only
on the parameter of interest f € F and the noise level n € IN, but also on the variance o° € Rfo
which plays the role of a nuisance parameter. Consequently, let U, . = (U,,) feF oeR, de-
note the family of possible distributions of (X ,Y"). Summarising, if the variance is unknown
then the observations satisfy a statistical product experiment (([0, 1| x R)", 22" 1" ) where

0,1]xR

F C ”—2()‘{0,1')- O

More generally, given a class of solutions O, a class of nuisance parameters = and a noise level
n € Nlet R .- := (B:)pco ez denote a family of probability measures. Moreover, we assume
that the probability measure associated with an observable quantity belongs to 2. Note that
dismissing in Model §13.06 the assumption of a normally distributed error the class of nuisances
parameters = equals the family of possible conditional distributions of the error terms.

$13.07 Definition. Given an estimator § of a function of interest 6 belonging to a class of solutions ©
based on observable quantities with probability measure B, € - we call

R[6]0,E] —sup{]P (02 ] 0)):0 €0,¢ EE}

1§t

its maximal risk over © x =

[1
O
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§13.08 Remark. Taking the supremum over the class of nuisances parameters allows us to quantify the
additional complexity due to the presence of the nuisance parameter. Moreover, if there exist an
estimator 6, a constant C € R, and for each n € IN there is R}, € R" such that

(lower) R is a lower bound up to the constant C' of the maximal risk over © X Z, that is

inf R[7]0,2] > C 'R,
0

where the infimum is taken over all possible estimators of ¢;

(upper) R is an upper bound up to the constant C of the maximal risk over © x =, that is

R[0|0,2] < CR,

then we call R} minimax-bound and the estimator 0 minimax-optimal (up to the constant C).
As a consequence, up to the constant C* the estimator § attains the lower maximal risk bound
that is, R[0]6,2] < C? inf; R[0]0,=]. Typically, we assume first that the nuisance parameter
¢ is known a priori, and hence I, is a family of probability measures associated with the
observable quantities. In this situation, we consider the maximal risk {E’; (02 (0, 0)):0 €0} and

ist

we seek a bound R up to a constant which depends possibly on the nuisance parameter &.
However, if the bound R, is a valid lower and upper bound up to a constant uniformly for all
nuisance parameters £ € =, then it is, obviously, also a bound of the maximal risk R []©,2]. O

§13.09 Reminder. Considering a Hilbert space J = L,(7,_7.v) and a surjective partial isometry U €
L(H,J), which are fixed and presumed to be known in advance, we study statistical direct prob-
lems as in Definition §10.19. Given weights a, ¢ ¢ we introduce J* = dom(M,) = Ja, =
L,(a!'v) endowed with |[-]| = [|-[| ., and the ellipsod J** := {h. e I 0|2 <} C I,
where the measures v and a?' dominate mutually each other. We consider the following global
and local measures of accuracy (compare Subsections §12/01 and §12102).

(global) Given weights v, € 7 satisfying Assumption §11.12 introduce L,(vv) = dom(M,) =
sof € Jand [-||, = [|[M,-||;» where J*" C L,(v}v) (Property §11.15). For f, = U6 € J*" we

call 0.(0,0) = ||6 — 8||, global v-error, (||¢9 — 4] ) global v-risk and

RG] ] = sup {B" (|6 — 0]|?): 6 = UO € I}
maximal v-risk over J*".

(local) Given¢ « ¢ satisfying Assumption §11.25 introduce dom(¢v) := { € J: ¢h, € Ly )}
and the linear functional ¢v : J O dom(év) — R w1th h — ¢v(h.) = v(¢h.) where

Jor C dom(er) (Property §11.27). For € J** we call ?_(6, |¢V( 8)| local ¢-error,
B (]¢V(9 — 8)[?) local ¢-risk and
RLA] 0] == sup {B" (|ov (6 — 6)[*): 6, = UP € I}
maximal ¢-risk over J*".

We formulate the results in terms of § = U6 € J rather than directly for 6 € H. Since U
is known, considering the class H** := U"J* := {U’): §, € J**} we obtain immediately also
bounds over H*" for the maximal global risk

R0 US| == sup {B"(J[U(0 — 0)]|2): 0 € Hx}
and maximal local risk
R0 U3 = sup {B" (|ov (U0 — 0))[%): 0 € Her}

which we do not explicitly state in the sequel. m
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§13|02 Deriving a lower bound: a general reduction scheme

For a detailed discussion of several other strategies to derive lower bounds we refer the reader,
for example, to the text book by Tsybakov [2009].

§13.10 Definition. Let I} and I be two probability measures on a measurable space (X, Z").
(a) The function

ki — ) Blog ) = [log ()dR, ifE <R,
(EIE) 400, otherwise

is called Kullback-Leibler-divergence of B with respect to .

Let u € M, (2") be a R} and P dominating o-finite measure (e.g. B, B < u = B + ). We write
dR := dR/du and R, := dE /du for short.

(b) The Hellinger distance between I} and E is defined by
1/2
HE.2) = ( [IV/AE - VABP)"? = | /aB - V],
(c) and the Hellinger affinity is given by

p(R,R):= / \/d_]l%\/d_]Pl = <\/E’ \/d_E>[L2(u>’

where both do not depend on the choice of the dominating measure /. O

§13.11 Remark. The Kullback-Leibler-divergence satisfies KL(RB|R) > 0 as well as KL(B|R) = 0
if and only if B = R, but KL(:|-) is not symmetric. Moreover, for product measures holds

KLER, ® B.JR, ® B,) = KL(R,|R,) + KL(E,|R,). O
§13.12 Lemma. (i) 0 < H(B,R) < 2; (i) p(B,R) =1 — sH¥R, R), and (iii) HA(R, R) < KL(B|R).
§13.13 Proof of Lemma §13.12. Exercise. O
§13.14 Lemma. For a,,b, € {, and n € IN we have KL(N/|N,) = %||a, — b,||i.

§13.15 Proof of Lemma §13.14. Exercise. O

§13.16 Notation. Recall that the semi metric (-, -) is symmetric and satisfies the triangular inequality.

Morever, here and subsequently we suppose that for an estimator 0 and parameter 6° and ' such
that 9,(6°,0") € R, the quantities 9,,(6, 6°) and 9,,(¢, ¢') are measurable. m

§13.17 Lemma. Let B and & be two probability measures on a measurable space (X, Z"). Suppose
that for an estimator 0 and parameter 0° and 0" with d_(0°,0") € R, the quantities D, (6,6°) and
2.(0,0") are measurable. Then, we have

1
—03(6",6") p’(B,B). (13.01)

R(2.(0,6") + B (36,6) > 3

§13.18 Proof of Lemma §13.17. is given in the lecture. O
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§13|03 Lower bound based on two hypotheses

§13.19 Lemma (Lower bound based on two hypotheses). Given a noise level n € N let R' := (B")gco be
a family of probability measures. If there are 0°,0' € © with associated probability measures
R :=F"and P := B such that HR,R) < 1 then we have

_ 1
infR[|0] = —02(0°,0").
g 16

where the infimum is taken over all possible estimators.

§13.20 Proof of Lemma §13.19. is given in the lecture. O

§13.21 Remark (Lower bound for a local ¢-risk). Due to the bounded Hellinger distance in Lemma §13.19,
Le Cam’s general method (see Le Cam [1973]) and Pinsker’s inequality allow to derive a lower
bound for a local ¢-risk as in Reminder §13.09. However, in this special setting a lower bound
can be obtained elementarily from Lemma §13.19, which in this situation states

~ 1 )
inf R[410] > —|ov(d — 6.
a 16

If we consider furthermore candidates §° := " and §' = —§" for some §° € © such that
—@" € O, then trivially |¢v(6° — 6')]> = 4|¢r(0")|> which in turn implies due to the last
assertion

~ 1
inf R710] > 7 |ow(0)[. (13.02)
a

Often a minimax-optimal lower bound can be found by constructing a candidate §° = U#" € ©
that has the largest possible |¢v (6)|?-value but " and I, are still statistically indistinguishable
in the sense that H(R", P} ) < 1. O

§13.22 Reminder (Maximal local ¢-risk in GSSM §13.01). Giveg Model §13.01 we consider an OPE as
in Section §12. Here the observable stochastic process ¢, = 0, + n "'21'3, ~ \L, 1S a noisy version
of | = U#ec©® C/andB ~ N, . Consequently, 5 admits a N, -distribution belonging to the
family N, := (N} )geo. Summarising the observations satisfy a statistical product experiment
(R", %" N!) where © C /,. Under Assumption §11.25 in Corollary §$12.45 an upper bound
for a maximal local ¢-risk of an OPE is shown. More precisely, the performance of the OPE
0" = 61" € ¢, 1" C dom(¢y,) with dimension m € IN is measured by its maximal local ¢-risk,
that is

RG] = sup {N] (|on (" = 0)[*): 6 € £}

Let us recall (12.13) where for n, m € IN we have defined
R} (a,¢) = [|a L2 +n 103, m) = arg min {R}(a,¢) : m € N}

and R (a,¢) =R (a,¢) =min{R](a,¢):m e N}. (13.03)

By Corollary §12.45 under Assumption §11.25 the maximal local ¢-risk of an OPE é\m: with
optimally choosen dimension m* as in (13.03) satisfies

RG] < CR,(a,, @)

with C =1V r% O
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§13.23 Notation. For sequences «,, b, € (I{)" taking its values in X € {R, R, R, ), Z, ...} we write
a, € (]K)fl and ), € (K)iN if a, and b,, respectively, is monotonically non-decreasing and non-
increasing. If in addition ¢, — oo and ), — 0 as n — oo, then we write ¢, © (]K):E and

b, € (IK)! for short. O

§13.24 Assumption. Consider ¢, a, € (R )" such that a, € /_and (a0), € /, (i.e. Assumption §11.25
is satisfied and [[a, 1" || = ||(ag), 1], = o(1) as m — 00), and in addition a; < (R )T".

§13.25 Comment. Assuming o’ € (R )" is rather weak. If we suppose in addition lim inf; . a? >
¢ > 0, and hence o> ¢ (IR)", then the assumption (a¢), € /, implies ¢ € /, and hence the
rate R} (a,,¢) is parametric (Illustration §12.47). Since we are interested in the case of a non-
parametric, the additional assumption a? € ()" imposes a rather weak condition satisfied also
in Illustration §12.47.

If @ > n ' then exploiting the definition (13.03) and ¢, € IR, we have

n

R, (0,¢) =n7'¢" + (a0 + |a L5 > n7'¢" + 07! + 0 ]2 = R, (. 9),

and consequently m” — 1 € IN. In this situation, from (definition of the arg min)

n TS 4 (o), + (a2
=R (a.¢) > R (a,¢) = 0 275 + 07l + [la 1

m;,

m,

follows (ag)?. > n*@?:, and hence a’, > n' (since ¢. € R,,). On the other hand from

n LS 4 (o) + a2
= R (0,¢) SR (ag) = 7 L2 + 07 + a1

n n
follows (ag)?,., < n*qgiﬂ, and hence .., < n' (since ¢, € R,)). Assuming a; > 1" we use

the property a’. > n' > a’_, in the next proof. 0
§13.26 Proposition (GSSM §13.01 continued). Let =0+ n'?B ~ N/ as in Model §13.0] where
B ~ 1\"[“(;_? and 6, = U € (,. Given Assumption §13.24 and the notations in (13.03) for all

n € NN (a;?, 00) we have

infg RI[6] 6] > 87 (1 A2r%) R, (a,¢) (13.04)

where the infimum is taken over all estimators €.

§13.27 Proof of Proposition §13.26. is given in the lecture. O

§13.28 Illustration. Consider the two specifications (o) and (s) depict in Table 04 [§12] of the Illus-
tration §12.47. In both cases Assumption §13.24 is satisfied. Consequently, due to Proposi-
tion §13.26 the Table 04 [§12] presents the order of the minimax rate R (a,, ¢) which is attaind
by the minimax-optimal OPE g = &]lf”f‘ € 1™ C dom(gy,) with optimally selected dimen-
sion m’ (Corollary §12.45). We shall stress, that the order of m’ given in the Table 04 [§12]
depends on the parameter a € IRTO characterising the (abstract) smoothness of the solution which
is generally not known in advance. O
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§13|04 Lower bound based on m hypotheses

§13.29 Notation. For m € IN set Tm = {—1,1}" and for each 7 := (7);e[m] € T, and j € [m]
introduce 7' € T

- givenby 7V := —7 and 7,V := 7, for | € [m]\{j}. O

§13.30 Lemma (Assouad’s cube technique). Given a noise level n € N let ]B) = (B")gco be a family
of probablllty measures Suppose there exist m € IN and distances 3)(-,-), j € [m] such that
0%(-,) = Z]E[[m]] D,V 2 If for each T € T, there is 87 € © with associated probability
measure P := B such thatfor all T € T, and j € [m] we have H(R,P.) < 1 then we obtain

mfR g10] > 2"”2 Z

TeT, je[[m]]

9g,67

ist

where the infimum is taken over all possible estimators.

§13.31 Proof of Lemma §13.30. is given in the lecture. O

§13.32 Remark (Lower bound of a global v-risk). The last result allows to derive a lower bound for a
global v-risk as in Reminder §1% 09 which in case J — 7, — [,(IN.2", 1) states

1nfR [q]0e] > 2mz > oy -0

T€eT, jE[[m]]

If we assume furthermore candidates ¢ := (7.0'1");cw € ©, 7 € T, for some § = Uf" € O,

m?

then it is easily seen that 3>,y 1 076 — 2 = A3 ey 10717 = 416712 which in turn
implies
mfR [gle]=2m Z 1612 = ||9.*]l:"|!j. (13.05)

TeT,

Often a minimax-optimal lower bound can be found by choosing the parameter m and the func-
tion 6" that have the largest possible [|¢)'1;"[|-value although that the associated P, 7 € T, are
still statistically indistinguishable in the sense that HP,P,) < 1forall j € [m]and7 € J,. O

§13.33 Reminder (Maximal global v-risk in GSSM §13.01). leen Model §13 01 we consider an OPE as
in Section §12. Here the observable stochastic processi 0=0+n 2B~ N, is a noisy version
of 0 = U0 cO C/andB ~ N, . Consequently, 5 admits a N, -distribution belonging to the
family N := (N} )aco. Summarising the observations satisfy a statistical product experiment
(]Rb, B N, ) where © C /,. Under Assumption §11.12 in Corollary §12.24 an upper bound
for a maximal global v-risk of an OPE is shown. More precisely, the performance of the OPE
6’ = 9]1’" € 1" C /,(v?) with dimension m € IN is measured by its maximal global v-risk over
the ellipsoid ¢;", that is

R | 2= sup (N (18" = 1) € 7).

Let us recall (12.06) where for n,m € IN we have defined (av) | := [|(av)?1""||, and

R} (a,0) = (av)},, V n’1||]lf”||§, m’ = arg min {R (a,,0) : m € N}
and R (a,v):=R"(a,0)=min{R] (a,0):m € N}. (13.00)

By Corollary §12.24 under Assumption §11.12 the maximal global v-risk of an OPE 5,’"; with
optimally chosen dimension m" as in (13.06) satisfies

R0 < CR, (a,v)

n

with C =1 4+ 1% O
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§13.34 Notation. Forw, € (N (R )" weset w), := ||w?||, and w? = (w?, := [|w?1"*||, );ew, where
by construction w?, = sup {w?ie Nn[j +1,00)},j € N, and w? € (RN 0

§13.35 Assumption. Consider v, a, € (R,)N such that o, € (_and (av), € [ (i.e. Assumption §11.12
is satisfied), and in addition (av)” < (IR )" and there exists C_, € (0, 1] such that for all m € IN

(av)

(av)?,_, = min {(av)’: j € [m]} = C,, (av),_,

2

orinequal C_ |[(av) L’” < (av),” . O

§13.36 Comment. Note that (av)}, € (R|)™ by definition, hence (av)’ & (IR )" is satisfied if and only
if (av)?, = o(1) as m — oo (i.e. the maximal global approximation is consistent). Moreover if
(av), € (R)) then we have trivially (av) € (R})" and H av),“17|, = (av),* = (av),’, for
allm € N, i.e. Assumptron §13.351s satlsﬁed with C =
For m* and R’ := R"(a,,v,) as in (13.06) we distinguish case i): R = n H'L”“ |7 > (av)’, and
case ii) : R} = (av)],, > n’'| lﬁ”"|f. Consider case i) first. If (av)’, > n 'v’ then R} (a,,0) =
n~'v? V (av)’, = (av)’, and hence m’ — 1 € IN. In this situation, from n*IH]l:” 2 <2

(since v”. € IR)), the definition (13.06) and

n IV (o), = Ry (a,0) > R, =071

it follows R '(a,,v) = (av)’._, and hence (av)’, > n'[|1" |Z. Consider case ii). We set

(m; 1)
m; :=min {m € NN [m; +1,00): 7! [[17]|2 > (av);,, } (13.07)

where the defining set is not empty since (av), & (IR ). We note that (av)’ , = (av) ..
Indeed, in the non trivial case m? — 1 > m for each m € [m; + 1, m¢ — 1] we have R (a,,0,) =

(av)y,, > n'[|1"]|2, which together with (av);, = R, < R/(a,v) = (av)], < (av);,, (since
(av)2, € (R))M 1mp11es the equality (av)’ | = (av); forallm € [m; +1,m; — 1]. Moreover,

from (av)?., = R, < R"(a,v) = n'|| 1" 12 it follows (av)2,,, = (av)?, < n7'[|[17[% To
summarise, assumrng (av)’, > n 'v’ we use in the next proof the properties case i) (a )m Ly >
n”!||17%]|? and case ii) (av),, = (av);,, < |12 O

§13.37 PrOpOSltlon (GSSM §13.01 continued). Let 9 6 + n71/2B. ~ N, as in Model §13.01 where
B ~ I\XJN and 6, = U € (,. Given Assumption §13.35 and the notations in (13.06) for all
n e ]Nﬂ( v (av),?, 00) we have

infg R[6]67] > 871 (1 A 2C,,1%) R, (a,0) (13.08)

where the infimum is taken over all estimators 5
§13.38 Proof of Proposition §13.37. is given in the lecture. O

§13.39 Illustration. Consider the two specifications (o) and (s) depict in Table 02 [§12] of the Illus-
tration §12.26. In both cases Assumption §13.35 is satisfied. Consequently, due to Proposi-
tion §13.37 the Table 02 [§12] presents the order of the minimax rate R, (a,,v,)) which is attaind
by the minimax-optimal OPE o Q]lm € ¢, 1" C /,(v?) with optimally selected dimension m*
(Corollary §12.24). We shall stress, that the order of m’ given in the Table 02 [§12] depends on
the parameter a € ]Rf0 characterising the (abstract) smoothness of the solution which is generally
not known in advance. O
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§14 Data-driven estimation

§14|01 Data-driven estimation procedures

Considering a Hilbert space J = L,(J, #,v) and a surjective partial isometry U € [L(H,J), which
are fixed and presumed to be known in advance, we study data-driven estimation procedures in
statistical direct problems as in Definition §10.19. Precisely, we consider the observable noisy
version 0, = 0 + n ¢ of the parameter §, = U6 € J where the centred stochastic processes
e = (g);c7 satisfies Assumption §10.04 and n < IN is a sample size. We denote by [)" the
distribution of 9 Based on the noisy parameter 9 we consider the family (H'" é]lﬁ")m@N of
orthogonal projections estimators (OPE’s) of  defined in Definition §12.04. For each m € IN
we shall measure the accuracy of the OPE q" by its risk B" (D?St(&"‘ 6)) where (-, -) is a certain
semi metric such as a global v-error (Definition §12.09) or a local ¢-error (Definition §12.30).
Moreover, given (, = U0 < J we consider the family of orthogonal projections (OP’s) (" =
1" € J1"),,en (Definition §11.08) where we tactically set ¢/~ := (. Let us here assume that
there exist C' € IR, and for each n,m € IN, var_ (0.0.) € R and R"(0,0.) = 0°(0".0) +

var, (6. 0.) such that the risk of the estimator " satisfy

C'R}(6,0.) < B"(04(4",0)) < C{oA(4",8) + var, (6,0.)} = CR] (4,0..). (14.01)
Minimising the right hand side in the last display as a function of m € IN leads to an optimal
dimension (if it exists) and upper bound

m, :=m.(6,0,) = arg min {R:(Q,as) =0

n ist

@",8) + var, (6,0.):m € N}
R (0,0.) = R"(6,0.) = min {R] (4, 0.): m € N}. (14.02)

Combining (14.01) and (14.02) (up to the constant C) we have that m? is an oracle dimension,

R’ (6,0.) an oracle bound and the OPE 6™ with oracle dimension me is oracle optimal. However,
the oracle dimension (€, d..) given in (14 ()2) depends on the unknown parameter of interest 6,

and thus also the oracle optimal statistic 6! In other words 0 is not a feasible estimator. We
present in what follows two data-driven procedures to select a dimension m within an admissible
subset [M] € IN of dimension parameters given by an integer M € IN, which eventually leads
to a feasible data-driven estimator 5’7” depending on the observable quantities only. We call any
data-driven estimator «/9\ adaptive for a class © of solutions if for all §f € © there is a constant
K, € R, possibly depending on 6, such that " (D?st(ﬁ 6)) < KR, (.0.) for all n € N. Each of
those two different data-driven strategies involves in addition a sequence pen, = (pen_ )nmen €
(R")N of penalties. Both, the upper bound M and the sequence of penalties, depend on the
noise level n and possibly on the class © of solutions. However, for ease of presentation we
omit the additional subscripts. We eventually show that there are constants C,, C, € IR , possibly
depending on the solution € © and (bias, (6, 0.))men, (R (4,0.))nen € (RN such that for

all n € N the risk of the data-driven estimator @\ﬁl satisfies

B (328", 6)) < C min {bias? (4, 0.) + pen,: m € [M]} + C,R; (6, 0..). (14.03)

ist

If in addition for all §, € © there is a constant C, € R, such that for all n € IN we have also

I?’l;’: S [[1\[]] [Jiusm (9 O) < C.{Dl‘\l(@,m ,0) and Pen . < C_.%Uzn'”_m (9 Out)- (14.04)
Then due to (14.03) the data-driven estimator gﬁ‘ satisfies

B (3%(@",6)) < C,C,min {04(4",0) + var, (6,0.):m € [M]} + C,R;(6,0.)

= C.CR(8,0.) + CRI(0,0.).
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and hence, if in addition R (¢,0.) < C.R (¢,0.) for a constant C, € R, then g" is adaptive.
Indeed, we have B (02(4",4)) < KR (4,0.) with K := C,C, + C,C,.

§14.01 Remark. In oder to establish a feasible method we have to select an upper bound M. Let us
briefly descibe heuristically the strategy we eventually apply. For each § € © and n,m € IN let
var, (0.) = var,_ (0.0.) donot depend on € € © and moreover let var_ (0.) = (var, (0.)) e €
(R")" be known in advance. Furthermore, for all n € N let var, (0.) < C, for some constant
C, € R, which is evidently also known in advance. Consequently, the defining set of M :=
max {m € N: var, (0.) < C, } is not empty and finite. For all n € IN with R (7.0.) < C
follows then m° € [M ]] since C,, > R (6,0.) > var,_ (d.). In other words the feasible upper
bound M satlsﬁes the first condition in assumption (14.04). O

§14.02 GSSM (§10.21 continued). Considering /, = [ ,(IN,2" 1) and a surjective partial isometry U €
L(H, ¢,), which is fixed and presumed to be known in advance, we illustrate the different data-
driven procedures in a Gaussian sequence space model §10.21. Here the observable stochastic
process 0 —f+n'Bisa noisy version of ¢/ = Uf < /, and B~ N, Consequently, 9 admits
a N, -distribution belongmg to the family N, := (N} )geo. Summarising the observations satisfy

a statistical product experiment (R . 2" N!') where © C /.. O

§14/02 Model selection

Given a noisy version 5 ~ " in a statistical direct problem as in Definition §10.19. and a col-
lection of admissible models [M] for some M € IN we seek to minimise the global v-risk within
the family (/" = /1."),, 11,7 of OPE’s defined in Definition §12.04. Here and subsequently, let
Assumption §12.07, 0, € 7 ,0 < L,(v2v)and 1" € [L,(vv) for all m € IN be satisfied.

§14.03 Reminder. For all n,m € IN we set

R (4,0) := ||9]lm'lH2 + n’lH]l’”H m; := arg min {R (4,v) : m € N}
and R (4,0) =R, (6,0) =min {R](4,v):m e N} (14.05)

Since " = O1" € L,(v*») (Property §11.09) and §" = 1" € L,(vv) B"-a.s. (Comment §12.08),
for each a, € 1, 1" applying the Cauchy-Schwarz inequality we have

v(lad]) = viv(af1]) < llal,ll6”], € R,

and hence a,é\ € L,(vv) B"-a.s.. o

The first selection method is inspired by the work of Barron et al. [1999] and for an extensive
overview of model selection by penalised contrast, the reader may refer to Massart [2007]. Let
us introduce a contrast function

T : Ly(vv) D U Len1™ — R with a, = Y(a,) := ||a||§ — 20?1/(@,/9_\) (14.06)
meN

where for each m € IN the OPE 57 = 5 1" and a, € L1 C L,(02v) satisfy
Y(a) = [la]} - 2070 (a8) = [la]? — 2(a., "), = lla. — "2 — 1€"]}.

Consequently, for each m € IN the OPE (7 — 5]1 minimises the contrast function, that is,

-~

—18"? = T@") = inf {T(a) : a, € LI} (14.07)
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Given an upper bound M € NN and penalties pen, = (pen )nmenw € (R7)N we select a dimension
among the collection of admissible values [M] as minimiser of a penalised contrast criterion,
that is

m := arg min {T(am) + pen, : m € [M]}. (14.08)

The data-driven estimator of € is now given by @,\m and below we derive an upper bound for its

global v-risk B" (| 0" — 6 ||§) The construction of the penalty sequence pen, and the upper bound
M given below is motivated by the following key arguments used in the proof of the risk bound
which we present first. Moreover, both pen, and M will depend, among others, on the noise level
n, however, for sake of simplicity we will omit an additional subscript. The key argument for
our reasoning is the next assertion. For a € R we write (¢) := a \/ 0 shortly.

§14.04 Lemma (key argument). If pen, € (R")Y then for all M € N and m € [M] we have
6" — 9”3 < 310" — 0”3 + 4pen  + SmaX{(“Qj — 9]”3 — penj/4)+:j € ﬂm,M]]}.
§14.05 Proof of Lemma §14.04. is given in the lecture. O

Similar to m? as in (14.05), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension /° € |[M] to be specified below. Due to the last assertion for
each § € © we have

B (1" - 612) < 3[16™ — 6l|> + 4pen,,
+ 8B (max { ([|& — 6|2 — pen,/4) : j € [, M]})  (14.09)
Keeping in mind that m® € [M] in contrast to m° € IN eventually realises an optimal statistical-
error-squared-bias trade-off among the collection of admissable values [M] rather than IN, we
wish the upper bound M to be as large as possible. In contrast, in order to control the remainder
term, the last term in (14.09), we are eventually a forced to use a rather small upper bound M.

However, we bound the remainder term by imposing the following assumption, which though
holds true for a wide range of solutions €, € © under reasonable model assumptions.

§14.06 Assumption. There exists a constant C := C(f) € IRTO possibly depending on the parameter
6 € © and (R:(0,0))nen € (RYYN such that for each n € IN the upper bound M € IN and
me® € [M] satisfy

B (max { (|6 — & |2 — pen, /4) : j € [, M]}) < CRI(6,v).

The next assertion provides an upper bound for the v-risk of the estimator 0™ with data-driven
choice m given by (14.08).

§14.07 Proposition. Let m® € [M] satisfy the Assumption §14.06 then we have
(18" — 612) <318 — 6]} + dpen,, + 8CR; (4, v).
§14.08 Proof of Proposition §14.07. is given in the lecture. O

§14.09 Corollary. If m°® = arg min {|

o — HHE + pen, - m € [M] } satisfies Assumption §14.06, then

B (16" — 6]?) < 4min {|

0" =8l + pen,:m € M} +8C R, (4, v).
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§14.10 Proof of Corollary §14.09. is given in the lecture. O

§14.11 Remark. Considering the v-risk bound of the estimator é\mo with dimension parameter m° the
first ths. term in the upper risk-bound given in Proposition §14.07 is strongly reminiscent of the
variance-squared-bias upper bound R (4, v,) = ||§" — 9“3 + var, (6,v,) as given in (14.02). In-

,m°

deed, in many cases the penalty term pen . is in the same order as the statistical error var, (), v,).
Consequently, provided the reminder term R*(6, v,) is negligble compared to R" (4, v,), the upper
risk bound of the data-driven estimator is given by R’:f(& v,) (up to a constant). Moreover, since
m? realises an optimal trade-off between squared-bias and statistical error among the admissable
values M, in many cases R (4, v) is of optimal orcale order R’ (6, v). O

We eventually are in a situation where the sequence of penalties pen, € (R")Y satisfying the
Assumption §14.06 still depends on characteristics of the unknown parameter ¢ and thus it is
only partially known in advance. Assuming a sequence of estimators pen, € (R")™ we select
similar to (14.08) the dimension

m = arg min {T(@,\m) + pen,, : m € [M]}. (14.10)

The data-driven estimator of € is now given by é?” and below we derive an upper bound for its
global v-risk B" (|6 — 6, Hf) The key argument for our reasoning is the next assertion. Its proof
follows along the lines of the Proof §14.05.

§14.12 Lemma (key argument). If pen_, pen, € (R")X then for all M € N and m € [M] we have
18" — @2 < 3012 + 2pen,, + 2pen,, + 2(pen, — Pen,, ).
+ 8max { (|6 — 6712 — pen,/4) : j € [m,M]}.
§14.13 Proof of Lemma §14.12. is given in the lecture. O

Similar to m° as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension /° € [M] to be specified below (analogously to (14.09)).
Due to the last assertion for each § € © we have

B (16" — Q112) < 3162 + 2pen,, + 8B" (max { (|18 — & |2 — pen, /4) : j € [m,M] })
+ QIB" (ﬁcnm) + QIB" ((pcnm — Ecnrn)). (14.11)

We bound the first remainder term by imposing Assumption §14.06, which though hold true for
a wide range of solutions §, = U6 € O under reasonable model assumptions.

§14.14 Proposition. Ifm® € [M] satisfies the Assumption §14.06 then we have
IBH (Hé\ﬁ1 — 9“3) < 3”(9,]17”“’3 + 2penm +8C Rr:(e, U) + QIBH (Eenm) + QEH((penﬁ — ﬁenﬁ>+).
§14.15 Proof of Proposition §14.14. is given in the lecture. O

§14.16 Corollary. If m® = arg min {HHJI *Hf + pen_:m € [[Mﬂ} satisfies Assumption §14.06 with con-
stant C € [1,00), B"(pen,.) < Kpen,. and E" ((pen,, —/ﬁenﬁz)) < K, R (0) for some KK, €
[1,00), then

E“(\yém — 6]2) < 4K, min {{|G 1] + pen, : m € [M]} + (2K, 4+ 8C )R} (6).

§14.17 Proof of Corollary §14.16. is given in the lecture. O
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§14|03 GSSM: data-driven global estimation

Let us first state some elementary inequalities for Gaussian random variables. There exist several
results for tail bounds of sums of independent squared Gaussian random variables and we present
next a version which is due to Birgé [2001] and the formulation (14.12) can be found in Lemma
1 in Laurent and Massart [2000].

s14.18 Lemma. Let o, © (R)" and B, = (B)jew ~ Nou,. Forall ) € R and m < IN we have
o1+ 2]|a710]|, ) < exp(—n). (14.12)

Now (laBL 2 = (143¢/2)[[all|?) < exp(—n). (14.13)

Noo (laBLM 7 = flalr|? > 2fla1

which for all ( € R setting 1) := ((C A 1)||a 1"

, ) € R implies

Moreover, for any & < |1, 00) we have

Now ((laB[7 = (1+3¢/2)lla1(17),)

< 6[larL ||, exp (= (§/4)llal |17 laLr || 1). (14.14)

§14.19 Proof of Lemma §14.18. Exercise. 0

§14|03j01 Global v-risk

§14.20 Reminder (Global oracle v-risk in GSSM §14.02). Giyen Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version  admits a N, -distribution belonging to the
family N, := (N, )geco, © C /,. Let us recall (12.04) in Proposition §12.12 where for v, €
(R )™, 0 € (,(07) and n,m € IN we have defined

R (0,v) = ||9]l’”'l||2 +n’1||ﬂm||2 m; ;= arg min {R (4,v) : m € N}
and R (6,0):=R"(¢,0) =min{R(4,0) :m € N}. (14.15)

Due to Corollary §12.17 the (infeasible) OPE 51 = (9]1’” € ¢, 1™ C /,(v?) with oracle dimension
m: as in (14.15) satisfies

N1 = 0l2) = R (6.0) = inf N7 (1" - 0]2),

and hence it is oracle optimal (with constant 1). O

§14.21 Assumption. Letv, € (R,)" satisfy

Coi= D 4ol exp (= [[o17|? /(421" ) € R,

meN

§14.22 Comment. Since ||v? ]lm|| E ]R+ and ||02]lm||£ > o for all m € N, the Assumption §14.21
implies |[v71"|, v, ]l’”H and I|v. ]l’"H = o(1) as m — 0. O

§14.23 Tllustration. Consider v? = (j*);cn for a € R{,. Then [[o?1"[|, = m" and o1 (2 =~ m+.
Consequently, we have

S Ao, exp (= o122 /(4]o21]], ) = D meexp (- m) € R,

meN meN
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and the assumption Assumption §14.21 is satisfied. On the contrary if v} = (exp(j*));en for
a > 1, then [[o71"[|, = exp(m") and [|o,1"||> =~ exp(m"). Consequently, we have

> Aot exp (= o7 /(4021 )) = > exp(m

melN meN
and the assumption Assumption §14.21 is not satisfied. O
§14.24 Corollary. Under Assumption §14.21 we have
N; (max { (16 = @2 = 3IE)2n7) -5 € IMI}) < (3/2)Cn™ forall M € N. (14.16)
§14.25 Proof of Corollary §14.24. is given in the lecture. O
§14.26 Notation. Consider a sequence of penalties pen® = (pen’ )en € (R\(,) given by

pen® 1= 1On*1|]]lf”|\z, for eachm € IN (14.17)

which is obviously known in advance. Considering the data-driven OSE é?” = 5]1’?‘ with di-
mension parameter m selected as in (14.08) with penalty sequence pen® given in (14.17) and
arbitrary but fixed upper bound M € IN we derive below an upper bound for its global v-risk,

N; (16" - a12). 0

§14.27 PrOpOSItlon (GSSM (\814 02 continued)). Let 9 =0 +n"B ~ N, as in Model §14.02 where
0 cl,and B ~ N,. Givenv, = (R )", M € IN and per® as in (14.17) consider a data-driven

(0,1)*

OPE 0" —Q]ImEE]ImCE 2) of 0, € [,(v?) with
i = arg min { — [|§"]|, + pent,: m € [M]}. (14.18)
If Assumption §14.21 is satisfied with C, € Rt), then for all n,M € IN we have
N (167 = 612) < 40min {R} (4, 0): m € M]} +12C,n* (14.19)
where R} (6, v.) := [|0" — 0> + n*1||]lf"||i is defined as in (14.15).
§14.28 Proof of Proposition §14.27. is given in the lecture. O

§14.29 Comment. The oracle bound R, (¢,v) = R"(A,v) = min {R] (¢,v): m € N} (for details see
Reminder §14.20) satisfies nR’ (4,v,) > H]I’”HU2 > v2. Consequently, the last upper bound in
(14.19) and the oracle bound R’ (,v,) coincide up to a constant (40 + 12 C,v?) provided the
oracle dimension fulfils m? € [M]. Therefore, we wish the upper bound M to be as large as
possible. The next assertion shows that

M= max {m € N: [[1"[|2 < no’} € N (14.20)

is a suitable choice for the upper bound, where the defining set is not empty and finite since
1122 = o(1) as m — o0. O

§14.30 Corollary (GSSM (§14.02 continued)). Given v, € (R )N, M" € IN as in (14.20) and pen® as in
(14.17) consider a data-driven OPE " = 17" € ¢, 1™ C {,(v?) with

m = arg min { — Ht/9,\m|]t,—|—pen;:me[[M"]]}. (14.21)
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Under the assumptions of Proposition §14.27 for each n € IN such that R’ (6,v,) < v} we have

N (167 = 612) < 40R(6,v) +12C,n" < CR;,(4,v) (14.22)
and, hence up to the constant C := 40 + 12 C, v ? the feasible data-driven estimator @\’A" is oracle
optimal.

§14.31 Proof of Corollary §14.30. is given in the lecture. o

§14.32 Remark. If Assumption §14.21 is not satisfied (see Illustration §14.23), then we can’t make use
of Corollary §14.24. In this situation let v, € (IR )™ and §, € ([1,00))" satisfy

Coi= Y 4|01, exp (—34,]

meN

o L[|} /(4]07L" ]|, ) € R (14.23)

Consider a sequence of penalties pen®® = (pen”’),en € (R))™ given by
pent’ :=4(1 434, /2)n || 172, foreachm € N (14.24)

which is obviously known in advance. Similar to Corollary §14.24 due to (14.23) for each
M € IN we obtain

nN; (max { ([ — 67||> — (1+36,/2)[[1[2n") : j € M]})
< > 60|, exp (=6, 017 /(41021 ]),)) = (3/2)C,

me[M]

Thus, the sequence of penalties pen®® € (7)™ given in (14.24) satisfies the Assumption §14.06
with C = (3/2)C,; and R (4, ) = n~'. Consequently, the data-driven OPE 0" = Q1" € 017 C
l,(v?) with

i = arg min { — [|§"]|, + pen’: m € [M] } (14.25)

due to Proposition §14.07 for all § € /,(v*) and n, M € NN fulfils

N6;7(||§m — 0||§) < min {3[|§" — 9||§ + 4pen”?:m € [M] } + 8(3/2)C,;n !

< 40min {{|" — 6|12+ n7'6, | 1|12 m € [M]} + 12C, ;0"

m

Introduce R (6,v) := min {[|§" — 02 +n'o, 1|2 m e N} where R (6,0) > R},(,0) >
n'v} since in general n”'d, || 1"[|2 = n'[|1"||2 for all m € N. Consequently, if the upper bound
M € N satisfies arg min {[|§" — N2 +n'o, 1|2 m e N} =: m° € [M] then we obtain
N?(H@?” — HHS) < CR; (6, v,) with C := 40 + 12C, ;. However, the upper bound R’ (¢, v,) faces a
deterioration by the factor J, and thus it is generally not an oracle bound. O

§14|03/02 Maximal global v-risk

§14.33 Reminder (Maximal global v-risk in GSSM §14.02). C/}\iven Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version 6 admits a N, -distribution belonging to the
family N, := (N} )gea, © C £,. Under Assumption §11.12 in Corollary §12.24 an upper bound
for a maximal global v-risk of an OPE is shown. More precisely, the performance of the OPE
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9"' 0]1’” € 1" C /,(v?) with dimension m € IN is measured by its maximal global v -risk over
the ellipsoid /", that is

RG] o= sup {N; (16" — 6]|?): 0 2.

Let us recall (12.06) where for n,m € IN we have defined (av); | := [|(av)?1""||, and

n n

and R (a.v):=R(a,0) =min{R] (a.v):m e N}. (14.26)

R} (a.,0) == (av);,, V n’1||]l:”||§, m’ :=arg min {R (a.,0) : m € N}

By Corollary §12.24 under Assumption §11.12 the maximal global v-risk of an OPE &\m; with
optimally choosen dimension m as in (14.26) satisfies

RIA" |67 < CR, (a,v)
with C = 1 + r*. Moreover, under Assumption §13.35 due to Proposition §13.37 R (a,,v,)
provides (up to a constant) also a lower bound of the maximal global v-risk over the ellipsoid
¢;" for any estimator. Consequently, (up to a constant) R (a,,v,) is a minimax bound and g™ is
minimax optimal. However, the optimal dimension m* depends on a, € (R')Y characterising

\0

the ellipsoid ¢;". O

§14.34 Proposition (GSSM (614.02 continued)). Let 6, = 6 + n 2B ~ N, as in Model §14.02 where
hcl,and B ~ N, Given v, ¢ (R )N, M € IN and pen® as in (14.17) consider a data-driven
OPE 9'” = 9]1"” € 1™ C l,(v2) with m as in (14.18). If Assumptions §11.12 and §14.21 (with
G € IR ,) are satisfied, then for all n,M € IN we have

RG] < (3" 4+ 40) min {R (a,,0):m € [M]} + 12C,n"* (14.27)

where R (6,0, := (av)]

b VL2 is defined as in (14.26).

§14.35 Proof of Proposition §14.34. is given in the lecture. O

§14.36 Comment. The minimax bound R’ (a,,v) = R (a,,0) = min {R:'Z(a_, 0):m € ]N} (for details
see Reminder §14.33) satisfies nR (a,,v) > || 10" ||3 > v?. Consequently, the last upper bound in
(14.27) and the minimax bound R’ (a,,v,) coincide up to a constant (3r> + 40+ 12 C,v,?) provided
the minimax dimension fulfils m* € [M]. Therefore, we wish the upper bound M to be as large
as possible. The next assertion shows that M’ as in (14.20) is a suitable choice for the upper
bound. 0

§14.37 Corollary (GSSM (§14.02 continued)). Given v, € (R U)K M’ € N as in (14.20) and pen® as in

(14.17) consider a data-driven OPE 9 = 9]1’” € 1™ C 4,(v?) with m as in (14.21). Under the
assumptions of Proposition §14.34 for each n € WN such that R} (a,,v,) < v} we have

RG] < (3r* +40) R (a,,0) + 12C,n' < CR (a,,v,) (14.28)

n

and, hence up to the constant C := 3r* + 40 + 12 C,v;? the feasible data-driven estimator 6" is
minimax optimal.

§14.38 Proof of Corollary §14.37. is given in the lecture. O
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§14|04 Goldenshluger and Lepskij’'s method

The next selection method is inspired by a bandwidth selection method in kernel density estima-
tion proposed in Goldenshluger and Lepskij [2011]. Let us consider a probability measure B"
for some € € ©. We shall measure the accuracy of the estimator /9,\’” of § by its risk " (ta(@", 9,))
where 0,(+, -) is a certain semi metric to be specified below. Inspired by Lepskij’s method (which
appeared in a series of papers by Lepskij [1990, 1991, 1992a,b]) given an integer M € IN and a
sequence pen, € (R")N of penalties we define a contrast contr, € (R")[MI by

Contr, = maX{(th 6J m) pen, — Pen ) 1 j € ]m, M]]}

= max { ((4"",8"") — pen,,, — pen ), td €ImM]}, moe [M]. (14.29)

In the spirit of Goldenshluger and Lepskij [2011] combining the contrast given in (14.29) and
the penalisation approach of model selection in Subsection §14/02 we select the dimension

m := arg min {cOntrm +pen :m e [[Mﬂ}. (14.30)

The data-driven estimator of € is now given by /07” and below we derive an upper bound for its
risk B" (02 @, )) The construction of the penalty sequence pen, and the upper bound M given
below is motivated by the following key argument used in the proof of the risk bound which
we present first. Moreover, both pen, and M will depend, among others, on the noise level n,
however, for sake of simplicity we will omit an additional subscript. The key argument for our
reasoning is the next assertion.

§14.39 Lemma (key argument). Let bias(6),0,) = (bias, (6,0.))men € (R")Y be defined by
bias,, (€, 0.) 1= sup {0,(¢,8"): j € [m.oc] ;== NN [m,c0) U{ec}}, Vm € N. (14.31)
If pen, € (R")N then for all M € N and m € [M] we have
02(4",0) < 16bias’(6,0.) + Lpen, + 28 max { (044, 8') — pen, /3)+; j € [m,M]}.
§14.40 Proof of Lemma §14.39. is given in the lecture. O

Similar to m° as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension /2° € |M] to be specified below. Due to the last assertion for
each § € © we have

E" (03(@".6)) < 16bias? (£,0.) + Fpen,,
+ 28E" (max { (%@, 6)) — pen, /3) : j € [, M]}). (14.32)

Keeping in mind that m° in contrast to m° eventually realises an optimal statistical-error-squared-
bias trade-off among the collection of admissable values [M] rather than IN, we wish the upper
bound M to be as large as possible. In contrast, in order to control the remainder term, the
last term in (14.32), we a forced to use a rather small upper bound M. However, we bound the
remainder term by imposing a condition similar to Assumption §14.06, which though holds true
for a wide range of solutions = U# € O under reasonable model assumptions.

§14.41 Assumption. There exists a constant C := C(f)) € R}, and (R;(,.))nen € (R")N possibly
depending on the parameter § = U6 € O such that for each n € IN the upper bound M € IN and
me € [M] satisty

B (max { (048", 0") — pen, /3) :m € [m*,M]}) < CR; (4, 0.). (14.33)
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The next assertion provides an upper bound for the risk of the estimator ™ with data-driven
choice m given by (14.30).

§14.42 Proposition. Let m® € [M] satisfy the Assumption §14.41 then we have
B (02(8",6)) < 16bias’,(,0.) + Lpen, . + 28C RE(6, ...
§14.43 Proof of Proposition §14.42. is given in the lecture. O
§14.44 Corollary. If m® = arg min {bias’ (6,0..) + pen, : m € [M] | satisfies Assumption §14.41, then
B (34(",6)) < 16 min { bias® (4, 0..) + pen,: m € [M]} + 28 C R} (6).
§14.45 Proof of Corollary §14.44. is given in the lecture. O

§14.46 Comment. Considering a global v-error we note that bias’ (4,0.) = ||6" — 9||§ for all m € N,
and hence the upper bound in Corollary §14.44 equals up to the numerical constants the upper
bound in Corollary §14.09 using a model selection approach (Subsection §14/02). Consequently,
when globally estimating the parameter in a GSSM with a Goldenshluger and Lepskij method
rather than a model selection approach as in Subsection §14/03 we eventually obtain the same
upper bounds (up to the numerical constants). However, we shall stress that in opposite to
model selection the method by Goldenshluger and Lepskij does not require, that the estimator
minimises a contrast function. O

We eventually are in a situation where the sequence of penalties pen, € (R")Y satisfying the
Assumption §14.41 still depends on characteristics of the unknown parameter ¢ and thus it is
only partially known in advance. Assuming a sequence of estimators pen, € (R")Y we define an
estimated contrast contr, € (R")M] by

Contr := max { (Uit g Am) pen — pen ) 1 j €]m, M]]}
Pen,,, —Pen,.) :j €lm, M}, m € [M] (14.34)

= max{( 2@y —

and similar to (14.30) we select the dimension
m := arg min {/C\ontrm —i—ﬁenm: m € [[M]]} (14.35)

The data-driven estimator of € is now given by @\ﬁ and below we derive an upper bound for its
risk B" (02 (9"’ 9)). The key argument for our reasoning is the next assertion. Its proof follows

ist

along the lines of the Proof §14.40.

§14.47 Lemma (key argument). Let bias(6,0.) = (bias (6,0.))men € (R")N be defined as in (14.31)
(Lemma §14.39). If pen,, pen, € (RN)YN then for all M € N and m € [M] we have
02

ist 1st

+ 8 max { (pen], - /ﬁenj)+: je [[m,Mﬂ} + 4/ﬁenm.

(9 ,0) < 16bias’ (6, 0.) + 3]Jen + 28 max { (02 9] 9) ]Jenj/3)+:j € [[m,Mﬂ}

§14.48 Proof of Lemma §14.47. is given in the lecture. o

Similar to m? as in (14.02), which realises by construction a statistical-error-squared-bias
compromise, let us fix a dimension /7° € [M] to be specified below (analogously to (14.32)).
Due to the last assertion for each § € © we have

B (th(ém,a)) < 16bias’ (6, 0.)+ pen +28R" (max{(02 7, ) penj/3)+:j € [[mQ,M]]})

1st

+ 8B" (max{(penj — penj)+: jem ,M]]}) +4B" (/ﬁenmo). (14.36)
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We bound the remainder terms by imposing conditions including Assumption §14.41, which
though hold true for a wide range of solutions f = Uf € O under reasonable model assumptions.

§14.49 Assumption. There exists a constant C := C(f)) € R}, and (R}(.2.))new € (R")N possibly
depending on the parameter §, = Uf € © such that for each n € IN the penatlties pen,_, pen, €
(R")N, the upper bound M € N and m® € [M] satisfy (14.33) in Assumption §14.41 and in
addition

IB”(maX{(penj — /ﬁenj)+:j € [[mQ,M}]}) < CR(4,0.).

A~
m

The next assertion provides an upper bound for the risk of the estimator §" with data-driven
choice m given by (14.35).

§14.50 Proposition. If m® € [M] satisfies the Assumption §14.49 then we have
B" (o

ist

(",6)) < 16bias’,(6,0.) + 2pen,, + 4B (Pen,,) + 36C R} (6, ..).
§14.51 Proof of Proposition §14.50. is given in the lecture. O

§14.52 Corollary. If m® = arg min {bi;mf,(ﬁﬂb;\() + pen :m € [[Mﬂ} satisfies Assumption §14.49 and
B" (pen ) < Kpen . for some K € [1,00), then

B (Dit(aﬁ, 0)) < (16 vV 6K) min {bias?n(ﬂ, 0.) + Pen :m € [[Mﬂ} +36CR(9).

§14.53 Proof of Corollary §14.52. is given in the lecture. O

§14|05 GSSM: data-driven local estimation

Lemma §14.18 in Subsection §14/03 presents tail bounds of sums of independent squared Gaus-
sian random variables. We state next an elementary tail bound and a concentration inequality of
a single Gaussian random variable.

§1454 Lemma. Let Z ~ N,,. Foralln € R} and (,K € [1,00) we have
Now(Z > 1) < (2m) "2 exp(—n?/2) and N, (2% = 2¢(1 +10gK)) ) <K *. (14.37)

§14.55 Proof of Lemma §14.54. Exercise. O

§14|05/01 Local ¢-risk

§14.56 Reminder (Local oracle ¢-risk in GSSM §14.02). Gixen Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version € admits a N, -distribution belonging to the
family N, := (N} )geco, © C 4,. Let us recall (12.11) in Proposition §12.32 where ¢ < (R )",
0 € dom(oy,) and n,m € IN we have defined

RY(6.4) = |0 (AL +n 172, m2 = arg min {R}(6.¢) : m € N}

and R (4, ¢) =R (0,¢) =min {R] (0, ¢) :m € N}. (14.38)

Due to Corollary §12.38 the (infeasible) OPE 5 = é\]lﬁ"* e 1™ C dom(¢y,) with oracle
dimension m; as in (14.38) satisfies

N (o (@™ — 6)I*) =R, (0, ¢) = inf N/(|on (0" —A)P),

and hence it is oracle optimal (with constant 1). O
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§14.57 Corollary. For & (R )" and n. M & N setting K, := (||ﬂ’"||§5 V1)m? > 1, m € N, we have
Ny (max { (Jou (6" — 7)]* — 2(1 + log K [10)7) :m e M }) < 2n7. (14.39)
§14.58 Proof of Corollary §14.57. is given in the lecture. O

§14.59 Notation. Consider a sequence of penalties pen? = (pen’ )en € (R7,)™ given by

m
L

pen? =6 (1 + (log||]lf”||d2))+ + 2logm)n”! for each m € N (14.40)

2
¢7
which is obviously known in advance. Moreover, studying a ¢-error the bias term introduced in
(14.31) becomes

bias, (6, ¢) = sup {| oy (& — )| = oy (QU™ )| j € [m, o]}  Vm € IN.

If ¢ & dom(oy,) and hence 1 (|¢6|) € R then bias (6, ¢) < 1 (J@O|1"") = o(1) as m — oo by

dominated convergence. Considering the data-driven OSE 97" = 5 17 with dimension parameter
m selected as in (14.30) with penalty sequence pen? given in (14.40) and arbitrary but fixed upper
bound M € IN we derive below an upper bound for its local ¢-risk, N; (|¢y, (0" — 6")|?). O

§14.60 Proposition (GSSM (§14.02 continued)). Let 5 =0 +n"B ~ N, as in Model §14.02 where
0 clyand B, ~ N, Given o  (R,)N, M € IN and pen? as in (14.40) consider a data-driven
OPE (" = 1" € 17 C dom(¢y) of 0, € dom(oy,) with
m = arg min {contr’, + pen’: m € [M]} and
contr? 1= max{(|¢l4“(é\j — é\m)|2 — pen? — pen‘ﬁl)+:j € ]]m,M]]}, m € [M]. (14.41)
Then for all n,M € IN we have

N; (e (@ = 0)°)
< 64 min {bias? (0, ¢) + (1 + (logH]lf”HZ)+ + log m)n_lH]lf”HZ :m € [M]}
+56n7". (14.42)

§14.61 Proof of Proposition §14.60. is given in the lecture. O

§14.62 Comment. Let us compare the dominating part of the upper bound given in (14.42), that is
min { bias? (6, ¢) + (1 + (log||]1:“\|;)+ + log m)n’lﬂ]l:”Hj5 :m e [M]} (14.43)

with the oracle bound R}, (4, ¢) = min {|oy (6" —6)|* + n*lH]lf”H; :m e N} (for details see
Reminder §14.56). In (14.43) we face eventually a deterioration by three sources. First, we
generally have bias (6, ) > |y, (6™ — 6,)|, but note that for (.o « (IR")" equality holds, that is

bias, (6 ¢) = sup { s (@AL"): j € I, o0l } = g (GAL) = o (6" — )|

for all m € IN. Secondly, the variance term features an additional factor 1 + (logH]lﬁ”Hj))+ +
log m, and finally the upper bound M might impose an additional deterioration. We note that the
oracle bound R’ (6, ¢) is parametric, i.e. nR; (6,¢) = O(1) asn — oo, if ¢ € ¢, (case (p) in
[lustration §12.40). In the sequel we consider only the case ¢ ¢ (., i.e. 1;(|0|?) = co. We set

M” :=max {m € N: )12 < ng’} € N (14.44)
where the defining set is not empty and finite since ||¢||§ = oo. The next assertion shows that

this is a suitable choice for the upper bound. Moreover, we estimate the bias term by bias (6, ¢) <
v(|¢8| L") where equality holds whenever (¢ € (R")™. 0
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§14.63 Corollary (GSSM (§14.02 continued)). Given ¢ € (R.,)™ with ¢ ¢ (,, M* € N as in (14.44) and
pen? as in (14.40) consider a data-driven OPE " = 017 € ¢, 1" C dom(¢y) of 0, € dom(on)
with

m := arg min {cOntrf’n + pen®:m € [[Mﬂ]} and

contr? 1= maX{(l(z)V]N(aj - é\m)|2 - pcnj.’ — pcn?n)+:j € ]]m,Md’]]}, m € [[Mﬂ] (14.45)
Forn,m € N we set
R (@) = (s(601L")" + (14 (logl| T [3), +logm) n |12,

m’ = arg min {R(,¢) : m € N} and
R, (8,¢) == R, (8,¢) = min {R (4,¢) : m € N}. (14.40)

Under the assumptions of Proposition §14.60 for each n € N such that R, (6, ¢) < & we have

N (100" — Q)[%) < 64R: (8, ¢) + 560" < (64 + 56¢ )R, (4, ). (14.47)
§14.64 Proof of Proof §14.64. is given in the lecture. O

§14.65 Comment. The data-driven bound R’ (¢, ¢) compared to the oracle bound R (6, ¢) features a
deterioration of the variance term at least by a logarithmic factor. The appearance of the loga-
rithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. 0

§14.66 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case ¢ ¢ (, only.

Table 01 [§14]
Order of the oracle rate R, (¢, ¢) and the data-driven rate R’ (4, ¢) as n — oo

(j € IN) (e € R),) (squarred bias) (variance)
A N (5 C13 e D 1 68 A IR R.(0.¢) R.(6.¢)
. . 1/2 —2(a—v) 2v L n o —{a=v) logn @
(©ve(0a) j UV |m m nz ()™ noe (==*)
i—a—1/2 -2 n n L | logn (logn)?
v =0 jmo! m= logm | e (m) - —
r z
. _o(a— o 1 L 1 1 log 1
(s) ve R, e m =2V gmam® gp2v n2  (logn)2e ( Ognn)a ( Ogn)agl()g ogn)
20 _ 20 L log1 log 1 2
v=0 eJ mi—20+g-2m’ logm e” (logm)2a = ch)gn (log Zgn)

We note that in Table 01 [§14] the order of the oracle rate R’ (A, ¢) and the data-driven rate
R’ (4, ) is depict for v > 0 only. In case v < 0 we have ¢ € ¢, and thus Corollary §14.63 is not
applicable. O

§14|05/02 Maximal local ¢-risk

§14.67 Reminder (Maximal local ¢-risk in GSSM §14.02). G/i\ven Model §14.02 we consider an OPE as
in Section §12. Here the observable noisy version € admits a N, -distribution belonging to the
family N, := (N} )geo, © C £,. Under Assumption §11.25 in Corollary §12.45 an upper bound
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for a maximal local ¢-risk of an OPE is shown. More precisely, the performance of the OPE
g = 9]1’” € 1" C dom(sy,) with dimension m € IN is measured by its maximal local ¢-risk
over the ellipsoid ¢;”, that is

e sup (N, (0@ ) 57

Let us recall (12.13) where for n, m € IN we have defined

i

R0

R (a,,¢) := Ha.]lﬁ”'lH; +n |12, m = arg min {R] (a,¢) : m € N}
and R (a.¢):=R"(a,¢) = min {R ,¢) :m € N}, (14.48)

By Corollary §12.45 under Assumption §11.25 the maximal local ¢-risk of an OPE 0" with
optimally choosen dimension 2’ as in (14.48) satisfies

RG] < CR. (a,, 8)

with C = 1V r°. Moreover, under Assumption §13.24 due to Proposition §13.26 R} (a,, ¢)
provides (up to a constant) also a lower bound of the maximal local ¢-risk over the ellipsoid
2" for any estimator. Consequently, (up to a constant) R (a,, ¢) is a minimax bound and §™ is
minimax optimal. However, the optimal dimension m* depends on a, € (R},)™ characterising
the ellipsoid /;”". O

§14.68 PrOpOSItlon (GSSM (§14.02 continued)). Let 0 =0 +n"B ~ N, as in Model §14.02 where
0 cl,and B ~ N, . Given o e (RN, M & N and pen? as in (14.40) consider a data-driven
OPE Qm = «9,]1:” € ¢ 1™ C dom(ey) with m as in (14.41). If Assumption §11.25 is satisfied, then
foralln,M € IN we have

RO 6]
< (161" V 64) min { ||a,]1i"f'i||; + (1+ (1og||]1f”||;)+ + 1ogm)n*1||]1fn||; :m e [M]}
+56n7". (14.49)

§14.69 Proof of Proposition §14.68. is given in the lecture. O

§14.70 Corollary (GSSM (§14.02 continued)). Given ¢ < (R O™ with o & L, M’ € N as in (14.44)

and pen? as in (14.40) consider a data-driven OPE 9 5]1 € 11" C dom(¢y) with m as in
(14.45). For n,m € IN we set

R/ (a,¢) = a1 + (1 + (log||T"[|) +logm) n’1||]1’"||27

m’ —argmm{R L 0) mE]N}
R (a,¢) := Rn (a_, )_mm{R a,¢):m e N} (14.50)

n

Under Assumption §11.25 for eachn € N such that R (a,, ¢) < ¢’ we have

RG] < (1612 V 64) R, (a,, ¢) + 560" < (161* V 64 + 56¢ *)R, (a,, @) (14.51)
§14.71 Proof of Proof §14.71. is given in the lecture. O

§14.72 Comment. The data-driven bound R’ (a,, ¢) compared to the minimax bound R’ (a,, ¢) features
a deterioration of the variance term at least by a factor log n. The appearance of the logarithmic
factor within the bound is a known fact in the context of local estimation (cf. Laurent et al. [2008]
who consider model selection given direct Gaussian observations). Brown and Low [1996] show
that it is unavoidable in the context of nonparametric Gaussian regression and hence it is widely
considered as an acceptable price for adaptation. m
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§14.73 Illustration. We illustrate the last results considering usual behaviour for a,, ¢ € (R,,)~. Asin
Illustration §12.47 we distinguish again the following two cases (p) ¢ € ¢,, and (np) ¢ & /..
Interestingly, in case (p) the minimax bound R (a,, ¢) in Proposition §12.42 is parametric, that
is, nR’ (a,,¢) = O(1), in case (np) the bound is nonparametric, i.e. lim,,_,., nR (a,,¢) = co. In
case (np) consider the following two specifications:

Table 02 [§14]

Order of minimax rate R (a,, ¢) and the data-driven rate R} (a,,¢) as n — oo

(j eN) (e € R',)) (squarred bias) (variance)
_ su—1/2 2 m|L||2 m (|2 & ) * o
o= a ||a 1 ||¢ || s M me R, (a,9) R (a,¢)
. i—2a —2(a— 2 o noo\ ok _a=v) logn\ “5"
(©ve(.a) m e m? n* (o) noa (==)
, \ ‘—2a —2a n n L | logn (logn)?
v =0 j m logm | ¢ (U“g ”)2) > R
N v
_ a 1 logn)a logn)a (loglogn
(s) ve R, e M=V emmt nz (logn)?a ( gn) (log n) ;g gn)
20 1 log 1 log 1 2
v=0 e em log m e (105—’; ”)2” og logn ( og log n)
: n n

We note that in Table 02 [§14] the order of the minimax rate R (a,, ¢) and the data-driven rate
R’ (a,,¢) is depict for v > 0 only. For v < 0 we have ¢ ¢ (, and thus Corollary §14.70 is not

applicable.

|
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Chapter 4

Nonparametric density estimation

This chapter presents nonparametric density estimation along the lines
of the textbooks by Tsybakov [2009] and Comte [2015] where far more
details, examples and further discussions can be found.

Overview
§15 Noisy density coefficients . . . . . . . . . ... Lo oo 73
§16 Projection density estimator . . . . . . . ... oo o e 75
§16101 Global and maximal global v-risk . . . . . ... ... ... ...... 76
816102 Local and maximal local ¢-risk . . . . . . ... ... ... ...... 78
§17 Minimax optimal density estimation . . . . . . . .. ... ... ... ... .. 80
§17101 Maximal local ¢-risk . . . . . . .. ... ... ... ... ... ..., 80
§17102 Maximal global v-risk . . . . ... ... ... o 82
§18 Data-driven density estimation . . . . . . . . . . ... ... 83
§18I01 Data-driven global estimation by model selection . . . . . . . ... .. 83
§18l02 Data-driven local estimation by Goldenshluger and Lepskij’s method . 87

§15 Noisy density coefficients

§15.01 Notation (Reminder). Consider the measure space (|0, 1], .\, ) where A\, denotes the re-

[0,1]?

striction of the Lebesgue measure to the Borel-o-algebra %, over [0, 1], and the Hilbert space
Lo(A) = Ly([0,1], Z,,, M) of square Lebesgue-integrable functions endowed with its usual inner
product (b, h) = Ay, (luh,) for all by, b, € Ly(\). Let D, be a set of square-integrable
Lebesgue densities on ([0, 1], %, ), and hence D, C L,(\..,)(=: H) as in Model §10.23. We de-
note for each density p € D, by I’ := pA,, and [5  the associated probability measure and
expectation, respectively. Keep in mlnd, that we identify equivalence classes and their represen-
tatives. m
§15.02 Assumption. We consider the statistical product experiment ([0, 1}” B B = (B™") yen,)

P

of sizen € Nandfor p € D, C [,(\..) we denote by (X );cfn] ~ IPP an 11d sample of X ~ P.

§15.03 Notation (Reminder). Consider an orthonormal system (1) ;e in Ly(Ao). Then U @ Ly(Aw) — £,
withh = Uh = h, = (h; == (h,w),_, ))jG]N is a surjective partial isometry U € L(L,(\.),£,). Its

»

adjoint operator U" € L(£,L,(\.) satisfies U'a, = 3~y au, =: (e, for all a, € £,. We call

h., = (h;) jen (generalised) Fourier coefficients and U (generalised) Fourier series transform. O

§15.04 Remark. Let U € L(L,(\.),4,) be a generalised Fourier series transform as in Notation §15.03
where L,(\,,) = ker(U) @ ran(U’) and ran(U") = {U’a, = y,(a.n.): a. € £, }. If U is not injective,
then there exists X C IN and an orthonormal basis (v ) jex of ker(U), and each h € L,(\.,) with
h, := Uh admits an expansion h = U'h, + >, 4 (h, Vil Vs We denote by 1, € 4, the
constant function with x — Ty () := 1. If Ly, € ker(U) then we have (i, L), , = Oforall

h € ran(U"), or in equal (y (aw.), Loy) , ) = Oforalla, € ¢, and in particular (u;, Ljp1)), , ) =
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0 for all j € IN. For each density p € Ly(\.) we have (p,Lpx), ) = Ao(p) = 1. In
other words the coefficient (|, ]l[oyl])hw”) is always known. Therefore, we assume here and
subsequently 1, ¢ ker(U). Moreover we have L,(\.) g L,([0,1],4,,,k) =: 1,(F). Indeed,
h € Ly(\.) satisfies B (|2]) = pAos([h]) = (. [y < IPILo IR0 € R, and hence
h € Ly(E). Evidently, we have u, € L,(E) for all j € IN and the Fourier coefficients p =
(Pljen =Up € L, 0f p € L) fulfil p = (p,w), , ) = Ay(Pw) = pAoy(w) =E () for
all 7 € IN. In addition we assume that for each p € D, C L,(A ,M) the orthonormal system (u, ) jen
belongs also to L,(I) := L,([0,1],4,,.F), i.e. u; € Ly() forall j € IN. o

§15.05 Assumption. The orthonormal system (1, ) ;e in Ly(.,), and its associated generalised Fourier
series transform U € L(L\.), &) with b — Uh = h, = (h; : (h,uj)[L2 (n,.))jens s fixed and

known in advance. U is a partlal isometry with (osl) 1, € ker(U). (0s2) Forall p € D, C
L,(A.,) the orthonormal system (u,) jew belongs to L,(E). u

§15.06 Remark. If in addition D, € (A, ) then for each p € D, we have L,(\,,) C L,(I). Indeed,
h € Ly satisfies B ([h]*) = A, (plh?) < [Ipll_e, thH[L o, € R'. Consequently, any
orthonormal system in L,()\.,) belongs also to L,(F,), and (0s2) in Aqsumptlon §15.05 1is satisfied.
Alternatively, (0s2) is fulfilled for arbitrary B, C L,(\..) if (u;) jen belongs also to L (Au,). 0

§15.07 Notation (Reminder). Similar to an Empirical mean model §10.07 for each ;7 € IN we de-
fine p :=D(w) € A7 with 2" — (B(w))(z") = n' 3, u(a’). Since the stochas-

[0,1] J

tic process u, = (u;)jew on ([0,1],4,,) is A, ® 2"-Z-measurable, the stochastic process

[0.1]

P = (B = P(u))jex on ([0,1]", B is B @ 2N-A-measurable, p < 4, @ 2" for

J [0.1] [0,1

short. By construction p = (p = B, ())jen € 2N is the ¢,-mean of p. For each j € N
the statistic & :— n,“z(l??,(u]) — D (u)) € A is centred, i.e. g € L,([0.1", 4 B") = L,(B")

[0.1] /

with B () = 0, and €, = (g)jen € %, @ 2", Since p = p + n'’¢ for each j € N by

[0,1]

"€ is a noisy version of p (see Deﬁnition §10.19). Moreover, under

construction p = p + 1

Assumption §15.05 p admits a covariance function cov?, € ]R given for 7,5 € IN by

nCov(p,p) =Cov(g.g) =B"(g5) = B(wuw)-B(u)B(w,) =B (wy)—pp = cov’.

7 ", P P\ /T p \

Consequently, we have & ~ P and p = p +n g ~ P, .., (seeDefinition §10.19).  ©

(0.,

§15.08 Noisy density coefficients. Under Assumptions §15.02 and §15.05 the stochastic process g, =
(g = n2(P(u,) — P (u,))) e satisfies Assumption §10.04, ie. g € A° @ 2%, and € has
mean zero under P™". The stochastic process P = p + n'e with {,-mean p is called a

noisy version of the density coefficients p = Up € /,, or nozsy density coefficients for short.

Moreover ¢, admits under P™" a covariance function covh € IR glven for j, j, € N by cov? =
P (wu,) — P (u)P (u;). We eventually write g ~ B and p ~ B . .. Ifin addition €

P J P (0,,cov?,) (p,tcovy,

admits a covariance operator |, < [°(/,) then we write g ~ B, and p ~ R@ . for short. O

§15.09 Remark. The centred stochastic process g, := (g ), of error terms in Definition §15.08 is in
general not a white noise process. m

§15.10 Lemma. Under Assumptions §15.02 and §15.05 consider the stochastic process €, € %, @ 2N
as in Definition §15.08.

(i) If p € L.(\.) then under P*", & ~ P,

Tcoy) @dmits a covariance operator 1, € L(L.) given by

— P
a,|—>Il;a,— cov E co“ 5 JGIN
J,EN
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where [[L], < [[pll_o..-

) If pel (A )and p ' = % € L..(\.) then I, € [E(4,) is invertible with inverse I;fl € L)
where |7, < 07l

Consequently, if v, := max(|[p|, . .[p ', . )€ R thenforalla, € (,wehave

v el < llal? = (T, a), < vl

§15.11 Proof of Lemma §15.10. is given in the lecture. O

§15.12 Remark. For each j € IN consider 1V = (1;,,(1))ien € (R)N where (1);c forms an or-
thonormal basis in /,. If p < [_(\.,) from Lemma §15.10 (i) for each j € IN we obtain

B (2) = B (j(1¥e) ) = (519,19, <lIpll_o J109N2 = [l

Keeping the last identities in mind if v, = max(|[p(| , .[p 1, , ) € R then due to
Lemma §15.10 forall j € IN we have v ' < IPf" (z-:f) <v,. O

§16 Projection density estimator

§16.01 Notation (Reminder). Consider the measure space (IN, 2N, y,) as in Notation §10.11. For w, €
R" define the multiplication map M : R" — R with a, = M, a, := w.a,. Note that each
w, € R is 2N-Z-measurable. We denote by V.. the set of all multiplication maps defined on
R". If in addition v, € (. = L. (N, 2% 1) then we have also M, : ¢, — £,. We set ['((.) =
{M, €Mg:w €.} C L) noting that [|M, ||, , = sup {[wall,: |lal, <1} <[lw.],_ foreach
M, € I(&). O

§16.02 Reminder. If w, ¢ /_then M, € (%), and M, : ¢, O dom(M,) — ¢,. Moreover, we have
dom(M,) = £, ran(M,) = tw, and ker(M,) = I with N, = {j € N:w, =0} € 2N (see
Property §11.03), and dom(M,)) = rw, @ .1 (see Property §11.05). Consequently, if in addition
1 (N) = Oorinequal w, € (R )", then wf = w ' € (R,)", hence w' = w* € (RN, and
0y = dom(M, ) = tw, = Ly(w?y) =: {,(w?). For eachm € IN we write 1" = (1) ;e := 1™
and 1" := 1, — 1" with [m] := [-m,m] N IN. Consequently, My, € [Z(¢) and M,,. € (L)
is the orthogonal projection onto the linear subspace ¢, 1" C ¢, and its orthogonal co'mplement
eI = (1)1 C 4, respectively, that is £, = ¢, 1" @ ¢, 17" (see Property §11.07). Finally, given

h, = Uh € [, for h € L,(\.,) we consider the orthogonal projections /] = h 1" € ¢ 1" and

R = UK € Ly(\.,) (Definition §11.08). O
§16.03 Notation (Reminder). Consider the stochastic processes g, = (g := n2(P(u,) — P(u)))jen
given in Definition §15.08. The observable noisy density coefficients p = p + n g of

the density coefficents p = Up € /, take the form of a statistical direct problem (see Def-
inition §10.19). Under Assumptions §15.02 and §15.05 g is centred and admits a covariance

function cov®, € R~ given in Definition §15.08,ie. & ~F . and p ~ P . .. If in addition
p € L..(A.,) then g admits a covariance operator I} € [2(4,) given in Lemma §15.10, 1.e. g ~ Bo. o
and p ~F, . O

§16.04 Definition. Given a noisy version p = p + n g, of the density coefficients p = Up € ¢, for

each m € IN we call p” := p 1" orthogonal projection estimator (OPE) of p. O
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§16.05 Remark. Under Assumptions §15.02 and §15.05 we consider the function (with random coef-
ficents) p” := 1, + U" p" which belongs to L,()..), integrates to one, but may take on negative
values. Fortunately, there is a simple remedy — its ,(\..,)-projection onto a class of nonnegative

densities,
p:=(p"—c) withce R suchthat A, (p) = 1.

We call p™ an orthogonal projection density estimator of p. If p = 1, + U"p (for example
ker(U) is spanned by u, := 1, or in equal (u;);cn, is an orthonormal ba51s of L,(A.,)), then we
have

1" =l ., =IR"— Rl

In this situation all results for the OPE p™ of the density coefficients immediately transfer onto
the orthogonal projection density estimator p™ of the density p. m

§16|01 Global and maximal global v-risk

We measure first the accuracy of the OPE [/p_Tm = @]lf” of p" = pl" € (1" with p = Up € /,
by a global mean-v-error, i.e. v-risk.

mo_

§16.06 Reminder. If v, € (R )" and p € (,(v’) then we have p" = p1." € /,(v?) too and || p -pl?=
o(1) as m — oo (Property §11.09). Moreover, €, € #," ® 2% given in Definition §15.08 satisfies

0,1]

vel” €/, (note that 1" € ¢, and v, 1", 1" € /_) and thus also

nogll +op" =0p" € L, (16.01)
Finally, under Assumptions §15.02 and §15.05 and p < L (\..) due to Lemma §15.10 we have
WW@G&mmmmmmwﬁ%ﬁm<wam@%%mﬂwim. 0
§16|01j01 Global v-risk

§16.07 Proposition (Upper bound). Let Assumptions §15.02 and §15.05, v, € (R,)N and p € (,(v?) be
satisfied and for all n,m € IN set

R (p,v) = ||[p>]lm'l||2+Tfl||]lm||2 m; ;= arg min {R) (p,v) : m € N}
and R( p.v) =R (p,v) = min {R](p,v):m € N}. (16.02)
If p € L.\ then we have B (| p™ — plI2) < Pl ., R (0. 0).
§16.08 Proof of Proposition §16.07. is given in the lecture. o

§16.09 Oracle inequality. Under Assumptions §15.02 and §15.05 let v, € (R )™ and p € (,(v?). If in
addition v :— max( e o) ER thenv ' <P =B (e7) <, for allj eN
(see Remark §15.12), and hence Property §12.15 implies

v, Ry (p.o) BT (18" — pl2) = n 'n (v olL) + || p L2
< vR)(p,v) forallm,n € IN.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.14)
v, R (p,0) < inf BT([" - pl,) <B"(IR" - pl,)

<y Ri(p.0) <) inf BY(IR" - plly), (16.03)
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m;

and, hence R (p,v.), m_ and the statistic p"™, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v’). We observe that R (p,v,) = o(1) as n — oo
(Remark §12.16), and thus, R; (p,v,) is an oracle rate. However, note that the oracle dimension
m; = m:(p,v,) depends on the unknown density coefficients p, and thus also the oracle optimal
statistic @mi. In other words @m: is not a feasible estimator. O

§16.10 Illustration. We illustrate the last results considering usual behaviour for the bias and variance
term. We distinguish the following two cases
(p) v, € £, or there is m € N with || p" — pl|? = 0,
(np) v, & ¢, and for all m € W holds || p" — p|? € R.

Interestingly, in case (p) the oracle bound is parametric, that is, nR; (p,v) = O(1), in case
(np) the oracle bound is nonparametric, i.e. lim,,_,., nR; (p,v,) = oco. In case (np) consider the
following two specifications:

Table 01 [§16]

Order of the oracle rate R, (p,v,) as n — oo

(G eN (@ € R")  (squarred bias) (variance)
2 _ 20 2 m|Ll||2 m||2 . o
v =] Pt | e T (R | I R.(p,v)
c +—2a—1 —2(a—v) 2v+1 il _2a—v)
0)ve(-1/2,a) j° m m Nzt N~ 2a¥1
1 /¢ i—2a—1 —2a—1 n T logn
v 71/2 J m log m (]ng n ) l n
2v+1
2 Y o 1 logn) 2a
() v+1/2€e R, e mA-2(a—v))4 pg—m? 20+l (log n )2 %
e L loglogn
o= —1/¢ >—J m? o 2a it =Rkt =R
v=—1/2 e e logm (logn) -

We note that in Table 01 [§16] the order of the oracle rate R, (p, v,) is depict for v > —1/2 only.
In case v < —1/2 the oracle rate R], (p, v,) is parametric. O

§16|01|02 Maximal global v-risk

§16.11 Assumption. Consider weights o, v, € (R )" with a, € /_and (av), == (a,v),cn = a0, € (.
We write (av), := [|(a0)1""]|, € R’ for each m € IN. The orthonormal system (u,);ci
in Ly(A) and v, := 1y, form an (0s1’) orthonormal basis (uj)j@NO in L,(\.,) and as process
w? = (u?);en on ([0, 1], A,,) satisfies (0s2”) |11 (a’u?) =72, € R". O

0,1] HLx()h 1) a,u

§16.12 Reminder. Under Assumption §16.11 we have /; = dom(M, ) = ca, € /, and the three
measures 1, a,’y, and v’y dominate mutually each other, i.e. they share the same null sets

(see Property §11.05). We consider ¢; endowed with [|-|| . = |[M,.-||, and given a constant

rc R the ellipsoid ;" := {a, € £; : ||af|. < r} C £. Since (av), < /_, and hence
(av),,, = [[(a0) 1], € R" for each m € IN we have (] C /,(v) (Property §11.15), and
a1, < r(av),, forall a, € /5" (Lemma §11.17). 0

§16.13 Remark. We replace Assumption §15.05 (os1) and (0s2), respectively, by the stronger Assump-
tion §16.11 (0s1’) and (0s2”). Indeed, under (0s1’) we have (os1) 1, € ker(U). Furthermore,
(1) jew belongs to L (A.,) due to (0s2°) (and o, € (IR )"), and hence (0s2) is fulfilled (see also
Remark §15.06). 0

§16.14 Lemma. Under Assumption §16.11 set

DM = {p € L,\.): p isadensityand p =Up € ;" }. (16.04)
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Then we have sup { || p o) PE R I S

a,u®

§16.15 Proof of Lemma §16.14. is given in the lecture. O

§16.16 Proposition (Upper bound). Let Assumptions §15.02 and §16.11 be satisfied. For n € N consid-
ering m’ € N and R, (a,,v) € R" as in (12.06) (Proposition §12.21) we have

sup {B7(|8" — p|2): p € D"} < CR; (a,0).
with constant C = 1 + 17, +1°.

§16.17 Proof of Proposition §16.16. is given in the lecture. O

§16.18 Ilustration. The trigonometric basis given for x € [0, 1] by
= Ny, W(2) := V2cos(27kt), u,, () := V2sin(27kt), k € N,

is an orthonormal basis of L,(\..). It satisfies Assumption §16.11 (0s1), since |||, , = 2
for all ; € IN. Consequently, for all a, € 7, also the Assumption §16.11 (0s2”) is satisfied with
72 < 2)|a?.
a,u . EQ

(0) Ifa, =a,, =j°a€NNjeN, then {h€L,\,): Uh €} is a subset of the
Sobolev space of a-times differentiable periodic functions. Moreover, up to a constant, for
any function 2 € L,(\.,) the weighted norm ||%,||>, equals the L,-norm of its a-th weak
derivative A (Tsybakov [2009]).

(s) If a, = exp(—j*), a > 1/2, j € N, then {h € L,(\..): Uh € £} is a class of analytic
Junctions (Kawata [1972]).

In Table 02 [§12] (Illustration §12.26) the order of the rate R’ (a,,v,) is depict for the two cases
(0) and (s). We note that we have a, € ¢, in case (o) for @ > 1/2 while in case (s) for a € IRTO. O

§16|02 Local and maximal local ¢-risk

We measure secondly the accuracy of the OPE p” = p 1" of p" = p1" € 1" with p = Up &
/, by a local mean-¢-error, i.e. ¢-risk.

§16.19 Reminder. If ¢ € (R,)™ and p € dom(oy) == {a € £y ¢a, € ¢}, then we have p" = pl" €
dom(¢n,) too and |y (p — p”)| = o(1) as m — oo (Property §11.22). Moreover, €, € B> ® 2N

10,1]

given in Definition §15.08 satisfies € 1." € dom(¢y,) (note that ¢1.", 1" € ¢,) and thus also

n_l/Qé‘.]l:n + [F;Dm = @m € dom(ey). (16.05)
Finally, under Assumptions §15.02 and §15.05 and p < [__(\.) due to Lemma §15.10 (i) the
process € € %ﬁ‘ ® 2N admits a covariance operator I[ € [(4), ie. g ~ P(’O”E), satisfying
1L < TPl_o- =

§16|02|01 Local ¢-risk

§16.20 Proposition (Upper bound). Let Assumptions §15.02 and §15.05, ¢ € (R,)™ and p € dom(oy)
be satisfied and for all n,m € NN set
Ry (. @) = oy (p 1) + 7|12, m) = arg min {R}(p, ¢) : m € N}

_—

and R (p,¢) =R, (p,¢) :=min{R, (p,¢) :m € N}. (16.06)

n

If p € L.\) then we have B (|on (8™ — p)I”) < [P0, Ri(R. ).
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§16.21 Proof of Proposition §16.20. is given in the lecture. O

§16.22 Oracle inequality. Under Assumptions §15.02 and §15.05 let ¢ € (R )™ and p € dom(en).
If in addition v, = max(|[pl, . . lp 'l . )€ R, then max(| T, , [T [l,.,) < v, (see
Lemma §15.10), and hence Property §12.36 implies

R () < B (07— R)P) = 0 412 + oy (p T
< VR (p,¢) forallm,n € IN.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.34)

v, R (e, @) < inf B (Joun(@" - p)I°) < B (Iou(@" — »)I)

<R (p.@) < inf B (o (8"~ p)), (1607
me ° °

and hence, R‘;([@, @), m: and the statistic @"‘3, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v?). We observe that R, (p,¢) = o(1) as n — oo
(Remark §12.37), and thus, R, (p, ¢) is an oracle rate. However, note that the oracle dimension
m; = m:(p,¢) depends on the unknown density coefficients p, and thus also the oracle optimal
statistic @mz. In other words @mi is not a feasible estimator. 0

§16.23 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in [llustration §16.10 we distinguish here the
following two cases

(p) ¢ € ¢, orthere is K € IN with sup{|¢y (p1"™)|* : m € NN [K,00)} =0,
(mp) ¢ & ¢, and for all m € IN holds sup{|¢y (p1"*)[* : m € NN [K,00)} € R,

In case (p) the oracle bound is again parametric, i.e. nR (p,¢) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. lim,,_,., nR’ (p, ¢) = oco. In case (np) consider the following
two specifications

Table 02 [§16]

Order of the oracle rate R’ (p, ¢) as n — oo

G el (a € R7) (squarred bias) (variance)
Lo gw—1/2 m|LY|2 m (|2 - °
¢ =7 po | eI WS | o R.(p,¢)
] . o ‘ (a=w)
0 wve(,a) 72 1 m 2(a—v) m2 nza n- e
s—a—1/2 —2a noo\s logn
v=0 j m logm (1()g - ) =
v
> —92(a— 2a 1 lo a
(s) ve R, e mi—2amvsgm2m 2 (logn )2 (logn)e gnn)
. _ 2 L log 1
v =0 e m-20+em logm | (logn)= | 22282

We note that in Table 02 [§16] the order of the oracle rate R’ (p, ¢) is depict for v > 0 only. For
v < 0 the oracle rate R, (p, ¢) is parametric. m

§16|02/02 Maximal local ¢-risk

§16.24 Assumption. Consider ¢, a, € (R )" with a, € /_ and (a0), := (,¢)jen = a,¢ € (., and
hence [[a, 17| = [[(ag), 1" ||, = o(1) as m — oc. The orthonormal system (11,) jen in Ly(A)
and u, := 1,y form an (0s1”) orthonormal basis (1;)jen, in Ly(A.,) and as process u? = (u?)jew
on ([0, 1], 4, ) satisfies (0s2°) ||y (a;12)|| < 7 for7 & [1, 00). u

.1
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§16.25 Reminder. Under Assumption §16.24 we have /; = dom(M ) = ca, € [, and the three
measures 1, o,y and |¢|y, dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). We consider £, endowed with ||| . = ||M,.-[|, and given a constant
r < R the ellipsoid ;" := {a, € £} : |la| - < r} C 4. Since (a¢), < (,, and hence
la, 17|, = [l(ag). 1], € R" for each m € N (||, 1|, = o(1) as m — oo by dominated
convergence) we have (7 C dom(ey,) (Property §11.27), and [¢n, (p 1) < v [l 1| for all
p € (7" (Lemma §11.29). i

§16.26 Remark. We replace Assumption §15.05 (osl) and (0s2), respectively, by the stronger As-
sumption §16.24 (os1’) and (0s2’) (see Remark §16.13). Moreover, considering the set D)
of densities in L,(\.,) defined in (16.04) we have ||p||, , , < 1+ 17, forall p € D" due to
Lemma §16.14. O

§16.27 Proposition (Upper bound). Let Assumptions §15.02 and §16.24 be satisfied. For n € N consid-
ering m’ € N and R, (a,,¢) € R" as in (12.13) (Proposition §12.42) we have

sup {B7" (|ou (8" — p)"): p € D"} < CR (0, ¢).

with constant C = (1 +r7,,) V1*

a,u

§16.28 Proof of Proposition §16.27. is given in the lecture. O

§16.29 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.24 for all a, € /,. In Table 04 [§12] the order of the rate R (a,, ¢) is depict for the two
cases (o) and (s) introduced in Illustration §12.47. We note that we have a, € /, in case (o) for

-+

a > 1/2 while in case (s) for a € R,. u

§17 Minimax optimal density estimation

§17|01 Maximal local ¢-risk

§17.01 Reminder (Maximal local ¢-risk). Under Assumptions §15.02 and §16.24 the observable noisy
density coefficients p = p + 1 '“¢, of the density coefficients p = Up € /, take the form of a
statistical direct problem (see Definition §10.19) where the stochastic processes €, € %’ﬁ]" ® 2N
is given in Definition §15.08. Under Assumptions §15.02 and §16.24 in Proposition §16.27 an
upper bound for a maximal local ¢-risk of an OPE over the class D" of densities in L,(\.,)

defined in (16.04) is shown. More precisely, the performance of the OPE p” = p 1" € 1" C
dom(¢y,) with dimension m € IN is measured by its maximal local ¢-risk, that is

RIp" o] = sup {B™ (|ou (" — p)): p € D"}
Let us recall (12.13) (Proposition §12.42) where for n, m € IN we have defined
R (a,0) := ||a,]lf”“||; +n7 |1, m = arg min {R] (a,¢) : m € N}
and R (a.¢) =R (a,¢) =min{R](a,¢):m e N}. (17.01)

By Proposition §16.27 under Assumptions §15.02 and §16.24 the maximal local ¢-risk of an
OPE p™ with optimally choosen dimension m* as in (17.01) satisfies

RIp™ D] < CR(a, @)

with C = (1 +r7,,) VI O
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§17.02 Lemma (Lower bound based on two hypotheses). If there are p’, p' € D" with associated proba-
bility measures B := P, and B := P, such that H(R,R) < 2n' then for all n > 2 we have

1
. o} a,r
inf 5 RY[ D] > @wum(u@”— p )|

where the infimum is taken over all possible estimators.

§17.03 Proof of Lemma §17.02. is given in the lecture. O

§17.04 Remark. If we consider furthermore candidate densities p’ := 1, + U'p"and p' = 1, —
U™ p" for some p" € ¢;", and hence by definition p’, p' € D}, then trivially |pv(p’ — p')|* =
4|¢y, (p") 2. If the associated probability measures B := P, and B := P, satisfy HR,R) < 2n™"'
then due to Lemma §17.02 for all n > 2 we have

1 *
infy R[] > Jelon (@)l

(17.02)

We find a minimax-optimal lower bound by constructing a candidate p’ € /7" that has the largest
possible |py, (") |*-value but P and Py are still statistically indistinguishable in the sense that
H(P,P) < 2n". m

P e

§17.05 Lemma. Under Assumption §16.24 let p* € £;" L < 1/(27,,). Then p’:= 1,5, +U"p"

and p' := 1, — U p" belong to D", and the associated probability measures B := P, and
B := B, satisfy H¥

b §

§17.06 Proof of Lemma §17.05. is given in the lecture. O

$17.07 Reminder. Under Assumption §16.24 let in addition a? € (R )" (see Notation §13.23), then
Assumption §13.24 is satisfied. If a; > » ' then exploiting the definition (17.01) of m’ we have

a,. >n ' > al,. ., (see Comment §13.25) which we use in the next proof. O

§17.08 Proposition (Lower bound). Let Assumptions §15.02 and §16.24 be satisfied. If o> € (R)" then
foralln € NN (1V a2 00) we have

inf R p D] > C R, (a,¢) (17.03)
with constant C := 1671 (x> A 1/(472.) A 1) and infimum taken over all estimators.

§17.09 Proof of Proposition §17.08. is given in the lecture. O

§17.10 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.24 for all a, € /, (see Illustration §16.29). In Table 04 [§12] the order of the rate
R (a,, ¢) is depict for the two cases (o) and (s) introduced in Illustration §16.29. We note that we
have a, € ¢, in case (o) for a > 1/2 while in case (s) for a € ]R In both cases the additional
assumption a? € (R )" is satisfied. Consequently, due to Proposmon §17.08 the Table 04 [§12]
presents the order of the minimax rate R (a,,¢) which is attaind by the minimax-optimal OPE
p™ = p1" € 1™ C dom(ey) with optimally selected dimension m;; (Proposition §16.27). We
shall stress, that the order of m* given in the Table 04 [$12] depends on the parameter a € R’ o
characterising the (abstract) smoothness of the density of interest which is generally not known

in advance. o
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§17|02 Maximal global v-risk

§17.11 Reminder (Maximal global v-risk). Under Assumptions §15.02 and §16.11 the observable noisy
density coefficients p = p + 1 '/“¢ of the density coefficients p = Up € /, take the form of a
statistical direct problem (see Definition §10.19) where the stochastic processes € € %, ® 2N
is given in Definition §15.08. Under Assumptions §15.02 and §16.11 in Proposition §16.16 an
upper bound for a maximal global v-risk of an OPE over the class D" of densities in L,(A.,)

defined in (16.04) is shown. More precisely, the performance of the OPE p” = p 1" € 1,1 C
,(v?) with dimension m € IN is measured by its maximal global v-risk, that is

o) i=sup {7 (18" I)s p € D).

Let us recall (12.06) (Proposition §12.21) where for n,m € IN we have defined (av);, =
[(a0), 2|7 and

Rl

R} (a.,0) := [(av)?, V n’1||ﬂf"||§], m’ := arg min {R:T(a_,n,) im € ]N}
and R (a.,v):=R"(a,0)=min{R] (a,0):m € N}. (17.04)

By Proposition §16.16 under Assumptions §15.02 and §16.11 the maximal global v -risk of an
OPE p™ with optimally choosen dimension m? as in (17.04) satisfies

R[p"|D"] < CR,(a,v)

with C = 1 +r7,, + 1r*. Furthermore, as in Notation §13.29 form € N we set J, := {—1,1}"

and for each 7 := (7.);epm) € 7, and j € [m] we introduce 7’ € T, given by 7 :=
7V =1 forl € [m]\{j}. O

§17.12 Lemma (Assouad’s cube technique). If for each 7 € T there is p’ € D" with associated proba-
bility measure P := P, such that for all T € T, and j € [m] we have HP,P.)) < 2n"" then for
alln > 2

4 or ~ ar —m 1 T 799
mf@Rn[pH)z = Z@ Z (Uﬂ@ - p | )
7€,  j€[m]
where the infimum is taken over all possible estimators.

§17.13 Proof of Lemma §17.12. is given in the lecture. O

§17.14 Remark. If we assume furthermore candidate densities p’ := 1, +U" p" with p":= (7, p' 1" ) jew,
7 € 7, for some p" € /7", where evidently p” € £;" too and hence p” € D;*", then it is easily
seen that 3° .. (07|p" — [gfm ) =1 p1|)2. If forall 7 € T, and j € [m] the associated
probability measures P := P, and P, := ]Pp satisfy H(P, P.)) < 2n!' then due to Lemma §17.12
for all n > 2 we have

infg RO >27 ) &letll? = fle 1) (17.05)

T€ET,

We find a minimax-optimal lower bound by choosing the parameter m and the function p" that
have the largest possible || p1;"[|2-value although that the associated P, 7 € T, are still statisti-

cally indistinguishable in the sense that H(P,P,) < 2n~' forall j € [m] and 7 € T,. O

m

§17.15 Lemma. Under Assumption §16.11 let "€ £3" with |[p'|| .. < 1/(27, ). Then for each T € T,

m?

p = Ny + U'p with p":= (7. p'1") jew belongs to By, and for each j € [m] the associated

J
probability measures B := I, and B, := P . satisfy H(P, E.) < 2|/ p’ .
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§17.16 Proof of Lemma §17.15. is given in the lecture. O

§17.17 Reminder. For w,  /_ we set wi, := [w?|, and w? = (w3, = [w’L*]|, )jen (Nota-
tion §13.34) where by construction w?, = sup {w? i e Nn[j +1,00)}, j € N, and w? € (R})™.
Under Assumption §16.11 let in addition (av)’ & (X)) and there exists C,, € (0, 1] such that
C.l[(av) “1[|, < (av) ’, orin equal

(av)

(av);,, > min {(av)}: j € [m]} > C,, (a0},

for all m € N, then Assumption §13.35 is satisfied. For m* and R’ := R™(a,,v) as in (17.04)
we distinguish case 1) = R} = n '[[1]|> > (av)’  and case i) : R = (av), = n |17

Due to Comment §13.36 if (av); > n 'v’ thenin case i) (av);. , = n |1 3 while in case i1)
setting (the defining set is not empty since (av) < (R')1)

my :=min {m € NN [m; +1,00): 7|17 > (av);,, } (17.06)

2
(m;—1)

we have (av) . = (av) < n '[[17]|2. We use those estimates in the next proof. O

§17.18 Proposition (Lower bound). Let Assumptions §15.02 and §16.11 be satisfied. If (av)’ € (R )Y
and there exists G, € (0, 1] such that C_ |/(av) “1"[|, < (av),*, forallm € N, then for all

n € NN (1V o (av);;,00) we have

inf 5 R[p D] >CR,(a.,v) (17.07)

with constant C := (C_, /16)(r* A 1/(472) A 1) and infimum taken over all estimators.

§17.19 Proof of Proposition §17.18. is given in the lecture. O

§17.20 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §16.11 for all a, € /, (see Illustration §16.18). In Table 02 [§12] the order of the rate
R’ (a,,v,) is depict for the two cases (0) and (s) introduced in Illustration §16.18. We note that
we have a, € /, in case (0) for a > 1/2 while in case (s) for a € IRTO. In both cases the additional
assumptions, (av). € (R )" and there exists C,, € (0,1] such that C_ |[(av) "1/"]|, < (av),’
for all m € NN, are satisfied. Consequently, due to Proposition §17.18 the Table 02 [§12]
presents the order of the minimax rate R (a,,v) which is attaind by the minimax-optimal OPE
p™ = pI™ € o1 C {,(v?) with optimally selected dimension 2} (Proposition §16.16). We
shall stress, that the order of m’ given in the Table 02 [§12] depends on the parameter a € IR,J\FO
characterising the (abstract) smoothness of the density of interest which is generally not known
in advance. o

§18 Data-driven density estimation

§18|01 Data-driven global estimation by model selection

The next assertion provides our key argument in order to control the deviations of the reminder
term. The inequality is due to Talagrand [1996] and in this form for example given in Klein and
Rio [2005].

§18.01 Lemma (Talagrand’s inequality). Let (Z,)ic[n] be independent (2., Z')-valued random variables
and let {rt: t e ‘J'} C Z be a countable class of Borel-measurable functions. Fort € T setting

L=n") i ulZ) - E(r.(Z))} we have
E((sup {|t|*teT} — 6H2)+) <C, {% exp (_gj{2> + g exp (%)} (18.01)
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for some universal numerical constant C,, € [1, 00) and where
sup{|r(2)[:teT,2e2} <h, E(sup{[Ll:teT}) <H, sup {nE([5*):teT} <v. (18.02)

§18.02 Remark. Let us briefly reconsider the OPE p" = p 1" € ¢ 1" with dimension m € IN (Defini-

tion $16.04) where p p = ]Pu (Euj) jen are noisy versions (Definition §15.08) of the density
coefficients p = Up = P (u,) = (Pw, = A,,(pw))jen. For m € IN introduce the unit ball
B, := {a € eI ||al|, <1} contained in the linear subspace ¢ 1" spanned by (197);cfm).
Clearly, for each a, € w1 we haver, = >, vau = y(vlau) € 4, , ie. itisa

) = (e Bu) = g (024 p) B(r) = y(viaBu) =
=y (v¥a(p — p)) = (P — P, a),. Consequently, we

A, -PA-measurable function, where E(

[0,1]

I
4 (v2a,p) and hence T, = B(r,) — P (r,)
obtain

18" = ", =suwp {(B — p,a),* acBn} =sup{fL["acb,}

The last identity provides the necessary argument to apply below Talagrand’s inequality (§18.01).
Note that, the unit ball B,,, is not a countable set, however, it contains a countable dense subset,
say B,,, since /,(v?) is separable. Exploiting the continuity of the inner product it is straight-
forward to see that sup {|(b., a, )% a. € By, } = sup {|(b., a )% a. € By, } forall b, € £,(v2).
Consequently, provided that

sup { [lu.(z)1"||,: 2 € [0,1]} = sup {|r.(2)|: & € B,z € 0,1]} <,
Rm(H@m— mH ) = ]P®n(sup{\f % a, eBm}) < H2,

P

sup {P, (| (v’a.(w. — Bw))[*):a. € B, } =sup {nB" (|L,|*): a. € B } < v. (18.03)

due to Talagrand’s inequality (§18.01) we have

B (15— g2 = 6),) < G {Zexp (Z25) + Eexp (70) } (18.04)
for some universal numerical constant C_, € [1, 00). 0

§18|01/01 Global v-risk

§18.03 Assumption. The weights v, € (R )" satisfy

v

Ve e R, > {xlll’]|,_exp (- lo. 27 /(2oL ]l, )} = Cl e R™. (18.05)

melN
The orthonormal system (u,);en in Ly(A.) and v, := 1y, form an (os1’) orthonormal ba-
sis (w;)jen, in Ly(A,) and as process u, = (u,)jen on ([ 1],4,,) for all m € NN satisfies
e,

(0s2”) sup { |u, ()1

ME 0,1} < 72|

]lm |

) O

§18.04 Remark. We replace Assumption §15.05 (os1) and (0s2), respectively, by the stronger Assump-
tion §18.03 (0s1”) and (0s2”). Indeed, under (0s1’) we have (osl) 1y, € ker(U). Furthermore,
(1,)jen belongs to L. (A\.) due to (0s2”) (and v, € (IR )"™), and hence (0s2) is fulfilled (see
also Remark §15.06). Under Assumption §18.03 (18.05) we have [[0,1"]|* = o(1) as m — oo
(Comment §14.22), see also Illustration §14.23 for an example when (18. 05) is not satisfied. DO

2 c R form,

§18.05 Reminder (Global oracle v-risk). Given Assumptions §15.02 and §18.03 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p = p + n '“g of
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the density coefficients p = Up € /, take the form of a statistical direct problem (see Def-
inition §10.19) where the stochastic processes € & %[0@1? ® 2N is given in Definition §15.08.
Under Assumptions §15.02 and §18.03, (and hence Assumption §15.05 and v, € (R.,)™ see Re-
mark §18.04) and p € /,(v?) in §16.09 an oracle inequality for the global v-risk of the OPE’s is
shown. More presicely, as in (16.02) (Proposition §16.07) for all n, m € IN setting

R;(p,v) == [pI 12 +n7 072, m? = arg min {R] (p,v) : m € N}
and R (p,v) =R, (p,v) =min{R](p,v):meN}. (18.06)

and assuming v :— max( el ) € R due to Property §16.09 the (infeasible)
OPE p™ = p 1" € w1 C (v ( ) w1th oracle dlmensmn m? as in (18.06) satisfies

1 o . ®n ~m 2 ®n ~m 2
YR, (p.v) < inf B(18" - pl2) <B"(I§" - pll?)

o . Qn —~m 2
Sy R.(pov) <y inf EX(Ip" — pll),

and hence it is oracle optimal (with constant v?). O
§18.06 Notation. Consider a sequence of penalties pen® = (pen®, )nen € (R))™ given by

pen =240 Y12, foreachm € N (18.07)

v,u

and the upper bound (where the defining set is not empty)

M = max {m € IN: |17'|]2 < nv2, m < exp(Zog) } (18.08)
which are obviously known in advance. Considering the data-driven OSE ﬂpTﬁ‘ = p1 with
dimension parameter

m = arg min { — [|p"]|2 + pen’,: m € [M']} (18.09)
we derive below an upper bound for its global v-risk, P™" (|| p” — p||? ) O

§18.07 Lemma. Under Assumptions §15.02 and §18.03 and p € [L._(\.) for pen® € (R})N as in (18.07)
and M € N as in (18.08) we have

B (max { ([ p" - "2 - pert, /4) :m € [M]}) < Curl (Clw) +07) n' (18.10)
for some universal numerical constant C,, € [1,00) and x, := 6[|pl|, _, 7.0 € R".

§18.08 Proof of Lemma §18.07. is given in the lecture. 0

§18.09 Proposition (Upper bound). Under Assumptions §15.02 and §18.03 and p el () forM €N
as in (18.08) and pen? € (R)N as in (18.07) the data-driven OPE p™ = p 17" 6 L) 17 C Ly (v2)
of p € (.(v’) with data-driven dimension m € [M’] as in (18.09) satisfies

B (Ip" — pll?) <967, min {R] (p,v):m € [M]} + C7, (Clx.) + ) n™" (18.11)

P
for some universal numerical constant C = 8C,, € [1,00) and z, := 6| p|l,_, 7. € R".

§18.10 Proof of Proposition §18.09. is given in the lecture. O
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§18|01|02 Maximal global v-risk

§18.11 Assumption. Consider weights o, v, € (R )" with a, € /_and (av), == (a.v);en = a0, € (.
We write (av) | = [|(av),1""||, € R' foreachm € IN. The weights v, « (IR )" satisfy (18.05).

The orthonormal system (u,) e in Ly(A,) and v, := 1, form an (os1’) orthonormal basis
(1)jen, in Ly(A.,) and as process u? = (u?)jew on ([0, 1], 4, ) satisfies (0s2”) |14 (aZu?) <

Loooy) ™
7” and (0s2”) sup {Hu_(;z")]lﬁ“ j z € [0, 1}} <7 |1 j eR forT, 7, €[l,00). m

v

§18.12 Reminder (Maximal global v-risk). Given Assumptions §15.02 and §18.11 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p = p + "¢, of the
density coefficients p = Up € /, take the form of a statistical direct problem (see Defini-
tion §10.19) where the stochastic processes € € %’ﬁ? ® 2N is given in Definition §15.08. Under
Assumptions §15.02 and §18.11 in Proposition §16.16 an upper bound for a maximal global
v-risk of an OPE is shown over the set D" given in (16.04) (Lemma §16.14). More precisely,

the performance of the OPE p" = ﬁ 1" e rwl™ C 0,(v?) with dimension m € N is measured
by its maximal global v-risk over the ellipsoid Dy, that is

R0 = sup {B (18" = pI): b cr°}.

As in (12.06) for n, m € IN setting (av)’, := [[(av)?1""||, and

R} (a.,0) == (av);,, V n’1||]lf”||3, m’ :=arg min {R (a.,0) : m € N}

n

and R (a,v):=R(a,v)=min{R] (a,0):m €N} (18.12)

by Proposition §16.16 under Assumptions §15.02 and §18.03 the maximal global v-risk of an
OPE p™ with optimally choosen dimension m* as in (18.12) satisfies

R6" D] < CR, (a,v)

with C = 1417, +1°. Moreover, due to Proposition §17.18 R} (a,,v,) provides (up to a constant)
also a lower bound of the maximal global v-risk over the ellipsoid D, for any estimator. Conse-
quently, (up to a constant) R (a.,v,) is a minimax bound and p™ is minimax optimal. However,
the optimal dimension m’ depends on a, € (]RTO)IN characterising the ellipsoid D). O

§18.13 Proposition (Upper bound). Under Assumptions §15.02 and §18.03 for M’ € N as in (18.08) and
pen’ € (]RTO)]N as in (18.07) the data-driven OPE ﬁﬁl =PI € w1 C 4,(0?) with data-driven
dimension m € [M’] as in (18.09) satisfies

R[p"| D] < (3r° + 9677

vu

)min {R] (a.v):m e [M]} + C7 (CO) + o) n" (18.13)
for some universal numerical constant C = 8C,, € [1,00) and £ := 6(1 417, )7 € R".

§18.14 Proof of Proposition §18.13. is given in the lecture. O

$18.15 Comment. The minimax bound R’ (a,v) = R (a,,v) = min {R’Z(a,, n):m € ]N} (for details
see Reminder §18.12) satisfies nR] (a,,v,) > || 1" ||§ > v?. Consequently, the last upper bound in
(18.13) and the minimax bound R, (a,,v,) coincide up to a constant (31* + 967, + C7, (C,()v2 +
1)) provided the minimax dimension fulfils m’ € [M’]. Therefore, we wish the upper bound M’
to be as large as possible. The next assertion shows that M’ as in (18.08) is a suitable choice for
the upper bound. m
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§18.16 Corollary. Under the assumptions of Proposition §18.13 for each n € W such that R (a,,v,) <
nl/2

Tog) we have

v? and m; < exp(
R[p"| D] < (3r* 4 967.,) min {R (a,,0): m € [M]} 4 C77, (C2) 4 07) n™!
< KR (a,0) (18.14)

and, hence up to the constant K := 3r* + 9677, + C7, (Cu(f)nf 24 1) the feasible data-driven
estimator p" is minimax optimal.

§18.17 Proof of Corollary §18.16. is given in the lecture. O

§18.18 Illustration. Consider the trigonometric basis as in Illustration §16.18 which satisfies Assump-
tion §18.11 (0s1’), (0s2’) for all a, € /, and (0s2”’). In Table 02 [§12] (Illustration §12.26) the
order of the rate R (a,, 1) is depict for the two specifications (o) and (s). We note that we have
a, € ¢, in case (o) for a > 1/2 while in case (s) for a € ]RTO. The sequence v, satisfies Assump-
tion §18.11, i.e. (18.05), for v > —1/2. Moreover, the optimal dimension m* given in Table 02

[§12] satisfies m* < exp(%/;), and thus (under the above restrictions) the adaptive density esti-
mator attains the minimax optimal rate R’ (a,, v,) up to the constant given in Corollary §18.16. 0

§18|02 Data-driven local estimation by Goldenshluger and Lepskij’'s method

The next assertion provides our key argument in order to control the deviations of the reminder
term. The Bernstein inequality in the formulation (18.15) Exrcise is for example given in Comte
[2015], Appendix B, Lemma B.2.

§18.19 Lemma (Bernstein inequality). Let (Z,);cn] be independent random variables with P(Z,) = 0,
P(Z') <v* € R'and |Z| < 2b € R’ for all i € [n]. Then for any x € R" we have

2
IP(% Z Z, > :1;) < max{exp(— %),exp(— Z—g)} and
i€n]
1/2
]P(‘\/Lﬁ Z Z| > a:) < Qmax{exp ( — 4x—;),exp ( — n4b:1:)}‘ (18.15)

i€[n]

Moreover, for any K € |1, 00) we have

P((|5 2 4

i€n]

P (4 + 825 (log K)n ") log K) ) < 8K '{v* + 160"}, (18.16)

§18.20 Proof of Lemma §18.19. Exercise O

§18.21 Remark. Let us briefly reconsider the OPE @’” = @]lj" € 1" with dimension m € IN (Def-
inition §16.04) where ﬁ = ]Eu, = (Euj)jem are noisy versions (Definition §15.08) of the
density coefficients p = Up = Pu, = (Pu, = A,,(pw))jen. Clearly, ¢y ((u, — p)1") is
a A, -%-measurable function. Therefore, given (X))cpy ~ B for i € [n] setting Z :=
oy (0, (X)) — p)1") we have P (Z) = 0 exploing p = P u, and

(B — 1) =R (on((n - p)t)) =n' > Z.

i€[n]
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Consequently, provided that

B(Z) = R(ch (= p)IN)P) <v), e R,
sup { oy, (u.(@)17)]: z € 0,1]} < bm € ]R , and hence |Z| < 2b,,, Vi € [n], (18.17)
due to the Bernstein inequality (Lemma §18.19 (18.16)) we have
1/2 -~ my |2 2 2 -1
P((|n"ou((p — p)I")|” — (4v., + 32D, (log K)n )logK))
< 8K (v, + 16, n'}. (18.18)

for any I € [1,00). O

§18|02/01 Local ¢-risk

§18.22 Assumption. Let ¢ € (R )" and the orthonormal system (u,)jen in Ly(A.) and u, := 1, form
an (0s1°) orthonormal basis ();ew, in L ( on) and as process u, = = (u)jew on ([0,1], 4, ) for
all m € I satisfies (0s27) sup { |[w.(2) 1|72 € [0,1]} < 7/m € R for 7, € [1,00), O

§18.23 Remark. We replace Assumption §15.05 (os1) and (0s2), respectively, by the stronger Assump-
tion §18.22 (0s1”) and (0s2”). Indeed, under (0s1’) we have (osl) 1y, € ker(U). Furthermore,
(1) jew belongs to L, () due to (0s2”), and hence (0s2) is fulfilled (see also Remark §15.06).
We use in the sequel that under Assumption §18.22 (0s2”’) for each m € IN

sup {|¢Vw(u.($))]lf”)|2' z €01}
" 2sup u,(z)1" 2 cl0,1]} < m|1"|? =1, (18.19)
@

by applying the Cauchy Schwarz inequality and moreover (see Proof §15.11)

B (jo (. — p)I)P) < B (om0 1)) =7 < [Ipll,_o |11 (18.20)

exploiting Lemma §15.10 (i). Combining (18.19), (18.20) and (18.18) (Remark §18.21) we
obtain

P(([n"ou(® — p)I)]" = (47, + 328, (log K)n™") log K) )
< 8K {lIpll o, + 167 mn L2 (18.21)

forany m € Nand K € [1,00). u

§18.24 Reminder (Local oracle ¢-risk). Given Assumptions §15.02 and §18.22 we consider an OPE as in
Definition §16.04. Here the observable noisy density coefficients p = p + 17 ¢ of the density
coefficients p = Up € /, take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes €, € %" ® 2 is given in Definition §15.08. Under Assump-
tions §15.02 and §18.22, (and hence Assumption §15.05 and ¢ € (R,,)" see Remark §18.23)
and p € dom(oy) in §16.22 an oracle inequality for the local ¢-risk of the OPE’s is shown.

More presicely, as in (16.06) (Proposition §16.20) for all n, m € IN setting

R (p,¢) = o (p L) +n 172, m = arg min {R] (p,¢) : m € N}
and R (p,¢) =R (p.¢) = min{R] (p,¢):m € N}. (18.22)
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and assuming v, := max(| pl| . . [lp [, . )< R ,andhence max(||1“|]W 1T ,.) <V,

~

(see Lemma §15.10), due to Property §16. 22 the (infeasible) OPE p™ = pl" < o1 g
dom(¢v) with oracle dimension m? as in (18.22) satisfies

VR () < inf B (o (" R)P) < B (0 (8" - p)P)
<R (R.) < ¥ inf B (lon (@ - p))

meN

and hence it is oracle optimal (with constant v?). O

Partially known penalty sequence
§18.25 Notation. Consider first a sequence of penalties pen®’ = (per®’),,en € (R))™ given by

penf? = 12n‘1(V;m + 81 (log Km)n‘l)(log K,) with v/ = IPP(\QSV,N(u,]lT)P),
b= rm|1"?, and K, = (1V ||11TII;) m* € [1,00) foreachm € N, (18.23)

which is obviously only partially known in advance, and arbitrary but fixed upper bound M € IN.
Considering the data-driven OSE ﬁﬁl = p 17" with dimension parameter selected by Goldensh-
luger and Lepskij’s method

m := arg min {Contr“:ﬁ + pen?:m € [[M]]}
contr®? := max { |y, (p’' — P")|° — pen®? — pen”f;jb¢)+: jelm,M[}, m e [M]. (18.24)

Moreover, studying a ¢-error the bias term introduced in (14.31) becomes

bias, (p. o) = sup {|oy (p' — B")| = |oy(pL™)|: j € [m, 0]} Vm € NN.

If p € dom(ey) and hence 14, (|¢ p|) € R then bias (p,¢) < (|¢[p> |T"+) = o(1) as m — oo by
dominated convergence. Considering the data-driven OSE p [@ = p 17" with dimension parameter
m selected as in (18.24) with penalty sequence pen”® given in (18.23) and arbitrary upper bound
M € N we derive below an upper bound for its local ¢-risk, P™" (]gﬁuw( " —p)?). O

§18.26 Lemma. Under Assumptions §15.02 and §18.22 and p < [_(\.) for pen?® € (R)™ as in
(18.23) and for any M € IN we have

B (max { (|on (R" — B")* — peny?/3) :m e M]}) < 14{[Ipll, ., +167 7 " Int (18.25)
§18.27 Proof of Lemma §18.26. is given in the lecture. O

§18.28 Proposition (Upper bound). UnderAssumptums §15.02 and §18.22 and p < L_(\,.) for pen®® €
(R),)N as in (18.23) the data-driven OPE p" = p17' € 17" C dom(¢y) of p € (1()111 (¢n,) with
data-driven dimension m € [M] as in (18.24) satisfies for all n, M € IN

B (len (8" = »)I*) < 64(Ipll_q., +87)
x min {bias’ (p, ¢) + n’1||]1f”Hz(log K,)(1V (logK,)mn™"):m e [M]}
+392(|| p “[Loc(/\,(m) + 167\12)”_1)”_1- (18.26)

§18.29 Proof of Proposition §18.28. is given in the lecture. O
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§18.30 Comment. Let us compare the dominating part of the upper bound given in (18.26), that is
min { bias? (p, ¢) + n’1||]l:”||;(log K, )(1V (logK,)mn™):m e [M]} (18.27)

with the oracle bound R’ (6, ¢) = min {|¢y(p" — p)|* + n*IH]lﬁ”Hz :m e N} (for details see
Reminder §18.24). In (18.27) we face eventually a deterioration by three sources. First, we
generally have bias (p,¢) = |¢y(p" — p)|, but note that for p¢ « (R')" equality holds, that is

bias, (p, @) = sup {y (¢pI™"):j € [m, o0} = y(¢pIM™) = |ou(p" — p)|

forall m € IN. Secondly, the variance term features an additional factor (log K )(1V(log K, )mn™"),
and finally the upper bound M might impose an additional deterioration. We note that the or-
acle bound R’ (p, ¢) is parametric, i.e. nR; (p,¢) = O(1) asn — oo, if ¢ € ¥, (case (p) in
[lustration §12.40). In the sequel we consider only the case o ¢ /., i.e. 11.(|0]?) = oc. We set

M" :=max {m € N: )12 < ng’} € N (18.28)

where the defining set is not empty and finite since ||¢ ||§ = 00. The next assertion shows that this
18 a suitable choice for the upper bound. Moreover, we estimate the bias term by bias (p, ¢) <
v(J¢ p|L"") where equality holds whenever po € (R')™. O

§18.31 Corollary. Given & < (R )™ with ¢ ¢ (, M’ € N as in (18.28) and pen®® as in (18.23)
consider a data-driven OPE p™ = p 1" € ¢, 17" C dom(ey) of p € dom(oy) with

m = arg min { contr’, + pen®®: m € [M’]} and

contr®? := max { (|¢u, (6 — ")) — et — pen?fL:j e Jm, M)}, m € [M"]. (18.29)

Forn,m € N we set

R} (p.4) == (4 (¢ pI1")”
+ (1+ (log|[T[[7), +logm) (1 + ((log|| T[[7), +logm)mn™) n" | T7[|7,
m’ ;= arg min {R:([Q,Q?) tm € ]N} and
R, (p.¢) =R, (p.¢) = min {R(p,¢) : m € N}. (18.30)

Under the assumptions of Proposition §18.28 for each n € N such that R, (p, ¢) < ¢ we have

B (|ou (" — p)I°) <576(/pll, o, + 87K, (p. @) + 392(|pll o, + 1670 )0
< (576 + 784¢ ) (Il + 87)RL (R, @), (18.31)

§18.32 Proof of Corollary §18.31. is given in the lecture. O

§18.33 Comment. The data-driven bound R (p,¢) compared to the oracle bound R’ (p,¢) features
a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. m
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§18.34 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case ¢ ¢ /, only.

Table 01 [§18]

Order of the oracle rate R, (p, ¢) and the data-driven rate R’ (p, ¢) as n — o0

(Jj eN) (@ € R")  (squarred bias) (variance)
— jv—1/2 m|L\\2 m||2 ¢ i o o
s—a—1/2 —2(a—v) 2v L (a=v)
) ve(0,a) g Y m m n2: nooe
s n = logn (aa;v)
(1,6(1/2.96) (l()gn> ( n )
no\ s logn \ ati/2
a€(0,1/2 (lugn)wi‘ 7 ( n )
. _ I
v =0 et lm logm | ¢" e
9 n = (logn)?
a € (1/2,00) ((1% ) T
. N (logn)?\ a1z
a€(0,1/2] ((l()g w) (T)
v v
> _9(a— op2a 1 L lo a lo, a (loglo,
(s) ve R e m(l 2(a U))+€ 2m? m2 na (log ”>3” ( gnn) (logn) El glogn)
20 _ a L log 1 log 2
v=0 ed mi—2+ g2’ logm e (logn )2 %8 ;gn (log Zgn)

We note that in Table 01 [§18] the order of the oracle rate R (p,¢) and the data-driven rate
R (p.¢) is depict for v > 0 only. In case v < 0 we have ¢ € ¢, and thus Corollary §18.31 is not
applicable. Moreover, in case (s) for « € R and (o) for @ € (1/2, 00) the rate R (p, ¢) features
only an additional logarithmic factor compared with the oracle rate R’ (p, ¢). o

Estimated penalty sequence

§18.35 Notation. The penalty sequence pen®® & (]RTO)IN given in (18.23) still depends on characteristics
of the unknown density p. More precisly, for m € IN the term pen®® involves the quantity v’, =

p,m

P (|¢y,(w.1")[?) which we eventually estimate without bias by v := E(|¢I/N(u,]lf"’)|2). Based

on this estimator let us introduce a fully data-driven sequence of penalties pen’ = (pen” )ew €
(R),)™ given by

per’ == 12071 (292 + 3x 81, (log K, )n ") (log K,,) with v* := B (g (w.1)[?),
b = Tfm||]1:"||j), and K :=(1V ||]1f"||;)m3 € [1,00) foreachm € N, (18.32)

m

which is now fully known in advance, and arbitrary but fixed upper bound M € IN. Consider-
ing the data-driven OSE @ﬁ = p 17" with dimension parameter selected by Goldenshluger and
Lepskij’s method

m = arg min {/Eontrf1 + /ﬁen‘fn: m € [[M]]} and

~

Contr” := max { (]gbym(ﬁj — @m)’2 — pen? — ﬁenﬁl)Jr:j € ]]m,M]]}, m € [M] (18.33)
we derive below an upper bound for its local ¢-risk, P (|¢y (™ — p)|?). O

§18.36 Lemma. Under Assumptions §15.02 and §18.22 and p € 1___(\.,) for pen®?, Pen? € (RJ(O)]N asin
(18.23) and (18.32), respectively, and for any M € IN we have

B (max { (pen?” —per) :j € [M]}) <40{[|pll_, +6mn " }n". (18.34)
§18.37 Proof of Lemma §18.36. is given in the lecture. O
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§18.38 Proposition (Upper bound). UnderAsswnptmns §]5 02 and §18.22 and p < |___(\.,) for per’ €
(R))N as in (18.32) the data-driven OPE p" = p1I' € ¢ 17" C dom(ey) of p € (10111(«)11\) with
data-driven dimension m € [M] as in (18.33) satisfies for all n,M € IN

B (lon (8" — »)P*) < 112(Ipl_q,., +127))
X min { bias’ (p, ¢) + n_lH]II”Hi(log K,)(1V (logK,)mn"):m e [M]}
+ 1440(|| pll, ., + 1670 )n 7t (18.35)

§18.39 Proof of Proposition §18.38. is given in the lecture. O

§18.40 Comment. We shall stress that the last upper bound (18.35) in Proposition §18.38 (for the fully
data-driven procedure) and the upper bound (18.26) in Proposition §18.28 (for the partially data-
driven procedure) differ only in the numerical constants. Thus, thus the proof of the next results
follows line by line their counterparts above. O

§18.41 Corollary. Given & < (R )" with & ¢ (,, M” € N as in (18.28) and pex’ as in (18.32) consider
a data-driven OPE p™ = P17 € 01" C dom(¢y) of p € dom(oy,) with

m = arg min {Contr’, + Per’: m € [M’]} and

-~

/C\ontr(fn = max{(|q§ym(aj — é_\m)|2 — pcnf. - Ecn‘fn)Jr:j € ]]m,Md’]]}, m € [[Mﬂ] (18.36)

For n,m € N let m° and R, (p, ¢) defined as in (18.30). Under the assumptions of Proposi-
tion §18.38 for each n € N such that R (p, ¢) < ¢ we have

B (lon (8"~ p)I*) < 1008(/[plly ., +87)R, (R ¢) + 1440 p [l ., + 1670 )0
< (1008 4+ 1920¢ ") (I p [l o) + 127)R} (R, ). (18.37)

§18.42 Proof of Proof §18.42. is given in the lecture. O

§18.43 Comment. The fullay data-driven bound R’ (p,¢) equals exactly the bound in the partially
known case. Therefore, the Comment §18.33 and the [llustration §18.34 apply here equally. ©

§18|02/02 Maximal local ¢-risk

§18.44 Assumption. Consider ¢, a, € (R )" with a, € /_ and (a0), == (a, O)jen = a0 € [, and
hence [|a, 1| = [[(ag), 1|, = o(1) as m — co. The orthonormal system (u )JG]N in L,(A\.)
and v, := 1y, form an (0s1’) orthonormal basis (u, )JG]N in L,(\.,) and as process w? = (0)jen

n ([0, 1], #,,) satisfies (0s27) || (a/u?)|| , | < 7., and (0s27) sup {llu(z )77 2 € (0,1 1} <

m € R forr, 7, € [1,00).

O

§18.45 Remark. Assumption §18.44 contains Assumption §18.22 and thus Assumption §15.05 (os1)
and (0s2) are satisfied (see Remark §18.23). Moreover, considering the set D" of densities in
L,(\..) defined in (16.04) we have || p||, , | < 14v7, forall p € D" dueto (0s2’) which allows

us to apply Lemma §16.14. Consequently, given in addition Assumption §15.02 all assumptions
of Proposition §18.38 are satisfied. O

§18.46 Reminder (Maximal local ¢-risk). Given Assumptions §15.02 and §18.44 we consider an OPE
as in Definition §16.04. Here the observable noisy density coefficients p = p + n "¢ of
the density coefficients p = Up € /, take the form of a statistical direct problem (see Def-
inition §10.19) where the stochastic processes €, € %' ® 2N is given in Definition §15.08.

[0.1]
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Under Assumptions §15.02 and §18.44 (and hence Assumption §16.24) in Proposition §16.27
an upper bound for a maximal local ¢-risk of an OPE is shown over the set D, given in (16.04)
(Lemma §16.14). More presicely, as in (12.13) (Proposition §12.42) for all n, m € IN setting

R (a,,¢) := Ha,]lf”“H; +n |12, m = arg min {R] (a,¢) : m € N}
and R (a.¢) =R (a,¢) = min {R](a,¢):m € N}. (18.38)

by Proposition §16.27 under Assumptions §15.02 and §18.44 the maximal local ¢-risk of an
OPE p™ with optimally choosen dimension m;; as in (18.38) satisfies

R8I0 ] < CR (0. ¢)

with C = (1+r7,,)V1’. Moreover, due to Proposition §17.08 R’ (a,, ¢) provides (up to a constant)
also a lower bound of the maximal global ¢-risk over the ellipsoid D} for any estimator. Conse-
quently, (up to a constant) R} (a,,¢) is a minimax bound and p™ is minimax optimal. However,

the optimal dimension m’ depends on a, € (RJ\:))]N characterising the ellipsoid D}. O

§18.47 Proposition (Upper bound). Under Assumptions §15.02 and §18.44 for per! € (R))N as in
(18.32) the OPE p" = p1' € ¢17" C dom(¢y,) with fully data-driven dimension m € [M]
as in (18.33) satisfies for alln,M € IN

R D] < 168(¢ + 17, +977)

x min { ||, 1|2 + 0t 172 (log K, ) (1 V (log K, Jmn™): m & [M]}
+1440(1 + r7,, + 1670 )n". (18.39)

§18.48 Proof of Proposition §18.47. is given in the lecture. O

§18.49 Corollary. Under Assumptions §15.02 and §18.44 and ¢ & (, given M’ € Nas in (18.28) and
per’ € (R))N as in (18.32) consider a data-driven OPE p" = p1I" € 17" C dom(oy) with
data-driven dimension m € [M ] as in (18.36). For n,m € N we set

R (0., ) = [la. 17
+ (14 (log|[T[[7), +logm) (1 + ((log||T]7), + logm)mn™") n”|| 17,
m’ := arg min {R] (a,¢) : m € N} and
R (a,¢) =R (a,¢) = min {R (a,¢) :m € N}. (18.40)

For each n € N such that R (a,, ¢) < ¢ we have

RIR™ D] < 15120 + 17, + 97))R, (o, ¢) + 1440(1 + r7,, + 1677 )0
< (1512 + 14409 ) (2 + 7, + 1779)R (a,, ¢).  (18.41)

§18.50 Proof of Corollary §18.49. is given in the lecture. O

§18.51 Comment. The data-driven bound R’ (a,, ¢) compared to the minimax bound R’ (a,, ¢) features
a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. m
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§18.52 Illustration. We illustrate the last results considering the two specifications (o) and (o) given in
Table 04 [§12] (Illustration §12.47). We restrict ourselves again to the case ¢ ¢ ¢, only.

Table 02 [§18]

Order of the minimax rate R’ (a,, ¢) and the data-driven rate R, (a,, ¢) as n — oo

(j € IN) (a € R) (squarred bias) (variance)

o—1/ > 1 o} o <
¢ =g o Ha,]lf”‘ H; H]lmH; M’ m R;(a,, ¢) R, (a,¢)

. —9a— 1 _(a—v)
(0) v € (0,a) 77 m 2(a—v) m> nzv n " a
(a—v)

1 /e n = logn a

a € (1/2,00) (]ng”> o
n ! logn Q(if/vz)
a€(0,1/2) (o)™ ( 2
. _ 1
v=0 je mo logm e —Oin
2, ¢ n = (logn)?
a € (1/2,00) ((lugn,)*’) n
, 1 3.4
‘ n- a+1 (log n) a+1/2
ae (0,1/2] ((]Ug 7Iy) (—n2 )
v v
2 _ e € logn)a logn)a (loglogn
(s) ve R, e mA— e nz  (logn)za ( gn ) (logn) §L glogn)
y o L log1 log log n)?

v="0 e e logm e (logn )2 Og;gn (log ng )

We note that in Table 02 [§18] the order of the minimax rate R’ (a,, ¢) and the data-driven rate
R’ (a., ¢) is depict for v > 0 only. In case v < 0 we have ¢ € ¢, and thus Corollary §18.49 is not
applicable. Moreover, in case (s) for « € R and (o) for a € (1/2,00) the rate R’ (a,, ¢) features
only an additional logarithmic factor compared with the minimax rate R (a,, ¢). O

94
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Chapter 5

Nonparametric regression

This chapter presents nonparametric regression with uniform design
along the lines of the textbooks by Tsybakov [2009] and Comte [2015]
where far more details, examples and further discussions can be found.

Overview
§19 Noisy regression coefficients . . . . . . . . . .. ... ... . ... 95
§20 Projection regression estimator . . . . . . . ... ..ol 98
§20101 Global and maximal global v-risk . . . . . ... ... ... ...... 98
§20102 Local and maximal local ¢-risk . . . . .. ... ... ... ...... 101
§21 Minimax optimal regression . . . . . . . .. ..o 103
§21101 Maximal local ¢-risk . . . . . . .. .. ... ... ... 103
§21102 Maximal global v-risk . . . . . .. ... ... oo 105
§22 Data-driven regression . . . . . ... ...t e e e e e e e e 107
§22101 Data-driven global estimation by model selection . . . . . . . ... .. 107

§22102 Data-driven local estimation by Goldenshluger and Lepskij’s method . 112

§19 Noisy regression coefficients
§19.01 Notation (Reminder). Consider the measure space (|0, 1], . A..,) where )\, denotes the re-
striction of the Lebesgue measure to the Borel-o-algebra 4, over [0, 1], and the Hilbert space
Lo\ := L,([0,1],%,,, \) of square Lebesgue-integrable functions. Let (X,Y) bea [0,1] x R-
valued random vector. We denote by I°* € W(#,,) the marginal distribution of X, by P a
regular conditional distribution of Y given X, and by P*" = P* 0 P"™ € W(%,, ® %) the joint
distribution of (X,Y"). We tactically identify X and Y with the coordinate map II,, and II,,,
respectively, and thus (X, Y") with the identity idy 1jxr such that P = P*" ¢ W(#,, @ 2). If in
addition Y € L,(") = L,([0.1] x k. = 2. 1) then P (idg) = P (Y| X) =: f € 4, is unique
up to P¥-a.s. equality. Moreover, we have f € £,(P*) = £,([0,1].2,,,P*) and the error term
£:=Y — f(X) satisfies £ € £,(P) with P(¢) = 0. Let us denote in this situation by """ and
b =P ]BY‘X € W(4,, ® %), respectively, a regular conditional distribution of Y given X and
the joint distribution of (X, Y"). Keep however in mind, that even if f € £,(P") is fixed the condi-
tional distribution ]PfY‘X is still not fully specified. In what follows we assume that the error term
¢ has in addition a finite second moment and its distribution does not depend on the regression
function, that is £ ~ I* € P, .. where I C W(2) is the subset of all probability distribu-
tions over (R, %) with finite second moment and mean zero. For a € R denote by I>* € W (%)
the distribution of £ 4 a. If £ and X are independent, which is assumed throughtout this chapter,
then there exists a P*-null set N € 4, such that B~ (B) = B, (B) for all B € % and
x € N (Witting [1985], Saiz 129, p.130). In other words, (x, B) — B}, (B) is a version of the con-
ditional distributions of Y given X. Evidently, if for each B € % the map I>*(5) : R — [0, 1]
with a — P*(B) is Borel-measurable, [>°(53) © # for short, then > : R x 8 — [0,1] with
(a, B) — E*(B) is a Markov kernel from (R, %) to (R, %). In this situation, for any f € 4,

xR, xR,
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themap I’ : [0,1] x Z — [0, 1] with (z, B) — B, (B) is a Markov kernel from ([0, 1], 4, ) to
(R, %), and hence it is a regular version of the conditional distribution of Y given X, in symbols
P =B, Consequently, we have I} = P* O B, € W(#,, ® %). We assume in what follows
that / € F, C [,("") identifying again equivalence classes and their representatives. m

§19.02 Assumption. The [0,1] x R-valued random vector (X,Y) ~ B = P* 0 B’ € Wz, © 2)
satisfies V' ¢ L,(I7) and [ (Y‘X) — [ IP*-a.s. with regression function / € F, C [,(\. ).

(NR1) Theerrorterm & =Y — [(X) ~ " & ., has a finite second moment, mean zero and
its distribution does not depend on the regression function f. We set o := P*(id},) = B(£?).

(NR2) The error term £ and the explanatory variable X are independent.

(NR3) The map B* : R x & — [0, 1] with (a, B) + P*(B) is a Markov kernel from (R, %)
o (R, %). Consequently, under (NR2) the Markov kernel B, is a regular version of the
conditional distribution of Y given X, ie. B"™ = B,

(NR4) The regressor X is uniformly distributed on the interval [0, 1], i.e. X ~ U, and thus
P* = = U,y = A,y Denote by U, :=U,, © b "I* the joint distribution of (X,Y).

Under (NR1)-(NR4) given / < [ and P € P, the joint distribution U, = Uy, © P, of

(X,Y) is fully specified and we set U, = (U, = Uy, © ]fo))fe[F piep - We consider

{0y xx, 27 {0} <K,
the statistical product experiment (([0, 1] x R)", (# @ 2)" W = (") o peop ) of
sizen € Nand for / € [, and " € D we denote by ((X,Y))iefs) ~ W;" an iid. sample of

{0}xR

(X,Y) ~ U = Uy, © By, -

§19.03 Notation (Reminder). Consider an orthonormal system (u, )jew in Ly(Aoy). Then U = Ly(Ay) — 4,

with h = Uh = h, = (h; := (h,w;), ))jelN is a surjective partial isometry U € L(L,(\.), 6). Its
adjoint operator U" € L(£,L,(\.) satisfies U'a, = 3~y au, =: (e, for all a, € £,. We call

h, = (h;) jen (generalised) Fourier coefficients and U (generalised) Fourier series transform. O

§19.04 Remark. Let U € L(L.(\.),¢) be a generalised Fourier series transform as in Notation §19.03.
For [.h c L,(P") C L£,(P*) we have fh € £,(P*) and thus P* (fh) € R. Keeping in mind that
X and Y equals the coordinate map IT,, and I, respectively, due to Assumption §19.02 (NR1),
ie., & € L,(B), hence En(X) € L,(B), and (NR2) we have IP(fh( ) =E(&) X(h) = 0. Con—
sequently, we obtain YA(X) = (f(X) + &)h(X) € L(B) and B(Yh(X)) = P*(fh) €
Moreover, if in addition / < £ _(P") then we have also f h € L,(P") which together w1th
P(CH(X)) = B(&)PY () = o’P*(I’) € R implies Y h(X) € L,E). Since A,, = P*
and U, = B under Assumption §19.02 (NR4) for all /.7 < L.\ ) it follows immediately
U (Yh(X)) = Ay(fh) = (f, k), identifying again equivalence classes and their represen-
tatives. Evidently, we have u, € L (M) for all 7 € IN and the (generalised) Fourier coefficients

f=()jen =Uf €lyof f €Ly fulfil [ =(f u) , =UYuyX)) forallj e N. o
§19.05 Assumption. The ()lfh()n()rmal system (u,) jew in Ly(Aoy), and its associated generalised Fourier
series transform U € L&), &) with h = Uh = h, = (h; := (h,w)_ )jen, is fixed and
known in advance. O

§19.06 Remark. Under Assumptions §19.02 and §19.05 we impose in the sequel that / < [, C [_(\,)
which in turn for all j € IN implies Y'u,(X) € £L,(1,) with

U (VA2 (X)) = WU (E22(X)) + U (FA(X)2(X)) = W, ()P (w2) + P (f*u2)
= ol + Xu(f )< o +FIE ) € R
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Alternatively, if u, € L_(\.) then for all / & [,(\ ) it follows that Yu,(X) € L,(U,) with
W, (Y (X)) < o + [l o LA ) € R 0

§19.07 Notation. Setting Z := [0,1] x R, & = %, ® % and (X ,Y) := Yu(X) € Z for

[0,1]

each j € IN under the Assumptions §19.02 and §19.05 the stochastic process 1) — (1)) e €
¥ @2 satlsﬁes Y € L) for each j € IN. Similar to an Empirical mean model §10.07

we define [ = (1) € 2™ @ 2N with 2" = ((2,4))iep — [(2") = B)(") =
Y e (T ,y) = "' Y e YW (z) for each j € IN. For f € L,(\.) by construction
f=(f =U())jen € 2V is the {,-mean of . Consequently, & = n'*(D —10,)(1)) = (e =
n2(B () — f))jew € 2" ® 2V is centred, ie. & € L,(W") with " (¢) = 0. Evidently,
/f'* |+ n'"g is a noisy version of f (see Definition §10.19). Moreover, if f € L_(\..,) then J?

admits a covariance function cov’, € IR given for 7,7 € IN by

nCov(f, f) = Cov(g, &) =U"(g8) = U (431 — W (U (1))
=W, (Y'w(X)u, (X)) = ff = cov/,
Consequently, we have ¢ ~ ) and fA = [ +n'e ~P . (seeDefinition §10.19). O

(0

§19.08 Noisy regression coefficients. Under Assumptions §19.02 and §19.05 the stochastic process
g, = n'*(B —U,)(v;) satisfies Assumption §10.04, i.e. € € (%, ® B)”" ® 2N, and ¢, has mean
zero under U;". The stochastic process ]? = f 4+ n?g with /,-mean f is called a noisy version

of the regression coefficients f = U f € {,, or noisy regression coefficients for short. Moreover,

if f € L.(\.) then g admits under U;" a covariance function cov/ € R given forj,5, € N

by cov/ = U, (Y*u,(X)u, (X)) — f f. We eventually write & ~ I, and f~ P ... Ifin
addition g admits a covariance operator [, < [°(/,) then we write € ~ I)  and f, ~ P . for
short. O

§19.09 Remark. The centred stochastic process g, := (g ) e of error terms in Definition §19.08 is in
general not a white noise process. O

§19.10 Lemma. Under Assumptions §19.02 and §19.05 consider €, € (%#,, @ #)”" ® 2N as in Defini-
tion §19.08.

(1) If | € L_(\.) then under uf ,E ~P

Tweoy) Admits a covariance operator 1} € [E(L.) given by

a,n—>Ffa,: cov a,) E co” A J@N
7,€EN

where [Tl ., < o + [ fIIf_

)\w)'
() If [ ¢ L.\ and o < R then I, € L&) is invertible with inverse I}_l € L(¢,) where
[0 N

Consequently, if v, := max(o_ " 0" + || [’

ey

Lo ) € R, then for all a, € {, we have

v llaly, < llally = (Ga, a), < vllal;.
§19.11 Proof of Lemma §19.10. is given in the lecture. O

§19.12 Reminder. Consider the orthonormal basis (1) e in ¢, (compare Remark §15.12). If [ &
[..(\.) from Lemma §19.10 (i) for each j € IN we obtain

" () = U (In(17e)*) = I, 1), < (0 + IFIF_ o I = of + 11

L oo (Ko
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Keeping the last identities in mind if v, :— max(o. *, o’ + [|/[|” ) € R thenforall j € N
we have wf‘l < Uf‘” (572) <V, due to Lemma §19.10. O

§20 Projection regression estimator

§20.01 Notation (Reminder). Consider the measure space (IN, 2N 1;) as in Notation §10.11. For w, €
R" define the multiplication map M : R" — R with a, — M, a, := w.a,. Note that each
w, € R is 2N-Z-measurable. We denote by V. the set of all multiplication maps defined on
R". If in addition w, € /. = L_(N,2™ 1) then we have also M, : 6, = 0, Weset(l.) =
{M, €M :w €t } C L) noting that [|[M, ||, , = sup {[wall,: |lal, <1} <[w.],_ foreach
M, € I(&). O

§20.02 Reminder. If w, € (_then M, € X&), and M, : ¢, © dom(M,) — {,. Moreover, we have
dom(M,) = £, ran(M,) = cw, and ker(M,) = I with N, = {j € N:w, =0} € 2N (see
Property §11.03), and dom(M, ) = rw, @ ¢,12" (see Property §11.05). Consequently, if in addition
1 (N)) = Oorinequal w, € (R )", then wf = w™" € (R,)N, hence w' = w? € (R)¥, and
0y = dom(M,) = cw, = Ly(w?y) =: l,(uw?). For each m € IN we write 1" = (1) ;e := 1™
and 1" := 1, — 17" with [m] := [=m,m] N IN. Consequently, My, € (%) and M. € (L)
is the orthogonal projection onto the linear subspace ¢, 1" C /¢, and its orthogonal cdrnplement
eI = (e, 1)+ C 4, respectively, that is £, = ¢,17" & ¢, 1" (see Property §11.07). Finally, given
h, = Uh e [, for h € L,(\.) we consider the orthogonal projections /! = A 1" € 1" and
K" := UR" € Ly(\.) (Definition §11.08). a

$20.03 Notation (Reminder). Consider the stochastic processes & = n'/2(P —U,) (1)) € (B,, @ B)" @

0.1]
1/2

2N given in Definition §19.08. The observable noisy version ]‘A = [ + n "¢ of the regression
coefficients f = Uf € /, take the form of a statistical direct problem (see Definition §10. 19)
Under Assumptions §19.02 and §19.05 ¢, is centred and admits a covariance function cov € IR

given in Definition §19.08, i.e. € ~ B, and f~ B, iy I in addition /€ (A, then g

admits a covariance operator I; € (%) given in Lemma §19.10, i.e. g ~ B, . and f B O
§20.04 Definition. Given a noisy version ]? = f + n~'?g of the regression coefficients f = Uf € ¢,

for each m € N we call f" := f1 orthogonal projection estimator (OPE) of f. m

§20.05 Remark. If / = U’/ (for example (1,);en is an orthonormal basis of L,(A.,)), then we have
U = IR oy = I = L2

In this situation all results for the OPE f of the regresswn coefficients immediately transfer onto
the orthogonal projection regression estimator f =U f of the regression function f. m

§20|01 Global and maximal global v-risk

We measure first the accuracy of the OPE fm = f]lT of /" = f1" € 11" with [ = Uf € [, by
a global mean-v-error, i.e. v-risk.

§20.06 Reminder. If v, € (IR )" and [ € /,(v’) then we have [ = f1" € /,(v?) too and || [ — fo =
o(1) as m — oo (Property §11.09). Moreover, €, € (%,, ® %) 2" given in Definition §19.08
satisfies v.g 1" € /, (note that 1" € ¢, and v 1", g1 € £_.) and thus also

n ol + o =uf" €l (20.01)
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Finally, under Assumptions §19.02 and §19.05 and / < [__(\.,) due to Lemma §19.10 we have
U;" (g2) € £, more precisely, [[U;" (2)||,_ <o +|IfIIF . (see Reminder §19.12). 0

§20|01/01 Global v-risk

§20.07 Proposition (Upper bound). Let Assumptions §19.02 and §19.05, v. € (R )™ and [ € (,(v?) be
satisfied and for all n,m € N set

RY (£ 0) i= | £V +n 12, e o= arg min {RC(f.0) - m € N}

n

and R(f,0) = R"(f,0) = min {R"(f,0) :m € N}. (20.02)
If € 1.0 then we have W (| = £]2) < 1V (a2 + || fI? ) R.(f0).

§20.08 Proof of Proposition §20.07. is given in the lecture. O

§20.09 Oracle inequality. UnderAsmmpti()ns §19.02 and §19.05 let o c (R,)Nand [ € (). Ifin
addition v, = max(o " 0" +|[[||” ) € R thenv,' <y = = U"(e?) < v, forall j € N
(see Remznder §19.12 ) and hence Property §1 2 15 zmplzes

VRS (o) SUPLE = £12) = 07w/ ol1) + L1012
< vR)(f,0) forallm,n € N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.14)

1 PO . ®n o 2 ®n ome 2
R (f,0) < inf WL = £12) <6 (L™ - £12)
<R (L) < inf WW(IE" = £I1D), (20.03)

n

and, hence R (f,v,), m: and the statistic fmf‘, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v}). We observe that R, (f.,v) = o(1) as n — oo
(Remark §12.16), and thus, R (f,v,) is an oracle rate. However, note that the oracle dimen-
sion m; = m.(f, n) depends on the unknown regression coefficients f, and thus also the oracle

optimal statistic f In other words f is not a feasible estimator. O

§20.10 Illustration. We illustrate the last results considering usual behaviour for the bias and variance
term. We distinguish the following two cases

(p) v, € £, or there is m € N with || £ — f|I? =

(np) v, & £, and for all m € N holds || £ — f£||? € R.

Interestingly, in case (p) the oracle bound is parametric, that is, nR; (f,v) = O(1), in case
(np) the oracle bound is nonparametric, i.e. lim,, o, nR’ (f,0) = oo. In case (np) consider the
following two specifications:
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Table 01 [§20]

Order of the oracle rate R (f,v,) as n — oo

(j € IN) (a € R (squarred bias) (variance)
2 2w 2 m|Ll]]2 m||2 o °
07 _] j/ ||f-|]]" HU HIL ||t] 7”!7 Rn(f.,b,)
. < 2a—1 —2(a—v) 2041 1 _2(a=v)
(0) v E (71/2,(1) ] - m m n2zati N~ 2af1
. s—2a—1 —2a—1 N\ zat logn
v=—1/2 j m logm (log ) 5=
20+1
20 —2(a— a 1 logn) 2a
(S) v+1/2e R, e mi2a=))y gmmi pp2vtl (log n)?s %
o 2 EN loglogn
y— —1/¢ —j m - )34
v=—1/2 e e logm (logn)? —

We note that in Table 01 [§20] the order of the oracle rate R] (f,v,) is depict for v > —1/2 only.
In case v < —1/2 the oracle rate R’ (f,v,) is parametric. O

§20|01|02 Maximal global v-risk

§20.11 Assumption. Consider weights o, v, € (R )" with a, € /_and (av), == (a,v),cn = a0, € (.
We write (av)  := ||(av),1""[|, € R' for each m € IN. The orthonormal system (u,);cw in
Ly(A\) is (0sl) complete, i.e an orthonormal basis in L,(A.,) and as process u? = (u?);en On
([0, 1], A, ) satisfies (0s2) ||1; (a/u?) s <7 for7 e[l 00). O

[0,1] a,u a,u

I o

§20.12 Reminder. Under Assumption §20.11 we have (/ = dom(M, ) = ra, C /, and the three
measures 1, a,’y, and v’z dominate mutually each other, i.e. they share the same null sets

(see Property §11.05). We consider ¢; endowed with [|-|| . = |[M,.-||, and given a constant
r € R the ellipsoid ;" := {b € € : ||b]| . < r} C £. Since (av), ¢ (., and hence
(av),,, = [l(av0) 1], € R" for each m € IN we have (] C /,(v) (Property §11.15), and

6.1, < r(av),, forall b, € ;" (Lemma §11.17). O

(m
§20.13 Lemma. Under Assumption §20.11 set

= {h €L, h,=Uh € ;" }. (20.04)

Then we have sup {HhH[Loo(m): heb} <17,

§20.14 Proof of Lemma §20.13. is given in the lecture. O

§20.15 Proposition (Upper bound). Let Assumptions §19.02 and §20.11 be satisfied. Forn € N consid-
eringm’ € N and R} (a,,v,) € R" as in (12.06) (Proposition §12.21) we have

sup {U;" (|1 = £I2): f € B2} < CR (a0,
with constant C = o? + 1’77, + 1°.
§20.16 Proof of Proposition §20.15. is given in the lecture. O
§20.17 Ilustration. The trigonometric basis given for x € [0, 1] by
w, = Ty, W () := V2cos(2mkt), Uy, () := V2sin(27kt), k € N,

is an orthonormal basis of L,(A.,), hence it satisfies Assumption §20.11 (osl). Keeping in mind
that [[w}]|, ., < 2forall j € IN also the Assumption §20.11 (0s3) is satisfied for all a, € /,
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because 77, < 2||a,||§ (see also Illustration §16.18). In Table 02 [§12] (Illustration §12.26) the

order of the rate R} (a,,v,) is depict for the two cases (o) and (s). We note that we have a, € ¢, in
case (o) for a > 1/2 while in case (s) for a € ]Rfo. O

§20.18 Remark. In Proposition §20.15 an upper bound is shown under Assumption §19.02 which

amongst others imposes that 1(, = 1[,, © I, with P* ¢ P . Recall that B, C W(2)
denotes the subset of all probability distributions over (R, %) with finite second moment and
mean zero. For o € RJ{O let us further introduce I, , . C Bo}m; containing only probability
distributions with second moment bounded by ¢. In what follows we treat the distribution P* of
the error term as a nuisance parameter and consider the maximal risk over both E*" and B,

(see Definition §13.07). O

§20.19 Corollary (Upper bound). Let Assumptions §19.02 and §20.11 be satisfied. For n € IN consid-
ering m’ € N and R, (a,,v) € R" as in (12.06) (Proposition §12.21) we have

sup {(u[o,l] © ]fo))@m (”f.m - f.“g) VS [an,r’Ps € BO}X(O,UZ]} <C R;(a.7 v,).
with constant C = o® + 1*77, + 1°.

§20.20 Proof of Corollary §20.19. is given in the lecture. O

§20|02 Local and maximal local ¢-risk

We measure secondly the accuracy of the OPE fm = f]lf” of [" = f1" e 1" with [ = UJf €/,
by a local mean-¢-error, i.e. ¢-risk.

§20.21 Reminder. If ¢ € (R )" and [ € dom(oy) := {a, € ,;: ¢a, € ¢,}, then we have [ = [1" €
dom(¢y,) too and |py (f — f")| = o(l) as m — oo (Property §11.22). Moreover, € €
(B,, 0 B)™" ® 2N given in Definition §19.08 satisfies £ 1" € dom(¢y,) (note that ¢1", g 17" € ¢,)
and thus also

n el + £ = " € dom(en,). (20.05)

Finally, under Assumptions §19.02 and §19.05 and / < [ _(\..) due to Lemma §19.10 (i) the
process €, € (4, ® B)”" ® 2N admits a covariance operator [} € (%), i.e. € ~ P, ., satisfying

0,1 0.13;)

15l < 02 +1IF12 - -

§20|02|01 Local ¢-risk

§20.22 Proposition (Upper bound). Let Assumptions §19.02 and §19.05, ¢ € (R,)™ and [ € dom(oy)
be satisfied and for all n,m € N set

Ry (f,¢) = oy (LI + 07 102, m? == arg min {R] (f,¢) : m € N}
and R (f,¢) =R, (f.¢) = min{R](f,¢) :m € N}. (20.06)

If € L0 then we have W (lou(J — I < 1V (0 + 712, ) R.(£.0).

§20.23 Proof of Proposition §20.22. is given in the lecture. O
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§20.24 Oracle inequality. Under Assumptions §19.02 and §19.05 let & € (R,)™ and [ € dom(oy).
If in addition v, = max(o " 0" + [[[|7 ) € R then max(||[G[| ,, [T "ll,,,) < v, (see
Lemma §19.10), and hence Property §12.36 implies

VRS (£) U (o = D)D) = m I + o (£
< VR (f,¢) forallm,n € N.

As a consequence we immediately obtain the following oracle inequality (see Definition §12.34)

v, R (L) < inf U (o (£ = £IF) S W (lou(£™ — £)IP)

SR (fe) <) inf W (1ou ("~ £)IF), 20.07)

and hence, R, (f, ), m: and the statistic fm:, respectively, is an oracle bound, an oracle dimen-
sion and oracle optimal (up to the constant v;). We observe that R (f.,¢) = o(1) as n — oo
(Remark §12.37), and thus, R (f,¢) is an oracle rate. However, note that the oracle dimen-
sion m> = mS(f, ¢) depends on the unknown regression coefficients f, and thus also the oracle

~

optimal statistic f™. In other words ™ is not a feasible estimator: m

§20.25 Illustration. We illustrate the last results considering usual behaviour for both the variance and
the bias term. Similar to the two cases (p) and (np) in [llustration §20.10 we distinguish here the
following two cases

(p) ¢ € 4, orthereis K € IN with sup{|oy (f1"")]? :m € NN [K,00)} = 0,

(mp) ¢ & ¢, and for all m € IN holds sup{|oy (Lf1'")]* : m e NN [K,00)} € R,

In case (p) the oracle bound is again parametric, i.e. nR; (f,¢) = O(1), while in case (np) the
oracle bound is nonparametric, i.e. lim, ., nR’ (f,¢) = co. In case (np) consider the following
two specifications

Table 02 [§20]
Order of the oracle rate R’ (f, ¢) asn — oo

(j € IN) (a € R) (squarred bias) (variance)
_ su—1/2 - m|LY|2 m||2 R °
o= eI R e | Rif)
. : —2(a— 1 _(a=v)
(0) v e (0,a) ']7“71 2 m 2(a—v) mQu n& n —
» — ( j—a—1/2 —2a no\& logn
v=0 J m log m (log n ) n
v
. 9(g— (, 1 1
(s) ve R, e mi-2amsgm2m 2 (logn )2 %
o 2 (1-2a)4 ,—m? oo\ | loglogn
v=0 e m e logm (logm) —

We note that in Table 02 [§20] the order of the oracle rate R (f, ¢) is depict for v > 0 only. For
v < 0 the oracle rate R} (f, ¢) is parametric. O

§20|02/02 Maximal local ¢-risk

§20.26 Assumption. Consider ¢,a, € (R O with a, € 7 and (a0), = (a/c‘g)!,-en\' = a0 < [, and
hence [[a, 17" (| = [[(ag), 1" ||, = o(1) as m — oc. The orthonormal system (1) jen in Ly(A)
is (0s1) complete, i.e an orthonormal basis in Ly(A.,) and as process u? = (u?) jen on ([0, 1], 4, )

satisfies (0s2) ||y (af2)l| < 7 for7 [l 00). u
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§20.27 Reminder. Under Assumption §20.26 we have /; = dom(M ) = ca, € [, and the three
measures 1, o,y and |¢|y, dominate mutually each other, i.e. they share the same null sets
(see Property §11.05). We consider £, endowed with ||| . = |[M,.-[|, and given a constant

r© R the ellipsoid ;" := {a, € £} : |la| - < r} C 4. Since (a¢), < (,, and hence
la, 17|, = [l(ag). 1], € R" for each m € N ([, 1|, = o(1) as m — oo by dominated
convergence) we have /; C dom(oy,) (Property §11.27), and [¢n (f1")] < v [[a, 17" for all
fe ;" (Lemma §11.29). 0

§20.28 Remark. Under Assumption §20.26 considering the set E** of regression functions in L,(\.,)
defined in (20.04) we have || f[|, ., <7 forall f € F* due to Lemma §20.13. O

a,u

§20.29 Proposition (Upper bound). Let Assumptions §19.02 and §20.26 be satisfied. For n € N consid-
ering m’ € N and R, (a,,¢) € R" as in (12.13) (Proposition §12.42) we have
sup {Us" (|ou (L = L)IP): f € B} < CR (a, 9).
with constant C = o 4+ 1°7...
§20.30 Proof of Proposition §20.29. is given in the lecture. O
§20.31 Ilustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.26 for all a, € /,. In Table 04 [§12] the order of the rate R} (a,, ¢) is depict for the two

cases (o) and (s) introduced in Illustration §12.47. We note that we have a, € /¢, in case (o) for
a > 1/2 while in case (s) for a € R, 0

§20.32 Corollary (Upper bound). Let Assumptions §19.02 and §20.26 be satisfied. For n € IN consid-
ering m’ € N and R, (a,,¢) € R" as in (12.13) (Proposition §12.42) we have
sSup {(u[o,u © IPffX))®" (WV]N((fm - f)]lm)P) feR Pre Bo}x(o,a‘ﬂ} <C R;(a,, })-
with constant C = o* + 1°7°..

§20.33 Proof of Corollary §20.32. is given in the lecture. O

§21 Minimax optimal regression

§21|01 Maximal local ¢-risk

§21.01 Remindgr (Maximal local ¢-risk). Under Assumptions §19.02 and §20.26 the observable noisy
version | = [ + n '“g of the regression coefficients f = U f € /, take the form of a statistical
direct problem (see Definition §10.19) where the stochastic processes €, € (%, ® £)™" @ 2N
is given in Definition §19.08. Under Assumptions §19.02 and §20.26 in Proposition §20.29
is shown an upper bound for a maximal local ¢-risk of an OPE over the class E** C L,(\.)
of regression functions defined in (20.04). More precisely, assuming P* & P With o7 =
P*(idf;) € R}, and for f € F** setting U, := U,, ® B, the performance of the OPE o=
f]l:”' € 1" C dom(¢y,) with dimension m € IN is measured by its maximal local ¢-risk, that is

RILE AP = sup LU (long (7 = £)P): Uy o= Uy © By, f € B}

indicating explicitaly the dependence on the error distribution P* € By - Letus recall (12.13)
(Proposition §12.42) where for n, m € IN we have defined

R (a,0) := ||a,ILf”‘L||§s +n |1, m = arg min {R] (a,¢) : m € N}
and R (a.¢) =R (a,¢) = min{R](a,¢):m e N}. (21.01)
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By Prgposition §20.29 under Assumptions §19.02 and §20.26 the maximal local ¢-risk of an
OPE f™ with optimally choosen dimension m* as in (21.01) satisfies

R IE{P}] < CR, (.9)
with C = o +1°77,. O

§21.02 Lemma (Lower bound based on two hypotheses) Given P* € By,.x if there are ' f e E* with
associated probability measures B := U, , © ]Pf(x and B = Uy, © ]E}'S(X such that KL(R|R) <
2n~" then for all n > 2 we have

1nf ’R‘ﬁ[f]F“ {P*}] |<Z5V (f f )|

where the infimum is taken over all possible estimators.

§21.03 Proof of Lemma §21.02. is given in the lecture. O
21.04 Remark. If we consider furthermore candidate regression functions f° := f and ft=—f
for some f° € E, and hence by deﬁnition . f' € E*, then trivially lpv (f° — 1)|2 =
Aoy (LI g = oy © By and Uy = Uy © By
satisfy KL(U,|U,) < 2n~" then due to Lemma §21.02 for all n > 2 we have
1 .
inf R 6 (P} > eloun(f (21.02)

We find a minimax-optimal lower bound by constructing a candidate f* = U"f" € E*" that has
the largest possible |¢y (£ )|?-value but U;" and U;" are still statistically indistinguishable in
the sense that KL(U,|U,) < 2n~" . m

§21.05 Assumption. The distribution P* € 'W(#) admits a Lebesgue-density p° := dP*/d\ and ¢ +

x ~ P for all z € R. There exist constants Gz, € ]R+ such that

Vo e [-z,r]: KLP

[

2 = [ o (L2 )@ < ¢t

|

§21.06 Lemma. Let P° € W(#) satisfy Assumption §21.05 with constants C,r, € IRTD and under
Assumption §20.26 let {* € £" o< /(27,). Setting f*:=U"f"and f' = -U"f*
the distributions U, = U,,, ® B ., 7 € {0, 1} satisfy KL(U.[U,) < 4C,||f* I

Lo (Ao

21.07 Proof of Lemma §21.06. is given in the lecture. O

§21.08 Reminder. Under Assumption §20.26 let in addition o’ € (R )" (see Notation §13.23), then
Assumption §13.24 is satisfied. If a; > 7' then exploiting the definition (21.01) of m’ we have

a. >n' = a,. (see Comment §13.25) which we use in the next proof. O

§21.09 Proposition (Lower bound). Let P* € W(2) satisfy Assumption §21.05 with constants G, €

IPQO and let Assumptions §19.02 and §20.26 be fulfilled. If o < (]T)]}}\I then forallm € NN (1V
a,?,00) we have
inf z RI[£| B, {P}] > C R} (a,,¢) (21.03)

with constant C := 167 (1> A 2/(472,) A 1/(2C,)) and infimum taken over all estimators.
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§21.10 Proof of Proposition §21.09. is given in the lecture. O

§21.11 Comment. If £ is normally distributed with mean zero and variance o7 € R’
then for all z € R we have

or 1€ §~ (og)’

dN, 2
KL(NUJJ) ‘N(_'E,g;)) N(O o ( log dN o’) ) _ v
(@.0?)

and thus Assumption §21.05 holds with C, = 1/(2¢;’) and 22 = oo (see Proof §13.15). Conse-
quently, from Proposition §21.09 we obtain immediately,

inf; R LB, {N,,}] = C R (0, 9) (21.04)
with constant C := 167" (1> A ¢) and infimum taken over all estimators. u

§21.12 Corollary (Lower bound). Let Assumptions §19.02 and §20.26 be fulfilled and let o* € ]RTO. If
al € (R} then for allm € NN (1V 0,2, 00) we have

inf 7 RY[ £ B, Ry ] = C R (0, 0) (21.05)

with constant C := 167 (1> A 0*) and infimum taken over all estimators.

§21.13 Proof of Corollary §21.12. is given in the lecture. O

§21.14 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.26 for all a, € /7, (see Illustration §20.31). In Table 04 [§12] the order of the rate
R’ (a.,¢) is depict for the two cases (o) and (s) introduced in Illustration §12.47. We note that we
have a, € ¢, in case (o) for a > 1/2 while in case (s) for a € ]RTO. In both cases the additional
assumption o’ € (R )" is satisfied. Consequently, due to Proposition §21.09 the Table 04 [§12]
presents the order of the minimax rate R, (a,, ¢) which is attaind by the minimax-optimal OPE

Jf = f 1™ € ¢ 17 C dom(gy,) with optimally selected dimension m? (Proposition §20.29). We
shall stress, that the order of m* given in the Table 04 [§12] depends on the parameter a € an
characterising the (abstract) smoothness of the density of interest which is generally not known
in advance. O

§21|02 Maximal global v-risk

§21.15 Reminder (Maximal global v-risk). Under Assumptions §19.02 and §20.11 the observable noisy
version | = [ + n '“g of the regression coefficients f = U f € /, take the form of a statistical
direct problem (see Definition §10.19) where the stochastic processes €, € (%, ® £)™" @ 2~
is given in Definition §19.08. Under Assumptions §19.02 and §20.11 in Proposition §20.15
is shown an upper bound for a maximal global v-risk of an OPE over the class F™ C L,(\.)
of regression functions defined in (20.04). More precisely, assuming P* & P With o7 =

P*(idg) € R', and for f € E** setting U, := U,, ® B, the performance of the OPE ]""

\0
f]l’" € 1" C /,(v?) with dimension m € IN is measured by its maximal global v-risk, that is

AP = sup (U (I = £12): Uy o= Uy O B, f € B

Let us recall (12.06) (Proposition §12.21) where for n,mm € IN we have defined (an)fm =
[(av), I"[? and

L

R (a,0) = [(av)?, \/n‘1||]1m|]2] m’ :=arg min {R (a,,0) : m € N}
and R (a.v):=R(a,0) =min{R] (a,0):m e N}. (21.06)
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By Proposition §20.15 under Assumptions §19.02 and §20.11 the maximal global v-risk of an
OPE f™ with optimally choosen dimension m* as in (21.06) satisfies
R IR (P} < CR (. 0)

with C = ¢ + r*77, 4 1°. Furthermore, as in Notation §13.29 for m € NwesetT :={-1,1}"
and for each 7 := (7,)e[m) € 7, and j € [m] we introduce 79 € T, given by 7 := —7 and
7V =1 forl € [m]\{j}. O

$21.16 Lemma (Assouad’s cube technique). Given P* € By if for each T € T, thereis ™ € F*" with

associated probability measure U, := U,, ® P, such that for all T € T, and j € [m] we have
KL(U, |U,) < 2n7" then for all n > 2

ity RLIE (P 227 3 3 (6107 =1 )

7€l jE€[m]

where the infimum is taken over all possible estimators.

§21.17 Proof of Lemma §21.16. is given in the lecture. O

21.18 Remark. Assume candidate regression functions f := U’ f7 with £ := (7 f 17") jew, 7 € 7,
for some f* € ¢;", where evidently f* € (" too, then trivially deﬂm]] (02|f —f ! ) =
4|l fr 1 ||§ If forall 7 € T, and j € [m] the associated probability measures U, = U, ® B,

m

and U . = Upy © IP;‘”<X) satisfy KL(U,-[U,.) < 2n~" then due to Lemma §21.16 for all n > 2
we have

infp RILIES APV =27 )l 71007 = sl £ 1) (21.07)

T€eT,

We find a minimax-optimal lower bound by choosing the parameter m and the function f* that

have the largest possible || £ 1" ||§—Value although that the associated U}", 7 € T, are still statis-

tically indistinguishable in the sense that KL(U[U .) < 2n"' forall j € [m] and 7 € T,,. O

$21.19 Lemma. Let P° € W(®) satisfy Assumption §21.05 with constants Gz, € R’ and under

\0
Assumption §20.11 let f* € £;" o< 2 /(27,,). Foreach T € ‘.T introduce [’ :

([ 1I")jen € 65" and f7 = U" [T € B with associated probability measure U, = u[o‘,l]@]B?(x).

J

Then for each j € [m] we have KL(U,|U ) < i
21.20 Proof of Lemma §21.19. is given in the lecture. O
§21.21 Reminder. For w, € (_ we set wi, := |[w’||, and w = (uwf, := [w’L"], )jen (Nota-

tion §13.34) where by construction w?, = sup {w?* i e NN[j+1,00)}, j € N, and w? € (R])™.

Under Assumption §20.11 let in addition (av)’ € ()" and there exists C(w) € (0, 1] such that

C.l[(av) "1f[, < (av) " orin equal
(an)(m , = min {(an)?:j € [[m]]} > C(rm)(at))g"w1
for all m € IN, then Assumption §13.35 is satisfied. For m} and R, " (a,,0) as in (21.06)

we distinguish case i) : R = n'|

Lm | 2

> (av)’ and case ii) : R* (a ) 2 Nfluﬂi" |j

Due to Comment §13.36 if (av)’ > n U “then in case i) we obtain (av)’. = n'|/ 1|2 _» While
in case ii) setting (the defining set is not empty since (av)’ € (R )")

m; :=min {m € NN [m; +1,00): n”![[17[|2 > (av);,, } (21.08)
we have (av)! . = (av)] < n'|L" Hj We use those estimates in the next proof. O
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§21.22 Proposition (Lower bound). Let P* € W(#) satisfy Assumption §21.05 with constants C,x, €

R, and let Assumptions §19.02 and §20.11 be fulfilled. If (av)’ < (R )| and there exists C,, €

(00)

(0,1 such that C_ [[(av) “1"[|, < (av) " forallm € N, then foralln € NN (1Vv}(av),}, 00)
we have

inf; R[5, {P}] > C R, (a,,v) (21.09)

with constant C := 1671 (C_ x2/(47.,) NC,1* A1/(2C,)) and infimum taken over all estimators.
§21.23 Proof of Proposition §21.22. is given in the lecture. O

§21.24 Comment. If £ ~ N, . with o7 € R}, then Assumption §21.05 holds with C, = 1/(20;’) and
x? = oo (see Comment §21 11). Consequently, from Proposition §21.22 we obtam immediately

1nf R[f|F” {Noo}1 2 R, (a.,v,) (21.10)

with constant C := 167'(C_,1* A ) and infimum taken over all estimators. O

§21.25 Corollary (Lower bound). Let Assumptions §19.02 and §20.11 be fulfilled and let 0* € IP»+ If
(av)’, € (R)" and there exists C,, € (0,1] suchthat C_ ||(av) "1 , < (av),’, forallm €N,
then for alln € IN N (1V v}(av);}, 00) we have

inffRf[f’ ", Byeor] 2 C R, (0., ¢) (2L.11)

with constant C := 16~(C_,1* A 0%) and infimum taken over all estimators.

§21.26 Proof of Corollary §21.25. is given in the lecture. O

§21.27 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.11 for all a, € /, (see Illustration §20.17). In Table 02 [§12] the order of the rate
R’ (a,,v,) is depict for the two cases (o) and (s) introduced in Illustration §12.26. We note that we
have a, € /, in case (o) for a > 1/2 while in case (s) for a € R In both cases the additional
assumptions, (av). € (R )" and there exists C,,, € (0, 1] such that Cooll(a0)” 1], < (av),”
for all m € IN, are satisfied. Consequently, due to Proposition §21 22 the Table 02 [§12]
presents the order of the minimax rate R, (a,,v,) which is attaind by the minimax-optimal OPE
f"" = f]l’”* € 1™ C {,(v?) with optimally selected dimension m* (Proposition §20.15). We
shall stress, that the order of m’ given in the Table 02 [§12] depends on the parameter a € IR\U
characterising the (abstract) smoothness of the regression function of interest which is generally
not known in advance. O

§22 Data-driven regression

§22|01 Data-driven global estimation by model selection

§22.01 Reminder. Talagrand’s inequality stated in the form of Lemma §18.01 provides again our key
argument in order to control the deviations of the reminder term. Let us briefly recall how we
intend to apply Talagrand’s inequality (see Remark §18.02 for a similar approach). Reconsider
the stochastic process ) = (1) (X, V) = Yu (X));en € (4, @A) @ 2" where ¢y € L,(1,)
for each j € IN and the OPE fm = f]lf" € 1" with dimension m € IN (Definition §20.04).
f = ]Ed} = (]AEL@/)]) jen are noisy versions (Definition §15.08) of the regression coefficients f =
Uf = U = (WY = U (Yw(X)))jen (see Notation §19.07). For m € IN introduce
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the unit ball B,,, := {a, € LI lal, < 1} contained in the linear subspace ¢, 1" spanned by
(1) jefmy. Clearly, for each a, € ¢ 1" we have r, := Zjeﬂm]] v’a1) =y (v’ay)) € B, Q B,

0.1]

ie. itisa B, ® PB-B-measurable function, where P(r,) = 1, (v2a.By)) = 1 (v2a,f), U, (x,) =

[0,1]
(02alWy)) = y(v’a.f) and hence T, = P(r,) — U, (r.) = y(v’a(f — £)) = (£ — [, a),. Let
B, be a countable dense subset of the unit ball B,,, (see Remark §18.02 for more details), then
we obtain

IE" = £ = sup {|(f = foa) [0 € B0} = sup {|E.* 0 € B, }.

The last identity provides the necessary argument to apply below Talagrand’s inequality (§18.01)
where we need to calculate the three constants h, H and v. We note that ¢; € (4, @ %) ® 2~
and thus r, = 1, (v%a,1}) € %, ® A is not bounded. Therefore, we decompose 1 = ¢;° + 1" into
two parts 15", )" € (A, ® %) ® 2N, a bounded and a remaining unbounded one. To be more
precise, for a, € rw1" setting 1) := y (VVa.)’) € A, ® B and 1! = y (o)) € B, @ B

let sup {|t}(z,y)|: a. € Bg,z € 0,1,y e R} € R be satisfied. Introducing further T, := P —
U, (") and T := P(1") — U, (x) we evidently have

£ = N2 = sup {[£. +T.[* a € B }
< 2sup {|T]* a € Bn } + 2sup {[T[* 0. € By }
= 2| (B — W) )2 + 20| B’ = WL} (22.00)

—u
rﬂu

Considering the first term on the right hand side provided that

sup {Hqﬁ_b(:v,y)]l?lﬂuz re[0,1],y€ ]R} = sup {]rf(x,y)\ a, € By,x €[0,1],y € ]R} <h,
2

W (1B — Uy [2) = W (sup {22 a. € B4}) < HL,
sup {1, (| (7. (8" = Ul"))[*): o € Ba} = sup {n" ([E]%): 0. € Ba} < v, (22.02)

we eventually apply Talagrand’s inequality (§18.01) and we obtain

U (1B~ w12 - ) ) < G {3 () + S e () b 2200

for some universal numerical constant C_, € [1, 00). O

tal

§22|01j01 Global v-risk

§22.02 Assumption. The weights v, € (IR )" satisfy

Vo eR,: > {xfloln’]|,_exp (- o2 /(201 ], )} = Cl e R (22.04)

\0 v

meN

The orthonormal system (1) jen in Ly(\o) 18 (0s1) complete, i.e an orthonormal basis in Ly(A.,)
and satisfies as process 1> = (u?);en on ([0,1],4,,) for 7, € [1.00) and for all m € IN

‘ o
(0s3) sup {|u.(z)L" j zef0,1]} <721 Hj € R". O

§22.03 Remark. Under Assumption §22.02 (18.05) we have HQ]K”H;Q = o(1l) as m — oo (Com-
ment §14.22), see also Illustration §14.23 for an example when 618.05) 1s not satisfied. O

§22.04 Reminder (Global oracle v-risk). Given Assumptions §l9.()2Aand §22.02 we consider an OPE
as in Definition §20.04. Here the observable noisy version | = [ -+ n '/’ of the regression
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coefficients f = Uf € /, take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes €, € (4, ® %)™ @ 2" is given in Definition §19.08. Under

0.1]

Assumptions §19.02 and §22.02, (and hence Assumption §19.05 and v, € (R,,)™) and f € 4,(v?)
in §20.09 an oracle inequality for the global v-risk of the OPE’s is shown. More presicely, as in
(20.02) (Proposition §20.07) for all n, m € N setting

R (f,0) = LR + 07 T3, m) = arg min {R[(£,0) : m € N}

and R (f.v):=R(f,0)=min{R](f,0):m € N}. (22.05)
O ) < IR, due to Property §20.09 the (infeasible) OPE
Vi f 1" € o™ C £,(v?) with oracle dimension m? as in (22.05) satisfies

o . ®n /|| P 2 @n /|| pme 2
YR (f0) < inf WOLE = £12) < WU - £
< o < 2 ®n Am_ 2
~N Wf'R’n(f:7n-> X Wf ni%f]i\luf (Hf: j:”n)’

and assuming v, := max(o, ", o+ || f |17

and hence it is oracle optimal (with constant w?). O

Partially known penalty sequence
§22.05 Notation. Consider a sequence of penalties pen/* = (pen’”)new € (R),)™ given by
pen’*® := 48Vf7flln_1\|]l:"]|§, for each m € N with v/ := 1+ U, (Y?) (22.06)

which is obviously only partially known in advance, and the in advance known upper bound
(where the defining set is not empty)

M= max {m € N: |17'|]2 < nv2, m < 0 exp(g) - (22.07)

100
Considering the partially data-driven OSE me = ]/”\]1’% with dimension parameter
i = arg min { — ||f |, + pen’®: m e [M°] } (22.08)
we derive below an upper bound for its global v,-risk, W" (|| ™ — f Hf) O

§22.06 Lemma. Under Assumptions §19.02 and §22.02,Y € L (W) and [ € [_(\..) for pen/® € (]RTO)]N
asin (22.06) and M € N as in (22.07) we have

U5 (mas { (| £ = £[12 = pent/4) - m € W] })
< 20,7 (Clae,) + 07) (1 4+ U, (Y?) + Uy (

Nt (22.09)
for some universal numerical constant C,, € [1,00) and x, , = 6(0] + ||f||[L o)/ (V) € R
§22.07 Proof of Lemma §22.06. is given in the lecture. O

§22.08 Proposition (Upper bound). Under Assumptions §19.02 and §22.02, Y € L(W,)and [ € [_(\.)
for M’ € NN as in (22.07) and pen!* € (]R+)]N as in (22.06) the partially data-driven OPE

f = f]lm € oI C Ly(02) of [ € [.(v?) with data-driven dimension m € [M’] as in (22.08)
satisfies
W (1" = £I?) < 192(1 + U, (Y?))72, min {R] (£, 0):m € ]}
+ C72(Clze) + o) (1 + U, (Y?) + W ([Y])) n" (22.10)

for some universal numerical constant C = 16C,, € [1,00) and x,, = 6(052+Hf|\fww_ Wil e
R".
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§22.09 Proof of Proposition §22.08. is given in the lecture. O

§22.10 Comment. The oracle bound R, (f,v) = R"(f,v) = min {R] (f,v): m € N} (for details see
Reminder §22.04) satisfies nR’ (f,0) > ||]l’”||§ > v?. Consequently, the last upper bound
in (22.10) and the oracle bound R’ (f,v,) coincide up to a constant (192(1 + U, (Y?))72, +
C72(Clz o + 1) (1 + U, (Y?) + U, ([Y]"))) provided the oracle dimension fulfils m? € [M].

Therefore, we wish the upper bound M’ to be as large as possible. The next assertion shows that
M as in (22.07) is a suitable choice for the upper bound. O

§22.11 Corollary. Under the assumptions of Proposition §22.08 for each n € IN such that R’ (f,v,) <

nl/6
v} and m;, < n~* exp(f55) we have

W (I = £II?) < KR (f,v)

and, hence up to the constant K = 32(C,, + 12)72,(C(z.)o;2 + 1)(1 + U, (|Y|)) the infeasible
partially data-driven estimator ™ is oracle optimal.

§22.12 Proof of Corollary §22.11. is given in the lecture. O

§22.13 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §22.02 (osl), (0s3) for all a_ € /,. In Table O1 [§12] (Illustration §12.19) the order of the
rate R’ (f,v,) is depict for the two specifications (o) and (s). We note that we have a, € /¢, in
case (o) for a > 1/2 while in case (s) for a € IRJ\“O. The sequence v, satisfies Assumption §22.02,
ie. (22.04), for v > —1/2. Moreover, the optimal dimension m’ given in Table 01 [§12]
satisfies m> < n™* exp( 1:)/0) and thus (under the above restrictions) the partially data-driven
(hence not feasible) density estimator attains the oracle rate R’ (f,v,) up to the constant given in
Corollary §22.11. 0

Estimated penalty sequence

§22.14 Notation. The penalty sequence pen/® € (R))N given in (22.06) still depends amongst others
on characteristics of the unknown regression function f. More precisly, for m € IN the term
pen”® involves the quantity v/ = 1 4+ U,(Y™?) which we eventually estimate without bias by
vii=1+ ]E(YZ) (keeping in mind that we identify Y and the coordinate map II,). Therewith,
let us introduce a fully data-driven sequence of penalties pen’ = (Per’ )men € (IR )N given by

pen =248V n 172 foreachm € N with v/ :=1+ B (Y?) (22.11)

and the upper bound M” € IN given in (22.07) which are both fit/ly known in advance. Consider-
ing the data-driven OSE f™ = f17 with dimension parameter selected by

i = arg min { — || £, + Pert,: m € [M°] } (22.12)
we derive below an upper bound for its global v-risk, U;" (HfN"‘ SPANE O

§22.15 Proposition (Upper bound). Under Assumptions §19.02 and §22.02, Y < L(W,)and | € [_(\..)
for M’ € Nasin(22.07) and peri, € (R)N as in (22.11) the fully data-driven OPE [ = [1]' €
L1 C ly(02) of [ € (,(v?) with data-driven dimension m € [M'] as in (22.08) satisfies

W (1" = £II?) < 28872, (1 + U, (Y?)) min {R} (£.0): m € [M]}
+ C72(Cla) + o)1+ W (Y P) nt (22.13)
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forz,, = 6(c?+ || f ||2 N )V 7.2 € R and some universal numerical constant C = 3(16C,, +
384) € [1, 00).
§22.16 Proof of Proposition §22.15. is given in the lecture. O

§22.17 Comment. We shall stress that the last upper bound (22.13) in Proposition §22.15 (for the fully
data-driven procedure) and the upper bound (22.10) in Proposition §22.08 (for the partially data-
driven procedure) differ only in the constants. Thus, Comment §22.10 still applies here and the
proof of the next results follows line by line their counterparts above. 0

§22.18 Corollary. Under the assumptions of Proposition §22.15 for each n € IN such that R’ (f,v,) <

n-2/3

] 6
v} and m? < exp( 100) we have

W (1" = £12) < KR(f.0)

and, hence up to the constant K = 5(16C,, + 384)77, (C(=.)o72 + 1)(1 + U, (|Y]")) the feasible
fully data-driven estimator f™ is oracle optimal.

§22.19 Proof of Corollary §22.18. is given in the lecture. O

§22|01j02 Maximal global v-risk

§22.20 Assumption. Consider weights a. v, € (R )" with a, € /_and (av), == (a,v),cn = a0, € (.

We write (av), = [|(av), "], € R’ for eachm € IN. The weights v, € (R )" satisfy (18.05).
The orthonormal system (u )JGJN in L,(\.) is (0sl) complete, i.e an orthonormal basis in Ly(\.,)
and as process w? = (u?); E]N on ([O 1] 53[01”) satisfies (0s2) || (a’u? ) < 7, and for all

m € NN, (0s3) sup {||u.(z)1" J| |2 cR'.for7, 7, ‘['l, 00). O

re )<

§22.21 Reminder (Maximal global v-risk). Given Assumptions §19.0; and §22.20 we consider an OPE
as in Definition §20.04. Here the observable noisy version / = [ + n '’g of the regression
coefficients f = Uf € /, take the form of a statistical direct problem (see Definition §10.19)
where the stochastic processes € € (%4, ® %) ® 2 is given in Definition §19.08. Under
Assumptions §19.02 and §22.20 in Proposition §16.16 an upper bound for a maximal global
v-risk of an OPE is shown over the set E** given in (20.04) (Lemma §20.13). More precisely,
the performance of the OPE f "= f 1" € w1 C 4,(v?) with dimension m € IN is measured by
its maximal global v-risk over the ellipsoid ™', that is

5] = sup (U (1" — £12): f B
As in (12.06) (Proposition §12.21) for n, m € IN setting (av)’

R

(m)

= [|(av)/ 1|, and

R} (a,0) = (av)p, Vo |12, m = arg min {R](a,,b) : m € N}

n

and R (a.v):=R(a,0)=min{R] (a,0):m e N} (22.14)

by Proposition §20.15 under Assumptions §19.02 and §22.02 the maximal global v-risk of an
OPE f™ with optimally choosen dimension m* as in (22.14) satisfies

R |F"] < CR,(a,v,)

with C = ¢ + 1*77, + 1°. Moreover, due to Proposition §21.22 R} (a,,v,) provides (up to a
constant) also a lower bound of the maximal global v-risk over the elhpsmd " for any estimator.
Consequently, (up to a constant) R’ (a,,v) is a minimax bound and f’” is minimax optimal.
However, the optimal dimension m’ depends on a, € (R],)™ characterising the ellipsoid F**.
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22.22 Proposition (Upper bound). Under Assumptions §19.02 and §22.20 and Pt e P{o}xw with a =
P(id}) € R and v/ := P*(|idr]’) € R, for M € N as in (22 07) and per, € (R))N a
in (22.11) the fully data-driven OPE f f]lm € 1™ C L)) of [ € [.(v?) with fully
data-driven dimension m € [M’] as in (22.12) satisfies

R

n

[Far} NS (31‘2 + 2887;2&(1 + O'E2 + 1‘2 2 min {Rm f U ‘m e [[Muﬂ}
+Cv;u(C( D+ o) (1 + K+ )nt (22.15)

for x, := 6(d7 +1*7.,)7..2 € R and some universal numerical constant C = 96(16C,,, + 384) €
[1,00).

§22.23 Proof of Proposition §22.22. is given in the lecture. O

§22.24 Comment. The minimax bound R (a,,v) = R}"(a,,v) = min {R] (a,,v): m € N} (for details
see Reminder §18.12) satisfies nR; (a,,v) > || 17*|? > v}. Consequently, the last upper bound in
(22.15) and the minimax bound R/, (a,,v,) coincide up to a constant 3r* + 2887 (1 4 ¢ 41’7, ) +
C72(Clw)o > +1)(1+ K +1°7),) provided the minimax dimension fulfils 7 € [M, ]. Therefore,
we wish the upper bound M’ to be as large as possible. The next assertion shows that M as in
(22.07) is a suitable choice for the upper bound. m

§22.25 Corollary. Under the assumptions of Proposition §22.22 for each n € W such that R (a,,v,) <
nl/6

o2 and m; < n~**exp(+~) we have

100

R IE™] < (3% 4 2887 (1 + o + 1*7,)) min {R (a,,0): m € [M']}
+96(16C,, + 384)72,(Cx) + 02) (1 + K7 + 177 )0
< KR (a,0) (22.16)

and, hence up to the constant K := 3r* + C7,(Cle)v> + 1)(1 + &7 + 1°7.,) with universal

numerical constant C = 99(16C,, + 384) € [1,00) the feasible data-driven estimator e
minimax optimal.

§22.26 Proof of Corollary §22.25. is given in the lecture. O

§22.27 Illustration. Consider the trigonometric basis as in Illustration §20.17 which satisfies Assump-
tion §20.11 for all a, € /7, (see Illustration §20.17). In Table 02 [§12] the order of the rate
R (a,,0,) is depict for the two cases (o) and (s) introduced in Illustration §12.26. We note that
we have a, € /, in case (o) for a > 1/2 while in case (s) for a € ]R\0 The sequence v, sat-
isfies Assumption §22.20, i.e. (22.04), for v > —1/2. Moreover, the optimal dimension m}

given in Table 02 [§12] satisfies m* < n~*/% exp( 10/0) and thus (under the above restrictions) the

adaptive density estimator attains the minimax optimal rate R’ (a,,v,) up to the constant given in
Corollary §22.25. O

§22|02 Data-driven local estimation by Goldenshluger and Lepskij’'s method

§22.28 Reminder. The Bernstein inequality stated in the form of Lemma §18.19 provides again our
key argument in order to control the deviations of the reminder term. Let us briefly recall how
we intend to apply the Bernstein inequality (see Remark §18.21 for a similar approach). Re-
consider the stochastic process 1) = (¢ (X V) = Yu(X))en € (B, @ %) @ 2" where
Y € L) for each j € IN and the OPE f’” = f 1" € ¢ 1" with dimension m € IN (Defini-

tion §20.04). f ]Ew (IPQ/J )jen are noisy versions (Definition §15.08) of the regression co-
efficients f, = Uf = U, (4)) = (Uyh = U, (Y1,(X)));jen (see Notation §19.07). Clearly, r,, :=
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oy (1) isa %4, , @ %-%B-measurable function, where ]AP(r) = gbz/]N(]/E\(@b ) = gbl/m(f]lf”) and

W (r,) = on(U (L)1) = ¢y (f17), and thus T, = B(r,) — U (r,) = oy (f" = ["). We
note that ¢) and thus r,, = ¢y, (1, 1") is not bounded. Therefore, we decompose 1) = )" + )"
into two parts 1)°, 9" € (95’ ® %) @ 2N, a bounded and a remaining unbounded one. To

[0.1]

be more precise, setting r° = ¢y (°1") € #,, @ % and 1, = oy (4" ]lm) € B R AP let

[0.1]

sup {|r z,y):x € 0,1,y € R} € R be satisfied. Introducmg further ™ := P(r}) — U,(r") and
= P(r) — U, (x") we evidently have T, = T + T and hence

m m

o (£ = £ = I8 + 5> < 280 + 207
B(1) — W, (2)]* + 2[R() = U (). (22.17)
Considering the first term on the right hand side provided that
(hb——bbhﬁﬂ2)—- (1o () = U (o ()P < V7, € R,
SUP{ I, (2,y)|: z €[0,1] yElR} b, € R, and hence b — U, (2] < 2b,, (22.18)

due to the Bernstein inequality (Lemma §18.19 (18.16)) we have
U ((|n 21?4y 321 (log K)n ') log K)+) < 8K v, +16bn'}. (22.19)

forany K < [1, 00). O

§22|02|01 Local ¢-risk

§22.29 Assumption. Let ¢ € (R )" and the orthonormal system (u,) e in Ly(\.,) is (0s1) complete
and satisfies as process u, = (1,)jen on ([0, 1], 4, ,) for 7, € [1,o0) and for all m € N satisfies

[0.1]

(0s3) sup {||u. ()L H z €0, 1}} <7m e R m
§22.30 Remark. Keeping Reminder §22.28 in mind we define ", ¢)" € (4, ® %) @ 2N as

6 (2, y) = (4 (2,9) == ylow(Jy)w (2)) jen and
Ui y) = (4 (2, y) =yl (ly)w(e))jen, = €[0,1,y €R
where evidently ¢ + )" = ¢ and
| = oy (1) = [Y Town(|Y )i (0 (X)) < Y g (w (X)I)| = [ (1)] =
We use in the sequel that under Assumption §22.29 (0s3) foreachm € IN

sup {|r2(:v,y)\2~ rel0,1],y€ ]R} = sup {]y]lo n)( y])@/m(u,(x)]lﬁ")\z: re0,1],y€ ]R}
< a2 sup {u(2)00 )7 2 € (0.1} < nPrml|L05 =B, (22.20)

m

by applying the Cauchy Schwarz inequality and moreover (see Proof §15.11)
) U, (| (9" 1)[7) =2 v,
< WU (o @I)l) < (8 + I1F17 o IS € R (2221

exploiting (??) in Proof §19.11. Combining (18.19), (18.20) and (18.18) (Remark §18.21) we
obtain

(s

uf(lr: - uf<r7:)|2) < uf(

— (4v}, + 32D, (1ogK)n’1)10gK)+)
<K {07 4 I+ 167 mn Y2 (22.22)

forany m € Nand K € [1,00). O
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§22.31 Reminder (Local oracle ¢-risk). Given Assumptions §19.02 and §22.29 we consider an OPE as
in Definition §20.04. Here the observable noisy version [ = [ + n '“c of the regression coef-
ficients f = U f € {, take the form of a statistical direct problem (see Definition §10.19) where
the stochastic processes €, € (4, ® % )" @ 2N is given in Definition §19.08. Under Assump-

0,1]

tions §19.02 and §22.29 Assumptions §15.02 and §18.22, (and hence Assumption §19.05 and
o e (R,)Mand f € dom(oy,) in §20.24 an oracle mequalzly for the local ¢-risk of the OPE’s is
shown. More presicely, as in (20.06) (Proposition §20.22) for all n, m € N setting

R (£, ¢) = lou (LI +n |10, mg = arg min {R] (£, ¢) : m € N}
and R} (f,¢):=R.(f.¢) =min{R](f,¢):m € N}. (22.23)
and assuming v, = max (o, *, o’ +[|[[|” ) € R dueto Property §20.09 the (infeasible) OPE
f’"ﬁ = f]l:”’3 € 1" C dom(¢r) with oracle dimension m? as in (22.23) satisfies
v 'R (f ) < %g%u?"(l%(fm — AP <" (lon (£ = HP)
<R (fa) < v inf W (lon (1" = D),

and hence it is oracle optimal (with constant \v?). O

Partially known penalty sequence

§22.32 Notation. Consider first a sequence of penalties pen/® = (pen/?),en € (R7,)N given by

pen” = 2407 (v, + 8D, (log K, )n ") (log K,,) with v = U, (|oy, (2" 17) ),
b= m|Ir|?, and K, = (1V ||]lmH;) m’ € [1,00) foreachm € IN, (22.24)

which is obviously only partially known in advance, and fully known upper bound
M" :=max {m € N: m| 13 < n*¢’} € N (22.25)

where the defining set is not empty and finite (i.e. M” < n?). Considering the data-driven OSE
f™ = f17 with dimension parameter selected by Goldenshluger and Lepskij’s method

m := arg min {Contr’:,;“5 + pen”?:m € [[Mﬂ]}
contr/? := max { (|¢Vm(f — fm)|2 - penf’¢ — penf1;¢)+:j € ﬂm,Mﬂ}}, m € [[Mﬂ] (22.26)
Moreover, studying a ¢-error the bias term introduced in (14.31) becomes

bias, (f.¢) = sup {|ou (£ — £™)| = |oy (FL™ )] j € [m, o]} Vm € IN.

If / & dom(oy,) and hence 1 (]¢f|) € R then bias (f,¢) < (|¢f|]lm“) = o(1) as m — oo by

dominated convergence. Considering the data-driven OSE f = j: 17 with dimension parameter
m selected as in (22.26) with penalty sequence pen/* given in (22.24) and upper bound M? € N
as in (22.25) we derive below an upper bound for its local ¢-risk, U;" (|gz5 (=) ) m

§22.33 Lemma. Under Assumptions §19.02 and §22.29, [ € L. (\.,) and Y € L,(1,) for pen)® €
(]RTO)IN as in (22.24) and M’ € N as in (22.25) we have

;" (maxx { (|gu (" = £")[* = penl?/3) - m & [M]})
< {2807 + 28|17 ., + 4487 207U, (YY) p ot (22.27)
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§22.34 Proof of Lemma §22.33. is given in the lecture. O

§22.35 PrOpOSItlon (Upper bound). Under Assumptions §19.02 and §22.29, f € [._(\.) and Y €

L) for penf € (RN as in (22.24) and M* € N as in (22.25) the OPE f = fI7 €

1™ C dom(éy) of [ € dom(en,) with partially data-driven dimension m, € [M°] as in (22.26)
satisfies for alln € IN

W (o (£ = £P) < 128002 + /17, +87)
x min {bias?(p, @) + 1 1]|]1:”H;(10g K,)(1V (logK,)mn **): m e [M]}
+56(140 + 4[| fIIP )+ 224707 + WY (22.28)

§22.36 Proof of Proposition §22.35. is given in the lecture. O
§22.37 Comment. Let us compare the dominating part of the upper bound given in (22.28), that is

min { bias’ (f, ¢) + n*1||]1,m||;(1og K,)(1V (logK,)mn**): m e [M’]} (22.29)

with the oracle bound R (f,¢) = min {|¢y (" — f)]* + n*1]|]lf"\|; :m € N} (for details see
Reminder §22.31). In (22.29) we face eventually a deterioration by three sources. First, we
generally have bias (f,¢) = |y (f™ — f)|, but note that for /¢ < (IR")" equality holds, that is

bias, (£, @) = sup { (@ L1"): j € [m, 0]} = (@ L1) = |oy (£ — £

for all m € IN. Secondly, the variance term features an additional factor (log K,)(1V(log K, )mn=/%),
and finally the upper bound M’ might impose an additional deterioration. The next assertion
shows that M is a suitable choice for the upper bound. Moreover, we estimate the bias term by
bias, (f, @) < v(|¢f]17"") where equality holds whenever [  (R")". 0

§22.38 Corollary. Forn,m € IN we set

R(£0) = (o flnm))’
+(1+ (10g|!11"”|| ), +logm) (1 + ((log||1[|7), +logm)mn™") n~'[I17]|Z,
:=argmin {R] (f,¢) :m € N} and
R, (£, ¢) = R\ (f,¢) = min {R](£,¢) : m € N}. (22.30)

Under the assumptions of Proposition §22.35 for each n € N such that m* € [M°] we have

W (lon (7 — £)I?) < 1152(07 HIFIZ o, + 8RR 9)
+ 56(140, +14H fH[L oy F 224707 4 @R (V) )
<%m«£+wmi%pu+@>+nu+2@%wﬂ4MY%»mu@»<msw

§22.39 Proof of Proof §22.39. is given in the lecture. O

§22.40 Comment. The data-driven bound R’ (f, ¢) compared to the oracle bound R’ (f, ¢) features a
deterioration of the variance term at least by a logarithmic factor. The appearance of the loga-
rithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. m
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§22.41 Illustration. We illustrate the last results considering the two specifications (o) and (s) given in
Table 03 [§12] (Illustration §12.40). We restrict ourselves to the case ¢ ¢ /, only.

Table 01 [§22]
Order of the oracle rate R (f, ¢) and the data-driven rate R] (f, ¢) as n — oo

(Jj eN) (@ € R")  (squarred bias) (variance)
_ su—1/2 m|L\)2 m||2 & o o
$=1J Lo @)= ey | ve e R.(f,¢) R.(f¢)
. 5 9(a— _2 _(a—v)
(0) v E ((](‘l) —a=1/2 m 2(a—v) m2v n2v+1 n a
J
(a—v)
. ) noo\2 logn\ %
€ (3/4,0) (log n ) ( n
o n?/® \ o logn i(if/v;
a € (0,3/4] (1(7&11) ( nd/¢
. . _ 2 1
v=0 e m logm | B
c (3/2 n_\a (logn)?
a € (3/4,00) ((103‘”) ) —
o n®/s \mr (log n)*\ a7172
a € (0,3/4] ((10;.;71)‘) ( nd/3 )
v v
20 —9(a— 24 _2 1 I a 1 a (log I
(s) ve R, e mUiI—Hamv)s gm2mt 20 n2+1  (logn)2a (Ognn) (logn) Slog ogn)
‘ _ o 2 1 log 1 log logn)?
v =0 e nA—20)+ o—2m* logm : n (1()5%_“).3” oglogn (loglogn)
ogmn n n

We note that in Table 01 [§22] the order of the oracle rate R (f, ) and the data-driven rate
R’ (f,¢) is depict for v > 0 only. In case v < 0 we have ¢ € (,. Moreover, in case (s) for
a € R, and (o) for a € (3/4,00) the rate R, (f, ¢) features only an additional logarithmic factor
compared with the oracle rate R (£, ¢). O

Estimated penalty sequence

§22.42 Notation. The penalty sequence pen/* € (R )™ given in (22.24) still depends on character-
istics of the unknown regression function f. More precisly, for m € IN the term pen’’ in-
volves the quantity v/, = U, (|¢y(4,"1")|?) which we eventually estimate without bias by
V=D ( «(4"17)|?). Based on this estimator let us introduce a fully data-driven sequence of
penalties per! = (per’ )nen € (R))™ given by

P’ = 24071 (252 + 3x8b, (log K, )n ) (log K,,) with v := B (|¢ (" 17)?),
b= mn*m|1 %, and K, = (1V ||]lf”||i)m3 € [1,00) foreachm € N, (22.32)

m

which is now fully known in advance, and fully known upper bound M” € IN defined in (22.25).
Considering the data-driven OSE f" = f17 with dimension parameter selected by Goldensh-
luger and Lepskij’s method

m := arg min {/C\ontrf1 + /ﬁen‘fn: m € [[Md’]]}
Contr? 1= max{(\qﬁym(ﬁp?j Am)|2 pen — Pen’, ) 1j € ]}m,M”’]]}, m € [[Mﬂ] (22.33)
we derive below an upper bound for its local ¢-risk, U;" (| ¢y ( - 0I%). u

§22.43 Lemma. Under Assumptions §19.02 and §22.29 and [ < [__(\.) for pen/? pex? € (R))N as in
(22.24) and (22.32), respectively, and for any M € IN we have

U™ (max { (penf” — pert) :j € M]}) < 80{q +[IfIIf_, , +6mn " }n". (22.34)
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§22.44 Proof of Lemma §22.43. is given in the lecture. O

§22.45 Pr0p051t10n (Upper bound). Under Assumptions §19.02 and §22.29, Y < L (U J )and | <
) for pen” € (]R+) as in (22.32) and for M? € N as in (22.25) the OPE f = j:]lf”
éz]lf" Q dom(¢y) of | € dom(oy) with fully data-driven dimension m € [M°] as in (22.33)
satisfies for all n € IN

W (lou(f" = £I?) < 224(7 + IFIE o, +127)
x min { bias’ (f, ¢) + n‘IH]lf"Hj)(log K, )(1V (logK,)mn **):m e [M]}
+ 72(4007 +40[| f[12 .+ 240707 4+ I (V)0 (22.35)

§22.46 Proof of Proposition §22.45. is given in the lecture. O

§22.47 Comment. We shall stress that the last upper bound (22.35) in Proposition §22.45 (for the fully
data-driven procedure) and the upper bound (22.28) in Proposition §22.35 (for the partially data-
driven procedure) differ only in the numerical constants. Thus, thus the proof of the next result
follows line by line their counterparts above. O

$22.48 Corollary. Under the assumptions of Proposition $§22.45 for eachn € N such that m* € [M’]
we have

W (Jou (£ = £)I?) < 2016(07 + |[£2 |+ 127)R;(£, ¢)
+ 72(400” + 40||f||[L oy T 2407207 + @' T2 U, (V) )n™!
<2016((of + IF 117 o)A+ @)+ 1207 (L + ¢ & +W(YM) R (£, 9). (22.30)

§22.49 Proof of Proof §22.49. is given in the lecture. O

§22.50 Comment. The fullay data-driven bound R’ (f,¢) equals up to the numerical constants the
bound in the partially known case. Therefore, the Comment §22.40 and the Illustration §22.41
apply here equally. O

§22|02|02 Maximal local ¢-risk

§22.51 Assumption. Consider ¢, a, € (R)" with a, € /_ and (a¢), == (0,¢0);en = 0.¢ € (,, and
hence [la, 1" | = [|(ag), 1|, = o(1) as m — oo. The orthonormal system (1) jen in Lo(u)

is (os1) complete, i.e an ()rth()m)imal basis in Ly(\.,) and as process u? = (u? )]e]N on ([0 1], M)
satisfies (0s2) || (a’u0?)], | < 7., and for all m € I, (0s3) sup {[[u(x)1]7: 2 cf0.1]} <
72| .

n2 e R for 7 7, c [1,00).

§22.52 Remark. Under Assumption §22.51 considering the set F" of regression functions in L,(\,.)
defined in (20.04) we have || f ||, , , <7 forall f € F*" due to Lemma §20.13. Consequently,
given in addition Assumption §19.02 all assumptions of Proposition §22.45 are satisfied. O

§22.53 Reminder (Maximal local ¢-risk). Given Assumptions §19A.02 and §22.51 we consider an OPE as
in Definition §20.04. Here the observable noisy version | = [ + n '/< of the regression coef-
ficients f = U f € /, take the form of a statistical direct problem (see Definition §10.19) where
the stochastic processes €, € (%4, ® %)™ ® 2 is given in Definition §19.08. Under Assump-

tions §19.02 and §22.51 (and hence Assumption §20.26) in Proposition §20.29 an upper bound
for a maximal local ¢-risk of an OPE is shown over the set " given in (20.04) (Lemma §20.13)
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More precisely, the performance of the OPE ]? = f]l € 1" C dom(¢y) with dimension
m € IN is measured by its maximal global ¢-risk over the ellipsoid F™', that is

R ] = sup {W" (o (£ = £)F): £ B}
Asin (12.13) (Proposition §12.42) for all n,m € IN setting

R’ (a., ) := ||a,IL:"‘L||§S + a7 1|, m := arg min {Rf(a,,gz?) :m € ]N}
and R (a.¢) =R (a,¢) = min{R](a,¢):m € N}. (22.37)
by Pr(lppsition §20.29 under Assumptions §19.02 and §22.51 the maximal local ¢-risk of an
OPE f™ with optimally choosen dimension m as in (22.37) satisfies
RIF“IE"] < CR,(a.¢)

with C = ¢? + r*77,. Moreover, due to Proposition §21.09 R (a.,¢) provides (up to a constant)
also a lower bound of the maximal global ¢-risk over the ellipsoid F,* for any estimator. Conse-
quently, (up to a constant) R’ (a,, ¢) is a minimax bound and fmi is minimax optimal. However,
the optimal dimension m; depends on a, € (R,)™ characterising the ellipsoid F". O

§22.54 Proposition (Upper bound). Under Assumptions §19.02 and §22.51 and P* € P With o} =

{
P(id,) € R, anc/lﬁé14 = P(idy) € R, for M* € N as in (22.25) and and per! € (R,)™ as in

\0
(22.32) the OPE " = f17 € ¢, 1™ C dom(¢y,) with fully data-driven dimension m € [M’] as
in (22.33) satisfies for alln € N
R < 224(07 + 07, + 127)
 win {Jo, 742 + 7 17 log K, )(1 v (log K, Jmn): m € 1]}
+ 576 (507 + Br'7, 4 30777 4+ 21 (k1 M) )nTt. (22.38)

§22.55 Proof of Proposition §22.54. is given in the lecture. O

§22.56 Corollary. Under the assumptions of Proposition §22.54 for n,m € IN we set
R/ (a. ) = [Ja. 1|7
+ (1 + (logl| 172), +logm) (1+ ((logl| 1), + logmyma**) n™ |22,
m’ := arg min {R] (a,¢) : m € N} and
R (a,¢) =R (a,¢) = min {R] (a,¢) : m € N}. (22.39)

For eachn € N such that m* € [M’] we have

R ET] < 2016(07 +1°7, + 1270)R; (0., 9)
+576(507 + 5°7, + 30mn ¥ 4 20 @ (! )
<B76((4+ 507 (0 +1°7°, + 1277) + 272 (k" + 17 R (0., ¢). (22.40)

n

§22.57 Proof of Corollary §22.56. is given in the lecture. O

§22.58 Comment. The data-driven bound R’ (a,, ¢) compared to the minimax bound R’ (a,, ¢) features
a deterioration of the variance term at least by a logarithmic factor. The appearance of the
logarithmic factor within the bound is a known fact in the context of local estimation (cf. Laurent
et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low
[1996] show that it is unavoidable in the context of nonparametric Gaussian regression and hence
it is widely considered as an acceptable price for adaptation. m
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§22.59 Illustration. We illustrate the last results considering the two specifications (o) and (o) given in
Table 04 [§12] (Illustration §12.47). We restrict ourselves again to the case ¢ ¢ ¢, only.

Table 02 [§22]

Order of the minimax rate R’ (a,, ¢) and the data-driven rate R, (a,, ¢) as n — oo

(j € IN) (a € R) (squarred bias) (variance)
L we1)2 2 m|L|l2 m (|2 ¢ * ©
B % o R LR BV Ri(a.¢) R(a.9)
. —92(q— 2 _(a=v)
(0) ve (0,a) g m e m* n2o+1 n e
(a—v)
. no\ logn a
a € (3/4,00) (log n ) ( n )
oo n®/® \ ¥z logn \ At/
a € (0, ';/'"l_ (1<)g n ) nd/6 )
. _ 1
v =0 je | me logm | .- B
0 n_\& (logn)?
a € (3/4,00) ((1();:‘;11,)") n
o /A1 n°/? ﬁ (log n)3 u+(§/2
a € (0,3/4] ((log n)‘) ( nb/3 )
v v
_ 20 1 1 logn)a logn)a (loglogn
(s) ve R, e’ mAe e n2o (logn)2a ( gn ) (logn) EL glogn)
o 1 log 1 loglogn)?
v =0 e e logm | e~ (logn)2a Ogsgn (log ng )

We note that in Table 02 [§22] the order of the minimax rate R (a,, ¢) and the data-driven rate
R’ (a,,¢) is depict for v > 0 only. In case v < 0 we have ¢ € ¢,. Moreover, in case (s) for
a € R, and (o) for a € (3/4, 00) the rate R (a,, ¢) features only an additional logarithmic factor
compared with the minimax rate R} (a,, ¢).

O
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Appendix A

Probability theory

Elements of the PROBABILITY THEORY are recalled along the lines of the
text book Klenke [2008] where a detailed exposition with many examples
can be found.

§19 Fundamentals

§19.01 Notation. For x,y € R we agree on the following notations |z| := max{k € Z : k < x}
(integer part), x V y = max(z, y) (maximum), A y = min(z,y) (minimum), z* = max(z, 0)
(positive part), z~ = max(—z,0) (negative part) and |x| = £~ + 2 (modulus).

1)
(ii)

We set ™ :=[0,00), R := (0,00), R, := R\ {0}, R := [~00, ], R = [0, 00].

For a,b € R with a < b we write [a, 0] := [a,b] N Z, [a,b] := [a,b) N Z and ]a,b] :=
(a, b] N Z. Moreover, let [n] := [1,n] and [n[ := [1,n[] for n € IN.

(iii) For a™ = (ai)ic[n], 0" = (bi)icpn] € R" we write «”" < b",if a; < b; forall i € [n]. For

a™ < b", define the open rectangle as the Cartesian product (a",0") = X (a;, b;) =
(ay1,b1) % (ag,by) X -+ X (an, b,). Analogously, we define [, b"], (a",0"] and [a", b").

(iv) We call Z:= P the Borel-o-field over the compactified real line R, where the sets {—oco},

v)

{00} and R are in R closed and open, respectively, and hence Borel-measurable. In partic-
ular, the trace % := PBr = # N R of A over R is the Borel-o-field over R. Furthermore,
wewrite 7 == ZNR, 7 = ZNR and Z = BN R

Given a measurable space (€2, /) a Borel-measurable function g : 2 — Rand f : Q — R
is called real and numerical, respectively, and we write ¢ € </ and [ € ./ for short.
g respectively f is called positive if g(Q2) € R respectively f(Q) € R, then we write
g€ </ and [ € o/ - We call a Borel-measurable function f* = (f,)icpy : © — R", that
is f; € of foreach i € [k], and ¢* = (g:)icpy : @ — R*, numerical and real, respectively

. N —k o .
and we write /" € </ and ¢" € /" for short. O

§19.02 Property.

@)

(ii)

For XY € o and a € R holds: aX € < (with convention 0 x oo = 0); X VY :=
max(X,Y), X AY :=min(X,Y) € & and particularly X+ := X V0, X~ := (-X)* €

For X" = (Xi)icp) € 7, i.e, X; € &, i € [n], and Borel-measurable h : R — R™
holds h(X™) € &/™, and in particular X; + Xy, X1 — Xo, X1 Xy € o7, and X,/ X, € .

(iii) Let (X,)new be a sequence in /. Then SUP,ew Xn € o, inf,ewy X, € o, X, =

lim inf X,, € o and X* = lim sup X,, € o. If X := lim X, exists, then X € .

n—o0 n—o00 n—oo

(iv) Let S: (Q, o) — (8,.) be measurable, 5(S) := S~() C o the sub-c-field generated

by SandY : Q — R. Then the following conditions are equivalent: (a) Y is _O'(é)-
measurable, symbolically Y € o(S); (b) There exists a measurable ¢ : (8,.7) — (R, %),
in short p € ., withY = ¢(S). If Y is real, bounded or positive, then p has each of those
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properties too.
S

() (,7)
Y = () € o(9) k@ey
(R, %)

The function ¢ is uniquely determined by Y on S(Q2), and for all s ¢ S(Q) it can be
arbitrarily be extended.

(v) For every X € T the sequence of simple random variables (X,,)nen in 7 given by
X, = (272" X |) A n satisfies (a) X,, T X; (b) X,, < X An; (c) For each ¢ € R" holds
lim,, ..o X,, = X uniformly on {X < c}. O

$19.03 Notation. For a measure £ on (£, .27) we denote the integral of f € .7 with respect to u by

jof == [ fdp, if it exists. For s € R} define | f| . = (p|f1)/*, and 1/l = inf{ce
R" : u(|f] > ¢) = 0}. For s € ETO := (0, 00] a function f € & is called £ (n)-integrable, if
£l < oo. We denote the set of all £ (u)-integrable functions by L (1) := L (/. 1) := {f €
A ||fllg < oo} Note that |||, is a seminorm on £,(x) for each s € [1,00]. Given a
metric space (X, d) equipped with its Borel-o-field %y we denote by C, := C,(X) the set of
all bounded and continuous functions mapping X into R. For any finite measure 1 on (X, %y)
we have ||h|, , < oo forall h € €y and thus €, C L..(%y, i1) in equal. We denote by A the

Lebesgue measure on (R, %) and write shortly L. := L (%) := L (%, \). O

$19.04 Notation. We understand a vector a* = (ai)icpr] as a column vector, i.e., a® = (ay---ap)t € R’
and hence we identify R" and R"". We denote by ||-|| and (-, -) the Euclidean norm and inner
product on R¥, respectively, i.e, [|a¥|| = (32, pq lail?)"/? and (¥, b¥) = 37, g aibs = (0%)'a"
forall a*,b* € R". For s € R, we define [|o" || = (30, q lail*)"/* and [ = maxepu |ail.

— — —t
Note that f* € 7" and g* € /" imply | f*|l, € </ and ||g*||, € < forany s € R,,. We call
¥ = (fi)iemm L(u)-integrable if | f¥|l, € £,(n) or equivalently f; € £,(n) for each i € [k]. We
N K, —k .
define || /"], = /¥l and L) = L) = {f* € o ||fk||d:<#) < oo} with a
slight abuse of notation. O

§19.05 Notation. Let X be a random variable, i.e. a measurable function, defined on a probability
space (€2, <7, IP) with values in a measurable space (X, Z"). The probability measure on (X, Z")
induced by X is denoted by P~ := P o X! and we write X ~ I for short. For f € 2 the
expectation of f with respect to PX or equivalently of f(X) with respect to PP (if it exists)
is denoted by 2} := P~ [ = Pf(X) =: Ef(X) for short. For example, when applied to
the empirical measure T?) given by f?,(.zf”) = %Ziew 0y, for 2™ = (2;)icpyy € X" this yields

Pf e Z witha" — (Bf)(z") := 2 > icny f (%:). In other words, for each 2" € X", (B.f)(z")
is an abbreviation for the average + > icgny [/ (%:). We denote by W(.2") the set of all probability
measures on (X, Z") and for R" equipped with its Borel-o-field %" := B by W.(#") C
W(#") the subset of all probability measures on (R™, ") with finite s € R" absolute mean,
that is, for all P € W,(.%") the identity mapping id,, : R™ — R" belongs to L,(P). Furthermore,
for Y ~ IP we write [£(V) = P(Y) := P(id,) = (]P(Hi))ie[[nﬂ using for ¢ € [n] the coordinate

map [ : R" = R with 2™ = (2;)icfn) — IL(2") 1= ;. O
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§19.06 Property. Let X € Ly(P), i.e. |X1%,, = PUX[?) < co. Foreachb € R and A € R (k)

we have Y = AX + b € Ly(P). If we further denote by ;1 := PX € R* and ¥ := Cov(X) =
P(X — p)(X — p)t = P(XX?) — ppt € RE*) expectation vector and covariance matrix of X,
respectively, then P(Y) = Apu+b € R™ and Cov(Y) = ALA! € R, O

$10.07 Definition. A £(P)-random vector X with y := P(X) and & := Cov(X) is multivariate nor-
mally distributed, X ~ N, for short, if for each ¢ € R" the real random variable (X, c) is
normally distributed with mean (u, ¢) and variance (Xc, c), i.e., (X,c) ~ N . If Id, de-

((1sc),(Eec
notes the k-dimensional identity matrix, then X ~ N, is called a standard normal random

vector. O

§19.08 Property. A random vector X = (X;);cpy] is standard normal, i.e., X ~ N, if and only if its
components {Xi i€ [k] € ]K} are independent and identically N, ,-distributed. m

§19.09 Remark. In other words, a multivariate N, -distribution equals the product of its marginal
N, -distributions, or N, , = N, ,*" := &icpig Noy for short. O

§20 Convergence of random variables

Here and subsequently, a metric space is equipped with its Borel-o-field.

§20.01 Definition. Let X and X,,, n € N, be random variables on a probability space (€2, .27, P) with
values in a metric space (X, d). The sequence (X,,),en converges to X:

(a) almost surely (P-a.s.), if P(lim,,_,o d(X,, X) = 0) = 1. We write X,, ——= X P-a.s., or
. P-as.
briefly, X,, — X.
(b) almost completely (P-a.c.), if 3 P (d(X,,X) > ¢) < coforall e € ]Rfo. We write

n—o0

X, "% X P-ac., or briefly, X, ~ % X

(¢) in probability, if lim,, ]P(d(Xn, X) > 5) =0foralle € Rfo. We write X, 7% X in
P, or briefly, X, — X.

(d) in distribution, if lim,_,. P f = PXf for any f € C,(X). We write X,, ——= X in
distribution, or briefly, X, i> X and with a slight abuse of notation also X, i) PX.

(e) in L,(P) or s-th mean, if lim,,_,, P(d(X,, X)*) = 0. We write X, 2% X in L,(P), or
briefly, X,, ~5 X .

$20.02 Remark. Let X and X,,, n € N, be random vectors in R*, i.e., (R, %*)-valued random vari-

ables, and |[|-||, as in Notation §19.04. Convergence of (X, )nen to X in s-th mean, that is,
n—oo

PllX, — X7 = || X, — X”Z*’(]p) —— 0, equals the component-wise convergence of (X! ),en
to X% in £,(P), i.e., P| X! — X?|° = | X! — X?||® 220 foreach i € [k]. 0

L,(P)

§20.03 Property. Let X and X,, n € IN, be random variables on a probability space (2, o7, P) with
values in a metric space (X, d).

(i) The following statements are equivalent: (a) X, Ea—g—> X; (b) sup,,s, d(Xm, X5) E>

0; (©) Ve,6 € R, : 3N € N :V¥n > N : P(N, {dX;,X)<e}) > 10 and
(d) SUP o, (X, X) = 0.
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(i1) (Continuous mapping theorem) Let g : X — R be continuous and let (X,,),en converge
to X P-as. (respectively, in probability or in distribution). Then (g(X,))nen converges to
g(X) P-a.s. (respectively, in probability or in distribution).

(ii1)) Counter examples show, that the converse (in gray) of the following direct implications (in
red) do not hold. O

n— 0o

inf{e € R : P(d(Xn,X) >e) =0} 750

Lo (P)
5 —— 4
+ 00
P (d(Xn, X)°) /\ / Ve € Ry, : %N]P(d(xmx)>s)<

L, (P)
x, % x
[
j | l

/

r<s \/ | / P(lim sup d(Xpn, X) =0) =1

n

e
i%

+ .
Ve €R, : lim P(d(Xn,X)>e)=0

VheEe, : lim PXnp =pPXh
n oo

X 4 X

§20.04 Definition. A family of {X,,; : j € [kn],n € N € K} of real £,-random variables is called a
standardised array, if for every n € IN the family {Xn,j 27 €[ka] € ]K} 1s independent, centred
and normed, i.e., E(X,;) = 0, j € [k,] and >_ ;. jvar, (X, ;) = 1. A standardised array
{X,;:j€ [ka],n € N € K} is said to satisfy
(a) the Lindeberg condition, if lim,, o Y jelkn] (Xfw-]l 1 xn,jwza}) 0 forevery 6 € R’ ;

\0?

(b) the Lyapunov condition, if there is § € R, such that lim,, o > E|X,;[*?=0. o

JE[kn]

§20.05 Property. Let (X,,)new be a sequence of independent real random variables.

(i) (Law of Large Numbers) Let X,,, n € IN, be identically distributed. Then X, € L,(P) if and
only if lim,, o = > iepy Xi = P(X1) P-as. (and then also in L,(P)).

(ii) (Lévy’s equivalence theorem) For partial sums (S, := " | ieln] Xi)new P-a.s. convergence is
equivalent to convergence in probability. Otherwise, they diverge with probability one.
(Kolmogorov’s three-series theorem) (S, )nen converges P-a.s. if and only if there is € € ]an
such that each of the following three conditions holds: (a) Y . P(|X,|>¢) < oo;
(b) > en E<Xn]1{\xn\<g}) converges; and (¢) Y t’arm(Xn]l{ng}) < Q.

Let {X,;: j € [ka],n € N € K} be a standardised array.
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(ii1) The Lyapunov condition implies the Lindeberg condition.

(iv) (Central Limit Theorem of Lindeberg (1922)) If the Lindeberg condition hold, then (for the

row sum) S = Zje[[k”ﬂ Xnj 4 Noa- .
§20.06 Remark (Law of Large Numbers). Let X}, n € N, be i.i.d. random vector in R*. Then || X}, =
P|| X}, < oo if and only if 3=, 14 X o E(X}) (then also in £,(P)). .

§20.07 Property (Portemanteau). Let X and X,,, n € N, be random variables on a probability space
(Q, o7, P) with values in a metric space (X, d). The following statements are equivalent:

(i) X, 5 X;
(i) lim inf, ,, . P(X, € U) > P(X € U) forall open U C X;
(iii) lim sup,,_, . P(X, € F) < P(X € F) forall closed F C X;

(iv) limy, 0 P(Xn € B) = P(X € B) for all measurable B with P(X € 0B) = 0 where B,
B and OB = B\B is the closure, interior and the boundary of B, respectively. m

§20.08 Property (Helly-Bray). Let X and X,,, n € IN, be random vectors in RF with cumulative distri-
bution function (c.d.f.) for each x € RF given by F(x) := P(X < ) and F,(z) := P(X,, < 2).
Then the following statements are equivalent: (i) X, 4 X and (i) limy, o0 F, () = F(x) for all
points of continuity x of . O

§20.09 Property (Continuous mapping theorem). Let (X1, dy) and (Xs,ds) be metric spaces and let ¢ :
X1 — Xy be measurable. Denote by U, the set of points of discontinuity of ¢. If X and

X,, n € N, are Xy-valued random variables with P(X € U,) = 0 and X, N X, then
d
P(Xn) = o(X). =

§20.10 Property (Slutzky’s lemma). Let X and X,,,Y,, n € IN, be random variables taking values in a
common metric space (X, d) and satisfying X, % X and d(X,, Yy) 2. 0. Then Y, NS¢ O

§20.11 Example. Let X and X,,, n € IN, be a random vector in R satisfying X, 4 X.
(a) IfY,,, n € IN, are random vector in R and ¢ € R” such that Y,, N ¢, then X,,+Y, 4 x +c.

(b) If X, n € N are random matrices in R**) and ¥ is a matrix in R** such that &, % ¥,
then >, X, 4 $X. If in addition ¥ is strictly positive definite, and thus invertible, then
21X, 4 $1X and 8, %X, & B-12X. o

$20.12 Property (Cramér-Wold device). Let X,,, n € N, be random vectors in R*. Then, the following
are equivalent: (a) There is a random vector X with X, LN (b) For any v € R, there is a
real XV with (v, X,,) 4 xv If (a) and (b) hold, then X" and (v, X) are identically distributed
(id.), X" L (v, X) for short, for all v € R”. u

§20.13 Property (Lindeberg-Feller CLT). For eachmn € N let {Yn,j 7€ [kn] € ]K} be independent and
centred L3 -random vectors such that (1) 3= ;cp. 1 BIIYn i [* Ly, 15 2% 0 for any eR), and

.. n— 00 d
() Y sep BV Yl ) === 5. Then Y g1 Yoy = Nos- 0

$20.14 Example. Let X and X,,, n € N, be iid. Li(P)-random vectors with p = P(X) and strictly
positive definite 3 = Cov(X).
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(@) (CLT) £ 3, g (X — 1) % N,

(b) (LLN) X, = £ 320 X =

() (LLN) 1, o XiX! =5 B(XXY),

(@ Sp = 15 (X = X (X~ X) = 230y XeX! — XX, 5 E(XXY) — ppt =
Cov(X) = ¥ (using (b) and (c) and continuous mapping theorem §20.03)

(e) \/5251/2(7 — 1) 4 Nou, (using (a), (d) and Slutzky’s lemma §20.10 as in the Exam-
ple §20.11 (b)) O

§20.15 Remark. A map ¢ : R¥ — R™, that is defined at least in a neighbourhood of 6, is called
differentiable at 0, if there exists a linear map (matrix) ¢y, : R* — R™ such that

lim ||¢(‘9) — ¢(90) B §'b00 (9 B QO)H

=0.
600 16— 6o

The linear map = — égo (x) is called (fotal) derivative as opposed to partial derivatives. A
sufficient condition for ¢ to be (totally) differentiable is that all partial derivatives d¢,;(6)/06,
exist for ¢ in a neighbourhood of ¢, and are continuous at 6,. O

§20.16 Property (Delta method). Let ¢ : RF O Dy — R™ be a map defined on a subset D of R”
and differentiable at 0,. Let T and T,,, n € IN be random variables taking their values in the
domain Dy of ¢. If r,(T,, — 6,) % T for numbers r,, — oo, then ro(o(T) — ¢(0,)) 4 o, (T).
Moreover, the difference between 1, (¢(T},) — ¢(0,)) and ¢y, (ro(T, — 6,)) converges to zero in

probability. 0

§20.17 Remark. Commonly, v/n(7T, — 0,) 4 N,.x- Then applying the delta method it follows that
d

\/ﬁ(¢(Tn> - ¢(90)) - N(c’;a(,liyff.?eozég”)' U

$20.18 Property (Markov’s inequality). If X is a L.(P)-random vector for some s > 1, then P(||X]l, >
A < PUXI) = X5 5

§20.19 Property (Monotone convergence). Let (X,)nen be a sequence of monotonically increasing real
L,(P)-random variables converging P-a.s. to a numerical random variable X, for short X,, T X
P-as.. Then PX = lim,,_, PX,,. O

§20.20 Property (Dominated convergence). Let (X,,)nen be a sequence of real L,(P)-random variables

converging P-a.s. to a numerical random variable X, i.e., X, P x, If there is a real
L,(P) random variable Y with sup,,c | X,,| <Y P-as. (and thus sup,cy | X,| € L£,(P)), then

£,(P)
X e L,(P)and X,, —> X. O

§20.21 Definition. A sequence of random variables (X,,),en With values in a metric space (X, d) is
called (uniformly) tight (straff) or bounded in probability, if, for any € € ]RTO, there exists a

compact set K. C X such that P(X,, € K.) > 1 —¢eforalln € IN. O

§20.22 Remark. If (X, d) is Polish, i.e., separable and complete, then every X-valued random variable
is bounded in probability and thus so is every finite family. m

$20.23 Example. A sequence (X,,),en of random vectors in R¥ is bounded in probability, if for any
e > 0, there exists a constant K such that P (]| X,,|| > K.) < e foralln € IN. O
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§20.24 Property (Prohorov’s theorem). Let X and X,,, n € IN, be random variables with values in a
Polish space.

1 If X, N X, then (X,,)nen is bounded in probability.

(i) If (X,)nen is bounded in probability, then there exists a sub-sequence (X, )kew Which
converges in distribution. m

§20.25 Landau notation. Let X,,, n € N, be random variables on a probability space (€2, &7, P) with

values in a metric space (X, d) and let z,,, n € N, belong to X.
n—oo

(i) We write (a) x,, = o(1), if d(z,,,0) —— 0, and (b) z,, = O(1), if sup,,cp d(xy,0) < o0,
and analogously (a) X, = o_ (1), if X, L 0, and (b) X,, = O_(1), if (X,,)nen is bounded
in probability

(i1) Letay, n € IN, be strictly positive numbers. We write (2) x,, = o(ay,), if d(z,,0)/a, = o(1),
and that (b) z,, = O(ay,), if d(z,,0)/a, = O(1), and analogously (a) X, = o_(a,), if
d(X,,0)/a, = o,(1),and (b) X, = O_(a,), if d(X,,0)/an = O, (1).

(iii) Let A,, n € I, be strictly positive random variables on (2, o7, P). We write (a) X, =
0,(A,),ifd(X,,0)/A, =o0.(1),and (b) X,, = O, (A,),if d(X,,0)/A, = O,(1). O

§20.26 Property (Exercise). For real random variables the following properties hold:
(i) 0,(1) 4+ 0,(1) = 0,(1) meaning if X,, = o,(1) and Y,, = o,(1) then X, + Y, = 0,(1);
(i) 0,(1) +0,(1) = 0, (1);
(i) 0,(1) - 0,(1) = 0,(1);
(i) (1+0,(1))" = O, (1);
(v) 0,(0,(1)) = 0,(1) meaning if X,, = O, (1) and Y,, = 0,(X,,) then Y,, = o, (1). O

§21 Conditional expectation

In the reminder of this section let (€2, .27, IP) be a probability space, IE be the expectation with
respect to P and .# C &7 be a sub-o-field of <7.

§21.01 Notation. We write shortly X' & 97, if X is a positive numerical random variable on (2, .<7),
— JR— R J—
ie, X : Q — R+ is a o/-# -measurable function. In particular, we have 9’+ - d+ and for
—t
Y € .7 its expectation [E(Y) is well-defined. O

§21.02 Property. Forevery X € o existsY € F with E(1,Y) =E(1:X) forall F € %, where Y
is unique up to P-a.s. equality. O

§21.03 Definition. Amap Y : Q) — R is called a (version of the) conditional expectation of X &€ ra
given .%, symbolically E (X ‘ﬁ )=V, if
(CEl) Yis # —@Jr—measurable, hence Y € §+ and
(CE2) E(1,Y) = E(1,X) forany F' € .Z.
Any map E( e {ﬁ ) : o — F with X — E(X ‘ﬁ ) is called (version of the) conditional

expectation with respect to P given .#. It implies a map P ( o |ﬁ ) oA — 7 with A —
P (A ‘ F ) =K (]l A ‘ﬂ" ) called (version of the) conditional distribution of P given .%. Exploiting
(CE2) every version satisfies E (1P (A|.#)) = [, P(A|.Z)dP = P(FNA) forall F € .% and
Ae . 0
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21.04 Reminder. Let X € ./ be a numerical random variable. Considering the decomposition
X =XT-X with Xt X~ ¢ o we define for X with P(|X]) < oo, hence E(X™) < o0
and E(X ™) < oo, the expectation E(X) := E(X™) — E(X ™). Keep in mind that £,(«/, P) :=
{X ¢ o E(X|) < oo} and £ : £,(«/,P) — R denotes the uniquely determined expectation
with respect to P. Note that .# C .7 implies £,(.#,P) C L(</,P). Let X € £L,(</,P), and
hence E(X ™) < oo and for any version IE)(X*‘ ) holds (CE1), (X*}ﬁ) € 7 and (CE2),
E(1,E(X*|.Z)) = E(1,X") forall F € .Z, in particular with F = Q also E(E(X|.Z)) =
E(XT) < oo. Therewith, E(X ﬂ,ﬂ’ ) € Ll(ﬁ ,IP) and analogously also for any version
E(X~|Z) € Li(Z,P). Consequently, E(XT|.%) — E(X~|.#) € Li(Z,P) satisfies (CE2)

too. O

21.05 Definition. For X € £,(«,P) and each version E(X|.%),E(X~|#) € Li(Z,P) we call
E(X|Z) :=E(X *{ﬁ ) —E(X~ |J € L,(.#,P) a (version of the) conditional expectation
of X given .#. Any map

E(e|Z): Li(«,P)— Li(F,P)with X — E(X|.F) =E(X|.Z) -E(X|Z)
is called a (version of the) conditional expectation with respect to P given .. m

21.06 Remark. Due to Property §21.02 versions of the conditional expectation of X & o or X €
Li(<f,P) given Z differ only on null sets. This property does in generally not extend to the
version of the conditional expectation with respect to IP given .#, since for each X we obtain a
null set, and their union in general is not a null set. O

§21.07 Definition. Let (£2;,.9%), (€2, 9%) be measurable spaces. A map x : Q) x % — R’ is called
Markov kernel (from (4, <7 to (s, 95)), if

(MK1) Ay — rk(wy, Ag) is for all w; € 2y a probability measure on (s, .2%), symbolically
(wla ) € W(%)

(MK2) w; + k(wy, As) is 7 -%B-measurable for all Ay € o7, symbolically x(e, Ay) € &1, O
21.08 Notation. Consider a probability space ({21, <7, IP), a measurable space ({23, %) and a Markov

kernel k (from (€2, o7 to (€2s, o%)). Then there exists an unique probability measure ~ © I° on
(Qg x Oy, o ® o) determined by

P(A2 X Al) = / m(wl,Ag)]P(dwl), forall A; € %,AQ € as.
Aq

IffE%@ﬂfforfELl(m@IP)then
kOPf = / fw2, w)k © P(dws, dwy) = / f(we, wr)k(wr, dws) P (dwy).
Qo x Q1 J Qo

Furthermore, we denote by ~I” the marginal distribution on ({2, @%) induced by x ® P, i.e.
(AQ) =xk0oP AQ X Q fQ wl, A2 (dwl) for all A2 c 4272 |

§21.09 Definition.

(a) P (o | F ) is called regular (version of the) conditional distribution of P given .%, if (w, A) —
P (A{f ) (w) satisfies the conditions (MK1) and (MK?2), i.e. IP( ° }ﬁ ) is a Markov kernel
(from (2, %) to (L2, &)).

(b) ]E( ) ‘J) is called regular (version of the) conditional expectation with respect to P given
7, if the implied conditional distribution IP o |J of P given . is regular and for each
w € Qis X — E(X|.Z)(w) the expectation with respect to P (o |.7) (w). O
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21.10 Property.

(i) Each regular conditional distribution of P given % is implied by a regular conditional

expectation with respect to P given % .

(ii) For any probability measure P on a polish space (£, d) endowed with its Borel-o-algebra

PBq and sub-o-field F C Bqg exists a regular conditional distribution of P given 7. o

§21.11 Notation.

(1)

(ii)

(iii)

(iv)

Let X be a random variable on ({2, o7, IP) with values in a measurable space (X, 2"). For

h e Li(Z,PY) denotes [£, (1].7) = £ (h( 5()‘ 7) € Li(:#,P) a conditional expectation
of h(X) given Z and I, (o |.7 ) : £i(Z",PX) — Li(F,P) with h — E, (h|F) a (regular)

(version of the) conditional expectation with respect to PX given .%.

Let S be a random variable on (€2, <7, P) with values in a measurable space (8,.7). For
h € Li(/,P) we call E(h|o(S)) € £i(o(S), P) be a conditional expectation of / given
F = o(S). Keeping E(h|o(S)) € o(S) in mind and applying Property §19.02 (iv) there
is ¢ € . with E(h|o(S)) = ¢(95), that is, E(h|o(5))(w) = ¢(S(w)), w € Q. Then
E(h]S) = e L, P and E(h|S = s) := ©(s) € Ris called a (version of the) condi-
tional expectation of h given S respectively S = s, and I ‘ S) L(o ,P) — L,(S,P%)
with X — E (X }S ) a (regular) (version of the) conditional expectation with respect to IP
given S.

Let (X,5) : (%) — (X x 8,2 ® .%) with joint distribution P*¥), We denote by
I, : X x8 — Xand II, : X x 8§ — 8§ with (z,s) — II (z,s) := z and (x,s) —
II,(z,s) := s, respectively, the corresponding coordinate maps. The marginal distribution
of X respectively S is given by P¥ = Po X! = PoI[['(X, S) = P& oI " respectively
PS = P9 o 17", For each version PX5) (‘e |o(I1 )) of the condltlonal distribution with
respect to P9 given o (Ils), the map

P*(e]9): 2 — .7 with B — P¥(B|S) := ¢ determined by
P¥(Blo(11,)) = P (I (B)|o(IL)) = ¢(I1,)

and analogously I’-* ( ‘ S = s) is called (version of the) conditional distribution of X given
S respectively S = s. We call a version regular, if (s, B) — PX (B|S = s) is a Markov ker-
nel (from (8,.7) to (X, 27)), where due to Definition §21.03 (CE2) P~ (e|S) 0P = P(*-5)
(see Notation §21.08). Analogously, for h € L,(Z, PX ) we define a (regular) version
E, (h S) € L,(.,P%) and I, (h‘S = s) € R of the conditional expectation of h given S
respectively S = s. If PX ( ° ‘S) is a regular conditional distribution of X given S and for
s € § the probability measure P~ ( ° |S = s) has for example a finite first absolute moment,
ie, PX( ]S =s) € Wi(2") (see Notation §19.05) then E(X|S = s) = E,(idx|S =
) = [oxP* (da]§ = 5).

Suppose the joint distribution P(X>%) is dominated by a product measure 1 ® v where . and
v is a o-finite measure on 2" and .%, respecitively, u € M, (2" ) and v € M, (.¥) for short.
Let £ denote a (1 ® v/)-density of P(X»%) . A 1~ and v-density of the marginal distribution
P~ and P¥ is given by f* : z — fs XS) z,s)v(ds) and £ 1 s — [ £ (2, s)u(dx),

respectively. The ©° : § x X — R with

(X,5)
(s,2) — £ (2) = %l{f (90} + ¥ (x )]l{fs(s)zo}
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belongs to 7 @ 2 and itis a ji-density of the Markov kernel PX'° from (8,)to (X, 2)
defined by (s, B) — PXI5=3(B) == [, "7 (2)pu(dz). We call £°" conditional density
of X given S = s.

(v) As an example let (X, S) € %" be multivariate normally distributed with Cov (X, S) =

Y x5 and marginal distributions X ~ N, . and S ~ N, . ,1ie.,

X . Lx ket Yx 2xs
~ N, with y = e R"" and X = .

Assuming ¥ > 0 the joint distribution P*-*) admits a density with respect to the Lebesgue
measure \**! on (RF+!| %%+!). For each s € R! the conditional density """ as in (iv) is a
density of the multivariate normal distribution N, __~distribution with

(hx|5=5:2x]|5
fix|5=s = px + LxsXg (s — ps) € RMund Sxj5—s = Ex — Lxs85' Esx > 0

which is thus a regular conditional distribution of X given S = s. m

§21.12 Property. Let X|Y € L,(</,P) and F C of be a sub-o-field. Any version of the conditional
expectation satisfies the following properties P-a.s.:

(i) Foralla,b € R holds ]E(aX + bY‘ﬁ) = a]E(X‘ff) + b]E(Y{L?); (linear)
(i) For X <Y holds E(X|Z) <E(Y|Z): (monotone)
(i) |E(X|Z)| < E(|X||.Z): (triangular inequality)
(iv) For S € & with E(|S||.#) < oo holds P(]S] < 00) = 1. (finite)
(v) For ¢ : R — R convex with ¢(X) € L,(</,P) (Jensen’s inequality)
holds ¢(E(X|.7)) < E((o(X))].2).
(vi) For X,, T X P-a.s. holds sup,,cy E (Xn|9) =E (X‘ﬁ) (monotone convergence)
(vii) For X,, —» X P-as.with |X,| <Y,n €N, (dominated convergence)

holds lim,, o B (X, |.#) = E(X|F) P-as. and in L,(</, P).
If the version is regular, i.e., ]E( ° ‘ﬁ ) (w) is an expectation for all w € ), then the statements
(1)-(vii) holds for all w € (). m

§21.13 Property. Let X,Y € L(«/,P) and 9 C . C of sub-o-fields. Any version of the conditional
expectation satisfies the following properties P-a.s.:

(i) For E(|XY|) <occandY € .7 holds
E(XY|Z) =YE(X|Z#) and E(Y|Z) =E(Y|o(Y)) = Y;

(i) E(E(X|Z)|¥) =E(E(X|9)|Z) =E(X|9): (tower property)
(iii) If o(X) and .F are independent, then I (X |ﬁ ) =E(X); (independence)
(iv) E(E(X|Z)) = E(X). (total probability)
(v) For 7 :={A e o |P(A) € {0,1}} holds E(X |7 ) = E(X). O

§21.14 Property. Let F C o be a sub-o-field and E ( e ‘35 ) be a conditional expectation.
(i) E(e|F) : L(o,P) — Li(F,P) is an orthogonal projection, that is, for all X &
L(e/ ,P)andY € L,(F,P) holds

X = Y2, =B(X = YP) > B(X - B(X|2)]) = | X - B(X|Z)[2,,,

where equality holds if and only if Y = I (X‘gZ) P-as..
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(i) E( o |F) : L(o,P) = L(F,P) is a contraction for s € [1,00], i.e., E(X!ﬁ)“um <
| X||; oy and thus bounded and continuous. If (X, )new converges in L(</,P), then
(E (X,Jﬁ’))nem converges in L,(.F ,P). O
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